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Abstract—Heart sound auscultation has been applied in
clinical usage for early screening of cardiovascular diseases.
Due to the high demand for auscultation expertise, automatic
auscultation can help with auxiliary diagnosis and reduce the
burden of training professional clinicians. Nevertheless,
there is a limit to classic machine learning’s performance
improvement in the era of Big Data. Deep learning has
outperformed classic machine learning in many research fields,
as it employs more complex model architectures with a
stronger capability of extracting effective representations.
Moreover, it has been successfully applied to heart sound
analysis in the past years. As most review works about heart
sound analysis were carried out before 2017, the present
survey is the first to work on a comprehensive overview to
summarise papers on heart sound analysis with deep learning
published in 2017–2022. This work introduces both classic
machine learning and deep learning for comparison, and
further offer insights about the advances and future research
directions in deep learning for heart sound analysis.
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I. Introduction

C
ardiac auscultation, i.e., listening to and inter-
preting the heart sound, is an indispensable and
critical part of the clinical examination of the
patient [1]. As a low-cost and non-invasive

examination, cardiac auscultation is invaluable for detecting
a heart disease and providing an estimate of its severity, evo-
lution, and prognosis [2]. Accurate cardiac auscultation may
determine whether a more expensive and throughout
examination should be conducted [2]. Nevertheless, due to
difficulties in diagnosing diastolic murmurs, the overall sen-
sitivity of cardiac auscultation is poor (i.e., ranging from
0.21 to 1.00) [1]. Poor cardiac auscultation skills may either
overlook significant pathology, causing deteriorating condi-
tion, or overdiagnose pathology, leading to inappropriate
referral for expensive echocardiography [1].

To tackle the above problems of cardiac auscultation, clas-
sic machine learning (ML) has been widely used for automated
heart sound analysis, including denoising, segmentation, and
classification. For instance, support vector machines (SVMs)
have been employed to detect noisy audio clips [3], and hid-
den Markov models (HMMs) have been used for heart sound
segmentation [4]. Classifiers like SVMs and decision trees have
been applied to heart sound classification [5], [6]. They often
take hand-crafted acoustic features as the input, however,
human knowledge is required for manually selecting features.
Additionally, classic ML tends to excel in small-scale data,
whereas its performance on large-scale datasets has remained a
bottleneck.

More recently, deep learning (DL) has demonstrated its
higher capability in analysing heart sounds than classic ML [7].
DL models typically accept raw audio signals or time-fre-
quency representations as the inputs [8], [9], thereby improv-
ing the efficiency by skipping the need for selecting hand-
crafted acoustic features. Complex structures of DL models
also enhance their ability to learn abstract representations from
large-scale datasets.

A.Differences Between This Survey and its Precursors
There are several review studies on heart sound analysis
(see Table I). Hand-crafted feature extraction and basic ML
models (e.g., SVMs and shallow artificial neural networks)
were discussed in [10], [11], [12], [13], [14]. DL has been
used since 2016 in the PhysioNet challenge [15]. Only the
studies in [15], [16] discussed heart sound analysis, including
denoising, segmentation, and classification, along with DL
approaches for partial analysis tasks. Additionally, the study
in [17] explored DL for heart sound classification. Never-
theless, heart sound segmentation with DL was not included
in [15], [16], [17]. This survey fills the gap in the existing
reviews, as few studies have provided a comprehensive
review of DL methods for heart sound analysis since 2017.
Furthermore, the state-of-the-art approaches regarding the
interpretability of DL models will be summarised and dis-
cussed. This work will also summarise multiple heart sound

databases, discuss the potential research problems, and out-
line future research directions to help promote relevant
research studies.

B. Challenges in Heart Sound Analysis
Although many ML and DL methods have been applied to
heart sound analysis, this research field still faces many techni-
cal challenges, including denoising, segmentation, classifica-
tion, and DL model explanation.

The first challenge is denoising, which aims to remove
noise from heart sounds. Recording environments can be
noisy with environmental noise and speech, making
denoising an essential pre-processing procedure to improve
the audio quality for better segmentation and classification
performance.

The second challenge is segmentation that splits a heart
sound signal into multiple parts, i.e., cardiac cycles or
smaller segments (S1, systole, S2, and diastole). Heart
sound segmentation is often a pre-processing step for
classification.

The third challenge is classification, which predicts the
severity level of cardiovascular diseases or heart abnormalities
from heart sounds. Heart sound classification is helpful for
early screening of heart diseases in primary care.

The final one is explaining DL models for heart sound
analysis. DL models, with their complex structures, often
appear as black boxes to humans, despite their promising
performance in heart sound analysis. In the sensitive
domain of digital health, explainable DL models are crucial
for clinicians to provide timely and appropriate therapies
for patients. Correspondingly, trust from clinicians and
patients can promote real-life application of explainable
DL models.

C. Contributions of This Survey
The survey has the following contributions.

The first comprehensive survey in heart sound analysis with
DL: In addition to summarising ML techniques for heart
sound denoising, segmentation, and classification, this work

TABLE I A comparison of existing surveys on heart sound
analysis. Den.: Denoising, Seg.: Segmentation, Cla.:
Classification, Int.: Interpretation, mo: Mentioned only.

SURVEYS YEAR DL DEN. SEG. CLA. INT.

Bhoi et al. [10] by 2012 ✗ mo ✓ ✓ ✗

Chakrabarti et al. [11] by 2013 ✗ ✓ ✓ ✓ ✗

Nabih-Ali et al. [12] 2004-2016 ✗ ✓ ✓ ✓ ✗

Clifford et al. [15] 2016-2017 ✓ ✓ ✓ ✓ ✗

Ghosh et al. [13] by 2018 ✗ ✓ ✓ ✓ ✗

Majhi et al. [17] 2008-2018 ✓ ✗ ✗ ✓ ✗

Dwivedi et al. [14] 1963-2018 ✗ ✗ ✓ ✓ ✗

Chen et al. [16] 2016-2020 ✓ mo mo ✓ ✗

This survey 2017-2022 ✓ ✓ ✓ ✓ ✓
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reviews advanced DL topologies for heart sound analysis,
especially segmentation, classification, and interpretation.

Summarisation of resources: This work summarises publicly
available datasets for heart sound analysis, particularly for classi-
fication. Additionally, it provides a collection of open-sourced
DL algorithms for heart sound classification.

Future research directions: This survey discusses the limita-
tion of current DL methods and points out potential
future research topics in this area. It also discusses the
importance of explainable DL models for heart sound clas-
sification, current advances, and future directions in
explainable AI.

II. Background

A.Heart Sounds
In a human’s cardiac system, a normal cardiac cycle con-
tains the first heart sound S1 and the second heart sound
S2. S1 occurs with the closure of the mitral and tricuspid
valves at the start of the systole phase, while S2 is caused
by the closure of the aortic and pulmonary valves between
the systole and diastole phases [18] (See Figure 1). Addi-
tionally, extra heart sounds, i.e., the third heart sound S3
and the fourth heart sound S4, can occur in both normal
and pathological conditions [19]. Both S3 and S4 manifest
during the diastole phase. Specifically, S3 occurs after S2,
resulting from the rapid filling of the ventricles, while S4
occurs before S1 (i.e., at the end of diastole) during the
ventricle’s late filling due to atrial contraction [8], [18],
[20]. The frequency range of S1 and S2 is 20–200 Hz,
while that of S3 and S4 ranges between 15–65 Hz [21].
The two types of extra sounds, S3 and S4, may indicate
diseases: S3 could be a sign of heart failure [22], and a
pathologic S4 is commonly caused by conditions that can
result in ventricular hypertrophy [20].

Additionally, a murmur could indicate defective valves
or an orifice in the septal wall [22]. Murmurs, caused by

turbulent blood flow in the heart system, are identified as
abnormal sounds, and are crucial for diagnosing cardiovas-
cular diseases [23]. Murmurs often constitute the primary
basis for diagnosing valvular heart disease [24]. Clinically,
murmurs consist of two types: systolic murmurs and dia-
stolic murmurs. Aortic stenosis, mitral regurgitation, and tri-
cuspid regurgitation occur during systole, while mitral
stenosis and tricuspid stenosis occur during diastole [23].

B. Diagnosis of Cardiovascular Diseases
Nowadays, several non-invasive diagnostic tools are avail-
able for cardiovascular diseases. Particularly, medical imag-
ing tools are capable of visualising the cardiovascular system.
For instance, the echocardiogram (echo) utilises ultrasound
scans to create a moving picture of the heart, offering
insights into its size, shape, structure, and function [26].
Cardiac computed tomography (CT) uses X-rays to create
detailed images of the heart and its blood vessels [26]. For
assessment of the cardiovascular system’s function and struc-
ture, cardiac magnetic resonance imaging (CMRI) creates
both still and moving pictures of the heart and major blood
vessels [26]. However, these imaging instruments are expen-
sive and require trained medical professionals for operation,
limiting their application in clinics and small- to medium-
sized hospitals.

Compared to the aforementioned diagnostic instruments,
cardiac auscultation is low-cost and essential in preliminary
physical examinations. Phonocardiogram (PCG) signals,
recorded with a phonocardiograph, have proven to be valu-
able in pediatric cardiology, adult cardiology, and internal
medicine [27]. Recent advances in electronic stethoscopes
facilitated computer-aided auscultation by integrating sensor
design, signal processing, and ML techniques [27]. The low-
cost and portable nature of electronic stethoscopes makes it
feasible to apply computer-aided auscultation to primary care
and remote/home healthcare settings.

Apart from PCG, Electrocardiogram (ECG), which
senses the P-QRS-T wave to depict the electrical activity
of the heart [28], is an inexpensive and commonly used
tool for screening heart diseases. ECG and PCG are highly
interrelated as they are concurrent phenomena during heart
activities [29]. In an ECG signal, the P wave represents
activation of the atria, followed by QRS complex resulting
from ventricular excitation [29]. The ventricles then relax
back to the electrical resting state, and the T wave shows
the ventricular repolarization [29]. During this procedure,
S1 occurs when the ventricles contract and the atrioven-
tricular valves close; S2 happens when the ventricles relax
and semilunar valves close [29]. Both ECG and PCG have
been used for heart abnormality detection [30], [31].
In [32], ML models with both ECG and PCG as inputs
outperformed models with only one type of signal for
heart abnormality detection. Compared with PCG, ECG
has difficulty in detecting structural abnormalities in heart
valves and defects characterised by heart murmurs [33]. In

FIGURE 1 The PCG recording of a normal heart sound from the
PhysioNet/CinC Database [25]. Frames in the middle with four states
(i. e., S1, systole, S2, and diastole) are depicted.
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this context, analysing PCG is complementary to ECG
analysis in diagnosis.

In Figure 2, heart sounds are processed by denoising, seg-
mentation, and classification, and then clinicians and patients
receive the predictions and interpretations in primary care. In
real life, patients with heart sounds predicted as abnormal are
recommended to do further professional medical examinations
for accurate diagnosis.

III. Heart Sound Analysis Tasks
This section describes the tasks and summarises classic ML
techniques for each problem, as shown in Figure 3.

A.Denoising
Generally, recorded heart sounds consist of many kinds of
noises [34], including white noise and other sounds

presented in the recording environments, e.g., human
speech. Noise may impair the segmentation and classifica-
tion performance of heart sounds [34]. In this regard,
numerous studies have explored denoising methods for
better performance in heart sound segmentation and classi-
fication tasks.

Filters: As a preprocessing procedure of heart sound classifi-
cation, many denoising approaches employed signal filters to
remove noise from heart sounds [8]. Highpass filters have been
used to eliminate low-frequency noise [35], [36]. With the
capability of mitigating both high- and low-frequency noises,
bandpass filters are more often used for heart sound denois-
ing [37]. Butterworth bandpass filters have been successfully
employed in many studies [38], [39]. The cutoff frequency of
a Butterworth bandpass filter is set with a low frequency for
filtering out noise with very low frequencies and a high

FIGURE 2 The framework of heart sound analysis involves denoising and segmentation, followed by training a classifier to produce the predictions
and interpretations for clinicians and patients. The @ indicates a normal prediction, while the • is an abnormal one. The dashes “- -” denote optional
procedures.

FIGURE 3 Categorisation of methods for heart sound analysis. Bold texts are DL approaches.
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frequency for filtering out high-frequency noises. A range of
Butterworth bandpass filters with various orders have been
applied with different cutoff frequency settings. For instance, a
4-th order Butterworth filter was set with a cutoff frequency
of 25-400 Hz in [40], and a 5-th order Butterworth filter was
designed to have a cutoff frequency of 25-500 Hz in [41] and
25-250 Hz in [42]. A 6-th order Butterworth filter was
designed with a cutoff frequency of 50–950 Hz [43] and 30-
900 Hz in [44]. Additionally, several other filters were also
used for denoising heart sounds, such as Savitzky-Golay fil-
ter [45], Chebyshev low-pass filter [46], and Notch filter [47].

Spectrum-based denoising: To remove noise, spectrograms
were simply selected with a threshold of -30, -45, -60, or
-75 dB in [48]. However, it is time-consuming to search for a
suitable threshold among different heart sounds. A more flexi-
ble method, spectral subtraction [49], was used to estimate the
noise and remove it from heart sounds [39].

Spike removal: Frictional spike is a redundant part of the
amplitude of a heart sound. In several studies [38], [40], fric-
tional spikes have been detected and eliminated (i.e., replaced
by zeros) during pre-processing of heart sounds.

Selection of noise-free segments: Apart from removing noise
from heart sounds, the usage of noise-free heart sound seg-
ments has been regarded helpful for heart sound analysis.
Wavelet entropy was used as a feature to evaluate noise in
heart sound segments [6], as clean heart sounds have relatively
higher wavelet entropy than noisy heart sounds. Empirical
wavelet transform was used to separate heart sounds, murmurs,
low-frequency artifacts, and high-frequency noises in another
study [19]. Additionally, classic ML was also used for detecting
noise-free heart sound segments. In [3], SVMs were applied to
classify the quality of heart sound signals into binary classes (i.
e., ‘unacceptable’ and ‘acceptable’) or three classes (i.e., ‘unac-
ceptable’, ‘good’, ‘excellent’).

Among the above denoising methods, filters are often
used to filter out noise with defined frequency bands. Filter-
ing, as a basic denoising approach, can be combined with
other denoising methods to further improve the audio qual-
ity [39]. Spectral subtraction, which estimates the noise
power from the frequencies outside the heart sound fre-
quency range [39], is more flexible than filters. Differently,
spike removal focuses on removing the spikes rather than
removing the audio components with specific frequency
bands. The selection of noise-free segments is more com-
plex than the signal-processing-based methods mentioned
above, but it is more effective in automatically selecting
audio segments with acceptable qualities before applying
other potential denoising methods.

B. Segmentation
Heart sound segmentation aims to split an audio sample into a
set of smaller audio segments, which could be equal to or
shorter than a complete cardiac cycle [50]. The segments
shorter than a cardiac cycle could include S1, systole, S2, and
diastole, as indicated in Figure 1.

Energy-based segmentation: As heart sounds at different states
have various energies, signal energy has been used for localising
S1 and S2 peaks [51]. Based on frequency information (e.g.,
Wavelet Transform (WT)) of heart sounds, energy peaks of
wavelet coefficients were detected for localising S1 and S2
in [52].

Envelope-based segmentation: Apart from energy, heart sound
segmentation can be achieved based on envelopes [42], [53].
For instance, Shannon energy envelope was extracted for heart
sound segmentation in [54]. In [8], heart sound segmentation
was implemented based on the Shannon energy envelope and
zero crossings of heart sounds. In [43], [55], S1 of the first heart
cycle was detected based on Shannon energy envelopes, and
subsequent S1 heart sounds were detected using a sliding heart
cycle window.

Loudness-based segmentation: Loudness has proven its poten-
tial to segment heart sounds [56], [57]. Specifically, spectro-
grams extracted from heart sounds are firstly converted into
the Bark scale and smoothed using a Hanning window. At
each time frame, the sensation of loudness is then calculated by
the mean of the amplitudes at all frequency bands: LðtÞ ¼PT

t¼1
AðtÞ

T , where AðtÞ is the amplitude at the t-th time frame,
and T is the total number of time frames. Furthermore, the
derivation of the loudness function is computed to obtain
peaks. Therefore, systoles and diastoles can be localised as they
have different time lengths.

Classic Machine Learning for Segmentation: ML models have
been proposed for heart sound segmentation, aiming to
achieve more noise-robust results than the rule-based segmen-
tation methods mentioned above [58].

Unsupervised Learning: Considering the limited availability
of the heart sound datasets, the authors of [59] adopted an
unsupervised spectral clustering technique based on Gaussian
kernel similarity to obtain frame labels (e.g., S1 and S2), which
are further utilised to segment heart sounds.

Supervised Learning: Hidden Markov models (HMMs) have
been widely used for segmentation [4]. Let us assume heart
states as S ¼ fs1; s2; s3; s4g ¼ fS1; systole; S2; diastoleg, and the
observations O ¼ fo1; o2; . . .; oTg as raw heart sounds or
acoustic features. A transmission matrix A ¼ faijg denotes the
probablity of a state si at the t-th time frame moving to sj at
the ðt þ 1Þ-th time frame. The probability density distribution
of ot to be generated by si is B ¼ biðotÞ ¼ P½ot jsi�, where P
means probability. The initial state distribution is p ¼ fpig,
representing the probability of state si at the starting time
frame. With A, B, p, and O, an HMMmodel aims to optimise
the state sequence. The Viterbi algorithm, often used for this
purpose [58], is further detailed in [4].

To better capture the abrupt changes in PCG signals,
the study in [60] used signal envelops. The kurtosis of the
envelope was then computed to extract impulse-like char-
acteristics. Subsequently, these characteristics were passed
through a zero-frequency filter to obtain pure impulse
information. Along with the heart sound labels, the
extracted features were fed into a hidden semi-Markov
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model (HSMM). In [61], a multi-centroid-duration-based
HSMM was introduced to better adapt to the variability of
heart cycle durations (HCDs) in PCG recordings. HCDs
were estimated at various instances of a PCG to obtain
maximum possible duration values, and those nearest values
were clubbed into clusters to refer to each centroid. With
more accurate state duration information, the HSMM
achieved better segmentation performance. Similarly, con-
sidering the inter-patient variability, the emission probabil-
ity distributions to each patient were estimated through a
Gaussian mixture model (GMM), and an improved HSMM
was used for segmentation in an unsupervised and adaptive
way [62]. Moreover, the expectation maximisation algo-
rithm developed in [63] searched for sojourn time distribu-
tion parameters of an HSMM for each subject. Many
studies [64], [65], [66] have employed logistic regression-
based HSMM (LR-HSMM) [67] for heart sound segmenta-
tion. LR was incorporated to predict the probability of
P½sjjot �, and B was then computed with Bayes’ rule. There
are also other improved HMM methods, such as the dura-
tion-dependent HMM [58], [68] considering the probability
density function of the duration at each state. Another
study [38] proposed a Markov-switching model for heart
sound segmentation.

The energy-based, envelop-based, and loudness-based
segmentation approaches attempt to detect the correspond-
ing feature peaks, indicating S1 and S2 heart sounds. How-
ever, these approaches are primarily applied to high-quality
audio samples after the denoising procedure. Classic ML
methods have proven more efficient and precise in seg-
menting noise-contaminated heart sounds even without
denoising [58], [59], [67]. One can select unsupervised or
supervised learning based on whether segmentation-related
labels are available.

C. Classification
The goal of automated auscultation is heart sound classifica-
tion, including i) detecting abnormal heart sounds (e.g., mur-
murs, mitral stenosis, etc.) and ii) recognising severity of
cardiovascular diseases (normal/mild/moderate).

Feature Engineering: Feature extraction is often performed
before training a classifier. Low-level descriptors (LLDs) and
functionals are typically extracted as acoustic features. LLDs
represent segmental features obtained from short-time seg-
ment analysis (see Table II), while functionals are supra-seg-
mental feature vectors derived from LLDs. Functionals
generally refer to statistical features such as mean, maximum,
standard deviation, and others.

The LLDs used for heart sound classification are listed in
Table II. In addition to time-domain LLDs, frequency-domain
LLDs have been widely used for heart sound classification.
Frequency-domain LLDs include (Mel-scaled) spectral features
and wavelet features. There are also existing feature sets used
for heart sound classification, such as the COMPARE feature
set [69] and the eGeMAPS feature set [70].

In addition to hand-crafted features, more recent stud-
ies [71], [72] have explored deep representations (see Table II).
Given the strong capabilities of DL models in extracting
abstract features, deep representations have the potential to
enhance the performance of hand-crafted features.

Classic Machine Learning for Classification: Rule-based meth-
ods were proposed for heart sound classification in [19], [94].
To achieve better performance, most research studies have
used classic ML for heart sound classification.

Generative models aim to generate the joint probability dis-
tribution PðX ; yÞ, given the features X and the labels y. The
posterior probability PðyjXÞ is computed via Bayes’ rule
PðyjXÞ ¼ PðX ;yÞ

PðXÞ ¼ PðX jyÞPðyÞ
PðXÞ , where PðXjyÞ is the likelihood

probability distribution. The Naïve Bayes Classifier was widely
used in heart sound classification due to its ease of use [18].
Gaussian Mixture Models (GMMs) were used to estimate data
distribution by optimising the weights of Gaussian mixture
components and the mean and variance in each compo-
nent [56], [88]. A Gaussian mixture-based HMM [38] was
employed for heart sound classification, considering the four
sequential heart states. In [89], multiple HMMs without
GMMs were used for heart sound classification.

Discriminative models are designed to directly predict the
posterior probability PðyjXÞ given X . Figure 4 presents statis-
tics of recent works from 2017 to 2022 that employ classic ML
models for heart sound classification. SVMs have been very
widely used by learning a supporting hyperplane between clas-
ses [43], [48], [90]. Apart from linear projection between data
samples and labels, SVMs can learn to separate hyperplanes on
non-linear data via non-linear kernels, such as the radial basis
function.

Furthermore, k-nearest neighbours (KNNs) has shown
good performance in heart sound classification by classifying
a data sample according to the classes of its k-nearest neigh-
bours [73], [80]. Also, decision trees have been successfully
employed in [71], [87]. One reason is that limiting the
number of decision nodes can help avoid overfitting [6].
Additionally, the structure of a decision tree can reveal the
internal logic for classification. Bagged trees assemble multi-
ple decision trees to create more complex model architec-
tures for better performance [71], [75]. Random forests
further improve bagged trees with fewer features when
splitting each node [80], [92].

In recent years, feed-forward neural networks (FNNs)
have been applied to heart sound classification [48], [79].
FNNs can automatically learn a non-linear projection between
acoustic features and labels. Despite FNNs’ limitation in
explainability compared to classifiers like SVMs and decision
trees, they show potential to achieve good performance.

There are also several other ML models, such as linear dis-
criminant classifiers [48], [71], logistic regression [95], qua-
dratic discriminant analysis [42], boosting methods [50], and
others [47], [74]. Finally, multiple classifiers can be further
combined to enhance performance beyond what single models
achieve [50], [84].
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The introduced hand-crafted features and deep representa-
tions can be combined for classification. Compared to hand-
crafted features, deep representations have limited explainabil-
ity, making them unsuitable for interpretable decision trees.
Among hand-crafted features, the listed feature groups in
Table II (i.e., time-domain, spectral, Mel frequency, and
Wavelet features) are complementary in representing heart
sound characteristics. Therefore, they are incorporated in the

COMPARE and eGeMAPS feature sets. To enhance perfor-
mance, feature selection methods can be employed to remove
redundant/low-contribution features.

Generative models may require more data to model
the data distribution, while discriminative models may be
more susceptible to outliers. It is observed that more studies
have utilised discriminative models for heart sound classifica-
tion, tending to achieve good performance. However,

TABLE II Hand-crafted features and deep representations for heart sound classification.

GROUP FEATURES DESCRIPTION REFERENCE

Time- Envolope Envelope of a signal [19], [73]

domain Amplitude Amplitude of a signal [52]

Energy Energy of a signal [36], [42], [51]

Entropy Signal entropy [36], [74]

Loudness Perception of sound magnitude [56]

Peak amplitude Amplitude of peaks [75]

Spectral Spectral amplitude Fourier transform [6], [36], [38], [42], [74],
[76], [77], [78], [79]

Dominant frequency value Frequency which leads to the maximum spectrum [76], [77]

Dominant frequency ratio Ratio of the maximun energy to the total energy [76], [77]

Energy Spectral energy [38]

Spectral roll-off Frequency below a percentage of the total spectral energy [36]

Spectral centroid Average of magnitude spectrogram at each frame [36], [79]

Specrtal flux Changing speed of the power spectrum [36]

Power spectral density (PSD) Distribution of power in spectral components [42], [73], [79]

Spectral entropy Shannon entropy of PSD [47], [74], [76], [77]

Instantaneous frequency Frequency for non-stationary signals [80]

Fractional Fourier transform entropy Spectral entropy of the fractional Fourier transform [81]

Spectrogram Short-Time Fourier Transform (STFT) [43], [55]

Cepstrum Inverse Fourier transform on the logarithm of the spectrum [78]

Mel Mel-frequency Mel-scaled frequency [82], [83]

frequency Mel-Frequency Cepstral Coefficients
(MFCCs)

Discrete cosine transform of Mel-scaled spectrogram [38], [65], [74], [76], [84],
[85], [86], [87], [88], [89]

Fractional Fourier transform-based
Mel-frequency

Mel-frequency from the fractional Fourier transform [39]

Wavelet Wavelet transform Frequency analysis of a signal at various scales [50], [73], [79]

Wavelet scattering transform “Wavelet convolution with nonlinear modulus and averaging scaling
function”a (translation invariance and elastic deformation stability [90])

[90], [91]

Wavelet synchrosqueezing transform Reassignment of wavelet coefficients [92]

Tunable quality wavelet transform “Wavelet multiresolution analysis with a user-specified Q-factor, the ratio
of the centre frequency to the bandwidth of the filters”b

[46], [93]

Wavelet entropy Temporal energy distribution based on wavelet coefficients [6]

Feature set COMPARE Computational Paralinguistics ChallengE feature set [82]

eGeMAPS The extended Geneva Minimalistic Acoustic Parameter Set [82]

Deep Graph-based features Petersen graph pattern [71]

representation Sparse coefficient Result of sparse coding [5]

Autoencoder-based features Features extracted by an autoencoder from hand-crafted features [48], [72]

a[Online]. Available: https://de.mathworks.com/help/wavelet/ug/wavelet-scattering.html
b[Online]. Available: https://de.mathworks.com/help/wavelet/ug/tunable-q-factor-wavelet-transform.html
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generative models can be employed to generate additional data
samples based on the learnt data distribution.

IV. State-of-the-Art Deep Learning Studies
DL has been successfully applied to heart sound analysis [7]. As
there are few works on heart sound denoising using DL, meth-
ods for segmentation and classification with DL are introduced.

A.Deep Learning for Segmentation
Various DL models, categorised into convolutional neural net-
works (CNNs) for extracting spatial representations and recur-
rent neural networks (RNNs) for sequential representations,
have been proposed for heart sound segmentation.

Convolutional neural networks: Inspired by successful applica-
tions of deep CNNs in image segmentation, recent studies
have applied deep CNNs to heart sound segmentation [96].
For instance, several CNN-based segmentation algorithms
were proposed and compared in [96], including CNNs with
sequential max temporal modelling, CNNs with HMMs or
HSMMs to model the probability density distribution of
observations.

Recurrent neural networks: Given their capacity to leverage
temporal information in sequential data, RNNs can aid in iden-
tifying the states of heart sounds. In [97], segmentation was
approached as an event detection task, leading to the develop-
ment of bi-directional Gated Recurrent Unit (GRU)-RNNs
utilising spectrogram and envelop features. Recognising that
envelope features may inadequately capture the intrinsic dura-
tion information of heart cycles, a duration-LSTM was pro-
posed in [98]. This model integrated the duration vector into
the standard LSTM cells along with envelope features, with the
aim of achieving enhanced segmentation performance. Dura-
tion parameters encompass heart cycle duration and systole
duration estimated from the envelope autocorrelation. In [99],
the authors employed bi-directional GRU-RNNs directly for
heart sound segmentation, without utilising envelopes and
time-frequency based features. Addressing the potential pres-
ence of noisy and irregular sequences in heart sound signals, an
attention-based RNN framework was introduced in [100].
Specifically, preceding the final classification layer, a single

linear layer was applied to the hidden representation returned
by bi-directional LSTMs to learn the weight score of each hid-
den state. These weight score values are then multiplied with
the hidden representation to obtain the final classification.

CNNs + RNNs: In [101], an end-to-end model was pro-
posed, integrating CNNs and LSTM recurrent neural net-
works (RNNs) to directly learn rich and efficient features
from audio waves. Furthermore, the gate structures of each
LSTM unit was optimised in [102] for efficiency.

Autoencoder: An autoencoder comprises an encoder to map
the input to hidden representations and a decoder to project
the hidden features back to the input data. In [103], a stacked
autoencoder was proposed for identifying S1 and S2 sounds,
and the trained model outperformed deep belief neural net-
works as well as classic ML models like SVMs.

B. Deep Learning for Classification
DL employs complex models to learn effective representations
directly from raw heart sounds or simple time-frequency rep-
resentations. In addition to the pipeline shown in Figure 5,
this section summarises the advances of DL methods for heart
sound classification as follows.

Deep learning on time-frequency representations: Given the
challenge of extracting effective representations from raw heart
sound signals, 2D time-frequency representations have been
widely employed as input for 2D CNNs in heart sound classi-
fication [68]. In [104], spectrograms extracted by STFT from
heart sounds were fed into ResNet for abormal heart sounds
detection. Multi-domain features were considered more com-
prehensive in reflecting the characteristics of all heart sound
classes. In [105], spectrograms, Mel spectrograms and MFCCs
were employed, and the final predictions were obtained
through ensemble learning.

In addition to CNNs, which are effective for extracting
spatial features, RNNs excel at capturing temporal features.
LSTM-RNNs have been applied to process discrete wavelet
transforms and MFCCs for heart sound classification [87],
[106]. Deng et al. [107] employed convolutional recurrent
neural networks (CRNNs), combining CNNs and RNNs, for
heart sound classification. CRNNs were also used for detect-
ing murmurs in [108]. In another study, LSTMs were com-
bined with CNNs for abnormal heart sound detection
in [109]. Additionally, alternative classifiers have been used for

FIGURE 5. Pipeline of DL models working on heart sounds. “1”
indicates transfer learning; “2” illustrates deep learning on the time-
frequency representation; “3” depicts end-to-end learning. The three
branches can either operate in parallel or be assembled at the feature
or decision level. Additionally, DL can be utilised for processing features
other than raw audio signals and time-frequency representations.

FIGURE 4. Statistics of the literature using discriminative ML models for
heart sound classification during 2017–2022. FNN: Feed-forward
neural network, KNN: k-nearest neighbour, LDC: Linear discriminant
classifier.
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heart sound classification, including a stacked sparse autoen-
coder deep neural network [110] and a semi-non-negative
matrix factorisation classifier [111].

Deep learning on other features: In addition to the excellent
works mentioned above on DL applied to time-frequency
representations, other features extracted from heart sounds
have also been utilised, including time-domain features, and
1D/2D frequency-based features.
i) Time-domain features: Similar to features used in classic ML
approaches, 1D time-domain features can be also fed into
DL models for heart sound classification. For instance, the
instant energy of heart sounds was extracted as the input
for stacked auto-encoder networks in [51]. Additionally,
multiple statistical features (e.g., mean, median, and vari-
ance) were extracted from all 75 ms segments in each com-
plete heart sound clip and fed into a bidirectional LSTM
(BiLSTM)-RNN model for classification in [112].

ii) 1D frequency-based features: Either 1D CNNs or feed-for-
ward DNN models can be used to process 1D features.
In [113], general frequency features and Mel-domain fea-
tures were fed into 1D CNNs, and then multiple CNNs
were assembled for the final prediction. Mel spectrograms
and MFCC were employed to extract additional features,
serving as the input for a 5-layer feed-forward DNNmodel
in [8].

iii) 2D frequency-based features:Herein, 2D frequency-based fea-
tures are listed to include (a) multiple 1D frequency fea-
tures directly extracted from audio segments rather than
window functions in the STFT domain and (b) features
computed from time-frequency features. Qian et al. uti-
lised wavelets to calculate wavelet energy features from a
set of short acoustic segments and further used GRU-
RNNs as the classifier [114]. Dong et al. extracted log Mel
features and corresponding functionals from heart sound
segments and implemented classification LSTM-RNNs
and GRU-RNNs [82]. In their experiments, log Mel fea-
tures performed better than MFCCs and other LLDs [82].
Zhang et al. extracted temporal quasi-periodic features
computed by an average magnitude difference function
from spectrograms and applied LSTM-RNNs to explore
the dependency relation within the features [115]. Addi-
tionally, a denoising auto-encoder was employed to extract
deep representations from spectrograms as the input of the
classifier of 1D CNNs in [116].
End-to-end learning: In recent years, as the selection of time-

frequency representations and other features still requires
human efforts, there has been a growing trend towards using
end-to-end networks to learn representations directly from
heart sounds. Various 1D CNN architectures based on raw
heart sound signals have been proposed and applied to the task
of heart sound classification [9], [117]. Furthermore, Liu et al.
introduced a temporal convolutional network (TCN) that
exhibited high sensitivity for heart sound classification [118], as
a TCN benefiting from dilated and casual convolutions is
more suitable for sequential data than typical CNNs.

Additionally, a 1D CNN model consisting of residual blocks
was developed for classifying heart sounds [119]. Moreover,
GRU-RNNs were used to process raw heart sound signals for
the screening of heart failure [120].

Several studies have also highlighted the capability of
CNNs and RNNs in learning frequency-domain and time-
domain characteristics of heart sounds. For instance, Shuvo
et al. proposed a CardioXNet model that employed represen-
tation learning followed by sequence residual learning without
any preprocessing [121]. In the representation learning phase,
three parallel 1D CNN pathways were constructed to extract
time-invariant features from heart sound signals. In the
sequence residual learning phase, BiLSTM-RNNs were
employed to learn sequential representation. The study in [41]
attempted to automatically learn time-frequency features. Spe-
cifically, frequency-domain features were extracted by 1D
CNNs, and the time-domain characteristics were extracted by
GRU-RNNs. A self-attention mechanism was further used to
fuse the two types of features for the final classification.
In [122], time-convolution (tConv) layers were implemented
at the front end of the network for learning finite impulse
response filters.

Transfer learning: Due to extremely strict regulations gov-
erning data collection in the healthcare domain, heart sound
datasets are typically not as large as datasets in other areas of
Computer Audition. To overcome this limitation, transfer
learning has emerged as a valuable approach, employing pre-
trained DL models optimised on large-scale datasets. In recent
studies, pre-trained models are primarily learnt on either an
image dataset (i.e., ImageNet [123]) and an audio dataset (i.e.,
AudioSet [124]). Although heart sounds are presented as audio
signals, a different data type from images, DL models trained
on ImageNet have demonstrated good performance on time-
frequency representations extracted from heart sounds for
heart sound classification. This is attributed to the fact that the
large-scale ImageNet dataset improves the generalisation of
DL models, and the time-frequency representaions can be fed
into pre-trained DL models as colourful images. Typical DL
models on ImageNet, such as AlexNet [125] and VGG [126],
have been successfully repurposed for heart sound classifica-
tion [7], [35]. Compared to ImageNet, AudioSet includes
multiple types of acoustic signals and therefore is more closely
related to heart sounds in terms of data type. In [127], pre-
trained audio neural networks (PANNs) trained on AudioSet
were used for classifying heart sounds with inputs of time-fre-
quency representations. It was found that PANNs outper-
formed ImageNet-based models [127], including VGG,
MobileNet V2, ResNet, and ResNeXt.

After extracting representations using pre-trained mod-
els, transfer learning uses various types of classifiers for classi-
fication, mainly including classic ML classifiers and feed-
forward neural networks. For instance, SVMs were applied
to representations extracted by AlexNet, VGG16, and
VGG19 in [35], [40]. Additionally, other classifiers such
as KNNs were used in [40]. In another approach [7], a

50                                                 

                                                                                                                                              



pre-trained VGG model was frozen and followed by fully
connected layers.

Additionally, fine-tuning pre-trained models in transfer
learning has also shown good performance for heart sound
classification. For example, a fine-tuned AlexNet provided
effective representations for heart sound classification [35],
[40]. Similarly, PANNs were fine-tuned in [127]. Fine-tuned
models have even outperformed pre-trained models as they
adapt to the data distribution of heart sound datasets. In [7],
fine-tuned VGG performed better than pre-trained VGG
when SVMs were used as classifiers.

C. Interpretation
Explainable DL has emerged as a crucial topic in healthcare.
Developing explainable DLmodels can foster trust among physi-
cians and patients by providing insights into model predictions.
This section categorises interpretation methods into model-
agnostic and model-specific approaches. Model-agnostic meth-
ods are independent of ML/DL model structures, whereas
model-specific methods are closely tied tomodel architectures.

Model-agnostic interpretation: The shapley additive explana-
tions (SHAP) algorithm [128] is based on Sharpley values,
which indicate the feature importance in a prediction model
according to the Game Theory. Sharpley values locally explain
model predictions for each data sample, while SHAP can pro-
vide both local and global interpretations. The study in [129]
used SHAP to locally explain a VGG model for heart sound
classification. The findings of the study revealed that S1 and S2
heart sounds exhibited high feature importance in six types of
time-frequency representations, including STFT, log Mel
spectrogram, Hilbert—Huang transformation (HHT), wavelet
transform (WT), MFCC, and Stockwell transform (ST). Inter-
estingly, it was observed that low-frequency information in
the time-frequency representations positively contributed to
predicting normal heart sounds, while high-frequency infor-
mation had a negative impact. Conversely, this trend was
opposite for abnormal heart sounds [129].

S1 and S2 heart sounds were also found important for heart
sound classification in [130]. The study [130] compared the
SHAP algorithm with the occlusion map visualisation method
for model interpretation. The occlusion map evaluates feature
importance by masking partial feature regions, offering an
alternative perspective on model explanation. It was found
that the trained model might still correctly classify the heart
sounds when the S1 heart sound was masked by the occlusion
map. This observation suggests that other heart sound regions
may also contribute to model predictions [130].

Model-specific interpretation: In [131], an attention mecha-
nism was used to visualise the contribution of each feature unit
to model predictions. The attention mechanism was applied to
CNN, LSTM-RNN, and GRU-RNN models. It was found
that the attention heatmap of heart sounds with the moderate/
severe state can reveal irregular characteristics, while normal
heart sounds with regular heartbeats showed regular feature
importance along the time axis in the attention maps.

Similarly, in [108], a temporal attention pooling mechanism
was used to assign importance weights to each frame in systolic
murmur regions. With the attention mechanism, the murmur
regions exhibited high importance for murmurs detection.

V. Published Resources and Advanced Performance

A. Published Datasets
In the past years, several heart sound databases have been col-
lected. The following access-available databases are briefly
introduced in Table III.

The PASCAL challenge Database [132] was split into two
sets A and B. In dataset A, 176 heart sounds (0.393 hours)
were recorded with the iStethoscope Pro iPhone app and
annotated into S1 and S2 sounds for heart sound segmentation.
Each heart sound in dataset A was also labelled into one of the
four classes: normal, murmur, extra heart sound, and artifact. Data-
set B with 656 recordings (1.194 hours) was annotated into
three classes: normal, murmur, and extrasystole.

The PhysioNet/CinC Database [25] used in the PhysioNet/
CinC Challenge 2016 [133] consists of multiple databases
recorded from different data collectors. The publicly available
training set includes five databases collected from both healthy
individuals and patients. It comprises 3,240 recordings
(20.216 hours in total) from more than 764 subjects. The task
was set as a three-class classification task: normal and abnormal, and
noisy.

The Heart Sounds Shenzhen (HSS) corpus [82] used in the
INTERSPEECH Computaional Paralinguistic challengE
(ComParE) 2018 was collected by the Shenzhen University
General Hospital. The dataset consists of 845 recordings
(7.047 hours) from 170 subjects (f: 55, m: 115) using with an
electronic stethoscope. Each audio sample was annotated into
one of the three classes: normal, mild, and moderate/severe.

A heart sound dataset available on GitHub [134] contains
1,000 audio files (0.679 hours in total). The audio recordings
are balanced across five classes: normal, aortic stenosis, mitral regur-
gitation, mitral stenosis, and mitral valve prolapse.

The Michigan Heart sound database1,2 provides heart
sounds from different areas and poses: the apex area when a
subject is supine, the apex area for left decubitus, the aortic
area when sitting, and the pulmonic area for supine. It consists
of 23 heart sound recordings with a total duration of
0.413 hours. The heart sounds were annotated into normal and
multiple pathological states.

The CirCor DigiScope Database [135], used in the George
B. Moody PhysioNet Challenge 2022 [136], was collected from
a pediatric population aged 21 years or younger. The heart
sounds were recorded from one or multiple locations, including
pulmonary valve, aortic valve, mitral valve, tricuspid valve, and
others. The publicly available training set consists of 3,163 audio

1[Online]. Available: https://open.umich.edu/find/open-educational-
resources/medical/heart-sound-murmur-library
2[Online]. Available: https://www.med.umich.edu/lrc/psb_open/html/repo/
primer_heartsound/primer_heartsound.html
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samples totaling with 20.094 hours from 942 participants. Two
classification tasks were targeted: i) normal and abnormal, and ii)
presence of murmurs, absence of murmurs, and unclear cases of murmurs.

B. State-of-the-Art Performance
As follows, the benchmarks in the challenges associated with
the aforementioned databases are discussed. For databases
without established benchmarks, the state-of-the-art perfor-
mance in the challenges is analysed. Additionally, advanced
research studies pertaining to databases not used in challenges
are reviewed.

The PASCAL database was utilised in the Classifying Heart
Sounds Challenge [132]. The champion team in the challenge
extracted hand-crafted features based on the segmented S1 and
S2 sounds [137], and trained FNNs to classify the heart sounds.
On Dataset A, the proposed approach achieved precision val-
ues of 0.35, 0.67, 0.18, and 0.92 for normal, murmur, extra-
sound, and artifact, respectively. On Dataset B, the method
achieved precision values of 0.70, 0.30, and 0.67 for normal,
murmur, and extrasystole, respectively.

The PhysioNet/CinC challenge offered a benchmark
using selected hand-crafted features and a logistic regression
classifier [25]. The features were extracted from segmented
four states, and then partial features were selected using logistic
regression. The resulting sensitivity and specificity were 0.62
and 0.70, respectively. The highest average score achieved
in the challenge was 0.86 (sensitivity: 0.94, specificity:
0.78) [138]. The winning approach utilised features extracted
from the above four states, which were then fed into a variant
of an AdaBoost classifier. Additionally, heart sounds segmented
into cardiac cycles and decomposed into multiple frequency
bands were processed by a CNN classifier. Finally, an ensem-
ble of the AdaBoost and the CNN classifiers were used for
final predictions.

The HSS database was released with a benchmark in
the COMPARE challenge 2018 [69]. An unweighted aver-
age score of 0.562 was achieved by fusing the best two
models among COMPARE features + SVM, Bag-of-Words
features + SVM, and auDeep features + RNN + SVM.
The fusion strategy of majority voting outperformed multi-
ple single-model methods.

On the dataset available on GitHub [134], a high accu-
racy of 0.988 in the five-class classification task was
achieved by an SVM classifier using both MFCCs and
wavelet transform features. The sensitivity and the specific-
ity were 0.982 and 0.994, respectively. Furthermore, mul-
tiple heart valve diseases, including MR, MS, and AS,
were distinguished from the healthy control with an accu-
racy of 0.9833 in [139].

Due to its smaller size compared to other databases, most
approaches applied to the Michigan Heart sound database
have used hand-crafted features and classic ML classifiers. For
instance, the study in [140] achieved an accuracy of 0.8889
using FNNs with hand-crafted features for a nine-class classifi-
cation. Another study in [86] employed MFCCs and FNNs to
correctly classify all samples, identifying 13 types of apex heart
sounds.

The CirCor DigiScope Database [135], released in the
George B. Moody PhysioNet Challenge 2022 [136], facili-
tated multiple evaluation metrics, such as F-measure and accu-
racy. The highest weighted accuracy achieved on the test
set [141] was 0.78. This performance was attained by a CNN
model using augmented Mel spectrograms as input for classify-
ing heart murmurs.

C. Published Algorithms
Although only a few codes are publicly available in recent
years, it is worth noting that the abundance of released
codes in 2016 was largely attributed to the PhysioNet chal-
lenge 2016 [25]. Notably, codes in 2016 are omitted from
this study to focus on the most advanced studies during
2017–2022.

TABLE III Published datasets for heart sound classification. AS: Aortic stenosis, MR: Mitral regurgitation, MS: Mitral stenosis, MVP:
Mitral valve prolapse. Notably, the statistics in this table only considered accessible data sets.

DATASET CHALLENGE #SAMPLES DURATION (h) #SUBJECTS TASK

PASCAL Database [132] PASCAL Challenge [132] 176 0.393 unknown Dataset A: Normal, Murmur,
Extra Heart Sound, Artifact

656 1.194 unknown Dataset B: Normal, Murmur,
Extrasystole

PhysioNet/CinC Database [25] PhysioNet/CinC Challenge
2016 [133]

3,240 20.216 764+ Normal, Abnormal, Too noisy
or ambiguous

HSS [82] ComParE Challenge 2018 [69] 845 7.047 170 Normal, Mild, Moderate/
Severe

Data on GitHub [134] – 1,000 0.679 unknown Normal, AS, MR, MS, MVP

Michigan Heart sound database3 – 23 0.413 unknown Normal, Pathological

CirCor DigiScope Database [135] George B. Moody PhysioNet
Challenge 2022 [136]

3,163 20.094 942 Normal, abnormal; presence,
absence, or unclear cases of

murmurs

3[Online]. Available: https://open.umich.edu/find/open-educational-resources/
medical/heart-sound-murmur-library https://www.med.umich.edu/lrc/psb_
open/html/repo/primer_heartsound/primer_heartsound.html
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In [134], the authors provided a Matlab code4 for training
deep neural networks utilising multiple features, including
MFCCs and features extracted through a discrete wavelet
transform. Additionally, the study presented in [122] imple-
mented a Python-based CNN model with time-convolutional
units, simulating finite impulse response filters.5 Furthermore,
ResNets applied to linear and logarithmic spectrogram-image
features were implemented in a Python code6 shared by the
authors of [142]. Lastly, a Matlab code7 for detecting valvular
heart disease from heart sounds and echocardiograms was
released in [143].

VI. Future Research Directions and Open Issues

A. Findings
In classification tasks that primarily focus on the screening for
heart diseases, segmentation is often considered as a prepro-
cessing procedure before classification. The question of
whether segmentation benefits classification remains open.

Segmentation + Classification: Many studies have employed
segmentation techniques or pre-existing segmentation infor-
mation as a preprocessing step before the classification proce-
dure. For instance, segmented cardiac cycles served as input for
DL models in [122]. Clips beginning from the S1 heart sound
with a fixed length of 1.6 s were utilised for classification
in [120]. The importance of segmentation was demonstrated
for abnormal heart sound detection in [130]. Interestingly,
experiments in [130] did not show a significant improvement
in model performance when segmentation information was
incorporated, compared to models without segmentation.
This lack of improvement may be attributed to the inherent
power and robustness of the models, suggesting that segmenta-
tion might be automatically handled by intermediate layers in
these models. This assertion was supported by explanations
provided by the SHAP algorithm [130]. Additionally, S1 and
S2 sounds were observed to be more important compared to
other clips within a heart sound segment. Therefore, segmen-
tation is necessary either as an additional procedure for classi-
fiers lacking robustness or as an internal procedure within
more advanced classifiers.

No-segmentation: Several approaches have advocated for
the use of non-segmented heart sounds, aiming to simplify
automated auscultation [9], [80]. Apart from feeding com-
plete heart sound samples into neural networks, heart
sounds can be segmented into shorter clips of equal length
for model training [105]. For example, the first 5 s of each
audio sample were selected as the model input in [6], and
segmented 5 s clips were also used in [77]. Most studies
employ audio clips with lengths ranging from 2 s to
6 s [41], [45].

B. Limitations and Outlook
Hardware development: In clinics, echocardiography involves
obtaining ultrasound scans with a small probe that emits high-
frequency sound waves. Physicians can diagnose conditions by
observing the heart, blood vessels, and blood flows through
this method.8 However, echocardiography requires well-
trained skills for professionals, limiting its usage in primary
care. Classic acoustic stethoscopes used in primary care require
physicians and nurses to undergo training. Consequently, there
is a high demand for electronic stethoscopes in primary care. In
recent years, electronic stethoscopes have been developed to
record heart sounds and transmit them to computers or mobile
phones for further analysis [26]. Most electronic stethoscopes
can only achieve basic functions such as amplifying and visual-
ising heart sounds without providing a diagnosis. More
recently, there are a few studies and hardware advancements
focused on automated diagnosis. For instance, a field-program-
mable gate array (FPGA) was designed to classify heart sounds
via an LSTM-RNN model in [144]. “HD Steth with ECG”9

embedded artificial intelligence (AI) into an electronic stetho-
scope to detect multiple cardiac abnormalities. As outlined
throughout this overview, AI shows promise in diagnosing
heart sound abnormalities, thereby reducing the dependence
on well-trained professionals. Devices capable of accurately
diagnosing cardiac diseases will be invaluable in promoting
early screening for cardiac conditions in primary care and
home settings.

Performance improvement: Although automated auscultation
is ideally expected to replace human analysis, model perfor-
mance can be a bottleneck for applying automated ausculta-
tion to clinical usage. False negative predictions can result in
delayed or missed therapies and aggravated conditions. In
future efforts, i) automated auscultation will be essential to
achieve high performance and should account for individual
differences in the context of personalised healthcare. The cur-
rent research studies are mostly based on heart sounds, while
many types of individual information such as demographics
can affect model performance [145]. Such individual informa-
tion can be encoded as inputs for DL models. Additionally,
electronic health records (EHR) information can be integrated
to prompt personalisation. Heart sound analysis can be imple-
mented based on heart sounds and relevant medical history,
thereby providing targeted and timely diagnosis. A long-term
dynamic analysis model is also essential for precise diagnosis,
taking into account changes in medical status. ii) In terms of
ML and DL, the field is currently witnessing the advent and
adoption of foundation models [146] (pre-)trained on large-
scale datasets. Several approaches using pre-trained models
have been observed and listed in this work. However, one can
expect even larger models to emerge with the potential for
abilities directly related to heart sound analysis as a ‘down-
stream’ task. On the other hand, the upcoming era of4[Online]. Available: https://github.com/yaseen21khan/Classification-of-

Heart-Sound-Signal-Using-Multiple-Features-
5[Online]. Available: https://github.com/mhealthbuet/heartnet
6[Online]. Available: https://github.com/mHealthBuet/CepsNET
7[Online]. Available: https://github.com/uit-hdl/heart-sound-classification

8[Online]. Available: https://www.nhs.uk/conditions/echocardiogram/
9[Online]. Available: https://www.stethoscope.com/hd-steth-with-ecg/
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foundation models is expected to be marked by homogenisa-
tion, and it remains to be seen if the diversity of heart sound
analysis approaches reported herein will indeed converge to a
few large data-trained models over the next years [146]. iii)
Furthermore, human-machine collaboration holds great
promise for improving system performance and providing
more accurate diagnoses and timely treatments for patients.
Human-machine classification can combine both machine
predictions and human input (from crowd workers and
experts) to achieve more precise diagnoses [147]. In [147], data
samples predicted with high uncertainty were sent to crowd
workers for majority voting. Similarly, samples will be for-
warded to an expert based on a certainty threshold derived
from predictions made by the crowd.

C. Interpretable, Dependable, and Actionable Deep Heart
Sound Analysis
The explanation methods in Section IV offer local explana-
tions that interpret DL models on a case-by-case basis, yet lack
a global capability of revealing the underlying classification
rules or summarising the characteristics of each heart sound
class. Explainable DL models, such as deep neural decision
trees [148], hold promise for explaining the models themselves
from a structure perspective. Learnt or searched data samples
of prototypes, criticisms, and counterfactuals [149] can illus-
trate the typical characteristics of each class, enabling physicians
to compare new samples with these heart sounds for improved
understanding and analysis. Specifically, by analysing the pat-
terns of criticisms, physicians can potentially reduce the num-
ber of false negatives, which is a crucial aspect in the healthcare
field. More recently, sonification has been proposed to explain
DL models for enhanced human-computer interaction [150].
Unlike visualisation, sonification offers a novel perspective for
explaining models through auditory means.

Additionally, considering the health implications, it appears
crucial that AI-driven heart sound analysis exhibits the utmost
dependability [151]. While mechanisms exist, further adapta-
tion to the specific field of application, if not novel algorithms,
will need to be designed. Ultimately, dependability will
emerge as a major driving factor for the trustworthiness of
heart monitoring solutions. In everyday situations, trustwor-
thiness is a key factor to winning users.

Moreover, to enable DL models to be actionable in real
life, data privacy has been another emerging research topic
aiming at protecting users’ data from leakage or external
attacks. Machine unlearning [152] and federated learning
methods [153] can help healthcare institutions better organise
patients’ private data in a secure manner without sacrificing
diagnosis accuracy. Furthermore, AI attacks on heart sound
analysis, such as through adversarial attacks, needs to be con-
templated and dealt with. In summary, DL models hold prom-
ise in guiding healthcare providers’ actions in their daily
practices to provide better care for patients. It will be essential
to improve DL models not only in terms of performance but
also from human-centred perspectives in future.

D. Real-Life Applications
PCG signals hold promise for applications in abnormal heart
sound detection, typically approached as a binary classification
task. For predicting specific abnormal heart sounds, several
databases, including the PASCAL database [132], HSS [82],
and data available on Github [134], have enabled multi-class
classification tasks. More specific predictions of heart sounds
provide more precise early screening, benefiting both patients
and clinicians compared to binary classification. However, the
above three databases are not as large as the PhysioNet/CinC
database [25] and the CirCor DigiScope database [135] (see
Table III). Collecting heart sound data with more detailed
labels can be a further step in heart sound analysis, potentially
facilitating the release of more databases for relevant research.
Furthermore, algorithms such as transfer learning and multi-
task learning, which involve both binary classification and
multi-class classification, have the potential for achieving more
detailed predictions.

In real-life scenarios, automated heart sound analysis holds
promise as an early screening tool for patients. The study
in [109] presented a pipeline from heart sound recording to
abnormal heart sound detection in real-life usage. Once a tool
with heart sound analysis is developed, it can be used for real-
time heart sound analysis on a daily basis. Herein, recorded
data can be processed either online on a cloud server or offline,
taking into account users’ privacy issues. The study in [153]
introduced a federated learning framework for heart sound
analysis. Furthermore, users can go to clinics for further diag-
nosis if abnormal heart sounds are detected. This can help the
users promptly seek medical attention, and also reduce the
burden on clinics with long waiting lists. In clinics, physicians
can benefit from the analysis model’s outputs, including pre-
dictions and interpretations, to guide the use of suitable diag-
nosis instruments and provide effective treatments. If the tool
is granted permission to monitor patients’ heart status, physi-
cians can offer timely and useful suggestions to patients. Addi-
tionally, detecting other health statuses from heart sounds
shows promise in developing comprehensive healthcare
instruments. For example, psychological stress was detected
from simultaneous PCG and ECG signals [154].

VII. Conclusion
This work summarised both classic machine learning and
deep learning technologies for heart sound analysis from
2017 to 2022, including denoising, segmentation, classifica-
tion, and interpretation. Available databases were intro-
duced with evaluation metrics in this study. This work also
listed publicly available repositories for implementing heart
sound classification. Additionally, several findings and limi-
tations of heart sound classification were analysed, and
potential future works were discussed. This work presented
a summary of the advances in heart sound analysis, pro-
vided insightful discussions, and highlighted promising
research directions for the community.
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