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Abstract
Assortment optimization is a core topic of demand management that finds applica-
tion in a broad set of different areas including retail, airline, hotel, and transporta-
tion industries as well as in the healthcare sector. Hence, the interest in research 
on assortment optimization has grown rapidly in recent years. However, the sheer 
number of publications on the topic of assortment optimization makes it difficult 
to keep track of all available approaches proposed in the literature. In this paper, 
we systematically review state-of-the-art studies on assortment optimization. We 
assemble an extensive literature overview by strategically searching for pre-defined 
keywords within leading scientific databases. The resulting literature is grouped by 
a proposed taxonomy that captures properties related to the optimization problem 
itself, the modelled customer behaviour, and the solution concept applied for solving 
the problem at hand. For each group, we provide an overview of the corresponding 
literature and analyse it based on a proposed selection of key factors.

Keywords Choice modelling · Assortment optimization · Parametric · 
Nonparametric · Review

1 Introduction

Assortment optimization is a core problem that arises in disciplines such as retail 
operations or revenue management (Qi et al. 2020) and finds application in a broad 
set of different areas including retail, airline, hotel, and transportation industries as 
well as in the healthcare sector. The assortment problem involves a seller choosing 
an appropriate subset of items from the available universe to be offered to a group of 
customers to maximize an objective, e.g. the expected revenue, while accounting for 
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the customers’ choice behaviour. On the other hand, customers decide whether and 
which of the offered item(s) to purchase based on their preferences (Qi et al. 2020; 
Mišić and Perakis 2019). This results in a combinatorial problem that is extensively 
studied in the literature (Qi et al. 2020). Particularly over the last decades, assort-
ment optimization received a considerable boost in attention both from practitioners 
and academics alike and became a highly active research area. This is also reflected 
by the development of the number of published journal articles related to this 
research direction. As can be seen in Fig. 1, the amount of articles related to assort-
ment optimization published per year that are classified in our review increased 
strongly in recent years.1

Due to the sheer amount of literature on assortment optimization, it might be dif-
ficult to keep track of all available approaches. Surveys serve the purpose of provid-
ing a comprehensive overview of the most important publications, their approaches, 
and their findings.

There exist a variety of surveys covering the topic of assortment optimization. 
However, these surveys are often dedicated to a broader research area such as reve-
nue management or retail operations and thus only briefly consider assortment opti-
mization as an individual topic.

For example, the survey of Mišić and Perakis (2019) reviews applications of 
data analytics in operations management for three main areas, namely supply 
chain management, revenue management, and healthcare operations. As part of 

Fig. 1  Timely development of the (cumulative) number of journal articles related to assortment optimi-
zation that are classified in our literature review

1 Note that the strong dip in 2023 results from the fact that this literature review only contains articles 
that are published until including April 2023.
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the survey on revenue management, the authors provide a brief review of choice 
modelling and assortment optimization by presenting the findings of selected 
studies published in this area.

Strauss et al. (2018) conduct a survey on choice-based revenue management. 
They focus on the design and estimation of discrete choice models for revenue 
management and on the dynamic availability control problem under customer 
choice behaviour, which contains an assortment optimization problem. Hence, 
the authors provide a brief overview of related literature on assortment optimiza-
tion, which is structured according to the underlying choice models.

In contrast, Qi et al. (2020) review literature on data-driven research in retail 
operations with a particular focus on studies in three core aspects of retail opera-
tions, namely assortment optimization, order fulfillment, and inventory manage-
ment. The section on assortment optimization starts with an introduction to para-
metric choice models and their estimation, followed by the description of selected 
literature on assortment optimization under parametric choice models. The sec-
tion ends with a brief introduction of nonparametric approaches to assortment 
optimization.

Kök et  al. (2008) provide an extensive survey on both assortment optimization 
and inventory planning. They start their survey by briefly reviewing four streams 
of literature that assortment planning models build on, namely product variety and 
product line design, shelf space allocation, multi-product inventory systems, and a 
consumer’s perception of variety. Next, the authors discuss consumer substitution 
behaviour and introduce three popular demand models—multinomial logit, exog-
enous demand, and locational choice. They present selected literature on assortment 
planning related to the basic problem, as well as extensions thereof including supply 
chain considerations, demand learning, and assortment changes during the selling 
season or multi-category assortment planning. Finally, the authors discuss demand 
and substitution estimation methodologies, present industry approaches to assort-
ment planning of four retailers, and compare these industry approaches with aca-
demic ones.

Hübner and Kuhn (2012) provide an excellent review on integrated assortment 
and shelf space planning in retail category management. They classify the litera-
ture on assortment problems by the underlying demand model, substitution reasons 
(e.g. out-of-assortment, out-of-stock), solution method, and maximum number of 
items considered in the test case and provide additional information regarding model 
enhancements considered in the listed studies.

Later on, Karampatsa et  al. (2017) conduct a survey on assortment and shelf-
space planning models in retail category management. The literature on assort-
ment problems is mainly classified according to the objective (assortment, inven-
tory, price), the underlying demand model, the type of substitution, and the solution 
method that has been used in each model, along with the average number of items 
used in the test cases. The considered literature on assortment problems is limited to 
multinomial logit, exogenous demand and locational choice demand models.

Finally, Berbeglia et  al. (2021a) review selected choice models and provide an 
application guideline for them by defining suitable operational environments for 
each of the considered choice models based on extensive numerical studies. They 
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extend their studies by empirically evaluating the revenue performance of the con-
sidered choice models.

In contrast with all above-introduced surveys, we aim at reviewing literature on 
assortment optimization problems in general, without focusing on a particular dis-
cipline such as revenue management or retail operations. Moreover, in contrast with 
Hübner and Kuhn (2012) and Karampatsa et al. (2017), we focus on classic, pure 
assortment problems and do not consider extensions such as shelf-space planning. 
In addition, we do not limit our review to selected choice models. Finally, all of the 
reviews mentioned before provide their review of the existing literature in a textual 
form describing individual articles’ contributions to the topic. To the best of our 
knowledge, only the two reviews by Hübner and Kuhn (2012) and Karampatsa et al. 
(2017)—both covering the topic of assortment and shelf-space planning—addition-
ally provide a small tabular classification of selected literature.2 Instead of describ-
ing individual articles’ contributions, our systematic literature review should provide 
a structured overview of assortment optimization settings available in the literature 
by classifying existing articles according to a proposed taxonomy covering a broad 
range of factors related to assortment optimization. This makes it easy for academics 
and practitioners alike to determine the assortment optimization setting that is most 
suitable for them and identify relevant related literature. Hence, the aim is not to 
provide a detailed discussion of all existing approaches to assortment optimization 
or their underlying choice models, but rather to give an overview of different studied 
settings and to identify existing research gaps.

The remainder of this review is structured as follows: Our proposed taxonomy to 
group the available literature on assortment optimization concerns factors related to 
the optimization problem itself, the modelled customer behaviour, and the solution 
concept applied for solving the problem at hand. Each of these topics is compre-
hensively addressed in Sects. 2, 3, and 4, respectively. In Sect. 5, we describe the 
procedure of conducting our systematic literature review, summarize our proposed 
taxonomy, assemble an overview of the literature on assortment optimization, and 
analyse it based on a selection of key factors. We provide future research directions 
in Section  6 and conclude our review in Section  7.

2  Modelling assortment optimization problems

This section is targeted to the introduction of different versions of the assortment 
problem. In Sect. 2.1, we start by introducing the classic assortment problem, fol-
lowed by the presentation of robust and dynamic versions thereof in Sects. 2.2 and 
2.3, respectively. We terminate the section by a concise description of a variety of 
constraints that are typically considered in the assortment optimization literature in 
Sect. 2.4.

2 To be precise, both reviews consider the factors demand model, model enhancements, substitution rea-
son (out-of-assortment/out-of-stock), solution method, and number of items in case study, whereby Kar-
ampatsa et al. (2017) additionally report the model consideration (Assortment, Inventory, Pricing).
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2.1  Classic assortment problem

Assortment optimization refers to the problem of determining a selection of options 
to be offered to arriving customers in order to maximize a given objective, typically 
the expected revenue (Mišić and Perakis 2019).3 This is sometimes also referred to 
as assortment planning. In case the assortment is specifically tailored to individual 
customers, the problem is called assortment personalization (see e.g. Golrezaei et al. 
2014). More formally, let N = {1, ..., n} be the set of available items and denote the 
no-purchase option by {0} . Then, N ∪ {0} refers to the selection of available items 
including the no-purchase option. The retailer needs to select a subset of the avail-
able items to be offered. Following Davis et al. (2013), instead of denoting the offer 
set as an actual subset, the assortment can be represented by a binary decision vari-
able xi for each item i ∈ N that indicates whether this item is offered or not by set-
ting xi = 1 and xi = 0 , respectively. More formally, define

Note that the no-purchase option is always offered, implying that x0 = 1 holds for 
any assortment. The number of options that are offered in an assortment can be 
obtained by summing over all xi , i.e. 

∑
i∈N xi.

The demand for any option depends on the preferences of the customers and 
is captured by a choice model specifying the probability that a customer selects a 
particular option from a given offer set as detailed in Sect. 3. Assuming a general 
choice model—i.e. any arbitrary choice model such as the multinomial logit, the 
nested logit, the Markov chain choice, or the rank-based model without specifying 
a particular one (Talluri and van Ryzin 2004; Gallego and Topaloglu 2019; Strauss 
et al. 2018)—the customer selects alternative i ∈ N with probability pi(x) given that 
assortment x is offered and decides to not purchase anything with probability p0(x).

For all offer sets x ∈ {0, 1}n , the purchase probabilities need to satisfy certain 
requirements (see Talluri and van Ryzin 2004). First, the choice probabilities of all 
items i ∈ N and the no-purchase option need to be non-negative. Second, the choice 
probabilities of all items and the no-purchase option must sum up to one and third; 
the choice probability of an item must equal zero if this option is not contained in 
the offer set. These requirements can be formalized as follows: 

1. pi(x) ≥ 0 ∀i ∈ N ∪ {0}

2. p0(x) +
∑

i∈N pi(x) = 1

3. pi(x) = 0 if xi = 0

xi =

{
1, if item i is offered

0, else
∀i ∈ N.

3 For simplicity, we choose the expected revenue as running example within this review. However, note 
that all concepts can be analogously applied for different objectives.
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Moreover, assume that item i ∈ N is sold at revenue ri and that the market is of size 1 
without loss of generality. Then, the classic assortment problem targeted at optimizing 
the expected revenue is denoted by

In the above optimization problem (AOP), x ∈ {0, 1}n denotes the decision vari-
able indicating which of the items i ∈ N are included in the offered assortment. 
The objective represents the expected revenue and sums up the expected revenue 
obtained by each item i. The expected revenue per item is obtained by multiplying 
the purchase probability pi(x) of the item with its revenue ri . The optimization prob-
lem formulation is completed by a binary constraint ensuring that all values of xi are 
either 0 or 1.

Note that such assortment optimization problems are combinatorial by their nature. 
The number of possible assortments to be evaluated is

where 
(
n

k

)
=

n!

k!(n−k)!
 for any integer 1 ≤ k ≤ n . Since the possible number of combi-

nations quickly explodes, solving the problem by full enumeration is hardly possi-
ble. However, the above way of formulating the optimization problem allows to 
implement and solve it using standard solvers such as CPLEX or Gurobi.

2.2  Robust assortment problem

Assortment optimization problems are typically based on an underlying probabilistic 
choice model. The parameters of the choice model are mostly assumed to be unknown 
and thus need to be estimated from data, such that statistical errors in the parameters are 
unavoidable (Désir et al. 2023). The optimal assortment decision is then made based on 
the estimated parameter values while ignoring any uncertainty associated with these 
estimates (Rusmevichientong and Topaloglu 2012).

To overcome this issue, an uncertainty set, i.e. a set of likely parameter values, can 
be considered, which includes the true parameters with high confidence based on the 
statistical estimation procedure. Then, the overall goal is to determine a revenue maxi-
mizing assortment while explicitly accounting for the uncertainty in the choice model 
parameters. Instead of directly optimizing the expected revenue as done in (AOP), this 
can be achieved by maximizing the worst-case expected revenue, where the worst case 
is taken over all possible parameter values in the uncertainty set. The resulting optimi-
zation problem is referred to as robust assortment optimization and can be formalized 
by

(AOP)
max

x

∑
i∈N pi(x) ⋅ ri

subject to xi ∈ {0, 1} ∀i ∈ N

(1)
(
n

1

)
+

(
n

2

)
+⋯ +

(
n

n

)
,

(Robust AOP)
max

x
min

�

∑
i∈N pi(x,�) ⋅ ri

subject to xi ∈ {0, 1} ∀i ∈ N
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where � represents the model parameters of the underlying choice model (Rusmevi-
chientong and Topaloglu 2012).

Note that we made the dependence of the choice probabilities on the selected 
model parameters explicit in the objective of the above problem formulation (Robust 
AOP). Moreover, note that (Robust AOP) maximizes the minimum expected rev-
enue, where the decision variables for the minimization are the model parameters; 
the decision variable of the subsequent maximization of the worst-case expected 
revenue is again the binary assortment vector x ∈ {0, 1}n . As before, the optimiza-
tion problem formulation includes a binary constraint ensuring that all values of xi 
are indeed either 0 or 1.

A popular way of approaching robust assortment problems is to make use of 
duality results. For example, Li and Ke (2019) and Mehrani and Sefair (2022) uti-
lize strong duality for constructing their solution methods to robust assortment prob-
lems under the multinomial logit and the ranking-based choice model, respectively. 
Likewise, Désir et al. (2023) study the robust assortment problem under the Markov 
chain choice model and propose an iterative algorithm that makes use of the min-
max duality.

2.3  Dynamic assortment problem

The classic static assortment optimization introduced in Model (AOP) assumes 
that the customers’ preferences are known or can be estimated from data and do 
not change over time. In this case, the assortment problem is targeted to determine 
a revenue-maximizing assortment that is offered over the whole selling season. In 
contrast, in dynamic assortment optimization the customers’ choice behaviour is 
unknown a priori and must be learned step by step by sequentially offering different 
trial assortments to arriving customers over a certain time horizon and observing the 
corresponding click or purchase behaviour. For simplicity, it is typically assumed 
that exactly one customer arrives per selling period t = 1, ..., T  and is offered a 
period-specific assortment xt . This setting is e.g. relevant when the seller follows a 
multi-period planning horizon or for short-lived items without sufficient historical 
data, see e.g. Caro et al. (2014).

It is realistic that the assumed customer behaviour and thus the offered assortment 
are incorrect in the beginning of the selling season and improve over time by observ-
ing more and more customer behaviour. However, this so-called exploration period 
should not be too long as the offered trial assortments might be suboptimal and thus 
lead to lower revenues. Therefore, the decision maker at each time step faces the deci-
sion whether to keep exploring more assortments to better learn the customer behav-
iour or begin to exploit the best assortment determined so far. Clearly, the longer the 
exploration period, the greater the chance to find a near-optimal assortment. But this 
long exploration period might come with large accumulated regret, i.e. large cumula-
tive expected revenue losses caused by offering suboptimal assortments. Hence, the 
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question is how much time should be spent in learning customer preferences before 
exploiting the best assortment determined till then. This problem is referred to as 
exploration–exploitation trade-off and is characteristic for this type of dynamic assort-
ment problem, see Caro and Gallien (2007). The overall goal in such dynamic settings 
is to minimize the cumulative regret or to maximize the expected cumulative revenue 
over the whole selling horizon, see e.g. Rusmevichientong et al. (2010) and Bernstein 
et al. (2019).

Besides this multi-period problem formulation, there exist further assortment opti-
mization specifications that unfold dynamically. In classic assortment optimization 
settings, the whole assortment is simultaneously offered to arriving customers with 
the goal of maximizing the expected revenue. However, there exist numerous settings 
where it might be overwhelming to present a customer with a large number of pos-
sible options all at once. This is e.g. the case in appointment scheduling when book-
ing doctor’s appointments or a table in a restaurant. In these cases, it can be beneficial 
to provide the customer with only a handful of time slots in consecutive stages until 
the customer identifies a suitable time slot. Besides this, e-tailers also often make use 
of sequential offerings, particularly for product recommendations or when displaying 
search results across multiple results pages, see e.g. Liu et al. (2020).

In such settings, the purchase dynamics of a customer unfold sequentially over T 
stages. In each stage t = 1, ..., T , one assortment xt of items is selected and made avail-
able for purchase. Moving from one stage to the next, the customer either decides to 
purchase one of the items offered in the present stage according to his choice model 
preferences and leave the system or to not make a purchase at that time. In the former 
case, the seller gains an option-specific revenue; in the latter case, the customer can 
progress to the next stage if any is left or leave the system without making a purchase. 
The purchase decision can be either governed by a stage-dependent choice model 
reflecting the fact that customers’ preferences could change from stage to stage due to 
e.g. updated perceptions or patience waning, or by a stage-invariant choice model that 
is used across all stages (Liu et al. 2020; Feldman and Segev 2022). Many authors pro-
pose adjusted versions of known choice models to capture this dynamic behaviour (see 
e.g. Feng and Wang 2021; Flores et al. 2019).

Overall, the dynamic version of the assortment problem can be formalized by

where xt
i
 indicates whether option i is offered in period/stage t, pt

i
 denotes the pur-

chase probability of option i in period/stage t, and rit represents the revenue for 
option i in period/stage t. Note that the objective of the above problem formulation 
(Dynamic AOP) entails a double sum. In the inner sum, the expected revenue is cal-
culated for each t separately. Subsequently, the outer sum determines the total cumu-
lative expected revenue by summing the expected revenues across all considered 
sales periods/stages t = 1, ..., T  . The decision variable of this optimization problem 
is the binary assortment matrix X ∈ {0, 1}T×n with rows xt, t = 1, ..., T  . Finally, note 

(Dynamic AOP)

maxX
∑T

t=1

∑
i∈N pt

i
(xt) ⋅ rit

subject to xt
i
∈ {0, 1} ∀i ∈ N, t = 1, ..., T
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that the above optimization problem formulation (Dynamic AOP) includes a binary 
constraint ensuring that all values of xt

i
 are indeed either 0 or 1.

2.4  Constraints

In practice, assortment tasks are often accompanied by a broad set of requirements. 
These requirements can be incorporated in the optimization problem as constraints, 
i.e. as logical conditions to be satisfied by the solution of the optimization problem at 
hand. In assortment optimization, typically hard constraints are considered instead of 
soft ones. The former puts conditions on the variables that must be satisfied, whereas 
violating the latter merely imposes a penalty on the cost function. There exists a variety 
of constraints that are considered in the literature on assortment optimization. They are 
briefly introduced in the following.

• The cardinality constraint limits the total size of the offered assortment to a max-
imum of C options; more formally 

∑
i∈N xi ≤ C . To avoid trivial cases, typically 

C ≤ n is assumed. Assortment optimization under such a cardinality constraint is 
e.g. studied by Lo and Topaloglu (2021).

• Under a capacity constraint—sometimes also referred to as space constraint or 
knapsack constraint—each option i is associated with an item-specific weight or 
size wi and the capacity constraint limits the total available weight/space to C; more 
formally 

∑
i∈N wixi ≤ C . Such a capacity constraint is e.g. considered in Feldman 

and Topaloglu (2017b). Note that for the special case of uniform weights wi = 1 ∀i , 
the capacity constraint reduces to a cardinality constraint.

• Totally unimodular (TU) constraints refer to certain types of constraints whose 
combination results in a constraint system that exhibits the so-called total unimodu-
larity property. The constraint system is of the form Ax ≤ b where A satisfies the 
TU property—i.e. A is a matrix with every square submatrix having determinant ±1 
or 0—and b denotes a vector that is assumed to be integral. This constraint struc-
ture subsumes a variety of different constraints such as the described cardinality and 
capacity but also precedence and partition constraints (see Davis et al. 2013).

– Precedence constraints assume that a product i can only be offered to customers 
in case a certain other product j is also offered. This constraint can be formalized 
as xi ≤ xj.

– Under partition constraints, the products are partitioned into K disjoint groups 
S1, ..., SK and there is a limit bk on the number of products offered per group k, 
i.e. 

∑
i∈Sk

xi ≤ bk.

• Inventory constraints limit the number of units of a product that can be sold. This 
constraint is particularly important in the context of (Dynamic AOP), which com-
prises the determination of revenue-maximizing assortments over a whole selling 
season of length T. Dynamic assortment optimization under such an inventory con-
straint is e.g. studied by Rusmevichientong et al. (2020).
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3  Capturing customer behaviour

This section is targeted to the introduction of different aspects related to customer 
behaviour. In Sect. 3.1, we start by describing the most popular choice models and 
frequently used estimation techniques. Subsequently, model extensions related to the 
allowed number of item purchases or the incorporation of consideration sets are dis-
cussed in Sects. 3.2 and 3.3, respectively. We terminate the section by a description 
of the impact of different sales channels on customer behaviour in Sect. 3.4.

3.1  Choice model design and estimation

As mentioned before, assortment optimization refers to the problem of determining 
an optimal assortment of options that should be offered to the customers in order 
to maximize the expected revenue with respect to a given choice model (Mišić and 
Perakis 2019), that is to say an assumption on the customers choice preferences. 
Intuitively, choice models are used to capture the demand behaviour of the custom-
ers and thus can be used to model which of the offered options might be purchased 
by the customers. Doing so, the optimal assortment needs to find a balance between 
including options and cannibalizing the demand of other options’ sales, see Kök 
et al. (2008).

In Sect. 2, we introduced the assortment optimization problem under a general 
choice model that provides the choice probabilities for all products given a certain 
assortment. However, to solve an optimization problem, a concrete choice model 
must be chosen. In recent years, the assortment problem has been studied under a 
variety of choice models.

As depicted in Fig.  2, choice models can be divided into parametric and non-
parametric approaches whereby the parametric choice models can be subdivided 
into logit-based choice models such as the multinomial logit, the mixed multinomial 

Fig. 2  Tree structure of choice models
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logit, the nested logit, and the paired combinatorial logit model and further para-
metric choice models including the exponomial and the Markov chain choice model 
(see Strauss et al. 2018). Both, the parametric and the nonparametric approaches are 
briefly presented in Sects. 3.1.1 and 3.1.2, respectively. A more detailed introduction 
of these choice models is found in Appendix A.

3.1.1  Parametric choice models

Parametric choice models are fully defined by a finite number of parameters that do 
not scale with the number of offered items (Berbeglia et al. 2021a). Such models are 
typically based on random utility theory, where it is assumed that consumers associ-
ate a certain utility with every item, and decide on the alternative that maximizes 
their utility (Strauss et al. 2018). This framework is also referred to as random util-
ity maximization (RUM). The utility of an option is assumed to be composed of a 
deterministic and a random component. Different assumptions made on the distribu-
tion of the random component result in different choice models. Below, we briefly 
present a selection of the most common parametric choice models considered in 
the literature on assortment optimization. A more detailed introduction of the RUM 
framework and the below presented choice models can be found in the textbooks of 
Ben-Akiva and Lerman (1985), Train (2009), and Hensher et al. (2005) as well as in 
Appendix A.

• Multinomial logit (MNL): The multinomial logit model of Luce (2012) and 
McFadden (1973) can be used to estimate the probabilities of different possi-
ble choice options of a customer based on a selection of given attributes. As an 
example, imagine a customer can decide to purchase a t-shirt either made of cot-
ton or silk or neither of them. Based on price and quality, the customer associ-
ates a preference weight with each of these products and the probability to select 
an option is determined by this options preference weight relative to the total 
preference weight of the offer set. Nevertheless, it should be taken into account 
that the MNL model might have a deficiency in representing the choice among 
alternatives with shared attributes—the Independence of Irrelevant Alternatives 
(IIA) property (see Ben-Akiva and Lerman 1985) illustrated by the well-known 
’red bus/blue bus’ paradox (Debreu 1960)—and should therefore be used with 
caution according to Talluri and van Ryzin (2004).

• Mixed multinomial logit (MMNL): The mixed multinomial logit choice model 
(McFadden and Train 2000) considers different customer segments whereby the 
preferences of each segment follow a segment-specific MNL model. Imagine 
for example two customer segments—budget conscious shoppers and quality-
focused consumers. Customers within the former segment put more weight on 
the product price, whereas customers from the latter segment are less focused 
on the product price but more on its quality. Such MMNL models are able to 
approximate the choice probabilities of any choice model within the RUM 
framework arbitrarily close under mild regularity conditions (McFadden and 
Train 2000). The latent class multinomial logit (LC-MNL) is a special case of 
the MMNL where the random MNL parameters follow a discrete distribution.
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• Nested logit (NL): Under the nested logit model, it is assumed that the choice 
set can be partitioned into disjoint subsets called nests (Heiss 2002) in a way 
such that the IIA property holds within each nest but not across different nests 
(Strauss et al. 2018). Then, the choice probability for a certain option is the prod-
uct of the probability to choose some alternative from the same nest in which this 
certain option is located and the conditional probability to choose exactly this 
certain option given some alternative in the same nest as this certain option is 
selected. Imagine for example a customer who is looking for new clothes, which 
can be separated into the categories business wear and casual clothing. The cus-
tomer decides to purchase a black suit belonging to the business wear category.

• Paired combinatorial logit (PCL): Under the PCL model, all items are grouped 
into nests of size two, whereby the model allows for correlations between the 
utilities of any pair of items and is thus able to capture situations where the pref-
erence of a customer for a particular item offers insights into the customer’s 
attitude towards another item. Under this model, the probability that a certain 
option is chosen is obtained by summing over all nests of size two that contain 
this option. To be precise, one sums the product of (i) the probability that a cus-
tomer picks the nest of size two and (ii) the probability that the certain option 
is selected given that an alternative from the nest of size two is purchased (see 
Koppelman and Wen 2000). As an example, imagine a customer is interested in 
a blue t-shirt. This customer likely shows an affinity towards blue clothes and 
thus might be interested in blue shorts as well.

• Exponomial (EXP): Under the exponomial choice model proposed by 
Alptekinoğlu and Semple (2016), the choice probabilities are expressed as a lin-
ear combination of exponential terms—hence the name ’exponomial’ (Strauss 
et al. 2018). In contrast with the MNL or the NL model where the customers’ 
willingness to pay distribution is assumed to be positively skewed, the EXP 
model assumes a negatively skewed distribution of customer utilities. This model 
is particularly suitable for situations in which the customer is well informed 
about products and their values such that his willingness to pay distribution is 
negatively skewed because he would be deterred by the prospect of overpaying 
(Alptekinoğlu and Semple 2016). Imagine for example a person buying a new, 
expensive wristwatch. This customer likely knows the watch’s MSRP as well as 
further offer prices across different online sales platforms. Hence, the customer 
obtains a benchmark price for all watches in his choice set and the likelihood 
that he is willing to overpay this benchmark price is way lower than the likeli-
hood that he is willing to underpay his benchmark price, suggesting a negatively 
skewed willingness to pay distribution.

• Markov chain choice (MCC): The Markov chain choice model proposed by 
Blanchet et  al. (2016) can approximate any discrete choice model within the 
RUM framework under mild assumptions (see Blanchet et al. 2016). The model 
represents the customer choice process by a Markov chain where each state cor-
responds to a product or the no-purchase option. Every product state is connected 
with state 0 representing the no-purchase option. The customer arrives at a state 
according to its arrival probability. When arriving at a certain state, the customer 
purchases the corresponding product in case it is offered. Otherwise, the cus-
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tomer proceeds to another state with a certain transition probability. Such a tran-
sition probability can be thought of as the probability to substitute one product 
with the other in case the former is unavailable (see Strauss et al. 2018).

3.1.2  Nonparametric choice models

The previously introduced parametric choice models fully depend on the choice of 
their underlying parameters. These parameters are typically unknown and need to be 
chosen or estimated in practice. Likewise, the attributes driving the choice process 
need to be selected, which is a potential source of specification errors (Strauss et al. 
2018). Moreover, parametric choice models assume that the choice behaviour can 
be captured by a given functional form. Yet, the specified functional form may not 
adequately capture the actual choice behaviour (see Strauss et al. 2018).

Nonparametric choice models by design do not suffer from these problems as 
they are not built upon any assumption on the data structure but are solely shaped by 
data. However, nonparametric choice models typically do not allow for extrapolation 
and prediction of changes in the demand pattern due to changes in an options attrib-
utes (Berbeglia et al. 2021a).

Such nonparametric models are typically designed as ranked lists of preferences, 
also referred to as customer types. Under rank list-based models, the customer 
chooses the highest ranking available item or leaves without purchase if none of the 
offered items ranks higher than the no-purchase option. Demand is then modelled by 
a probability distribution over all customer types. Overall, this model is quite gen-
eral and subsumes various choice models typically considered in assortment optimi-
zation such as the MNL (see Mahajan and van Ryzin 2001).

3.1.3  Estimation

As mentioned before, the parameters of the parametric choice models introduced so 
far are typically unknown and therefore need to be chosen. The same holds for the 
descriptors of nonparametric models such as the empirical distribution of a demand 
function. For this purpose, data are required, whereby the data used for such estima-
tion tasks can consist of stated-preference or revealed-preference data. Stated-pref-
erence data comprise data that are based on behavioural intentions and responses 
to hypothetical choice situations, whereas revealed-preference data describe actual 
customer behaviour (see Ben-Akiva 1994). In the area of assortment optimization, 
typically historical sales data reflecting actual customer behaviour—i.e. revealed-
preference data—are used for this purpose. However, sometimes it might be the case 
that no or not sufficient historical data are available. Then, stated choice experiments 
can be used to obtain stated-preference data on the customers behaviour within 
hypothetical choice situations.

In literature and practice, there exist two approaches that are particularly popu-
lar for performing estimation tasks—maximum likelihood estimation (MLE) and 
expectation–maximization (EM).
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• Maximum likelihood estimation is a method used to estimate the unknown 
parameters by maximizing a likelihood function such that the observed data 
are most probable under the assumed model (see e.g. Hensher et  al. 2005). 
Its solvability in closed form is only given in certain special cases. A well-
known alternative to MLE is the so-called least squares minimization. Ber-
beglia et al. (2021a) provide empirical evidence that MLE and least squares 
minimization have comparable performance in terms of out-of-sample pre-
diction accuracy for all considered choice models though MLE tends to be 
slightly superior in the majority of all analysed scenarios.

• Expectation–maximization—proposed by Dempster et  al. (1977)—is an 
iterative method to determine maximum likelihood estimates of unknown 
parameters in statistical models by alternating between expectation (E) and 
maximization (M) steps. In the former step, a function for the expectation of 
the log-likelihood is created and evaluated using the current parameter esti-
mates. In the M-step, the parameters maximizing the expected log-likelihood 
function found in the E-step are computed to obtain improved parameter esti-
mates.

In recent years, the rise of machine learning has also affected the area of choice 
modelling. According to van Cranenburgh et  al. (2022), machine learning 
advanced considerably when it comes to estimation algorithms that are able to 
deal with large volumes of data and complex model specifications. These algo-
rithms can also be employed for the estimation of choice models. For example, 
Lederrey et al. (2021) propose new efficient stochastic optimization algorithms 
that are able to deal with large data sets to estimate discrete choice models.

Another common approach of combining choice modelling and machine 
learning is based on a two-step procedure. First, the utility is modelled as a 
function of (product/customer) features using a machine learning method, and 
second, the utilities are related to the choice probabilities using a discrete choice 
model such as the MNL or the NL (see e.g. Cai et al. 2022). For example, Han 
et  al. (2022) and Sifringer et  al. (2020) both propose to replace the utility by 
a neural network function of product (and customer) features. The utilities are 
then mapped to the choice probabilities via a MNL model in the former study 
and via both, MNL and NL models in the latter one.

Likewise, Doudchenko and Drynkin (2020) also propose a two-step proce-
dure. In their case, first a prediction problem linking the individual level vari-
ables to choice probabilities is solved. Second, a standard discrete choice model 
is estimated to find coefficients at pre-defined variable values, which enables the 
gain of the coefficients for any other point by solving a system of linear equa-
tions. For more information regarding the intersection of choice modelling and 
machine learning, we refer the interested reader to van Cranenburgh et al. (2022) 
and the references therein as well as to Sect. 6, where we comment upon future 
research on combining demand modelling, machine learning and assortment 
optimization.
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3.1.4  Empirical performance

The selection of a choice model that is suitable for the given operational context in 
terms of model specification, computational tractability, and prediction accuracy is 
challenging. In their empirical study, Berbeglia et  al. (2021a) analyse nine choice 
models extensively used in the assortment optimization literature, namely the mul-
tinomial logit, the mixed logit, the latent-class multinomial logit, the nested logit, 
the exponomial, the Markov chain choice model including all possible transactions, 
a reduced Markov chain choice model where the transitions are designed following 
a vertical differentiation of the items, a Markov chain choice model with transition 
matrix of rank two, and a rank list-based choice model. These models are compared 
with regard to their predictive ability and the computational time required to esti-
mate different models.

• Regarding the prediction accuracy, the authors find that the exponomial model 
stands out in small training data environments, whereas in large training data 
environments, the Markov chain choice model by far exhibits the best perfor-
mance. This observation holds for all three types of evaluated instances—syn-
thetic, semi-synthetic, and real. Moreover, according to the study the Markov 
chain model consistently appears among the top three performers when data vol-
ume increases and profits the most from increasing data volumes. In addition, the 
authors find that all models except for the rank list-based model improve their 
predictive performance when the consistency of the customer preferences is low, 
i.e. when many different customer types exist. In contrast, the predictive perfor-
mance of all considered choice models deteriorates with larger assortments as 
this setting provides less substitution patterns since a big fraction of consumers 
get their most preferred option.

• Regarding the computation time, the study of Berbeglia et al. (2021a) provides 
evidence that the MNL is by far the fastest choice model to estimate. Nested 
logit and exponomial choice models are on average ten times slower to estimate 
than the MNL model. All other models considered in this study, namely Markov 
chain, rank-list, latent-class MNL, and mixed logit, are on average at least 100 
times slower to estimate compared to the MNL though the authors expect this 
gap to increase when larger data sets are used.

3.2  Number of item purchases

The previously introduced choice models characterize different customer behav-
iour, though the customer behaviour is not only captured by the selection of a choice 
model type but also by the decision of the customer how many products should be 
purchased within a single visit.

Most studies focus on the single-purchase case. In this setting, each customer is 
assumed to buy at most one product. In practice, this is e.g. the case when purchas-
ing luxury goods such as a vehicle. Though, the single-purchase setting also covers 
the case when multiple copies of the same product are purchased.
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However, recently, there is an increasing amount of researchers focusing on the 
multi-purchase version of the assortment problem where the customer not only 
decides whether and which product to buy but also on the number of different prod-
ucts to be bought. Doing so, researchers typically relax the model assumption that 
customers only choose at most one product per visit from the offer set and instead 
propose multi-purchase choice models allowing customers to purchase more than 
one product at a time, see e.g. Bai et al. (2023a) and Tulabandhula et al. (2023).

Note that in practice there are plenty of scenarios where customers purchase 
multiple products at a time. Imagine for example a customer shopping clothes or 
accessories. This customer often buys multiple pieces within the same visit. Another 
example are online shops with delivery costs that are waived if a certain purchase 
price threshold is met. In these cases, customers often purchase multiple products 
to get rid of the delivery costs. When purchasing several products at a time, custom-
ers can either select multiple versions or copies of the same item or buy completely 
different items. According to Bai et  al. (2023a) who analyse sales data of a lead-
ing flash-sales e-retailer, over 89% of the customers purchasing two products indeed 
purchase two different products. For these multi-purchase scenarios, choice models 
that are based on the single-purchase assumption might not perform well, see Feld-
man et al. (2021) and Wang et al. (2023d).

3.3  Consideration sets

Customer demand is typically estimated using choice models that rely on informa-
tion regarding what customers do and do not purchase. To calibrate such demand 
models, e.g. sales transaction data in case of retail operations and revenue manage-
ment or bookings from past interactions between peers in case of online platforms 
are used. Given these data, classic choice models are trained based on the assump-
tion that the chosen option is preferred over all other items in the offer set, see Jag-
abathula et al. (2023).

However, the decision of a customer to not purchase an item must not necessarily 
result from the fact that this item is not offered but can also result from the fact that 
it is not considered (Jagabathula et al. 2023). In practice, it is well known that cus-
tomers do not directly choose from the whole available assortment. Instead, they use 
a set of simple rules to first quickly shrink the set of offered items to a small subset 
of options that are most interesting for them and then choose from this small subset 
of remaining options, which is referred to as consideration set (see e.g. Aouad et al. 
2020). For instance in retail, imagine a customer selecting from the jacket category. 
This customer may not evaluate the full offered jacket assortment but only consider 
a subset of jackets in the desired size that are priced within the affordable budget.

Models ignoring such consideration sets assume that the chosen option is pre-
ferred over items that are not even considered, which might lead to model bias (Jag-
abathula et  al. 2023). Existing literature proposes so-called consider-then-choose 
(CTC) models to overcome this issue and account for the behaviour of first setting up 
a consideration set and subsequently choosing an item from the intersection of offer 
set and consideration set (see e.g. Aouad et  al. 2020). Such consider-then-choose 
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approaches originate from empirical literature in marketing and psychology. To be 
precise, the idea of whittling down choices into consideration sets is first proposed 
by Campbell (1969) and formulated into a theory on customer behaviour by Howard 
and Sheth (1969). The incorporation of consumers’ consideration sets can improve 
both the explanatory and the predictive power of demand models, which in turn 
helps to enhance assortment decisions. The literature on assortment optimization 
under a consider-then-choose model comprises a broad range of different considera-
tion set structures, see e.g. Aouad et al. (2020) and Jin et al. (2023).

Despite their intuitive behaviour, CTC models are difficult to estimate in prac-
tice as one typically only knows the offer set and the customers’ choice. A custom-
ers’ consideration set is mostly not observable in practice and could be any subset 
of the full offer set or the category containing the chosen option. Hence, common 
choice models often assume that offer set and consideration set are equivalent, see 
Jagabathula et al. (2023). However, Jagabathula et al. (2023) analyse CTC models 
using both synthetic and real-world data sets and find that CTC models outperform 
classic choice models in cases when the offer set is not perfectly observable.

3.4  Sales channel

Assortment optimization finds important application in both online and offline chan-
nel settings, though existing work on assortment optimization mostly provides guid-
ance on how firms should optimize their offerings in single-channel settings. Online 
settings involve online sales of products or services, whereas offline sales take place 
in physical stores or outlets. Those two settings differ in terms of both, customer 
experience and data and modelling topics. We briefly discuss both factors in the fol-
lowing, starting with the customer experience.

• Assortment size: Online channels are typically able to provide the customer 
with larger assortments compared to offline channels. The assortment size influ-
ences the substitution behaviour of customers as e.g. larger assortments imply 
less substitution since customers are more likely to find their most preferred 
options anyway. However, larger assortments often result in higher search efforts 
till the desired item is found, which might decrease the items utility. To account 
for search efforts, choice models in online settings often incorporate search costs. 
Moreover, online settings often apply cardinality constraints to limit the assort-
ment size for keeping customers attention and reducing search efforts.

• Opening hours: Online channels are mostly available 24 h a day without closing 
such that customers can shop at any time. This allows for spontaneous purchases 
but might also lengthen the purchase decision as customers can easily decide to 
quit and return later for purchase. In contrast, offline stores only offer limited 
opening hours.

• Delivery: In contrast with offline channels where the customer can typically 
directly take the purchased option, online retail stipulates that the purchased 
option needs to be delivered. This might lead to issues during order fulfillment 
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such as wrong or broken delivery or too long delivery times which in turn might 
lead to customer dissatisfaction.

• Product presentation: In offline channels, options are exhibited on shelves 
where customers are able to grasp all available options at a time. In contrast, in 
online settings the available options are often offered sequentially across multi-
ple results pages. The former case is modelled by classic assortment optimiza-
tion approaches, whereas the latter one requires a sequential, dynamic approach.

• Product interaction: In contrast with offline channels where the customer 
is able to physically check the desired products, online channels come with an 
increased amount of uncertainty as customers are not able to directly experience 
the product. Imagine a customer wants to buy a t-shirt. In online shopping, this 
customer is not able to look at, touch, and try on the t-shirt but needs to rely on 
virtual experience based on pictures or short video clips. Consequently, there is 
an increased uncertainty in terms of e.g. size or colour involved in online shop-
ping. This uncertainty might be intensified by other factors such as product mis-
specification, misrepresentation, and misleading advertisement and can e.g. be 
incorporated via the random component of RUM-based choice models.

Besides the customer experience, online and offline channel also differ from a data 
and modelling perspective as briefly expounded in the following.

• Data availability: Online channels profit from increased availability of customer 
related information and data. The former is typically obtained from customer 
profiles comprising information such as age, gender, and location. The latter 
mostly consists of historic click and purchase behaviour of the customer. The 
availability of such personal data allows for personalization in online channels. 
That is to say the seller can dynamically adjust the sales strategy for individual 
customers by immediately providing the customer with a selection of relevant 
options upon website arrival. Doing so, the customer benefits from being offered 
an assortment of suitable options and the seller profits from increased sales due 
to personalized assortments.

• Modelling challenges: The sheer mass and dimensionality of data available in 
online settings come with modelling challenges as demand models are not neces-
sarily able to deal with large amounts of data, i.e. with a high number of observa-
tions, or high-dimensional data, i.e. data containing lots of different information 
for each customer. However, research is recently devoting increased attention 
towards this area such that first approaches for dealing with high-dimensional 
data are already available (see e.g. Miao and Chao 2022; Wang et al. 2023c; Kal-
lus and Udell 2020). In addition, online channels suffer from the exploration-
exploitation dilemma. On the one hand, the seller aims at conducting as much 
exploration as possible to learn the choice models by offering diversified assort-
ments. On the other hand, extensive experimentation could harm exploitation in 
terms of maximizing revenues.

The advantages of both online and offline channel can be combined by consider-
ing an omni-channel setting. In this case, the firm is able to offer a wide range of 
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options via their online channel and additionally allows customers to experience the 
touch and feel of product attributes in offline stores before purchase. In this setting, 
the selection of options offered via the offline channel impacts the online purchase 
behaviour.

4  Solving assortment problems

One typically distinguishes different types of solution concepts that we briefly intro-
duce in Sect. 4.1. Moreover, since research recently focuses on approximation-based 
approaches that provide performance guarantees, we detail on the latter in Sect. 4.2 
where we additionally comment on the empirical evaluation of such performance 
guarantees.

4.1  Solution concepts

Existing solution concepts can be divided in two groups: exact optimization meth-
ods and non-exact optimization methods, whereby the latter group can be further 
split into heuristics and approximation algorithms. All of those concepts are briefly 
discussed in the following:

• Exact optimization methods guarantee to find an optimal solution. In the litera-
ture and practice, there exist various different solution approaches for determin-
ing the exact solution of an optimization problem. Two of the most popular ones 
are full enumeration and the usage of standard solvers.

– Full enumeration refers to the approach when all possible assortments are 
enumerated and evaluated in terms of their revenue performance. Clearly, 
the optimal assortment can be found by selecting an assortment that yields 
the best performance. However, the formula for determining the num-
ber of possible assortments provided in Eq.  (1) shows that n = 10 items 
already yield 1023 possible assortments; n = 100 items even result in 
1.2676506002282297 ⋅ 1030 possible offer sets. Obviously, the problem 
quickly explodes such that complete enumeration of all possible combinations 
becomes intractable—even when the solution space is reduced by applying 
selected constraints. Still, for practical applications with a small number of 
items, full enumeration may represent a reasonable approach, because it can 
be combined even with complex choice models using simulation or neural 
networks.

– Standard solvers like Gurobi or CPLEX can be used to solve e.g. linear, 
quadratic, mixed-integer, or quadratic-constrained programs. Many assort-
ment optimization problems can be (re)formulated in one of these ways 
and are thus solvable using such standard solvers. For example, Davis et al. 
(2013) show how to transform an (AOP) under the MNL model and TU 
constraints into a linear program. Likewise, Haase and Müller (2014) dis-
cuss three linear reformulations of originally nonlinear facility location 
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problem formulations under the MNL model in terms of solvability. A sur-
vey on corresponding techniques is also given in Bechler et al. (2021). Fur-
thermore, standard solvers can be applied in the context of approximation 
algorithms based on rounding techniques.

• Non-exact optimization methods do not necessarily yield an optimal solu-
tion. This group of solution concepts captures heuristics and approximation-
based methods, both of which are briefly introduced in the following:

– Heuristics are optimization methods that try to provide a good but not 
necessarily optimal solution. In operations research, there has been an 
enormous study of various types of heuristics, including construction and 
improvement heuristics as well as metaheuristics. In the context of assort-
ment optimization, typically greedy and construction heuristics are pro-
posed which try to exploit knowledge about the problem structure. Other 
types of heuristics are applied less often. Jagabathula (2016) is one of the 
few examples proposing a local search heuristic.

– Approximation algorithms are optimization methods that provide an 
approximate solution with guaranteed solution quality. That is to say it 
is possible to provide a bound on the quality of the returned solution for 
approximation algorithms. Note that if it is possible to formulate a bound 
on the solution quality, a heuristic turns into an approximation algorithm. 
We distinguish different types of approximation algorithms (see Schuur-
man and Woeginger 2009): 

1. An approximation algorithm is called constant factor approximation 
(APX) if it guarantees a constant approximation ratio and its running 
time is bounded by a polynomial in the problem size n. The correspond-
ing complexity class APX includes all problems for which a polynomial 
time approximation algorithm with constant approximation ratio bound 
exists.

2. Similarly, an algorithm is called approximation scheme for an optimiza-
tion problem if it returns an output that is at least 1 − � times the optimal 
solution value and at most 1 + � times the optimal solution value, where 
0 < 𝜖 < 1 denotes an arbitrary accuracy parameter.

3. Such an approximation scheme is called polynomial time approxima-
tion scheme (PTAS), if its computational complexity is polynomial in the 
instance size n for every fixed �.

4. Likewise, an approximation scheme is called fully polynomial time 
approximation scheme (FPTAS), if its computational complexity is poly-
nomial in n and 1∕�.

Note that both groups of solution concepts—exact and non-exact ones—each comprise 
an extremely broad variety of individual solution methods and combinations thereof. 
This also holds for the selection of solution methods that finds application in the area 
of assortment optimization. The solution approaches considered in the literature on 
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assortment optimization are evaluated in this review and stated in the literature classifi-
cation provided in Tables 2, 3, 4, 5, and 6. Due to the sheer variety and broadness of the 
applied methods—which also can not be further classified in a meaningful way—for 
brevity we refrain from introducing each of them individually and refer the interested 
reader to the related articles for more information on the solution method of interest.

4.2  Performance guarantees and empirical evaluation

Research has recently focused on approximation-based approaches that pro-
vide performance guarantees. These guarantees can be denoted in various ways 
depending on the underlying method. In the following, we briefly introduce and 
exemplify different ways of providing performance guarantees.

• Constant factor notation: A popular way of denoting constant factor approxi-
mations is to simply provide a constant factor � implying that at least an approx-
imation ratio of � can be obtained. An example for this notation is e.g. provided 
in Zhang et  al. (2020) who obtain a 0.6 performance guarantee implying that 
their proposed approach is guaranteed to obtain at least three fifth of the optimal 
total expected revenue. Likewise, Udwani (2021) gives a 0.25 approximation 
algorithm. Alternatively, instead of providing the constant factor approximation 
ratio � , it is also possible to denote the performance guarantee as a percentage 
value �′ %, meaning that the approximate solution is guaranteed to be at least 
�′ % of the optimal solution. This notation is e.g. used in Rusmevichientong 
et al. (2020) who provide a performance guarantee of 50% implying that their 
proposed approach is guaranteed to obtain at least 50 percent, i.e. half, of the 
optimal total expected revenue. However, in this context only few authors state 
whether their constant factor guarantee belongs to class APX.

• �-notation: A performance guarantee is often denoted by 1 − � implying that 
the output is at least 1 − � times the optimal solution value, where 𝜖 > 0 rep-
resents an arbitrary accuracy parameter. This notation is typically applied for 
approximation schemes such as PTAS or FPTAS. Examples for this notation 
are given in Feldman and Segev (2022) and Feldman and Topaloglu (2017b), 
who propose a PTAS, respectively, FPTAS with 1 − � performance guarantee.

• Big-oh notation: Another way of denoting performance guarantees is the big-
oh notation, which is applied for brevity and hides absolute constants. This 
notation is typically used in the literature on assortment optimization in case a 
dynamic problem is considered. The problem itself usually constitutes a regret 
minimization task, where regret refers to the gap between the expected reve-
nue obtained by the proposed approach and the expected revenue according to 
an oracle with perfect information. An example for this notation is provided in 
Peeters and den Boer (2022), who obtain a performance guarantee of O(

√
T) , 

implying that the performance of their proposed approach scales with the 
length of the selling period and is bounded by 

√
T  times some constant factor.
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Such theoretical performance guarantees—independent of the way they are 
denoted—only provide worst-case performance bounds. However, in practice the 
proposed solution approaches might perform way better than their theoretical worst-
case guarantees.

This can be examined by evaluating a methods empirical performance, i.e. the 
performance of the proposed solution method compared to the optimal solution 
when being applied to synthetic or real data. We report the empirical performance of 
all articles considered in this review in Sect. 5.

Please note that the provided empirical performances are hardly comparable 
across different articles due to various reasons. First, different articles utilize dif-
ferent data sets—be it real or synthetic ones—with differing complexity and of dif-
ferent instance sizes. Moreover, different articles make use of different solvers and/
or programming languages for implementing their proposed approaches. Finally, 
typically a limit on the maximum computation time for executing the proposed algo-
rithm is set. However, these limits differ across the reviewed articles implying that 
there exist differences regarding whether and when an algorithm is enforced to stop. 
The earlier an algorithm is enforced to stop, the higher the probability that the best 
possible revenue that is obtainable by this algorithm is not found before stopping.

All these factors impact the empirical performance of the approaches proposed 
in the reviewed literature and thus limit their comparability. Thus, this indication of 
empirical performance is rather meant to gain an impression of whether the respec-
tive approach is exact or not but not meant to provide an exact performance that can 
be expected whenever the proposed approach is applied.

5  Classification of literature

This section is targeted to provide an extensive, structured overview of literature on 
pure assortment optimization. We expound the procedure of conducting our systematic 
literature review in Sect. 5.1. The description of the tabular presentation of our litera-
ture classification is provided in Sect. 5.2. Publications studying the assortment prob-
lem under parametric choice models are summarized in Sect. 5.3; studies on assort-
ment optimization under nonparametric choice models are assembled in Sect. 5.4.

5.1  Systematic literature review procedure

As indicated by the title of this article, we conduct a systematic literature review. 
According to Thomé et al. (2016) and Durach et al. (2017), a systematic literature 
review—in contrast with a narrative one—follows a well-defined, replicable, sci-
entific, and transparent process to identify, collect, appraise, and synthesize all rel-
evant literature that meets certain predefined inclusion criteria to answer a specific 
research question and reports the evidence in a way that allows for clear conclusions 
regarding what is known and what is not known.
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Thomé et al. (2016) provide a step-by-step approach for conducting such a sys-
tematic literature review in the context of operations management. Likewise, Durach 
et al. (2017) propose a step-by-step paradigm for systematic literature reviews in the 
context of supply chain management. Both guidelines basically comprise the same 
key components. For conducting our systematic literature review, we follow the five 
building blocks proposed by Thomé et al. (2016). To be precise, our review proce-
dure consists of the five main steps and their corresponding sub-tasks visualized in 
Fig. 3. We briefly comment on each of the main steps in the following.

5.1.1  Planning and formulating the problem

In our review, we are interested in classifying the existing literature on assortment opti-
mization according to a suitable taxonomy to determine research gaps in this research 
area. To identify the relevant literature, we select our inclusion criteria according to 
the following guideline. As mentioned before, our review is mainly targeted to the area 
of assortment optimization with a focus on pure assortment problems; related areas 
such as the extension to joint assortment and pricing problems are briefly introduced 
in Appendix B. Moreover, we restrict our review to mostly consider approaches that 
are based on choice modelling to capture consumer demand. To ensure that the stud-
ies contained in our review provide an application guideline, we limit our review to 
articles containing exemplary numerical studies. Finally, we restrict our review to the 
selection of articles that are published by the end of April 2023.

5.1.2  Searching the literature

To assemble an extensive set of literature on assortment optimization that satisfies 
our criteria, we select a variety of scientific databases and define a range of search 
keywords related to assortment optimization. To be precise, we choose Scopus, Sci-
ence Direct, Springer, ACM Digital Library, IEEE Xplore, and Google Scholar as 
scientific databases and define two groups of search keywords. On the one hand, 

Fig. 3  Main steps and corresponding sub-tasks of our systematic literature review procedure; adapted 
from Thomé et al. (2016)
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we consider a selection of keywords related to the kind of optimization problem, 
namely ’assortment optimization’, ’assortment personalization’, and ’assortment 
planning’. On the other hand, we consider keywords covering the methodological 
component. These keywords comprise ’data-driven’, ’parametric’, ’nonparametric’, 
and ’Machine Learning’.

The keywords are combined by using one keyword per group. The resulting com-
bined keywords are used as search strings in the pre-selected scientific databases. 
As the databases ACM Digital Library and IEEE Xplore only yield very few hits, 
we change the search string to only using the search keywords of the first group, 
namely ’assortment optimization’, ’assortment personalization’, and ’assortment 
planning’, for these databases. The resulting hits are pre-selected by title, abstract, 
and keywords if available. This yields a total of 309 articles. These publications are 
subsequently screened in further detail to ensure that they indeed fit the scope of 
our review. Moreover, we extend our literature base by relevant publications that are 
cited within these papers or required for providing further details on the topics cov-
ered by this review. In total, we consider 184 publications for this review.

5.1.3  Data gathering and quality evaluation

During the literature screening process, we collect a selection of key information 
on each paper that are used to group the publications according to their content. 
This key information includes factors related to the optimization problem itself, 
the customer behaviour, applied solution concepts as well as information related to 
the numerical experiments executed in the publication at hand. To be precise, the 
assembled literature on assortment optimization can be categorized according to the 
following factors: 

1. Optimization problem (see Sect. 2) 

(a) non-robust vs. robust problem formulation
(b) static vs. dynamic problem formulation
(c) considered constraints

2. Customer behaviour (see Sect. 3) 

(a) choice model
(b) single- vs. multi-purchase behaviour
(c) consider-then-choose approach
(d) sales channel

3. Solution concept (see Sect. 4) 
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(a) problem type
(b) computational complexity
(c) solution method
(d) exact vs. non-exact method
(e) performance guarantee

4. Numerical experiments 

(a) data type (synthetic vs. real data)
(b) preference type (stated vs. revealed preference data)
(c) number of items
(d) price/revenue of considered items
(e) computation time
(f) empirical performance

We use the above taxonomy to classify the assembled literature on assortment opti-
mization and tabularly document it in Tables 2, 3, 4, 5, and 6 of Sect. 5. To be pre-
cise, in line with Thomé et al. (2016), each article corresponds to one row in one 
of these tables and the proposed taxonomy is transferred into the tables’ columns 
as detailed in Sect. 5.2. While collecting the key information according to the tax-
onomy for each of the considered articles, the fit between the reviews’ goal and 
the design of the taxonomy is frequently evaluated and the taxonomy adjusted if 
required.

5.1.4  Data analysis, synthesis, and interpretation

We analyse the classification of the assembled literature that is documented in 
Tables 2, 3, 4, 5, and 6 of Sect. 5 in two ways. First, we study the values of each 
table column—i.e. of each factor in our taxonomy—individually across all consid-
ered articles. Second, we analyse combinations of values of different table columns 
across the considered articles. Doing so, we particularly focus on the existence and 
frequency of the individual values and value combinations, respectively. The results 
of this analysis are documented and interpreted in Sect. 5.

5.1.5  Presenting results and updating the review

The above proposed approach of analysing and synthesizing the literature on assort-
ment optimization allows us to identify settings that have not yet been studied. To be 
precise, all settings for which no value or combination of values of certain classifi-
cation factors exists according to our evaluation can be deemed research gaps. We 
summarize the identified research gaps in Sect. 6. Finally, our results are presented 
to the research community by documenting them in this review article.
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5.2  Table structure

We transfer the taxonomy proposed in Sect.  5.1 into table columns in order to 
be able to present the results of the evaluation of the literature according to this 
taxonomy in a clear and comprehensible manner. To be precise, Tables 2, 3, 4, 5, 
and 6 capturing the literature classification—whereby each article corresponds to 
one row in one of these tables—all comprise the columns listed in Table 1.

Many of the properties listed in Table  1—such as robust, static, channel, 
choice model, CTC, #purchase, constraint, solution method, and exact sol.—are 
already introduced within the previous sections. Others—such as the columns ref-
erence, type, #item, and price—are self-explaining. We briefly comment on the 
remaining columns, i.e. comp. compl., guarantee, data, time, and emp. perf. in 
the following.

The column comp. compl. indicates the computational complexity, i.e. in our case 
the amount of time required for solving the considered assortment problem. Typi-
cally, it is distinguished whether a problem is in complexity class P or NP (see e.g. 
Whitley 2013; Homer and Selman 2011). In practice, the complexity class P (poly-
nomial) can be thought of as all problems that are deemed tractable, which means 
that they can be solved in reasonable—i.e. polynomial—computation time (Homer 
and Selman 2011). The complexity class NP (non-deterministic polynomial) is the 
set of problems that are solvable in polynomial time on a non-deterministic Turing 

Table 1  Description of the columns of Tables 2, 3, 4, 5, and 6

Column name Description

Reference Reference to considered publication
Robust Robust or non-robust optimization: R=robust, NR=non-robust
Static Type of optimization problem: s=static, d=dynamic
Channel Retail channel: online, offline, omni=omni-channel, unspec.=unspecified
Choice model Underlying choice model
CTC Usage of consideration sets
#Purchase #Purchasable products: single=single-purchase, multi=multi-purchase
Constraint Constraint(s) used in the optimization problem
Type Type of optimization problem: LP=linear, BFLP=binary fractional linear, 

NLP=nonlinear, DP=dynamic program
Comp. compl. Computational complexity of the problem
Sol. method Method used for approaching the assortment problem
Exact sol. Exact solution: y=yes, n=no, b=both
Guarantee Type of performance guarantee for non-exact solutions
Data Data for num. exp.: syn=synthetic, real=real, SP=stated pref., RP=revealed 

pref
#Item min. to max. number of products considered in the numerical experiments
Price min. to max. product prices / revenues in the numerical experiments
Time[s] Computation time (in s) of the proposed approach for the largest instance
Emp. perf. Empirical average or worst case performance in the numerical experiments
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machine (Whitley 2013). It is typically assumed that P ≠ NP (Whitley 2013; Homer 
and Selman 2011). Following Whitley (2013), Homer and Selman (2011), and Schu-
urman and Woeginger (2009) a problem is said to be 

1. NP-hard if it is at least as hard as any other problem in NP,
2. NP-complete if it is NP-hard and in NP,
3. strongly NP-hard if it remains NP-hard when all of its input parameters are 

bounded by a polynomial in the length of the input,
4. strongly NP-complete if it remains NP-complete when all of its input parameters 

are bounded by a polynomial in the length of the input,
5. APX-hard if there exists a PTAS reduction from every problem in APX to this 

problem,
6. APX-complete if the problem is APX-hard and in APX.

NP-hard problems cannot be solved in polynomial time. However, some NP-hard 
problems can be approximated in polynomial time—be it up to some constant 
approximation ratio (APX) or up to any approximation ratio (PTAS, FPTAS).

The column guarantee provides the type of performance guarantee—if any—that 
is given for non-exact solution approaches. To be precise, in this column we report 
whether a constant factor approximation, a PTAS or FPTAS, or a regret perfor-
mance bound in big-oh notation is provided. That is to say, e.g. �-approximations are 
only reported in this column in case they result from a PTAS or FPTAS. There are 
two publications providing an �-approximation that does not result from a PTAS or 
FPTAS, namely Tulabandhula et al. (2022), whose guarantee is not polynomial at all 
and Chen and Jiang (2020b), who provide a pseudo-polynomial algorithm. In addi-
tion, we only report bounds in big-oh notation in case a regret optimization prob-
lem is considered. The notation reg(⋅) implies that a regret performance guarantee in 
big-oh notation is provided that depends at least on the parameters listed within the 
brackets but might depend on further parameters as well. Moreover, note that in case 
several types of guarantees are reported, the authors have either presented several 
solution methods or considered several different cases.

The column data captures two types of information regarding the data that are 
used for the numerical experiments. First, we distinguish whether synthetic or 
real data are explored. In the former case, the considered instances are typically 

Table 2  (continued)
1 references in this column: 1 = Aouad et al. (2021); 2 = Chen et al. (2022); 3 = Cachon et al. (2005); 
4 = Dong et al. (2023); 5 = Feldman and Topaloglu (2017b); 6 = Feldman et al. (2021); 7 = Bai et al. 
(2023a); 8 = Bai et al. (2023b); 9 = Gallego and Berbeglia (2022); 10 = Hu et al. (2022); 11 = Kun-
numkal and Martínez-de-Albéniz (2019); 12 = Leitner et al. (2023); 13 = Li and Ke (2019); 14 = Lo and 
Topaloglu (2021); 15 = Maragheh et al. (2021); 16 = Miller et al. (2010); 17 = Mushtaque and Pazour 
(2022); 18 = Sumida et al. (2020); 19 = Tulabandhula et al. (2022); 20 = Wang and Wang (2016); 21 = 
Wang and Sahin (2017); 22 = Wang (2021); 23 = Wang et al. (2023d); 24 = Wang et al. (2022b)
2 Abbreviations used in this column: LP = Linear Programming; MILP = Mixed-Integer Linear Program-
ming; NLP = Nonlinear Programming; DP = Dynamic Programming; ADP = Approximate Dynamic 
Programming; rev.-ordered = revenue-ordered; adj. rev.-ordered = adjustedrevenue-ordered; enum. = 
enumeration; gradient desc. w. line search = gradient descent with line search
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generated by sampling from pre-defined distributions, whereas in the latter case, 
real-world data are gathered. Second, when real data are considered, we differenti-
ate between stated and revealed preference data as introduced in Sect. 3.1. Hence, in 
Tables 2, 3, 4, 5, and 6 the differentiation between stated and revealed preferences is 
only provided when real data are considered. In this case, the information is stated 
in brackets.

The property time refers to the computation time measurement (in seconds) for 
executing the approach proposed in the respective paper for its largest considered 
instance. Please note that the provided computation times are hardly comparable 
across different articles due to several reasons. First, different articles utilize differ-
ent resources e.g. in terms of hardware, processor, or memory. Moreover, different 
programming languages and solvers are applied for the execution of the numerical 
studies across different articles. Finally, different articles consider different instance 
sizes for their numerical studies. All these factors impact the execution time of the 
approaches proposed in the reviewed literature and thus limit their comparability. 
Thus, this indication of computation time is rather meant to gain an impression of 
whether the respective approach is very fast or very slow but not meant to provide 
an exact computation time that can be expected whenever the proposed approach is 
applied.

The column emp. perf. contains the empirical performance of the proposed solu-
tion approach as explained in Sect. 4.2. In case the column exact sol. indicates that 
only non-exact solution approaches are proposed, the authors typically determine 
the empirical performance by applying an existing method for finding the optimal 
solution or an upper bound thereof and comparing the solution obtained by their 
proposed approach with this exact solution or the upper bound thereof.

5.3  Parametric approaches

This section provides an overview of the literature on assortment optimization 
approaches whose underlying demand model belongs to the class of paramet-
ric choice models. The literature is separated by the underlying choice model. To 
be precise, Tables 2 and 3 contain the literature on static and dynamic assortment 
optimization with underlying multinomial logit choice model, respectively; Table 4 

1 references in this column: 1 = Agrawal et al. (2019); 2 = Bernstein et al. (2019); 3 = Bernstein et al. 
(2022); 4 = Besbes et al. (2015); 5 = Chen et al. (2023a); 6 = Cheung and Simchi-Levi (2017); 7 = Feld-
man and Segev (2022); 8 = Flores et al. (2019); 9 = Gao et al. (2021); 10 = Kallus and Udell (2020); 11 
= Liu et al. (2020); 12 = Miao et al. (2021); 13 = Miao and Chao (2022); 14 = Peeters and V. den Boer 
(2022); 15 = Rusmevichientong et al. (2010); 16 = Rusmevichientong and Topaloglu (2012); 17 = Rus-
mevichientong et al. (2020); 18 = Talluri and van Ryzin (2004); 19 = Wang (2018)
2 Abbreviations used in this column: LP = Linear Programming; MILP = Mixed-Integer Linear Program-
ming; DP = Dynamic Programming; ADP = Approximate Dynamic Programming; conv. opt. = con-
vex optimization; UCB = Upper Confidence Bound (Bandit Algorithm); rev.-ordered = revenue-ordered; 
enum. = enumeration; approx. = approximation; opt. solver = optimization problem solver (standard 
solver)

Table 3  (continued)
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captures the literature on assortment optimization with underlying logit choice mod-
els such as MMNL, LC-MNL, NL, and PCL, and Table 5 assembles the literature on 
assortment optimization under further parametric choice models.

The literature captured by each table is classified according to a selection of 
key factors related to the optimization problem itself and to the numerical experi-
ments executed in the publication at hand. The former factors comprise informa-
tion whether a robust approach is considered, an indication whether the problem is 
static or dynamic, the sales channel, the underlying choice model, whether a con-
sider-then-choose approach is applied, whether a single- or a multi-purchase setting 
is considered, incorporated constraints, the problem type, the computational com-
plexity, the solution approach, its exactness, and provided performance guarantees. 
The key factors related to the numerical experiments cover an indication whether 
synthetic or real (stated or revealed preference) data are analysed, the number of 
products used in the numerical experiments, the price or revenue range of the con-
sidered products, the computation time for the largest considered instance as well 
as the empirical average or worst case performance of the proposed approach. In 
summary, the columns of the subsequent tables cover the content listed in Table 1. 
Based on the selection of an appropriate assortment optimization setting using the 
criteria from Sect. 2, a suitable choice model from Sect. 3, and an appropriate solu-
tion concept as addressed in Sect. 4, researchers and practitioners can easily identify 
matching studies from Tables 2, 3, 4, and 5 according to their properties.

Overall, we consider 82 studies on assortment optimization under a parametric 
choice model. Across all these publications, the researchers typically seem to first 
consider the pure static assortment problem under a certain choice model, subse-
quently extend it by cardinality and capacity constraints followed by more com-
plex constraints, before considering dynamic or robust versions of the assortment 
problem. Due to its simplicity, particularly the MNL model is a popular choice for 
introducing new settings. Hence, there exists by far more literature on assortment 
optimization under the MNL model compared to other choice models. To be pre-
cise, among the 82 publications on assortment optimization under parametric choice 
models, 43 studies utilize the MNL as underlying choice model, followed by 9 

Table 4  (continued)
1 references in this column: 1 = Cao et al. (2022); 2 = Berbeglia et al. (2021a); 3 = Gallego et al. (2023); 
4 = Méndez-Díaz et al. (2014); 5 = Atamtürk and Gómez (2020); 6 = Bernstein et al. (2015); 7 = Feld-
man and Topaloglu (2015a); 8 = Goutam et  al. (2020); 9 = Jiang and Nip (2022); 10 = Kunnumkal 
(2015); 11 = Rusmevichientong et al. (2014); 12 = Şen et al. (2018); 13 = Alfandari et al. (2021); 14 = 
Chen and Jiang (2020b); 15 = Chen et al. (2021b); 16 = Davis et al. (2014); 17 = Feldman and Topalo-
glu (2015a); 18 = Gallego and Topaloglu (2014); 19 = Li et al. (2015); 20 = Qiu et al. (2020); 21 = Xie 
and Ge (2018); 22 = Feldman (2017); 23 = Ghuge et al. (2021); 24 = Zhang et al. (2020)
2 Abbreviations used in this column: LP = Linear Programming; NLP = Nonlinear Programming; frac-
tional prog. = Fractional Programming; SDP = Semidefinite Programming; DP = Dynamic Program-
ming; ADP = Approximate Dynamic Programming; rev.-ordered = revenue-ordered; adj. rev.-ordered = 
adjusted revenue-ordered; approx. = approximate; dependence-relax. approx. = dependence relaxation 
approximation; geom. grid = geometric grid; assort = assortments; enum. = enumeration
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publications under the NL model, 8 studies under the MMNL model, and 5 publica-
tions under the Markov chain choice model.

Moreover, as can be seen in Tables 2, 3, 4, and 5, most authors analyse the non-
robust assortment problem—only 6 out of 82 publications who study the assortment 
problem under a parametric choice model follow a robust approach. Out of these six 
studies, five consider the assortment problem under the MNL model; only one pub-
lication on robust assortment optimization utilizes the Markov chain choice model. 
Moreover, all of these studies on robust assortment optimization under a parametric 
choice model consider single-purchase settings without constraint or with cardinal-
ity constraint.

Similarly, the majority of the 82 studies deal with the static assortment prob-
lem; only 30 out of 82 studies consider the dynamic problem, though the fraction 
of researchers studying the dynamic version increases in recent years. This find-
ing might be attributable to the increasing interest in online settings, where typi-
cally sequential results pages are considered. The publications considering dynamic 
assortment problems mostly assume that the customer demand follows a MNL 
model; only twelve studies analyse this setting for different parametric choice mod-
els, namely MMNL, LC-MNL, NL, MCC, probabilistic choice, attraction demand, 
and general choice model.

In addition, according to our literature overview, most of the 82 studies are not 
explicitly targeted to a certain sales channel. Among those studies that can be attrib-
uted to a certain channel, 21 study the assortment problem in an online setting, 
four explicitly deal with an offline setting, and only two publications consider an 

1 references in this column: 1 = Aouad et al. (2022); 2 = Alptekinoğlu and Semple (2016); 3 = Blanchet 
et al. (2016); 4 = Désir et al. (2023); 5 = Désir et al. (2019); 6 = Feldman and Topaloglu (2017a); 7 = 
Gallego and Lu (2021); 8 = Nip et al. (2021); 9 = McElreath et al. (2010); 10 = McElreath and Mayorga 
(2012); 11 = Peeters et al. (2022); 12 = Caro et al. (2014); 13 = Golrezaei et al. (2014); 14 = Gong et al. 
(2021); 15 = Jagabathula (2016)
2 The single transition model is similar to the MCC model. However, under the single transition choice 
model the seller can recommend a subset of available products if the customer arrives at a non-available 
one. Moreover, this model assumes that a customer either purchases a product or leaves after a single 
transition
3 The locational choice model is a utility-based model where products are viewed as a bundle of their 
attributes. The set of product attributes is specified by the products’ location. The firm can control the 
rate of substitution between products by choosing their locations relative to each other
4 The probabilistic choice model forms the continuous counterpart of the widely studied discrete multino-
mial logit model
5 In theattraction demand model, each product’s market share contribution is assumed to be proportional 
to its preference weight or attractiveness in each period
6 abbreviations used in this column: LP = Linear Programming; MILP = Mixed-Integer Linear Program-
ming; NLP = Nonlinear Programming; SDP = Semidefinite Programming; DP = Dynamic Program-
ming; ADP = Approximate Dynamic Programming; max. CSP = maximum Constraint Satisfaction 
Problem; UCB = Upper Confidence Bound (Bandit Algorithm); rev.-ordered = revenue-ordered; approx. 
= approximation; adjust = adjustment; exp. = expected

Table 5  (continued)
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omni-channel setting. Most of these online settings as well as the omni-channel set-
tings assume that consumer demand follows a MNL model.

Moreover, many online settings incorporate constraints—mostly cardinality and 
capacity constraints but also TU, partition, and inventory constraints. Finally, note 
that all of the publications specialized on online channels study the single-purchase 
version of the assortment problem. This finding does not only hold for the online 
setting. Overall, most authors consider single-purchase settings, though we observe 
an increasing interest in multi-purchase settings. The only three studies considering 
a multi-purchase setting assume that consumer demand follows a MNL model.

In addition, according to our literature overview, the vast majority of the studies 
either do not incorporate any constraint or focus solely on cardinality or capacity 
constraints though a variety of other constraints such as TU, precedence, partition, 
and inventory constraints are also considered.

Furthermore, 31 out of the 82 studies on assortment optimization under a para-
metric choice model do not report the computational complexity of their considered 
problem. Out of the 51 articles who do comment on the computational complexity, 
14 state their problem to be in P, 23 claim their problem to be NP-hard, 14 articles 
mention that they study NP-complete problems, 2 studies indicate their problems to 
be strongly NP-hard, and 4 articles remark that they consider APX-hard problems. 
Note that some articles consider more than one problem at once (e.g. unconstrained 
and constrained settings) and thus might face different complexity classes.

Moreover, due to the high complexity of most of the assortment problem for-
mulations, the majority of the authors do not provide exact solutions to the assort-
ment problem, whereby 38 out of the 62 studies proposing non-exact approaches 
provide theoretical performance guarantees. Finally, we note that most of the stud-
ies, namely 68 out of 82 publications, do not take a consideration set into account. 
Only 14 studies analyse the assortment problem while following a consider-then-
choose approach. All of these 14 studies consider non-robust, single-purchase set-
tings. Moreover, most of them assume that consumer demand follows the MNL 
model though there also exist some studies considering this setting under LC-MNL, 
MMNL, Markov chain, or general choice models.

All of the 82 publications with underlying parametric choice model considered 
by us execute a numerical study to verify the practical applicability of their proposed 
approaches. Most of these studies, namely 68 out of 82, utilize synthetic data for their 
numerical experiments; 31 (additionally) consider real data. However, the data gen-
eration processes for creating synthetic data and the analysed real data sets vary heav-
ily across the considered literature. Out of the 31 studies analysing real data, 25 con-
sider revealed preferences, 5 have a look at stated preferences and one study utilizes 

Table 6  (continued)
1 references in this column: 1 = Aouad et al. (2018a); 2 = Aouad et al. (2020); 3 = Bertsimas and Mišić 
(2015); 4 = Chen and Mišić (2021); 5 = Désir et al. (2021); 6 = Feldman et al. (2019); 7 = Feldman and 
Paul (2019); 8 = Honhon et al. (2012); 9 = Honhon et al. (2020); 10 = Jena et al. (2020); 11 = Mehrani 
and Sefair (2022); 12 = Paul et al. (2018); 13 = Schwamberger et al. (2023)
2 LP = Linear Programming; MILP = Mixed-Integer Linear Programming; SDP = Semidefinite Pro-
gramming; DP = Dynamic Programming; approx. = approximate; opt. = optimize; enum. = enumeration
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both, stated and revealed preference data. Furthermore, according to our literature 
overview, the lowest number of possible items to be included in the offer set of the 
numerical experiments is 3; the largest number of products considered is 50000. In 
addition, many studies assume a price or revenue range between 0 and 1. For the 
remaining studies, the considered prices or revenues range between 1 and 13780.

Moreover, according to our literature overview only 38 out of the 82 studies with 
underlying parametric choice model provide information regarding the computation 
time of their proposed approach, whereas the vast majority of the studies, namely 60 
out of 82, document their methods’ empirical performance. Finally, we notice that 
the empirically observed performance typically by far outperforms the theoretical 
guarantees.

5.4  Nonparametric approaches

This section provides an overview of the literature on assortment optimization 
whose underlying demand model belongs to the class of nonparametric choice mod-
els. The literature is summarized in Table 6 and classified according to a selection 
of key factors related to the optimization problem itself and to the numerical experi-
ments executed in the publication at hand. The column descriptions for Table 6 are 
provided in Table 1.

Overall, we consider 13 studies on assortment optimization under a nonparamet-
ric choice model. Across all these publications, general rank-based choice models 
appear to be the most popular ones. To be precise, 5 out of 13 publications assume 
a rank-based model. Moreover, as can be seen in Table 6, the vast majority of the 
publications study the non-robust assortment problem; only one study analyses 
the robust version of the assortment problem under a nonparametric choice model. 
This publication studies a dynamic setting, is not targeted towards a specific sales 
channel, and does not incorporate a consideration set but allows for cardinality and 
capacity constraints.

Furthermore, according to our literature overview, most studies consider the 
static setting though there are also two publications analysing the dynamic ver-
sion of the assortment problem. Likewise, we find that all studies on assortment 
optimization under a nonparametric choice model focus on the single-purchase 
setting and all except for one study are not targeted towards a specific sales chan-
nel. The publication targeted to a certain sales channel studies an online setting. 
Moreover, note that the studies considered by us incorporate a broad range of 
constraints including cardinality, capacity, precedence, and partition constraints.

Besides, we notice that only two out of the 13 studies on assortment optimiza-
tion under a nonparametric choice model do not comment on the computational 
complexity of their considered problem. Out of the 11 articles who do comment 
on the computational complexity, one states the problem to be in P, whereas 8 
studies consider NP-hard problems, one article mentions that an NP-hard problem 
is considered and one article reports that they study an APX-hard problem.

In addition, we find that according to Table 6, seven of the considered studies 
follow an exact solution approach, five studies apply non-exact solution methods, 
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and one study considers both—exact and non-exact solution approaches. Among 
those six studies considering a non-exact solution method, four provide a theo-
retical performance guarantee for the proposed solution procedure. Furthermore, 
we note that seven of the publications on assortment optimization under a non-
parametric choice model take consideration sets into account.

All 13 publications with underlying nonparametric choice model considered 
by us execute a numerical study to verify the practical applicability of their pro-
posed approaches. Interestingly, all studies base their numerical experiments on 
synthetic data; four of them additionally consider real data sets. Out of those 4 
studies considering real data sets, 3 focus on revealed preference data, whereas 
only one study utilizes stated preference data. Furthermore, according to Table 6, 
the lowest number of possible items to be included in the offer set of the numeri-
cal experiments is 4, the largest number of products considered is 3000. In addi-
tion, note that the considered prices or revenues range between 0 and 1000.

Moreover, according to our literature overview all but one of the 13 studies 
with underlying nonparametric choice model provide information regarding the 
computation time and the empirical performance of their proposed approach. 
Finally, we notice that the empirically observed performance typically by far out-
performs the theoretical guarantees.

6  Future research

This section is targeted to provide a structured overview of potential future 
research areas. These potential research areas comprise assortment problem set-
tings that have not yet been studied according to our proposed taxonomy, assort-
ment optimization under further demand models as well as intrinsic assortment 
optimization.

6.1  Unstudied settings according to the taxonomy

As explained in Sect.  5.1, our systematic literature review is targeted to identify 
research gaps within the research area of assortment optimization according to 
our proposed taxonomy. Based on the literature overview provided in Sect.  5, we 
observe a variety of assortment optimization settings under parametric and nonpara-
metric choice models that are not yet studied. We start by proposing future research 
areas under parametric choice models followed by potential research areas under 
nonparametric ones.

As mentioned before, most assortment problems under parametric choice mod-
els are studied in non-robust settings. The publications studying the robust assort-
ment problem typically assume that consumer demand follows a MNL model; only 
one study considers the robust assortment problem under a Markov chain choice 
model. Moreover, all these studies analysing the robust assortment problem consider 
single-purchase settings and do not take consideration sets into account. Hence, it 
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would be worth investigating the robust multi-purchase assortment problem and the 
robust assortment problem with consideration sets. In addition, the studies on robust 
assortment optimization under a parametric choice model either do not consider any 
constraint or incorporate a cardinality constraint. It might be worth studying this 
problem while accounting for further constraints. Finally, we notice that most stud-
ies on assortment optimization under parametric choice models do not consider an 
omni-channel setting. Publications, particularly studying online or omni-channel 
settings, typically assume that consumer demand follows a MNL model. It might be 
worth investigating this setting under further parametric choice models.

Besides these assortment problem settings under parametric choice models, we 
additionally identify further research areas under nonparametric choice models. For 
example, we find that only one publication on assortment optimization under a non-
parametric choice model studies the robust assortment problem. To be precise, this 
publication considers a dynamic version of the problem. Hence, it would be worth 
to specifically investigate the static robust assortment problem under a nonparamet-
ric choice model. Moreover, only of the studies on assortment optimization under 
a nonparametric choice model is specifically targeted towards a certain sales chan-
nel—in this case the online sales channel. It would be worth investigating this set-
ting for omni-channel environments as well. Finally, we notice that none of the stud-
ies analyses the assortment problem for multi-purchase settings. Hence, it would be 
worth studying the multi-purchase assortment problem under nonparametric choice 
models.

6.2  Assortment optimization under other demand models

Besides conducting research on assortment optimization under the previously speci-
fied settings, another area of future research is based on determining further choice 
models and demand modelling techniques and on addressing the resulting assort-
ment optimization problems.

Over the past decades, an extreme boost in the application of machine learning 
techniques can be observed. This has also affected the literature on demand model-
ling. In recent years, researchers executed plenty of studies to compare the predictive 
performance of the choice models introduced so far with a variety of the most com-
mon machine learning models (see e.g. Wang et al. 2021 an the references therein). 
Most of the studies comparing the predictive ability of ML and choice models find 
that ML approaches by far outperform the classic choice models in terms of pre-
dictive accuracy. However, this does not imply that ML-based approaches are also 
superior for assortment optimization as it is difficult to optimize over ML models—
particularly more sophisticated ones such as tree-based ensembles.

One method to use machine learning models for assortment optimization is to 
simply multiply the demand probabilities predicted by the ML model with the prod-
uct revenues and take those products with highest probability times revenue values. 
Feldman et al. (2021) compare a classic MNL-based assortment approach with this 
ML-based one and find that the MNL-based method by far outperforms the machine 
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learning approach in terms of maximal revenue. However, note that this finding 
might be attributable to the fact that the applied ML-based approach strongly over-
simplifies the problem as in this case the purchase probabilities do not depend on the 
set of offered products.

Likewise, Peng et al. (2022) investigate whether and how better prediction accu-
racy transforms into better decisions for assortment planning by comparing MNL, 
DeepFM, and a version of DeepFM that accounts for assortment information. 
The authors find that a choice model with better predictive power may not yield 
higher revenues. Hence, more work needs to be done in combining machine learn-
ing and assortment optimization to better exploit the superior predictive accuracy of 
machine learning-based demand models for assortment planning.

One research direction that has developed rapidly in recent years is the model-
ling of demand using deep learning-based approaches. Among them, Aouad and 
Désir (2022) propose a neural network-based choice model called RUMnet. This 
choice model is consistent with the RUM framework and formulates the random 
utility function using a sample average approximation method. The authors show 
that RUMnets are able to approximate any RUM choice model with arbitrary accu-
racy and find that their proposed model outperforms other state-of-the-art choice 
modelling and machine learning methods by a significant margin on two considered 
real-world data sets. It would be worth to investigate the assortment optimization 
problem under this choice model.

Cai et  al. (2022) also develop deep learning-based choice models. To be pre-
cise, the authors study two settings of choice modelling—feature-free and feature-
based—and propose neural network models that are able to capture both, the intrin-
sic utility for each candidate choice and the effect that the assortment has on the 
choice probability. The authors provide evidence that the proposed deep learning-
based choice models are capable of recovering existing choice models with an effec-
tive learning procedure. Moreover, they find that such models are particularly use-
ful in case the underlying model/training data are too complex to be described by 
a simpler choice model such as MNL and when there are sufficient training data 
(e.g. 5000 samples for 20–50 products). Following this, Wang et al. (2023a) propose 
a mixed-integer programming formulation for the corresponding assortment prob-
lem that is solvable by off-the-shelf integer programming solvers. However, since 
the approach is MIP based, the size of the optimization cannot scale to more than 
around a hundred products. Hence, further research and new optimization algo-
rithms are required to scale beyond this.

Wang et al. (2023b) propose a transformer neural network architecture, the Trans-
former Choice Net, which does not only take customer and product features into 
account but also considers contextual information such as the offered assortment or 
the customer’s past choices. By being able to predict multiple choices, this model is 
particularly suitable in situations where the customer chooses more than one item—
such as in e-commerce shopping. The authors provide empirical evidence that their 
architecture beats leading models in the literature in terms of out-of-sample predic-
tion performance on a range of benchmark data sets. Given the strong predictive 
power of Transformer Choice Nets, an interesting avenue to explore would be their 
application in assortment optimization.
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Besides modelling demand using deep learning-based approaches, further choice 
models are recently developed. For example, Alptekinoğlu and Semple (2021) 
introduce the heteroscedastic exponomial choice model that generalizes the classic 
exponomial choice model by allowing the variance of the exponentially distributed 
random component of the utility to be product-specific. According to the study of 
Berbeglia et al. (2021a), the classic exponomial choice model exhibits an outstand-
ing performance both in terms of predictive ability and in terms of revenue perfor-
mance. Hence, it would be worth to investigate the assortment problem under the 
newly proposed heteroscedastic exponomial choice model.

Finally, there exists vast literature on dynamic discrete choice modelling, which 
is a natural extension of the static discrete choice modelling framework (see Keane 
and Wolpin 2009). Such dynamic discrete choice models are particularly designed 
for dealing with dynamic settings. A review on dynamic discrete choice models is 
e.g. provided by Aguirregabiria and Mira (2010). It might be interesting to study the 
dynamic assortment problem (Dynamic AOP) under such dynamic discrete choice 
models.

6.3  Intrinsic assortment optimization

Finally, we would like to draw attention towards an approach on optimization using 
machine learning techniques that is gaining increasing interest in recent times. The 
approach is based on the idea of intrinsic optimization. In this case, the feature to be 
optimized—e.g. the assortment or the price—is not assumed to be fixed in advance 
but is optimized while training the ML model itself. Mišić (2020) studies the tree 
ensemble optimization problem by answering the question “given a tree ensemble 
that predicts some dependent variable using controllable independent variables, how 
should we set these variables so as to maximize the predicted value?”. The author 
formulates the problem as a mixed-integer optimization and shows that their meth-
odology can efficiently solve large-scale problem instances to near or full optimality.

Since this approach scales exponential in runtime, Perakis and Thayaparan (2023) 
propose UMOTEM, an algorithm form solving a constrained optimization problem 
where the objective function is determined by a tree ensemble model. The pro-
posed algorithm significantly reduces the problems’ complexity since the number 
of binary variables only scales linearly instead of following an exponential growth. 
The authors demonstrate that their algorithm is able to capture more than 90% of 
optimality on a variety of data sets. One potential area of further research is to adapt 
this intrinsic optimization approaches to assortment problems.

7  Conclusion

Research on assortment optimization received a considerable boost in attention over 
the past decade. Various assortment problem settings under diverse choice models 
have been investigated with the aim of establishing efficient solution approaches. 
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However, due to the sheer amount of different approaches to assortment optimiza-
tion available in operations research literature, it is difficult to keep track of all avail-
able ones. Our review supports the reader by providing an extensive overview of 
different available assortment optimization settings.

To be precise, we introduce different assortment optimization settings such as 
robust, non-robust, static, or dynamic assortment problems for different sales chan-
nels that might follow a consider-then choose approach, consider single- or multi-
purchase settings and selected business constraints under a variety of different 
choice models and are solved using different solution concepts.

Based on this, we assemble an extensive literature overview on pure assortment 
problems under parametric and nonparametric choice models. The literature is clas-
sified according to a proposed taxonomy. Our taxonomy takes a selection of key 
factors related to the assortment problem itself, the customer choice behaviour, the 
solution concept as well as information related to the executed numerical experi-
ments into account. This makes it easy for academics and practitioners alike to 
determine the assortment optimization setting that is most suitable for them and 
identify relevant related literature.

Finally, we conclude our review by outlining potential future research areas that 
deserve some attention but have barely been addressed in the literature so far. These 
potential research areas comprise a variety of assortment optimization settings that 
are not yet studied according to our literature overview but also include research 
areas related to determining new demand modelling approaches and solving the cor-
responding assortment problems as well as research on the topic of intrinsic optimi-
zation. We hope that this review spurs further research on assortment settings barely 
addressed so far and further propagates the research on and application of assort-
ment optimization.

8  Supplementary information

The authors do not provide any supplementary materials.

Appendix A: Choice model design & estimation

In recent years, the assortment problem has been studied under a variety of choice 
models that are briefly introduced in Sect. 3. This section is targeted to provide 
a more detailed, formal introduction of the previously mentioned choice models. 
To be precise, in Section  A.1 and Section  A.2, we provide an overview of the 
most popular parametric, respectively, nonparametric choice models considered 
in the literature whereby we follow Strauss et al. (2018) in assigning the choice 
models to parametric and nonparametric approaches.
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A.1 Parametric choice models

Parametric choice models are based on random utility theory, where it is assumed 
that consumers associate a certain utility with every product, and decide on the 
alternative that maximizes their utility (Strauss et  al. 2018). This framework is 
referred to as random utility maximization (RUM). Within this framework, the 
utility Ui = ui + �i of product i is composed of the deterministic part ui and a 
random component �i . Using this, the probability pi(S) that product i is chosen 
among the offered assortment S is given by the probability that this product is 
associated with the highest utility, i.e.

The deterministic component ui can be expressed as a linear function ui = �Tzi of 
an attribute vector zi that influences the purchase probabilities (see Strauss et  al. 
2018). Regarding the attributes influencing the deterministic part of the utility, one 
can distinguish between different types of determinants—individual-specific and 
alternative-specific ones. Individual-specific variables describe the characteristics 
of the decision maker such as income or age, whereas alternative-specific variables 
vary over both, individuals and alternatives. An example for the latter type of vari-
able is the time an individual would need to travel with a certain travel mode. For 
more information on individual-specific and alternative-specific variables, we refer 
the interested reader to Heiss (2002).

Different parametric choice models result from different assumptions made on 
the distribution of the random component (Strauss et al. 2018).

A.1.1 Multinomial logit

The most popular parametric choice model is the multinomial logit (MNL) choice 
model of Luce (2012) and McFadden (1973). This model is particularly known 
for its simplicity and can be identified as member of the RUM framework by 
choosing the random components �i to be iid. random variables that follow the 
Gumbel distribution with a common scale parameter, typically normalized to one, 
and location parameters ui, i ∈ N with u0 ∶= 0 . Under the MNL model, the prob-
ability to select a product i from the offer set S is determined by its utility relative 
to the total utility of the offer set; more formally:

McFadden (1978) show that the parameters of this model can be estimated easily 
and Talluri and van Ryzin (2004) note that the corresponding optimization prob-
lem can be solved efficiently. To be precise, Talluri and van Ryzin (2004) prove that 
the optimal assortment under the MNL model is revenue-ordered, i.e. the optimal 
assortment consists of a number of products whose revenues are higher than the 

pi(S) = P
(
Ui ≥ Uj ∀j ∈ S ∪ {0}

)
.

pi(S) =
eui

1 +
∑

j∈S e
uj
.
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revenues of those products that are not selected. As shown by Davis et al. (2013), 
this problem is even solvable under TU constraints.

Nevertheless, it should be taken into account that the MNL model might have a 
deficiency in representing the choice among alternatives with shared attributes—the 
Independence of Irrelevant Alternatives (IIA) property (see Ben-Akiva and Lerman 
1985) illustrated by the well-known ’red bus/blue bus’ paradox (Debreu 1960)—and 
should therefore be used with caution according to Talluri and van Ryzin (2004). Under 
the IIA property, substitution across alternatives is proportional, which can lead to the 
overestimation of choice probabilities for products that are considered similar by the 
customer, see Strauss et al. (2018). Hence, in case the choice set contains subgroups 
whose products are perceived more similar than products across different subgroups, 
the IIA property does not hold (Kök et al. 2008). Then, the MNL model might not be a 
suitable choice for modelling consumer demand.

A.1.2 Mixed multinomial logit

The mixed multinomial logit (MMNL) choice model (McFadden and Train 2000) con-
siders different customer segments whereby the preferences of each segment l ∈ L fol-
low a segment-specific MNL model. We distinguish two cases. When the segment each 
customer belongs to is known, one individual MNL model per segment can be used. In 
contrast, if the assignment of customers to segments is unknown, the customers need 
to get probabilistically assigned to different segments implying that the customer seg-
ments become linked. Therefore, in the latter case the probability ql of the membership 
for each customer segment and the MNL parameters �l for all segments need to be 
jointly estimated, see Strauss et al. (2018).

The latent class multinomial logit (LC-MNL) is a special case of the MMNL under 
which the random MNL parameters follow a discrete distribution. This LC-MNL 
model is more convenient than the MMNL as the choice probabilities can be obtained 
in closed form. More formally, the deterministic part of the utility of product i for cus-
tomer segment l is defined by uil = �T

l
zi and the probability of choosing product i is 

given by

In general, the MMNL model is able to approximate the choice probabilities of any 
choice model within the RUM framework arbitrarily close under mild regularity 
conditions (McFadden and Train 2000). Hence, this model provides a more substan-
tial power in capturing customer choice behaviour compared to the MNL model. 
However, this superiority comes at the price of increasing computational complexity 
(Strauss et al. 2018).

pi(S) =
�

l∈L

ql ⋅
euil

1 +
∑

j∈S e
ujl
.
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A.1.3 Nested logit

Under the nested logit (NL) model, it is assumed that the choice set can be parti-
tioned into K disjoint subsets called nests (Heiss 2002) in a way such that the IIA 
property holds within each nest but not across different nests (Strauss et al. 2018). 
The NL model can be identified as member of the RUM framework by assuming 
that the random components �i follow a general extreme value distribution that 
allows the alternatives within a nest to have mutually correlated error terms (Heiss 
2002). To be precise, the values of the measure �k of the mutual correlation of the 
error terms of all alternatives within the nest k must lie in the unit interval (Heiss 
2002).

Under the nested logit model, the probability pi(S) of purchasing a product i can 
be decomposed in two parts—the probability of choosing an alternative from the 
nest k(i) to which product i belongs and the conditional probability to choose exactly 
alternative i given that some alternative of the nest k(i) to which product i belongs is 
chosen (Heiss 2002).

• The probability that product i is purchased given that some alternative in its nest 
k(i) is chosen is given by 

where �k represents a measure of the mutual correlation of the error terms of all 
alternatives within the nest k, i.e. in the above formula of the nest k(i) to which 
product i belongs.

• The probability that the customer purchases a product from nest k(i) is obtained 
by 

where ũk = ln(
∑

j∈k e
uj∕𝜏k ) represents the expected value of the utility an individ-

ual obtains from the alternatives in nest k.
Finally, the probability for choosing product i is calculated as the product of the 
probability that the customer purchases a product from nest k(i) and the probability 
that product i is purchased given that some alternative of the nest k(i) to which prod-
uct i belongs is purchased, i.e.

eui∕�k(i)
∑

j∈k(i) e
uj∕�k(i)

,

e𝜏k(i)⋅ũk(i)
∑K

k=1
e𝜏kũk

,

pi(S) =
eui∕𝜏k(i)

∑
j∈k(i) e

uj∕𝜏k(i)
⋅

e𝜏k(i)⋅ũk(i)
∑K

k=1
e𝜏kũk

=
eui∕𝜏k(i)

eũk(i)
⋅

e𝜏k(i)ũk(i)
∑K

k=1
e𝜏kũk

.
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A.1.4 Paired combinatorial logit

Another choice model that is compatible with the RUM framework is the paired 
combinatorial logit (PCL) model. The PCL model allows for correlations between 
the utilities of any pair of products to capture situations where the preference of a 
customer for a particular product offers insights into the customer’s attitude towards 
another product.

Under the PCL model, all products are grouped into nests of size two such that 
the collection of nests is represented by the set M = {(i, j)|i ≠ j;i, j ∈ N} of ordered 
pairs. For each nest (i, j), its dissimilarity parameter �ij ∈ [0, 1] characterizes the cor-
relation between the utilities of products i and j. Based on this, the choice process 
for each arriving customer under the PCL can be modelled in two stages. In the first 
stage, the customer picks one of the n(n − 1) nests or leaves without a purchase. The 
preference weight for nest (i,  j) is Vij(S)

�ij with Vij(S) = v
1∕�ij

i
⋅ 1{i∈S} + v

1∕�ij

j
⋅ 1{j∈S} , 

where vi = eui ≥ 0 denotes the preference weight for i ∈ N ∪ {0} . Then, the proba-
bility that a customer picks nest (i, j) given that assortment S is offered is given by

Second, if the customer decides to make a purchase in nest (i, j), product i is chosen 
with probability

Finally, the probability that product i is chosen is obtained via

As discussed in Koppelman and Wen (2000), the estimation of the parameters of 
the PCL model is advantageous over the NL model since there is no need to search 
among numerous NL nesting structures. Moreover, the authors provide empirical 
evidence that the PCL model is indeed statistically superior to the MNL and NL 
models.

A.1.5 Exponomial

In contrast with the MNL or the NL model where the customers’ willingness 
to pay distribution is assumed to be positively skewed, the exponomial choice 

Pij(S) =
Vij(S)

�ij

v0 +
∑

(k,l)∈M Vkl(S)
�kl
.

Pi|ij(S) =
v
1∕�ij

i
⋅ 1{i∈S}

Vij(S)
.

pi(S) =
∑

j∈N∶j≠i

Pi|ij(S)Pij(S).
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model (EXP) proposed by Alptekinoğlu and Semple (2016) assumes a nega-
tively skewed distribution of customer utilities. This model is particularly suit-
able for situations in which the customer is well informed about products and 
their values such that his willingness to pay distribution is negatively skewed 
because he would be deterred by the prospect of overpaying (see Alptekinoğlu 
and Semple 2016).

The exponomial choice model can be identified as member of the RUM 
framework by assuming that the random components �i follow a negative expo-
nential distribution with rate � , hence the name ’exponomial’ choice model. 
Under the assumption that the deterministic component ui of the utility is sorted 
increasingly, i.e. u1 ≤ u2 ≤ ... ≤ un , the probability to select a product i from the 
offer set S is given by

These probabilities can be obtained in closed form as the loglikelihood function is 
concave, and thus, maximum likelihood estimation can be used to determine the 
model parameters defining the deterministic component of the utility. Note that 
without loss of generality, one typically takes � = 1 and rescales the u’s accordingly.

A.1.6 Markov chain choice model

Under the Markov chain choice model (MCC) proposed by Blanchet et  al. 
(2016), the consumer choice process is represented by a Markov chain with 
N + 1 states. Each state i corresponds to a product or the no-purchase option. If 
product i is offered, a customer that arrives at state i purchases this product; oth-
erwise the customer proceeds to another state j. The arrival probability of state i 
is denoted by vi and can be interpreted as the probability that product i ∈ N ∪ {0} 
is selected by the customer. The transition probability from state i to state j is 
denoted by �ij and can be interpreted as the probability of substituting product i 
with product j in case it is unavailable. Every state is connected with state 0 that 
represents the no-purchase option. This implies that the customer can decide to 
not purchase anything at any time (see Strauss et al. 2018).

The model is fully defined by the parameter vectors v and � . These param-
eters can be estimated using the expectation–maximization algorithm proposed 
by Şimşek and Topaloglu (2018). Moreover, the MCC belongs to the class of 
random utility-based choice models (Berbeglia 2016) and can approximate any 
choice model within the RUM framework under mild assumptions (Blanchet 
et  al. 2016). Therefore, this choice model can be used as approximate model 
when the true underlying choice model is known but the corresponding assort-
ment optimization problem is known to be NP-hard as e.g. in case of the MMNL 
and the NL model. According to Blanchet et  al. (2016), the derived solution 

pi(S) =
exp

�
−�
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�
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under the Markov chain choice model is near-optimal in case the MCC is a good 
approximation to the true underlying model.

A.2 Nonparametric choice models

As mentioned before, the previously introduced parametric choice models fully 
depend on the choice of their underlying parameters which are typically unknown 
and need to be chosen or estimated. In addition, assumptions must be made about 
the relevant model covariates and about the functional form of the relationship 
between product attributes, utility values and choice probabilities, see e.g. Jag-
abathula and Rusmevichientong (2016) and Berbeglia et  al. (2021a). Yet, the 
specified assumptions may not adequately capture the actual choice behaviour 
(Strauss et al. 2018).

In contrast, nonparametric choice models are not built upon any assumption on 
the data structure but are solely shaped by data and thus by design do not suffer 
from this problem. On the other hand, nonparametric choice models typically do 
not allow for extrapolation and prediction of changes in the demand pattern due 
to changes in a product attribute since such nonparametric models are typically 
designed as ranked lists of preferences, also referred to as customer types, see 
Berbeglia et al. (2021a). Under such rank list-based models, the customer chooses 
the highest-ranking offered product or leaves without making a purchase in case 
none of the offered products ranks higher than the no-purchase option. Demand 
is modelled by a probability distribution over all customer types, see e.g. Jag-
abathula and Rusmevichientong (2016).

Note that the potential number of customer types is factorial though the actual 
number of underlying customer types might be way smaller (Jena et al. 2020). Over-
all, this model is quite general and subsumes various choice models typically con-
sidered in assortment optimization such as the MNL (Mahajan and van Ryzin 2001).

Appendix B: Related areas

All studies mentioned so far solely consider assortment problems where the cus-
tomer is offered a selection of products and decides whether and which product(s) 
to purchase. However, there also exist settings with two-sided markets as it is e.g. 
the case for matching platforms. This setting is referred to as two-sided assortment 
optimization. We briefly introduce it in Section B.1. Moreover, as mentioned before, 
retailers often not only face decisions regarding the selection of products to offer but 
additionally face further tasks such as to determine the prices for the offered SKUs, 
the number of units to stock per SKU or the shelf or display space allocation. This 
section is targeted to provide an overview of these settings. To be precise, we intro-
duce the joint assortment and price optimization problem in Section B.2, the joint 
assortment and inventory level optimization in Section B.3, and the joint assortment 
optimization and shelf-space allocation task in Section  B.4. Recently, researchers 
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also consider further joint assortment optimization settings which we briefly intro-
duce in Section B.5. Finally, in Section B.6, we briefly introduce the research area 
of facility location planning which is somehow similar to assortment optimization.

B.1 Two‑sided assortment optimization

The two-sided assortment optimization is targeted to extend the literature on classic 
one-sided decision making to two-sided markets by considering the effect of choice 
decisions by both sides on the final outcome. This setting typically occurs on two-sided 
matching platforms, where the platform has a set of suppliers and consumers each of 
which has a utility associated with the opposite side as well as a utility for the outside 
option. The platform offers a set of suppliers to each consumer and a set of consumers 
to each supplier. All participants independently select at most one individual from the 
assortment offered to them. A supplier-consumer match occurs when both sides select 
each other. The selection probabilities are typically determined by well-known choice 
models. Each successful match generates a certain revenue for the platform; unsuccess-
ful matches do not generate any revenue. The overall objective is to choose an assort-
ment family that maximizes the expected revenue for the matching. The supplier and 
consumer selection processes can proceed either sequential or simultaneous.

For example Torrico et  al. (2021) consider the assortment problem under a two-
sided sequential matching process and provide constant-factor guarantees for the gen-
eral case as well as for the extension to cardinality constraints.

Likewise, Ashlagi et al. (2022) study the two-sided matching problem between cus-
tomers and suppliers where the platform offers a menu of suppliers to each customer 
and the customers choose simultaneously and independently to either select a supplier 
from their menu or remain unmatched. Suppliers then see the set of customers that 
have selected them and choose to either match with one of these customers or remain 
unmatched. The authors show that this problem is strongly NP-hard and provide an 
efficient algorithm that achieves a constant-factor approximation guarantee for the opti-
mal expected number of matches.

In contrast with the previously mentioned studies, Ahmed et al. (2022) consider the 
two-sided assortment optimization while assuming that the matching process takes 
places simultaneously. The authors assume that the selection probabilities for both 
sides follow MNL choice models and prove that this problem is NP-hard even when 
the number of suppliers is limited to two. The authors propose a mixed-integer linear 
programming formulation and develop relaxations that provide upper and lower bounds 
whose practical utility is demonstrated on synthetic data.

Similarly, Rios et al. (2022) study the two-sided assortment problem within a dat-
ing platform setting where the set of potential partners to be shown to each user should 
be dynamically selected per time period in order to maximize the expected number of 
matches. The authors model this task as dynamic optimization problem and propose a 
family of heuristics for its solution. For further information on two-sided assortment 
optimization, we refer the interested reader to the above mentioned literature and the 
references therein.
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B.2 Joint assortment optimization and pricing

In all studies reviewed until now, the product prices are assumed to be exog-
enously given. However, in practice this assumption only holds when the retailer 
adopts the Manufacturer Suggested Retail Price (MSRP) or a function thereof 
such as a 10% markup for all products. In most other cases, the retail prices for 
all products contained in the assortment need to be set by the retailer, which 
is referred to as pricing. It is natural to select optimal assortment and prices at 
once. This task is referred to as joint assortment optimization and pricing and is 
extensively studied in the literature.

For example Jagabathula and Rusmevichientong (2016) propose a nonpara-
metric framework to joint assortment optimization and pricing where each cus-
tomer is represented by a preference list over all alternatives and a price thresh-
old. The customer follows a two-stage choice process by first considering the 
set of products with prices less than their threshold value and subsequently 
choosing the most preferred product from the remaining consideration set. The 
authors propose a tractable expectation maximization framework for model fit-
ting along with an efficient algorithm to determine the profit-maximizing combi-
nation of offer set and price.

Miao and Chao (2020) consider the dynamic joint assortment optimization 
and pricing problem under the MNL model with sequentially arriving custom-
ers when the firm has limited prior knowledge about the consumer demand. The 
authors design a learning algorithm balancing the trade-off between demand 
learning and revenue extraction, evaluate the algorithms performance using 
Bayesian regret and provide an instance-independent upper bound for the Bayes-
ian regret of the algorithm. Numerical experiments provide empirical evidence 
for the practical applicability of the proposed approach.

Likewise, Gao (2021) study joint assortment optimization and pricing prob-
lems under a variant of the MNL model with impatient customers where the 
customer sequentially views the assortment of available products. The maximum 
number of viewed stages is determined by the customers patience level. The 
authors provide a 87.8% approximation algorithm for this problem.

Chen et  al. (2021b) consider joint pricing and assortment decisions under a 
logit model-based framework that takes customer features into account. This 
model provides a significant advantage when insufficient data for every customer 
are available. For further details on joint assortment optimization and pricing, 
we refer the interested reader to the above mentioned literature and the refer-
ences therein.

Finally, another research area related to the classic assortment optimization 
is the product line design. To tackle the task of product line design, typically a 
two-step approach is followed. First, a set of candidate products is determined. 
In the second step, a product line selection—i.e. assortment optimization—and 
pricing problem is solved on the set of candidate products to determine the opti-
mal product line. Schön (2010a) proposes an exact approach for determining 
the profit-maximizing product line under the consideration of continuous prices 
when customers are assumed to choose according to an attraction choice model. 
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Likewise, Schön (2010b) studies an approach to find the optimal, profit-maxi-
mizing product line under a personalized or group pricing strategy in markets 
with multiple heterogeneous costumers.

B.3 Joint assortment and inventory level optimization

Besides pricing, the retailer also needs to determine how many items to stock for 
each SKU. This problem is particularly relevant in offline channels as brick-and-
mortar stores typically have only limited capacity both on their shelves and in the 
warehouse but need to prevent stock-outs. It is only natural to optimize offer set and 
corresponding inventory levels at the same time. This is referred to as joint assort-
ment and inventory level optimization and frequently studied in the literature.

Transchel et al. (2022) consider the joint assortment and inventory planning prob-
lem for vertically differentiated products under consumer-driven substitution where 
the demand for each product and the stockout-based substitution rates are derived 
from a customer’s utility function and a random market size. The authors propose a 
two-step integral solution approach where first the initial purchasing probabilities of 
all products are determined along with the substitution matrices of all possible prod-
uct-availability combinations. Next, the inventory levels are obtained by iteratively 
solving a sequence of two-product problems. The authors provide evidence that joint 
assortment and inventory planning while considering stockout-based substitution is 
particularly essential when both the profit margin and demand uncertainty are high.

Honhon et al. (2010) consider the single-period assortment and inventory prob-
lem under stockout-based substitution where customers can be assigned to different 
customer types. Each customer type corresponds to a preference ordering among 
products and purchases the highest-ranked offered product if any. The authors solve 
the optimal assortment problem using a dynamic programming formulation and 
establish structural properties of the optima of the value function that enable the 
solvability of the problem in pseudopolynomial time. Moreover, the authors give a 
heuristic for the case when the proportion of customers of each type is random and 
provide empirical evidence of the applicability of their approach.

Moreover, Martínez-de Albéniz and Kunnumkal (2022) consider the joint assort-
ment and inventory planning problem under stockout-based substitution in a setting 
with inventory replenishment. The authors develop an accurate approximation for 
the multi-product case by making use of the existing closed-form solution for the 
single-product case.

Likewise, Aouad et al. (2018b) study the joint assortment and inventory planning 
problem under the MNL model where stock-out events cause dynamic substitution 
effects. The authors propose an algorithm for dynamic assortment planning under 
the MNL model and derive a constant-factor guarantee for a broad class of demand 
distributions.

Finally, Katsifou et al. (2014) consider the joint assortment, inventory level, and 
pricing problem under the MNL model in the setting where a retailer carries a prod-
uct assortment consisting of both standard products and short-lived special products. 
This setting is intended to increase store traffic by attracting heterogeneous classes 
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of customers, which in turn increases the sales of standard products due to potential 
cross-selling effects as customers who are primarily attracted by special products 
might also buy standard products. The authors propose an optimization model and 
an iterative heuristic and provide empirical evidence that retailers might benefit from 
carrying low-priced special products on top of the standard product assortment. For 
further information on joint assortment and inventory level optimization, we refer 
the interested reader to the above introduced literature and the references therein.

B.4 Joint assortment optimization and shelf‑space allocation

Shelf-space allocation refers to the task of allocating the available shelf space 
among all products included in the assortment. To this end, one typically defines 
facing quantities to individual products while restricting the available shelf space. 
One common assumption in shelf-space optimization is that the sales of a product 
are directly linked to the space allocated to it and the space allocated to its competi-
tors. Hence, instead of using choice models to capture consumer demand, research-
ers rather apply so-called space-elastic functions to estimate the demand when it 
comes to shelf-space allocation tasks. Space elasticity refers to the sensitivity of 
the customer to the inventory (or number of facings) displayed in terms of quan-
tity bought (see Hariga et al. 2007). It is again only natural to jointly optimize the 
offered assortment along with the shelf-space allocation. This setting is extensively 
studied in the literature.

For example, Hübner and Schaal (2017) consider the joint assortment optimiza-
tion and shelf-space allocation problem. The authors formulate a model that maxi-
mizes the retailer’s profit by selecting the optimal assortment and assigning limited 
shelf-space to items while considering stochastic and space-elastic demand as well 
as out-of-assortment and out-of-stock substitution effects. The authors develop a 
specialized heuristic that yields near-optimal results even for large-scale problems 
and find that space elasticity and substitution effects have a significant impact on 
profits, assortment size and facing decisions.

Hübner et  al. (2020) consider the joint assortment and shelf-space allocation 
problem for two-dimensional, tilted shelves as e.g. used for cheese or clothes. The 
authors develop a decision model that optimizes the assortment selection and the 
assignment of items to a space-restricted, tilted shelf while accounting for stochastic 
demand, space elasticity, and substitution effects. To solve this problem, a special-
ized heuristic based on genetic algorithms that yields near-optimal results is pro-
posed. For further information on joint assortment optimization and shelf-space 
allocation, we refer the interested reader to the above introduced literature and the 
references therein as well as to Hübner and Kuhn (2012) for an excellent compre-
hensive review.

Obviously, the shelf-space allocation problem is only relevant in offline set-
tings. However, it can easily be transferred to the online setting by assuming that a 
retailer’s website is of limited space and it needs to be determined which product is 
offered at which position on the website. The joint optimization of assortment and 
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product display position is exemplary tackled by Chen and Jiang (2020a), who study 
the joint assortment and display position problem under the nested logit model. The 
authors formulate this problem as a nonlinear binary integer programming model, 
develop a dynamic programming-based solution approach for obtaining optimal 
assortment-position assignments, and find that it is not necessarily better to put the 
most attractive products in the best positions. Finally, the authors discuss the exten-
sion to the joint assortment-position-price optimization problem.

B.5 Further joint assortment optimization problems

Besides the popular joint assortment problems introduced so far, researchers addi-
tionally consider a variety of other problem settings. For example Wang et  al. 
(2022a) consider a joint advertising and assortment optimization problem under the 
MNL model, where the objective is to find an optimal product assortment and opti-
mal advertising strategies for them. To be precise, the authors assume that the prefer-
ence weight of a product can be increased by advertising it. The degree of improve-
ment is determined by the effectiveness of the advertisement and the amount of 
advertising efforts allocated to that product. The authors show that revenue-ordered 
assortments remain optimal in the uncapacited case and provide a relaxation to effi-
ciently obtain near-optimal solutions under cardinality constraints.

Wang et  al. (2023e) consider the joint optimization of offline and online deci-
sions. The former comprises decisions regarding the product-design characteristics 
such as price, capacity or return eligibility; the latter involves the dynamic assort-
ment optimization over a selling season. This setting e.g. occurs in practice when 
determining product discounts or a products’ return eligibility. The authors formu-
late an optimization problem combining the impact of both offline and online deci-
sions on the expected revenue. To determine the product design, the authors refor-
mulate a choice-based deterministic linear program, solve its continuous relaxation, 
and round the resulting solution. A dynamic assortment policy achieving at least a 
constant fraction of the expected revenue of the choice-based deterministic linear 
program is obtained using value function approximations. Combining both results, 
the authors provide an approximate solution with performance guarantees to the 
joint product design and assortment optimization.

Haase and Müller (2020) study the joint assortment and product design optimiza-
tion problem under the mixed logit model with deterministic customer segments. In 
this setting, the objective is to select an offerset of predetermined size and decide 
on the attributes of each product such that a function of market share is maximized. 
The authors develop a mixed-integer nonlinear program (MINLP) that is solved 
by generic solvers and provide empirical evidence that even large instances can be 
solved in reasonable time. Similarly, Jiao and Zhang (2005) study the product port-
folio planning problem, i.e. the task of selecting an optimal mix of products and 
attributes to be offered. The authors consider a shared-surplus maximization model 
that takes customer preferences and choice behaviour as well as platform-based 
product costing into account and propose a stochastic mixed-integer nonlinear pro-
gram while jointly considering customer concerns and operational implications. 
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Their approach is later on adapted and enhanced by Müller and Haase (2016) who 
propose some changes such as demand model calibration, deterministic customer 
surplus, and an effective objective function.

El Housni and Topaloglu (2022) consider a joint assortment optimization and 
customization problem under the MMNL model. In this setting, a firm first selects 
an assortment of products to carry subject to a cardinality constraint. When a cus-
tomer of certain type arrives, the pre-selected assortment is adjusted to the observed 
customer type by possibly dropping certain products from the assortment. The over-
all goal under this setting is to determine the assortment to carry as well as the cus-
tomized assortments per customer type. Such settings exemplary arise in online plat-
forms where retailers commit to a selection of products before the start of the selling 
season and adjust the the displayed assortment per customer type. The authors show 
NP-hardness of this problem and provide an approximation framework with perfor-
mance guarantee.

Chen et al. (2023b) study the ’recommendation at checkout’ problem, where each 
arriving customer type is defined by a primary item of interest that this customer 
might add to his shopping card. In case the item is added to the card, the retailer 
aims at recommending an assortment of add-ons to the customer that go along with 
the primary item. The authors derive an algorithm with 1/4-competitive ratio guar-
antee under adversarial arrivals.

Another research area related to assortment optimization is the so-called bun-
dling. Bundling addresses the question which products should be combined to prod-
uct bundles to be offered together. We distinguish two variants of bundling—pure 
and mixed bundling. The former occurs when the products contained in a bundle 
can only be purchased together but not on their own. In contrast, mixed bundling 
refers to the case when customers can decide whether to purchase the entire bundle 
or its individual components. The retailer needs to jointly determine which products 
to bundle and offer to the customer and the prices demanded for the product bun-
dles. Ettl et al. (2019) address this topic by constructing a model that recommends 
personalized discounted product bundles to online shoppers while considering the 
trade-off between profit maximization and inventory management. The authors 
determine analytical performance guarantees illustrating the complexity of this joint 
bundling, assortment and pricing problem and provide empirical evidence of the 
applicability of their approach.

B.6 Facility location planning

Another research area that appears to be similar to assortment optimization is the 
topic of facility location planning. Instead of determining the optimal selection of 
products to be offered to a customer, facility location planning deals with the task 
of determining the optimal locations of facilities. Such facilities can be companies, 
(manufacturing) plants, warehouses, or facilities such as schools, emergency ser-
vices, fire stations and much more (see Domschke and Krispin 1997).

Like in assortment optimization, the applications of facility planning are man-
ifold, resulting in an ever growing family of location allocation models—ranging 
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from simple linear, single-stage, single-product, uncapacited, deterministic models 
to nonlinear probabilistic models (see Klose and Drexl 2005). Particularly, there are 
a growing number of articles considering the MNL model in facility location models 
(e.g. Aros-Vera et al. 2013; Benati and Hansen 2002; Haase and Müller 2013, 2014). 
Likewise, a broad range of algorithms including local search and mathematical pro-
gramming-based approaches for tackling this problem are proposed (see Klose and 
Drexl 2005). For example, only considering locational decisions, there exist differ-
ent linear formulations of the MNL yielding mixed-integer linear programs that are 
compared in Haase and Müller (2014).

For more information, we refer the interested reader to Haase et al. (2019) who 
provide an overview of publications on facility location planning in the public sector 
or to Melo et al. (2009) who provide a review of facility location models in the con-
text of supply chain management.
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