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Abstract
We study an assortment problem under the multinomial logit model with two new types of group constraints that are moti-
vated by a joint project with the German car manufacturer BMW. Under group constraints, products are either attributed to 
exactly one group or to several groups at once and there is either a bound on the number of products offered per group or on 
the number of groups from which products are offered. We formulate both optimization problems as binary fractional linear 
program and provide reformulations that can be solved using state-of-the-art solvers. Finally, we conduct a numerical study 
and find that all instances of the products-per-group constrained problem as well as small to medium size instances of the 
number-of-offered-groups constrained problem can be solved within fractions of a second, whereas large instances of the 
latter problem might take some seconds to be solved.

Keywords  Assortment optimization · Group constraint · MNL model

Introduction

This research is motivated by an ongoing project with the 
German car manufacturer BMW. In particular, the project 
concerns its online sales platform—also known as BMW 
new car locator—which is depicted in Fig. 1. The new car 
locator website offers all BMW vehicles that are directly 
available for sale. The vehicles become visible in batches 
of size six by clicking on the ’Mehr anzeigen’ (engl.: ’show 
more’) button displayed on the bottom of Fig. 1.

There are various vehicles available that can be offered to 
the customer via the new car locator website. The decision 
on which of these vehicles should be offered is of signifi-
cant importance since it directly impacts the success of the 
business (see Jena et al. 2020). However, selecting the opti-
mal offer set of vehicles is challenging since according to 
Jena et al. (2020) it is well known that too large assortments 
jeopardize total sales, but offering more vehicles might 
increase the conversion, i.e., the number of sold vehicles. 

This becomes more apparent when considering the extreme 
cases of offering all available vehicles and offering only one 
of the available vehicles, respectively.

Offering all possible vehicles has three major drawbacks. 
First, the offer set would be extremely large such that it 
would take a significant amount of time to browse through 
the whole assortment, which could annoy the customer and 
thus harms the customer experience. Second, such a large 
offer set might overwhelm the customer, such that the cus-
tomer decides to directly leave the platform without purchase 
instead of browsing through the offer set. Third, the vehi-
cles offered to the customer might cannibalize each other 
(see Jena et al. 2020). To see this, think about two vehicles 
that both satisfy the customer’s requirements, whereby the 
price of one vehicle is significantly lower than the price of 
the other. The customer would purchase the cheaper vehicle 
which would result in less revenue for BMW. If the cheaper 
vehicle had not been offered, the customer would have pur-
chased the more expensive one, resulting in higher revenue 
for BMW.

Considering the other extreme, offering only one vehi-
cle would be suboptimal as well. When a customer arrives 
on the new car locator website, it is uncertain which vehi-
cle is desired by this customer. When offering only one 
vehicle, the probability is high that this vehicle is not of 
interest to the customer resulting in a direct leave of the 
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new car locator website. The same reasoning holds for 
small offer sets. Hence, an optimal assortment consisting 
of a subset of all available vehicles should be offered to the 
customer that maximizes the expected revenue for BMW, 
provides sufficient choice options, but neither overwhelms 
the customer nor results in cannibalization effects.

The goal of the joint project with BMW is to develop a 
system to automatically determine revenue-maximizing offer 
sets for the BMW new car locator website while adhering to 
selected business requirements using mathematical optimi-
zation. Such business requirements are typically defined by 
the sales department but occasionally also result from legal 
requirements.

The business requirements for the BMW new car loca-
tor platform include—but are not limited to—the following 
demands:

•	 no dealer discrimination: Since the vehicles are sold 
via dealers, none of them should be discriminated by the 
offer set.

•	 vehicle class diversity: The offer set should provide 
sufficient diversity regarding the different BMW vehicle 
classes called UKL, KKL, MKL, and GKL. These vehi-
cle classes are based on the vehicle size and each consist 
of multiple vehicle series as visualized in Fig. 2.

•	 vehicle series diversity: It is desired that the offer set 
covers sufficient diversity regarding the different BMW 

Fig. 1   BMW new car locator 
website
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vehicle series such as 1 series, 2 series, and so on. A 
complete overview of all BMW series is provided in the 
vehicle tree in Fig. 2.

•	 vehicle attribute diversity: The offer set should com-
prise sufficient diversity regarding the different BMW 
vehicle attributes such as body type (roadster, tour-
ing, convertible, coupé, ...), power train (petrol, diesel, 
BEV, ...), gear (automatic, manual), color (black sap-
phire metallic, skyscraper grey metallic, san francisco 
red metallic, portimao blue metallic, isle of man green 
metallic, alpine white, ...), and much more.

•	 price level diversity: It is requested that the offer set 
captures a certain split of the BMW vehicle price levels. 
These vehicle price levels consist of the classes S, M, and 
L based on the sales price and the selection of optional 
equipment the vehicle is equipped with.

When considering only a single of the above business 
requirements, some of them can be addressed by making 
use of existing variants of an assortment optimization prob-
lem as further detailed in section “Assortment optimization 
under group constraints”. However, other requirements 
can not yet be handled in this way. Moreover, BMW is not 
interested in determining an assortment that satisfies only 
one of the business requirements but all of them at once. 
When combining multiple of these business requirements, 
the resulting assortment problem has not yet been examined 
and analyzed with respect to its efficient solution using in 
particular standard solvers.

To address all requirements of BMW, we study the assort-
ment optimization problem under the well-known multino-
mial logit (MNL) choice model and propose a new general 
type of constraint that we refer to as group constraint. The 
basic idea behind a group constraint is a mapping between 
products—in our BMW project the vehicles—and groups—
in our BMW project the dealers, the vehicle classes, the 
vehicle series, the vehicle attributes, or the vehicle price 
levels, respectively—and there is an individual constraint 
per group.

To the best of our knowledge, the only type of group con-
straint studied in the literature on assortment optimization 
so far incorporates a limit on the maximum number of prod-
ucts to be offered per group when the products are disjointly 
attributable to the groups, i.e., when every product can be 
mapped to exactly one group. In this case, the constraint is 
typically referred to as partition constraint.

In contrast to the existing literature, in our study the map-
ping between products and groups is arbitrary, i.e., it can but 
does not necessarily need to be disjoint. Having the map-
ping between products and groups available, we propose two 
types of group constraints.

•	 First, we assume that the mapping between products and 
groups is arbitrary and the number of products per group 
that can be offered is lower, upper, or interval bounded. 
We refer to this case as products-per-group constraint 
(PPG).

•	 Second, we assume that the mapping between products 
and groups is arbitrary and the number of groups from 
which products can be offered is lower, upper, or interval 
bounded. This case is referred to as number-of-offered-
groups constraint (NOG).

To illustrate both types of constraints, let us consider the 
BMW requirement of vehicle series diversity, which states 
that the offer set should cover sufficient diversity regarding 
the different BMW vehicle series such as 1 series, 2 series, 
3 series, and so on. To formulate this requirement as a group 
constraint, we identify the products as the vehicles that can 
be sold via the new car locator website and the groups as the 
different BMW series, whereby the mapping which vehicle 
belongs to which series is known. Using the products-per-
group constraint, we can then address the vehicle series 
diversity requirement by demanding that at least a certain 
number of vehicles per series—e.g., three 1 series vehicles, 
one 2 series vehicle, and four 3 series vehicles—are selected. 
Alternatively, to address the requirement of vehicle series 
diversity using the number-of-offered-groups constraint, we 
can demand that vehicles from at least a certain number 
of different series—e.g., from three different series—are 
offered.

Fig. 2   BMW vehicle tree depicting the hierarchical structure between 
the different BMW vehicle classes (UKL, KKL, MKL, GKL) and the 
corresponding BMW series
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Note that in this example, the formulation of the vehicle 
series diversity requirement using the products-per-group 
constraint necessitates the specification of the exact number 
of vehicles that should be selected per series and is thus 
more restrictive regarding possible assortments to be offered 
compared to the formulation using the number-of-offered-
groups constraint which only requires the specification of 
the number of different series from which vehicles should 
be chosen.

We formulate both the products-per-group constrained 
and the number-of-offered-groups constrained optimization 
problems as binary fractional linear program (BFLP) that 
are known to be NP-hard. Due to the constantly changing 
requirements on the optimization problem in terms of busi-
ness demands, a highly flexible, easily adjustable solution 
approach is needed to continually change the optimization 
problem accordingly by, e.g., adding further constraints or 
removing existing ones. Moreover, the instance needs to be 
quickly solvable and the solution approach must be easy to 
integrate into the BMW IT infrastructure. Hence, we pro-
vide mixed integer linear program (MILP) reformulations 
of both BFLP problem formulations which can be solved 
using common state-of-the-art solvers such as CPLEX or 
Gurobi. For the number-of-offered-groups constrained set-
ting, we additionally provide a two-step solution approach 
that is typically more efficient in terms of computation time 
compared to our MILP reformulation.

Finally, to provide evidence of the practical applicability 
of our approach, we conduct an extensive numerical study 
for both group-constrained assortment problem settings 
using synthetic data of various realistic problem set sizes.

This paper is organized as follows: In section “Intro-
duction”, we motivate our research and mention our main 
contributions. In section “Related literature”, we provide a 
brief overview of the existing literature that is related to 
the assortment problem setting studied by us. We intro-
duce the preliminaries including relevant notation, group 
constraints in general, the considered MNL model, and the 
resulting assortment problem in section “Preliminaries”. 
The two assortment problem settings under different group 
constraints are motivated, formalized, and reformulated in 
section “Assortment optimization under group constraints”. 
We describe our numerical experiments including data gen-
eration and results evaluation in section “Numerical experi-
ments”. Finally, we conclude in section “Conclusion”.

Related literature

Research on assortment optimization starts with the seminal 
paper of Talluri and van Ryzin (2004). The authors study 
the unconstrained version of the assortment problem and 
prove that the optimal assortment is revenue-ordered. That 

is to say, the optimal assortment consists of all products 
priced above a certain price threshold and can be obtained 
by greedily adding products into the offered assortment in 
the order of decreasing revenues until the price threshold 
is reached.

Since then, research in the field of assortment optimi-
zation has experienced a considerable boost in attention—
particularly initialized by the transition from independent 
demand to choice-based revenue management; see Strauss 
et al. (2018). During this time, various assortment problems 
have been studied under diverse choice models, so that by 
now there exists a wide range of literature on assortment 
optimization. A comprehensive review of the existing litera-
ture is, e.g., provided by Heger and Klein (2024).

In our work, we assume that customer demand follows the 
MNL model and incorporate a new type of constraint—the 
group constraint—into the retail assortment problem. There-
fore, in section “Literature considering retail applications of 
assortment optimization” we first provide a brief overview of 
selected retail applications of assortment optimization that 
have been investigated in the literature so far. Subsequently, 
we focus on the studies on constrained assortment optimi-
zation that are most closely related to our proposed group 
constraints. Doing so, we first review literature on totally 
unimodular constraints in section “Literature considering 
totally unimodular constraints” before briefly commenting 
on literature covering partition constraints in section “Lit-
erature considering partition constraints”.

Literature considering retail applications 
of assortment optimization

The problem of finding the optimal assortment is omnipres-
ent in various retail applications. These applications range 
from online and offline to omni-channel settings, from sin-
gle-period to multi-period considerations, from single-pur-
chase to multi-purchase assumptions, from pure assortment 
planning tasks to integrating inventory, price, or positioning 
decisions, from general to personalized recommendations, 
and from frequently purchased, reusable, or short-lived prod-
ucts to infrequently purchased, non-reusable, or long-lived 
products. In the following, we provide a brief overview of 
selected retail applications addressed in the literature on 
assortment optimization so far.

Qiu et al. (2020) study the task of determining the optimal 
store assortment, where different products from one store 
brand and one national brand can be offered and the cus-
tomer is assumed to first choose which brand to buy before 
deciding on one product within that brand.

In contrast, Hübner and Schaal (2017) study the task of 
maximizing a retailer’s profit by selecting the optimal store 
assortment and allocating limited shelf space to its items. 
Hübner et  al. (2020) extend this setting by considering 
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two-dimensional shelves such as those for offering, e.g., 
meat, bread, fish, cheese, or clothes.

As opposed to such offline settings, the optimal assort-
ment offered to a customer via the online channel can be 
personalized using the customer’s personal information and 
purchase history. This is, e.g., studied by Bernstein et al. 
(2015), Bernstein et al. (2019), and Golrezaei et al. (2014). 
Since the amount of customer information that is available 
in online settings is typically of high dimensionality, which 
results in significant computational challenges, Miao and 
Chao (2022) propose a way of personalizing online assort-
ments while accounting for the high dimensionality of avail-
able customer information.

Moreover, Ettl et al. (2019) study the task of recommend-
ing a whole personalized discounted product bundle to an 
online shopper that considers the trade-off between profit 
maximization and inventory management, while selecting 
products that are relevant to the consumer’s preferences.

Besides the personalization of the offer set, online retail 
also allows for the frequent introduction and removal of 
products. To address this, Agrawal et al. (2019) study the 
assortment problem while accounting for short selling hori-
zons of the considered products. Caro et al. (2014) extend 
this setting by assuming that, once introduced, a product’s 
attractiveness lasts only a few periods and vanishes over time 
and that the retailer needs to decide in advance on the release 
date of each product in a given collection during a selling 
season to maximize the total profit over the selling season.

In addition, unlike offline settings, in online settings the 
offered assortment is not necessarily visible all at once. E.g., 
Liu et al. (2020), Gao et al. (2021), and Feldman and Segev 
(2022) study the assortment problem of an online retailer 
whose offered assortment is incrementally shown over mul-
tiple results pages.

Apart from solely optimizing the offered assortment, it 
is also common to study integrated decisions. For exam-
ple, Chen and Jiang (2020) consider the task of finding the 
revenue-maximizing subset of products as well as their cor-
responding display positions. Furthermore, Aouad et al. 
(2018) study the joint assortment and inventory planning 
problem where the retailer needs to select an assortment 
of products along with their initial inventory levels, given 
a capacity constraint on the total number of units to be 
stocked. Beyond that, Katsifou et al. (2014) study the joint 
assortment, inventory, and price optimization problem while 
accounting for a combined product assortment consisting of 
both regular ’standard’ products and more fashionable and 
short-lived ’special’ products. Such an assortment structure 
should increase sales due to cross-selling effects—custom-
ers attracted by special products might purchase standard 
products and vice versa.

Instead of purely considering either the online or 
the offline sales channel, some studies on assortment 

optimization also deal with omni-channel settings. Among 
them, Lo and Topaloglu (2021) consider the assortment 
problem of a retailer that operates a physical store as well 
as an online store. In the online store, the full assortment is 
offered and the retailer needs to decide on the assortment 
to be offered in the physical store to maximize the total 
expected revenue. Similarly, Miller et al. (2010) study the 
task of developing an operational methodology for choos-
ing retail assortments for infrequently purchased products 
such as consumer electronics, appliances, and home furnish-
ings. The authors propose to design the company’s website 
in a way to collect customer preference information, which 
can then be incorporated into the assortment decision. In 
contrast, Hense and Hübner (2022) study joint assortment, 
space, and inventory decisions for an omni-channel retailer 
operating with interconnected bricks-and-mortar stores and 
an online shop.

Literature considering totally unimodular 
constraints

The study that is most closely related to our research is 
Davis et al. (2013), who consider the assortment optimiza-
tion problem under the MNL model with totally unimodular 
(TU) constraints. TU constraints are a general type of con-
straint that can be formalized by Ax ≤ b . Here, x denotes 
the decision variable, b represents a vector that is assumed 
to be integral, and A is a TU matrix, i.e., a matrix with every 
square submatrix having determinant ±1 or 0. These total 
unimodularity constraints capture a broad range of constraint 
settings. E.g., the authors argue that a partitioning of prod-
ucts into disjoint groups can be represented by an interval 
matrix which is totally unimodular. As a key result, Davis 
et al. (2013) show that the assortment problem under such 
TU constraints can be formulated as binary fractional linear 
program and solved as an equivalent linear program.

Following Davis et al. (2013), further studies on assort-
ment optimization under totally unimodular constraint struc-
tures appeared. Among them, Sumida et al. (2020) exam-
ine the revenue-utility assortment problem under the MNL 
model while adhering to totally unimodular constraints 
on the offered assortment. The goal of the revenue-utility 
assortment problem is to determine an assortment that maxi-
mizes a linear combination of the expected revenue of the 
firm and the expected utility of the customer. The authors 
provide evidence that the revenue-utility assortment problem 
can be solved by identifying the assortment that maximizes 
the expected revenue after adjusting each product’s revenue 
by the same constant.

In contrast to Sumida et al. (2020), who show that the 
classic assortment problem under the MNL model with TU 
constraints admits a linear programming-based polynomial 
time algorithm, Bai et al. (2023) provide evidence that this 
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is not the case when considering the multi-purchase setting 
where customers can make multiple simultaneous purchases. 
To be precise, the authors show that the assortment problem 
under the multi-purchase MNL model is NP-hard to approxi-
mate under TU constraints and propose a polynomial time 
approximation scheme. Likewise, Aouad et al. (2022) prove 
that the assortment problem with TU constraints under the 
exponomial choice model is NP-hard as well.

Moreover, literature on TU-constrained optimization also 
arises in the area of product line design. To tackle this type 
of problem, typically a two-step approach is followed. At 
first, a set of candidate products is determined. Subsequently, 
in the second step, a product line selection—i.e., assortment 
optimization—and pricing problem is solved on the set of 
candidate products to determine the optimal product line. 
Chen and Hausman (2000) study this problem under the 
MNL model. In their study, the price of each product is 
chosen from a predetermined set of discrete values and it 
is ensured that every product profile is offered at only one 
price to the customer. The length of the product line is con-
trolled by imposing bounds on the number of offered prod-
ucts. Doing so, the authors show that this problem can be 
formulated as binary fractional linear program with totally 
unimodular constraints, which is solvable using standard 
methods. Later on, Schön (2010) extends this approach to 
determine a profit-maximizing product line under a person-
alized or group pricing strategy in markets with multiple 
heterogeneous consumers.

Literature considering partition constraints

The first study dealing with partition constraints as special 
case of group constraints is Agrawal et al. (2019). They con-
sider a dynamic assortment problem with partial knowledge 
about the parameters of the MNL model. In every round the 
retailer offers a subset of products to a customer. Doing so, 
the products can be partitioned into disjoint segments, and 
the retailer can offer at most a specified number of products 
from each segment. The customer then selects one of these 
offered products according to the MNL model or leaves the 
market without purchase. The retailer observes the cus-
tomers’ choice and aims at dynamically learning the MNL 
model parameters while optimizing cumulative revenues 
over the whole selling horizon. The authors propose an 
algorithm that is able to simultaneously explore and exploit.

The second study dealing with a special case of group 
constraints is Ghuge et al. (2021). The authors study the 
assortment problem under the paired combinatorial logit 
model with group constraints where the products are par-
titioned into disjoint categories and there is a limit on the 
number of selected products per category. Ghuge et  al. 
(2021) propose a binary-search-based approximation frame-
work combined with a local-search algorithm.

All of the studies introduced above only cover a special 
case of group constraint where the products are partitioned 
into disjoint groups and there is a limit on the number of 
products to be offered per group. Besides those studies, to 
the best of our knowledge there is no further literature on 
group-constrained assortment optimization. Particularly, 
there are no studies capturing the more general settings con-
sidered by us, i.e., the case when the products can belong to 
multiple groups at once or when the number of groups from 
which products are offered is limited.

Preliminaries

In section “Products and assortments”, we start by defining 
the notation for products and assortments. Subsequently, 
in section “Group constraints” we formally introduce our 
proposed group constraints before briefly presenting the 
MNL model in section “MNL model”. We end the sec-
tion by expounding the related assortment problem in sec-
tion “Assortment optimization”.

Products and assortments

Let N = {1, ..., n} be the set of available products and denote 
the no-purchase option by {0} . The retailer needs to select an 
assortment of the available products to be offered. This sub-
set—also referred to as offer set—is represented as a binary 
decision variable xj for each product j ∈ N  that indicates 
whether this product is offered or not by setting xj = 1 and 
xj = 0 , respectively. More formally, define

Note that the no-purchase option is always offered, implying 
that x0 = 1 holds for any assortment. The number of options 
that are offered in an assortment can be obtained by sum-
ming over all xj , i.e., 

∑
j∈N xj.

The expected demand for any product depends on the 
substitution behavior of customers and is captured by the 
MNL model specifying the probability that a customer 
selects a particular option from a given offer set as detailed 
in section “MNL model”. In general, the customer selects 
alternative j ∈ N  with probability pj(x) given that assort-
ment x is offered and decides to not purchase anything with 
probability p0(x) . Finally, assume that product j ∈ N is sold 
at revenue rj and that the market is of size 1 without loss of 
generality.

This general setting can be transferred to our BMW pro-
ject by identifying the products N = {1, ..., n} to be the vehi-
cles that can be offered via the new car locator website at 
revenues rj, j ∈ N . A vehicle j ∈ N is then purchased with 

xj =

{
1, if product j is offered

0, else
∀j ∈ N.
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probability pj(x) given that the assortment x of vehicles is 
offered and the customer decides to leave the new car locator 
without purchasing a vehicle with probability p0(x).

Group constraints

Group constraints are a type of constraint under which 
the products are attributed to groups; more formally, 
assume that the set of products N can be attributed to k 
groups K = {1, ..., k} . This can be represented by a matrix 
A ∈ {0, 1}k×n whose rows correspond to the k groups and the 
columns to the n products. The entries aij of the matrix A are 
either 0 or 1 depending if product j is contained in group i or 
not, i.e., more formally:

Each product can be either assigned to exactly one or to 
multiple groups:

•	 In the former case, thinking about our project with BMW, 
the resulting disjoint groups can, e.g., be thought of as 
the different BMW vehicle classes UKL, KKL, MKL, 
and GKL, whereby each vehicle belongs to exactly one 
of these four vehicle classes. This results in a totally 
unimodular matrix A. As mentioned in section “Related 
literature”, the assortment problem under such totally 
unimodular constraint structures is, e.g., studied by Davis 
et al. (2013) and Sumida et al. (2020).

•	 Transferring the latter case to our project with BMW, the 
groups might, e.g., correspond to the various different 
BMW vehicle attributes such as body type roadster, body 
type touring, manual gearing, automatic gearing, color 
black sapphire metallic, and color alpine white, whereby 
each vehicle can have multiple such attributes at once—
think, e.g., about an alpine white touring with automatic 
gearing. Hence, intuitively speaking the matrix A can 
have multiple 1’s per column and is thus not necessarily 
totally unimodular.

Having the assignment of products to groups available, one 
can either bound the number of offered products per group 
or the number of groups from which products are offered.

For the former setting, one can make use of the fact that 
the multiplication of matrix A with the assortment vector x 
yields the number of offered products per group. This num-
ber can be bound from below and/or above by using a con-
straint of the form Ax ≥ b and/or Ax ≤ b respectively to limit 
the number of offered products per group to b . This setting 
is described in further detail in section “Products-per-group 
constraint”.

aij =

{
1, if j ∈ i

0, if j ∉ i
∀j ∈ N, i ∈ K.

To incorporate the latter setting into a constraint, an addi-
tional decision variable needs to be introduced that checks 
whether at least one product per group is offered. This set-
ting is discussed in further detail in section “Number-of-
offered-groups constraint”.

MNL model

Intuitively, choice models aim at capturing the demand 
behavior of customers and can thus be used to model which 
of the offered options might be purchased by a customer. In 
recent years, the assortment problem has been studied under 
a variety of choice models that can be divided into paramet-
ric and non-parametric approaches as detailed by Heger and 
Klein (2024) and Strauss et al. (2018).

Non-parametric choice models are typically designed 
as ranked lists of preferences, also referred to as customer 
types, whereby demand is modeled by a probability distri-
bution over all customer types. Under such rank list-based 
models, the customer then chooses the highest-ranking 
offered item in the list or leaves without purchase if none of 
the available items ranks higher than the no-purchase option.

In contrast, parametric choice models are based on ran-
dom utility theory, where it is assumed that customers asso-
ciate a certain utility with every product, and decide on the 
alternative that maximizes their utility. This framework is 
referred to as random utility maximization (RUM). Within 
this framework, the utility Uj = uj + �j of product j is com-
posed of the deterministic part uj and a random component 
�j . Using this, the probability pj(x) that product j is chosen 
among the offered assortment is given by the probability 
that this product is associated with the highest utility, i.e.,

The deterministic component uj can be expressed as a linear 
function uj = �Tdj of an attribute vector dj that influences 
the purchase probabilities. The different parametric choice 
models result from different assumptions made on the dis-
tribution of the random component �j.

One of the most famous parametric demand models 
that is particularly popular due to its simplicity is the 
MNL model of Luce (1959) and McFadden (1973). This 
model can be identified as member of the RUM frame-
work by choosing the random components �j to be iid. 
random variables that follow the Gumbel distribution 
with a common scale parameter, typically normalized to 
one, and location parameters uj, j ∈ N  with u0 ∶= 0 . euj is 
referred to as preference weight vj of alternative j ∈ N  . 
Under the MNL model, the probability to select a product 
j from the offer set is determined by its utility relative to 
the total utility of the offer set; more formally:

pj(x) = P
(
Uj ≥ Ui ∀i ∶ xi = 1

)
.
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In our project with BMW, we assume that customer demand 
follows the above described MNL model. This decision is 
made for three reasons – 1) the lack of availability of cus-
tomer segmentation on BMW websites, 2) the MNL model’s 
intuitive appeal, and 3) its mathematical tractability. We 
briefly detail on each of the three reasons in the following. 

1.	 When aiming to purchase a vehicle, typically, a customer 
already has some vehicle characteristics in mind. Think, 
e.g., about a parent with several children. This customer 
would likely be interested in big, secure Sports Activity 
Vehicles (that is what BMW calls SUVs) rather than in 
a roadster with only two seats. Hence, there might exist 
customer segments covering the diverse interests and 
needs of the different customers and thus specifying the 
purchase dynamics of the customers belonging to the 
respective segments. This, in turn, implies that it would 
make sense to model the customer’s choice behavior 
using, e.g., a mixed logit or a nested logit model. How-
ever, by now, there is no such segmentation of customers 
entering the BMW new car locator website available. In 
contrast to other choice models, the MNL model does 
not require information on different customer segments.

2.	 As detailed before, under the MNL model, the utility 
of each vehicle is composed of a random component 
following a Gumbel distribution and a deterministic 
part that can be expressed as a linear function of attrib-
utes influencing the purchase probabilities. This clear 
dependence on the utilities and, thus, of the purchase 
probabilities on certain known attributes, such as prod-
uct characteristics, makes the MNL model both intuitive 
and easily interpretable, which is of high importance for 
companies when it comes to decision-making.

3.	 Under the MNL model, each vehicle’s purchase prob-
ability can be described in closed form as its utility 
relative to the total utility of all offered vehicles. This 
formulation results in a fractional linear objective func-
tion of the considered assortment problem, which can 
be linearized using adequate transformation techniques. 
That way, the assortment problem can be reformulated 
into a tractable mixed integer linear program that can be 
solved efficiently. This is not necessarily the case when 
considering other, more complex choice models.

Assortment optimization

Assortment optimization refers to the problem of analyti-
cally determining a selection of products to be offered to 
customers in order to maximize the expected revenues. 
Using the notation introduced in section “Products and 

pj(x) =
eujxj

1 +
∑

i∈N euixi
=

vjxj

1 +
∑

i∈N vixi
.

assortments”, the classic assortment problem can be for-
malized by

In the above optimization problem (AOP), x ∈ {0, 1}n 
denotes the decision variable indicating which of the prod-
ucts j ∈ N are included in the offer set. The objective rep-
resents the expected revenue and sums up the expected rev-
enue obtained by each product j. The expected revenue per 
product is obtained by multiplying the purchase probability 
pj(x) of the product with its revenue rj . The optimization 
problem formulation is completed by a binary constraint 
ensuring that all values of xj are either 0 or 1.

Assortment optimization under group 
constraints

In this section, we introduce two types of group con-
straints, both of which are motivated by our joint project 
with BMW. In sections “Products-per-group constraint” 
and “Number-of-offered-groups constraint”, we motivate 
the constraint settings, formulate the assortment problems 
as binary fractional linear programs and reformulate them 
as MILP that can be solved using common standard solv-
ers. Note that we do not explicitly incorporate cardinality 
constraints—i.e., constraints limiting the total number of 
offered products—in our assortment problems. However, 
extending the problem formulations by a cardinality con-
straint on the assortment size is straight forward and does 
not affect our proposed MILP reformulations.

Products‑per‑group constraint

We consider a type of group constraint where all products 
from the whole universe of products can be assigned to 
multiple groups at once and the number of products per 
group that can be offered is limited.

Motivation

Recall our joint project with BMW introduced in sec-
tion “Introduction”. As mentioned, the goal of this pro-
ject is to determine a revenue-maximizing offer set for the 
BMW new car locator website while adhering to multiple 
business requirements. These requirements include the 
prevention of dealer discrimination as well as the diver-
sity of vehicle classes, vehicle series, vehicle attributes, 
and price levels.

(AOP)
max
x

∑
j∈N

pj(x) ⋅ rj

subject to xj ∈ {0, 1} ∀j ∈ N
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Some of these business demands on the offer set of the 
new car locator website—such as, e.g., the requirements 
regarding the diversity of vehicle classes, vehicle series, 
or price levels—can be individually addressed by making 
use of the AOP setting under totally unimodular constraint 
structures introduced in Davis et al. (2013). That is, the cor-
responding AOP could be solved efficiently when exactly 
one of the requirements had to be considered.

To see this, let us consider the case of vehicle series 
diversity. First, we identify the products as vehicles that 
can be attributed to groups—in our example the different 
BMW series. Note that at BMW, every vehicle is defined to 
belong to exactly one series. Hence, the mapping of vehicles 
to series is disjoint and can thus be represented by a TU 
matrix A where the rows correspond to the different BMW 
series and the columns represent the vehicles. Requiring 
that at least one vehicle per series is contained in the offer 
set already satisfies the vehicle series diversity requirement. 
This can be done by adding a constraint of the form Ax ≥ b 
to the assortment problem, which might look as follows:

The same holds for the diversity requirements regarding 
vehicle classes or price levels. Instead of identifying the 
groups as BMW series as done in our previous example, the 
groups can be chosen to be the different vehicle classes or 
price levels, respectively. Again, the attribution of vehicles 
to classes or price levels is disjoint, resulting in a totally 
unimodular matrix.

However, as mentioned before, BMW is not interested 
in determining an assortment that satisfies only one of their 
business requirements but all of them at once. To combine 
multiple business requirements that can be individually for-
mulated as group constraints, one can row-wise concatenate 
their respective matrices A and the vectors b to obtain a new 
constraint of the form Ax ≥ b . However, when concatenating 
multiple totally unimodular matrices, the resulting matrix is 
not necessarily totally unimodular anymore. Likewise, con-
catenating matrices where at least one of them is not totally 
unimodular does not result in a TU matrix. Hence, the case 
of adhering to multiple business requirements at once is not 
addressable by making use of the assortment problem with 
totally unimodular constraint structures proposed in Davis 
et al. (2013).

In addition, some of the introduced business requirements 
such as the diversity requirement regarding product attrib-
utes and the prevention of dealer discrimination can not be 
formulated as TU constraints—even when addressing them 
individually. To see this, let us consider the requirement 

1 series

2 series

⋮

8 series

⎛
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⎛⎜⎜⎝
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⋮

xn

⎞
⎟⎟⎠
≥

⎛⎜⎜⎜⎝

1

1

⋮

1

⎞⎟⎟⎟⎠
.

of product attribute diversity. First, we again identify the 
products as vehicles. These vehicles can be characterized 
by the specification of their product attributes. Examples 
of product attributes (and their specifications) include body 
type (roadster, touring), power train (petrol, diesel, BEV), 
gear (automatic, manual), and color (black sapphire metallic, 
skyscraper grey metallic, san francisco red metallic, porti-
mao blue metallic, isle of man green metallic, alpine white). 
We identify the groups to be the specifications of the product 
attributes, i.e., for example body type roadster, body type 
touring, power train petrol and so on. To ensure sufficient 
diversity regarding these vehicle attributes, we can simply 
require that at least a certain number of vehicles per attrib-
ute is offered. That is to say, e.g., 10 roadsters, 15 tourings, 
20 petrols, 10 diesel, 30 BEVs, 25 vehicles with automatic 
gearing, and 5 alpine white vehicles. This can be done by 
adding a constraint of the form Ax ≥ b to the assortment 
problem, which might look as follows:

The mapping between vehicles and vehicle attributes is rep-
resented by the attribute-vehicle mapping matrix A, whose 
rows correspond to the attributes and the columns to the 
vehicles. Clearly, this mapping is not disjoint, since a vehicle 
can be an alpine white petrol roadster with automatic gear-
ing and thus belongs to multiple groups at once. Hence, the 
mapping matrix A is not necessarily totally unimodular.

The requirement regarding the prevention of dealers can 
be treated analogously to this example by replacing the vehi-
cle attributes with the different dealers. Since a vehicle can 
be sold via multiple dealers, the mapping between vehicles 
and dealers is again not disjoint such that the matrix A is not 
totally unimodular.

This implies that even simple individual business require-
ments such as the diversity regarding product attributes or 
the prevention of dealer discrimination—let alone the com-
bination of multiple requirements—can not be addressed by 
making use of the assortment problem with totally unimodu-
lar constraint structures proposed in Davis et al. (2013).

However, it is possible to incorporate both, the business 
requirements that can not be formulated using totally unimod-
ular mapping matrices as well as the combination of multiple 
business cases into the assortment problem formulation. This 
can be achieved by adding our proposed products-per-group 
constraint of the form Ax ≥ b to the assortment problem 

body type roadster

body type touring

power train petrol

power train diesel

power train BEV

automatic gearing

⋮

color alpine white
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formulation, where no special assumptions are to be made 
regarding the structure of the group-product mapping matrix 
A. Adding this constraint results in a feasible region of the 
form F = {x ∈ {0, 1}n ∣ Ax ≥ b} .

Note that not only ’greater-or-equal’ (geq) constraints can be 
incorporated. Instead, it is of course also possible to formulate 
a ’less-or-equal’ (leq) constraint by limiting the feasible region 
to F = {x ∈ {0, 1}n ∣ Ax ≤ b} . By combining both constraints, 
an equality requirement can be formulated, giving a feasible 
region of the form F = {x ∈ {0, 1}n ∣ Ax ≥ b,Ax ≤ b}.

Moreover, note that the settings where the number of prod-
ucts per group should be at most one ( Ax ≤ 1 ) or exactly one 
( Ax = 1 ) can also be used to solve joint assortment and pricing 
problems by identifying each product-price combination as a 
new individual product and applying the assortment problem 
to this extended product set.

Problem formulation

In general, using pj(x) =
vjxj

1+
∑

i∈N vixi
 under the MNL model, the 

assortment problem under the products-per-group constraint 
motivated in section “Motivation” can be formulated as a 
Binary Fractional Linear Program (BFLP):

Due to its fractional objective, this problem formulation is 
not directly solvable using a common solver such as CPLEX 
or Gurobi and must thus be reformulated for this purpose. 
However, in contrast to the problem setting considered in 
Davis et al. (2013), in this case the matrix A is not totally 
unimodular and thus, the LP-reformulation of the optimiza-
tion problem introduced in Davis et al. (2013) is not valid 
anymore. Though, application of the modified Charnes and 
Cooper (1962) transformation for linear-fractional program-
ming with wj = w0xj gives:

(1)(BFLP PPG) max
x

∑
j∈N rjvjxj

1 +
∑

i∈N vixi

(2)subject to
∑
j∈N

aijxj ≥ bi ∀i ∈ K

(3)xj ∈ {0, 1} ∀j ∈ N

(4)(MILP-v0 PPG) max
w,w0

∑
j∈N

rjvjwj

(5)subject to w0 +
∑
j∈N

vjwj = 1

(6)
∑
j∈N

aijwj ≥ biw0 ∀i ∈ K

Here, wj =
xj

1+
∑

i∈N vixi
 can be interpreted as the probability 

that a customer purchases product j when assortment x is 
offered, whereas w0 =

1

1+
∑

i∈N vixi
 denotes the probability that 

the customer does not purchase anything. Constraint (7) 
enforces wj to take values from the discrete set {0,w0} . Such 
a constraint is not directly implementable in solvers such as 
Gurobi but can be handled as follows. Let w�

j
w0 = wj to get 

the equivalent formulation of the above optimization 
problem:

The problem formulation (MIQP PPG) is a mixed integer 
quadratic program (MIQP) since its objective consists of the 
product of the decision variables w′

j
 and w0 . Replacing 

zj = w�
j
w0 and adding the McCormick (1976) envelope ine-

qualities yields the following MILP reformulation of the 
original problem:

(7)wj ∈ {0,w0} ∀j ∈ N

(8)0 ≤ w0 ≤ 1

(9)(MIQP PPG) max
w�,w0

∑
j∈N

rjvjw
�
j
w0

(10)subject to w0 +
∑
j∈N

vjw
�
j
w0 = 1

(11)
∑
j∈N

aijw
�
j
w0 ≥ biw0 ∀i ∈ K

(12)w�
j
∈ {0, 1} ∀j ∈ N

(13)0 ≤ w0 ≤ 1

(14)(MILP-v1 PPG) max
w�,w0,z

∑
j∈N

rjvjzj

(15)subject to w0 +
∑
j∈N

vjzj = 1

(16)
∑
j∈N

aijzj ≥ biw0 ∀i ∈ K

(17)zj ≥ 0 ∀j ∈ N

(18)zj ≥ w0 + w�
j
− 1 ∀j ∈ N

(19)zj ≤ w0 ∀j ∈ N
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Note that (MIQP PPG) can already be solved using stand-
ard solvers such as CPLEX or Gurobi. However, as tested 
by the authors, this would take between 2.4 times and 6.4 
times—and on average 4 times—as long as solving (MILP-
v1 PPG). Hence, in terms of computation time it is prefer-
able to execute the last transformation step to make use of 
our final MILP reformulation (MILP-v1 PPG).

Number‑of‑offered‑groups constraint

In this section, we consider a type of group constraint 
where all products from the whole universe of products are 
assigned to groups and the number of groups from which 
products can be offered is limited.

Motivation

Again recall our joint project with BMW with the goal of 
determining a revenue-maximizing offer set for the BMW 
new car locator website while adhering to multiple busi-
ness requirements. These business requirements include the 
prevention of dealer discrimination as well as the diversity 
of vehicle classes, vehicle series, vehicle attributes, and 
price levels. In section “Products-per-group constraint”, it 
is shown that all of these requirements as well as their com-
bination can be addressed by incorporating a products-per-
group constraint into the assortment problem formulation. 
However, for some of these requirements, a products-per-
group constraint might be a little too strong.

To see this, imagine that BMW requires the offer set to 
contain sufficient diversity regarding the vehicle colors, as 
it is assumed that the customer’s attention to the vehicle set 
displayed on the website persists longer if different colors 
are shown. Using a products-per-group constraint to ensure 
that this requirement is met, we can, e.g., demand that at 
least one vehicle per color is offered. However, as the num-
ber of stock vehicles for uncommon colors can be quite low, 
this requirement might be overly restrictive. To ensure ade-
quate color diversity, it would already be sufficient to offer 
vehicles in, e.g., at least three different colors.

To incorporate such a requirement of limiting the num-
ber of colors in which vehicles are offered, the mapping 
of vehicles to colors is needed. As before, this mapping 
can be represented by a color-vehicle matrix A where the 
rows denote the groups—i.e., the colors—and the columns 

(20)zj ≤ w�
j

∀j ∈ N

(21)w�
j
∈ {0, 1} ∀j ∈ N

(22)0 ≤ w0 ≤ 1

correspond to the vehicles. Note that in this setting, we 
again do not impose any structure on the mapping matrix 
A, i.e., in particular this matrix must not necessarily be 
TU.

Next, one can verify whether at least one vehicle per 
color is offered. This is achieved by checking if aix ≥ 1 
for i ∈ K  where ai denotes row i of matrix A. Finally, 
the number of colors for which at least one vehicle is 
offered are summed up; more formally, 

∑k

i=1
1{aix≥1} . 

The resulting number can then be bounded from above 
by m to limit the maximum number of colors from 
which vehicles can be offered. This gives the feasible 
region F = {x ∈ {0, 1}n ∣

∑k

i=1
1{aix≥1} ≤ m} . Likewise, 

the total number of colors in which vehicles are offered 
can also be bounded from below, giving the feasible 
region F = {x ∈ {0, 1}n ∣

∑k

i=1
1{aix≥1} ≥ m} .  Finally, 

combining both feasible regions defines the exact num-
ber of colors in which vehicles can be offered, i.e., 
F = {x ∈ {0, 1}n ∣

∑k

i=1
1{aix≥1} = m}.

To incorporate the indicator function into the optimiza-
tion problem, another decision variable y ∈ {0, 1}k needs 
to be introduced that indicates whether at least one product 
per group is offered or not, i.e., more formally

Summing up the elements of y yields the number of groups 
from which products are offered, i.e., in our example the 
number of colors in which at least one vehicle is offered. 
This number can then be restricted using a leq, geq, or equal-
ity constraint. For our example, the case of a geq constraint 
on the number of colors in which vehicles should be offered 
might look as follows, where D is a constant with a value 
of at least n:

Note that the same approach can be taken to incorporate a 
number-of-offered-groups constraint for the other business 
requirements such as the vehicle class diversity, the vehicle 
series diversity, the price level diversity, or the prevention of 

yi =

{
1, if at least one product from group i is offered
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∀i ∈ K.
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dealer discrimination. To do so, in our example the vehicle 
colors must be replaced by the vehicle classes, series, price 
levels, or dealers, respectively.

Problem formulation

In general, the optimization problem can be formulated as

In the above optimization problem, D denotes a constant that 
is at least as large as the largest possible value of aix ∀i ∈ K , 
i.e., n in our case.

We again aim at reformulating this problem as MILP. To 
this end, we first apply the modified (Charnes and Cooper 
1962) transformation for linear-fractional programming with 
wj = w0xj . This gives

(23)(BFLP NOG) max
x,y

∑
j∈N rjvjxj

1 +
∑

i∈N vixi

(24)subject to
∑
j∈N

aijxj ≤ D ⋅ yi ∀i ∈ K

(25)
∑
j∈N

aijxj ≥ yi ∀i ∈ K

(26)
∑
i∈K

yi ≥ m

(27)xj ∈ {0, 1} ∀j ∈ N

(28)yi ∈ {0, 1} ∀i ∈ K

(29)(MILP-v0 NOG) max
w,w0,y

∑
j∈N

rjvjwj

(30)subject to w0 +
∑
j∈N

vjwj = 1

(31)
∑
j∈N

aijwj ≤ D ⋅ w0 ⋅ yi ∀i ∈ K

(32)
∑
j∈N

aijwj ≥ w0 ⋅ yi ∀i ∈ K

(33)
∑
i∈K

yi ≥ m

(34)wj ∈ {0,w0} ∀j ∈ N

Constraint (34) enforces wj to take values from the discrete 
set {0,w0} . Such a constraint is not directly implementable 
in solvers such as Gurobi but can be handled as follows. Let 
w�
j
w0 = wj to get the equivalent formulation of the above 

optimization problem:

The problem formulation (MIQP NOG) is again a mixed 
integer quadratic program since its objective consists of the 
product of the decision variables w′

j
 and w0 . Replacing 

zj = w�
j
w0 and adding the McCormick (1976) envelope ine-

qualities yields the following MILP reformulation of the 
original problem:
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∑
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(42)w�
j
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(44)yi ∈ {0, 1} ∀i ∈ K

(45)(MILP-v1 NOG) max
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∑
j∈N
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Note that it might be the case that the optimal solution of the 
unconstrained assortment problem (AOP) already satisfies 
the number-of-offered-groups constraint that products from 
at least (at most) a certain number of groups are offered. 
In this case, the optimal assortment under the number-of-
offered-groups constraint equals the optimal solution of the 
unconstrained problem and is thus revenue-ordered as shown 
in Talluri and van Ryzin (2004). In contrast, in case the 
number-of-offered-groups constraint requires that products 
from more (less) groups than in the optimal unconstrained 
assortment are offered, the optimal constrained assortment 
is not necessarily revenue-ordered anymore. This is in line 
with the finding of Wang (2013), who shows that the con-
sideration of a simple cardinality constraint already implies 
that revenue-ordered assortments are not optimal. The above 
finding allows for the introduction of a two-step solution 
approach. This two-step approach proceeds as outlined in 
Algorithm 1.

(49)
∑
i∈K

yi ≥ m

(50)zj ≥ 0 ∀j ∈ N

(51)zj ≥ w0 + w�
j
− 1 ∀j ∈ N
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(53)zj ≤ w�
j

∀j ∈ N

(54)w�
j
∈ {0, 1} ∀j ∈ N

(55)0 ≤ w0 ≤ 1

(56)yi ∈ {0, 1} ∀i ∈ K

Algorithm 1   Two-step approach for solving the number-of-offered-groups constraint problem (Two-step NOG)

1: Solve the unconstrained problem of Talluri and van Ryzin (2004).
2: Evaluate

∑k
i=1 1{aix≥1}.

3: if
∑k

i=1 1{aix≥1} ≥ m (or ≤ m) is already satisfied then
4: Optimal constrained solution := optimal unconstrained solution.
5: else
6: Solve (MILP-v1 NOG).
7: end if

Numerical experiments

In this section, we conduct an extensive numerical study 
for the two group-constrained assortment problem settings 
introduced in sections “Products-per-group constraint” and 
“Number-of-offered-groups constraint” using synthetic data 
of various realistic problem set sizes. We start by comment-
ing on the data generation process in section “Data genera-
tion” before discussing the results of our numerical experi-
ments in section “Numerical results”.

Data generation

Since we are not allowed to disclose real BMW data, we exe-
cute our numerical experiments using synthetic data. Never-
theless, we base the selection of our parameters n, k, and m 
on the experience from our project with BMW. The structure 
underlying the synthetic data is based on suitable economic 
reasoning. In the following, we first describe the process 
of generating the products, the groups, the group-product 
matrix, the preference weights, and the revenues before 
expounding on how we set the products-per-group constraint 
and the number-of-offered-groups constraint, respectively.

Products, groups, group‑product matrix, preference 
weights, and revenues

We vary the number of products over n ∈ {250, 500, 1000} 
and the number of groups over k ∈ {10, 50, 100} . These 
problem set sizes correspond to the real-world sizes known 
from our project with BMW. The products and groups 
are generated as integer vectors from 1 to n and 1 to k, 
respectively.

The group-product matrix A is constructed by ran-
domly assigning zeros or ones to its entries, whereby 
the number of 1’s per column is randomly selected from 
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values between 1 and max(2, ⌈k∕20⌉) . That way, every 
product belongs to between 1 and 2 ( k = 10 ), 3 ( k = 50 ), 
or 5 ( k = 100 ) groups, which is realistic.

To generate the preference weights vj , we first sam-
ple the utilities uj uniformly at random over the interval 
[−1, 4] , whereby the utility of the no-purchase option is 
set to 0. Doing so, 20% of the products are modeled to be 
less preferred than the no-purchase option, whereas the 
others are more preferred. Based on this, the preference 
weights are obtained by applying the exp function, i.e., 
vj = euj , such that the preference weight v0 of the no-pur-
chase option equals 1.

We follow Ghuge et al. (2021) and generate the revenues 
rj uniformly over the interval [0, 1]; the revenue r0 associ-
ated with the no-purchase option is set to 0. According to 
Bechler et al. (2021), there exists a well-known relationship 
between product revenues and customer preferences—the 
so-called price compromise according to which customers 
tend to purchase neither the most expensive nor the cheap-
est alternative but prefer the mid-priced one whereby their 
preferences decrease when prices become higher or lower 
than average. To capture this real-world behavior, we sort 
both the preference weights and the revenues in descending 
order and then re-sort the revenues in a way such that the 
middle highest revenue corresponds to the highest pref-
erence weight, the second middle highest revenue corre-
sponds to the second highest preference weight and so on.

This procedure is exemplarily visualized in Fig. 3 for 
n = 10 products. The preference weights vj depicted in the 
first row and the revenues rj shown in the second row of 
the figure are sampled as described above. The revenues 
provided in the last row of the figure are obtained by resort-
ing the generated revenues as described in the previous 
paragraph.

Products‑per‑group constraint

For generating the constraint vector b , we study a selec-
tion of four different business strategies. As mentioned in 

section “Introduction”, companies typically aim at enhanc-
ing assortment diversity—to, e.g., incorporate business 
requirements – or at limiting the size of the offer set—
be it due to space constraints, to not overwhelm the cus-
tomer, or to satisfy certain business decisions such as not 
to disclose the number of available products (per group) 
to competitors. Our selection of business strategies covers 
a variety of realistic approaches for setting the minimum 
(geq) or maximum (leq) number of products to be offered 
per group that might be interesting for companies in prac-
tice since these approaches, e.g., enforce to offer prod-
ucts to the customer that would not have been provided 
otherwise (geq), or prevent the inclusion of products to 
the assortment that would have been contained otherwise 
(leq). We present our selection of business strategies in 
the following: 

1.	 First, we implement the business strategy that at least 
(geq) / at most (leq) one product per group is offered 
by defining b to be a vector of ones. In the former case, 
this strategy allows to raise the diversity of the offer set 
by offering at least one product from every group and 
thereby showcasing every group. In contrast, in the sec-
ond case, this strategy enables to provide an overview 
of the relevant product portfolio by offering one product 
from revenue relevant groups and not showing products 
from all other groups. We refer to this strategy as ’one 
per group’.

2.	 Second, we model the business strategy that more prod-
ucts are required (geq) / allowed (leq) to be offered from 
groups for which lots of products are available. To do 
so, we set b to a percentage � of the number of prod-
ucts available per group according to matrix A. For our 
study, we vary � ∈ {2.5%, 5%, 10%, 20%} . This setting 
is referred to as ’avail. � ’ (short for availability with 
percentage �).

3.	 Third, we incorporate the popularity of the groups into 
the ’avail.’ strategy such that we do not require at least/at 
most � percent of the products to be offered from every 
group, but relax this constraint the more preferred a 

Fig. 3   Exemplary visualization of the assumed relationship between the 
preference weights vj, j ∈ {1, ..., 10} and the corresponding revenues 
rj, j ∈ {1, ..., 10} . The black vertical line each indicates the middle of the 

preference weight vector and the revenue vectors, respectively. The colors 
indicate the magnitude of the preference weights and revenues from high 
(green) over medium (yellow) to low (red)
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group is. To implement this business strategy, we first 
evaluate the average preference weight per group and 
rank the groups in increasing order of their average pref-
erence weights to obtain an indication on how preferred 
each group is. Next, we determine the percentage prefer-
ence rank per group by dividing each group’s rank by the 
total number of groups. Hence, the higher the percentage 
preference rank, the more preferred the group. For the 
geq constraint, this percentage preference rank per group 
is then multiplied with � to determine the percentage 
value of products to be at least offered per group. For 
the leq constraint, we multiply � with the sum of the 
percentage preference rank per group and the difference 
between maximum and minimum percentage preference 
rank to determine the percentage value of products to be 
at most offered per group. Finally, we define b by mul-
tiplying the percentage value of products to be at least / 
at most offered per group with the number of products 
available for this group. As for the strategy ’avail’, we 
vary � ∈ {2.5%, 5%, 10%, 20%} . This strategy is referred 
to as ’avail. pref. incr. � ’ (short for availability and pref-
erence increasing with percentage �).

4.	 Fourth, we consider the opposite strategy of ’avail. pref. 
incr. � ’, i.e., we relax the requirement of offering at least/
at most � percent of the products per group the less pre-
ferred a group is. To do so, we proceed as described for 
the strategy ’avail. pref. incr. � ’. However, in this setting, 
we rank the groups in decreasing order of their aver-
age preference weights, implying that higher percentage 
preference ranks correspond to less preferred groups and 
vice versa. Again, we study � ∈ {2.5%, 5%, 10%, 20%} . 
This setting is referred to as ’avail. pref. decr. � ’ (short 
for availability and preference decreasing with percent-
age �).

The percentage values of products to be offered per group 
under the strategies ’avail. � ’, ’avail. pref. incr. � ’, and 
’avail. pref. decr. � ’ are exemplarily showcased for k = 10 
groups and � = 20% in Table 1.

For all four business strategies, we each consider both, 
the greater-or-equal constraint Ax ≥ b and the less-or-
equal constraint Ax ≤ b.

Number‑of‑offered‑groups constraint

For the number-of-offered groups constrained problems 
(MILP-v1 NOG) and (Two-step NOG), we study two dif-
ferent settings of choosing m: 

1.	 First, we set m = 0.8 ⋅ k for the geq constraint and 
m = 0.4 ⋅ k under the leq constraint for all combinations 
of n and k, implying that products from at least 80% 
(geq) or at most 40% (leq) of the existing groups should 
be offered, which is realistic.

2.	 Second, to analyze the impact of m on both solution 
approaches, we fix n = 500 and k = 50 and vary m across 
all possible values, i.e., between 1 and 50 in steps of one.

For both approaches of defining m, we choose D = n and 
study the greater-or-equal constraint 

∑k

i=1
1{aix≥1} ≥ m as 

well as the less-or-equal constraint 
∑k

i=1
1{aix≥1} ≤ m.

Numerical results

We compare the studied products-per-group constrained 
problem (PPG) and the number-of-offered-groups con-
strained problem (NOG) to the unconstrained assortment 

Table 1   Exemplary percentage 
values of products to be offered 
per group under the business 
strategies ’avail. 20%’, ’avail. 
pref. incr. 20%’, and ’avail. pref. 
decr. 20%’ for k = 10 groups

For the strategy ’avail. pref. incr. 20%’, a group is more preferred the higher its percentage preference rank 
is, whereas for the ’avail. pref. decr. 20%’ strategy, the reverse relationship applies, i.e., the lower a group’s 
percentage preference rank, the more it is favored

Avail. 20% Avail. pref. incr. 20% Avail. pref. decr. 20%

Group product 
pct.
(geq/leq)

pct. 
preference
rank

product 
pct.
(geq)

product 
pct.
(leq)

pct. 
preference
rank

product 
pct.
(geq)

product 
pct.
(leq)

1 20% 100% 20% 38% 10% 2% 20%
2 20% 90% 18% 36% 20% 4% 22%
3 20% 80% 16% 34% 30% 6% 24%
4 20% 70% 14% 32% 40% 8% 26%
5 20% 60% 12% 30% 50% 10% 28%
6 20% 50% 10% 28% 60% 12% 30%
7 20% 40% 8% 26% 70% 14% 32%
8 20% 30% 6% 24% 80% 16% 34%
9 20% 20% 4% 22% 90% 18% 36%
10 20% 10% 2% 20% 100% 20% 38%
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problem (AOP) as well as to two possible extreme assort-
ment policies—offering all products which we refer to as 
(Offer All), and offering only one product which we refer to 
as (Offer One). All solution approaches are implemented in a 
Jupyter Notebook using the programming language Python.

The problem (Offer One) is solved by evaluating the 
expected revenue for each possible assortment of size one 
and offering the one that maximizes the expected revenue, 
whereas the problem (Offer All) is solved by offering all 
available products. All other problems are solved using the 
standard Gurobi LP and MILP solvers on a common Fujitsu 
Lifebook U Series Laptop with an Intel Core i5 7th Gen 
processor and 8GB RAM.

We consider 100 samples for each problem set (n-k). 
Simulated data that only depends on the number of prod-
ucts n—i.e., revenues and preference weights—are kept 
the same for every fixed n ∈ {250, 500, 1000} . Thereby, for 
fixed n, we study the same set of products—defined by their 
revenues and preference weights – while varying the num-
ber of groups and the assignment of these products to the 
groups. We assess the average computation time, the average 
expected revenue, as well as the average size of the optimal 
assortment for all considered solution approaches across the 
100 samples.

For brevity, the results regarding the computation time 
are relegated to the Supplementary Material. Overall, we 
find that all problems besides NOG can be solved efficiently 
within fractions of a second despite the usage of Jupyter 
Notebooks. For NOG, instances of small to medium size can 
be solved efficiently as well; the computation time of larger 
instance sizes depends on the respective instance whereby 
seemingly more complicated instances might take some sec-
onds to be solved to optimality though near-optimal solu-
tions are found very fast.

Since we are interested in how much expected revenue 
is lost by restricting the solution space in order to account, 
e.g., for business requirements, we do not report the aver-
age expected revenues, but provide the average percentage 
expected revenue losses (APERL) of (Offer All), (Offer 
One), (PPG), and (NOG) compared to the unconstrained 
problem (AOP). The APERL values are obtained by i) sub-
tracting the expected revenue of (Offer All), (Offer One), 
(PPG), or (NOG), respectively, from the expected revenue 
under the unconstrained problem (AOP) and ii) dividing 
the resulting difference through the expected revenue under 
(AOP) for every instance to obtain the percentage expected 
revenue loss per instance and iii) taking the average across 
all 100 instances to obtain the APERL.

Moreover, it is intriguing to determine how the aver-
age size of the assortment changes compared to the opti-
mal unconstrained assortment by adding a products-per-
group constraint or a number-of-offered-groups constraint 
to the assortment problem. For this purpose, we report the 

average change in assortment size (ACAS) of (PPG) respec-
tively (NOG) compared to (AOP). The reported values are 
obtained by i) subtracting the assortment size under (AOP) 
from the assortment size under (PPG) respectively (NOG) 
for every instance and ii) taking the average across all 100 
instances. That way, a positive value indicates that adding a 
constraint on average increases the assortment size by this 
value; negative values imply that the assortment size is on 
average reduced by this number of products. Obviously, 
increasing or decreasing the size of the offer set compared 
to the optimal unconstrained assortment by imposing a con-
straint results in a loss in expected revenue.

To structurally present our results, we first comment on 
our insights concerning (Offer All) and (Offer One), fol-
lowed by analyzing the numerical results for the products-
per-group-constrained problem (PPG). Finally, we report our 
findings for the number-of-offered-groups-constrained prob-
lem (NOG).1 Doing so, some effects follow directly from the 
theoretical properties of the MNL model and the structure 
of the constraints. For brevity, we only report the empirical 
results and do not discuss their theoretical foundation.

(Offer All) and (Offer One)

Clearly, the average expected revenue is always highest for 
the unconstrained problem (AOP), since in this case, the 
solution space is not restricted. In our study, the optimal 
unconstrained assortment on average consists of 27.88, 43, 
and 64.95 products for n ∈ {250, 500, 1000} , respectively.

Note that the average expected revenue as well as the 
average size of the optimal assortment under (AOP) increase 
with the number of products n but do not depend on the 
number of groups k.

Compared to (AOP), the strategy of offering all prod-
ucts, i.e., (Offer All), results in average percentage expected 
revenue losses of 44.10%, 45.16%, and 46.53% for 
n ∈ {250, 500, 1000} , respectively. These significant losses 
result from the fact that way more, namely 222.12 ( n = 250 ), 
457 ( n = 500 ), and 935 ( n = 1000 ) additional products are 
offered on average compared to the optimal assortment. 
Obviously, the APERL and the (average) assortment size 
increase with n and do not depend on k.

Likewise, the strategy of offering only one product, 
i.e., (Offer One), yields average percentage expected 
revenue losses of 29.42%, 31.57%, and 33.45% for 
n ∈ {250, 500, 1000} , respectively, compared to the uncon-
strained problem (AOP). Under this policy, the signifi-
cant losses result from offering way fewer—namely 26.88 
( n = 250 ), 42 ( n = 500 ), and 63.95 ( n = 1000 ) less—prod-
ucts compared to the optimal assortment. Again, the APERL 

1  Note that we do not compare (PPG) and (NOG) since they can not 
be reasonably compared because of their different constraint types.
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increases with the number of products and does not depend 
on the number of groups, whereas the (average) assortment 
size by definition remains equal to one across all problem 
sets.

Comparing the APERLs of (Offer All) and (Offer One) 
shows, that (Offer One) performs slightly better for all con-
sidered problem sets though both approaches lead to rev-
enue losses between around one third and almost half of the 
expected revenue compared to the case when the optimal 
offer set is obtained by solving an unconstrained assortment 
problem.

(PPG)

We evaluate the APERL as well as the ACAS under the 
assortment problem with a products-per-group-constraint 
(PPG) compared to the unconstrained problem (AOP) for all 
business strategies described in section “Products-per-group 
constraint” under both the geq and the leq constraint. The 
results under the greater-or-equal constraint are documented 
in Table 2 and visualized in Fig. 4. The results regarding 
the less-or-equal constraint are summarized in Table 3 and 
depicted in Fig. 5. We start by presenting the results under 
the geq constraint before commenting on the leq constraint.

Greater-or-equal constraint
Overall, taking a look at Table 2 shows, that the APERL 

ranges between 0.00% and 21.37% across all considered 
business strategies when imposing a greater-or-equal con-
straint on the number of products to be offered per group. 
This implies, that adding such a constraint ensures the diver-
sification of the offer set at the cost of at most 21.37% loss 
in average percentage expected revenue. The revenue loss 
can be explained by the fact that the constraint enforces a 
certain number of products to be at least offered per group. 
Thereby, additional products need to be offered compared to 
the optimal unconstrained assortment. The amount of addi-
tional products, i.e., the average change in assortment size 
depends on the strength of the constraint and the number of 
instances for which the constraint is hit. This in turn depends 
on the size of the problem set as well as on the business 
strategy which defines how the constraint is set. As can be 
seen in Table 2, the average assortment size increases by 
between 0 and 184.80 products compared to the size of the 
optimal unconstrained offer set across all considered busi-
ness strategies.

According to Table 2 and Fig. 4, the increase in assort-
ment size and thus in APERL is on average lowest for the 
strategy ’one per group’. Clearly, the requirement to offer at 
least one product per group is rather easily met—particularly 
for a low number of groups and a high number of products. 
However, fulfilling the requirement becomes more difficult 
the higher the number of groups is, since more products then 

need to be added to the assortment compared to the optimal 
offer set. This is also reflected by Table 2 and Fig. 4, which 
show that the ACAS, and thus also the APERL increase 
with the number of groups k for fixed n. Interestingly, the 
APERL per one unit increase in assortment size (i.e., adding 
one product to the assortment) increases with k for fixed n, 
implying that increasing the offer set becomes more costly in 
terms of expected revenue loss when the number of groups 
is higher.

Besides, the fulfillment of the requirement to offer at least 
one product per group also gets more difficult the lower the 
number of products is, or put differently, becomes easier 
for a higher number of products, which is reflected by the 
fact that both the average change in assortment size and the 
APERL decrease with the number of products n for fixed 
k (see Table 2 and Fig. 4). This finding also holds for the 
APERL per one unit increase in assortment size, i.e., add-
ing one additional product to the assortment becomes less 
costly in terms of expected revenue loss when the number 
of products is higher. On average, every one unit increase 
in assortment size results in an average percentage expected 
revenue loss of 0.16% when restricting the offer set accord-
ing to the business strategy ’one per group’ compared to the 
optimal unconstrained assortment.

Regarding the strategies ’avail. � ’, ’avail. pref. incr. 
� ’, and ’avail. pref. decr. � ’, obviously enlarging � means 
that a higher number of products is required to be at least 
offered per group, which in turn implies that the change 
(here: growth) in average assortment size and thus also the 
APERL raise with � (see Table 2). Interestingly, doubling � 
neither results in a doubling of the APERL nor of the ACAS, 
signifying that the APERL per one unit increase in assort-
ment size grows with � , although the growth is not linear. 
This means, that increasing the assortment by one product 
becomes more costly in terms of expected revenue loss 
when a more restrictive bound—i.e., a higher value of �—is 
imposed on the number of products to be offered per group.

Moreover, increasing the number of groups k for fixed 
n translates in a higher number of products that need to be 
added to the assortment to satisfy the constraint, which, 
according to Table 2 and Fig. 4, results in a larger assort-
ment and higher average percentage expected revenue 
losses for all of the business strategies ’avail. � ’, ’avail. 
pref. incr. � ’, and ’avail. pref. decr. � ’. In line with this, 
the APERL per additional product added to the assort-
ment increases with the number of groups k, implying that 
adding products to the assortment becomes more costly 
in terms of expected revenue loss when facing a larger 
number of groups. Vice versa, as per Table 2 and Fig. 4, a 
larger number of products n yields a lower APERL for all 
business strategies except for those with � = 20 for k = 10 
in which case no consistent structure is observable. Like-
wise, the APERL per one unit increase in assortment size 
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decreases with n, which means that extending the assort-
ment in general becomes less costly when a large amount 
of products is considered.

Comparison of the strategies ’avail. pref. incr. � ’ and 
’avail. pref. decr. � ’ with ’avail. � ’ shows, that taking prefer-
ences into account leads to lower increases in average assort-
ment size and lower APERL values compared to the pure 

Fig. 4   a Average change in assortment size and b average percentage expected revenue loss of (PPG) compared to (AOP) under the greater-or-
equal constraint
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’avail. � ’ strategy across all considered problem sets (see 
Table 2). Overall, this implies that additionally taking prefer-
ences into account by following one of the strategies ’avail. 
pref. incr. � ’ or ’avail. pref. decr. � ’ is always beneficial over 

’avail. � ’, since in comparison, those two strategies guaran-
tee a diversification of the offer set while reducing the aver-
age percentage expected revenue loss as well as the increase 
in average assortment size.

Fig. 5   a Average change in assortment size and b average percentage expected revenue loss of (PPG) compared to (AOP) under the less-or-equal 
constraint
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Comparing the strategies ’avail. pref. incr. � ’ and ’avail. 
pref. decr. � ’ with each other indicates, that it is more 
favorable to require that a higher percentage of products is 
offered from less preferred groups than following the strat-
egy to offer a higher percentage of products from more pre-
ferred ones. As can be seen in Table 2 and Fig. 4, putting 
a stronger constraint on less preferred groups results in a 
smaller increase in average assortment size as well as in 
lower APERLs compared to the opposite strategy. Interest-
ingly, the strategy ’avail. pref. decr. � ’ also yields a lower 
APERL per one unit increase in assortment size compared 
to ’avail. pref. incr. � ’ for fixed � ∈ {2.5%, 5%, 10%, 20%} . 
This signifies, that increasing the assortment is less costly 
when selecting the offer set in accordance with the strategy 
’avail. pref. decr. �’.

In summary, according to Table 2 and Fig. 4, the increase 
in average assortment size and thus in APERL is on aver-
age lowest for the strategy ’one per group’, followed by all 
strategies with � = 2.5% , � = 5% , � = 10% , and � = 20% in 
this order, whereby for fixed values of � , ’avail. pref. decr.’ 
always yields lower increases in average assortment size and 
lower APERLs compared to ’avail. pref. incr.’, which in turn 
always results in lower increases in the size of the offer set 
and lower APERLs than ’avail.’.

Comparing all APERL and ACAS values with those of 
the trivial solution approaches (Offer All) and (Offer One) 
yields, that (PPG) outperforms both trivial policies for all 
considered business strategies across all analyzed problem 
sets when setting a greater-or-equal constraint on the num-
ber of products to be offered per group. This indicates that 
requiring to offer at least a certain amount of products per 
group is not only favorable over the policies to offer all prod-
ucts or only one product in terms of revenue performance, 
but also ensures a good balance between the diversification 
and the size of the offer set.

Less-or-equal constraint

When imposing a less-or-equal constraint on the number of 
products to be offered per group, the APERL of (PPG) var-
ies between 0% and 12.19% across all considered business 
strategies as can be seen in Table 3. Hence, applying such 
a constraint ensures that the size of the offer set becomes 
significantly limited in a meaningful way at a comparably 
low expected revenue loss of at most 12.19% relative to the 
unconstrained assortment. The expected revenue loss results 
from the fact that the constraint enforces that at most a cer-
tain number of products is offered per group. Thereby, prod-
ucts that would have been contained in the optimal uncon-
strained assortment need to be removed from the offer set. 
The number of products that need to be removed, i.e., the 
average change (here: decrease) in assortment size depends 
on the strength of the constraint and the number of instances 

for which the constraint is hit, which in turn depends on the 
way the constraint is set, i.e., on the size of the problem set 
and the applied business strategy. Table 3 shows, that the 
assortment size is on average decreased by between 54.95 
and 0 products in comparison to the optimal unconstrained 
offer set across all considered business strategies.

As exactly opposed to the geq constraint, the strongest 
decrease in assortment size and thus the highest percentage 
expected revenue loss is suffered under the strategy ’one per 
group’ (see Table 3 and Fig. 5). Obviously, the request to 
offer at most one product per group is quite strong—espe-
cially when facing a large number of products and a low 
number of groups since in this case only a very small per-
centage of products can be offered.

Fulfilling the limitation to offer at most one product per 
group becomes easier the higher the number of groups is, 
since fewer products then need to be removed from the opti-
mal offer set. This is also reflected by Table 3 and Fig. 5, 
which indicate that the deviation from the average optimal 
unconstrained assortment size and thus the APERL decrease 
with the number of groups k when keeping n fixed. In line 
with this, the APERL per one unit decrease in assortment 
size (i.e., removing one product from the assortment) 
decreases with k, implying that reducing the size of the offer 
set becomes less costly in terms of expected percentage rev-
enue loss when the number of groups is high.

Apart from that, the fulfillment of the desire to offer at 
most one product per group also gets easier the smaller the 
number of products is. This is also reflected by the fact that 
both the deviation from the size of the optimal offer set 
as well as the APERL are lower for a smaller number of 
products (see Table 3 and Fig. 5). However, the APERL per 
removed product decreases with the number of products, 
implying that a reduction of the size of the offer set becomes 
less costly the higher the number of products is.

Applying the strategies ’avail. � ’, ’avail. pref. incr. � ’, 
and ’avail. pref. decr. � ’ under a less-or-equal-constraint, 
clearly, increasing � means that a higher number of products 
is allowed to be at most offered per group. Therefore, the 
average change (here: reduction) of the assortment size and 
thus also the APERL decrease with � (see Table 3). Inter-
estingly, as for the geq constraint, doubling � does not lead 
to APERL or ACAS being halved; the APERL per one unit 
reduction in assortment size decreases with � though the 
decrease is not linear. This means, that removing a prod-
uct from the assortment becomes less costly in terms of 
expected revenue loss when a less restrictive bound—i.e., a 
higher value of �—is imposed on the number of products to 
be at most offered per group.

As opposed to the geq constraint, according to Table 3 
and Fig. 5, there is no consistent impact on the change in 
average assortment size nor on the APERL when increasing 
the number of groups k while fixing the number of products 
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n. To be precise, for ’avail. � ’, ’avail. pref. incr. � ’, and ’avail. 
pref. decr. � ’, a larger number of groups mostly comes with a 
lower number of products that need to be removed from the 
assortment compared to the optimal offer set except for the 
strategies with � = 2.5% for k = 10, 50, 100 . Regarding the 
APERL, a higher number of groups results in a higher aver-
age percentage expected revenue loss for all business strate-
gies besides the strategies with � = 2.5% for k = 10 , and the 
strategy ’avail. 2.5%’ for k = 50 . In those exceptional cases, 
a reduction in APERL is observable. Overall, the APERL 
per one unit decrease in assortment size mostly increases 
with k, implying that reducing the assortment by one product 
comes at a higher cost in terms of expected revenue loss the 
higher the number of groups is.

Vice versa, a higher number of products typically leads 
to an APERL decrease for all considered business strategies 
except for the strategy ’avail. 2.5%’ for k = 50, 100 . How-
ever, there is no consistent pattern regarding the average 
change in assortment size observable across the different 
business strategies (see Table 3 and Fig. 5). The APERL for 
reducing the size of the offer set by one product decreases 
with the number of products, meaning that reducing the 
assortment size becomes less costly when a large amount of 
products is available.

Comparison of the strategies ’avail. pref. incr. � ’ and 
’avail. pref. decr. � ’ with ’avail. � ’ indicates, that taking pref-
erences into account leads to a slightly less severe reduction 
of the average assortment size and lower values of APERL 
compared to the pure ’avail. � ’ strategy across all considered 
problem sets (see Table 2). This implies, that additionally 
taking preferences into account by following one of the strat-
egies ’avail. pref. incr. � ’ or ’avail. pref. decr. � ’ is always 
favorable over the strategy ’avail. � ’, since those two strate-
gies still allow for a meaningful reduction of the size of the 
offer set while significantly reducing the average percentage 
expected revenue loss compared to the strategy ’avail. �’.

As for the geq constraint, comparing the strategies ’avail. 
pref. incr. � ’ and ’avail. pref. decr. � ’ with each other yields, 
that it is more beneficial to require that a higher percent-
age of products is allowed to be offered from less preferred 
groups than following the strategy to allow offering a higher 
percentage of products from more preferred ones. As per 
Table 3 and Fig. 5, putting a stronger constraint on less pre-
ferred groups results in only mildly less severe reductions 
in average assortment size but significantly lower APERLs 
compared to the opposite strategy. Interestingly, again the 
strategy ’avail. pref. decr. � ’ yields a lower APERL per one 
unit decrease in assortment size compared to ’avail. pref. 
incr. � ’ for fixed � ∈ {2.5%, 5%, 10%, 20%} . This means that, 
just as in case of the geq constraint, decreasing the assort-
ment is less costly when selecting the offer set in accordance 
with the strategy ’avail. pref. decr. �’.

In summary, taking a look at Table 3 and Fig. 5 shows, 
that under a leq constraint, the decrease in average assort-
ment size and thus the APERL is on average lowest for the 
three strategies ’avail. pref. decr.’, ’avail. pref. incr.’, and 
’avail.’ with � = 20% , followed by those strategies with 
� = 10% , � = 5% , and � = 2.5% , whereas ACAS and APERL 
are highest under the strategy ’one per group’. Again, for 
fixed values of � , the decrease in assortment size as well as 
the APERL are lowest under the strategy ’avail. pref. decr.’, 
followed by ’avail. pref. incr.’, whereas the strategy ’avail.’ 
leads to the strongest reduction in the size of the offer set 
along with the highest APERL.

Comparison of all APERL and ACAS values with those 
of the trivial solution approaches (Offer All) and (Offer One) 
shows, that (PPG) outperforms both trivial policies for all 
considered business strategies across all analyzed problem 
sets when imposing a less-or-equal constraint on the num-
ber of products to be offered per group. This signifies, that 
requiring to offer at most a certain amount of products per 
group not only significantly outperforms the policies to offer 
all products or only one product in terms of revenue perfor-
mance, but also ensures a diversification of the assortment 
at an appropriate size of the offer set.

(NOG)

We evaluate the APERL as well as the change in the average 
size of the optimal offer set under the assortment problem 
with a number-of-offered-groups-constraint (NOG) for two 
different settings of choosing the bound m on the number of 
groups from which products should be offered.2 The results 
when fixing m = 0.8 ⋅ k under the geq constraint respectively 
m = 0.4 ⋅ k under the leq constraint for all combinations of 
n and k are documented in Table 4 and visualized in Fig. 6 
and Fig. 7. To be precise, in Table 4, the column ’APERL’ 
denotes the average percentage expected revenue loss of 
(MILP-v1 NOG) and (Two-step NOG), the column ’ACAS’ 
indicates the average change in assortment size compared to 
the unconstrained optimal offer set, the column ’ ∅

∑
i∈K yi ’ 

documents the average number of groups from which prod-
ucts are offered, the column ’m’ shows the bound imposed 
by the number-of-offered-groups constraint, and the col-
umn ’constraint active’ provides the percentage of active 
constraints. The results on varying m between 1 and 50 in 
steps of one while fixing n = 500 and k = 50 are depicted 
in Fig. 8.

2  Note that we impose a time limit of 10 seconds per instance for 
solving (MILP-v1 NOG) using Gurobi. Extensive tests have shown 
that even significantly increasing the time limit does not really impact 
the results, implying that a (near) optimal solution is found extremely 
fast using Gurobi, though it then takes a while to slightly improve this 
solution or to ’prove’ it to be optimal.
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We start by presenting the results when fixing m to a cer-
tain percentage of k before outlining our findings when vary-
ing m between 1 and 50. In both cases, we first comment on 
the greater-or-equal constraint before addressing the results 
under the less-or-equal constraint.

Note that by construction, (MILP-v1 NOG) and (Two-
step NOG) always yield the same APERL and ACAS values, 
which is why we only report both results once. Moreover, 
note that it holds in general that in case the number-of-
offered-groups constraint is inactive in the optimal solution 
of an instance, the average assortment size of (NOG) and 
(AOP) is the same such that the average change in assort-
ment size equals zero since the optimal assortment under 
(NOG) equals the one under (AOP). Therefore, also the 
average expected revenue of (NOG) is equal to the optimal 
average expected revenue of the unconstrained assortment 
problem (AOP), resulting in an APERL of 0%. In contrast, if 
the number-of-offered-groups constraint is active, the aver-
age expected revenue of (NOG) is lower than the one of 
(AOP) since the solution space becomes restricted and the 
optimal offer set becomes larger (under a geq constraint) 
or smaller (under a leq constraint) compared to the optimal 
unconstrained assortment. This results in an APERL larger 
than 0%.

Greater-or-equal constraint when setting  m = 0.8 ⋅ k

Examining the left hand side of Table 4 demonstrates that 
the APERL of (NOG) under a geq constraint ranges between 
0.00% and 3.42% and becomes greater than 0% as soon as 
at least one instance with an active constraint is considered 
(see, e.g., problem sets (250-10) vs. (250-100)). Likewise, 
the size of the optimal assortment is increased by between 
0.42 and 15.38 products compared to the optimal uncon-
strained offer set as soon as at least one constraint is active, 
and remains unchanged otherwise.

Hence, even imposing a presumably strong greater-or-
equal constraint of offering products from at least 80% of the 

groups only results in mild increases in average assortment 
size as well as in mild average percentage expected revenue 
losses. This means, that the diversification of the optimal 
unconstrained offer set is typically already high such that it 
is not necessary to artificially enforce assortment diversity 
by adding a constraint on the number of groups from which 
products should at least be offered. This finding particularly 
holds when facing a low number of groups along with a 
large number of products since in this case, most groups are 
contained in the optimal assortment anyway such that the 
constraint is always inactive (see left hand side of Table 4).

The requirement of offering products from at least a cer-
tain number of groups becomes more difficult to be satisfied 
the larger the number of groups is, implying that the percent-
age of constraints that need to be actively enforced increases 
with the number of groups (see column ’constraint active’ 
on the left hand side of Table 4). As per column ’ ∅

∑
i∈K yi ’, 

this is also reflected by the fact that the average number 
of groups from which products are offered in the optimal 
assortment under (NOG) gets closer to its bound m when 
increasing the number of groups k while fixing the num-
ber of products n. In addition, both the increase in average 
assortment size as well as the APERL grow with the num-
ber of groups k when keeping n fixed in case the constraint 
is active for at least one instance; otherwise, the APERL 
and the average change in assortment size equal zero. Like-
wise, the APERL per one unit increase in assortment size 
increases with k, meaning that adding an additional product 
to the assortment becomes more costly in terms of expected 
revenue loss the more groups exist.

Besides, the requirement of offering products from at 
least a certain number of groups also becomes more dif-
ficult to be satisfied the smaller the number of considered 
products is—or formulated the other way round, becomes 
easier the larger the number of products is. This is in line 
with the finding that the percentage of constraints that need 
to be actively enforced decreases with n (see column ’con-
straint active’ on the left hand side of Table 4). Moreover, 

Table 4   Computational results 
of (NOG) when choosing 
m = 0.8 ⋅ k under the geq 
constraint and m = 0.4 ⋅ k under 
the leq constraint

Greater-or-equal Less-or-equal

(n-k) APERL ACAS ∅
∑

i∈K yi m Constraint
active

APERL ACAS ∅
∑

i∈K yi m Constraint
active

(250-10) 0.00% 0.00 9.86 8 0% 4.23% −11.40 4.00 4 100%
(250-50) 0.89% 5.25 40.02 40 96% 1.89% −7.50 20.00 20 100%
(250-100) 3.42% 15.38 80.00 80 100% 1.15% −6.06 40.00 40 100%
(500-10) 0.00% 0.00 9.99 8 0% 3.99% −19.09 4.00 4 100%
(500-50) 0.01% 0.42 41.82 40 25% 2.29% −15.15 20.00 20 100%
(500-100) 0.24% 5.18 80.17 80 90% 1.84% −14.01 40.00 40 100%
(1000-10) 0.00% 0.00 10.00 8 0% 3.32% −29.56 4.00 4 100%
(1000-50) 0.00% 0.00 46.38 40 0% 2.44% −26.65 19.99 20 100%
(1000-100) 0.00% 0.08 86.12 80 6% 2.31% −27.27 39.99 40 100%



Group‑constrained assortment optimization under the multinomial logit model﻿	

taking a look at column ’ ∅
∑

i∈K yi ’ indicates, that the num-
ber of groups from which products are offered in the optimal 
assortment under (NOG) gets further away from its bound m 
when increasing the number of products n for fixed k. Like-
wise, both the average increase in assortment size as well 
as the APERL become lower when facing a larger amount 
of products. In accordance, also the APERL per one unit 
increase in assortment size decreases with n, implying that 
adding one product to the assortment becomes less costly 
in terms of loss in expected revenue the higher the number 
of products is.

Overall, as can be seen in Fig. 6, the APERL of (NOG) 
strongly relates to the average change in assortment size. 
That is to say, the stronger the assortment is adjusted by 
adding additional products compared to the optimal uncon-
strained assortment, the higher the average percentage 
expected revenue loss. In general, across the considered 
problem sets, every one unit increase in assortment size (i.e., 
adding one product to the assortment) on average results in 
an average percentage expected revenue loss of 0.09% com-
pared to the optimal unconstrained assortment.

Comparison of all APERL values with those of the trivial 
solution approaches (Offer All) and (Offer One) shows, that 
(NOG) significantly outperforms both trivial policies for all 
considered problem sets when imposing a greater-or-equal 
constraint on the number of groups from which products are 
offered. This implies, that setting a constraint on the number 
of groups from which products should at least be offered is 
strongly favorable over the polices of offering all products 
or only one product in terms of expected revenue loss and 
ensures an appropriate diversification of the offer set while 
keeping the number of offered products at a reasonable level.

Less-or-equal constraint when setting  m = 0.4 ⋅ k

The right hand side of Table 4 shows that the APERL 
of (NOG) under a leq constraint ranges between 1.15% and 
4.23% and is greater than 0% in case at least one instance 
with an active constraint is considered—i.e., for all studied 
problem sets. As opposed to the geq constraint, the optimal 
assortment is decreased by between 6.06 and 29.56 products 
compared to the optimal unconstrained offer set.

Hence, imposing a less-or-equal constraint of offering 
products from at most 40% of the groups can significantly 
reduce the complexity of the assortment by strongly low-
ering its size, whereby this significant complexity reduc-
tion comes at a comparably low cost of at most 4.23% loss 
in average percentage expected revenue. Even when only 
demanding that products from at most 40% of the groups 
are selected, this requirement needs to be actively enforced 
for all considered instances, which is reflected by the fact 
that the constraint is always active (see column ’constraint 
active’ on the right hand side of Table 4). This implies, that 
the optimal unconstrained offer set is typically more complex 

than desired such that it makes sense to artificially reduce 
the assortment complexity by adding a leq constraint on the 
number of groups from which products can be offered.

The requirement of presenting products from at most a 
certain number of groups becomes easier to fulfill the larger 
the number of groups is. This is also reflected by the fact 
that the number of groups from which products are offered 
in the optimal assortment under (NOG) departs further away 
from the bound m when increasing the number of groups k 
while fixing n. Likewise, the average change in assortment 
size and thus the APERL decrease with k when keeping n 
fixed. In line with this, the APERL per one unit reduction in 
assortment size also decreases with k, implying that remov-
ing one product from the assortment becomes less costly in 
terms of expected revenue loss when facing a larger number 
of groups.

Besides, offering products from at most a certain number 
of groups is also easier to be satisfied the smaller the number 
of products is—or formulated the other way round, becomes 
more difficult the larger the amount of considered products 
is. Accordingly, as documented on the right hand side of 
Table 4, enlarging the number of products n increases the 
average change in assortment size and thus the APERL for 
all considered problem sets except for k = 10 , in which case 
we observe a decrease in APERL. However, as per column 
’ ∅

∑
i∈K yi ’, the number of groups from which products are 

offered in the optimal assortment under (NOG) departs fur-
ther from its bound m when increasing n for fixed k. Like-
wise, the APERL per one unit reduction in assortment size 
decreases with n, meaning that removing one product from 
the assortment becomes less costly the larger the number of 
considered products is.

Figure  7 shows, that there is a strong relationship 
between the APERL and the average change in assortment 
size.3 That is to say, the stronger the assortment is adjusted 
by removing products from the optimal unconstrained 
assortment, the higher the average percentage expected 
revenue loss. Overall, across the considered problem sets, 
every one unit decrease in assortment size (i.e., removing 
one product from the assortment) on average results in an 
average percentage expected revenue loss of 0.18% com-
pared to the optimal unconstrained assortment.

Comparing all APERL values with those of the trivial 
solution approaches (Offer All) and (Offer One) indicates, 
that (NOG) also significantly outperforms both trivial poli-
cies for all considered problem sets when imposing a less-
or-equal constraint on the number of groups from which 
products are offered. Hence, imposing a constraint on the 

3  Note that in this figure, the absolute average change in assortment 
size is visualized to better emphasize this relationship since the actual 
average change in assortment size is realized as a decrease in the 
average number of offered products compared to the optimal uncon-
strained assortment.
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number of groups from which products should at most be 
offered is strongly beneficial over the polices of offering all 
products or only one product in terms of expected revenue 
loss while ensuring an appropriate reduction of the assort-
ment complexity despite maintaining a reasonable diversity 
of the offer set.

Greater-or-equal constraint when varying  m ∈ [1, 50]

Taking a look at part (a) of Fig. 8 shows, that the average 
change in assortment size and thus the APERL of (NOG) 
under a geq constraint equals 0% despite increasing m as 
long as no constrained instances are considered. This is 
the case until m = 34 , which corresponds to the require-
ment of offering products from at least 68% of all groups. 
Clearly, this implies that the optimal unconstrained offer set 
is already highly diversified.

Further strengthening this diversity requirement by 
enlarging m, the diversification needs to be actively enforced 
which results in an increasing percentage of active con-
straints as well as in a growing number of products that 
need to be added to the assortment to satisfy the require-
ment, whereby the number of groups from which products 
are offered in the optimized offer set gets closer to its bound 
m. Hence, the APERL monotonously increases with m, 
since the constraint is hit stronger and for a rising fraction 
of the considered 100 instances. In line with that, also the 
APERL per one unit increase in assortment size increases 
with m (see line APERL/ACAS4), implying that adding one 
additional product to the assortment becomes more costly in 
terms of expected revenue loss the stronger the requirement 
regarding the number of groups from which products need 
to be offered is chosen.

Requiring to offer products from all groups (i.e., setting 
m = 50 ) only results in adding on average 15.7 products to 
the optimal unconstrained offer set at the cost of an aver-
age percentage expected revenue loss of 2.31%. Note that 
this is exactly the same as demanding to offer at least one 
product per group and thus also yields the same ACAS 
and APERL values as the strategy ’one per group’ under 
a geq constraint (see problem set (500-50) in Table 2). In 

comparison, the policy of offering all products increases 
the assortment by 457 products at an APERL of 45.16%. 
This signifies, that requiring to offer products from every 
group is far from implying that every product is offered. 
Under NOG with m = 50 , on average 58.7 products are 
contained in the optimal offer set, meaning that mostly 
one product is offered per group, though there are some 
groups from which more products are selected. Overall, 
this indicates that enhancing the diversity of the offer set 
by imposing a geq constraint on the number of groups from 
which products need to be offered instead of instead of 
simply offering all products is way more meaningful in 
terms of expected revenue loss.

Less-or-equal constraint when varying  m ∈ [1, 50]

Under the less-or-equal constraint, the number of groups 
from which products can at most be offered increases with 
m, implying that the requirement gets easier to fulfill the 
higher the value of the constraint m is chosen. However, 
part (b) of Fig. 8 indicates that 100% of the constraints are 
active until m = 33 , implying that the requirement of offer-
ing products from at most m groups needs to be actively 
enforced for all instances until m = 33 , i.e., until demanding 
to present products from at most 66% of the groups. This 
in turn indicates, that the optimal unconstrained offer set is 
highly complex in terms of the number of presented groups, 
such that it indeed makes sense to reduce the complexity of 
the assortment by limiting the number of groups from which 
products can be selected. Further relaxing the constraint, i.e., 
increasing the value of m beyond 33 results in a decreasing 
percentage of active constraints until no constraint needs to 
be actively enforced starting from m = 48 (see line constraint 
active). This implies, that unless demanding to restrict the 
offer set to contain products from at most 96% of the groups 
or even more, this requirement needs to be actively enforced.

Overall, relaxing the constraint, i.e., allowing for a higher 
number of groups out of which products can at most be pre-
sented implies, that the average number of products that 
need to be removed from the assortment and thus also the 
APERL monotonously decrease with m (see lines APERL 
and |ACAS| in part (b) of Fig. 8). Likewise, also the APERL 
per one unit reduction in assortment size decreases with m 
(see line APERL/ACAS), indicating that removing one 
further product from the assortment becomes less costly in 
terms of expected revenue loss the looser the requirement 
regarding the number of groups from which products need 
to be offered is set. In line with this, the number of groups 
from which products are offered (line ∅

∑
i∈K yi ) departs fur-

ther from its bound m the less strong the constraint—i.e. the 
higher the value of m—is set.

Interestingly, requiring to offer products from at most 
one group—i.e., setting m = 1—results in an offer set 

Fig. 6   Average percentage expected revenue loss and average change 
in assortment size of (NOG) compared to (AOP) under the geq con-
straint for a n = 250 , b n = 500 , and c n = 1000

◂

4  Note that in Fig.  8, the average change in assortment size (line 
ACAS), the APERL per one unit increase in assortment size (line 
APERL/ACAS), the average number of groups from which products 
are offered (line ∅

∑
i∈K yi ), and the percentage of active constraints 

(line constraint active) are each scaled to values between 0 and 1 and 
plotted on the right y-axis.
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comprising products from one group instead of offering 
nothing, whereby the size of the assortment is reduced by 
39.18 products on average compared to the optimal uncon-
strained offer set. This reduction in assortment size comes at 
an APERL of 22.06%. In comparison, the policy of offering 

exactly one product, i.e. (Offer One), reduces the offer set by 
42 products at a cost of 31.57% in terms of average expected 
revenue loss. This shows that under NOG with m = 1 , more 
than one product is offered from this single group—3.82 
products on average to be precise—which results in a sig-
nificantly lower APERL compared to (Offer One), implying 
that reducing the complexity of the offer set by imposing a 
leq constraint on the number of groups from which products 
can be offered instead of just limiting the size of the offer 

Fig. 7   Average percentage expected revenue loss and absolute aver-
age change in assortment size of (NOG) compared to (AOP) under 
the leq constraint for a n = 250 , b n = 500 , and c n = 1000

◂

(a)

(b)

Fig. 8   Average percentage expected revenue loss (left y-axis), (abso-
lute) average change in assortment size, APERL per one unit change 
in assortment size, average number of groups from which products 

are offered, and percentage of active constraints (right y-axis) when 
varying m between 1 and 50 under a the geq and b the leq constraint
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set to be equal to one is way more meaningful in terms of 
expected revenue loss.

Conclusion

Research on assortment optimization received a consider-
able boost in attention over the past decades. Particularly 
constrained settings where business requirements are incor-
porated into the optimization problem become increasingly 
popular. Our research is motivated by our joint project with 
BMW with the goal of determining an optimal assortment 
for the BMW new car locator platform while adhering to 
multiple business requirements.

To address all BMW requirements, we study the assort-
ment problem under the MNL model while proposing two 
new types of group constraints. In these settings, the prod-
ucts are assigned to exactly one or to multiple groups and 
either the number of products per group or the number of 
groups from which a product is offered is restricted.

The constraint settings are each motivated by selected 
real-world examples from our project with BMW and 
formalized as binary fractional linear programs. These 
BFLPs are then reformulated to MILPs to enable the 
solvability via common standard solvers such as CPLEX 
or Gurobi. For the number-of-offered-groups constrained 
problem, we additionally propose a two-step solution 
approach.

Finally, we conduct a numerical study using synthetic 
data of realistic size and structure and find, that all 
instances of the products-per-group constrained problem 
can be solved efficiently within fractions of a second 
despite the usage of Jupyter Notebooks. For the num-
ber-of-offered-groups constrained problem, instances of 
small to medium size can be solved efficiently as well. 
The computation time of larger instance sizes depends 
on the respective instance; seemingly more complicated 
instances might take some seconds to be solved to opti-
mality though near-optimal solutions are found very 
fast. In this case, if computation time is of interest, one 
could, e.g., limit the computation time and utilize the 
near-optimal solution or follow a two-stage approach for 
larger instances according to which the number of prod-
ucts and/or groups can be reduced in a rule-based way 
before applying the solution approach to the reduced set 
of products and/or groups.

Regarding the revenue performance, our numerical 
study provides evidence that offering all products or 
offering only one product is highly suboptimal. Moreo-
ver, we find that restricting the solution space by add-
ing a products-per-group constraint or a number-of-
offered-groups constraint to, e.g., incorporate diversity 

or assortment complexity requirements into the offer set 
results in low to moderate average percentage expected 
revenue losses compared to the unrestricted assort-
ment. The magnitude of the losses depends on the way 
the bound on the products-per-group constraint and the 
number-of-offered-groups constraint is set.
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