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Abstract

With the advent of industry 4.0 with its goals to make production more flexible and
products more individual, the need for robots which can collaborate with humans to
perform manufacturing is growing. In healthcare, the aging populations of western
countries and the growing labor shortage increase the need for robotic assistants capable
of relieving workers of menial and strenuous tasks. Both these fields of application
require robots to be able to perceive their environment in order to safely interact with
humans and perform their tasks correctly. This work presents SensorClouds, a modular
framework for the processing of multi-modal sensor data in realtime for applications
involving human-robot-collaboration. The framework is competitive in performance
with similar approaches, yet far more flexible since it is not limited to binary occupancy
in its environment model but instead allows the dynamic specification of arbitrary
modalities in order to enable more complex sensor data processing and a more informed
representation of the robot’s surroundings. The architecture aids developers of modules
in the creation of massively parallel algorithms by taking over the parallelization aspect
and requiring only the implementation of processing kernels for single data points.
Application developers can use these modules to quickly solve complex sensor fusion
tasks. Module interoperability is guaranteed through the enforcement of data access
contracts. This work also includes methods for reconstructing three-dimensional data
from sensors which do not inherently provide it so that this data can then also be
included in the environment model alongside natively three-dimensional data.
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Chapter Summary. The introductory chapter will first detail
the motivations of this work and then state the main contribu-
tions. Finally, a brief overview of the structure is given. . . .

1
Introduction

1.1 Motivation and Goals of this Work . . . . . . . . . . . . . . . 2
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of this Work . . . . . . . . . . . . . . . . . . . . . . 4

1



1 Introduction

1.1 Motivation and Goals of this Work

Robots have been becoming more and more capable and intelligent over the past decades.
The most prominent example of this development are the products developed by Boston
Dynamics [19], which have also garnered the attention of mass media outlets countless
times. Ranging from Spot, the robot modeled after a household dog, up to the humanoid
Atlas robot, such systems have been becoming increasingly capable regarding their
locomotive abilities andwill become evenmore powerful tools with increasing autonomy
through the integration of artificial intelligence towards independent operation and
decision making. The Gartner Hype Cycle for artificial intelligence [131], however,
estimates that smart robots will reach their so called plateau of productivity in the
next five to ten years from now while currently classifying them as being in their
technological infancy.

In the production industry, robots have been heavily used in assembly lines for the past
decades and have been a driving factor in the expansion of industries such as automobile
manufacturing [12][129]. Such production lines were governed by a stringent separation
between humans and robots and employed complicated safety measures in order to
guarantee that no human could approach a running robot. While such production lines
were required to conform to the safety standards set forth in ISO 10218 [1], the industrial
applications of robots have been evolving over the last years. Collaborative robots are
changing the way manufacturing processes are being performed. Robots are generally
very proficient at executing tasks with high precision and repeatability, and can do so
in perpetuity. In many cases, though, robots are not capable of independently solving
tasks and require either fixed processes or operator assistance. Hence, human-robot-
collaboration in manufacturing aims to combine the strengths of humans and robots in
manufacturing processes. The worldwide market for collaborative robots is projected to
grow sevenfold by the year 2030 [120]. KUKA, for example, showcases applications for
Volkswagen [63] and BMW [61] which employ collaborative robots. Repetitive stress
injuries caused by continuously performing the same task can be alleviated through the
use of robotic assistants, which perform tasks with injury potential for humans. They
can also assist in the transport of heavy loads or tasks that would necessitate awkward
positions of a human worker. Operator safety is especially of concern when humans
and robots operate in close proximity to each other, but requires entirely new safety
concepts and technologies. This is why the standards bodies are currently developing
new guidelines for these types of applications. The technical specification ISO TS 15066
[3] is under ongoing development and is supposed to become the standard for safety in
human-robot-collaboration once the emerging technologies required become viable for
certification.

Demographic changes in the industrialized nations and the continuing shortage of
elderly care workers have led to an increased effort to develop robots which can assist
healthcare workers. Similar to industrial applications, the risk of injury is great for
healthcare workers when performing strenuous tasks such as lifting patients repeatedly.
In particular, Japan is at the forefront of the development of assistive robot technology
for healthcare applications, since the problems of aging population and labor shortage
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1.2 Main Contributions

are most intense there compared to other countries [130]. The expectations of such
robotic assistants in terms of functionality, reliability and ease-of-use are far greater than
in industrial settings, due to the delicate nature of their tasks in healthcare applications.
The moral debate is still ongoing on whether such systems should be employed and to
what extent they may be allowed to act autonomously in the care of elderly and disabled
people, who may not have full command of their mental faculties and thus would be at
the mercy of a malfunctioning robot system. However, the acceptance rate of assistive
robot systems which can be regarded as mere tools for healthcare workers, patients and
family members alike, is far higher. Such systems would only assist healthcare workers
on command, for example, to retrieve items necessary for the current procedure being
performed. The use of such systems could also free up more time for the healthcare
professional to spend time interacting with the patients if such menial tasks like fetching
a glass of water could be performed by an automated system. (cf. [17])
All autonomous robot systems face the challenge of needing to perceive their envi-
ronment and everything contained within it correctly in order to be able to carry out
their tasks. Especially for systems employed in the homes of elderly people a robot
must be able to reliably navigate through unstructured environments with furniture and
other objects not always located in known positions, as is the case in industrial work-
places. Operator safety is a critical issue in industrial settings but even more so when
vulnerable people are involved. In consequence, environmental perception is the most
profound and important task in any application involving human-robot-collaboration.
Taking inspiration from nature, as is so often the case in facing technical challenges,
the solution to these problems could be found in the way animals and humans perceive
their environment. All animals are equipped with multiple, diverse senses which are
integrated into a combined understanding of their surroundings, their location and
potential threats or sources of food. Missing information or the loss of a sense can be
compensated by the others. (cf. [39])
Modeled after this principle of nature, this work presents a novel framework for sensor
data processing in human-robot-collaboration under realtime conditions. The goal
is to provide a unified model of the robot’s surroundings with information from all
available sources integrated into it. Apart from providing a more complete picture of
the surroundings, this also allows the deduction of new information from combined
sensor data and the compensation of missing inputs.

1.2 Main Contributions
The SensorClouds framework was developed over the course of this work and represents
a dynamic, flexible and realtime-capable framework for the processing of multi-modal
sensor data specifically tailored to the field of human-robot-collaboration, yet also
applicable in other areas.
This architecture is built entirely uponmodular processing kernels. The dynamic
definition of the global data model utilized as central storage for all computations allows
great flexibility, while the just-in-time compilation of all kernels enables the generation
of concrete and efficient instructions for sensor data processing. In this manner, the
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1 Introduction

SensorClouds framework combines the advantages of both dynamic and highly targeted
programs.
SensorClouds differentiates between two distinct kinds of developers, whose interac-
tion is governed by clearly defined software contracts. Module developers provide
the algorithmic building blocks out which application developers can fashion their
specific sensor processing application. The framework enforces the contents of the con-
tracts on all parts of the application and thus ensures correct execution of all employed
modules and the overall application.
Sensors which do not measure three-dimensional information can be integrated the
global data model of the SensorClouds architecture with the appropriate pre-processing.
The methodology developed in this work to reconstruct three-dimensional data
from lesser dimensional measurements can be applied to any sensor type whose sensor
characteristics can be determined by physics simulations.

1.3 Structure of this Work
This work is structured as follows: Chapter 2 gives a brief overview of relevant tech-
nologies and sensor measurement principles relevant in the scope of this work. The
application examples that informed the development of the architecture presented in this
work, as well as the requirements imposed on it are described in Chapter 3. Chapter 4
elaborates on the architecture of SensorClouds, the internal processes in the creation of
concrete application instances and the programming interface for developers building
applications upon this architecture. Capacitive sensors require various signal processing
steps in order to convert the analog capacitance measurement into data which can be
utilized for the proximity detection of humans in a robot’s workspace. Moreover, the
one-dimensional value is not suitable for direct use in a three-dimensional environment
model. These concepts and their integration into the SensorClouds architecture are
presented in Chapter 5. Some additional software concepts which provide convenience
to developers using the presented architecture are introduced in Chapter 6. Chapter 7
presents selected details of the reference implementation of the SensorClouds architec-
ture targeted at graphics processing units (GPUs) and also specifies the programming
interface for developers of modules. The evaluation of the presented framework is
presented in Chapter 8. Chapter 9 concludes this work and gives an outlook on future
developments.
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Chapter Summary. This chapter gives a brief overview of
technologies relevant in the context of this work.
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2 Technology overview

2.1 Sensor Types and Measurement Principles
This section will give a cursory overview over some relevant sensors and their measure-
ment principles.

2.1.1 Capacitive Sensors

Capacitive sensors are based on the principles of electrical capacitors. Various physical
characteristics, which will further be explained in Section 5.3, can be exploited in order
to measure changes directly or detect differences in correlated physical effects.
The industrial applications of capacitive sensors are extremely diverse. They range from
the detection of near proximity and position over tilt to humidity sensing, among others.
Depending on the specific application, the electrode configurations may vary greatly
from one another. Most capacitive sensor applications do not use electrodes directly
opposite of each other, but rather project a non-uniform electric field into the space
surrounding the sensor in order to remotely register the desired phenomena.

Figure 2.1. An industrial capacitive proximity sensor from SICK [109].

Industrial capacitive sensors ,such as the one shown in Figure 2.1, output a binary
signal signifying the detection of an object in proximity. The switching threshold is
typically adjusted by a potentiometer on the sensor itself and calibrated for the binary
detection of passing or approaching objects in industrial production lines. Since the
sensor is mounted in a fixed location and the objects to be detected follow fixed paths,
this adjustment can be made extremely precisely. While optical or magnetic sensors
could perform similar tasks in detecting passing objects, the strength of capacitive
sensors lies in their ability to detect conductive as well as non-conductive objects (unlike
magnetic sensors) and are able to detect reflective objects and even objects behind
a limited amount of non-conductive casing (unlike optical sensors). Such capacitive
sensors are typically constructed in a tubular design with the capacitance between two
ring electrodes on the outward facing end of the tube being measured. (cf. [15, p. 69f])
Another industrial application is the measurement of the inclination angle or tilt of
an object. Today, such sensors are typically fabricated as Micro-Electro-Mechanical
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2.1 Sensor Types and Measurement Principles

Systems (MEMS), with movable electrodes implemented in microstructures inside an
integrated circuit (IC). When the sensor is moved, the spacing between the electrodes
changes, which in turn can be measured in terms of the capacitance between them. Such
devices are also found in modern consumer electronics devices, such as smartphones or
game controllers in the form of inertial measurement units (IMUs), which provide data
on three axes of translation (in form of acceleration) as well as three rotational axes (in
form of angles) allowing the device to determine how it is moving through space. (cf.
[5, p. 239ff])
Capacitive sensors are also commonplace as input devices in modern consumer elec-
tronics. Their uses range from simple contactless input buttons in touch panels to fully
sized touchscreens found in devices as small as smart watches and phones and as large
as laptop and desktop computers. While these implementations are intentionally limited
to very close proximity to the input device (within the order of a fewmm), the detection
range of capacitive sensors can be increased up to distances of around 35 cm [54, 80]
enabling their use as far proximity sensors.
Such sensors, however, do not directly measure distances but merely the change in
capacitance of the system, although a direct correlation exists between the measured
capacitance and the distance to an object entering the measurement field. In HRC
applications, the human hand is typically chosen as a calibration reference, since it is
the smallest relevant part of the human body and most likely to interact with the robot
during operation. Any other part of the human body has a greater influence on the
electrical field projected by the capacitive sensor thus increasing the capacitance and in
turn decreasing the perceived distance to it. This is an advantageous circumstance in
safety critical systems because the reaction of the robot in such a case would simply
occur earlier than compared to the reaction to hands. Further details on the physical
background of capacitive sensors as well as their use in applications involving close
interaction with humans are provided in Chapter 5.

2.1.2 Cameras

This section will give a brief overview over various camera technologies relevant to this
work.

RGB Cameras

Digital imaging sensors are commonplace nowadays and can be found in many devices,
including smartphones, laptops and even home appliances such as fridges [66]. The
most common implementation of imaging sensors today is executed in complementary
metal-oxide-semiconductor (CMOS) technology, which replaced charge-couple device
(CCD) sensors as the main technology in digital cameras towards the end of the 1990s
[64, p. 83]. Light sensitive CMOS components are packed into a two-dimensional grid
layout and exposed to light through the camera’s lens system. Each of the photosensitive
elements is called a pixel. For color reproduction, the most common technique is the use
of on chip color filters which are placed atop the monochrome photosensitive elements.
The configuration of the different color filters for red, blue and green light, which are
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2 Technology overview

the base constituents of the additive mixture of colors for light, was patented by Bryce
E. Bayer in 1976 [16] and is simply named Bayer Filter after its inventor. It is based
on the distribution of color receptors in the human eye which are more sensitive to
green light than red and blue. The filter arrangement according to Bayer is depicted in
Figure 2.2. For every actual pixel in the image, which only possesses one channel of
the color information, the other channels are interpolated using information from the
surrounding pixels in order to create a full scale image with all color information. This
process is known as de-mosaicking or de-bayering [49].

GR

BG

Figure 2.2. Bayer filter arrangement in image sensors.

In order to reliably use image information produced by a camera system in computer
Vision applications, the camera needs to be calibrated in order to determine the intrinsic
camera parameters, such as the focal length and the projection matrix, and any distor-
tions the lens system introduces into the final image. To this end various calibration
methods can be employed, although the process involving a planar, black and white
checkerboard pattern with known dimensions and recording multiple images of it is
the most commonly used, as it is very simple to perform. Figure 2.3 shows the approxi-
mate model typically used in the calibration of cameras, called the pinhole model [135]
since it simplifies the actual physical projection characteristics of optical systems to
an approximated system in which all light passes perfectly through a discrete point in
space, ergo a pinhole. While this is only an approximate model, its accuracy is sufficient
for most tasks in computer vision. It should be noted at this point that although the
intrinsic calibration argues over a projection matrix from three-dimensional space to
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2.1 Sensor Types and Measurement Principles

two-dimensional image sensor coordinates, the reconstruction of three-dimensional
information from a single camera image is not possible unless the scale of the perceived
object is known, hence the scale of the checkerboard must be known. Since the image
projection is identical for a large object at a large distance and a small object at a smaller
distance and no depth information is available, the actual size of an object in a camera
image cannot be reliably determined mathematically. (cf. [133])

Y

X

Z

P (X,Y,Z)
(3D Point)

f
Focal Length

O
(0,0,0)

Image Plane

p (x,y)
(2D Point)

Figure 2.3. The pinhole model used for the estimation of camera parameters. Adapted from
[56, p. 2]

The extrinsic calibration of a camera determines its cartesian position as well as its
rotation in space relative to a known reference point. In robotics it is therefore also
commonly referred to as hand-eye-calibration due to the fact that the robot base is used
as the known reference point. By moving the robot with a checkerboard attached to
multiple distinct positions in space with unique rotations the relative position of the
camera system can be triangulated from the known robot positions and the known
checkerboard dimensions. This procedure allows the determination of the camera
position relative to the robot flange at any moment, since the kinematics of the robot,
i.e., the transformation from the robot base to its flange, are also known and can be
calculated for every axis configuration of the robot at runtime. (cf. [134])

Stereoscopic Cameras

Stereoscopic cameras are fashioned after the principle of human vision in that they
infer three-dimensional information from a pair of images. In order to enable the
computational system to reconstruct three-dimensional information from the incoming
stereo image streams it must first determine which sections of the images correspond
to each other. Based on these correspondences in the two images, the known and fixed
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2 Technology overview

distance between the two cameras as well as their calibration matrices (cf. Section 2.1.2),
the three-dimensional coordinates of all found correspondences can be triangulated as
depicted in Figure 2.4. An example of such a system is the stereoscopic sensor produced
by roboception [99].

P(X, Y, Z)

Left Right

Image Image

Figure 2.4. Triangulation of three-dimensional coordinates through the projected image coor-
dinates of corresponding features. P denotes the three-dimensional coordinates
of one found correspondence between the two individual camera images.

Thermal Cameras

Thermal cameras are specifically targeted at the detection of infrared radiation or heat
emanating from objects into the surrounding space. While they used specialized imaging
sensors for this purpose, the format they provide their output data in is identical to that
of cameras. The meaning of the individual values in the monochrome output image,
however, differs from regular RGB camera images in that it denotes the temperature
value measured at that specific pixel. The similarity to typical camera sensors also allows
thermal cameras to be calibrated in much the same manner, except that a detection
pattern must be employed, which reflects or emits thermal radiation to such a degree
that the difference in temperature relative to the surroundings can be picked up by the
thermal camera. An example of such a thermal imaging system is the A700 camera from
Teledyne FLIR [114], which produces thermal images at a resolution of 640 ∗ 480 pixels
at 30Hz And can differentiate temperature differences as small as 40mK.

10



2.1 Sensor Types and Measurement Principles

2.1.3 Time-of-Flight Sensors

The basic principle of time-of-flight cameras is fairly simple. Such sensors contain
transmitters and receivers for specific light pulses. In each detection cycle the transmitter
sends out such a pulse and the sensor records the time of transmission. The light pulse
is then reflected off objects in the field of view of the sensor, and the reflected pulse is
then detected by the receiver. The time of reception is also recorded by the sensor. With
the roundtrip time t (divided by two, since we wish to calculate only the distance to the
object, not of the roundtrip) and the known speed of light in air c the distance d can be
determined with the formula:

d =
ct

2
(2.1)

Time-of flight cameras, such as the Basler tof640 [14] employ infrared strobes that
are pulsed in a specific pattern which can then be interpreted by the infrared imaging
sensor. These sensors are comparable to classic imaging sensors in their basic structural
makeup, except that they only detect a single range of wavelengths, which lies within
the infrared spectrum. The optical filters applied to the sensor filter everything but this
specific range of light.

ObjectTransmitter

Receiver

Figure 2.5. General principle of time-of-flight sensors.

LiDAR

The name for the sensing method called Light Detection and Ranging (LiDAR) is
derived from the acronym RADAR, which stands for Radio Detection and Ranging.
The similarity between the two technologies lies within the principle of rotating the
measurement assembly continuously while performing time-of-flight measurements to
determine the distance of objects detected by the sensor. (cf. [52, p. 341ff])

A staple of conventional operator safety systems, two-dimensional scanning LiDAR
sensors can be found in many existing industrial robot applications today. An example
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2 Technology overview

of such a sensor is the microScan3 from SICK [110], which can detect objects within a
range of 270◦ and at distances of up to 5m.
Three-dimensional LiDAR systems combine multiple measurement assemblies into a
single rotating measurement device and consequently can measure the distances to
objects at every point of a revolution on multiple independent levels and thus produce
three-dimensional output data. A popular example of such a system often employed in
autonomous vehicles is the Ultra Puck from Velodyne [122], which offers an impressive
field of view of 360◦ horizontal and 40◦ vertical.
All LiDARs produce point clouds as output, which is a data format describing discrete
measurements in three-dimensional space, which may be annotated with additional
data, such as the light intensity recorded by the sensor upon reception.

Ultrasonic Sensors

Ultrasonic sensors also operate on the principle of time-of-flight measurements, however
they emit ultrasonic pulses and measure the time elapsed until the pulse is recorded back
at the receiver. Ultrasonic refers to sound waves that possess frequencies beyond the
normal hearing range of humans. In contrast to the previously described sensors which
use various types of electromagnetic radiation (LiDAR: light, RADAR: radio waves),
ultrasonic waves are pressure waves. The consequence of this fact is that ultrasonic
waves require a medium such as air to be transmitted through, whereas electromagnetic
radiation can travel through a vacuum without obstruction. It also means the speed of
sound waves is heavily dependent on the medium it travels through. Using the known
speed of sound in air, since this is where distance measurements are typically performed,
the distance to an object can be calculated using the same formula as for light-based
time-of-flight sensors, except with the speed of light substituted with the appropriate
speed of sound through air: (cf. [52, p. 213ff])

d =
vt

2
(2.2)

where

d : The resulting distance to an object
v : The speed of sound through air which is 343.2m/s

t : The roundtrip time measured by the ultrasonic sensor

2.2 The Robot Operating System (ROS)
Unlike its name might suggest, the Robot Operating System (ROS) is not actually an
operating system, but rather an open source robot middleware. The development of ROS
began with the open source organization Willow Garage as a control system for their
own PR2 personal robot assistant. Since then maintenance and further development
of ROS have been taken over the Open Source Robotics Foundation and a steadily
growing open source community. Even commercial companies offer ROS drivers for
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their hardware products within this community. Since the first version of ROS was not
seen as a suitable basis for commercial products, however, development of the second
major version of ROS began around 2015, redesigning the architecture from the ground
up and thereby focusing on issues of stability, realtime performance and security. (cf.
[115])
Basically, ROS is a network-based communication middleware which passes messages
between distributed services. Every ROS node can offer or call services and subscribe to
topics which are the named communication channels in the ROS infrastructure. Upon
this underlying communication infrastructure, many tools and applications have been
built. ROS itself contains tools for the visualization of sensor data and robot motions, the
motion control and various development tools. The ROS ecosystem has many available
drivers for robotics hardware including robot arms, grippers and various sensors. The
control software enables applications ranging from motion planning and control of
robot arms to autonomous navigation of mobile robots. (cf. [84])
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Chapter Summary. This chapter gives an overview of two
application examples which guided the development of the Sen-
sorClouds architecture.

3
Application Examples

3.1 Healthcare Robots (Project: SINA) . . . . . . . . . . . . . . . 16
3.2 Industrial Robotics (Project: KoARob) . . . . . . . . . . . . . 20
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3.1 Healthcare Robots (Project: SINA)
During the course of the research project SINA [21] - funded by the German Federal
Ministry of Education and Research (BMBF) - a mobile assistance platform (seen in
Figure 3.1) for elderly care applications was developed. The design of the mobile
manipulator was guided by three main use cases:

Figure 3.1. The SINA prototype of an assistive mobile robot platform.

• Pick up objects from the ground
Elderly people suffer from an increasingly constrained range of motion. This
especially affects bending over and picking up objects that may have fallen to
the ground, such as e.g., items of clothing or keys. Hence, the mobile robot was
designed to be able to reach the ground, pick up items and subsequently hand
them over to a person.

• Collaborative transport of objects
Transporting heavy items also becomes progressively more difficult for the el-
derly, yet common household chores such as washing clothes can already involve
weights far surpassing their capabilities. To this end, the mobile robot was fitted
with a cargo area reachable by the manipulator arm. Items such as a clothing
basket can thus be lifted to a comfortable height for the person and stowed on
the cargo area for transport. This relieves the strain of carrying heavy objects by
transferring the majority of the weight to the robot leaving the person only to
stabilize the object in transit.

• Autonomous retrieval and transport of objects
Since getting up from a chair or bed becomes increasingly arduous for elderly
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people it can be beneficial to offer assistance in the retrieval of items such as a
bottle of water. Additionally, the robot can also retrieve and provide supplies to
nurses and caregivers while performing treatments on their patients in order to
reduce the number of menial retrieval tasks performed by the staff and allowing
them to focus on personal interaction with the patients.

Figure 3.2. Overview of sensors installed on the SINA platform.

The mobile platform for the SINA prototype is based upon the MPO-700 platform [83]
developed by neobotix [82] which is a spin-off company of the Fraunhofer Institute
for Manufacturing Engineering and Automation (IPA) [46]. The robot mounted on the
platform is an LWA 4P (Light Weight Arm) [106] developed by SCHUNK [107] and is
fully integrated, meaning no external control cabinet is required to control or power
the robot axes. It has since been discontinued by the manufacturer. The additional
structure at the back of the platform is a custom component housing additional safety
components as well as batteries and doubles as the heightened cargo area for transport
of heavy items. The overall mechanical setup of the prototype offers a good compromise
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between the various constraints of the previously introduced use-cases. Specifically, it
allows the robot arm mounted on the platform to reach the floor, the top of tables and
cabinets as well as to pass objects to humans in sitting or standing positions.

The construction of this mobile robot prototype was an integral part of the project as it
produced a highly customizable testbed for the algorithms and hardware components
developed as part of the main research goals:

• Basic skill: Handover of Objects
The theme of the research grant concerned the development of basic robot skills
for assistive robots. Project SINA focused on the skill of handing over objects to
people. The remaining goals were set in order to realize this basic skill.

• Multimodal Perception of Surroundings
Initially the idea was to create a simple geometric model within which to store
sensor correlations, i.e., annotate at which points multiple sensors detected an
object. Over time this idea was elaborated upon which ultimately led to further
research and finally culminated in this work.

• Readable and Expected Robot Behavior
Especially for untrained operators and specifically elderly people, having to adapt
to the idiosyncrasies of such a complex assistive robot system is highly undesirable.
To mitigate this circumstance the goal was to develop a motion planning suite
capable of controlling the robot in a manner that is easily predictable by outsiders
and conforms to typically acceptable movement, especially in close proximity to
humans. This includes constraints such as not passing a person closely outside of
its field of vision and passing objects at comfortable positions along trajectories
similar to those typically employed by other humans.

• Capacitive and Tactile Sensors
In situations involving close interaction between robots and humans most sensor
systems reach their limits. Since the distance of these interactions is typically
below the minimum detection range of cameras and LiDAR systems, a different
type of sensor is required. In order to better monitor and safeguard close inter-
actions in the vicinity of humans combined capacitive and tactile sensors were
identified as suitable to this task. Therefore, the final project goal was the further
development of these sensors and their integration with the other systems.

Overall the sensors attached to the platform for various detection tasks are comprised
of the following (see Figure 3.2):

• Capacitive sensors on the robot arm
The capacitive sensors mounted to the robot structure underneath its protective
plastic housing were stipulated for the detection of persons in direct proximity to
the robot arm. Since a camera system’s ability to reliably detect humans in the
robot’s surroundings can always be impeded by objects or even the manipulator
itself, capacitive sensors are vital to a dependable safety system for applications
in HRI.
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• Capacitive sensors in the gripper
The gripper must naturally also be secured against colliding with or actually
gripping a human hand. To this end, the gripper was also fitted with capacitive
sensors albeit with additional tactile and material sensing capabilities in contrast
to those deployed on the robot structure. This enables the gripper controller to
distinguish between the object which is to be gripped and a human hand, even if
a person were to position their hand between one of the gripper’s jaws and the
object.

• RGB-D Camera
An additional RGB-D camera, specifically the Intel RealSense D435i [57], was
mounted on the bottom jaw of the gripper. This camera was intended to enable
the exact localization of objects for gripping. As long as no object is in the gripper,
thus blocking the camera’s view to a large extent, the additional sensor data can
be fed into the environment model of the mobile robot’s surroundings as well.

• Scanning LiDAR
Two scanning LiDARs positioned at two opposite corners of the platform and
with a detection angle of 270◦ are sufficient for the use of simultaneous localiza-
tion and mapping (SLAM) algorithms. With the help of the LiDAR sensors and
SLAM algorithms the platform can navigate autonomously even in unstructured
environments such as nursing homes and domiciles of elderly people. For this
purpose the model microScan3 from SICK [110] was chosen, since it not only
provides functional safety measures for the safety of humans in the vicinity of
the platform, but also supports simultaneously transmitting the raw sensor data
to a connected computer for further processing.

• Time-of-flight camera
In order to get a broader overview of the room an additional depth camera based
on the time-of-flight principle was included in the overall setup in order to ease
navigational planning and the retrieval of objects, which otherwise would have to
be painstakingly searched for by the mobile robot. The specific camera deployed
for this purpose was a Basler tof640 [14].
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3.2 Industrial Robotics (Project: KoARob)

Figure 3.3. Overview of the robot cell developed in KoARob.

The project KoARob aims at developing a redundant safety system by combining the
data from multiple cheap off-the-shelf sensor systems. The motivating scenario this
system is being developed for concerns the partial automation of returns processing
in a logistics warehouse. Packages received from customers returning items must be
opened and their contents inspected for damage by a human inspector, but the process
of depalletizing the incoming packages from large containers is suitable for automation.
When space is constrained, especially in smaller businesses, complex and voluminous
conveyer belts as well as cordoned off robot systems are impractical solutions. However,
increased throughput and prevention of repetitive stress injuries (RSI) to workers are
also important considerations when designing the process of returns inspection.
In order to demonstrate the research results in a practical setting, an exemplary robot cell
for such returns depalletizing tasks was developed (see Figure 3.3). At the center of the
cell is an industrial robot which performs the task of transferring packages individually
from the pallet to the table where the human operator performs his task of inspecting
their contents and sorting them for further processing. The packages are delivered by
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the robot to a fixed set of predetermined locations from which the worker can retrieve
them for their subsequent inspection task.

The system architecture of KoARob hinges on a newly developed safety controller,
capable of processing multiple input data streams in a common format and verifying the
correctness of the spatial occupancy by comparing all input data with each other. The
main sensor system consists of five rc_visard stereoscopic cameras from the company
roboception GmbH [99] arranged along the truss surrounding the work area of the
KUKA KR16-2 robot [62]. Additional sensors monitoring the work area include a 2D-
LiDAR from SICK [110], a FLIR thermal camera [114] and capacitive sensors integrated
into the custom vacuum gripper assembly mounted to the robot flange.

Absolute Safety Zone

Convenience Zone

Figure 3.4. Zones of the two-staged safety concept employed in KoARob.

In order to balance the usability of the resulting robot system with the required safety
guarantees a two-staged safety concept is proposed (cf. Figure 3.4). The first stage
(absolute safety stage) behaves similar to typical safety systems utilized in industrial
applications today in that it performs an emergency stop of the robot once an object
is detected in close proximity to the robot in an effort to prevent impending collisions.
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This, however, leads to downtimes of the robot and consequently productivity, especially
if the robot cannot autonomously recover from the stopped condition thus requiring a
manual restart operation. To alleviate the need for frequent emergency stops, the second
stage (convenience stage) attempts to plan the robot’s trajectories around possible areas
of collision such that the absolute safety stage ideally never needs to be activated.
Such prescient planning of robot motions requires detailed knowledge or, if possible,
even a limited form of precognition with regards to the motion of humans in the
workspace of the robot. To this end, various machine learning approaches are employed
to detect humans and their movements in the workspace of the robot:

• Human Pose Recognition
The first step is to localize all humans present in the work area. This information
can already be used to augment spatial data of the robot’s surrounding for the
purpose of distinguishing areas occupied by humans from those taken up by
inanimate objects. The former can then be circumnavigated at greater distances
in order to ensure greater operator safety.

• Human Pose Prediction
Human pose prediction or forecasting concerns itself with projecting a human’s
current pose and trajectory forward in time with the aim of predicting which areas
will soon be inaccessible to the robot and planning future trajectories around
and away from these regions. Human pose recognition is a prerequisite for this
process.

• Human Activity Recognition
Based on the current and future human poses and a semantic definition of previ-
ously determined activity classes, human activity recognition can be employed
for the sake of attempting to estimate the current task or action a human operator
is performing. This can be beneficial for determining general areas where humans
are most likely to be further ahead into the future than simple pose forecasting
would allow estimating.

These methods can be utilized in the KoARob scenario to create a more intuitive collab-
oration experience for the worker and thus shifting the perception from a mere tool
to more of a robotic colleague. By predicting the worker’s future actions, the robot’s
choice of placement position can be influenced to prefer locations which are less likely
to interfere with the human and thus cause potential collision situations. Moreover,
attempting to minimize the required simultaneous access to the same workspace areas
by humans and robots, arguably leads to a greatly reduced need for the absolute safety
system. This also leads to the robot system being less disruptive to the entire workflow
since it is not physically in the way of the human worker and it does not need to be
restarted as often.
Since current machine learning algorithms are not trustworthy enough to employ them
in safety critical systems as single source of information, KoARob utilizes multiple such
algorithms simultaneously and compares their respective outputs with each other and
also conducts feasibility checks based on the bare geometric information available to
the system. This redundancy falls in the same category as typical functional safety
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equipment used in industrial applications today in that no single source of information
or communication channel is ever trusted alone, but only ever in combination with at
least one other.
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Chapter Summary. This chapter gives an overview of the Sen-
sorClouds architecture for processing multi-modal point clouds.
Based on the requirements formulated in this chapter, the ba-
sic concepts enabling the dynamically configurable, yet real-
time capable architecture are explained. A brief example of
the programming interface for application developers using the
SensorClouds architecture is given to illustrate its simplicity in
commanding powerful functionalities. 4
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4.1 Requirements
Before the architecture of SensorClouds is presented in detail, this section will list
the requirements imposed on the architecture and reference implementation (cf. Sec-
tion 7.3).

4.1.1 Functional Requirements

FR 1 Integration of all sensor data into a global model
All sensor data must be combined in a global, three-dimensional model such that
global reaction strategies and thresholds can be defined. This must also include
data that is not naturally three-dimensional, but which can be transformed into
its three-dimensional context.

FR 2 Real-time execution
Quick reaction times are paramount in HRC applications, since humans in the
workspace must be accurately detected before collisions can occur. The exact cycle
times are naturally dependent on the specific amount of processed sensor data and
the algorithmic modules employed and must therefore be evaluated separately for
each concrete application. Overall, the framework should be capable of targeting
overall execution times per cycle of under 30ms.

FR 3 Dynamic fusion of various sensor modalities
In order to increase the robustness of the HRC application, the architecture shall
facilitate simple fusion of various sensor modalities into a global environment
model and enable modality-specific as well as modality-agnostic processing of all
data present in the global model.

FR 4 Modular and reusable architecture
Applications of sensor fusion are often comprised of similar algorithmic building
blocks adapted to the specific context in which they are to be employed. Con-
sequently, the capacity for reuse of such applications is severely limited. The
architecture of SensorClouds shall therefore enable the generalized implementa-
tion of processing algorithms in form of modules, which can then automatically
be adapted to the concrete sensor data in a specific application by the framework.

FR 5 Scalable Parallel Execution
Computer vision tasks are inherently optimal candidates for highly parallelized
execution of processing algorithms, since each individual data point can typi-
cally be processed independently. Consequently, the framework must support
the parallel execution of modules on varying sizes of input data sets and scale
dynamically to fill the available processing resources. This can also significantly
aid in the fulfillment of FR 2.

FR 6 Compatibility with established software ecosystems
Building upon existing infrastructure and established ecosystems ensures the
immediate availability of many more pre-existing resources and features than
would otherwise be the case for a newly developed framework. Especially the
Point Cloud Library (PCL) and the Robot Operating System (ROS) are highly
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relevant ecosystems pertaining to the processing of point clouds and control
systems for robots as well as integration of sensor data into robotic applications,
respectively. SensorClouds shall therefore ensure full compatibility with the data
types of interfaces of these two frameworks.

4.1.2 Non-functional requirements

Beyond these functional requirements, a number of non-functional requirements were
defined for the SensorClouds architecture:

NFR 1 Abstraction from parallel computing
Implementing algorithms for massively parallel computing entails a steep initial
learning curve, since many concepts differ from traditional single and even
multi-threaded programming. To alleviate this circumstance, the framework
shall abstract as much of the added overhead and allow developers to focus on
their concrete implementation.

NFR 2 Programming paradigm
The programming paradigm for application developers shall be shifted from the
typical focus on direct processing of individual data sets to the more abstract
specification of connected devices and processing modules.

NFR 3 Keep with industry standards
The framework shall refrain from employing exotic methods and complicated
custom tooling.

NFR 4 IDE support
The framework shall be natively usable in any IDE and support all features such
as code completion without the need for custom plugins.
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4.2 Architecture
The following section gives an overview over the main architectural building blocks of
the SensorClouds architecture and essential algorithms and concepts required to enable
the architecture to function correctly and provide certain guarantees on modularity and
interoperability. Throughout the remainder of this work, the term data point will be
used to denote a collection of values ascribed to a specific point in space, such as an
object containing both x, y and z cartesian coordinates and a color value in RGB. A data
field, on the other hand, is a single one of the previously mentioned entries so x, for
example, is a data field belonging to a specific data point. The SensorClouds architecture
clearly differentiates between two distinct views of a sensor processing application: the
application developer, who creates programs performing specific tasks with the help of
the SensorClouds framework and the module developer, whose task it is to create the
modular building blocks from which the application developer can draw from when
solving concrete sensor processing tasks. The interface for application developers will
be presented in more detail at the end of this chapter (cf. Section 4.3) after the in-depth
explanation of the architectural concepts, while the interface for module developers
will be introduced at a later point along with details of the reference implementation of
the SensorClouds architecture (cf. Section 7.2).

4.2.1 Main components

Device

SensorCloud

Inserter

Processor

Aggregator

1

1

1
1

*

*

*

*
Module

Figure 4.1. Basic architecture components of SensorClouds.

To realize the previously specified requirements of the architecture, SensorClouds defines
the following basic components:

SensorCloud
The SensorCloud class is the main component of the SensorClouds architecture and as
such responsible for managing all stages of the application lifecycle. Additionally, it
conceptually acts as the interface to the global data model (see Section 4.2.5). Although
many concrete operations are handled by various other classes internally, this class ex-
poses all the necessary interface options for quickly and easily building applications with
SensorClouds and delegates tasks to the appropriate subcomponents where required.
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Device
Device drivers handle all operations related to concrete sensor devices. This includes
the actual communication with the devices for the retrieval of configuration and sensor
data as well as the provision of the acquired sensor data to the SensorCloud in order
to be further processed by other modules. An example of this would be an RGB-D
camera whose input data stream, cartesian position and calibration data as well as any
other parameters describing properties of the camera are all managed by the device
driver. This serves to shift the programming paradigm from raw data processing to
device-centric applications as per NFR 2.

Inserter
Insertion modules are tasked with receiving input data from device drivers and inserting
it into the global environment model. This can be as simple as transferring the values
directly, but may include muchmore involved processes to determine where in the global
model the data needs to be inserted. Data from RGB-D cameras can, for example, directly
be inserted, whereas an RGB camera without depth information must first be projected
into three-dimensional space, which is a more involved process and requires three-
dimensional information to be present in the model before the image can subsequently
be projected onto the same.

Processor
A Processor operates solely on the global environment model and can be employed to
perform processing tasks on the contained data after all input data has been inserted into
the model. This can include operations such as filtering data points with insufficient data
or correlation or cutting known objects from the model in order to ease the calculation
of impending collisions.

Aggregator
The actual fusion of data points within the global model is performed by Aggregators.
Every write operation by other modules is channelled through these. The processing
method of an Aggregator receives as input the old value of the data field alongside
the new value to be written as well as any intermediate variables it has defined. The
resulting output of the Aggregator is then committed to the global model. Unless
otherwise implemented by custom Modules, voxels always contain only the result of the
aggregation calculation and none of the constituent data points individually.

4.2.2 Type System

SensorClouds maintains two separate type systems for data fields (cf. Figure 4.2). The
internal definition of types which is directly based on that of point cloud messages in
ROS [100] is a simple enumeration of the supported types (DataTypeEnum). In contrast,
the definition of kernel functions for modules must be able to process the built-in types of
the programming language (DataType) with any accompanying qualifiers (e.g., constant,
pointer types, etc.).
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<<enumeration>>
DataTypeEnum

INT8

UINT8

INT16

UINT16

INT32

UINT32

FLOAT

DOUBLE

UNKNOWN

<<static>>
TypeHelper

+ dataTypeFromType<DataType>(): DataTypeEnum

+ typeFromDataType<DataTypeEnum>(): Type

+ neutralValue<DataTypeEnum>(): DataType(0)

+ size(DataTypeEnum): int

+ typeToString(DataTypeEnum): string

+ stringToType(string): DataTypeEnum

+ isFloatingPoint(DataTypeEnum): bool

+ isConvertible(DataTypeEnum, DataTypeEnum): bool

DataType

INT8: int8_t

UINT8: uint8_t

INT16: int16_t

UINT16: uint16_t

INT32: int32_t

UINT32: uint32_t

FLOAT: float

DOUBLE: double

UNKNOWN: void

Figure 4.2. Type system in SensorClouds.

The TypeHelper class contains a collection of convenience methods for handling the
two type systems. Aside from string conversions and informative attribute functions
(e.g., isFloatingPoint()) it also contains methods for converting types between the
two definitions as well as checking whether the value of a certain type can be contained
within another.

4.2.3 Modules

Inserters and Processors are independent modules containing atomic processing kernels
(enabling the fulfillment of FR 5) in the SensorClouds architecture. In order to guarantee
the interoperability of an arbitrary combination of modules, the design-by-contract [75]
paradigm is enforced throughout the entire SensorClouds architecture. This guarantee is
also of paramount importance to the fulfillment of FR 4, since each individual module
would be required to explicitly assure interoperability with other, possibly unknown
modules were this responsibility not assumed by the overarching architecture. Design-
by-contract aims at improving the reliability of software, especially in object-oriented
languages, by likening the construction of software and its constituent functions to
a sequence of contracts between a client and a contractor in construction. Each side
of such a contract has obligations as well as benefits, which are explicitly spelled
out for the mutual assurance of both parties involved in the contract. Applying this
analogy to software design, a contract is entered between a subroutine and the calling
routine, which specifies the preconditions of the called subroutine, e.g., a data object
passed to it must to exist before the subroutine can be called, as well as the post-
conditions, e.g., the subroutine guarantees that its results are stored into the previously
passed data object after it has completed. Following this paradigm allows stronger
focus of each individual subroutine on the task it is intended to perform, since the
definition of preconditions shifts the responsibility for error-checking to the calling
routine. Preconditions and postconditions together form the contract between callee and
caller and moreover provide rudimentary user documentation in the process. Further
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details on the enforcement of specific aspects of the design-by-contract paradigm will be
described at the relevant points over the course of the following sections. An overview
of the modules architecture with all directly involved classes is depicted in Figure 4.3.
The diagram is split into two different sections to denote the responsibility for creating
and configuring the respective objects.

: ModuleInfo

: Module

: ModuleInstanceinputData:
DataInterface

outputData:
DataInterface

: Method

outputWrite:
ArgumentList

outputRead:
ArgumentList

inputRead:
ArgumentList

: Selector

: AggregatorList

Module Developer

Framework

Figure 4.3. Module architecture in SensorClouds.

Module
Module is the basicmeta-class which describes all relevant information for the integration
and use of a module. Both Inserters and Processors are derived from Module and thus
follow the same definitions and lifecycles. This class is later used by the framework
to create a concrete ModuleInstance according to the application configuration and the
current context in which the module is utilized.

ModuleInfo
All relevant information needed to execute a module’s kernel function is stored in this
class. It contains the definition of the required parameters, the provided result data as
well as the pipeline stage (cf. Section 4.2.7) the module can be executed in.

ArgumentList
ArgumentLists are employed for the configuration of input and output parameters to
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modules. At most a module can have three of these lists, which each have a distinct
semantic significance:

• Data Input
The data fields to be read from the input data stream.

• Model Input
Data fields which are required from the global model in order for the module to
be able to execute correctly.

• Model Output
The output data written to the global model by the module.

For a single data point, the ArgumentList contains a number of data fields and their
required types. If multiple data points are to be selected as input or output, the Argu-
mentList can also contain a DataSet object. This object contains the same definition of
data fields, but can be used to iterate over the resultant number of data points within
the processing kernel of a module. The SensorClouds Query Language specification
described in Section 6.2 can be utilized for the selection of arbitrary data points from the
global model. ArgumentLists are integral to the enforcement of the design-by-contract
paradigm and constitute the pre- and postconditions of aModule respectively. Together,
the three ArgumentLists form the contract of a module, which guarantees the correct
flow and processing of sensor data. The simplest possible configuration of these lists
would be the definition of cartesian coordinates for both Data Input and Model Output
as is the case for a simple coordinate Inserter employed for the insertion of data from a
depth sensor.

Selector
In case data points shall not be iterated over blindly but specific data points are to be
selected depending on the input data or values calculated within a module itself, Selectors
can be utilized to select the specific data points required. In keeping with the design-
by-contract paradigm, this selector and the accompanying DataSet specification again
form a clear specification of the data accessed by a module and consequently ensure
seamless operation with other Modules. An example of this is the selection of relevant
voxels through raytracing for the projection of RGB images onto three-dimensional
data residing in the global data model. Selectors are also utilized to select the desired
data for output to other applications. A more detailed description of this functionality
is given in Section 6.2.

Method
Every module defines an executable kernel function which shall be called by the frame-
work at runtime on each data point. The Method object is responsible for maintaining a
reference to the executable function, the object instance it shall be called upon as well
as the parameter definition of the method for later validation against the definitions of
data fields in the input and output data of the module.
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ModuleInstance
After all the definitions of the input and output data are available (e.g., an input point
cloud and the generated global model) a Module can be instantiated with this specific
information. The details of Module instantiation are further described in Section 4.2.4.

4.2.4 Module Instantiation

A ModuleInstance holds references to the original Module it was instantiated from, the
input and output data interface definitions as well as the list of relevant aggregators to
be applied to the written output data. This class is internal to the framework and never
directly created by a developer. ModuleInstances represent the individual items of the
global pipeline ready for execution by the pipeline manager.

A concrete example of a fully initialized ModuleInstance can be found in Figure 4.4.
In this example a simple Inserter for integrating three-dimensional positions without
any additional data into the global model (e.g., for a LiDAR; only x, y and z values) is
depicted.

pointCloudData:
DataInterface

sensorCloudData:
DataInterface: AggregatorList

lidar:
Device

xyzInserter:
Module

inputRead:
ArgumentList

x, y, z

outputWrite:
ArgumentList

x, y, z

xyzInserterMethod:
Method

process(float, float, float, float*, float*, float*)

xyzInserterInstance:

ModuleInstance

: MeanAggregator

x

: MeanAggregator

y

: MeanAggregator

z

sensorCloud1:
SensorCloud

Figure 4.4. Object diagram of a concrete Module instantiation for a simple Inserter.
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The instance is configured with two ArgumentLists one for the fields it reads from
the input data and one for the data it provides to the global model. Each of these are
configured with the fields x, y and z, since this Inserter only takes the values from
the input stream and inserts them into the appropriate voxel of the global model.
Hence, the process() method of the module takes six arguments, three values and
three pointers. The input data (pointCloudData) is provided by the device driver for a
LiDAR in this example. The output data is, as is always the case for Inserters, provided
by the SensorCloud object (sensorCloudData). This also provides a list of Aggregators
which have previously been configured by the application developer. In this instance,
the list contains three Aggregators one for each coordinate field, in the form of a
MeanAggregator which calculates the mean of all values for its respective field upon
writing a new value.
Consequently, a ModuleInstance possesses all the required data to be executed later as
part of the global pipeline. This further satisfies FR 4 even on the level of executable
ModuleInstances.

4.2.5 Global data model

The global datamodel in the SensorClouds architecture is stored in the form of a voxel map.
This voxel map is defined by two parameters (cf. Figure 4.5): the first parameter defines
the number of voxels in each axis and the second the side length of each individual
voxel and thus the resolution of the voxel map.
The reason for this design choice in the overall concept of SensorClouds is twofold. The
discretization of all sensor data into equidistant voxels allows a significant reduction of
the number of data points which must be processed all the while preserving the required
level of detail for the intended application by configuring the resolution of the voxel
map appropriately. Furthermore, this concept provides a simple and computationally
diminished method for fusing data points from multiple sensors which coincide within
the same geometric volume. The specific resolution should be chosen according to the
requirements of the application being developed. In particular the minimum distance
from and the minimum size of objects must be taken into consideration. A larger
resolution naturally always incurs more processing time, since more data points must be
examined, yet choosing an inappropriately large voxel resolution can cause earlier than
desired robot reactions or overzealous restrictions to the robot’s range of motion.
An example of the impact of the voxel resolution when attempting to detect a human
hand can be seen in Figure 4.6. In most applications, the detection of individual fingers
of a human hand will be unnecessary, hence selecting a voxel resolution of 6 cm or
even 3 cm will not be pertinent to the task at hand. Choosing a resolution of 24 cm
in this case would lead to premature reactions of the robot and restrict the options
for circumnavigating obstacles, since a larger volume in the robot’s workspace will
be blocked by the perceived interference. Consequently, a voxel resolution of 12 cm
constitutes a sensible choice for detecting objects in the scale of a human hand.
By employing a voxel map evenly partitioning the surveilled space in the vicinity of a
robot, sensor fusion can fairly easily be performed based on geometric coincidence. All
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Figure 4.5. Geometric specification of the voxel map serving as the global data model. The
configuration shown places the origin in the lower left corner of the entire space
and is further determined by the desired resolution and number of voxels in each
axis.

sensor data located in three-dimensional space can be assigned to the corresponding
voxel containing the exact coordinates of the data point, thus satisfying FR 1. After
all input data has been inserted into the voxel map in this fashion (cf. Figure 4.7), the
data contained in each individual voxel can be fused into a new resultant data point for
export or further processing, as per FR 3. This fusion process can either be performed
after all Inserters have completed their work by a separate Processor or in tandem with
the insertion by Aggregators.

An example of such a fusion operation can be seen in Figure 4.8. Here the data points
from three different sensors (depicted in red, green and blue) coincide within the same
voxel, and their exact coordinate values are to be fused into one resultant value. Figure 4.8
shows how the values contained within each voxel can be processed in order to receive
a resultant value per voxel (depicted in black), which can later on be used directly or in
further calculations.
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3 cm

6 cm

12 cm

24 cm

Figure 4.6. Impact of different voxel map resolutions on the detection of objects. The image
shows a frontal two-dimensional projection of a human hand and the correspond-
ing partitioning of voxel maps of different resolutions.

The storage of a voxel is allocated according to the configuredModules of the application
(cf. Figure 4.9). Once all Modules have been configured, all the output definitions are
combined and constitute the data partition of a voxel’s storage in the global voxel
map model. The hidden partition of a voxel’s storage is comprised of all the temporary
variables per data field as per the definition of the chosen Aggregators for each field. Both
partitions together form the per voxel storage definition which is allocated consecutively
in memory for every voxel in the voxel map.

4.2.6 Static analysis

In order to ensure the correct operation of all modules on their respective input and
output data and thus guarantee that FR 4 and the design-by-contract paradigm can be
fulfilled correctly, a static analysis of all modules must be performed once the entirety of
metadata is available. The static analysis is one of the methods of enforcing the design-
by-contract paradigm in that it checks the modules for compatibility with the existing
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Sensor 1

Sensor 2

Sensor 3

Figure 4.7. Example of a 2 x 2 voxel map with data points inserted from three different
sensors. Each data point is inserted into the voxel map according to its associated
coordinates. All additional data from the original sensor is written to the voxel’s
storage as well.

input and output data streams and adherence to the contract by the implementedMethod.
The means of reporting the results of the analyses performed by the StaticAnalyzer are
twofold. One is the direct output of textual messages to the console and the second is
the return of the combined maximum error level which occurred during the analysis.
The following error levels are defined:

• OK
All definitions and types are correct and the ModuleInstance is directly executable
without any intervention.

• WARNING
Type conversions must be introduced, which may produce unexpected numerical
results, but the ModuleInstance can still be executed.

• ERROR
The type definitions are wholly incompatible and theModuleInstance can therefore
not be executed. The analysis can, however, continue and still output further
errors and warnings should they present themselves. Repeated trial and error
runs can ideally be eliminated by this best effort approach to finding all errors
and warnings in one analysis process.

• FATAL
An error was encountered which forced the analysis to be cancelled prematurely.
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Sensor 1

Sensor 2

Sensor 3

Fused Value

Figure 4.8. Fusion of multiple data points from different sensors within the same voxel. The
blue, red and green points denote the respective data points from the different
sensors, while the black point is the resultant data point of the sensor fusion. In
this case the exact coordinates of the individual data points are fused by a mean
calculation.

This occurs for example when the number of parameters differs between the
definitions, which makes further analysis moot.

An example of the static analysis process for a simple Inserter can be seen in Figure 4.10.
All the defined input variables of the Module are matched against their counterparts
in the input data source and the variables read from the global model are matched
against the model definition (checkModuleArgDefinitions()). Only the specified types
are considered when determining their compatibility and not for example the actually
used value range of a variable in order to ensure the stable execution of the application.
In the same vein, the static analysis is far more strict regarding type compatibility
compared to common compilers, which allow the implicit conversions such as from
larger integer types to smaller ones, hazarding the consequence of value overflows.
Such a determination can be seen with respect to the input variable y in the example
(Figure 4.10 bottom left) where the conversion from a 32-bit integer to a 16-bit one could
lead to incorrect values later on. The same holds true for floating point types when
attempting to convert from 64-bit double precision floating point values to 32-bit single
precision ones as for the x variable in the output definition (Figure 4.10 bottom right).
Since floating point conversions of integer types are never completely exact, attempting
this will lead the StaticAnalyzer to produce a warning indicating to the developer that
the conversion may lead to a loss of precision, which is the case for the z variable in the
input definition (Figure 4.10 bottom left).
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<<static>>
StaticAnalyzer

+ checkArgCount(inst : ModuleInstance) : AnalysisResult

+ checkModuleArgDefinitions(inst : ModuleInstance) : AnalysisResult

+ checkModuleArgTypes(inst : ModuleInstance) : AnalysisResult

xyzInserterInstance:
ModuleInstance

xyzInserterMethod:
Method

process(float, uint16, float, double*, uint16*, uint32*)

<<enumeration>>
AnalysisResult

OK

WARNING

ERROR

FATAL

xyzInserter:
Module

inputRead:
ArgumentList

x : float

y : uint16

z : float

pointCloudData:
DataInterface

x : float

y : uint32

z : uint16

outputWrite:
ArgumentList

x : double

y : uint16

z : uint32

sensorCloudData:
DataInterface

x : float

y : uint16

z : uint32

Figure 4.10. Results of the static analysis for the example of a simple Inserter.

In case all variable definitions match or can be converted to their respective counterparts
in the data sources, the executableMethod of theModulemust be analyzed for correctness
of its defined arguments. First the length of the defined argument list is checked for
equality to the number of parameters required to invoke the method (checkArgCount()).
Any mismatch constitutes a configuration error which cannot be resolved without
developer intervention and thus causes the analysis to fail immediately with a FATAL
result. Finally, the types of the module definition are matched against the types of the
method arguments (checkModuleArgTypes()). Unlike the previously described check
of the definitions against their respective data sources not only the base data types
are compared, but also the type modifiers. Variables to be read may only be of a base
datatype, whereas those to be written to must be a pointer of the correct base data
type. This further enforces the design-by-contract principle. Any deviation from the
contract which cannot be alleviated with a simple non-altering type conversion is hence
penalized and thus constitutes the enforcement of the design-by-contract paradigm.

4.2.7 Pipeline

The global execution pipeline is managed by the SensorCloud object at runtime. The
pipeline stages are a fixed set of ordered execution steps which every SensorClouds
application cycles through (cf. Figure 4.11). Aggregators are automatically executed
after every write access by a module and perform their calculations based on the values
already present in the global data model and those produced by theMethod of the module
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in question. Both Inserters and Processors can define optional pre- and post-processing
operations which do not require access to the data stored in the global data model and
moreover are prohibited from attempting to. Consequently, no aggregation steps are
necessary after the respective pre- and post stages of Inserters and Processors since they
cannot write to the global data model.

Pre-Insert Insert Post-Insert

Pre-Process Process Post-ProcessAggregate

Aggregate

Figure 4.11. Global pipeline stages in SensorClouds and their execution order.

Every pipeline item (ModuleInstance) is automatically placed into its correct position
in the execution order. This order is determined first by the pipeline stage it belongs
to and secondly by any possible data dependencies of a module. An insertion module
projecting a thermal image into three-dimensional space, for example, requires all
sources of three-dimensional base data to have been executed before it can perform its
task. These dependencies are resolved using a depth-first topological sorting algorithm,
such as the one first described by Tarjan [113] in 1976.

briefs

pants

belt
shirt

tie

jacket

socks

shoes

watch

socks briefs pants shoes watch shirt belt tie jacket

Figure 4.12. Example of the depth-first topological sorting algorithm using clothes and their
order while getting dressed. (a) shows the directed acyclic graph with the depen-
dencies and (b) shows the result of the sorting algorithm. (Adapted from [33, p.
574])

Cormen et al. [33, p. 573] give an easily approachable example of this topological sorting
algorithm by depicting the process of clothing oneself including all the dependencies
involved in this process (Figure 4.12a). For example, shoes can not be put on until
pants and socks have been previously. Figure 4.12b then shows the linearized output of
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the topological sorting algorithm. The algorithm works by traversing the graph from
a random node which has not been previously added to the output. From this point
onwards, the graph is then recursively traversed following all the dependencies of each
node until a leaf is reached. The leaf node is then prepended to the output list and
its recursive function call returns to the next higher level. This process is repeated
until the originally selected node is reached. Once all nodes in the graph have been
added, the algorithm terminates. If at any point during the recursive traversal a node
is visited twice, the algorithm terminates prematurely, since this constitutes a circular
dependency.
In SensorClouds this algorithm is implemented in a generalized class structure which
can be reused to topologically sort any list of arbitrary objects which define a single
method describing their dependence on other objects of the same type (see Figure 4.13).
Any class which is to be given the ability to be sorted topologically must merely extend
the DependencyInterface and implement the dependsOn() method. The interface is
templated with the implementing class in order to correctly type the input parameter of
the dependency method. The DependencyResolver performs the effective topological
sorting operation and provides the linearized result list to the invoking instance.

collectedInput
*

1
linearizedOutput

*

1

DependencyResolver

+ addNode(node : NodeT*) : void

+ getResolvedDependencies() : vector<NodeT*>

- findUnaddedNode() : Dependency*

- visitDependency(dep : Dependency*) : void

NodeT : DependencyInterface

node : NodeT*

Dependency

+ Dependency(node : NodeT*)

+ dependedUpon : vector<Dependency*>

+ added : bool

+ visited : bool

NodeT

1

1

<<nested>>

DependencyInterface
<<interface>>

+ bool dependsOn(other : T2*)

T2

ModuleInstance <<bind>>
<T2 = ModuleInstance>

Figure 4.13. The dependency resolution architecture of SensorClouds.

All objects to be sorted are passed to the DependencyResolver which in turn individually
wraps them in Dependency objects and adds them to its input list (collectedInput).
This nested inner class of the DependencyResolver has the sole purpose of encapsulating
all the necessary variables for resolving dependencies without cluttering the objects to
be sorted and is thus only visible to the DependencyResolver and solely used internally.
In order to perform the actual dependency resolution, the dependency graph must first
be built. This is accomplished by iterating over all elements of the list and calling the
dependency method with each of the remaining elements as parameter. Any nodes
producing a positive result are added to the original node’s list of elements which depend
upon it (dependedUpon). Upon this graph structure the actual dependency resolution
can be performed thereafter. The specific implementation of the dependency resolution
algorithm can be found in Listing 4.1.
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1 void visitDependency(dependency_ptr node) {

2 if (node->added) // Finished sorting

3 return;

4 if (node->visited); // Circular dependency

5 return;

6

7 node->visited = true;

8

9 for (dependency_ptr node_dep : node->dependedUpon) {

10 visitDependency(node_dep);

11 }

12

13 node->visited = false;

14

15 node->added = true;

16

17 linearisedOutput.emplace_front(node);

18 }

Listing 4.1. Concrete implementation of the dependency resolution algorithm in SensorClouds.

In the case of a ModuleInstance as depicted in Figure 4.13, the implementation of the
dependency method must consider three factors. Firstly, the ModuleInstance must check
which stage of the pipeline it has been associated with and if the other instance’s stage
precedes it, since the later stage may only begin execution after the previous stage
has completed, regardless of any other factors. If both instances are to be executed
within the same pipeline stage, then their output targets must be the same in order to
be in dependence on one another, which is the second factor. Finally, the Model Output
arguments of the other element are compared to theModel Input arguments of the current
element, since any overlap between these two constitutes a data dependency between
the two elements. The dependency resolution is the second method for enforcing the
design-by-contract paradigm, since data dependencies clearly define preconditions
for a module which then must be executed in the correct order by the SensorClouds
framework.

The linearized output list of ModuleInstances is then executed periodically one after
another at runtime. The period of execution can be configured to either be chronolog-
ical or after one or all sensors have received new data, depending on the application
requirements. Selecting the mode of execution when all sensors have received new
input data provides basic implicit data synchronization between devices of different
polling rates, however no data is altered or interpolated over time by this mode.
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4.3 Programming Interface for Application Developers

An application developed with the SensorClouds framework and realizing the KoARob
scenario described in Section 3.2 can be seen in Listing 4.2.

1 auto sensorcloud = SensorCloud(256, 0.025, Origin::CENTER,

ExecutionPolicy::ON_ALL_NEW_DATA, "/sensorcloud");↪→

2

3 auto rc1 = devices::Roboception160("rc1", "/rc1/depth_points");

4 rc1.registerInserter<insert::SCRGBDInserter>();

5 auto rc2 = devices::Roboception160("rc2", "/rc2/depth_points");

6 rc2.registerInserter<insert::SCRGBDInserter>();

7 auto rc3 = devices::Roboception160("rc3", "/rc3/depth_points");

8 rc3.registerInserter<insert::SCRGBDInserter>();

9 auto rc4 = devices::Roboception160("rc4", "/rc4/depth_points");

10 rc4.registerInserter<insert::SCRGBDInserter>();

11 auto rc5 = devices::Roboception160("rc5", "/rc5/depth_points");

12 rc5.registerInserter<insert::SCRGBDInserter>();

13

14 auto flir = devices::FLIR("flir", "/flir/imagerect");

15 flir.registerInserter<insert::SCThermalInserter>();

16

17 sensorcloud.addDevices(&rc1, &rc2, &rc3, &rc4, &rc5, &flir);

18 sensorcloud.completeDeviceRegistration();

19

20 sensorcloud.registerAggregator<aggregate::MeanAggregator>({"x", "y",

"z", "r", "g", "b", "temp"});↪→

21 sensorcloud.registerProcessor<process::ThermalFilter>(&out, 36.1,

37.2);↪→

22

23 sensorcloud.buildPipeline();

24

25 while (ros:ok()) {

26 sensorcloud.executePipeline();

27 }

Listing 4.2. Application structure in SensorClouds.

The first step is to define the global model to be used for all subsequent operations by
defining the number of voxels in each dimension, the resolution of each individual voxel
and the definition of the coordinate origin of the model. The penultimate parameter
defines the execution policy, meaning if the pipeline shall be executed at a fixed time
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interval, when one device has produced new data or when all configured devices have.
Finally, the topic name to publish the resulting data to is specified.

1 auto sensorcloud = SensorCloud(256, 0.025, Origin::CENTER,

ExecutionPolicy::ON_ALL_NEW_DATA, "/sensorcloud");↪→

Thereafter, the drivers for all present devices must be instantiated and the exacted
Inserters registered with them. Device drivers receive the user-configurable instance
name and the input ROS topic as parameters. The Inserter employed in this case is very
basic and directly inserts the coordinates and color values of each data point into the
corresponding voxel. Since an RGB-D camera internally references the color values to
the appropriate distance measurement, no further processing is required.

3 auto rc1 = devices::Roboception160("rc1", "/rc1/depth_points");

4 rc1.registerInserter<insert::SCRGBDInserter>();

This is repeated for the remaining four cameras in the KoARob cell analogously after
which the driver for the thermal imaging camera is instantiated with its suitable Inserter
capable of projecting the thermal image into three-dimensional space by leveraging a
raytracing algorithm to find the relevant occupied voxel.

14 auto flir = devices::FLIR("flir", "/flir/imagerect");

15 flir.registerInserter<insert::SCThermalInserter>();

All configured devices are then registered with the SensorCloud object and the registra-
tion process is finalized to indicate to the system that no other devices will be added
beyond this point and it has thus all required data about the the connected sensors.

17 sensorcloud.addDevices(&rc1, &rc2, &rc3, &rc4, &rc5, &flir);

18 sensorcloud.completeDeviceRegistration();

The configuration of the preferred sensor fusion approach is performed by registering
the Aggregator and the fields it shall be applied to with the SensorCloud object. In this
case a standard mean Aggregator is defined on all the present data fields.

20 sensorcloud.registerAggregator<aggregate::MeanAggregator>({"x", "y",

"z", "r", "g", "b", "temp"});↪→
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Finally, the output processing filter is defined which in the case of the KoARob scenario is
a filter operating on the temperature value provided by the FLIR camera and is intended
to include only those voxels in which a temperature within the range of human body
temperature is present, thus filtering all objects and background elements other than
humans in the workspace from the acquired sensor data. This Processor receives the
data output target of the filter operation as well as the upper and lower temperature
thresholds as input arguments.

21 sensorcloud.registerProcessor<process::ThermalFilter>(&out, 36.1,

37.2);↪→

Setup concludes with the instruction to build the pipeline for the application, although
some parts of this operation may be deferred by the application to a later point in time,
depending on the availability of the required data.

23 sensorcloud.buildPipeline();

Then in the main application loop the execution method of the SensorCloud object
must be invoked. This internally decides whether to actually execute the pipeline
depending on the configured execution policy and the aforementioned deferral of
internal configuration steps.

25 while (ros:ok()) {

26 sensorcloud.executePipeline();

27 }

In summary, the implementation of applications utilizing the SensorClouds framework is
a fairly straightforward task for application developers, provided the required modules
and drivers have been previously implemented.
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4.4 Related Work
While many highly targeted solutions for sensor fusion applications exist, only a select
few have attempted to develop a truly generalized framework for such tasks.
Especially in recent years, a vast amount of research in sensor fusion has focused on the
use of neural networks for sensor fusion. While these definitely have their advantages
in sensor data processing, as will be shown in Section 5.4, employing them end-to-end
in three-dimensional fusion applications encodes geometric and sensor-specific data
directly into the neural net, preventing future reuse in other application with differing
sensor configurations (cf. [132]).
One example of a more generalized system using neural networks is the work of Chen
et al. [25]. They propose the use of a so called modality agnostic feature sampler which
combines information from multiple sensors based on their three-dimensional location
data. While similar to the approach of SensorClouds in that all data is combined using
three-dimensional coordinates, their solution requires training on individual datasets
for each sensor with different neural architectures and fine-tuning on the concrete
combination of sensors. The general applicability of this solution is therefore not
guaranteed, escpecially since they only tested their approach on fixed datasets.
The point cloud library (PCL) [101] was first developed as integral part of ROS byWillow
Garage and has since been spun off into a separate project. Its feature set is divided
into multiple distinct modules for various tasks related to sensor data processing and
recognition (cf. [93]):

• Filters
The list of supported filters includes the most commonly used filters in image
data processing, such as outlier removal, basic cropping to geometric shapes,
bilateral filtering for noise reduction or frustum culling for creating virtual camera
perspectives.

• Feature & Keypoint Extraction
Various implementations of concepts described in scientific publications (such as
e.g., the OUR-CVFH feature histogram [9]) for the extraction of feature vectors and
keypoints are integrated into or were originally developed for the PCL. Feature
vectors describe the geometric pattern of a point in correlation to the surrounding
points. Keypoints, in contrast, are points which are particularly distinct. Together,
these two functions can be used to describe large datasets in a compact manner.

• Segmentation
Segmentation algorithms attempt to extract distinct objects from point clouds.
Various implementations of segmentation algorithms for this purpose are available
in the PCL.

• Registration
When combining multiple point clouds with unknown reference frames these
can only be combined by attempting to estimate the coordinate transformation
between them first. This is exactly what point cloud registration offers and the
PCL contains a number of algorithms fur this purpose as well.
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The PCL supports the definition of new point cloud types constructed from constituent
structures. This means that a user-specific implementation can define a custom point
type using the predefined structure for x, y and z coordinates and combine it with an-
other predefined structure or custom data fields. These custom structures can, however,
become very complicated, spanningmultiple union commands of various structures to be
combined. But the main caveat of this approach is the support of the included algorithms
for custom point types. While the predefined constituent structures, such as those for
coordinates, are typically understood and can be processed by the included algorithms,
support for truly custom point types must be manually implemented within each and
every algorithm which is supposed to process the custom part of a point definition.
The custom point type must also be registered globally with complicated preprocessor
macros in order to even be found and recognized by the algorithm implementations. (cf.
[91])
In comparison, the data model in SensorClouds presents a clear advantage over the
tedious process of adding new information types to the PCL. Defining new data fields is
as simple as creating a tag. The data type is then individually specified by Modules.
While the PCL offers access to various different algorithms, GPU support is still very
limited. Development of GPU support is currently ongoing, as logs in the project’s
github repository show (see [92]), but still not on par with the CPU implementations by
far. Due to this fact, the performance of the PCL when processing large datasets is totally
insufficient when targeting realtime applications, as will be conclusively demonstrated
in the performance evaluation in Section 8.1.
The closest competitor in terms of performance is GPUvoxels [53]. GPUvoxels also
utilizes a voxel based data model which all incoming sensor data is inserted into, any
additional information from various additional modalities is immediately discarded
and can thus no longer be used for further analyses. The data model of GPUvoxels
only supports the definition of either binary or probabilistic occupancy for every voxel.
Adding support for additional modalities to the library is nigh impossible, since every
aspect of it focuses solely on occupancy of voxels. The only differentiation in voxel
data is in terms of the position of the robot in the workspace. GPUvoxels uses the tool
binvox [78] to convert robot models into voxelized representations of the same, which
during runtime can be utilized to determine the distance between the robot structure
and obstacles in the environment as well as exclude sensor measurements detecting the
robot structure from the collision calculation.
The tool binvox can easily be integrated into the SensorClouds architecture in the form
of a Processor which marks voxels as belonging to the robot structure and calculates
the distance between those voxels and the remaining sensor data. The clear advantage
of SensorClouds lies in the support of multiple modalities in its global data model, as
opposed to GPUvoxels, which allows the extraction of valuable data from the combined
model after all data has been inserted. The performance of the two frameworks is
comparable despite the greater flexibility that SensorClouds offers, as will be shown in
Section 8.1.
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Chapter Summary. This chapter explains in depth how the
information from simpler, one-dimensional sensors, such as
capacitive proximity sensors for the detection of humans in a
robot’s workspace can be integrated into the three-dimensional
data model in SensorClouds. Using multiple processing tech-
niques and finite element simulation, the sensor value can be
partially reconstructed to reflect the true three-dimensional
nature of the measured phenomenon. 5
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5 Integration of Capacitive Sensors

Since capacitive sensors can only deliver a single one-dimensional capacitance mea-
surement, various methods must be employed in order to reconstruct the actual three-
dimensional nature of the measured value as far as possible. This chapter gives an
overview over the techniques utilized for the reconstruction specifically of capacitive
sensor values although they can be applied to various other sensor types with only
minor modifications as well.
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5.1 Vicon Motion Capturing

5.1 Vicon Motion Capturing

Vicon motion capturing systems [123] developed by Oxford Metrics PLC [86] is a high-
precision camera system capable of tracking objects in three-dimensional space through
the use of infrared-reflective markers attached to the item to be tracked. Multiple
cameras surrounding the desired space within which objects are to be tracked must first
be calibrated to each other with the help of a specialized active calibration tool, called
"Active Wand". This device is equipped with multiple light emitting diodes, which can
be captured by the Vicon cameras on their two-dimensional planar image sensors. The
calibration process involves moving the wand through the surveilled space such that all
cameras can capture multiple images of the wand in various angles. The control software
then triangulates the positions of all installed cameras from these images. With this
calibration the Vicon system can achieve sub-millimeter precision when tracking static
or dynamic objects in the arena [74]. Vicon also maintains various software packages in
its portfolio, all capable of handling specific capturing tasks. The Vicon Tracker software
is the tool used to track solely static objects, meaning that the markers attached to
an object never change their relationship to each other and thus are mounted rigidly
to a fixed object which then moves through space. With Nexus, motion capturing of
variable geometries becomes possible, as is the case in tracking humans in the capturing
arena.

The Vicon motion capturing system has been used in a wide variety of use cases since its
introduction in the late 1970s [124] with applications ranging from medical analyses to
digital content creation. Most commonly known is its usage in big budgetmotion pictures
for tracking the movement of human actors on a motion capture stage for later use in the
animation of virtual characters by virtual effects (VFX) artists. Notable examples of this
include films such as Titanic (1997) [42] in which Vicon motion capturing technology
was employed for virtual characters used to make the animated computer model of
the ship seem more populated in wide shots. From these rather modest beginnings the
technology has evolved so far that it is now commonplace to see completely animated
protagonists in feature films, such as is the case in most of the movies produced by
Marvel in recent years [29]. Another interesting use in the film industry is that of motion
tracking in virtual production systems [125]. These systems can use pre-rendered virtual
scenes as the backdrop for the actors’ performances. This, however, requires determining
the physical location of the camera with respect to the gigantic LED screens forming the
backdrop in order to enable the correct projection of the camera’s changing perspective
while moving through the scene. An example of such a production is the TV show
"The Mandalorian", which uses this technology almost exclusively in production (cf.
Figure 5.1).

In scientific research, Viconmotion capture technology has been employed extensively in
the field of medicine. Motion capturing can be an invaluable medical tool when applied to
the analysis of human gait during the treatment of various ailments impacting the motor
functions of patients. One such application is the analysis of the angular velocity of the
knee joint in patients recovering from strokes by Pomeroy et al. [94]. During physical
therapy the progress made by the patient in recovery is typically assessed subjectively,
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5 Integration of Capacitive Sensors

Figure 5.1. Behind the scenes of the production for the TV show "The Mandalorian". Vicon
motion tracking cameras are utilized to track the position of the cameras in order
to adjust the perspective of the projected backdrop images accordingly. (From
[20]. © and ™ Lucasfilm. All Rights Reserved. Used with Permission.)

since not all medical centers have access to expensive and spacious motion capturing
arenas. It is for this reason that cheaper alternatives for objective assessment devices
have been sought, often by comparing them with the data from a Vicon system. In this
work, the researchers investigated the potential use of an electrogoniometer, which is a
device to measure the flexibility of a joint in one dimension by using electrically driven
sensors, instead of motion capturing. Typically these are based simply on potentiometers
or strain gauges to provide the required information on the current angle of the joint. A
similar work examined the use of multiple goniometers to assess the range of motion
in finger and wrist joints [30]. Both works conclude that the use of motion capture
technology is far more accurate than goniometers, yet they are sufficient for use in
clinical settings to assess the effect of physiotherapy on patients. In sports medicine,
motion tracking can also provide insights into the recovery progress of an injured
athlete, but can also even be employed preemptively in order to train at risk athletes in
how to prevent potential future injuries [72]. Other research has focused on replacing
costly and complex motion capturing technology altogether, instead aiming to replace it
with cheaper alternatives such as the Microsoft Kinect [89] or its successors Kinect v2
and Azure Kinect [8]. In order to enable further research by clinicians without access to
specific patient groups or a motion capturing arena, various datasets have been recorded
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5.1 Vicon Motion Capturing

using Vicon cameras containing a multitude of different ailments and scenarios, such as
the study of karate students of different skill levels [112], the kinematics of amputees
[55] or the success of hip replacements [18] and determining the risk of fall injuries in
older adults [22], to name a few.
In robotics research, specifically in human-robot-collaboration, the analysis of human
movement is also essential, albeit typically in a far less sophisticated manner. The
simplest application of Vicon cameras in robotics is the precise tracking of static (in
the sense of the marker configuration) objects in the motion capturing arena. Such is
the case for example in the indoor use of unmanned aerial vehicles (UAVs) where the
use of GPS is prohibitive [60, 69, 71]. By attaching reflective markers to the frame of
quadrocopters their position in space can be determined by the Vicon system at all times.
This information can then be fed back to the control system which in turn governs the
positional control of the drone. In this manner, even entire swarms of quadrocopters
can be located and controlled simultaneously by the Vicon system, provided the marker
configurations vary sufficiently in geometry between all the drones. As is the case
in medical research, much effort has also been invested in replacing the complex and
expensive Vicon system with simpler and more affordable alternatives which can be
more easily deployed [51, 136]. The performance of such systems is typically gauged
against that of Vicon cameras and is inferior to them. However, they may still be
sufficient depending on the concrete field of application.
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5.2 FEM Simulation

The finite element method (FEM), also referred to as finite element analysis (FEA), is a
computational simulation method which allows the efficient calculation of continuous
physical properties in arbitrary geometric structures. The term was first introduced by
Clough in 1960 [26] in his paper "The Finite Element Method in Plane Stress Analysis".
Here he described the use of a discretization technique for analyzing structural properties
of objects more efficiently. Plane stress describes a class of problems in structural
engineering for which one dimension can be - at least initially - ignored and thus the
calculation of the deformation of a thin plate under load can be examined merely in a
two-dimensional cross-section. The effect of the deformative force is then assumed to
be the same throughout the remaining structure in the third dimension [97]. Although
the mathematical principles had been described by various researchers over the first
half of the 20th century, the finite element method only found widespread adoption
in the latter half of the century, after aeronautical and civil engineers had achieved
promising results with rudimentary computer programs to automate the vast amount of
calculations required to properly implement the FEM (cf. [31, p. 10] & [65]). One of the
first practical uses of computer aided calculation of physical properties in real-world
engineering applications involved the simulation of the structural properties of airplane
wings at Boeing [121].

Figure 5.2. Approximated mesh of a gear tooth for FEM simulation (From [31, p. 2])

54



5.2 FEM Simulation

The basic principle of FEM simulation hinges on approximating complex differential
equations in infinitesimal space by restricting the calculations to simpler polynomial
or even linear equations solved only piecewise for finite elements (cf. [31, p. 1]). A
concrete example of how this reduction in complexity can be achieved is depicted in
Figure 5.2. In this case a two-dimensional stress analysis under load (denoted by P ) of
a single tooth of a gear is to be performed. The actual geometry is approximated by a
mesh and the physics calculations are then performed in each of the nodes, or vertices as
they are known in graphics programming, which are the corner points of the elements.
The elements of the mesh can be comprised of a variable number of nodes, and even
additional nodes along the edges of the elements can be added in order to receive a more
accurate approximation of the physical quantities, especially along complex curved
geometries. In areas of particular interest to the engineer, the size of the elements can
be decreased in order to achieve a finer resolution of the physics simulation. Adding
nodes along the sides of a mesh element can additionally aid in the compatibility of
meshes when a coarse mesh is no longer sufficient and finer resolution is required,
since the six-node triangular element can easily be subdivided into four three-node
triangular elements by simply adding connections between the existing nodes. This
can be advantageous for seamlessly switching between a coarse mesh for preliminary
simulation and evaluation of the results and the final computation at the required level
of detail (cf. [31, p. 7f]). Examples of various possible elements for a three-dimensional
body can be seen in Figure 5.3.

Figure 5.3. Depiction of various node types for the approximation of meshes (From [31, p. 8])

According to Cook et al. [31, p. 8]) the procedure of performing a finite element analysis
involves the following stages:
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• Problem Classification
The analyst must comprehend the problem to be analyzed and which physical
properties of the component need to be calculated in order to receive the required
results for determining the validity of the examined component.

• Mathematical Model
Correct choice of the employed mathematical models to describe the sought
physical characteristics is essential to the successful application of finite element
analysis. Depending on geometric composition, required resolution of the results
and possible interdependencies of various physical parameters, such as the influ-
ence of temperature on other properties, different mathematical models may be
more pertinent to the task at hand.

• Preliminary Analysis
Before performing calculations with an FEM program, a preliminary analysis
in form of "simple analytical calculations, handbook formulas, trusted previous
solutions or experiment" [31, p. 13] should be performed. This can inform the
choice of mathematical models and aid in gauging the validity of the simulation
results later on.

• Finite Element Analysis
Following these previous steps, the actual computation of physical properties
using the FEM can be performed. This stage is again comprised of multiple
subordinate stages:

– Pre-processing
The three-dimensional model of the object within which to simulate the
physical properties must first be converted to a mesh with a finite number of
discrete elements. This step can typically be left to automated mesh genera-
tors included in FEM software suites nowadays, but must be parametrized
according to the required type of mesh and its resolution. Manual modifica-
tions by the expert analyst always remain possible if the automated generator
fails to account for specific requirements of a particular application.

– Numerical Analysis
FEM software automatically determines the required matrices for the com-
putation of the physical properties to be simulated and performs the calcula-
tions on all nodes of the previously generated mesh. The calculations become
far more involved should the properties be non-linear or time-dependent.

– Post-processing
In post-processing, reports of the calculated properties are generated. These
can be represented in datasets, plots or three-dimensional models, depending
on the requirements of the analyst performing the simulation. FEM software
suites contain a vast array of possible output formats for the representation
of simulation results.

• Check the Results
The resulting output of the simulation must be rigorously inspected by the analyst
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and validated against the expected results determined in the preliminary analysis.
Since the results contain additive modeling and approximation errors picked
up over the entire process of simulating a real-world object’s actual physical
properties, the simulation must be closely observed and its results not be taken at
face value. An expert analyst must always confirm the validity of the simulation
results before proceeding with the engineering task based on them.

• Expect to Revise
Due to the large margin for error, FEM simulations can often produce unexpected
and inaccurate results. Because of this, simulating physical properties of real-
world objects is more often than not an iterative design process. The mathematical
model, mesh discretization and even the problem classification with regard to
which physical properties need to be simulated and which may or may not be
interdependent can be based on false assumptions of the inner workings of FEM
simulation tools and the physical reality being simulated and thus must be adapted
accordingly.

Since the early beginnings of FEM simulation in structural engineering, many additional
physical domains have been added to commonly available FEM software suites. The
most notable fields of application include fluid mechanics, thermodynamics, acoustics
and electromagnetics. The field most relevant to this work is that of electromagnetics,
which will be described in more detail in Section 5.6.
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5.3 Physical Background of Capacitive Sensors
Electrical capacitors are indispensable in all forms electronic circuits and their most
basic role is the storage of electrical energy. The simplest form of a capacitor is that of
the parallel plate capacitor, which consists of two exactly parallel and equally sized con-
ductive plates separated by a dielectric material, such as air, glass or even an electrolyte
solution.

Figure 5.4. Electrical field in a parallel plate capacitor. The equal but opposite charges Q1

and Q2 create an electrical field between their respective conductive plates. Also
denoted are the equipotential surfaces (white lines) and the electrical field lines
(in black) along which the electric force is present. The background gradient
symbolizes the electric potential.

According to Coulomb’s law, two opposite charges exert a force on each other which
can be calculated as

F =
Q1Q2

4πε0εrr2
(5.1)

where

F : The resulting force
Q1, Q2 : The respective charges in Coulomb

ε0 : The dielectric permittivity in a vacuum, also known as the electric field constant
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εr : The relative permittivity of the dielectric material between the two charges
r : The distance between the two charges

By applying a voltage across the capacitor, the two plates are charged with equal
potential yet opposite polarity which in turn develops an electrical field in the dielectric
material inside the capacitor. The special property of a parallel plate capacitor is that it
forms a uniform electrical field where the plates face each other directly, which means
that the direction of the electrical force is perpendicular to the plates and the electric
field strength is equal at every point. This, however, only holds true in the center of a
parallel plate capacitor and merely under idealized conditions. (cf. [15, p. 7 ff])
The electrical capacity is defined as

C = ε0εr ·
A

d
(5.2)

with

C : The capacity in Farads
ε0, εr : Permittivities as above

A : The area covered by each of the plates
d : The separation distance between the two plates

The electric energy stored within a capacitor is not only dependent on its capacity, but
also on the voltage applied to it and is determined by the formula:

E =
1

2
CV 2 =

1

2
ε0εr ·

A

d
· V 2 (5.3)

with

E : The electric potential energy in Joules
V : The voltage applied to the capacitor in Volt

Every point in space in and around the capacitor plates has a specific potential depending
on the voltage applied to the plates. From this scalar voltage V , the equipotential surfaces
can be determined, namely the surfaces within the electric field where the voltage is the
same (cf. Figure 5.4). The electric field strength (E⃗) is a vector quantity and describes
the force (F⃗ ) exerted on a specific charge (q) at a given point within the field (cf. [15, p.
7ff]):

E⃗ =
F⃗

q
(5.4)

Given a specific point in space (r⃗) the electric field strength can also be calculated from
the negative voltage gradient within the field:

E⃗(r⃗) = −∇V (r⃗) (5.5)
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In the center of a parallel plate capacitor, this equation can be simplified greatly, since
the electric field in that region is uniform:

E⃗ =
V

d
(5.6)

Figure 5.5. Visualization of the vector field ∇V describing the electrical force in every point
of the electric field of a parallel plate capacitor. The respective field Strength is
denoted by the scale of the individual arrows.

A visualization of the vector field describing the electric field strength in and around
a parallel plate capacitor can be found in Figure 5.5, which was created using FEM
simulation. The size of each individual arrow is proportional to the electric field strength
in that particular point in space. As is evident from the illustration, the field around the
parallel plate capacitor is clearly far more perturbed than the homogenous field directly
between the two plates. This is the case for most electrode geometries, since all electric
field lines terminate at right angles to conductors and a homogenous field can therefore
only exist in the overlapping area of two plate conductors [15, p. 24]. While overlapping
dual electrode configurations can be very useful in certain applications, such as fluid
level [15, p. 140ff] or proximity sensing [15, p. 69ff], they require the two plates of the
resulting capacitor to encompass or be encapsulated within the measured object. Remote
sensing offers the advantage of the sensor being deployable completely independent
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of the measured object, however it requires vastly different electrode configurations,
which involve far more complex measurement circuitry and processing.

Figure 5.6. Visualization of the vector field ∇V describing the electrical force in every point
of the electric field of a capacitor with orthogonal plates. The respective field
strength is denoted by the scale of the individual arrows.

Figures 5.6 and 5.7 show the effect of varying the angle of the two capacitor plates to
each other. The geometric structure of the electric field in such electrode configurations
comparable to that at the outer edges of parallel plates. While there is no longer
a homogeneous component to the overall electric field between the two oppositely
charged plates, the measurable portion of the field contributing to the capacitance of the
sensor gains a far greater reach. This fact, combined with the remote sensing aspect in
contrast to parallel plate configurations, makes these types of electrode configurations a
sound choice for applications concerning external position detection or distance sensing
of conductive or dielectric materials in close proximity to the sensor in the range of
typically a few mm. Such configurations are even capable of distinguishing different
materials from one another [7], since the dielectric constant differs between materials.
Consequently, a system equipped with differential capacitive sensors can differentiate
between materials such as metals, plastics, water and even human hands, as long as
their dielectric constants differ significantly enough. The inside facing surfaces of a
robot gripper are particularly suited for the use of such systems.
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Figure 5.7. Visualization of the vector field∇V describing the electrical force in every point of
the electric field of a capacitor with coplanar plates. The respective field strength
is denoted by the scale of the individual arrows.

Single-ended electrode configurations, which are designed to detect the proximity of
objects at far greater distances than other arrangements, measure the capacitance of the
single electrode against the ground potential. Systems measuring single-ended electrode
configurations are also often referred to as being configured in a self-capacitance sensing
mode [103, p. 273ff]. A visualization of the electrical field of such a single-ended
electrode configuration can be found in Figure 5.8. This increased detection range
is possible due to the fact that all conductive and dielectric objects which are to be
detected influence the electrical field projected by the capacitive sensor outwards and
consequently produce a measurable difference in capacitance of the sensor system. The
influence is either caused by the presence of directly (through wired connections) or
indirectly (by contact with grounded objects or the ground itself) grounded objects
entering the electrical field of the measured capacitor [10, p. 12] or merely by objects
with a differing dielectric constant, which is a sufficient influence to be measured with
adequately sensitive measurement circuits [15, p. 75].
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Figure 5.8. Visualization of the vector field ∇V describing the electrical force in every point
of the electric field of a single-ended capacitor. The respective field strength is
denoted by the scale of the individual arrows.

5.4 Intelligent Processing of Capacitive Sensor Data

5.4.1 Neural Network for Distance Estimation

The relationship between the measured capacitance of a capacitive sensor and the
distance to a particular object, such as a human hand, is directly proportional, albeit
not linear. To determine the governing equation of this correlation, various methods
can be employed. The simplest and most obvious of these is a manual calibration
from live data recorded while entering the electrical field of the sensor and logging the
hand’s distance to the sensor plane. Performing a non-linear regression analysis on the
recorded distances in relation to the respective capacitance values (cf. Figure 5.9) yields
the following equation:

d =
0.6221299398 ∗ cap
cap− 2.002569134

+
0.04114530866 ∗ cap
cap− 2.098833146

(5.7)

where cap is the measured capacitance value in picofarads (pF) and d the distance in
cm. This function approximates the input data points very well in the required interval
[2.1, 3.1] resulting in a maximum error of only 7.4mm.
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Figure 5.9. Approximation of the distance in relation to the capacitance; recorded measure-
ments (blue) and approximated function (black)

The process of manually recording multiple data points and then determining the
correct regression function with the least error in approximation, however, is very time
consuming and tedious. In order to increase the level of automation in calibrating new
electrode geometries, a new system was proposed in [90]. The main premise of this new
approach was to eliminate the need for manual data recording and regression analysis
by employing neural networks to approximate the distance function based on ground
truth data recorded by an external measurement system. The Vicon camera system
paired with the Nexus motion capture software was chosen for the task of recording the
motion data of a human hand within the electrical field of a capacitive sensor mounted
on a robot arm. For the purpose of data recording, initially two capacitive sensors were
mounted on one link of a collaborative robot (see Figure 5.10a) from Universal Robots,
specifically the UR5 (seen in Figure 5.11). Since the UR5 is comprised of simple joints
and tubular aluminum extrusions as links, it is fairly easy to mount additional devices,
such as the capacitive sensors utilized here, to the robot’s exterior. For the purpose
of recording the hand motion in proximity to the capacitive sensors, a sturdy leather
welding glove was fitted with multiple markers (see Figure 5.10b) in order to make
repeated evaluations easier, since the markers would otherwise need to be attached
directly to a human hand each time.
The training data for the neural networks was recorded by setting up the UR5 robot fitted
with capacitive sensors in the Vicon motion capture arena and performing multiple
approaching and withdrawing motions with respect to the two capacitive sensors (see
Figure 5.12). The measured capacitance values were then stored in combination with
the distance measurements. These were calculated on the basis of the positional data
of the robot link in relation to the marker glove provided by the Vicon motion capture
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(a) Robot link with capacitive sensors and tracking
markers

(b) Glove with tracking markers attached

Figure 5.10. Capacitive sensors and marker setup for the robot arm and glove to be worn
during data recording in order to determine the ground truth distance values for
later training of the neural net.

system. Based on this ground truth, the distance function can then be estimated by
training the neural net to correlate the distance to the measured capacitance. During
execution, the trained neural net is then able to accurately estimate the current distance
to a human hand using only the current measured capacitance.

As the relationship between distance and capacitive measurement is close to exponential
and the preliminary results were promising, the Quasi-Newton method was selected for
training. Since the task at hand is a simple function regression analysis, a feed-forward
neural network is amply sufficient. This network was configured with two inputs, one
for each of the capacitive sensor values, and three outputs for the distances, two of
which are the direct distances between the respective sensor electrode plane and the
third being the distance to the midpoint between the two sensors. This third value is
not the result of actual sensor input, but the results showed that this value could be
inferred well from the two actual measurements. The network layout was optimized
through experimentation and the best configuration was achieved through three hidden
layers with 9, 12 and 9 neurons respectively.

Figure 5.13 shows the results of the distance estimation with the previously described
neural network for the midpoint between the two sensors attached to the robot. Three
approach motions were performed in this experiment one after another. The plot
shows data recorded during runtime with the previously trained neural network for
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Figure 5.11. The UR5 robot fromUniversal Robots. A collaborative robot with six axes, capable
of manipulating a payload of up to 5kg in the vicinity of humans. Due to its
simple geometric construction it is a popular choice for researches seeking to
mount additional hardware to a robot quickly and easily. (Image source: [119])

the distance estimation of the midpoint (blue line) and compares it to the Vicon ground
truth distance (red dashed line), which was recorded simultaneously for the purpose
of verifying the attained results. The deviation between the two datasets and thus the
estimation error of the neural network with respect to the actual distance is shown
at the bottommost edge of the plot (grey line). Due to the fact that capacitive sensor
values become largely unreliable at great distances and far more susceptible to ambient
influences, the distance estimation is capped off at a maximum distance of 350mm.
Values beyond that distance are considered out of range. Overall, the neural network
for distance estimation achieves a mean error of 20.7mm when disregarding all values
where the difference between the estimation and the measured ground truth is exactly
0.0mm, since this only occurs at the explicitly defined cutoff point for the distance data
and thus would manipulate the resulting mean error.

5.4.2 Compensation of Self-Influence on Capacitive Sensors

The electrical field of capacitive sensors is not only influenced by environmental fac-
tors, such as temperature or humidity, but naturally also by any other electrical field
emanating from devices in the vicinity of the measurement electrodes or the evaluation
electronics. Especially the electromagnetic coils in the rotors of the electric motors
powering each axis of the robot the sensors are attached to induce a magnetic field
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Figure 5.12. Experimental setup for the recording of distance data in relation to capacitive
sensors measurements. The robot is fitted with reflective Vicon tracking markers
around the location of the capacitive sensors, while the human hand position
can be determined with the help of the glove also fitted with Vicon markers.

which interferes with the electric field projected by the capacitive sensors. This influence
is clearly visible when recording the capacitive measurements while the robot is in
motion. Figure 5.14 shows the difference between the base sensor value while the robot
is standing still and the measurements taken during the motion of two different axes,
most notably one preceding and one subsequent axis with respect to the sensor position
on the robot. With the sensors attached to the second link (i.e., between axes 3 and 4
of the UR5 robot) the first axis is the furthest possible from the sensor. However, since
it is the most powerful, due to the fact it has to carry the entire robot’s weight and
any additional payload at the maximal motion speed of the robot, it also induces the
largest influence on any electric field in the vicinity (dotted blue line). Nevertheless, its
influence is not as apparent as that of the other axis, due to the fact that the influence of
electric fields decreases exponentially with distance. The fifth axis is the closest to the
sensor electrodes and consequently influences the measurements the most (dotted red
line). A fact which can be leveraged in order to ease the compensation of self-influences
of the robot axes on capacitive measurements is that these individual influences are
additive with respect to the total influence exerted on the sensors. This can also clearly
be seen in Figure 5.14, where the sum (dashed black line) of the previously described
individual influences (dotted red and blue lines) largely matches the influence exerted
by a combined motion of both axes simultaneously (solid gray line). Exploiting this
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5.4 Intelligent Processing of Capacitive Sensor Data

principle, a modularized system can be constructed in which the individual influences
of each axis can be compensated separately and be subtracted from the incoming raw
capacitive sensor value before processing it further, e.g., for distance estimation.
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Figure 5.14. Comparison of measured sensor values during three different robot motions: The
dotted lines show the sensor values during a single axis movement of the first (i. e.,
lower dotted blue line) and the fifth axis (i. e., upper dotted red line), respectively.
The solid gray line shows the sensor measurements during a simultaneous motion
of both axes. The dashed black line represents the added measurements of both
single movements (i. e., the sum of both dotted lines), which clearly follows the
influence of the simultaneous movement (i. e., the solid gray line). [90]

Preliminary experiments, however, showed that the influence exerted on the capaci-
tive sensor measurements by the robot’s axes is not only related to the absolute joint
position or its current velocity, as one might assume, but rather the combination of
both. Figure 5.15 shows this fact very clearly. The data presented here is the result of a
testing motion in which the change in capacitance of one sensor was recorded while the
robot moved its first axis between−60◦ and 60◦. Evidently, the capacitance offset is not
constant for every discrete angular position of the robot’s axis, but rather depends on
the angle in combination with the current direction of movement of the axis. This fact
is particularly obvious around 0◦ where the motions in positive and negative direction
display the starkest difference in measured capacitance. Consequently, the self-influence
compensation for a given robot must not only consider the capacitance offset for every
possible angle of the axes, but also correlate these values with their angular velocities.
Following the insights gained from the preliminary experiments, two separate neural
networks were trained, one for each of the two previously selected axes, for the com-
pensation of self-influences. As was the case with the neural network for the distance
estimation, the best network structure was determined experimentally. The final con-
figuration consisted of again a feed-forward neural network but in this case with only
two hidden layers with 12 and 24 neurons, respectively. The resulting self-influence
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Figure 5.15. Influence of the current joint angle and direction of motion on the measured
capacitive sensor value. The most significant influence is apparent around 0◦

where the maximum difference between measurements reaches 50 pF for the
same joint angle. The plot shows the result of multiple movements of a single
axis. [90]

compensation network receives the current joint position and (signed) velocity as inputs
and produces a capacitance offset value (with respect to the base value of the sensor) as
output. During training the required capacitance offset value is calculated externally
by recording the initial base value before performing any motion and continuously
calculating the offset from the base sensor value during the movement of the robot.
Capacitive offset, joint position and velocity are recorded together and form the training
dataset for the neural network. The performance of the trained neural network was
then evaluated in tandem with the network for distance estimation. While the robot
performed the same motions as during the data recording phase, a human operator
moved their hand in front of the robot in proximity to the sensors. Performance of the
self-influence compensation was gauged by determining the resulting distance error
by means of external validation through the Vicon tracking system. The results of
this evaluation can be seen in Figure 5.16 for the experiment with the self-influence
compensation disabled and in Figure 5.17 with it being active.

Evidently, the distance estimation alone (cf. Figure 5.16) is virtually unusable during
the motion of the robot, since the influence of the axes’ movements is so great, that
the robot would most often come to a complete standstill due to a fictitious obstacle
created by the effect of the motors on the electrical field of the capacitive sensors.
The mean approximation error of the distance estimation while in motion comes to
about 169mm. This is vastly outperformed by the distance estimation with added self-
influence compensation as seen in Figure 5.17, where the mean error is merely 38.4mm.
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While this is far worse than the distance estimation when the robot is stationary (mean
error: 20.7mm), it is a vast improvement over the distance estimation when no self-
influence compensation is applied.

5.4.3 Software Architecture for Training and Runtime Execution

For the implementation of the neural network architectures, the Open Neural Networks
Library (OpenNN, [11]) was employed, which facilitated a straightforward implementa-
tion of the required network architectures through a comprehensive C++ API. OpenNN
itself claims the ability to handle larger datasets and faster training performance com-
pared to competing solutions. The library was integrated into a pre-existing robot
controller with real-time capability in order to enable quick response times for the
reaction of the robot to the detection of obstacles.
The software architecture for the recording of datasets used in training the neural
networks for capacitive sensor data evaluations can be seen in Figure 5.18. All device
drivers for the required hardware are real-time software components. This includes the
robot driver, whose movements must naturally be commanded in real-time, but also
the driver for the Vicon tracking data, since it must be accurately matched against the
real-time capacitive sensor measurements in the data acquisition phase (cf. Figure 5.18).
Data logging of all relevant input sources for the subsequent training of the neural
networks is performed by a dedicated software component which receives the raw
capacitive sensor data, the robot’s joint positions and velocities as well as the cartesian
positions of the capacitive sensors and the tracking glove from the Vicon Tracking driver.
All these data points are aggregated by the data logging component, then correlated by
their respective time stamps and stored to disk in log files separate per data acquisition
session.
Actual training of the neural networks is then performed offline by a separate training
application, which reads in one of the log files produced in a data acquisition session
and trains the neural network according to the parameters specified in the training
application. The trained neural network is then again stored on disk and can later be
read in by a third dedicated application, the final productive application.
In the runtime configuration, the architecture is constructed as seen in Figure 5.19. This
part of the overall application structure in concrete implementations can be viewed as
a separate subsystem which constantly guards the commanded motions of the robot
against collisions with humans in the workspace, but otherwise does not need to
interact directly with the rest of the specific application. The data from the Vicon
tracking component was only used for validation purposes in the runtime configuration.
Consequently, in the architecture this data is replaced by the output of the neural network
evaluations at runtime, which is twofold. First, the neural network for self-influence
compensation receives the raw sensor data and subtracts the share of the robot’s self-
influence from the raw capacitive sensor value. This corrected value is subsequently
passed on to the neural network for distance estimation, which consequently receives
a sensor value only containing the external influences and can thus produce a more
accurate value. Motion execution is therefore enhanced by a guarding function which
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«real-time component»
Capacitive Sensor
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«device»
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Figure 5.18. Software architecture for the recording of training data for capacitive sensors.
[90]

continuously processes the incoming distance estimations and checks the currently
commandedmotion for possible collisions. A possible strategy, which was also employed
in the experiments, is to scale the override, which is a percentage scaling of the maximum
speed of the robot, depending on the distance to an obstacle.

Linear braking, however, is not very intuitive for people interacting with the robot, since
it causes a rather sudden and strong deceleration of the robot at a seemingly arbitrary
distance. Users of such systems can of course learn to expect this reaction over time
whilst working with the robot. Nevertheless, a more gradual braking curve is preferable,
which is flatter at large distances and becomes ever steeper on approach until finally
bringing the robot to a complete halt. Figure 5.20 shows an example of such a braking
curve as defined by Equation (5.8). This function only produces a viable output in the
interval between 10 and 30 cm as prescribed. Within the two-staged safety concept
described in Section 3.2, this braking curve would be applied in the absolute safety stage
of the concept, while other, far more advanced techniques need to be employed for the
convenience stage. In any case, it is not sufficient to merely alter the robot’s speed, but
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«real-time component»
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Figure 5.19. Software architecture for the runtime execution of the capacitive sensor data
calculations. [90]

the convenience stage must actively define alternative robot trajectories in order to
successfully curb the need for the absolute safety stage in the majority of cases.

t =
x−minDist

maxDist−minDist

Override = (((t ∗ (m− 2)) + (3− 2 ∗m)) ∗ t+m) ∗ t (5.8)

The implementation and evaluation of the neural networks were performed by Martin
Siehler for his bachelor’s thesis.

5.5 Hardware for Capacitive Sensors

Electrodes for capacitive sensors are utterly simple devices. They typically consist of
plain pieces of copper foil or similar shaped metal which are then electrically connected
to the circuitry responsible for measuring the actual capacitance. In [54] a customized
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Figure 5.20. Improved braking curve for a robotm = 3 defined for distances between 10 and
50 cm.

measurement circuit (seen in Figure 5.21) on the basis of the AD7147 integrated cir-
cuit (IC) by Analog Devices [10] had been developed and was also employed in the
development of the neural networks for intelligent capacitive sensor evaluation [90].

In addition to the actual measurement IC the circuit was fitted with a microcontroller
for the configuration and operation of the same as well as smaller pre-processing and
communication tasks. While the AD7147 chip was never designed to be used in such an
application, but rather for contactless control surfaces like touch-buttons and sliders
at very close range, it still performed quite well at larger distances of up to 35 cm as
described in the preceding sections.

Inherent to the measurement principle of the AD7147 is the sensitivity to high frequency
noise from electronic devices in the vicinity of the attached electrodes. Especially in the
frequency range of the excitation signal this was particularly evident.

The developed system consisted of two separate circuit board designs, one of which
was the capacitive measurement circuit itself and the other an interchangeable system
of base boards (seen in Figure 5.23). The board for the measurement circuit routes all
available connections of the microcontroller and the measurement inputs to the attached
interconnect ports, which then can be split out to connectors for the attachment of
capacitor electrodes or, in the case of the microcontroller ports, routed to communication
ports or components mounted on the base board, such as status LEDs.

Although the composition of the employed electrodes was exceedingly simple, consisting
only of two sheets of copper foil tailored to fit the sides of the robot structure, manu-

76



5.5 Hardware for Capacitive Sensors

Figure 5.21. The capacitive measurement circuit presented in [54].

facturing them and connecting them to the measurement circuit with the appropriate
shielded conductor was a fairly involved process as seen in Figure 5.23a.
Based on the experience of the previous development of measurement circuits and the
experiments performed with various electrode configurations, a concept of an entirely
novel type of modular capacitive sensor was developed. The key requirements of this
new device were defined as follows:

• Modular design
Multiple sensor modules shall be easily deployable and interconnectable with
each other to quickly fashion any type of robot with an external skin of capacitive
sensors.

• Compensation of environmental influences
Each module must be able to compensate for external influences as best it can.
Optionally, additional electrically shielded modules can be deployed around the
robot to act as reference points.

• Functional Safety
The system architecture shall consider the requirements of functional safety in
order to create the foundation for a truly redundant sensor system capable of
securing robots in production environments.

The foundation of this new circuit design is the FDC2114 capacitive measurement IC
from Texas Instruments [117]. Unlike previous ICs, the FDC2114 measures capacitance
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ATtiny84A

Reverse Polarity
Protection

AD7147

20MHz Oscillator

*
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(a) Front view

Level Shifters

5V Regulator

3.3V Regulator

(b) Rear view

Figure 5.22. Layout of the capacitive measurement circuit presented in [54].

not by storing the induced charge differential and converting the resulting voltage
to a digital value, but rather by creating an oscillating circuit with the electrode and
measuring the shift in resonant frequency of the entire system induced by objects in
the vicinity of the electrode surfaces. This method is far less susceptible to external
noise, especially since a narrow band filter can be applied around the frequency of
the excitation signal in order to eliminate most influences before the actual signal
processing begins. This promises much higher possible detection ranges of up to 60 cm
using the same electrode configuration as with the previous measurement circuit as
seen in Figure 5.23.

5.5.1 Modular Design

Every capacitive sensing module is devised as a self-contained system which can be
deployed on a robot’s outer surface. This especially includes the measurement electrodes
so that external connections to the module can be limited to power and communication
only. The circuit was devised with four square integrated electrodes arranged in a
square pattern. Since the functionality of the FDC2114 IC allows for the measurement of
different electrode configurations, all four electrodes can be connected directly to it and
measured independently of each other. Differential electrode configurations can also be
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QuadrupleQuadrupleDoubleDoubleSingleSingle DifferentialDifferential

Figure 5.24. The capacitive sensor module based on the FDC2114 supports various electrode
configurations per module by multiplexing the individual electrodes with the
four measurement inputs of the IC.

configured through parametrizing the IC accordingly. The true power of the concept
lies in the ability to combine arbitrary arrangements of the integrated electrodes by
multiplexing the electrode connections to the measurement inputs of the capacitive
measurement IC. Designing capacitive sensor electrodes is invariably a trade-off between
the maximum detection range and the maximum resolution the sensors can provide
thereafter [95]. Increasing the area of the electrode projects a larger electrical field
and thus enables the detection of objects farther away from the sensor. Since space on
the surface of a robot arm is severely limited, however, the designer of such a sensor
system may choose to prioritize the positional resolution of the capacitive sensors to the
detriment of the maximum detection range in order to enable more accurate interaction
with humans in close proximity to the robot. The new concept presented here attempts
to combine the advantages of both electrode types by enabling the multiplexing of the
attached electrodes. As a result of this feature it becomes possible to create a detection
cascade over the entire detection range, enabling the detection of objects at greater
distances and also with greater positional accuracy as they approach the sensor. A
conceptual representation of this cascade method can be seen in Figure 5.25. As long as
no object is in proximity to the robot, the sensor combines all available electrodes into a
single one in order to deliver the largest detection range achievable by the system. This
enables the system to detect the presence of objects at the earliest possible moment.
While the object travels closer to the capacitive sensors, the electrode configuration can
be gradually adapted with respect to the balance of maximum detection range and the
maximum positional resolution of the selected configuration.

A further feature of the integrated module design is the inclusion of electrode inter-
connect ports which are shielded analog signal connections and allow the connection
of additional electrodes to each module. But rather than connect completely external
electrodes to the modules, these can be utilized in a far more sophisticated manner by
connecting each module’s electrode interconnects with each other when multiple mod-
ules are deployed together. Each module has eight such interconnect ports such that all
electrodes of one module can be read by the neighboring module’s measurement IC. The
reasoning behind this number of connections will be explained in detail in Section 5.5.2.
This functionality allows grouping multiple of the smaller integrated electrodes across
connected modules into larger electrodes in order to enable even greater maximum
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Max. Detection RangeMax. Detection Range
Max. ResolutionMax. Resolution

QuadrupleQuadruple DoubleDouble SingleSingle

s < thr1s < thr1 s < thr2s < thr2

Figure 5.25. Concept of the electrode cascade method. For each distance to an object the
optimal electrode configuration can be chosen and combined via the multiplexing
circuit. All electrodes are combined in the default setting in order to detect
objects as soon as possible. With diminishing distance the number of connected
electrodes can be gradually decreased according to their respective detection
range in order to increase the positional resolution at closer distances. s is the
measured distance to the object and thr1 and thr2, respectively, the thresholds
below which the next smallest electrode configuration is selected.

detection distances. The previously introduced cascade mechanism can then also be
employed across multiple modules, just as well as differential electrode configurations
can span across larger areas if the system is configured to use single electrodes from all
connected modules in such an arrangement. Examples of such configurations utilizing
electrodes across several connected modules can be seen in Figure 5.26.
The system architecture to enable these features employs a number of multiplexing
circuits with the goal of allowing the utmost flexibility in the choice of concrete electrode
configuration for every application and desired measurement cascade. A conceptual
overview over the electronics architecture designed to enable these functionalities can
be seen in Figure 5.27. All electrodes are connected to 1x4 multiplexers which supports
the connection of a single or any other permutation of the integrated electrodes to be
connected to each of the measurement inputs of the capacitive measurement IC. The
incoming and outgoing electrode interconnection ports are each equipped with 8x4
multiplexers enabling the use of eight different channels over each connection port and
couple each of the eight links with the desired input of the measurement IC.
The best results are, however, achieved if the interconnections of capacitive sensing
modules are restricted to modules deployed across a single surface of the robot structure,
since only then can the direction of an approaching object be accurately determined. In
case multiple modules encompassing an entire link of the robot were to be connected
with each other and multiple of their electrodes were to be configured as a single,
connected electrode, then the direction of an approaching object with respect to the
robot could no longer be determined. While this may be sufficient in certain application
scenarios it would egregiously underutilize the capabilities of the presented sensor
system.
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Differential configuration across multiple modulesDifferential configuration across multiple modules

Grouping multiple modules to form larger electrodesGrouping multiple modules to form larger electrodes

Figure 5.26. Possible electrode combinations with the proposed measurement circuitry.

5.5.2 Functional Safety

In real-world applications involving human-robot-collaboration, functional safety is of
paramount importance. Any robot system operating in the vicinity of human workers
must comply with international safety standards and the entire system including the
entirety of peripheral components must undergo a risk analysis to gauge the safety
compliance of the overall robot application. A common strategy in the development
of new robotics applications is to use off-the-shelf components with prior certification
according to the relevant safety standards.

While this is by no means the entirety of measures necessary towards creating a certifi-
ably safe capacitive sensor system, it is a required initial step and thus was accounted
for in the conceptual design of the modular capacitive sensor system presented here.
Via the electrode interconnect ports with a maximum capacity of eight connections,
all electrodes can be connected to the capacitive measurement IC of the neighboring
module and vice-versa. In this fashion it becomes possible to redundantly measure all
electrodes, thus eliminating any faulty measurements which could be provided by one
of the measurement ICs if it was utilized alone. The resulting capacitance measurements
can then be verified by one or both of the integrated microcontrollers or even by a
higher-level control system independent of the capacitive sensor modules. Figure 5.28
shows the signal path between the electrodes and the measurement IC under regular
circumstances, while Figure 5.29 shows how the signal path is modified by the multi-
plexers in order to connect the electrodes of both sensor modules to the measurement
IC of the respective neighboring module. Since the measurement cycle is fairly short, it
can be assumed that the resulting values are within the same range, barring any noise
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Capacitive
Measurement IC

Multiplexer
1 x 4

ElectrodeElectrode

Electrode Electrode
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Multiplexer
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Multiplexer
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Multiplexer
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Interconnect Port

Electrode
Interconnect Port

Figure 5.27. Functional block diagram of the novel capacitive measurement module.

picked up by the electrodes. Consequently the verification of values against each other
can allow for a certain tolerance before claiming a fault in the system.
In terms of redundancy pertaining to safety standards the presented concept can detect
faults in any of the subordinate components and is thus a valid first step towards a
functionally safe capacitive sensor system. Should the interconnect ports or any of their
multiplexers fail, the result of the capacitive measurement would differ vastly, since the
overall area of the connected electrodes would differ greatly from the direct connection
to the local IC. The correct function of the capacitive measurement ICs themselves is
verified by swapping the connected electrodes between its own and the neighboring
IC. A failure of the multiplexers directly connected to the electrodes can be detected by
periodically cycling the connected electrodes into one measurement input and verifying
the proportional increase in overall capacitance. Any failure in the microcontrollers
can be detected through cross-checking their respective measurements and calculations
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5 Integration of Capacitive Sensors

against each other in the overarching control system. Alternatively, inherently fail-safe
microcontrollers can be employed as an added safety measure.

5.5.3 Compensation of Environmental Influences

Temperature, humidity and atmospheric pressure variations in the vicinity of capaci-
tive sensors heavily influence the measured capacitance in such sensors, since these
influences alter the dielectric constant of the capacitor [116, p. 25f]. To compensate for
these the previous capacitive sensor system [54] already utilized an additional electrode
stored near the control cabinet of the robot and encased in a shielded enclosure acting
as a Faraday cage in order to guard it from any grounded or electrically active influ-
ences in the vicinity. In this manner only the influences exerted by the environment
on the capacitive sensors, specifically of temperature and humidity are registered by
the shielded sensor. Recording the initial capacitance value measured by the shielded
sensor consequently allows the continuous compensation of environmental influences
at runtime by subtracting the difference between the initial and current value of the
shielded capacitive sensor from any other values retrieved from any sensors deployed
on the robot structure. Before the introduction of the central reference electrode for
compensation, environmental influences had been seriously detrimental to the opera-
tion of the robot, since the base capacitance level of all attached sensors would slowly
increase over time, leading the sensor system to perceive non-existent objects and as a
consequence slow down the robot, eventually causing a complete standstill.

Figure 5.30 shows how the central reference sensor can be used to compensate large
changes in capacitance due to temperature and humidity changes in the environment.
The measured capacitance of a single sensor is depicted in blue and clearly includes
large changes in the base capacitance in this specific case induced by opening the door
to the lab where the experiment was being conducted, thus leading to a rapid change in
environmental conditions due to a sudden air exchange with the hallway outside the
lab (seen around index 1500). This significant change is also recorded by the shielded
reference electrode (green line) and can thus easily be filtered frommeasured capacitance
value by subtracting the difference between the current and base values of the reference
electrode from the sensor input, the result of which is depicted in black. The actual
approach of an object towards the sensor electrode (between about index 2500 and
2800) is not recorded by the reference electrode and thus still present in the calculated
output value after the environmental compensation is applied. To further smooth the
measurement value before relaying it to further processing stages a sliding average
calculation can be applied in order to receive a more stable value and filter out any
sudden changes caused by inevitable noise in the sensor system (depicted in gray).

While this technique proved an effective measure to eliminate gradual changes in room
temperature, humidity and atmospheric pressure, the influence of heat sources in direct
vicinity of the measurement circuit or electrodes, such as the internal components of
the robot emitting heat beneath the mounted sensors cannot be accounted for in this
fashion. The new capacitive sensor concept can account for environmental influences
in the immediate surroundings of the sensors in one of two ways. The first is to
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Figure 5.30. Results of the compensation procedure for environmental influences.

utilize the FCD2114 IC’s input specifically designed for the purpose of connecting
offset capacitances to it. The value of any capacitance connected to this input will
automatically be subtracted from the digitally converted output value of all connected
sensors, if so configured. While this may seem like the obvious solution to the problem
of environmental influences in direct proximity to the sensor, it must be noted that fixed
capacitors for use as components in electronic circuits will invariably react differently
to external influences than single ended capacitors made from metal foil even if they
have the identical nominal capacitance. This may, however, be sufficient compensation,
depending on the application, and fairly easy to implement, since the reference capacitor
can be directly mounted on the circuit board as a standard electronic component. The
second and far more accurate compensation technique is similar to the previously
introduced shielded reference electrode. By deploying entirely separate but shielded
modules on the robot, the local environment influences can be compensated in the
same manner as the global ones previously. If a sufficient number of free layers are
available within the printed circuit board of the capacitive sensor module, such a
reference electrode with its accompanying shield could even be directly integrated into
the module. Such a construction would deliver the most accurate external influence data
possible from within each and every module, which would then additionally account
for local temperature gradients along the robot structure.

5.6 FEM Simulation of Capacitive Sensors

The concept of SensorClouds is to congregate and, if desired by the application devel-
oper, fuse all incoming sensor data streams into a unified global model of a robot’s
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surroundings. Integrating the one-dimensional sensor measurement provided by ca-
pacitive sensors into this three-dimensional world model directly hardly offers any
productive benefit to the performance of the application. Since the physical properties
measured by capacitive sensors are actually located in three-dimensional space, this
information can arguably be at least partially reconstructed by other means. In pursuit
of such a methodology, a simulation of the physical properties of the capacitive sensors
employed was constructed using the finite element method (FEM). The software product
used to accomplish this task was COMSOL Multiphysics [28], which is a powerful FEM
simulation tool covering a wide array of physics simulation fields, from electromagnetics
and structural mechanics to chemical engineering and more.

Figure 5.31 shows a visualization of the electrical field lines as well as the equipotential
lines for a single-electrode configuration measuring the capacitance of the electrode
against the virtual ground potential.

Figure 5.31. Electrical field for a single-electrode configuration. The charge Q creates an
electrical field with respect to the virtual ground potential. Also denoted are
the equipotential surfaces (white lines) and the electrical field lines (in black)
along which the electric force is present. The background gradient symbolizes
the electric potential.

Based on the understanding of the physical characteristics of capacitive sensors and the
electrical field they project (as described in Section 5.3) it was hypothesized that a partial
three-dimensional reconstruction of the capacitive sensor data could be achieved by
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determining the intersections of equipotential surfaces with the electrical field lines for
a given electrode geometry. These intersections could then be inserted into the global
world model as discrete points belonging to a point cloud for the capacitive sensor. An
example of this principle can be seen in Figure 5.32. This visualization only shows a
two-dimensional cross-section of the entire three-dimensional field for better clarity.
This representation is not entirely accurate with respect to a foreign object entering
the electrical field, since all objects which can be measured exert their own individual
influence on the electrical field And thus alter the field and equipotential lines. It is
in fact, however, a valid approximation of the locations in which the same influence
is exerted by the electrical field of the capacitive sensor, at the very least within the
accuracy threshold capacitive sensors are able to achieve. Hence it serves as a sound
model of the possible three-dimensional locations a foreign object may be located at,
given a concrete capacitance value.
In the three-dimensional case, the intersections must not be only calculated between
two lines, but between equipotential surfaces and the electrical field lines pervading the
entire volume surrounding the measurement electrode. Due to the very nature of FEM
simulations, the data gained from its computations is not represented by continuous
surfaces, but rather by discretized points which are the very same produced by the
automatic mesh construction employed to reduce the computational complexity of
physical calculations. Consequently, the simulation results for both the equipotential
surfaces and the electrical field lines do not align perfectly numerically, since the sample
spaces for the simulation of various physical properties need not match exactly with
each other. To overcome this limitation, a post-processing tool was developed, which
simply reads in the output data of the sampled equipotential surfaces and the sampled
electrical field lines and calculates the intersecting points between the two datasets.
Specifically, the points of the equipotential surfaces are chosen as the determining factor,
since these are always exactly on the, albeit approximated, correct surface. For each of
these points, a corresponding point from the field line dataset is chosen, which must lie
within the configurable tolerance range pertaining to the euclidean distance between
the two sample points. These intersections are then stored in a comma-separated-value
(CSV) file, within each row contains values for the x, y and z coordinates as well as
the electrical potential in V as determined by the equipotential surface the intersection
is located upon. The resulting file can then be read in at runtime and stored within
a data structure such as a map, which associates the voltage levels with all relevant
coordinates and makes it fairly simple to retrieve the entire relevant point cloud for
further processing at runtime.
This method produces a total of 254.582 intersection points with a tolerance parameter
of 15mm across a range of 26 discrete voltage levels (every half V from 0V to the
maximum of 13V for this particular sensor) for the simulation results of the simple
circular single-electrode capacitive sensor as seen in Figure 5.31. The simulation of the
electrical field lines was configured to achieve uniform density at a separating distance
of 5 cm, which means that a new field line is inserted when the previous ones diverge
by more than double the configured distance. A visual representation of the resulting
intersections point cloud for all voltage levels combined can be found in Figure 5.33.
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5.6 FEM Simulation of Capacitive Sensors

Figure 5.33. Output of the intersection tool for the simulated data of a simple disc-shaped
single-electrode sensor.

The equipotential surfaces remain clearly visible, even in the sparsely sampled form
of a point cloud. Moreover, a regular, triangular pattern can be discerned towards the
bottom center of the image which is the product of the mesh generation algorithm used
in the FEM simulation tool.

Whereas this specific depiction may suggest the methodology presented hitherto is
superfluous, since the equipotential surfaces are evidently indistinguishable from con-
centric half-spheres, yet it truly coruscates once applied to electrode geometries of
greater complexity. An example of this can be seen in Figure 5.34 in which the point
clouds of all sensors attached to the SCHUNK LWA robot arm employed in the research
project SINA (cf. Section 3.1) are depicted in their entirety.

Depending on the type of capacitive sensor and accompanying measurement circuit,
the voltage levels output by the simulation as the pure physical representation of
the characteristics of the electrostatic phenomena may need to be mapped to actual
values output by the sensor. Should the sensor system itself output a concrete voltage
value, then a plain offset may be sufficient to match the two values. If, however, the
measurement circuit provides an exact capacitance measurement, a more involved
matching procedure between the two scales may be required. Another approach would
be to simply perform the matching on the basis of distance to the electrode surface, a step
which may be incorporated into the distance estimation as described in Section 5.4.1.

Approximating the possible three-dimensional locations for a capacitance sensor in
this manner and storing the results as a map of discrete sensor values with their cor-
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5 Integration of Capacitive Sensors

Figure 5.34. Point cloud generated for the capacitive sensors attached to the SCHUNK LWA
robot arm (overlayed semi-transparently) used in SINA.

responding list of possible three-dimensional locations is also a very computationally
inexpensive method for achieving the desired results. While far more extensive and
sophisticated physics simulations of capacitive sensors could be performed and would
produce results with higher accuracy, these would also require much more comput-
ing performance at runtime. One such possible enhancement would be to store the
discretized values for the various equipotential surfaces, as mentioned previously, but
interpolate a more accurate point cloud at runtime for every capacitance value measured.
This would require matching the points contained in the point clouds of differing size for
every level to each other and interpolating the required points based on their distance
to the points of the higher and lower level, respectively.
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5.7 Integration of Capacitive Sensor Data into the
SensorClouds Model

Contrary to all three-dimensional sensor data discussed in previous chapters, which is
the result of true three-dimensional sensor measurements and can thus be accurately
associated with a specific location in space, the resulting point cloud derived from
the FEM simulation of a capacitive sensor is merely the representation of all possible
locations for a given measurement value. To integrate this unique type of point cloud
data into the overall environment model in the sense of the SensorClouds architecture, a
number of strategies can be employed.

The simplest of these is treating the data as if the occupancy probability of all possible
points is 100%. This is the most conservative of all approaches, since most of the points
will not in fact represent an obstacle in the vicinity of the robot, but this may be a
desirable safety trait depending on the concrete application. A far more sophisticated
approach involves probabilistic calculations and can be employed to pinpoint objects
more accurately either by cross-referencing the capacitive sensor data with that of other
sensors (ideally of differing modalities) or with a number of other capacitive sensors.

CapacitivePreInserter

Distance Estimation PointCloud Selection

Self-Influence
Compensation

Environmental Influence
Compensation

Capacitive
Measurement

CapacitiveInserter

Coordinate Insertion

Probability Insertion

Capacitive
PointCloud

Aggregator

newValues oldValues

SensorCloud
Global Model

Figure 5.35. Activities involved in the processing of capacitive sensor data and their places
within the SensorClouds architecture.

In order to integrate capacitive sensors into the global SensorClouds data model in
the manner thus far described, the implementation of two Modules is necessary as
seen in Figure 5.35. The first is an instance of PreInserter, which is responsible for
handling all tasks related to the processing of the raw capacitance value received from
the measurement circuit and subsequently selecting the pertinent point cloud from the
stored dataset. Secondly, the actual Inserter which inserts both the coordinate data of
the capacitive sensor point cloud as well as any desired probabilistic parameters into the
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global three-dimensional data model must be implemented. The PreInserter for capacitive
sensor data encompasses all the processing steps presented over the course of this
chapter, beginning with the environmental influence compensation (Section 5.5.3), since
this is the most basic compensation step and definitively applies globally to all capacitive
sensors connected to the system. It adjusts the base capacitance level according to the
drift of the measured value of a shielded reference sensor and constitutes a simple offset
calculation. The self-influence compensation (Section 5.4.2) is applied thereafter and
eliminates any offset inmeasured capacitance caused by the robot structure or the electric
motors contained in its axes. Due to its non-linearity, this compensation is performed by
a neural network according to the robot’s current position and velocity. Subsequently,
the distance to a calibrated reference object (typically the human hand) is determined
by an additional neural network with the aim of equating a measured capacitance value
to a real-world distance from the human entering the workspace of the robot. Finally,
the capacitive PreInserter selects the appropriate point cloud from the dataset generated
by the intersection tool on basis of the results of the FEM simulation performed for
the specific electrode geometry employed (Section 5.6). This point cloud is then later
inserted into the global SensorClouds data model by the capacitive Inserter which adds
the coordinates from the capacitive point cloud to the appropriate voxels of the model
alongside any additional probabilistic parameters desired for further processing.

The methods described in this chapter can naturally also be harnessed in order to
integrate other sensor types, provided they are applicable to the modality in question.
Especially the FEM simulation can, by its very nature, be utilized to simulate any number
of different physical properties and, consequently, concrete sensor implementations
exploiting their effects. In summary, this chapter has presented exemplarily how a
one-dimensional sensor type can be integrated into a three-dimensional environmental
model through several sophisticated processing techniques.

5.8 Related Work

In recent years, much research has focused on the use of capacitive sensor skins as a
method of securing robots during interaction with humans in the workspace. Due to
their relatively low cost and ability to be deployed on the robot itself, eliminating any
occurrence of occlusion through other objects in the vicinity or even the robot structure,
they present a viable option as safety systems in many robotic applications.

There are even some commercial applications of capacitive sensors in the form of robot
skins available on the market today. One such system is the APAS assistant from BOSCH
Rexroth [98], which is safety certified according to the current standards for human-
robot-collaboration and can detect approaching humans safely at a distance of up to
5 cm and hereby prevent collisions before they occur. It must be noted, however, that the
robot arm of the APAS assistant had to be limited to a motion speed of 0.5m/s in order to
pass certification as a safe collaborative robot system. Another commercially available
system is the KR 5 SI from MRK-Systeme [59, 81] which additionally incorporates
safe tactile sensors as a second modality and uses capacitive sensors to stop the robot
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before direct contact occurs, if possible. It should be noted that a safety certified
capacitive sensor system is currently under development by MRK-Systeme, which
was also partly advanced over the course of the project SINA described in Section 3.1.
Both these systems use a soft outer skin above the sensors to reduce impact forces in
case a collision is not preventable. An additional commercial product is available from
FOGALE robotics [45], which is capable of detecting humans in the workspace reliably at
distances of up to 20 cm, much less than the first generation of capacitive measurement
circuits described in this work (cf. Section 5.5). A more recent scientific publication by
FOGALE in cooperation with the university of Montpeiller, however, claims a maximum
detection range of 30 cm for their capacitive sensor skin [73]. Moreover, their system
allows the implementation of three-dimensional position sensing when multiple smaller
electrodes are employed and even enables rudimentary gesture control through such
configurations, which is also possible to realize with the second generation of sensor
electronics presented in this work by introducing gesture recognition algorithms into
the signal processing of the modular electrode configuration (cf. Section 5.5.1).

Scientific research into the use of capacitive sensors in HRI applications has been ongoing
for the last few decades. One of the first instances of such a system being considered was
during the course of an evaluation of various proximity sensors as collision avoidance
system formanipulators during spacemissions. The survey conducted by Volpe and Ivlev
[126] in 1994 at the Jet Propulsion Laboratory at the California Institute of Technology
concluded that a capacitive sensor skin offered many advantages pertaining to coverage
area and reliability. While they tried to evaluate existing commercial sensors in their
survey, the capacitive sensor from Capacitec [23] was produced on special order due
to the fact that the desired detection range of up to 15 cm was otherwise unavailable
at the time. As the review on capacitive proximity sensors by Moheimani et al. [80]
reveals, research in this field has seen a significant resurgence in recent years with the
number of publications per annum increasing from about 20 in 2015 to around 175 in
2021, although a large portion of these concerns the development of sensor systems for
applications other than robotics, such as human interface devices as control inputs for
various purposes. Capacitive sensors have even been used in non-technical research
areas, such as behavioral analysis, in order to non-invasively and harmlessly detect the
positions, pokes or pecks of various animals in behavioral experiments [13].

A large amount of research in the field of capacitive sensors for HRI has focused on
systems for robotic grippers. Here the main goal is to create near field proximity sensors
capable of distinguishing between humans and the object which is to be grasped. These
sensor systems are often coupled with additional sensors, detecting modalities such
as force or vision in order to augment the detection of humans and objects in the
environment of the robot. One such system is the one developed by Mamaev et al. [70],
which builds upon their previous work of creating a custom modular capacitive and
tactile sensor board capable of material detection [6] and couples it with a camera system
in order to find and hand certain objects over to a human on command. In this specific
publication, however, the overall system is merely capable of handling empty ceramic
mugs, which are more easily differentiable from a human hand with their capacitive
sensor system, since no fluid is involved. Pagoli et al. [87] developed a flexible capacitive
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sensor capable of being deployed on soft robotic grippers, which is advantageous in
many gripping applications, especially with previously unknown objects, since they, by
their very nature, adapt their geometry to the object they are currently grasping. This
enables a very flexible robotic gripper without the need for specialized fingers for each
object to be gripped and even grasping objects which could not typically be grasped
at all with classic grippers. Constructed from a number of different layers containing
silicone, conductive strip electrodes and sheets of paper coated in conductive ink, the
material cost of these proposed sensors is very low, however the manufacturing process
is quite involved, since they need to be built up manually layer by layer. Such electrodes
could easily be attached to the electrode interconnect ports of the measurement circuit
presented in this work, thus enabling its use in grippers for soft robotics as well.

Further research into robotic applications of capacitive sensors focuses almost solely on
human-robot-interaction and their use as safety or interaction systems. Lee et al. [67],
for example, presented a dual-mode capacitive sensors system aimed at deployment
on a robot arm or gripper using two layers of orthogonal sensing lines similar to the
configuration found in capacitive touch screens. In contrast to touch screens the top
layer of line electrodes is used in groups for proximity detection, while the intersections
between the top and bottom sensing lines are used for tactile measurements. This is
possible due to the fact that the sensing lines are all embedded in a flexible rubber
casing, allowing the lines to be slightly deflected within the carrier material and thus
actually contact each other when pressure is applied to the outer layer of the carrier.
Schlegl et al. [104] presented a highly reactive capacitive proximity sensor system for
use as collision avoidance system for human-robot-collaboration. This sensor system is
moreover also capable of distinguishing various known material types in a differential
electrode configuration and can switch between single-ended and differential mode
during runtime in order to change from proximity sensing to near field and material
detection.

Scholl et al. [105] proposed using support vector machines (SVM) in order to learn
quality measures of capacitive sensor values and were thus able to reduce the positional
error from previously 11.6mm with their measurement circuit down to 7.4mm. They
compared their results to the author’s previous work [90] and are indeed better overall in
the distance estimation error. It should, however, be noted that the average error of both
approaches was misrepresented in their comparison, since they only calculated the mean
error in the limited detection range of up to 200mm, whereas the author’s previous
work specified the mean error in the range up to 350mm. Due to the exponential nature
of the correlation between distance and capacitance it is self-evident that the error
increases at larger distances, as can also clearly be seen in Figure 5.13. The normalized
mean error value for comparison in the range up to 200mm of the author’s approach
comes to about 15mm Moreover, Scholl et al. stated that their approach generally
outperforms the author’s approach, all while completely disregarding the influence
of the measurement circuit employed. The performance of the second generation of
capacitive measurement circuitry is expected to vastly outperform that of the first one
due to its greatly improved resistance to electromagnetic interference. The resulting
increase in signal-to-noise ratio in the capacitive sensor values consequently leads to a
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smaller error in distance estimation when compared to the ground truth measurements
obtained from an external tracking system.
Regarding the FEM simulation of sensors in general or capacitive sensors specifically, its
uses in current research focus primarily on evaluating a sensor’s fitness for the intended
application a priori, rather than evaluating sensor input data in realtime with data
from an FEM simulation. Especially in the research field developing novel capacitive
sensors concepts, electrode designs or electrode materials it is quite common to find
images of FEM simulations validating the desired performance characteristics of the
proposed designs. Schlegl et al. [104] showed the different performance characteristics
of the single ended and differential modes of their sensor system with the help of FEM
simulation. Lee et al. [67] determined the optimal electrode configuration in terms of
which lines to group into measurement electrodes by simulating all of them and selecting
the configuration with the farthest reaching electrical field. Chuanyang et al. [47] used
FEM simulation to gauge the performance of small capacitive sensors embedded in a
prosthetic hand during approach and subsequent contact of an object to be manipulated.
In concrete terms, the influence of an approaching object on the potential distribution
in the electrical field was simulated in order to validate the suitability of the developed
sensor for grasping objects with a prosthetic hand. Schöffmann et al. developed a
custom FEM simulation to aid in the design of proximity sensors and application setups
containing these. However, they simulate capacitive sensors with the model of an
orthographic camera, which leads to greatly simplified approximations of the actual
physical properties of capacitive sensors. This may be an acceptable level of precision
for their demonstrated use-case of close proximity interactions with humans in assistive
healthcare applications, but it does not generalize well to the physical characteristics of
capacitive sensors at larger distances as has been shown in this chapter.
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Chapter Summary. This chapter presents additional software
not required in order to employ the SensorClouds architecture,
but which offer a significant increase in convenience for certain
tasks. An infrastructure for automating machine learning tasks
was developed, as well as a query language for easier retrieval
of specific data points from the global data model. 6
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6.1 Infrastructure for Automated Machine Learning
Over the course of the development and repeated training of the neural networks for
intelligent capacitive sensor data evaluation (see Section 5.4) it became evident that the
typical workflow in such developments still comprises many laborious manual proce-
dures. As shown in Figures 5.18 and 5.19 and described in detail in the accompanying
section (cf. Section 5.4.3), two distinct applications were developed: one for recording
the data required for the training of the neural network and another for the actual
execution of the robot task. This distinction is largely superfluous if the supporting
software architecture employed to complete such tasks enables seamless switching
between data recording and execution - or at least for verification of the learning results
- within a single application.

6.1.1 Typical Machine Learning Workflow

Recording Application

Data Transfer

Training Program

Model Transfer

Target Application

Figure 6.1. Typical machine learning workflow: The overview over the high-level activities
which need to be performed in sequence. The subactivities are each further detailed
in Figures 6.2 to 6.6.

Especially in light of steadily growing network architectures in machine learning and
ever larger data sets utilized to train them [108], more powerful and decentralized
computers with large storage capacities are typically employed in order to speed up the
turnaround time of training results. The use of such decentralized systems, however,
still involves significant manual effort in the form of data transfer, setup on the remote
machine and retrieval of the trained model for local execution. A typical workflow for
the process of collecting data, training the model on it and then using that to predict
values during execution is depicted in Figures 6.2 to 6.6, while the high-level overview
of the sequence of subactivities is shown in Figure 6.1. The person developing such a
robot application with supervised machine learning must first implement and execute a
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Local ComputerUser Decentralized Server

Recording Application

Start Data Recording

Record Data

Control Robot

Store Data

Recorded Data

Start Data Recording

Figure 6.2. Typical machine learning workflow: The training data recording application.

program which records the training data, meaning all input sensor data and the ground
truth values to which a correlation is to be learned later on (cf. Figure 6.2). Oftentimes
the robot must be controlled in parallel with the recording process in order to obtain
sensor data in multiple robot configurations and during motions. The recorded dataset
must subsequently be manually transferred to the decentralized server’s storage before
training can begin (cf. Figure 6.3). Training is performed on the server by another custom
application which is pointed at the previously stored training data and must be explicitly
configured on the device by the user (cf. Figure 6.4). After training is complete, the user
must again explicitly retrieve the trained model from the server and transfer it to the
local machine for use in the target robot application (cf. Figure 6.5). In effect, the final
target application (cf. Figure 6.6) only differs from the training application in the sense
that it replaces the ground truth data with the predictions from the machine learning
model, although the code overhead created by the data acquisition routines typically
leads developers to maintain two separate applications for training and execution.

Particularly in supervised learning, it is completely obvious that the variables predicted
by the machine learning model are, of course, the same that the ground truth delivers, as
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Start Data Retrieval Start Data Retrieval

Recorded Data
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Store Data

Recorded Data

Decentralized Server

Figure 6.3. Typical machine learning workflow: Transfer of training data to the server.

this is the output variable which is to be learned by the system. Due to this fact, it should
be possible to implement applications performing actual tasks whose runtime sensor
data is recorded alongside data from a verified ground truth system and subsequently
replace the data stream from the ground truth with the model output for productive
deployment. All this should require only changing a parameter of the application to
switch from training to execution. In order to achieve this improvement over typical
machine learning workflows within SensorClouds, a supporting software architecture
was developed in order to automate machine learning tasks as far as possible and
seamlessly integrate the data acquisition and model execution into applications based
on the SensorClouds framework. This is hereafter referred to as SCML (SensorClouds
Machine Learning). It should be noted at this point that the architecture presented
here is not in any way to be confused with AutoML techniques which attempt to
automatically create models, preprocess input data and train the aforementioned model
without intervention by a data scientist. Instead, this architecture aims at automating
the logistic aspects of machine learning. AutoML techniques can, however, be utilized
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Figure 6.4. Typical machine learning workflow: The training process on the server resulting
in a trained model in storage.

within this system to perform the actual data processing and model creation tasks in
the appropriate instances.

6.1.2 SCML architecture

The SCML architecture is devised as a set of services running inside Docker containers
[36]. Docker containers are, put most simply, isolated processes running atop the
base operating system but completely sandboxed from the remaining system in terms
of execution and filesystem management, which includes all dependent packages an
application running within a docker container might require. An image built from such
a container specification can then easily be deployed to any number of systems, as it
does not rely on the concrete configuration of the target system, since all packages and
even the base system (e.g., running Ubuntu 18.04 inside a Docker container on a host
running Ubuntu 20.04) are completely contained within the pre-built image. Generally,
the architecture is split into three main components (cf. Figure 6.7) which can all be
deployed on a single device or, more expediently, onto three separate devices. The
first is the main environment, which contains the actual executable used for training
and execution of the robot application and attached to that, through the inclusion of
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Figure 6.5. Typical machine learning workflow: Transfer of the trained model from the server
to the local machine.

the SCML library, an instance of the Docker manager responsible for deploying the
necessary containers on other target devices. Secondly, the storage device is in charge of
capturing all training data as well as storing it and the resulting model after training. It
is also responsible for generating various identifiers, which will be explained in further
detail later. The final device is the concrete training device which can be a local machine
for preliminary testing, but will most often be a central high-performance computing
server best suited for training complex machine learning models. Any desired machine
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Figure 6.6. Typical machine learning workflow: Execution of the final target application with
predictions from the trained model.

learning framework can easily be wrapped with a simple command interface which
enables compatibility with SCML and subsequently be deployed as a Docker image
representing a self-contained execution unit for training with that particular framework.
Every software packaged in this manner can then automatically be deployed to the
training device on request by an application.
The storage service also handles a second vital task: identification. All components of
the SCML architecture must be assigned a unique identifier in order to be able to retrieve
any data later on. Consequently, every application building upon this architecture, every
dataset recorded and every machine learning model trained receive such an identifier.
This enables referencing the correct data using these identifiers. Regarding only a
single application and only a few datasets for training, their necessity might not be
quite as obvious, since the entries would be easily distinguishable in and of themselves.
Considering a busy lab environment, however, with multiple people each running
multiple experiments, iteratively improving machine learning models with repeated
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Figure 6.7. Deployment of software components in SCML. The architecture differentiates
between three different devices, although the execution of all components involved
can also be performed by a single device, if so desired.
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Figure 6.8. Identifier types in SCML. A single application can have multiple different models
associated with it which in turn can each have multiple datasets associated with
them.

dataset recordings, the need for a more sophisticated identification system becomes
entirely apparent. A machine learning model can have multiple datasets associated with
its training such as when the model is supposed to be trained with multiple different
scenarios or when it is trained offline and additional data is used at runtime to perform
fine-tuning through online learning. An application in turn can have multiple models
associated with it, either since their architectures differ completely or only multiple
parameter configurations are to be evaluated. The unique identifier of an application
enables quick identification of the relevant models and datasets within the system
relevant to the current task. With the identifier of a model, the training or execution of
an application can seamlessly switch between different ones simply by configuring the
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correct target identifier. The relationship between the various identifiers is depicted in
Figure 6.8.

SCML
Application

training : bool

modelID : uint64

SCML
Application

training : bool

modelID : uint64

true

false

modelID

empty

Figure 6.9. Workflow in SCML: The two high-level activities are performed in sequence. The
subactivities are each further detailed in Figures 6.10 and 6.11.

Employing the SCML architecture results in the simplified workflow depicted in Fig-
ure 6.9. The number of manual interactions required of the user is reduced from five
to two instances compared to the typical workflow (cf. Figure 6.1). Also worthy of
note is that it becomes possible to reduce the number of different applications (modeled
as high-level activities) from three to a single one. The remaining two steps in the
typical workflow are entirely manual and must be performed correctly by the user
in order for the next application to function properly, i.e., the user is responsible for
copying data to the correct location on the target system and specifying the path to
the required data in the configuration of the following application. The new workflow
for the recording of training data is shown in Figure 6.10. With SCML all previous
manual intervention steps are automated. This means that the user must only start
the desired application in training data recording mode and all subsequent steps are
handled by SCML. Although the main, training and storage devices are all depicted as
separate instances, they can still be one and the same device, regardless. In training data
recording mode, the SCML-based application handles the transfer of data to the storage
device automatically and subsequently starts the user-configurable training with the
machine learning framework of choice deployed in a Docker container to the training
device. After training is complete, the model is then saved back to the storage device
for future use by the target application (cf. Figure 6.11). Since the trained models can
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Figure 6.10. Workflow in SCML: The training application, which handles data recording,
transfer and learning automatically and internally. The input parameters are
true for training and empty for the modelID, since no model exists yet.

easily be referenced via their unique identifiers, the desired model can automatically
be retrieved from the storage device during execution of the target application and
predictions based on the incoming sensor values can be made for use in the control of
the robot.

6.1.3 Related Work

While the deployment of Docker containers for machine learning tasks is a common
practice, particularly in cloud solutions, they typically still have to be handled manually,
meaning the data must be transferred explicitly by the user, and specific training applica-
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Figure 6.11. Workflow in SCML: The target robot application, which handles model retrieval
and prediction automatically and internally. The input parameters are false for
training and the desired modelID to be used during execution for the prediction.

tions must be developed and deployed to the cloud server, executed there and the trained
model subsequently retrieved from it and loaded into another application for inference at
runtime. Some similar frameworks for automating machine learning infrastructure tasks
have been developed at the same time, none of them, however, offer both a degree of
versatility and level of automation comparable to SCML. AzureML from Microsoft [76],
for example, allows training of machine learning models exclusively on Microsoft’s own
cloud servers. Local datasets can be used, yet typically data storage must be handled by
another service and is not handled by the machine learning framework itself. Another
option is MLflow [79], an open source platform for automating and collaborating on
machine learning workflows. Like AzureML, MLflow can automate machine learning
tasks and is compatible with various typical machine learning frameworks, such as
SciKit, PyTorch or TensorFlow, yet it also does not handle data storage directly and
instead relies on external data providers and manual connections with these. TFX is
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an "end-to-end platform for deploying production ML pipelines" [48] and aimed at
production deployment of trained machine learning models. TensorFlow was developed
by Google and TFX is only compatible with TensorFlow and no other machine learning
frameworks. TFX also relies on external storage providers for storing all training and
evaluation data. In contrast to these solutions, SCML offers maximum extensibility
through a simple machine learning framework interface, can be deployed on any device
and handles all data storage internally. In this manner, multiple experiment applications
can be associated with multiple datasets and models, and the framework keeps track of
all these instances for future reference.
The exemplary implementation of the previously described architecture for automated
machine learning infrastructure tasks was performed by Martin Siehler during the
course of his work as a student assistant.
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6.2 Query Language for Data Selection and Retrieval (ScQL)

Since not all processing algorithms operate on single data points and require data from
surrounding points or voxels, Modules can define DataSets as the input and output
parameters. These may contain not only one data point but multiple. The selection
and retrieval of these data points may not be performed by each module itself since
this would require direct access to the global model’s storage by every module and
consequently would break the design-by-contract paradigm. To overcome this problem,
a data retrieval mechanism was developed, which can either be employed through
manual definition of selection rules and filters, or via a structured query language for
voxel-based datasets, named the SensorClouds Query Language (ScQL).

The Structured Query Language (SQL) as it is known nowadays was originally developed
by Chamberlin and Boyce at the IBMResearch Library and published in 1974 [24]. At that
time it was still known under the name SEQUEL, which stands for "Structured English
Query Language". The goal of this query language was to simplify the retrieval of data
from large databases and make them accessible for programmers and non-programmers
alike by making the queries more easily understandable with common English terms
for typical operations on the tables of databases. Previously, queries typically had to be
formulated in terms of relational algebra which stemmed from the underlying principle
of emerging database systems of the time, which were starting to be developed as
relational databases. This move away from the typical hierarchical or network based
databanks of the time was instigated by an article published by Edgar Codd in 1970
[27], who also worked at the IBM Research Lab in San Jose at the time of publishing.
Codd proposed a relational database system and demonstrated how the entirety of
operations on such a system could be greatly simplified compared to the previously
existing database systems, since these required special access programs for all operations,
which had to be rewritten every time the structure of the database changed. SQL is
standardized today in ISO/IEC 9075-1:2023, which is split into eleven parts covering
various areas of the query language from the very basics up to the management of
external data sources [4].

Since then, many languages akin to SQL have been developed for various applications,
all serving as a simple interface for retrieving data from complex systems. RDF [128],
for example, is a graph-based data model for representing semantic information on
websites in a subject-predicate-object syntax. These graphs can become very large
and thus too unwieldy to search manually for the relevant connections and semantic
relationships sought by the requester. To this end, a number of query languages have
been developed with the goal of providing a far simpler method of retrieving the desired
information from large knowledge graphs stored in the RDF format, which have Since all
been consolidated into the SPARQL Protocol and RDF Query Language (SPARQL) [127].
SPARQL has been the official recommendation for RDF query languages of the W3C
consortium since 2008. SPARQL allows querying RDF graphs much in the same manner
as relational databases, but it also allows e.g., extracting valid RDF subgraphs from
larger ones with the CONSTRUCT keyword, which is not found in standard SQL syntax
and thus an application specific extension of an otherwise similar syntax. Egenhofer
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[38] proposed a spatial querying language (Spatial SQL) in 1994 for data retrieval from
Geographic Information Systems (GIS), which are spatially enabled relational databases,
meaning they can process and even index data by locations and timestamps expressed
in earth’s spacetime, specifically geographic coordinates on earth (latitude, longitude
and elevation) and a date and time expressed in a standard timezone. Spatial SQL
is a domain-specific extension to standard SQL in that it allows the formulation of
queries and the definition of procedures based on geometric information. Geographic
Information Systems are nowadays commonly available from large database vendors as
extensions to their regular database products and as such also include extensions to the
standard SQL syntax in order to enable spatial queries and procedures to be performed.
Among others, Oracle [85] and Microsoft [77] offer such products.

6.2.1 Architecture

select_constraints

*

1

1

source

1

Selector

+ toString(): std::string

+ addConstraint(constraint:SelectConstraint)

+ addSelectValue(value:SelectValue)

+ addSource(source:SelectSource)

ScQLQuery

SelectConstraint

+ toString(): std::string

SelectValue

+ value:string

select_values

*

1

SelectSource

+ toString(): std::string

<<creates>> SCQLparser

Figure 6.12. General overview over the ScQL architecture.

The general architecture overview of the ScQL querying system can be seen in Figure 6.12.
The central concept is the query object (ScQLQuery), which in turn is derived from the
Selector class. This could theoretically be extended to include various other statement
types for future implementations of ScQL queries in different areas of the SensorClouds
architecture, such as INSERT queries similar to classic SQL for simple Inserters requiring
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no more than a simple write operation mapping between input and output data. A
selection statement is comprised of a SelectSource that specifies from which area the
voxels should be selected, a number of SelectConstraints which determine the filter rules
by which voxels are to be selected and finally the list of SelectValues which determine
the data fields of interest to be included in the output of the selection process.

SelectSource

+ toString(): std::string
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CompleteDataset
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Figure 6.13. Definition of the geometric constraint SelectSource in ScQL.

SelectSource specifies from which source the data shall be selected in terms of geometric
constraints (cf. Figure 6.13). Either the complete dataset (CompleteDataset) shall be
searched for voxels matching the filter criteria of the query or the source can be further
constrained to include only voxels that fall within a specific geometric definition. This
can be around a certain point in space (AroundPoint) within a specific radius or inside a
defined cuboid (InsideCuboid), meaning a number of voxels contained between two given
points. Finally, the selection can even be constrained to the path along a raycast through
the voxel map (RayCast) matching all encountered voxels or only those matching
the search criteria. The specific geometric parameters of all selection operators are
defined by the classes PointLocation and PointOrientation, the former being the most
commonly required concept. This concept of various geometric definitions for the
region of interest is furthermore easily extensible with custom definitions of geometric
constraints imposed on the voxel selection process.

SelectConstraints define the actual filter criteria which must be matched against the data
point contained in each individual voxel. These can, for example, be simple boolean
operators, which logically combine other constraints with each other, such as logical
AND and OR operators, as seen in Figure 6.14. Since these are modeled as derivative
of the class SelectConstraint themselves and have two associated constraints for the
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Figure 6.14. Definition of boolean operations in ScQL.

left-hand and right-hand sides of the logical operation, respectively, an arbitrary depth
of recursive logical operations is possible to define.
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Figure 6.15. Definition of range and existence operations in ScQL.

In order to filter data points by the existence of a certain data field within it, the operator
IsSet (cf. Figure 6.15) can be employed in order to select, e.g., all voxels containing an
entry for temperature stemming from a thermal camera image. The DataField class is
used to specify the correct data field for selection, so in the previous example this would
hold a reference to the field temp. Since the IsSet operator only checks for existence
of a data field, but completely ignores its value, it is only suitable for the selection of
data points used in other processing steps thereafter. The InRange operator, however,
works by comparing the value of a data field with two other values, which can either be
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specified as DynamicParameter or as a StaticValue, also depicted in Figure 6.15. While a
static value is merely a numeric value to be compared against, a dynamic parameter
is in fact a value that is passed to the selection algorithm by the Module in which it is
defined and thus is only assigned a specific value at runtime in accordance with the
processing algorithm of the concrete Module.
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1

1
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Figure 6.16. Definition of comparator operations in ScQL.

Finally, the Compare operator allows comparisons between two different values and
encompasses the typical options for value comparison, as depicted in Figure 6.16. The
values again can be any one of the previously described SelectValue derivatives, so e.g.,
a PointValue can be compared to a static value or a dynamic parameter in the selection
process.

Since the geometric constraints are far more likely to filter out the largest portion of the
entire data for the final selection process, these are applied first. This saves checking
every voxel for their compliance with the specified constraints only to then throw away
most of the matching voxels again because they are not even in the region of interest.
This, in consequence, also saves computational cost, since logical and value constraints
typically require more calculations.

6.2.2 Query Language and Parsing

The actual query language ScQL is based upon the class architecture described in the
previous section. Each of the described concepts in the architecture equates to a part of
the query language. As an example, a query to select all voxels containing temperature
information from the entire data model would be formulated as follows:
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SELECT FROM WHERE* DATASET IS_SET( )'temp'

Selector SelectSource SelectConstraint

Figure 6.17. Simple ScQL SELECT statement for the retrieval of all voxels containing tempera-
ture information.

The built-in star (∗) operator (operators denoted in blue) stands for the inclusion of all
data fields from the selected voxel in the output dataset, as is the case in classic SQL
statements. Together with the SELECT keyword (language keywords denoted in green)
this constitutes the equivalent to the Selector class of the architecture and the basis for
the remaining statement. The SelectSource portion determines the geometric location at
which the selection process shall be performed and is executed before any further filters,
since this leads to a greatly improved performance, as mentioned in the previous section.
Similar to classic SQL, but not representing a specific table in a relational database,
the FROM keyword is used to specify the desired geometric location. DATASET is also
a built-in protected keyword which denotes that the entire dataset is to be searched
for results matching the constraints. Finally, any further required constraints can be
specified in the WHERE clause, as is also the case for filter rules in classic SQL. As the
example’s goal is to retrieve all voxels containing temperature information, yet not
inspect the temperature value for any further conditions, the IS_SET SelectConstraint
(operations denoted in red) is sufficient to achieve the intended result, namely selecting
only those voxels in which a value for ’temp’ has been defined (parameters denoted in
yellow).

SELECT FROM WHERE'r', 'g', 'b' IS_SET( )'r', 'g', 'b'

Selector SelectSource SelectConstraint

CUBOID( )X, Y, Z,  X, Y, Z

Figure 6.18. Simple ScQL SELECT statement for the retrieval of all voxels containing color
information within a set cuboid.

Adding a more restrictive geometric constraint and filtering by the existence of more
than one data field leads to a query such as the one depicted in Figure 6.18. Here, the
CUBOID operator is employed to limit the search for matching voxels to a specific area
circumscribed by the two points described by cartesian coordinates (X , Y and Z), which
are specified subsequently in the operator call. The IS_SET operator can also be called
with multiple data fields as parameter list and the operator then checks each voxel for
previous write operations to all of the fields specified.
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SELECT FROM WHERE'temp' IS_SET( )'x', 'y', 'z'

Selector SelectSource SelectConstraint

RAYCAST( )X, Y, Z, A, B, C LIMIT 1

Figure 6.19. Advanced ScQL SELECT statement for the retrieval of the first voxel containing
coordinates along a raycast.

A more complex SELECT operation can be found in Figure 6.19. Here the goal is to select
the temperature data field from the first voxels along a raycast. The source of the cast
ray is defined by X , Y and Z coordinates, while the orientation the ray should be cast
in is specified by the orientation defined by the three angles A, B and C , which are the
respective rotations around the cartesian axes determined by the origin point of the
raycast. Both these definitions are passed to the RAYCAST operation which constitutes
the geometric constraint in this particular query. The remaining constraints limit the
selection process to only include a voxel which has had coordinate information inserted
into it (IS_SET operator) and limits the result set to a single voxel, meaning the first
voxel matching the search criteria along the path of the raycast is to be returned. This
is in fact the ScQL statement required for the insertion of two-dimensional camera data
into the three-dimensional global data model. To accomplish this, a virtual ray from
the spatial location of the camera sensor is projected along the axis determined by the
projection matrix retrieved by the intrinsic calibration of the camera. The first point in
three-dimensional space, which contains coordinate information from a depth sensor
also included in the application setup, can usually be assumed to also be the one seen
by the color camera, and thus the color information can be added to the matching voxel.
This does not account for all circumstances, such as that the views of the two sensors
could be at oblique angles to each other and therefore the camera cannot necessarily
directly see the object which the depth camera is detecting, but this could be addressed by
including the normals in all sensor data insertion. The normal of a sensor measurement
is the addition of a vector describing which point in space the measurement was taken
from. With this additional information, the SelectConstraint could be amended to only
accept voxels whose normal vector has a small enough angular distance to the incoming
ray that the camera sensor being projected can technically even see the point seen by
the depth sensor.

The implementation of the parser for this language was performed with the help of
ANTLRv4 [88], which is a parser generator for languages defined in simple grammar
files. ANTLR generates small programs in a programming language of choice, which
are in turn capable of parsing the language specified in the grammar file. Each parsed
segment is passed to the appropriate responsible class by means of a visiting operation,
a process which is modeled after the commonly known Visitor pattern. Parameters
are passed along to the visiting operation. In this fashion, the parser can instigate
the construction of the required hierarchy of object instances of the classes defined in
the ScQL architecture (cf. Section 6.2.1) and these in turn can subsequently execute
the necessary operations at runtime. Data selection operations in SensorClouds can
consequently either be defined manually via Selector objects with all required constraints
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added to it, or a simple ScQL statement. Since these selection operations are included
in the definitions of Modules which are JIT compiled for increased efficiency, they too
benefit from compiler optimizations and the known values of many variables at runtime
of the base program.
The implementation of the ScQL query language and the accompanying parser were
performed by Moritz Hofer within the scope of his internship project.
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Chapter Summary. This chapter gives an in-depth look
at a selection of key details from the SensorClouds reference
implementation. Performance, flexibility and ease of use as well
as the balance between them were the driving factors in all
implementation decisions.

7
Reference Implementation

7.1 Compute Unified Device Architecture (CUDA) . . . . . . . . 120
7.1.1 Programming Model . . . . . . . . . . . . . . . . . . . . 121
7.1.2 Memory Model . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Programming Interface for Module Developers . . . . . . . . 126
7.2.1 Module Implementation . . . . . . . . . . . . . . . . . . 126
7.2.2 Argument Definition . . . . . . . . . . . . . . . . . . . . 128

7.3 Details of the SensorClouds Reference Implementation . . . 130
7.3.1 Memory Handling . . . . . . . . . . . . . . . . . . . . . 130
7.3.2 Input Data Flow . . . . . . . . . . . . . . . . . . . . . . 131
7.3.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . 133
7.3.4 Dataset Handling . . . . . . . . . . . . . . . . . . . . . . 141

119



7 Reference Implementation

7.1 Compute Unified Device Architecture (CUDA)
By the year 2009, GPUs had started overtaking CPUs in terms of raw computational
power. However, prior to the introduction of arithmetic logic units (ALUs) capable
of executing general purpose computing instructions, GPUs were highly application
specific devices designed specifically for the hardware acceleration of calculations for
the display of three-dimensional objects on the computer screen. The first step towards
general purpose applications was the introduction of shader programs, which allowed
the manipulation of visual effects calculated by the GPU for the first time. These gave
far more creative freedom to developers, since they were no longer entirely bound
by the processing formulae implemented in hardware on the GPU, yet were still very
limited in terms of what could be calculated in which step of the rendering pipeline.
The main purpose of GPUs was at this point still the rendering of three-dimensional
objects represented as large collections of polygons. Shaders are small programs which
enable the modification of how these polygons are finally rendered to the display and
allow developers to implement various shading (hence the name), lighting, and particle
effects. (cf. [32, p. 11ff])
CUDA is a proprietary programming interface from NVIDIA and enables the imple-
mentation of programs for general purpose computing on GPU hardware. It was first
introduced in 2007 and in first iteration only a C programming interface was avail-
able. Since then, C++ has been added to the officially supported languages and many
more third-party wrapper libraries have been developed, such as for Python, Java or
MATLAB. Specifically for C++ it must be noted, however, that merely a selection of
the typically heavily utilized standard libraries are supported. Code using extended
features of the C++ standard library cannot be used in the same files as CUDA code,
since the compiler does not recognize them. Yet the main drawback of choosing CUDA
is that programs developed with it are only executable on GPUs produced by NVIDIA.
An alternative which is conceptually similar and follows the same basic principles
with respect to the programming and memory models is OpenCL (Open Computing
Language). It was originally developed by Apple and first released two years after
CUDA in 2009. Its development has since been handed over to the Khronos Group, a
non-profit open source organization also responsible for the development of the OpenGL
(Open Graphics Language), which is a graphics API that e.g., handles the compilation
and execution of shaders in the graphics pipeline of GPUs. While OpenCL has similar
capabilities to CUDA, it cannot offer the same level of platform specific optimization,
since it has to maintain compatibility with hardware from multiple vendors. A clear
advantage of OpenCL is that it is not limited to GPUs, but can also be executed on
multi-threaded CPUs and mobile ARM processors alike. Many vendors offer standard-
compliant OpenCL implementations for their hardware architecture, including AMD,
ARM, Qualcomm, Samsung and even NVIDIA themselves [118]. This multi-platform
compatibility, however, results in some operations and setup procedures which involve
more manual work from developers and do not quite perform as well as their CUDA
counterparts without significant architecture dependent optimizations to the OpenCL
version of the program [40], which consequently contradicts true portability of the
developed applications. (cf. [32, p. 13ff])

120



7.1 Compute Unified Device Architecture (CUDA)

7.1.1 Programming Model

Computing architectures are typically classified by Flynn’s Taxonomy first proposed in
1966 [43] and later extended in 1972 [44] to describe them in terms of the relationship
between execution units or processors and the data streams they execute instructions
on. Since then the classification has been extended with subclasses, e.g., by Duncan in
1990 [37], in order to differentiate various emerging architectures further. Duncan’s
taxonomy does not add to the four basic classes originally proposed by Flynn, but rather
subdivides them further. The four basic classes introduced in Flynn’s basic taxonomy
from 1966 are as follows: (cf. [43][44][37])

• Single instruction stream, single data stream (SISD) Single-Core CPUs, which
were standard in consumer computers up until the early 2000s, are an example
of an SISD architecture in this classification system. A single-core processor
processes instructions serially, meaning one after the other and one at a time. It
executes this instruction on a single element from the input data stream. This
means that at any given point in time a single processing unit executes a single
instruction on a single data point.

• Single instruction stream, multiple data streams (SIMD) The same instruc-
tion is executed by an arbitrary number of processors on individual data streams.
This is useful for the parallelization of workloads which have to process a large
amount of data in exactly the same way, such as when iterating over arrays
or performing matrix calculations. GPUs are typically classified as having an
SIMD architecture. NVIDIA however makes a further distinction and classifies
the architecture employed in their GPUs as "single instruction, multiple threads"
(SIMT). The difference between SIMD and SIMT is that the processors are not
independent of one another, but execute all instructions in lockstep, meaning that
all processors can always only execute the same instruction on their respective
data points and not be at different points in the program. In consequence, this
means that all processors complete their work at the same time, but whenever a
branching condition is encountered, all processors not entering the branch due to
the evaluated condition on their individual data must halt execution until those
that do enter have exited the branch again (branch divergence).

• Multiple instruction streams, single data stream (MISD)Multiple processors
execute instructions on the same input data stream. While very few implemen-
tations of this architecture have ever existed, it is the predominant construction
method for safety-critical computer systems, such as flight computers or industrial
functional safety equipment. NASA, for example, constructed the main computer
cores of the space shuttle after this principle [111]. While the calculations per-
formed by the processors independently are largely identical, they differ in the
safety critical portion where the results are checked by the respective other pro-
cessors for consistency with their own results. Hence, they operate on different
instruction streams while actually performing the identical calculations on a
single input data stream.
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• Multiple instruction streams, multiple data streams (MIMD) Modern multi-
core CPUs are constructed after the MIMD architecture in the sense that multiple
independent threads are executed on multiple (potentially) disparate data streams.
Any multiprocessor system from integrated application-specific ICs (ASICs) for
use in modern smartphones up to the highest levels of high-performance comput-
ing clusters, also referred to colloquially as "supercomputers", employ the MIMD
architecture in various specific implementations of the basic principle (cf. [96, p.
14]).

The two architectures with multiple input data streams (SIMD, MIMD) can operate
completely unimpeded as long as the input data to the individual processors is actually
entirely independent from each other. Once data dependencies exist between data
written by one processor or thread and read back by another one or simultaneous write
access is possible, more complex programming paradigms have to be employed in order
to synchronize memory accesses across the entire system. While the ultimate goal
is always to develop truly parallel and lock-free programs, multiple execution units
operating on the same dataset will always have to be synchronized in one form or another.
The simplest form is to lock data completely, e.g., with a mutex, as long as one thread is
working on it. All other threads trying to access the same data point simultaneously
typically have to enter a spin-lock and wait for the other thread to complete its work
until they can continue with their execution. While this synchronization method is
data focused, it is also possible to synchronize different threads by controlling their
execution. In condition synchronization, a thread sleeps until another thread wakes it
back up again once a predefined condition has been met. Unless a monitoring thread is
periodically checking the condition and can control the wakeup sequence of the other
thread, the sleeping thread never wakes up, since it cannot monitor the condition by
itself. Barrier synchronization in contrast defines a point in the program execution
at which all threads must wait until all other threads have also arrived at it. This is
also the method used extensively in CUDA’s execution control and is, for example, the
mechanism by which branch divergent code is synchronized. The end of a condition is
hereby implicitly defined as a barrier synchronization point which must be reached by
all threads before execution can continue. (cf. [96, p. 152ff])
An overview of program execution in SIMT architecture of CUDA enabled GPUs is given
in Figure 7.1. Kernels, which are the programs to be executed by the GPU (Device) in
parallel, are always started by a program running on the CPU (Host), which is thereafter
free to execute any other serial code which may be needed while the GPU computes
the results. The host program is also responsible for any data transfers to and from the
device. The execution hierarchy differentiates four levels of thread groups, the lowest
of which is a warp. Warps are units of 32 threads which are executed in lockstep. The
previously mentioned synchronization upon branch divergence is also only applicable
on the level of warps, since multiple warps are executed independently of each other.
Above that, threads are grouped into blocks which can, in the current versions of CUDA
hardware, comprise a maximum of 1024 threads. This is due to the fact that a block must
always fit onto a single streaming multiprocessor (SM), which is NVIDIA’s denomination
for a processing unit in its GPUs, and cannot be distributed across multiple SMs. A single
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Figure 7.1. The execution model of CUDA with the program timeline between CPU and GPU
programs.

streaming multiprocessor executes a single instruction on up to 1024 data elements per
instruction cycle. Modern NVIDIA consumer GPUs such as the RTX 4090 have up to
126 streaming multiprocessors on a single die, meaning they can theoretically execute
129 024 threads simultaneously. However, other constraints such as memory speed and
transfer latency when copying data from the main working memory to the GPU can
impact the maximum achievable throughput. (cf. [32, p. 69ff])
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Figure 7.2. The memory model in CUDA with the various memory types accessible by each
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7.1.2 Memory Model

The memory model in CUDA, depicted in Figure 7.2, differentiates three main types of
memory on the device, which can be accessed by all threads, however some memory
types have certain access restrictions imposed on them, and they all differ in access
speeds. The fastest memory type is, as in any processor architecture, the bank of
registers available to every processor. Each streaming multiprocessor of the GPU has a
fixed number of registers available to all kernels running on the SM at the same time.
At compile time, the number of registers required by a CUDA kernel is calculated by
the compiler and fixed thereafter. The number of registers each thread can occupy for
its calculations is thus variable, but the SM can only schedule as many blocks as their
register requirements allow to execute simultaneously. Shared memory is effectively an
on-chip cache which is explicitly controlled by the program code, rather than the GPU
hardware itself. Its effective bandwidth is roughly five times slower than direct register
access [41, p. 111]. All threads within a block (maximum of 1024 threads) can access
the same portion of shared memory which makes it ideal for passing data between
threads with low latency. Should multiple blocks be executed at the same time on one
SM, then access to shared memory is restricted to the portion reserved for the block the
accessing thread is a part of. Shared memory access across blocks is prohibited. (cf. [32,
p. 107ff])
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Global memory is the largest but slowest region of memory available to CUDA kernels
and is mainly used for loading datasets from the CPU onto the graphics card for later
processing and for storing large amounts of result data before passing it back to the CPU
for further processing. Global memory is about ten times slower than shared memory
[41, p. 111]. Individual threads are assigned local memory, which is actually stored in
global memory and consequently suffers from the same high latency problem. It does,
however, have some special properties that differ from regular global memory. Local
memory is only used in certain cases, also referred to as "register-spilling", in which a
thread, for example, allocates an array at runtime. Since the size of the array was not
known at compile-time and thus no registers could be reserved to hold the array, it
must be stored elsewhere. The term local is used, since this portion of memory is only
accessible by the thread it belongs to and cannot be accesssed by other threads or even
other kernels. (cf. [32, p. 107ff])
A significant performance boost in memory transfers between host and device in CUDA
can be achieved by pinning certain regions of host memory. Memory pages which have
not been pinned can be swapped out to disk, meaning that it does not actually reside in
the working memory of the CPU anymore, but has been written to the main storage
device. This typically occurs when the working memory is full and the page in question
has not been accessed for a longer period of time. Pinning a memory page prevents this
mechanism from being applied to the locked region ensuring that it is always directly
available in the working memory. Additionally, this means the GPU is capable of
directly accessing this memory without intervention from the CPU using a functionality
called direct memory access (DMA), which is part of the PCI-Express standard GPUs
are connected to the CPU with. Consequently, DMA provides a significant speedup in
memory transfer latency, since no data has to pass through the CPU and bind computing
resources there, but rather is directly requested by and transferred to the GPU via its
main bus system. (cf. [32, p. 334ff])
A significant portion of every early CUDA application was concerned with explicit
memory management. To ease this burden on developers, the concept of unified memory
was introduced. Mapped memory is a function of the CUDE framework which eliminates
the need for explicit transfers of data by the developer in the correct direction before
the data is intended to be processed either by the device or the host. With unified
memory, one need only reserve the required amount of memory once, while the CUDA
framework takes over managing the allocation of memory on both sides as well as the
transfer between the two when required. The concept is based on a unified virtual
address space, meaning the GPU can attempt to access any memory address across the
entire system, including those of the CPU. However, since the memory is not actually
physically available to the GPU, every access first results in a page fault, which prompts
the CUDA framework to migrate the requested page from CPU to GPU memory. This, of
course, introduces significant performance overhead, which can however be mitigated
somewhat by manually prefetching the soon to be accessed pages but cannot completely
match the performance of explicit copy operations. (cf. [102])

125



7 Reference Implementation

7.2 Programming Interface for Module Developers

7.2.1 Module Implementation

When implementing a new type of module a developer must create two separate classes.
The first is the internal framework representation of the module which defines all meta-
data for the module, and the second is the actual processing kernel which contains the
implementation of the atomic operation to be performed when the module is executed.
An example of the metadata class can be seen in Listing 7.1, in this case a simple Inserter,
which is derived from the class Inserter, in turn a derived class of Module. This type
hierarchy serves to constrain the possible types of input and output definitions since
not all are applicable to every type of module.

1 class SCXYZInserter : public SCInserter {

2

3 SCXYZInserter() : SCInserter(

4 "SCXYZInserter",

5 pipeline::SCGPUMethod(&_inserter, "process",

&SCXYZInserterImpl::process),↪→

6 SCInserterInfo(

7 ArgumentList(

8 Field{sensorclouds::tags::x, DataType::FLOAT},

9 Field{sensorclouds::tags::y, DataType::FLOAT},

10 Field{sensorclouds::tags::z, DataType::FLOAT}

11 ),

12 {},

13 ArgumentList(

14 Field{sensorclouds::tags::x, DataType::FLOAT},

15 Field{sensorclouds::tags::y, DataType::FLOAT},

16 Field{sensorclouds::tags::z, DataType::FLOAT}

17 )

18 ),

19 { "SCXYZInserterImpl.h" }

20 ) {}

21

22 SCXYZInserterImpl _inserter;

23 };

Listing 7.1. Definition of an Inserter.

The constructor of the newly created Inserter must call the base constructor with the
required configuration parameters. The first parameter is the name which the Module
should be referenced by. It merely serves identification purposes in logs and debugging

126



7.2 Programming Interface for Module Developers

messages and can therefore be chosen at will by the module developer. Secondly, the
module must specify the concreteMethod which contains its processing function. Unless
otherwise created previously, this object can be created directly inline in the constructor
call of the Module class. The third parameter required to create a new Module is the
meta-information on the read and written fields as detailed in Section 4.2.3. In this
example only Data Input (lines 7-11) and Model Output (lines 13-17) are defined, since
no data must be read from the global model by this Inserter. Hence, the Model Input
parameter is left empty (line 12). Finally, any header files which need to be included in
the JIT compilation process in order for all relevant classes and implementations to be
found, can be specified as a list of strings. A Method in turn, requires three parameters
in order to be constructed: a reference to the object previously instantiated upon which
the Method shall be executed at kernel runtime, its name as a string and a pointer to the
class member function to be executed, since the extraction of parameter information
within C++ itself requires this in order to be able to resolve the method at application
compile-time.

1 class SCXYZInserterImpl : public

memory::SCMemoryItemizable<SCXYZInserterImpl> {↪→

2

3 void process(float xr, float yr, float zr, float* x, float* y,

float* z) {↪→

4 if (!isnan(xr) && !isnan(yr) && !isnan(zr)) {

5 *x = xr;

6 *y = yr;

7 *z = zr;

8 }

9 }

10

11 };

Listing 7.2. Implementation of an Inserter processing kernel.

Listing 7.2 shows the implementation of the actual processing kernel for the previously
defined simple coordinate Inserter. The SCXYZInserterImpl is derived from the class
SCMemoryItemizable, which is merely a convenience wrapper around MemoryItem
which allows the automatic construction of an accompanying memory item during
construction of another object simply by deriving from it (line 1). First of all, this
eliminates the need to explicitly call the constructor of the managing memory item, but
it also is technically necessary, since the object being passed to the memory item is still
being constructed and therefore incomplete, and hence cannot be passed as a parameter
yet. The member function of this class must now only define its parameters according
to the specification provided in the Inserter as seen above (line 3), lest errors occur later
during kernel compile-time and the static analysis as described in Section 4.2.6. The
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very simple processing function in this example merely checks if the received input
data fields are actually valid numbers (line 4) and if so passes them on directly to the
output variables (lines 5-7).

7.2.2 Argument Definition

In the preceding examples, the simplest form of argument definition has consistently
been used, which is the specification of individual fields of the input and output data.
This is, however, only the case when no special Selector is required and standard iteration
over all input data points and direct matching to the coordinate space of the global
model for output data are desired. Before presenting the details on the usage of the
DataSet concept, a brief explanation of the simpler list of single fields, seen in Listing 7.3,
is given.

1 // Argument list definition (for x only)

2 ArgumentList(

3 // A single data field from the data point to be referenced

4 Field{

5 // Tags identify data fields

6 sensorclouds::tags::x,

7 // Internal type representation

8 DataType::FLOAT

9 }

10 )

Listing 7.3. Definition of a simple ArgumentList with one data field.

Data fields are always identified by tags in SensorClouds (line 6). While data fields in the
incoming point cloud messages from ROS are identified entirely by name with strings,
frequent string comparisons are a significant detriment to performance of applications,
since the two strings to be compared both have to be iterated over completely (at least
until the end of the shorter one) for every single comparison operation. The expected
data type of this field is specified with the internal type enumeration introduced in
Section 4.2.2. Each field required for the Module is defined in this manner and added
to the ArgumentList (line 1) for the appropriate entry in the meta data definition (Data
Input, Model Input or Model Output).

A more complex example of an ArgumentList can be found in Listing 7.4 in which an
ScQL statement is utilized to select the desired insertion point in the global model
through a raycast operation (lines 5-6). Of note here is that the ScQLquery object (line
4) is merely an extension of the DataSet object, with the only addition being that it
accepts a string parameter for the query upon construction and can be queried by the
processing function at kernel runtime. All remaining behavior of the class is identical
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1 ArgumentList(

2

3 // ScQLquery is a SCDataSet with a query string

4 ScQLquery{

5 "SELECT 'temp' FROM RAYCAST($1, $2, $3, $4, $5, $6) " +

6 "WHERE IS_SET('r', 'g', 'b')",

7 // Data fields specified separately for type information

8 Field{

9 sensorclouds::tags::temp,

10 DataType::UINT32

11 }

12 }

13

14 )

Listing 7.4. Definition of an ArgumentList with an ScQLquery.

to that of the DataSet. The placeholders for dynamic variables are denoted by a dollar
symbol (’$’) followed by the ordinal number of the argument. The arguments must then
be specified in that particular order when the query is later executed. The individual
fields expected as a return to the query operation must still be explicitly specified (lines
8-12) in order for SensorClouds to receive the required type information and be able to
determine compatibility between the requesting Module and the data contained in the
global model (cf. Section 4.2.6).

The accompanying Inserter processing kernel is depicted in Listing 7.5. The argument
definition must now specify an ScQLquery object with the required data fields as tem-
plate parameters (line 1). Since this is an Inserter for projecting a thermal image into
three-dimensional space and annotating pre-existing spatial data with temperature
information, it is built upon a raytracing operation. The resulting projection matrix of
the required calibration is stored in the device object. With this information, the device
can calculate the outgoing vector for the raycast from the current pixel coordinated on
the camera sensor (line 4). The elements of the resulting vector are then passed to the
query operation as the dynamic parameters (line 6). Finally, the temperature value of
the current pixel can then be written to the appropriate place in the global data model
(line 8).
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1 void process(uint32_t temp_in, uint16_t x_in, uint16_t y_in,

ScQLquery<Field<sensorclouds::tags::types::temp, uint32_t>>

query) {

↪→

↪→

2 if (!isnan(temp)) {

3 // Projection matrix is stored in device object

4 auto vec = device.project(x_in, y_in);

5 // Prepared query is executed with dynamic parameters from

kernel↪→

6 auto result = query.select(vec.x, vec.y, vec.z, vec.a, vec.b,

vec.c);↪→

7 // Write operation

8 result[sensorclouds::tags::temp] = temp_in;

9 }

10 }

Listing 7.5. Inserter querying the model and inserting thermal information at the site of the
result.

7.3 Details of the SensorClouds Reference Implementation

The following section details some select aspects of the SensorClouds reference im-
plementation, which aim at fulfilling the non-functional requirements detailed in Sec-
tion 4.1.2.

7.3.1 Memory Handling

For the purposes of memory integrity and ease of development, the SensorClouds archi-
tecture provides automatic mechanisms for memory management that are also used
internally within the framework. The main component of this is a custom smart pointer
implementation named MemoryItem. The base functionality is identical to that of the
smart pointer implementation of the C++ standard library (shared_ptr) in the sense that
it maintains a reference to a data object and a global reference counter for that object.
Access to the variable is only possible via the smart pointer in order to prohibit external
manipulation of the data object and the correct functionality of the smart pointer’s
memory management functions. Every time the smart pointer is explicitly copied or
assigned to a new variable the reference counter is incremented. The smart pointer
object is actually copied, except for the reference counter, which must be the identical
instance across all copies of the smart pointer. To this end, the reference counter must
be allocated on the heap (new allocator) so it is independent from individual copies of
the smart pointer. Each instance of the smart pointer object only holds a raw pointer
reference to the heap allocated counter which is trivially copyable. Every time a copy
of the smart pointer is deleted the reference counter is decremented until the count is
finally zero, which means the object is no longer referenced from any other and can
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be destroyed. A MemoryItem can either be initialized with an already existing object
or array of which it subsequently takes ownership or constructs a new instance of the
specified type upon its own construction.
What sets theMemoryItem concept (cf. Figure 7.3) apart from the standard library version
of a smart pointer, though, is the compatibility with and extended management functions
in the context of CUDA applications. In order for data to be transferred between CPU
and GPU within CUDA, the required memory for the data to be transferred must be
previously allocated before the transfer can take place. TheMemoryItem class takes care
of the necessary allocations automatically upon construction and does so for both the
managed data object as well as itself, so that the management functions are also available
on both CPU and GPU. After all allocations have been performed, the MemoryItem
has four different pointer addresses stored: one pointer to itself and the data object
on the CPU as well as the pointer to the MemoryItem and the managed data object on
the GPU side. The memory item also offers a convenient transfer() method which
handles the transfer of data from the host to the device and vice-versa depending on
the direction parameter passed to it. In this manner, developers need not keep track
of individual pointer addresses for individual objects, since this is all handled by the
smart pointer internally. This automatism also extends to any subordinate dependent
objects registered with a superordinate object, so that the transfer of data need only
be initiated for the superordinate object, and the rest is handled automatically by the
MemoryItem.
Memory pinning, which pins pages of the CPU’s working memory for faster transfers
to and from the GPU than regular dynamic memory would allow, is also automatically
managed by a central instance of the MemoryManager, which all individual memory
items utilize for all operations concerning pinned memory and global memory functions.
The MemoryManager is responsible for keeping track of all pinned memory regions and
handling the addition and removal of such regions on request by a MemoryItem. Since
memory can only be pinned once, lest an error occur, the memory manager must also
calculate possible intersections between requested regions, e.g., when a pinned object is
contained within another object which is to be pinned, and pin the remaining memory
not included in the overlapping section.
And finally, in order to ease the development of applications and Modules with the
SensorClouds framework, the MemoryItem provides a custom dereferencing operator
which automatically detects whether the code is currently being executed on the CPU or
the GPU and returns the appropriate pointer to the underlying data object. This leads to
cleaner and easier to read code, since data accesses do not each have to manually check
which computing device they are being executed on and also increases the portability
of Module code, since the data access through the smart pointer becomes agnostic of
the executing device.

7.3.2 Input Data Flow

In the reference implementation, data input is restricted to ROS topics, although all
interfaces are explicitly exchangeable with arbitrary input drivers, pursuant to FR 6.

131



7 Reference Implementation
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Figure 7.3. Overview of the MemoryItem architecture.
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Figure 7.4. Information flow of a point cloud through the various stages of the processing
pipeline.

The information flow of a point cloud message from its reception via a ROS topic to
its transfer to the GPU for processing by the appropriate ModuleInstance is depicted in
Figure 7.4. Every Device driver is responsible for handling concrete data input handling
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as well as calibration and other device specific data and providing access to this data to
other classes in the application. As such, the Device receives the point cloud message
from ROS directly and then hands it off to the PointCloudManager. This class is in
charge of extracting the meta-information stored within the point cloud message upon
reception of the first message, since this information is immutable at runtime per the
implementation of messages in ROS itself. The meta-information is represented in the
PointInfo object which stores the information on an entire data point. This information
is in turn a list of individual PointElementInfo objects, which hold the information on
each individual data field, such as the data type, its size and the name of the field
defined in the ROS message. The PointCloudManager also acts as a container for both
the meta-information, which it alone holds, as well as a reference to the associated
PointCloudData object which is a CUDA-compatible object and hence can be used in
GPU code, such as the processing function of an Inserter. Since the meta information
is only required for the code generation process described in the following section,
the PointCloudData can transfer only the raw point cloud data in form of a byte array
contained in the ROS message to the GPU. This data is then subsequently read in by the
SensorClouds control loop executing the processing method of the Inserter on each data
point.

7.3.3 Code Generation

For every ModuleInstance in the developed application, code for JIT compilation is
automatically generated by the framework upon completion of the configuration process.
In this context the following section will differentiate between different compile-time
and runtime definitions. A graphical overview of these and how they interact with
each other is depicted in Figure 7.5. Application runtime denotes the execution of
the overall application based upon the SensorClouds framework, with the application
compile-time specifying the build process of said application. During application runtime
a second compile-time instance occurs, namely for the compilation of CUDA kernel
code generated for the execution of ModuleInstances at application runtime with the
available configuration data and meta-information on the incoming data streams. This
is called kernel compile-time. After all kernels have been compiled, the main execution
loop of the application begins in which data is transferred to the GPU, the kernels are
executed and finally the results are transferred back to the CPU. This step is then called
kernel runtime. The entire generated kernel code for the execution of a simple Inserter
is shown in Listing 7.12. The following section will, however, provide concrete excerpts
from the complete example to illustrate specific aspects as they are discussed.

The basic structure of the CUDA kernel generated for each Module consists of the
following steps:

1. Creation of local arrays
Listing 7.6 shows exemplary output of the JIT code generator for a simple Inserter
adding point cloud coordinates to the global model. The necessary data points
from input and output datasets are copied from the GPU’s global memory to local
memory for further processing (lines 15 & 25). Since the length of the required
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Figure 7.5. Overview of the application and kernel compilation and execution timelines.

arrays is known at compile time (lines 6-7), these fit into the register bank of the
streaming multiprocessor. Should larger arrays be required, an explicit transfer
of data to shared memory might be advisable if the implicit caching mechanism
should fail. In each iteration a thread copies the appropriate data points into these
local arrays.

2. Creation of correctly typed variables
Since the memory layout is completely dynamic and determined during runtime
of the base application, the actual data storage can only be implemented as a
raw byte array. In order to be able to call the strongly typed processing methods
defined by Modules, strongly typed variables must be created which store copies
of the data fields contained in the raw array. The meta information on the layout
of the raw data arrays is defined as described in Section 4.2.5 and is used to cast a
pointer to the raw array first to the correct pointer type and then dereference it in
order to be able to copy the value to the variable. The helper variables required by
the Aggregators are created analogously. Listing 7.6 already showed the creation
of the three input variables (lines 10-12) and the assignment operation to them
from the local array. Variables to be written to, which are needed by both the
Method output and Aggregators, are slightly more complex in their setup as shown
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1 // Pointers to data objects are passed to the kernel function

2 auto& INPUT = **reinterpret_cast<

3 SCMemoryItem<SCPointCloudData>*>(INPUT_POINTER);

4 auto& OUTPUT = **reinterpret_cast<

5 SCMemoryItem<SCSensorCloudData>*>(OUTPUT_POINTER);

6

7 // Local arrays

8 uint8_t inputElement[20];

9 uint8_t outputElement[48];

10

11 // Input variables

12 float x_inR;

13 float y_inR;

14 float z_inR;

15

16 // Read the next element and copy to local array

17 memcpy(inputElement, INPUT.readFromIndex(i), 20);

18

19 // Assign input variables from data copied to local array

20 x_inR = ( *( (float*) &inputElement[0] ) );

21 y_inR = ( *( (float*) &inputElement[4] ) );

22 z_inR = ( *( (float*) &inputElement[8] ) );

23

24 // Simple case of mapping directly to input coordinates

25 auto currentIndex = OUTPUT.readFromCoords({x_inR, y_inR, z_inR});

26 // Copy data point at input coordinates to local array

27 memcpy(outputElement, currentIndex, 48);

Listing 7.6. Creation of and copy operation to local arrays.

exemplarily for the output variable x in Listing 7.7. The variable x_outW (line 4) is
the one which the write operation of the Method is cached into before later being
processed by the Aggregator. Since the variable of the primitive type float would
simply be copied by value if it were to be passed directly to a function, a pointer
to it is required (x_outW_ptr in line 4 with its assignment in line 5). The previous
value of the data field before the operation was performed can be required by
certain Aggregators in order to perform their calculations and hence a variable to
store the old value is required also. These declarations all occur outside of the
main kernel processing loop, since they are static for the duration of a kernel
execution. Inside the loop for every iteration, the written variable must first be
reset from the value it may have been assigned in the previous iteration (line 12).
The old value variable as well as the helper variables of the Aggregator must be
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updated in every iteration of the loop with the values copied from the respective
data points from the output data (lines 14-18).

1 // Only for variable x. y and z defined analogously

2 // Before loop:

3 // Declaration of strongly typed variables...

4 // ...for the variables written to the global model

5 float x_outW, *x_outW_ptr = &x_outW, x_outW_old;

6 x_outW_ptr = &x_outW;

7 // ...for the helper variables of the Aggregators

8 float x_sum_agg, *x_sum_agg_ptr = &x_sum_agg;

9 uint32_t x_count_agg, *x_count_agg_ptr = &x_count_agg;

10

11 // Inside loop:

12 // Reset written variable on every loop iteration

13 x_outW = 0.0f;

14 // Assign appropriate value from local array to variable

15 x_outW_old = ( *( (float*) &outputElement[1] ) );

16

17 // Same procedure for the halper variables of the Aggregators

18 x_sum_agg = ( *( (float*) &outputElement[20] ) );

19 x_count_agg = ( *( (uint32_t*) &outputElement[16] ) );

Listing 7.7. Creation of correctly typed variables for further use by ModuleInstances and
Aggregators.

3. Retrieval ofMethod and Aggregators
Since ModuleInstances can hold state information, which might be initialized on
the host side and then needed on the device side, all Method objects are each
automatically wrapped in a MemoryItem. In consequence, the JIT code cannot
simply create new objects for the employed Methods but must rather retrieve
the pre-existing ones transferred from the host. To this end the raw pointers of
the objects on the device side are included in the generated code and cast to the
appropriate class type for further use. The same process must be carried out for
every required Aggregator.

4. Execution of Module function
Once all the required variables for the execution of the concrete processing
function have been defined, the Method of the Module of the can be called with
the correctly typed local variables as parameters. The call is performed on the
concrete object reference created in the previous step. Since the CUDA compiler
(nvcc) aggressively inlines methods in order to minimize the number of context
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1 // Retrieval of the previously created

2 auto& moduleInst = *reinterpret_cast

<SCMemoryItem<SCXYZInserterImpl>*>(140214001477632);↪→

3

4 // Aggregator for the data field x

5 auto& aggregator_1 = *reinterpret_cast

<SCMemoryItem<SCMeanAggregatorImpl>*>(140214001470464);↪→

6 // Aggregator for the data field y

7 auto& aggregator_2 = *reinterpret_cast

<SCMemoryItem<SCMeanAggregatorImpl>*>(140214001471488);↪→

8 // Aggregator for the data field z

9 auto& aggregator_3 = *reinterpret_cast

<SCMemoryItem<SCMeanAggregatorImpl>*>(140214001472512);↪→

Listing 7.8. Retrieval of Method objects and Aggregators.

switches during the execution of a kernel, the variables are not actually copied at
runtime of the JIT compiled program, but rather the method implementation is
inlined at the call point and operates directly on the local variables. The generated
code for calling the Method of the current Module is shown in Listing 7.9. It
receives the three coordinate variables from the input data as read-only pass-
by-value parameters and the output coordinate variables as pointers to the local
variables as discussed previously.

1 moduleInst->process(x_inR, y_inR, z_inR, x_outW_ptr, y_outW_ptr,

z_outW_ptr);↪→

Listing 7.9. Execution of the Method of the current Module.

5. Execution of Aggregator functions
Analogous to the execution of the Module function, all necessary Aggregator
methods are called thereafter. They receive the value previously stored in the
global model, the new value produced by the method of the Module, the location
to write their result to (which is a pointer to the local variable) as well as pointers
to any helper variables the Aggregator has defined and are needed to perform the
intended calculation. Listing 7.10 shows the calls to all three Aggregators needed
for the coordinate insertion.

6. Commitment of results to global storage
After all calculations have been performed by the Module and the defined Ag-
gregators, the results are then copied back into the global storage where they
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1 aggregator_1->aggregate(x_outW_old, x_outW, x_outW_ptr,

x_sum_agg_ptr, x_count_agg_ptr);↪→

2 aggregator_2->aggregate(y_outW_old, y_outW, y_outW_ptr,

y_sum_agg_ptr, y_count_agg_ptr);↪→

3 aggregator_3->aggregate(z_outW_old, z_outW, z_outW_ptr,

z_sum_agg_ptr, z_count_agg_ptr);↪→

Listing 7.10. Execution of the Aggregator methods defined for the global model and relevant
to the concrete Module.

can subsequently be loaded again by other Modules or finally copied back to the
CPU as result set either entirely or a selection of data points from it. The local
variables are sequentially written back to the local array copy of the global data.
To this end, the appropriate index of the local array copy must again be cast to
the appropriate pointer type of the data field and subsequently dereferenced in
order for the value to be written back correctly into the byte array. Finally, the
local array copy is written back into the global model storage, and the next loop
iteration begins or, if all data points assigned to this thread have been processed
already, the kernel terminates at this point.

1 // Only for variable x. y and z defined analogously

2 // Write back the output of x

3 ( *( (float*) &outputElement[1] ) ) = x_outW;

4

5 // Write back new values of helper variables

6 ( *( (float*) &outputElement[20] ) ) = x_sum_agg;

7 ( *( (uint32_t*) &outputElement[16] ) ) = x_count_agg;

8

9 // Copy local element back to global model storage

10 memcpy(currentIndex, outputElement, 48);

Listing 7.11. Write back operations from the variables to the local array and finally to the
global model.

In keeping with the design-by-contract paradigm and fulfilling the requirement of
modularity (FR 4), no Module or Aggregator can ever access any variable or part of the
global data model not previously defined in their specification. This fact is self-evident
when regarding the code generated by SensorClouds for JIT compilation. All read and
write accesses to the input point clouds as well as the global model are cached locally to
the executing thread and only then passed on to concrete processing functions. There
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is no way that a module developer can gain access to the raw data arrays, since their
location is hidden from any executed method in this fashion.
The generated code also makes it very clear that not only the application developer, but
also the module developer never have to deal with the specifics of parallel programming,
since the parallelization is handled completely by the SensorClouds framework, hereby
fulfilling NFR 1. Module developers can thus focus entirely on implementing the
processing function for a single data point and application developers can focus on
building their concrete sensor fusion and processing application.
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1 // Kernel function definition with pointers to data objects as parameters

2 __global__

3 void run(uintptr_t INPUT_POINTER, uintptr_t OUTPUT_POINTER) {

4
5 auto& INPUT = **reinterpret_cast<SCMemoryItem<SCPointCloudData>*>(INPUT_POINTER);

6 auto& OUTPUT = **reinterpret_cast<SCMemoryItem<SCSensorCloudData>*>(OUTPUT_POINTER);

7
8 uint8_t inputElement[20], outputElement[48];

9
10 float x_inR;

11 float y_inR;

12 float z_inR;

13
14 float x_outW, *x_outW_ptr = &x_outW, x_outW_old;

15 float y_outW, *y_outW_ptr = &y_outW, y_outW_old;

16 float z_outW, *z_outW_ptr = &z_outW, z_outW_old;

17
18 float x_sum_agg, *x_sum_agg_ptr = &x_sum_agg;

19 uint32_t x_count_agg, *x_count_agg_ptr = &x_count_agg;

20
21 float y_sum_agg, *y_sum_agg_ptr = &y_sum_agg;

22 uint32_t y_count_agg, *y_count_agg_ptr = &y_count_agg;

23
24 float z_sum_agg, *z_sum_agg_ptr = &z_sum_agg;

25 uint32_t z_count_agg, *z_count_agg_ptr = &z_count_agg;

26
27 auto& moduleInst = *reinterpret_cast <SCMemoryItem<SCXYZInserterImpl>*>(140214001477632);

28
29 auto& aggregator_1 = *reinterpret_cast

<SCMemoryItem<SCMeanAggregatorImpl>*>(140214001470464);↪→
30 auto& aggregator_2 = *reinterpret_cast

<SCMemoryItem<SCMeanAggregatorImpl>*>(140214001471488);↪→
31 auto& aggregator_3 = *reinterpret_cast

<SCMemoryItem<SCMeanAggregatorImpl>*>(140214001472512);↪→
32
33 for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < INPUT.size(); i += blockDim.x *

gridDim.x) {↪→
34 memcpy(inputElement, INPUT.readFromIndex(i), 20);

35 x_inR = ( *( (float*) &inputElement[0] ) );

36 y_inR = ( *( (float*) &inputElement[4] ) );

37 z_inR = ( *( (float*) &inputElement[8] ) );

38
39 memcpy(outputElement, currentIndex, 48);

40
41 x_outW = 0.0f;

42 x_outW_old = ( *( (float*) &outputElement[1] ) );

43
44 y_outW = 0.0f;

45 y_outW_old = ( *( (float*) &outputElement[5] ) );

46
47 z_outW = 0.0f;

48 z_outW_old = ( *( (float*) &outputElement[9] ) );

49
50 moduleInst->process(x_inR, y_inR, z_inR, x_outW_ptr, y_outW_ptr, z_outW_ptr);

51
52 x_sum_agg = ( *( (float*) &outputElement[20] ) );

53 x_count_agg = ( *( (uint32_t*) &outputElement[16] ) );

54
55 y_sum_agg = ( *( (float*) &outputElement[28] ) );

56 y_count_agg = ( *( (uint32_t*) &outputElement[24] ) );

57
58 z_sum_agg = ( *( (float*) &outputElement[36] ) );
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59 z_count_agg = ( *( (uint32_t*) &outputElement[32] ) );

60
61 aggregator_1->aggregate(x_outW_old, x_outW, x_outW_ptr, x_sum_agg_ptr,

x_count_agg_ptr);↪→
62 aggregator_2->aggregate(y_outW_old, y_outW, y_outW_ptr, y_sum_agg_ptr,

y_count_agg_ptr);↪→
63 aggregator_3->aggregate(z_outW_old, z_outW, z_outW_ptr, z_sum_agg_ptr,

z_count_agg_ptr);↪→
64
65 ( *( (float*) &outputElement[1] ) ) = x_outW;

66 ( *( (float*) &outputElement[5] ) ) = y_outW;

67 ( *( (float*) &outputElement[9] ) ) = z_outW;

68
69 ( *( (float*) &outputElement[20] ) ) = x_sum_agg;

70 ( *( (uint32_t*) &outputElement[16] ) ) = x_count_agg;

71
72 ( *( (float*) &outputElement[28] ) ) = y_sum_agg;

73 ( *( (uint32_t*) &outputElement[24] ) ) = y_count_agg;

74
75 ( *( (float*) &outputElement[36] ) ) = z_sum_agg;

76 ( *( (uint32_t*) &outputElement[32] ) ) = z_count_agg;

77
78
79 memcpy(currentIndex, outputElement, 48);

80 }

81 }

Listing 7.12. Entire JIT code generated for a simple Inserter.

7.3.4 Dataset Handling

DataSets and, by extension ScQLquery objects, must be generated specifically for the
data fields and their types at kernel compile-time, since all the necessary information is
only available at that point in the application lifecycle. For each DataSet required, code
for a derived type of the base class SCDataSet is generated, which holds the specific
information on the data layout of the global model and access operations for the data
fields specified by the Module and only for these.
The goal of the code generation for DataSets is to enable access to a selection of data
points from a larger pool of data while maintaining the access restrictions imposed on
Modules in accordance with the design-by-contract paradigm. Concretely, this access
shall be in the form of a two-dimensional array access, where the parameter of the first
access denotes the index of the data point to be accessed from the result set and the
second access specifies the data field:

dataset[42][sensorclouds::tags::x];

Listing 7.13 shows the exemplary code generator output for a DataSet with access to
the cartesian coordinates of a data point in the global model. The struct SCDataSet_1
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(line 24) is templated, just as the equivalent ScQLquery in Listing 7.5 was. The template
parameters are the field definitions of the configured data fields theModule has requested
access to. Since it is derived from the base class SCDataSet, it can be used in its place,
but can polymorphically overwrite the array access operator (operator[], lines 26-28)
parametrized with the index of the element to be accessed. This allows the concrete
implementation of the DataSet to return a specialized version of the proxy object
SCPointContainer_1 (lines 1-20), which in turn provides an access operator for the
individual fields of the selected data point. The template parameter for the operator[]
method does not have to be explicitly specified since C++ added so called class template
argument deduction (CTAD) [34] in C++20, which enables the compiler to infer the
template argument from the constructor’s parameters if the template argument is used
as a parameter type. Wherever possible, the constexpr specifier is used, which tells
the compiler to evaluate expressions at compile-time rather than at runtime. The
consequence of this, however, is that all variables within the expressions marked with
this specifier must be known at compile-time and must be constant. Since the dynamic
aspect of the SensorClouds architecture is fully resolved at kernel compile-time, this is not
a hindrance, since all necessary information is available at this stage of the application
lifecycle. This is also the other reason for the use of tags, which are simple structs
denoting a specific data field, and are employed in the SensorClouds architecture to
access data fields. Were the generated code to produce string comparisons for the name
of each field in the if...else if... statement (lines 9-15), differentiating between the
data fields, then the code could not be evaluated at compile-time and would suffer a
significant loss in performance. However, since the types of the tags as well as the access
points and indices are all known at compile-time, the compiler can directly replace any
data access proxied by the DataSet with direct memory access, all while still keeping
the access restrictions in place. Hence, this construct enables both high performance
and flexibility while restricting Module access to the pre-arranged data fields.

While the use of a proxy object might seem counterintuitive from a performance stand-
point, preliminary evaluations showed that compilers can seemingly optimize a two-
dimensional array access with two different array subscript operators over two different
objects far more aggressively than other alternatives, such as the function call operator
with two arguments. The performance of various access methods was evaluated by
performing 10 000 000 data access operations with each of the alternatives and record-
ing the total execution time over all iterations, since every single iteration is way too
quick for accurate time measurement with standard methods. As point of comparison, a
very complex dynamic runtime-evaluated implementation was pitted against the JIT
compiled implementations of the same operations. The results of this evaluation are
depicted in Table 7.1.
This JIT-compiled DataSet, however, creates a different problem for developers using
the SensorClouds framework, since the objects they want to use in their programs don’t
exist before the kernel compile-time. This means that developers could only verify
that their code uses the correct fields and data types by running the entire application
and checking if any errors occur during the kernel compilation phase. Moreover, some
IDEs, such as Clion from JetBrains [58] can display type information on variables inline
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1 struct SCPointContainer {

2

3 constexpr SCPointContainer_1(const uint8_t *data) :
_rawDataPointer(data) {}↪→

4

5 template<typename Tag>

6 constexpr

7 inline

8 auto const operator[](Tag &tag) const {

9 if constexpr (std::is_same_v<Tag,

sensorclouds::tags::types::x>) {↪→

10 return ( *( (float*) &_rawDataPointer[2] ) );

11 } else if constexpr (std::is_same_v<Tag,

sensorclouds::tags::types::y>) {↪→

12 return ( *( (float*) &_rawDataPointer[6] ) );

13 } else if constexpr (std::is_same_v<Tag,

sensorclouds::tags::types::z>) {↪→

14 return ( *( (float*) &_rawDataPointer[10] ) );

15 }

16 }

17

18 const uint8_t *_rawDataPointer;

19

20 };

21

22

23 template<typename... Ts>

24 struct SCDataSet_1 : SCDataSet<Ts...> {

25

26 constexpr auto operator[](size_t index) {

27 return SCPointContainer_1(_contents_pointers_array[index]);

28 }

29

30 uintptr_t _contents_pointers_array[42];

31

32 };

Listing 7.13. Generated code for one specific instance of a DataSet for access to three-
dimensional coordinates.

within the code structure while it is being developed. CLion even invokes the static
portion of the C++ compiler in order to resolve even complex type hierarchies for inline
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Implementation Time [ms] Time [µs] Time [ns]

operator[][] 53 53 269 53 269 638
operator() 11 11 548 11 548 231
operator[][] (JIT) 0 1 1114
operator() (JIT) 0 1 1832

Table 7.1. Results of the evaluation of operator performance in dynamic and JIT code. Times
are total execution time for 10 000 000 iterations each.

display. This feature also requires type information which is finally available at kernel
compile-time to be available during development of the SensorClouds application.
In order to support this feature in accordance withNFR 4, a static mock implementation
of the DataSet class was included in the SensorClouds framework, whose only purpose
is to mirror back the correct types from dynamically created data structures for pro-
grammer convenience. Developers program their applications against this definition of
DataSet which is then swapped for the concrete implementation at kernel compile-time,
guaranteeing a seamless transition between the two. What makes such a feature possible
is the template meta-programming library [35] introduced in C++11. It enables the
creation of small meta-programs which argue only on type information, but which
can solve complex tasks relating to dynamic type hierarchies at compile-time, which
increases compilation times by a fair amount, but makes the executable code that much
more efficient.

1 template<typename... Ts>

2 struct SCPointContainer {

3

4 template<typename Tag>

5 constexpr typename VariadicContainsType<Tag, Ts...>::type

operator[](Tag& tag) {↪→

6 return ( ( typename VariadicContainsType<Tag, Ts...>::type )

0 );↪→

7 }

8

9 }

Listing 7.14. The mock implementation for SCPointContainer for compatibility with IDEs.

Analog to the code section shown for the concrete implementation of DataSet generated
for JIT compilation shown in Listing 7.13, the static mock version found in Listing 7.14
also uses a SCPointContainer object, which overloads the array access operator in order
to enable access to a specific data field of the current data point, the implementation
of which can be found in Listing 7.14. The fields to be accessed through a DataSet are
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defined as template arguments of the type Field, which in turn each has two template
arguments for the data field’s tag and the desired type:

1 SCDataSet<

2 Field<sensorclouds::tags::types::x, float>,

3 Field<sensorclouds::tags::types::y, float>,

4 Field<sensorclouds::tags::types::z, float>

5 > dataset;

Listing 7.15. Declaration of a DataSet.

Hence, in order to retrieve the correct data type to a tag passed to the access operator
in the mock implementation for IDE compatibility, the template arguments have to be
searched first for the Field type with the correct tag and its type then returned to the
caller, which is exactly what the template meta-function VariadicContainsType does.
To be syntactically correct, however, the access operator method must also actually
return a value, which is why the type retrieval meta-function is used multiple times in
the implementation of the operator method. The first instance serves the definition of
the operator’s return type (line 5), while the second instance is used to cast the mock
value 0, which is convertible to any other type, to the correct type for the requested
data field.

The implementation of the VariadicContainsType meta-function is shown in Listing 7.16.
At the beginning of this listing, an excerpt from the Field class is shown (lines 2-6) to
illustrate how the type information used by VariadicContainsType is stored within it. By
copying the template parameter to a local type with the using directive, it can later be
accessed directly on every instance of the class during compilation. The correct function
of the following implementation of VariadicContainsType requires the definition of
structurally overlapping meta-classes each containing a type by the same name but
with different definitions, one void and one the actual type (lines 9 & 12). The algorithm
employed for VariadicContainsType is based on recursion through partial template
specialization, which is the practice of defining a class with a broad template first, and
then progressively specializing the types of the template arguments for various cases.
With variadic template arguments, this can be exploited to process one element of
the type list after another. First the base type needs to be declared (lines 16-17). The
meta-function is called with the searched tag and the variadic argument the DataSet
was defined with as template parameters (line 20). Within the function, the currently
split off type’s tag is checked for a match with the searched tag (line 22), and if it does
indeed match, the data type is returned (line 24). If not, the recursion continues (line
26). Finally, if the tag is not contained within the list, the type void is returned (lines
31-32).
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1 // Template types are saved in the Field class for later reference

2 template<typename Tag, typename Type>

3 struct Field {

4 using TagType = Tag;

5 using TypeType = Type;

6 }

7

8 // Wrapper for void type (not found)

9 template<typename... Vs> struct MakeVoidType { typedef void type; };

10

11 // Wrapper for concrete type

12 template<typename T> struct MakeType { typedef T type; };

13

14

15 // Base type declaration

16 template < typename Tp, typename... List >

17 struct VariadicContainsType : MakeVoidType<List...> {};

18

19 // Split off the first type declaration of the variadic template

parameter↪→

20 template < typename Tp, typename Head, typename... Rest >

21 struct VariadicContainsType<Tp, Head, Rest...>

22 : std::conditional< std::is_same<Tp, typename

Head::TagType>::value,↪→

23 // If searched type is found, return the type

wrapper↪→

24 MakeType<typename Head::TypeType>,

25 // if note, continue recursively without 'Head'

26 VariadicContainsType<Tp, Rest...>

27 // Finally return the actually determined type

28 >::type {};

29

30 // Searched type was not found

31 template < typename Tp >

32 struct VariadicContainsType<Tp> : MakeVoidType<Tp> {};

Listing 7.16. Implementation of the VariadicContainsType template meta-function for type
resolution within DataSets during development.
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Chapter Summary. This chapter evaluates the SensorClouds
architecture as well as its accompanying reference implementa-
tion by a number of key factors. First, the raw performance is
compared against competing frameworks in a quantitative eval-
uation, and secondly the applicability to typical sensor fusion
applications is qualitatively evaluated. Finally, the fulfillment of
requirements is discussed. 8
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8.1 Quantitative Evaluation
Due to the fundamental technological differences between the compared frameworks
discussed in Section 4.4, the qualitative evaluation of the frameworks can only be based
on the lowest common denominator between them, which is the execution time of an
insertion operation for a single point cloud into the respective underlying global data
model.
The hardware setup for the performance evaluation of the three frameworks consisted
of the following components:

• CPU: Intel Core i7-8700K
with 6 physical cores and 12 threads running at a base frequency of 3.70GHz
and able to reach a sustained maximum boost frequency of 4.70GHz. It is an 8th
generation Intel processor (Coffee lake) with a 14 nm lithographic process.

• RAM: Corsair Vengeance
64GB (2 * 32GB) of RAM running at a clock frequency of 3000MHz in dual
channel configuration.

• GPU: NVIDIA RTX 2080 Super
Being the first generation of NVIDIA GPUs with dedicated raytracing cores for
advanced lighting effects, it also possesses 3072CUDA general purpose computing
cores as well as 384 dedicated Tensor cores for machine learning applications. The
GPU is built upon the Turing architecture from NVIDIA and was manufactured
by TSMC using their 12 nm FinFET fabrication process. The 2080 Super is also
equipped with 8GB of GDDR6 on-board video memory capable of transfer speeds
of up to 496GB/s.

The software setup consisted of a base Ubuntu 20.04 Desktop installation with g++ 9 as a
standard C++ compiler and the NVIDIA toolkit 11.2 with nvcc as the CUDA compiler. In
order to ease in the building process, the project was compiled using the newer CMake
version 3.10.2, since it has native support for CUDA and can thus aid immensely in the
correct configuration of the build process.

Framework Avg [µs] Median [µs] StdDev [µs] Min [µs] Max [µs]

SensorClouds 25.460 17.632 18.821 11.392 158.080
GPUvoxels 15.270 14.496 4.124 12.672 210.496
PCL 1218.544 442.935 9052.105 248.251 171 473

Table 8.1. Results of the evaluation (point cloud with 43 941 points; 10 000 executions each).

Table 8.1 shows the results of the quantitative evaluation in which the insertion proce-
dure was executed 10 000 times consecutively for each framework individually. The
input data was a static point cloud containing 43 941 points stored in the appropriate
working memory, meaning no read access to the main storage of the computer was
necessary at runtime.
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8.2 Applicability to Sensor Fusion Tasks
Since SensorClouds in and of itself is solely an architecture for sensor fusion and not a
concrete set of algorithms, this chapter will give an overview of how various types of
such algorithms can be implemented within the SensorClouds architecture. In literature
three distinct abstraction levels of sensor fusion processes are typically described [50, p.
22f][39, p. 7][68]:

• Low-level or raw data fusion
In this case, the raw sensor values are directly combined with one another. This is
of course only possible if a direct mapping between sensor values is immediately
apparent or can be created by processing the values in such a manner that they
are transformed into a common unit of measurement. The expectation of this
fusion is that the resulting output contains more information than the inputs
of the operation individually hold. Any raw sensor inputs measuring the same
physical property can, for example, be directly fused with each other, such as
distances in three-dimensional space acquired from depth sensors.

• Intermediate-level or feature level fusion
Intermediate-level fusion is based on pre-processed sensor values which are then
subsequently fused into a common data point. On this level the data to be fused
already contains semantic information in the form of e.g., detected edges, corners
or objects, depending on the feature extraction method employed. The resulting
features are then fused into a common representation of the surveilled space in
form of a feature map which can subsequently be used for further processing such
as obstacle avoidance. Fusing multiple sources of features promises to produce
a more reliable and complete dataset which subsequently leads to more robust
decision making e.g., with respect to objects in the path of a robot which are to
be avoided.

• High-level or decision fusion
High-level fusion is employed in order to combine the suggested decisions from
multiple sources. These in turn base their suggestions on either raw data or
extracted features and propose a plan of action for the controller of the system
to execute. Fusing decisions, e.g., through voting or statistical methods promises
more robust decision making of the overall system, since the failure of one source
to produce a decision proposal or a wrong decision can be compensated by
the other sources. An example of this technique are the airbag systems found
in automobiles. In order to prevent the accidental or excessive deployment of
airbags due to sensor faults or minor impacts, respectively, the controller only
fires the airbag inflation charges if more than one crash sensor detects an impact.
An additional acceleration sensor within the vehicle must also detect the impact
in order for the airbags to be deployed, thus preventing accidental firing in case
of defective crash sensors or strong electromagnetic interference.

Through the high level of customizability offered by the SensorClouds architecture in
terms of data storage and processing, all three abstraction levels of sensor fusion are
easily realizable within it. The implementation of raw data fusion is the most obvious,
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Figure 8.1. Activities involved in sensor fusion by spatial coincidence. This is the default in
SensorClouds.

in case data from multiple sensors measuring the same phenomenon is to be fused. All
data input streams are fed to the appropriate Inserters and subsequently fused with
a simple Aggregator calculating the mean value of the measured property per voxel.
The addition of capacitive sensor values in the conservative form of merely inserting
the point cloud containing all possible values into the global data model can also be
interpreted as raw data fusion, since the actual property of capacitance is not considered,
but rather a safety zone of occupied voxels is created which makes the data equivalent
to any other sensor data providing information on three-dimensional occupancy in the
environment.

Should the probabilistic nature of capacitive sensors and all other sensors involved
additionally be considered this would constitute an elevation to feature level fusion, since
all data points are endowed with additional information beyond the mere measurement
of the respective physical property. Completely abstract features, such as detected
corners, edges or even objects can also easily be added to the SensorClouds data model
by simply adding custom bit-fields to represent the applicable detections per voxel as
well as a customModule to generate the appropriate entries at each location. This can be
either an Inserter if the required features can directly be extracted from each individual
sensor data input stream or a Processor computing the features for each voxel after all
input data has been entered into the global data model.

In order for high-level fusion to be implemented in form of a voting system within
SensorClouds the Aggregator must simply maintain a distinct counter per voxel for each
inserted modality. Then the model output can be filtered according to an arbitrary
amount of required votes regarded as the threshold of certainty to base subsequent
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Figure 8.2. Activities involved in sensor fusion with an insertion counter.

decisions on (cf. Figure 8.2). Another possible implementation would be to maintain
separate data fields per voxel for each sensor by defining a custom Inserter which
differentiates properly between different sensors. Such a configuration is especially
useful when it is necessary to maintain the information which sensor did or did not
measure a certain property at a certain point in space. The actual decision level fusion
process would consequently have to be performed by a custom Processor capable of
understanding this semantic definition at a later stage (cf. Figure 8.3).

The former differentiation of sensor fusion levels hinges on how the data is processed
throughout the entire pipeline and at which point in the pipeline or at which abstraction
level the data is fused. Another classification of fusion processes distinguishes three
different types based on the physical phenomena and the relationship of sensors to each
other [39, p. 8f]:

• Complementary
The relationship between multiple sensors is called complementary if their respec-
tive output data completes the overall image of the surroundings. This typically
implies multiple sensors of the same type or at least measuring the same phe-
nomenon, such as a number of cameras covering different areas of the space to
be observed. Complementary fusion is ordinarily straightforward, since the indi-
vidual inputs must only be added to each other in order to receive the complete
picture of the environment.

• Competitive
Competitive or redundant configurations are characterized, in contrast to com-
plementary configurations, by multiple sensors observing the same phenomena
in the same space. A competitive configuration can also be present when mea-
surements from one and the same sensor taken at different instants are combined
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Figure 8.3. Activities involved in sensor fusion with a bitmask operation.

with each other. A special case of competitive fusion is fault tolerance which can
either be implemented as a compensation or as a safety system. The compensation
configuration simply allows one sensor to take over for another one in case it
encounters a system fault and provides the required data in its stead. The safety
configuration in accordance with the standard ISO 13849-1 [2] is more involved
and requires redundant controllers cyclically cross-checking each other’s results
as well as the sensor inputs from two different sources. Should an error be detected
in any of these steps, the emergency stop signal must be sent immediately to all
components of the overall system.

• Cooperative
When different sensor modalities are combined with each other, it is called coop-
erative fusion. While it is far more difficult to properly implement a cooperative
sensor configuration due to the varying accuracies of the participating sensors
and thus the resulting lower overall accuracy, these configurations also hold the
promise of producing a combined view of the environment that would not have
been possible to observe with each of the sensors involved on their own. Such
a configuration is present, for example, within the Microsoft Kinect and similar
RGB-D sensors, which combine the data from the built-in depth sensor with the
images from an RGB camera in order to receive an RGB point cloud, or more
specifically, three-dimensional data with added color values.

The SensorClouds architecture is also capable of supporting the processing of all dif-
ferent types of sensor configurations as described above through the development of
appropriate Modules suited to the respective tasks. Complementary sensor fusion is
the simplest possible type and can be realized in the same manner as the example
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Figure 8.4. Activities involved in sensor fusion for capacitive sensor data with accompanying
probability data.

given for low-level-fusion seen in Figure 8.1. Since the main premise of SensorClouds
is the combination of all sensor data into one single global data model on the basis of
three-dimensional locations of individual measurements, complementary sensor fusion
is one of the inherent underlying paradigms of the entire architecture and thus trivial
to implement.
Competitive fusion or redundancy of sensors can for example be used as a validation
technique, in order to ensure correct positioning of sensors at runtime. If multiple
cameras are deployed, all overlooking the same workspace of a robot with some degree
of overlap in their respective fields of view, then such a validation routine is easy to
implement. The required architecture is the same as depicted in Figure 8.3, with the
only addition being that the Agreement Processor need only check one single voxel for
agreement, yet must confirm that all bits are set for this voxel, meaning every camera
in the system has detected an object at that point in space. The choice of this reference
object should fall on something which is within the overlap area of the fields of view
and improbable to be obscured by passing people or objects at runtime. In this manner
the positioning of the cameras can be continuously validated at runtime in order to
ensure the data fused in the global model continues to be accurate with respect to the
relative transformation between the various sensors employed.
Depicted in Figure 8.4 is an example which covers both competitive and cooperative
fusion in the same application. Since a system with both cameras (outside-in-sensors)
as well as capacitive sensors mounted to the robot structure (inside-out-sensors) need
not rely on a single one of these sensors to ensure operator safety in the workspace
of the robot, their combination in the global model can be categorized as competitive
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fusion. Both cameras and capacitive sensors observe humans in the environment and are
intentionally used in tandem in order to compensate each other’s inherent deficiencies,
thus creating a competitive or redundant sensor configuration in which the goal is to
have at least one sensor value at all times in the relevant areas. Should the goal however
be to improve the accuracy of the capacitive sensors by correlating the probabilistic point
clouds generated from the FEM simulation with measurements from depth cameras or
similar three-dimensional sensors, then the configuration shifts from a competitive to a
cooperative configuration. An example in which data from two sensors is combined
in order to obtain previously unattainable information is the integration of thermal
imaging into the global model. Three-dimensional sensors cannot perceive thermal
information, since specialized imaging sensors are required to accomplish this task. On
the other hand, thermal cameras have no way of perceiving depth, and stereoscopic
configurations would be very difficult to realize due to the lack of clear edges and focus
in thermal images, since heat inevitably bleeds into the surrounding areas. Hence, the
combination of these two sensor types, which is easily realizable with the SensorClouds
architecture, is a prime example of cooperative fusion, since these two types of sensors in
combination produce previously unobtainable data in form of a thermal depth image.
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8.3 Fulfillment of Requirements

In this segment of the evaluation, the fulfillment of the requirements imposed on the
SensorClouds framework in Section 4.1 will be discussed.

8.3.1 Functional requirements

FR 1 Integration of all sensor data into a global model
All data input coming into a SensorClouds application is inserted into the global
model. This includes any sensor modality or other type of information defined
by the Modules configured for the developed application. The framework is also
agnostic to the information contained within the data fields, meaning that raw
data, as well as extracted features or decision markers can be processed equally.
The only limitation to the amount of data fields that can be handled by the
framework lies in the available memory on the processing hardware.

FR 2 Real-time execution
The results of the quantitative evaluation clearly show that the SensorClouds
framework’s performance is comparable to competing solutions while providing
far more flexibility. The typical computational overhead caused by increased
flexibility is eliminated by generating highly application specific code which is
then compiled at application runtime.

FR 3 Dynamic fusion of various sensor modalities
SensorClouds enables the dynamic fusion of all sensor modalities, provided the data
provided by the sensor contains three-dimensional coordinate information in order
to locate the measurements taken in space. Should this information not be directly
available, this work has also shown, using the example of capacitive sensors, how
to reconstruct the three-dimensional information by means of physics simulations.

FR 4 Modular and reusable architecture
Since all the concrete algorithmic functionality is encapsulated within Modules in
SensorClouds, the requirement of modularity is fully satisfied. Various extensions,
such as to the ScQL query syntax, are possible with only minimal alterations to
the framework’s code base. Due to the fact that all data field definitions are kept
abstract and the data type definitions for Modules are clearly defined following
the design-by-contract paradigm the architecture and the Modules implemented
for it are highly reusable. Modules can be applied to any data containing the
required data fields, and differing types between Module and the provided data
are automatically converted if possible.

FR 5 Scalable Parallel Execution
Through the use of the CUDA framework and the modularization of processing
functions, the architecture and any applications developed with it are scalable on
parallel architectures. Executing a SensorClouds application on a newer device
with more CUDA cores can only lead to an increase in performance, since more
data points can be processed at the same time. Architectural improvements of the
CUDA hardware can also be taken advantage of, since even programs developed
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for older versions of the hardware can still be executed on current hardware with-
out issues and benefit from performance enhancements of the hardware without
alteration. Since Modules are JIT-compiled at application runtime, improvements
to the compiler or the specific architectural components of the hardware are taken
advantage of directly.

FR 6 Compatibility with established software ecosystems
The input and output formats of SensorClouds are compatible with the point
cloud definition of ROS and consequently are directly convertible to that of the
PCL. Other drivers for input and output data can be added by extension of the
appropriate interface classes. Aside from that, any application developed in C++
or with appropriate binding infrastructure (such as Python calling C++ code) can
interface with a SensorClouds application directly. Hence, SensorClouds is fully
compatible with any established ecosystems, such as ROS or the PCL.

8.3.2 Non-functional requirements

NFR 1 Abstraction from parallel computing
No module developer ever has to develop procedures for the parallel processing
of data points, since the SensorClouds framework completely abstracts from these
concepts and only requires module developers to specify the desired algorithm
for processing a single data point. Everything required for the parallel execution
of algorithms, data handling and transfer as well as dependency resolution is
handled by the framework automatically.

NFR 2 Programming paradigm
No application developer must ever interface with raw sensor data directly
when developing with SensorClouds. Applications are comprised of definitions
of connected devices as well as insertion and processing modules.

NFR 3 Keep with industry standards
Great care was taken in the development of the SensorClouds architecture and its
accompanying reference implementation to abstain from utilizing any external
tooling other than what the standard build toolchain and the IDE provide out
of the box. No external tooling is required in order to build a SensorClouds ap-
plication. A CUDA compiler and the essential build tools are entirely sufficient.

NFR 4 IDE support
The reference implementation also went to great lengths to ensure that devel-
opers can always rely fully on the support and correct function of their IDE
when developing applications with SensorClouds. Even when the definition of
a concrete type cannot even exist at the time of development, the framework
provides a static mock implementation a priori, e.g., for the use of DataSets, in
order to enable the continued support by enhanced IDE analysis tools.
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Chapter Summary. This chapter concludes this work by reca-
pitulating the achievements presented throughout and provides
an outlook on future developments.

9
Conclusion and Outlook

This work has presented SensorClouds, a modular and realtime-capable framework for
the processing of multi-modal sensor data in applications for human-robot-collaboration.
The architecture enables application developers to quickly and easily create programs
employing complex sensor fusion methods with very little programming effort. Process-
ing kernels provided by module developers can be arbitrarily combined in applications
to create the desired output data. The interoperability of these modules is guaranteed
through the enforcement of data access contracts following the design-by-contract
paradigm. Data dependencies between modules are automatically resolved into the cor-
rect execution order and mismatched data types between different contract definitions
are automatically converted if this is safely possible, thus increasing the compatibility
of modules with various sensors and other modules.

The goal of creating a unified environment model as the basis for future robot actions was
achieved by enabling the inclusion of sensors without inherent three-dimensional infor-
mation in the three-dimensional global data model of the framework. Two-dimensional
camera images can be projected into the coordinate space of the global data model and
their data added at those points in the model which already contain three-dimensional
information. One-dimensional sensors, such as e.g., capacitive or ultrasonic sensors,
can also be added to the global model by applying the appropriate preprocessing and
the results of a physics simulation determining the specific characteristics of the sensor
model.

Retrieval of results and complex data selection within modules can be performed with
the help of the ScQL query language for spatial and conditional filtering of sensor data
contained in the global data model. Training of machine learning models can be almost
fully automated by employing the ScML architecture, which supports the automatic
data recording, training and prediction in supervised learning applications.

The results of the evaluation showed that, while far more complex in terms of the
dynamic data model, the performance of the SensorClouds framework is competitive

157



9 Conclusion and Outlook

with with the best performing alternative approach, which can, however, only process
occupancy and no additional sensor information.
In summary, the SensorClouds framework is built upon a modular and highly flexible
architecture which can easily by extended to provide additional functionality through
processing modules. This flexibility does not impact the performance of the reference
implementation, however, since all modules are JIT-compiled at runtime, reducing the
overhead during execution since many parameters are known by the time the modules
are compiled and thus regarded as constant.
Robot implementations will likely rely more and more heavily on data from multiple
sensors in the future, in order to navigate and understand their surroundings and plan
their future actions accordingly. SensorClouds can play an important role in the rapid
and stable deployment of applications making heavy use of sensor fusion and data
processing. Provided enough community interest can be generated, the framework
could become an integral part in the development of such applications and offer a wide
array of processing modules to application developers, easing the integration of sensor
fusion even further.
Future possible advancements to the research presented in this work include the further
development of the presented concept for capacitive sensor hardware in order to increase
the detection range and resolution of capacitive sensors mounted on the robot. This
also opens up new possibilities for sensor data processing, since the new generation
of measurement circuits promises to be far less susceptible to noise. The SensorClouds
architecture could be extended to allow even more flexibility in terms of modifying
certain internal behaviors of the framework with special modules. This would also
enable the definition of new ScQL query commands through the use of the appropriate
module. The reference implementation of SensorClouds can be further optimized, which
could lead to even better and more consistent performance.
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