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Abstract
Thiswork aims at a fast computational processmodel of the free-formbending process. It proposes a novel physically-informed
machine learning model, which is trained with experimental data of bending constant radii and utilizes additional physical
bending knowledge by integrating Timoshenko’s beam theory. The model is able to predict the resulting plastic deformation
of the tube after exiting the die by computing an elastic representation of the tube’s deformation with beam theory at each time
step. This elastic representation serves as input for a regression model similar to a partially connected neural network. This
physically-informed machine learning model generalizes the constant training radii to complex bend geometries consisting of
transitional sections and true spline geometries. It is compared to a benchmark finite element simulation and has an improved
prediction quality for complex kinematics while reducing the computation time by four orders of magnitude.

Keywords Freeform bending · Physically-informed neural networks · process model · Surrogate model ·Geometry prediction

Introduction

Freeform bending is a kinematically-controlled bending pro-
cess that can create complex 3D geometries. In addition to

Philipp Lechner and Lorenzo Scandola have contributed equally to this
work.

B Philipp Lechner
philipp.lechner@uni-a.de

Lorenzo Scandola
lorenzo.scandola@utg.de

Daniel Maier
daniel.maier@utg.de

Christoph Hartmann
christoph.hartmann@utg.de

Yevgen Rizaiev
yevgen.rizaiev@tum.de

Mona Lieb
mona.lieb@tum.de

1 Institute of Materials Resource Management, University of
Augsburg, Am Technologiezentrum 8, 86159 Augsburg,
Germany

2 Centre for Advanced Analytics and Predictive Sciences,
University of Augsburg, Universitätsstraße 2, 86159
Augsburg, Germany

3 Technical University of Munich, Walther-Meissner-Strasse 4,
85748 Garching, Germany

arc-shaped geometries, it also allows the bending of pure 3D
splines. On the other hand, this increased flexibility requires
a more complex design of the bending head kinematics and a
more advanced set of tools to design the bending kinematics.
When predicting bending processes, a distinction is made
between simulations based on the physics of the process and
data-based modeling.

Physics-based process simulation

For freeform bending processes of metal tubes, the litera-
ture mainly contains simulations and analytical approaches
that predict the geometry or the stress states. Simulative
approaches are listed first. Maier et al. (2021) use a numer-
ical simulation model of freeform bending with a moving
die. By varying the degrees of freedom of the machine, the
simulation allows the computation of geometry and residual
stresses. Stebner et al. (2021) deal with the development of
a soft sensor that can derive mechanical properties of a bent
tube as a basis for control. Accordingly, a simulation model
for the freeform bending of tubes with a moving die is devel-
oped. Based on plasticity theories,Wang andAgarwal (2006)
develop analytical models to predict the cross-sectional dis-
tortion and thickness change of tubes under different loading
conditions. The publication of Zhang andWu (2016) focuses
on the simulation of bending and springback processes in
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tube bending. The verification of the results is done by the
finite elementmethod (FEM).Avariety of approaches use the
finite element method to predict the bending process. Gant-
ner et al. (2004), deal with the finite element (FE) simulation
of complex bending processes using a non-linear simula-
tion programme. Engel and Kersten (2011) and Vatter and
Plettke (2013) also take up the prediction of the bending
results of the three-roll bending process using finite element
methods. Hagenah et al. (2010) optimize the finite element
method by adjusting deflection characteristics of the rolls.
This procedureminimizes the difference between calculation
and experiment. Furthermore, the simulation of tube bending
is the first step in the development of a simulation model of
a hydroforming process chain. For this free bending process
with 6 degrees of freedom, Beulich et al. (2017) develop a
finite element simulation model.

Furthermore, the prediction of bending processes using
data-based approaches should be considered, since they offer
short evaluation times with little computational effort com-
pared to the numerical solving of differential equations. In
addition, they can capture process effects in the experimen-
tal data that are difficult to model with a purely physical
approach.

Data-based process models and hybrid approaches

Wu et al. (2022) predict the forming trajectory based on the
Kalman filter algorithm. A section-by-section presentation
of the motion and observation model of the tube forming,
and performance of corresponding computation and analy-
sis is given. Furthermore, Elchalakani et al. (2002) present a
theoretical and experimental prediction of moment-rotation
responses of circular hollow steel tubes under pure bend-
ing. Sun et al. (2022b) use a real-time prediction method
improved by digital twins to bendmetal tubes based onmulti-
source input multi-task learning.

Lou and Stelson (2001a) use a process control method for
optimization that minimizes the total tube error. Measured
data from the same batch are used to calculate and compen-
sate for springback. Based on this, Lou and Stelson (2001b)
present in the second part of the paper a statistical method
to analyze and improve the 3-D tube bending accuracy. The
relationship between the bending process error and the tube
geometry error is presented using a Monte Carlo simulation.
A bending correction algorithmdetermines the bending com-
mands required for optimization. A publication byZhou et al.
(2021) provides a prediction of the springback angle in rota-
tional tensile bending of round metal tubes considering the
cross-sectional distortions. An extended radial basis function
is introduced, which establishes a relationship between the
characteristic parameters and the cross-sectional distortion.
To improve the bending shape accuracy, Zhang et al. (2021)
develop a springbackpredictionmodel for tubeswith variable

curvature. The model is based on the Frenet curve formula
of the springback angle prediction of a tube with fixed cur-
vature. Consequently, the tube curve equation is obtained,
which includes the compensation amount for the springback
error of the metal tube. Furthermore, Sun et al. (2022a) deal
with the prediction of springback in tube bending with focus
on axial accuracy. The optimization framework includes deep
learning network as prediction module to predict springback
more reliably. The radius change series is used here as the
evaluation index for axial accuracy.

In addition, some data-based approaches for predicting
sheet metal bending processes can be found in the litera-
ture. To predict the V-matrix bending process, Baseri et al.
(2012) use neural network approaches with radial basis func-
tion and neural networkswith error feedback. The springback
is determined based on data from experimental observations.
Moreover, Jafari et al. (2015) deal with the prediction of
the sheet metal forming process in L-bending using artificial
intelligence. First, a finite element model is combined with a
Taguchi experimental design to form a design matrix. On top
of this, an adaptive neuro-fuzzy inference system is applied
to establish intelligent relationships between process inputs
and springback.

Furthermore, Liu et al. (2021) propose a compensation
method to overcome the occurring springback in sheet metal
forming processes. Theory-based regularization methods are
used to train deep neural networks. The learning of these net-
works takes place with the help of the relationship between
the workpiece shape after springback and the required pro-
cess parameter.

In the following, approaches are presented that use data
generated by simulation to train data-based models. This
offers the chance to teach the knowledge present in the simu-
lative data to a fast-computing surrogatemodel. Furthermore,
there is no experimental data necessary for the training,which
lowers the cost of generating the full dataset. However, this
method also reproduces modelling errors already present in
the simulation. Kazan et al. (2009) deal with the development
of a model for the prediction of springback in sheet metal
bending using a neural network. Numerical simulations are
performed using the finite element method to obtain teach-
ing data for the neural network. In addition, Ma et al. (2021)
develop a method for controlling springback in tube bend-
ing based onmachine learningmodeling.Amachine learning
model is usedhere,whereby the influences ofmaterial, geom-
etry, and process parameters on the springback are included.
Training data for the algorithm are obtained from historical
productionprocesses or alternatively fromfinite element sim-
ulations. Stebner et al. (2021) implement a hardness-based
correlation scheme in an extended Kalman filter for the pre-
diction of a tube bending process with a moving die. The
result is a prediction of residual stresses, local strength, and
strain level. Lechner et al. (2024) propose a combination of
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two data-based models for a global geometry control, which
provide a global optimization of the parts geometry in real-
time. These data-based models are trained with simulation
data.

Discussion of the research gap and objectives

The following comparative summary shows the state of the
art with the advantages and disadvantages of the individual
methods for predicting the bent geometry:

Physics-based process simulation

+ High accuracy
+ Flexible approach, adaptable to new boundary conditions

and materials
– Computational effort of model evaluation
– Some effects challenging to model accurately

Data-based process simulation with experimental data

+ Low computational effort for evaluation of the model
+ Captures effects in experimental datawhich are challeng-

ing to model
– Bound to the process settings of the training data set.
– Big data sets necessary for training

Data-based process simulation with simulation data

+ Low computational effort for evaluation of the model
+ No expensive experimental data necessary
– Bound to the process settings of the training data set.
– Big data sets necessary for training
– Accuracy limited by the accuracy of the simulation

This article attempts to combine the advantages of phys-
ical modeling and the usage of a data-based model trained
with experimental data. A physics-informed machine learn-
ing model that integrates physical process knowledge into
the training, but is trained on experimental data, offers the
chance to have a low computational effort combined with
a reduced need for experimental data, since basic physics
is introduced with equations into the model. Additionally,
the model can learn effects which are challenging to model
(e.g. friction) from experimental data. This aims at creating a
very fast computational surrogate model with a small data set
and low experimental effort, suitable for inverse analysis and
real-time process control, and with the predictive accuracy
of an FEM simulation.

Y

Z

B

V

X

A

Bending
head GuidanceTubeMandrel

Feed

Fig. 1 Freeform bending system with movable bending head used for
the experiments

Table 1 Chemical composition of the utilized specimens in %

C Si Mn P S

< 0.16 < 0.35 < 1.20 < 0.025 < 0.020

Cr Cu Mo Ni V

< 0.30 < 0.30 < 0.08 < 0.30 < 0.02

Materials andmethods

Bending setup andmaterial

Figure 1 shows a schematic of the Jörg Neu GmbH bending
machine used for this article. It has three translational and
three rotational degrees of freedom. The tube is pushed by
the feed Z through a guidance and bent by a bending head
that can be rotated around three axes (degrees of freedom
A, B, V) and moved translationally in the x and y directions
(degrees of freedom X and Y). Since only round tubes are
considered in this article, rotation V is neglected. Bending
takes place in the free bending length between the bending
head and the guide. Inside the tube, a mandrel composed of
movable links is placed in the free bending length, which
delays tube stability problems such as buckling.

In this article, steel (P235TR1) tubes with 33.7mm diam-
eter and 2mm wall thickness are used. The tubes were
mechanically characterized by Stebner et al. (2021) which
is the basis for the material model in this article. The chemi-
cal composition of the specimens is shown in Table 1.

Training and validation geometries

Different geometries are used to train and validate the pro-
cess models. The physics-based machine learning model is
trained with 75 constant radii that are bent and optically
measured. The optical measurement system used for the
geometry acquisition is composed by the handheld scanner
T-Scan and the measuring bar T-Track 10 by Zeiss, which
ensures an accuracy of 0.33mm + 0.33mm/m and provides
a measurement volume of 10mm3. In the simulation, various
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Fig. 2 Measurement with the Zeiss T-Scan and exemplary results with
a constant radius, which are utilized for the training of the models

numerical parameters are adjusted to best represent these 75
measured radii as well. The bending head is moved with a
constant rotation and translation to achieve these radii. Each
time a 100mm tube segment is bent. The specimens are
optically measured with the Zeiss T-Scan measuring device,
which results in a triangulated surface mesh of the specimen.
Figure2 shows three example surface meshes with varying
constant radii. To evaluate the data, an arc is fitted in the
area of the tube with constant radius, while the parts of the
tube which are produced with a moving die are neglected
to achieve a clear correlation between position and orienta-
tion of the bending head and resulting curvature of the tube.
The full data set is presented in the appendix in Tables 4 and
5. In addition, the degrees of freedom (DOFs) on the hor-
izontal and vertical planes are symmetric. This allows the
dimension of the data to be reduced, without losing accu-
racy. The bending of the 75 radii covers one quadrant of the
bending heads workspace. Due to the inherent symmetries of
the process, the results can be transferred to the other three
quadrants, increasing the total data set to 300 data points. In
order to perform a representative choice of the experimen-
tal data points for the training, the domain of the DOFs has
been investigated. On a bending plane, always two DOFs
are active, namely one translation and one rotation. These
are independent, and can be related to each other using their
ratio r= translation/rotation. Since in free-form bending the
obtained radius correlates quadratically with the translation,
it is practical to define as input quantities a set of transla-
tions and a set of radii. For this reason, Tables 4 and 5 show
recurring values of the translation with different rotations.
The translations have been chosen in the range 2-18mm in
steps of 2mm, in order to cover the range of mild (< 9mm),
moderate (11–15mm) and severe (>15mm). The ratios have
been chosen in the range 0.15–2.5, in steps of 0.1 until r=1
and 0.2 from r=1.2, in order to ensure that forming by over-
bending (r<1) as well as underbending (r>1) is represented
in the training data set. Finally, the presented investigations
concern a single material, and are aimed at showing the suit-
ability of the implemented method for predicting the final

geometry of the components. The implemented framework
would still deliver meaningful results by changing the mate-
rial.Nevertheless, a new trainingwith the newmaterialwould
be required.

The accuracy of the simulation and the physics-based
machine learningmodel are testedwith validation geometries
shown in Fig. 3. For each geometry, the optical measure-
ment after bending and the corresponding bending head
kinematics are shown.Geometries 1, 2 and 4 are classic bend-
ing geometries with constant rotation-translation segments,
while geometry 3 is a true spline geometry that uses the full
capabilities of the free-form bending machine. Validation is
a two-step process. Geometries 1 and 2 are used with the full
parameter set, while geometries 3 and 4 are used for valida-
tion after reducing the model complexity based on the results
of evaluating geometries 1 and 2.Within these geometries the
transitional sections between constant segments need special
focus, since they have a significant influence on the resulting
geometry of the part and they cannot be interpolated from
experiments with constant rotation-translation settings, due
to the moving bending head in these segments. Therefore,
true spline geometries like geometry 3 are very challenging
to model, since the bending head is moving most of the time
during production. These segments are well suited to test the
generalization capabilities of the models.

Finite element simulation

The finite element simulation is built in Abaqus and is shown
in Fig. 4. The tube is meshed with S4R shell elements (20-
40 elements around the pipe circumference). The bending
head, the mandrel and the guidance are meshed with R3D4
elements. The flow curves published by Stebner et al. are
utilized in the material model (Stebner et al., 2021). The
Young’s modulus is chosen to 210GPa, the Poisson ratio to
0.3. Due to tolerances of the tools and the tubes, the max-
imum possible clearance between tool and tube is 0.7mm,
which is implemented in the simulation. The kinematics of
the bending process is implemented in the constraints of the
feed and bending head for all degrees of freedom (A, B, X,
Y, Z) of the process. The simulation serves as a benchmark
for the accuracy of the physics-informed machine learning
model. To make this benchmark as challenging as possible,
the simulation is fit to the same training data as the machine
learning model, optimizing the friction coefficient, the mesh
size and the mass scaling in the process to minimize the
error of the simulation compared to the experimental data.
In a full-factorial simulation study, the friction coefficient is
set to [0.01, 0.025, 0.05], the number of nodes on the cir-
cumference of the tube to [20, 30, 40], and the mass scaling
to [500, 1200, 2000, 5000, 7500, 10000]. The full-factorial
study results in 4050 simulations, which serve as support
points in a grid search for the best simulation parameters
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Fig. 3 Validation geometries used in this article. Geometries 1, 2 and 4 are classical bending geometries with constant rotation-translation segments,
while geometry 3 is a true spline geometry

by minimizing the absolute error of the predicted curvature
compared to the 75 experimental specimens. A comparison
for the best parameter set with a friction coefficient of 0.01, a
mass scaling of 5000 and 20 nodes distributed over the tube
circumference is shown in Fig. 5. Figures13, 14 and 15 in
the appendix show further exemplary results of this parame-
ter study.

Physically-informedmachine learningmodel

The physically-informed machine learning model (PIMLM)
has two main interlocking components. A data-based model
that calculates six correction parameters and an analytical
beam model that introduces engineering knowledge about
the process. The analytical beam model uses Timoshenko’s
beam theory to calculate artificial purely elastic deflectionsw

of the tube between the guidance and the bending head. The
influence of plasticity on w is not considered in this evalua-
tion due to the computational complexity of a solution with

Bending head

GuidanceTube

Mandrel

Fig. 4 Explicit finite element simulation of the bending process

an elastic and a plastic part in the deformation. These elastic
calculations do not result in the real deformation of the tube,
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Fig. 5 Comparison between the experimentally obtained curvatures
and the simulated ones for a friction coefficient of 0.01, a mass scaling
of 5000 and 20 nodes distributed over the tube circumference

but serve as input to the following machine learning model,
which in turn maps them to plastic deformations of the tube
based on the experimental training data. Thus, the subse-
quent data-based model component is trained to compensate
for this simplification. This allows to replace the compu-
tationally expensive calculation of the plastic deformation,
which will still contain inaccuracies with a fast-calculating
data-based approach.

Therefore, the fast beam theory for elastic deflections will
be utilized:

dw(z)

dz
= dwB(z)

dz
+ dwS(z)

dz
, (1)

w(z) = wB(z) + dwS(z), (2)

wherewB is the deflection due to bending andwS the deflec-
tion due to shear. This leads to the following differential
equations:

d2wB(z)

dz2
= C1

E I
z + C2

E I
, (3)

dwB(z)

dz
= C1

2E I
z2 + C2

E I
z + C3

E I
, (4)

dwS(z)

dz
= − C1

GAs
, (5)

which leads to:

w(z) = C1

6E I
z3 + C2

2E I
z2 + C3

E I
z + C4

E I
− C1

GAs
z + C5,

(6)

where C1-C5 are integrational constants, E is the Young’s
Modulus and G the shear modulus.

Figure 6 (left) shows a schematic of the mechanical setup
with the reference coordinate system. The boundary condi-
tions of the differential equations are as follows:

w(0) = 0, wS(0) = 0, w(l) = X , (7)
dwB

dz
(0) = 0,

dwB

dz
(l) = tan B, (8)

where B is the rotation around the y-axis and X the trans-
lation of the bending head. This calculation is performed
analogously for translations of the bending head in y-
direction and rotations around the x-axis.

The arc length is discretized into bending segments and the
bending history of each discrete segment is used to calculate
the plastic deformation of that bend step. Figure6 (right)
shows an example bending history of the segment marked
with the red dot just leaving the bending head. The bending
line is calculated by superposition.

The hypothesis is that for each discrete bending segment,
there is an interval of interest with amplitudes of the bending
kinematics A, B, X, and Y that occurred when the bending
section was at the free bending length l between the bending
head and the guide. These amplitudes within the interval of
interest determine the plastic deformation of the tube. This
means that for each degree of freedomof themachine, several
past amplitude values in the interval of interest affect the
plastic deformation of the current discrete bending section.
The number depends on the step size of the discretization
and the free bending length.

In this article, a discretization of 1mm has been chosen.
Preliminary studies have shown, that this is a robust com-
promise between calculation time and accuracy. This means
that for the given free bending length of 42mm, 42 values
for each degree of freedom are used in the computation of
the plastic deformation and build the interval of interest for
the respective bending segment. The plastic deformation is
simplified and assumed to be ideally plastic with no elas-
tic component. This reduces the necessary computational
effort, while this simplification is later corrected by the data-
based model. Thus, the plastic deformation is calculated by
integrating the bending history. The plastic deformation is
calculated in spherical coordinates. The step size results in
the respective sphere radius, while the plastic deformation
is described by two angles α and β, as visualized in Fig. 6.
By adding these discrete bending segments, the resulting arc
line can be calculated. The generation of the arc line is done
iteratively for all n tube segments. Each segment i ends with
a point Pi . The vector vi between two points is calculated
in cylindrical coordinates with α, β and the discretization
step length as arc length. The absolute coordinates of the end
point of segment i are calculated by summing all previous
vectors v1 − vi in Cartesian coordinates. This is visualized
in Fig. 6.
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Fig. 6 Discretization of the
bending history of each bending
segment. The points P describe
the arc line of the geometry with
the vectors vi+1 = Pi+1 − Pi

+ 1

+1

This simplified analytical model for the plastic deforma-
tion of the tube described above is corrected by the data-based
model with six correction parameters. The resulting α and
β angles are multiplied by Rx and Ry to correct the plastic
deformation. Furthermore, there are offsets for the kinematic
boundary conditions, since the beammodel assumes an ideal
contact. In reality, however, there is a difficult-to-predict air
gap between the tube and the tools of the machine, which
is necessary to be able to insert the tube and to account
for the manufacturing tolerances of the semi-finished prod-
uct. Therefore, the degrees of freedom A, B, X, Y can be
corrected, resulting in adjusted boundary conditions for the
beam model:

wx (0) = 0,
dwBx

dz
(0) = 0, (9)

wx (l) = X + �X ,
dwBx

dz
(l) = tan(B + �B), (10)

wy(0) = 0,
dwBy

dz
(0) = 0, (11)

wy(l) = Y + �Y ,
dwBy

dz
(l) = tan(A + �A), (12)

These correction parameters are calculated by the data-
based model using four input values, each calculated from
the maximum absolute amplitude values in the interval of
interest affecting the respective bending segment.

The data-based model is created using a regression model
in Matlab, which basically works like a single layer feed-
forward neural network using linear transfer functions. The
correction parameters are computed as follows:

�B = p1(p2Bmax,abs + p3Xmax,abs + p4)

+p5(p6 ∗ Bmax,abs + p7)

+p8(p9 ∗ Xmax,abs + p10) + p11 (13)

�X = p12(p13Bmax,abs + p14Xmax,abs + p15)

+p16(p17 ∗ Bmax,abs + p18)

+p19(p20 ∗ Xmax,abs + p21) + p22 (14)

Rx = p23(p24Bmax,abs + p25Xmax,abs + p26)

+p27(p28 ∗ Bmax,abs + p29)

+p30(p31 ∗ Xmax,abs + p32) + p33, (15)

where p1–p33 represent the model parameters, which are
adjusted using a quasi-Newtonian algorithm to minimize the
loss function of the entire model. Bmax,abs and Xmax,abs are
scalar values calculated as themaximumof the absolutemag-
nitude of the respective amplitudes of the degrees of freedom
in the interval of interest that determined the bending histo-
ries.

In the loss function of the optimization, the mean error of
the prediction of the angles α and β compared to the exper-
imental data is calculated. The parameters �A, �Y and Ry

are calculated and optimized analogously as a function of
Amax,abs and Ymax,abs . This leads to a total number of 66
parameters for the data-based model. The optimization of
the vector p containing all parameters p1- p66 with n data-
points in the training data follows Expression 16:

argmin
p

⎧
⎨

⎩

√
√
√
√

n∑

i=1

[
α
exp
i − αml

i
β
exp
i − βml

i

]2
⎫
⎬

⎭
, (16)

where α
exp
i and β

exp
i are experimentally obtained values of

data point i and αml
i and βml

i are the results of the model
evaluation. The data set was split into training and testing
data with 15% of the data set being reserved for testing pur-
poses to avoid overfitting. Engineering considerations are
already incorporated, such as the symmetry between x and
y directions and the superposition principle between these
two spatial directions in beam theory. Furthermore, the con-
nections are chosen such, that each output is calculated with
three summands: One for each of the two possible inputs
and one for a linear combination of the two inputs. The rea-
soning is that each of the summands may be necessary to
find an accurate solution. The importance of the summand
for the solution can be found in the value of the respec-
tive parameters. Therefore, it will be possible to reduce the
model complexity, by taking out the smallest summands in an
optimization (“Reduction of model complexity” section). In
contrast to a fully connected neural network, this data-based
model has fewer free parameters and can thus be trained
with fewer data points with a low risk of overfitting. Thus,
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Fig. 7 Architecture of the
physically-informed machine
learning model
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Fig. 8 Results from the finite elementmodel (green) and the physically-
informed machine learning model (blue) fitted to the experimental data
(gray) of geometry 1 (Color figure online)

the physics-informed character of the model is further devel-
oped and a physics-informed architecture of the data-based
model is designed. The architecture and training of the whole
model is shown in Fig. 7.

Comparison between the full physically-informed
machine learningmodel and the finite element
computation

In the following, the results of the geometry computations
performed with the full physically-informed machine learn-
ing model, the results of the finite element computation and
the experiments are compared for the validation geometries
1-4. Figures8 and 9 show the global best fits of the two
models to the optical measurement of the experimental part
for geometries 1 and 3 as an example. For both modeling
approaches, geometric errors remain compared to the exper-
iments. A part of the errors in the modeling can be attributed
to the material model, which does not account for variations
in the material of the tubes from batch to batch. Further-
more, the dimensions of the tubes are varying, which we

Fig. 9 Results from the finite elementmodel (green) and the physically-
informed machine learning model (blue) fitted to the experimental data
(gray) of geometry 3 (Color figure online)

did not take into account. In addition, process friction is
known to have an effect on the resulting geometry, which
is difficult to model accurately in finite element simulations.
The data-based approach offers the opportunity to learn from
experiments, but it is similarly susceptible to geometric tol-
erances and material fluctuations. Furthermore, the friction
coefficients for complex geometries with a moving bending
head may differ from the components with constant radius
in the training data set.

The root mean square error (RMSE) of the iterative clos-
est point algorithm used for the fit can be interpreted as a
global error measure. Table 2 shows the errors of the two
models and their computation times. The PIMLM leads to a
reduction of the global geometry error for geometries 1 and
2, while it has a similar prediction quality for geometry 3
and an increased error for geometry 4. Overall, the average
error of all four validation geometries is improved. However,
the most important finding is that it reduces the computation
time by four orders of magnitude to less than one second
combined with an improved accuracy in three out of four test
cases.
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Table 2 Comparison of finite
element model and
physically-informed machine
learning model computations for
geometries 1–4

PIMLM RMSE in mm FE RMSE in mm PIMLM time in s FE time in s

Geo. 1 11.8 15.5 0.44 6.6 ∗ 103

Geo. 2 11.7 17.9 0.45 7.1 ∗ 103

Geo. 3 10.8 11.0 0.53 5.4 ∗ 103

Geo. 4 7.55 5.3 0.50 5.7 ∗ 103
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Fig. 10 Model error for two exemplary geometries and a reduction of
model complexity

Fig. 11 Results from the finite element model (green) and the
physically-informed machine learning model (blue) fitted to the exper-
imental data (gray) of geometry 2 (Color figure online)

Reduction of model complexity

The following study analyzes the necessary complexity of
the model. The previous number of parameters was chosen
by a conservative evaluation, whether a relevant influence of
each parameter is possible. Now the model complexity of the
PIMLM is reduced by repeated training to deactivate unnec-
essary parameters. In each training cycle, the smallest of the
parameters p1-p66 is considered the least important and is set
to zero. In this way, the number of parameters in the model

Fig. 12 Results from the finite element model (green) and the
physically-informed machine learning model (blue) fitted to the exper-
imental data (gray) of geometry 4 (Color figure online)

is reduced by one at each iteration. The RMSE of validation
geometries 1 and 3 for this model reduction are shown in
Fig. 10. An increase in the RMSE of both geometries can be
observed below 36 parameters. Therefore, a reduced model
with 36 parameters is used for the final comparison between
the experiment, the physically-informed machine learning
model, and the finite element simulation. The repeated train-
ing of the model and the reduction of the model complexity
could lead to a kind of adaptation to the validation geometries
used for the reduction (geometry 1 and 3). Therefore, geome-
try 2 and 4 serve as independent validation geometries for the
final performance test. Figures11 and 12 show the compari-
son of the two models with the experimental data. Figs. 16,
17, 18 and 19 in Appendix show the individual results for α

and β for future reproducibility.
Interestingly, the reduced physically-informed machine

learning model has improved geometrical errors for all
geometries compared to the full machine learning model,
which is shown by the error measures in Table 3. This can
be explained as the optimization of the model parameters is
focused only on relevant parameters and the information of
the limited training data set is used to train less parameters
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Table 3 Comparison of the full and the reduced physically-informed
machine learning model

Full Red.
PIMLM PIMLM FE
RMSE in mm RMSE in mm RMSE in mm

Geo. 1 11.8 11.0 15.5

Geo. 2 11.7 9.63 17.9

Geo. 3 10.8 9.58 11.0

Geo. 4 7.55 6.60 5.3

with the same amount of training data, which results in a
better fit to the physics of the process.

Discussion of possible applications

The physically-informed machine learning model shows
better prediction quality for the validation components’
geometry as a finite element simulation of the freeform
bending process, which has been optimized through inten-
sive parameter studies on the same training data set. This
shows that the combination of Timoshenko’s beam theory
and an experimental data set is capable of better geometry
prediction than a finite element formulation with much more
advancedmechanical modeling for complex geometries. The
mechanical knowledge brought to the data-based model by
Timoshenko’s beam theory allows the model, trained by
constant radii, to performwell for generalized complex kine-
matics. Themain advantage of the data-based approach is the
reduced computation time combined with a high prediction
accuracy, compared to a FE calculation. Of four valida-
tion geometries the physically-informed machine learning
model performs better than the FE calculation in three cases
(Tables 2 and 3), while reducing the calculation time by four
orders of magnitude. This allows new applications of the
process model. In a first step, it will be possible to compute
kinematics for complex spline geometries by inversely opti-
mizing the kinematics with an optimization algorithm. This
was previously not possible due to the long computation time
of the finite element model. In a second step, a fast compu-
tational model can be used for inline process control of the
bending process to adapt the bending kinematics to mate-
rial and batch variations in real time. Such a global process
control is proposed by Lechner et al. (2024) with a purely
data-based approach without additional physical knowledge.

Conclusion and outlook

In this article, a novel physically-informed machine learn-
ing model is proposed to predict part geometry based on
the kinematics of a freeform bending process. The data-

based part of the model is trained with experimental data of
bending constant radii. The Timoshenko’s beam theory pro-
vides additional physical knowledge to themodel. Compared
to a benchmark finite element simulation, the physically-
informed machine learning model has a better prediction
quality while reducing the computation time by four orders
of magnitude. As a result, this process model can be used
for inverse kinematics optimization in the future. In future
research, we will study the generalizability of the physically-
informed machine learning model to give indications when
to use it. Furthermore, we will analyze how the prediction
quality is dependent on the complexity of the model and
the amount of training data. A future investigation will also
involve the generation of a meta-model from multiple mate-
rials which enables geometry prediction for a broad range of
materials.

Appendix

Table 4 Training data of constant radii

Translation in mm Rotation in deg Radius (mm)

2 13.33 1488.25

2 6.67 4544.78

4 13.33 687.64

6 20 354.59

4 10 817.87

5 12.5 570.03

6 15 459.76

8 20 272.9

2 4 10376.32

4 8 937.24

6 12 462.53

8 16 299545

10 20 216.77

12 24 170.67

14 28 137.45

6 10.91 474.7

12 21.82 175.29

15 27.27 129.84

5 8.33 676.65

6 10 485

8 13.33 321.05

10 16.67 230.25

12 20 182.24

14 23.33 145
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Table 4 continued

Translation in mm Rotation in deg Radius (mm)

15 25 131.59

16 26.67 123.67

18 30 108.6

8 11.43 336.39

10 14.29 243.35

12 17.14 188.37

14 20 154.38

15 21.43 136.69

16 22.86 131.27

18 25.71 111.6

2 2.5 20961.82

4 5 1201.7

5 6.25 745.88

The translation and the rotation refers to the kinematics of the bending
head, while the radius describes the resulting constant radius of the bent
tube

Table 5 Training data of constant radii—Part 2

Translation in mm Rotation in deg Radius (mm)

6 7.5 533

8 10 336.2

10 12.5 249.69

12 15 197.4

14 17.5 160.18

15 18.75 148.37

16 20 132.82

18 22.5 116.29

15 16.67 151.41

18 20 118.91

6 6 583.62

8 8 354.42

10 10 263.58

12 12 202.88

14 14 163.65

16 16 139.45

18 18 120.6

2 1.67 30155.94

4 3.33 1387.42

5 4.17 828.5

6 5 593.02

8 6.67 372.86

10 8.33 286.16

12 10 211.18

14 11.67 171.38

Table 5 continued

Translation in mm Rotation in deg Radius (mm)

15 12.5 157.41

16 13.33 142.25

18 15 125.17

8 5.71 382.99

10 7.14 279.33

12 8.57 218.27

14 10 172.57

6 3.75 617.42

8 5 403.52

10 6.25 272.18

12 7.5 223.32

14 8.75 176.56

5 2.63 901.83
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Fig. 13 Comparison of experimental and finite element results with a
variation of the number of nodes distributed of the circumference of the
tube with a friction coefficient of 0.01 and a massscaling of 500
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Fig. 14 Comparison of experimental and finite element results with a
variation of the implemented massscaling with a friction coefficient of
0.01 and 20 nodes distributed over the circumference of the tube
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Fig. 15 Comparison of experimental and finite element results with a
variation of the friction coefficient with a massscaling of 500 and 20
nodes distributed over the circumference of the tube
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Fig. 16 Bending angles describing the curvature of geometry 1, cal-
culated with the PIMLM in “Reduction of model complexity” section
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Fig. 17 Bending angles describing the curvature of geometry 2, cal-
culated with the PIMLM in “Reduction of model complexity” section
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Fig. 19 Bending angles describing the curvature of geometry 4, cal-
culated with the PIMLM in “Reduction of model complexity” section
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