
Atmospheric Research 310 (2024) 107603

Available online 30 July 2024
0169-8095/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Disentangling the spatially combined and temporally lagged influences of
climate oscillations on seasonal droughts in the East Asian monsoon
influenced Poyang Lake Basin

Zikang Xing a,b,c,d, Jianhui Wei d,*, Yunliang Li a,b,*, Xuejun Zhang e, Miaomiao Ma e, Peng Yi c,
Qin Ju c, Patrick Laux d,f, Harald Kunstmann d,f,g

a Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008,
China
b Poyang Lake Research Station for Wetland Ecosystem, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332800, China
c The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
d Institute of Meteorology and Climate Research (IMKIFU), Karlsruhe Institute of Technology, Campus Alpin, Garmisch-Partenkirchen 82467, Germany
e Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing
100038, China
f Institute of Geography, University of Augsburg, Augsburg 86159, Germany
g Centre for Climate Resilience, University of Augsburg, Augsburg 86159, Germany

A R T I C L E I N F O

Keywords:
Seasonal drought forecasting
EI Niño-Southern Oscillation
North Atlantic Oscillation
Combined effect
Time lag

A B S T R A C T

Large-scale climate oscillations are the main forcings affecting regional meteorological droughts and being
relevant to sources of their predictability. However, the physical mechanism of atmospheric teleconnections with
respect to regional droughts is still not fully understood. In this study, a univariate-to-multivariate analysis
framework is proposed to disentangle the spatially combined and temporally lagged effects of multiple oceanic-
atmospheric oscillations on meteorological droughts at regional scale. Our study focuses on the largest fresh-
water lake basin of China, the Poyang Lake basin (PLB). Pearson’s correlation coefficient and cross-wavelet
transform are used to analyze the pair-wise linear and non-linear correlations between droughts and each
climate oscillation. Random forests model is used to reveal the combined influences of multiple climate oscil-
lations. The associated atmospheric mechanism for the identified combination of climate indices with changing
lags is explored by performing composite analysis. Regarding the spatially combined influences, the concurrence
of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) are the most important drought
precursors. Regarding the temporally lagged influences, ENSO with lag of 11 months and NAO with lag of 2–3
months trigger meteorological droughts. The combined effect of preceding winter El Niño and late-summer
negative NAO is the primary cause for triggering autumn droughts. The positive Eurasian teleconnection
pattern, triggered by ENSO and NAO and favorable for anomalous northerly currents, is the main drought-prone
circulation pattern for the PLB. These findings contribute to improved understanding of joint effects of lagged
teleconnections for meteorological droughts, which could eventually lead to more skillful seasonal drought
forecasting.

1. Introduction

Anthropogenic climate change and intensification of human activ-
ities have already been affecting regional hydrometeorological and hy-
drodynamic extremes at an unprecedented rate, such as droughts and

floods (Di Baldassarre et al., 2016; Skea et al., 2014; Veldkamp et al.,
2015). By now, it is well accepted that extreme events are modulated
and driven by complex ocean-atmosphere-land interactions across
multiple spatial and temporal scales (Dai, 2011; Wood et al., 2015;
Zscheischler et al., 2020). Knowledge of the role of multiple drivers and
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modulators in the occurrence of extreme events across scales can
contribute to improving the predictability of extreme events (Fung et al.,
2020; Hao et al., 2018; Li et al., 2018; Su et al., 2005). This is particu-
larly relevant for droughts, as the causes (i.e., modulators and drivers) of
drought occurrences are extremely complex. Moreover, it has been re-
ported that during the recent two decades droughts have occurred even
in humid regions worldwide (Berg and Sheffield, 2018; Dai, 2011;
Mishra and Singh, 2010). Therefore, it is important to improve our
understanding by disentangling the spatially combined and temporally
lagged influences of multiple large-scale climate oscillations on regional
droughts, with the aim of improving drought predictability.
Numerous studies have analyzed the driving effects of climate os-

cillations on regional droughts. It is found that, among the multiple
drivers modulators, sea surface temperatures (SSTs) and atmospheric
oscillations are proven to be highly relevant for droughts (Hao et al.,
2018). Specifically, anomalies in SSTs do strongly modulate variations
of drought occurrence through different patterns of teleconnections
(Jiang et al., 2019; Kim et al., 2017; Liu et al., 2018a; Sehgal and
Sridhar, 2018; Zhang et al., 2020b). For example, SST anomalies (SSTA)
in the tropical Pacific Ocean, i.e., EI Niño-Southern Oscillation (ENSO),
has been recognized as one of the dominated drivers of climate extremes
in different regions across the globe (Hao et al., 2018; Hermanson et al.,
2017; Sordo et al., 2008). On the other hand, recent studies have indi-
cated that the ENSO teleconnections are non-stationary likely due to
modulations of additional climate oscillations (Jiang et al., 2019;
Nguyen et al., 2021). For example, droughts in semi-arid Northwest Iran
are strongly modulated by the combined effects of Southern Oscillation
Index (SOI) and North Atlantic Oscillation (NAO) (Marj and Meijerink,
2011). Winter droughts in arid Northwestern China have occurred as a
result of the combined effects of a strong negative phase of the Arctic
Oscillation (AO) and a La Niña (Liu et al., 2018b). Recent studies dealing
with long-term, historical rainfall records in (sub)tropical regions, e.g.,
southern Florida and the Everglades, indicate that ENSO has influences
on the regional droughts there at short temporal scales, whereas, Pacific
Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO)
have influences at longer temporal scales (Abiy et al., 2019). Therefore,
it is proven that single ENSO anomalies cannot fully explain drought
occurrences, and spatially combined, nonlinear effects of multiple
climate oscillations need to be taken into account in terms of increasing
drought predictability (Shi et al., 2017).
In addition to the above-mentioned spatially combined effects,

different climate oscillations can have impacts on regional climate ex-
tremes at different temporal scales, so-called the temporally lagged in-
fluences here (Feng et al., 2020; Vicente-Serrano et al., 2011; Zhang
et al., 2020a). This is due to the dynamic propagation processes from
anomalies of SSTs or atmospheric circulations to regional precipitation
(Vicente-Serrano et al., 2011). Accordingly, time lags are often used to
quantitatively describe delays in the response of regional climatic con-
ditions to large-scale teleconnection patterns. Studies in this direction
have revealed that the impacts of El Niño on regional droughts are still
detectable more than one year after its onset, such as in East Asia (Zhang
et al., 2014), Euro-Mediterranean (Mariotti et al., 2002), southern Africa
(Gore et al., 2020), and equatorial South America and southern North
America (Pieper et al., 2021). Such lagged impacts of ENSO on droughts
are particularly pronounced in regions strongly influenced by monsoon,
e.g., South China (Gao et al., 2017; Xing et al., 2022): it is found that
droughts in the Xijiang River basin respond to ENSO with a lag of 5–9
months (Lin et al., 2017) and droughts in the Jinjiang River basin are
associated with ENSO at an unequal lag of 1.4–1.8 months (Wu et al.,
2020). Therefore, studies have indicated that by taking such temporally
lagged influences of multiple climate oscillations into account might
increase regional drought predictability (Chen et al., 2019; Kim et al.,
2017). However, the non-linearity of sea-air-land interactions makes
global climate system highly complex (Mariotti et al., 2002; Zhang et al.,
2020b). Hence, there is still a lack of adequate methods to identify key
modulators and/or drivers of regional climate extremes (here droughts)

out of multiple spatially combined and temporally lagged large-scale
climate oscillations signals.
Often, observation-driven analyses using different statistical

methods are frequently applied to examine the relationship between
large-scale climate oscillations and droughts in different continental
regions (Shi et al., 2017). For instance, (Forootan et al., 2019) applied
canonical correlation analysis to investigate the relationship between
global hydrological droughts and climate indices, and regions where
droughts and teleconnections are strongly interrelated have been
inferred as well. In contrast to using single statistical indices, (Sehgal
and Sridhar, 2018) employed four statistical methods, i.e., Pearson’s
correlation coefficient, coefficient of determination, index of relative co-
occurrence (IOC-r), and Fisher’s exact test, for an assessment of large-
scale teleconnections on the watershed-scale drought in the south-
eastern United States. In order to tackle the non-stationary issue, cross-
wavelet transform is commonly used to quantify the relations in the
domain of time window and frequency, e.g., the links between
groundwater drought over North China Plain and climate patterns
(Wang et al., 2020a, 2020b). Moreover, probabilistic analysis of algo-
rithms, for instance, Copula, is applied for characterize the interplay
among multiple climate patterns and their linkages with precipitation
(Shi et al., 2017). The above-cited studies across different climatic zones
on one hand have provided evidence for the correlations between
climate oscillations and droughts of different categories (Haile et al.,
2020; Mishra and Singh, 2011), but on the other hand, fall short in the
identification of both the spatial interactions of multiple climate oscil-
lations and their associated, temporally lagged influences on climate
extremes.
Therefore, our study targets at enhancing the understanding of the

spatially combined effects of multiple oceanic-atmospheric oscillations
with changing time lags on regional droughts. The research questions
addressed in this study are (1) how to disentangle the spatially combined
and temporally lagged effects of multiple large-scale climate modes on
seasonal meteorological droughts over the basin of Poyang Lake, i.e., the
largest freshwater lake in China? (2) What are the associated atmo-
spheric mechanisms for the lagged influences of combined climate
modes on seasonal droughts at regional scale? To this end, a consoli-
dated univariate-to-multivariate analysis framework is proposed in
order to quantify both pair-wise and multiple combined correlations: in
this study, Pearson’s correlation coefficient (Da Silva et al., 2016) and
cross-wavelet transform (Grinsted et al., 2004) are employed to perform
a conventional pair-wise correlation analysis. Furthermore, a machine
learning algorithm, i.e., random forests is used to perform multivariate
correlation analysis (Breiman, 2001). Such a framework allows to bridge
multiple climate indices (with different time lags) and droughts under a
hypothetical forecasting framework with different lead times. Hence,
the novelty of this study lies in (1) the development of a novel frame-
work that integrates univariate and multivariate analyses to disentangle
the impacts of multiple oceanic-atmospheric oscillations on regional
meteorological droughts, and (2) the focus on disentangling the spatially
combined and temporally lagged teleconnections that significantly in-
fluence autumn droughts in the Poyang Lake Basin.
The spatially combined and temporally lagged influences of climate

oscillations is analyzed exemplarily on droughts of the Poyang Lake
basin (PLB) (see Fig. 1), where the largest freshwater lake of China is
located. Our selection here is motivated by the following facts: (1) The
climate and weather extremes in the PLB particularly precipitation
variations and its associated disasters, here, droughts, are strongly
influenced by large-scale climate oscillations, e.g., ENSO, NAO, and
Indian Ocean Dipole (IOD) (Shao et al., 2016; Xiao, 2020; Zhang et al.,
2014; Zhu et al., 2020a). It is found that the negative monthly precipi-
tation anomalies (droughts) coincide with ENSO events (Guo et al.,
2020) and the meteorological droughts are associated with NAO and AO
especially after the early 2000s (Liu et al., 2020). (2) There are still gaps
in knowledge about lagged influences of multiple climate oscillations
and the potential drought precursors for the PLB, as previous studies are
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limited to analyses of synchronous teleconnections between droughts
and climate indices (Liu et al., 2020; Zhang et al., 2019a). (3) It is re-
ported that in 2022 the onset of dry season for the PLB is around 16 days
ahead that the recorded earliest onset (in 2006) and the associated se-
vere seasonal drought, i.e., frequently happening during the dry season,
has negative impacts on the regional water security and ecological safety
(Meihan, 2022). Therefore, it is necessary to further improve our un-
derstandings of plausible physical mechanisms of droughts over the PLB
from the perspectives of spatially combined and temporally lagged at-
mospheric circulations in order to achieve an increased leading time for
predicting the droughts.
The objectives of this study are (1) to diagnose the pair-wise corre-

lation between meteorological droughts and individual climate indices
with changed lags by performing lagged correlation analysis and cross-
wavelet analysis, (2) to further identify the combined effects of multiple
lagged climate indices by training a random forests model, and (3) to
explore the plausible atmospheric mechanism for the combined and
lagged influences of the identified climate indices. The proposed
framework and subsequent findings could eventually lead to improved
understandings of joint effects of lagged teleconnections in terms of
more skillful seasonal drought forecasting.

2. Material and methodology

2.1. Study area

Our regional drought analysis focuses on the Poyang Lake basin
(PLB) in southeastern China, where the largest freshwater lake (namely,
Poyang Lake) of the country is located (Wei et al., 2021). This lake

receives water from inlets of five tributaries (Xiushui, Ganjiang, Xin-
jiang, Fuhe, and Raohe) with a drainage area of 162,255 km2, and has
one stream outlet to the Yangtze River (Wei et al., 2015, 2016) (Fig. 1).
The climate of the basin (mean precipitation ~1700 mm year−1, mean
annual temperature ~ 18 ◦C) is subtropical humid climate and is
dominantly modulated by the East Asian monsoon and South Asian
monsoon. Due to the fact that the rainy season in the PLB lasts only from
April to June (Zhang et al., 2017), the rain-fed agriculture and the water-
dependent ecosystem there are therefore highly vulnerable to climate
variability-induced hydro-meteorological droughts (Hong et al., 2014).
Specifically, the recently intensified droughts in the PLB, such as the
severe droughts in 2003 (September to October), 2006 (July to
December), 2009 (July to September), and 2019 (July to October), have
leaded to a decreased agricultural productivity and economic develop-
ment (Hong et al., 2014; Liu et al., 2011; Zhang et al., 2011).

2.2. Data sources

Data used in this study consists of station-based meteorological re-
cords, climate indices, and gridded atmospheric reanalysis for the period
from 1960 to 2015.
The station-based, daily meteorological records, here, precipitation

and 2-m air temperature (maximum and minimum temperature) for the
PLB are collected by the China Meteorological Administration (CMA)
and are retrieved from the China Meteorological Service Network (htt
ps://data.cma.cn/). The data quality and data homogeneity from the
network have been checked and controlled by CMA, and in total, 27
meteorological stations over the PLB (see Table 1) are selected in this
study with their geographical locations shown in Fig. 1. The monthly

Fig. 1. Terrain height (m) of the Poyang Lake basin and spatial distribution of the meteorological stations in the basin (black circles). River networks and lakes are
depicted in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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accumulated precipitation and themonthly mean of 2-m air temperature
are then calculated from the daily records.
For the analysis of droughts associated ocean-atmospheric in-

teractions, six climate indices are selected in this study according to the
results of our literature research and preliminarily analysis of the cor-
responding relations with the basin-scale, monthly meteorological var-
iables (Liu et al., 2020; Wu et al., 2020; Xiao et al., 2016): the El Niño/
Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the
Atlantic Multidecadal Oscillation (AMO), the Arctic Oscillation (AO),
the North Atlantic Oscillation (NAO), and the Indian Ocean Dipole
(IOD). The selected six climate indices represent major climate vari-
abilities in the Northern Hemisphere, which play crucial roles in
modulating regional climate systems, particularly for the monsoon-
controlled region (Das et al., 2020, 2022). Here, ENSO is referred to
as anomalies of SST in the Niño 3.4 region (5◦N–5◦S, 120◦W–170◦W).
The impact of ENSO on East Asian Monsoon is primarily through the
modulation of the Walker circulation, which affects the strength and
position of the monsoon trough. PDO is the SST anomalies in the Pacific
north to 20◦N (Mantua et al., 1997). Its influence on the East Asian
monsoon is associated with the modification of the strength and position
of the Pacific subtropical high, which in turn affects the moisture
transport and precipitation over East Asia. AMO is the variability of SSTs
of the North Atlantic Ocean (70◦N–0◦ N) on the timescale of several
decades (Enfield et al., 2001). AMO influences the East Asian monsoon
through changing the Atlantic meridional overturning circulation. AO is
defined using the monthly 1000 hPa geopotential height anomalies from
the latitudes 20◦N to 90◦N, and the anomalies are then projected onto
the AO loading pattern that is defined as the first empirical orthogonal
function (EOF) of monthly mean 1000 hPa geopotential height
(Thompson andWallace, 1998). A positive AO phase is associated with a
stronger polar vortex, which can lead to a northward shift of the jet
stream, potentially affecting the monsoon onset and intensity. NAO is
defined as the normalized pressure difference in the atmosphere at sea
level between the Azores High and the Icelandic Low (Moore et al.,

2013). A positive NAO phase is associated with stronger westerlies over
the Atlantic, which can influence the East Asian region by altering the
strength of the Siberian High. IOD is defined as SSTs anomalies between
the western equatorial Indian Ocean (50◦E–70◦E, 10◦S–10◦N) and the
southeastern equatorial Indian Ocean (90◦E–110◦E, 10◦S–0◦N), and is
also referred to as Dipole Mode Index (Saji et al., 1999). Its tele-
connection to the East Asian monsoon is through the modification of the
Indian monsoon and the associated cross-equatorial flow, which can
influence the East Asian summer monsoon by altering the thermal
gradient between the Indian Ocean and the Asian continent. ENSO,
NAO, AO, and AMO are provided by the Climate Prediction Center (CPC)
of United States National Oceanic and Atmospheric Administration
(NOAA) (https://www.cpc.ncep.noaa.gov/data/). PDO and IOD are
provided by the Earth System Research Laboratory of NOAA (htt
ps://psl.noaa.gov/gcos_wgsp/Timeseries/) and by the Japan Agency
for Marine-Earth Science and Technology (JMASTEC) (https://www.
jamstec.go.jp/e/about/informations/notification_2021_maintenance.ht
ml), respectively.
Furthermore, to understand the plausible atmospheric processes

underlying the combined and lagged influences of the selected climate
indices on regional droughts, the 850 hPa horizontal winds and the 500
hPa geopotential height from the National Centers for Environmental
Prediction/National Centers for Atmospheric Research (NCEP-NCAR)
reanalysis are used for composite analysis. The atmospheric reanalysis
has a spatial resolution of 2.5◦ and a highest temporal resolution of 6-
hourly. The monthly values for the 850 hPa winds and the 500 hPa
geopotential height are obtained from the online climate/weather
database of the NOAA Physical Sciences Laboratory (PSL) (https://psl.
noaa.gov/data/gridded/data.ncep.reanalysis.html). The anomalies of
the atmospheric variables are calculated by removing the climatological
mean from 1960 to 2015.

2.3. Methodology

Fig. 2 shows the schematic flowchart of the methods applied in this
study, and, accordingly, we follow a three-fold approach: Firstly, the
Pearson’s correlation coefficient is used to analyze the linear correla-
tions between meteorological droughts and each climate oscillation;
Secondly, the cross-wavelet transform is performed to address the non-

Table 1
Information about the 27 meteorological stations used in this study.

ID Latitude
(◦N)

Longitude
(◦E)

Elevation
(m)

Sub-
basin

Annual average
precipitation
(mm)

57,993 25.5 114.5 99 Ganjiang 2457
58,606 28.4 115.58 27 Ganjiang 2632
58,634 28.4 118.15 93.6 Xinjiang 2869
57,799 27.05 114.55 72 Ganjiang 2543
57,598 29.02 114.34 121 Xiushui 2603
57,793 27.51 114.21 101 Ganjiang 2648
58,527 29.1 117.15 41.3 Raohe 2811
58,626 28.17 117.06 42 Xinjiang 2921
58,715 27.33 116.36 76.5 Fuhe 2757
58,813 26.45 116.06 320 Ganjiang 2791

58,506 29.35 115.59 1215
Poyang
Lake 3031

58,519 29.01 116.4 25.8 Poyang
Lake

2654

58,520 29.55 117.5 140.4 Raohe 2804
58,806 26.22 115.5 191 Ganjiang 2802
59,092 24.53 114.46 208 Ganjiang 2575

58,419 29.35 116.48 17.6
Poyang
Lake 2626

58,507 29.16 115.05 58.6 Xiushui 2513
58,600 28.51 115.22 30 Ganjiang 2713
58,608 28.01 115.22 57.6 Ganjiang 2708
58,637 28.26 117.54 80 Xinjiang 2858
58,718 27.12 116.23 90.6 Fuhe 2801
58,500 29.5 115.1 36.9 Xiushui 2464
58,818 26.14 116.38 358.9 Ganjiang 2826
58,622 28.51 117.34 56.3 Xinjiang 2970
57,696 28.25 114.47 72.4 Ganjiang 2779
57,894 26.38 114.06 145 Ganjiang 2924
58,705 27.21 115.25 59 Ganjiang 2701

Fig. 2. A schematic workflow of this study including the performed analyses
and the applied methods, accordingly.
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linear correlations and the periodicity at multiple time scales; third, the
random forests model is established and the variable sensitivity is
analyzed to reveal the combined influences of multiple climate oscilla-
tions. All of the above-mentioned approaches are using the Standardized
Precipitation Evapotranspiration Index (SPEI) as a drought metric. It is
worth to note that the correlation analyses performed in this study
particularly take the temporally lagged influences into account by
setting changed time lags from 1 to 12 months. Lastly, the linear
regression model and the singular value decomposition are employed to
quantitively understand the relationship between the atmospheric cir-
culations and the identified climatic indices, in order to elucidate the
physical mechanisms behind the spatially combined and temporally
lagged influences.

2.3.1. Meteorological droughts analysis
In this study, the term “drought” is related to meteorological

drought, i.e. negative and short-term precipitation anomaly. The SPEI is
a standardized and multi-timescale index that can fulfill the re-
quirements for drought analysis in different regions under different
climatic conditions (Chiang et al., 2021; Das et al., 2023; Vicente-
Serrano et al., 2010, 2012; Yu et al., 2014). For the calculation of SPEI,
we closely follow the studies of Vicente-Serrano et al. (2010) and Yu
et al. (2014). The SPEI accounts for precipitation and potential evapo-
transpiration (PET) (Vicente-Serrano et al., 2010), and is derived by
considering supply and demand of the water balance equation based on
the probabilistic distribution function (Vicente-Serrano et al., 2010,
2020).
As a follow up to our previous study of Xing et al. (2022), we use the

SPEI at the 3-month time scale to analyze the seasonal features of
meteorological droughts over the PLB (Huang et al., 2019; Liu et al.,
2020; Xu et al., 2015). The empirical Thornthwaite (TH) equation is
used to calculate the PET for the reasons of its relatively simple concept
(Thornthwaite, 1948) and its comparably wide applicability to our study
region and its surrounding regions (Chen and Sun, 2015; Liu and Liu,
2019; Sun et al., 2020; Wu and Chen, 2019; Xu et al., 2015; Zhou et al.,
2021).

2.3.2. Bivariate lagged correlation analysis

2.3.2.1. Pearson’s correlation. Pearson’s correlation coefficient (PCC,
(Da Silva et al., 2016) is used in this study to statistically quantify the
linear relationship between monthly time series of lagged values of the
selected climate indices φi and the SPEI ρi averaged over the PLB:

PCC =

∑n

i=1
(φi − φ)(ρi − ρ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(φi − φ)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ρi − ρ)2

√ (1)

where n is the length of time series. The value of PCC ranges from−1 to 1
and positive values mean positive influences of the climate indices on
the SPEI, and vice versa. The greater the absolute value of PCC, the
stronger the linear correlation is. The Student’s t-test using error prob-
ability of alpha = 0.05 is applied here to test the hypothesis of the
“significance of the correlation coefficient”.

2.3.2.2. Cross-wavelet transform. Cross-wavelet transform (XWT, (Tor-
rence and Compo, 1998) is employed in this study to investigate the non-
linear relationship between the selected climate indices and the SPEI in
time-frequency domain at multiple time scales. XWT is chosen as it
combines wavelet transformation with cross spectrum analysis so as to
account for the nonstationary of two time series (Grinsted et al., 2004).
The XWT of two time series x(t) and y(t) is defined as:

Wxy = WxW*
y (2)

whereWx andWy are the wavelet transform of x and y, respectively, and
* denotes complex conjugation.
Accordingly, the wavelet coherence ρxy of two time series x(t) and y

(t) is written as:

ρxy =
S
(
Wxy

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S
(
|Wx|

2
)
S
(⃒
⃒Wy

⃒
⃒2
)√ (3)

where S denotes a smoothing operator both in time and along the
wavelet scale (Torrence and Compo, 1998). The phase difference ϕxy of
two wavelets is calculated by

ϕxy = arctan

(
I
[
S
(
Wxy

) ]

R
[
S
(
Wxy

) ]

)

(4)

where R and I represent the real and imaginary parts of the spectra,
respectively (Liu, 1994). The derived wavelet coherence of Eq. 3 and
phase difference of Eq. 4 allow for estimations of the amplitude and
time-varying periodicity in time-frequency domain between two non-
stationary time series. In this study, the Morlet wavelet is chosen as
the mother wavelet for XWT because of its effectiveness in extracting
statistical features (Grinsted et al., 2004), such as analyses in the low-
frequency domain, e.g., biennial, inter-annual, and decadal variations
(Shao et al., 2017; Yang et al., 2012).

2.3.3. Multivariate lagged influence analysis
In order to further investigate the joint influence of multiple climate

indices on meteorological droughts, a machine learning approach, the
random forests (RF) model (Breiman, 2001) is employed in this study.
The RF model is an ensemble learning method for classification and
regression analyses. The concept of the RF model is to construct
ensemble trees by randomly growing a collection of trees from bootstrap
samples and aggregating predictions so as to improve robustness and
reliability of regression trees. As the RF model has the advantages of fast
training speed, high accuracy, and unsensitive to the size of training
data, it has been intensively applied in numerous fields of geophysics,
such as, landslides, floods, earthquakes, and soil erosions (Breiman,
2001; Chen et al., 2012; Konapala and Mishra, 2020; Li et al., 2020a;
Zhu et al., 2020b).
In this study, we follow the study of (Feng et al., 2020) to consider

the lagged influence of multiple climate indices, i.e., using predictors
with varied time lags as inputs for the RF model. Specifically, the
selected climate indices (ENSO, AMO, PDO, AO, NAO, and IOD) and
initial SPEI (predictors) are the input variables of the RF model and the
future SPEI is the output variable (predictand). To further investigate
the role of different lead times (LT), that is referred as to “time distance”
between the issuance of the forecast and the occurrence of meteoro-
logical droughts that are predicted (Arnone et al., 2020), in our lagged
influence analysis, four RF models with the LT of 1-, 3-, 6-, and 9-month
are trained. For each RF model with one selected LT, the relationship
between predictors and predictand is simplified as follows:

SPEIt = f(SPEIt−LT,AOt−LT,AOt−LT−1,⋯,AOt−12,

AMOt−LT ,AMOt−LT−1,⋯,AMOt−12,

ENSOt−LT,ENSOt−LT−1,⋯,ENSOt−12,

IODt−LT, IODt−LT−1,⋯, IODt−12,

NAOt−LT,NAOt−LT−1,⋯,NAOt−12,

PDOt−LT,PDOt−LT−1,⋯,PDOt−12) (5)

where SPEIt−LT represents the initial condition of the forecasting model.
ENSOt−LT,ENSOt−LT−1,⋯,ENSOt−12 represent the ENSO values with
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time lags from LT to 12 months, respectively. The same applies to AO,
AMO, IOD, NAO, and PDO.
It is worthy to note that taking all selected climate indices into one

model of Eq. 5 allows for assessing multivariate lagged relationships. For
the quantification, we use predictor importance to disentangle the im-
pacts of different climate indices on meteorological droughts. The pre-
dictor importance reveals the importance of the randomly permuting
predictors to the model accuracy by ranking the correspondingly
decreased prediction accuracy (Bachmair et al., 2016; Wang et al.,
2020a), is calculated as the change in percentage of the mean squared
error (MSE):

MSE =
1
n
∑i=n

i=1
(yi − ŷi)2 (6)

where yi and ŷi are the observed andmodeled SPEI of each time step; n is
the length of the time series. Higher MSE change means more important
the climate index is to the meteorological droughts. The statistical sig-
nificance of the predictor importance is tested using one-sided binomial
test.

3. Results

3.1. Influence of individual climate indices on meteorological droughts

3.1.1. Bivariate lagged linear correlation
Fig. 3 displays the PCC between the selected climate indices (PDO,

NAO, IOD, ENSO, AO, AMO) and the basin-averaged SPEI over the PLB
for 1960–2015, with a time lag from 0 (no lag) to 12 months. In general,
the linear correlations between the six climate indices and the meteo-
rological droughts over the PLB are relatively low and non-significant
with no consideration of time lag (i.e., lag = 0), whereas higher and
significant correlations are found when the time lags are taken into
account (i.e., lag >0). The values of PCC for each climate indices vary
with time lag. The highest positive and significant correlations of SPEI
are found with ENSO at a lag of 3–6 months, and the highest negative
and significant correlations are with NAO at a lag of 2–3 months.
Moreover, the signs of PCC for NAO, AO, AMO changes with time lags.
For example, the direction of the relationship between NAO and the SPEI
is negative and statistically significant at a lag of 1–3 months and be-
comes positive and statistically significant at a lag of 6–9 months.
Similar as the pattern of the lagged correlations of NAO with the SPEI,
AO is negatively correlated with the SPEI in adjacent half year (1–5
months) and positively correlated when the time lag is longer than 6
months (7–12 months), but the relationship is statistically significant
mostly for a lag of 8 and 9 months. In the case of PDO and IOD, the sign

of the relationship between them and the SPEI are positive across all the
considered time lags. Overall, the performed bivariate linear correlation
analysis has identified that ENSO and NAO have the strongest lagged
correlation with the SPEI (the best case explains 25% of the total vari-
ance), and PDO, AO, and AMO rank in the second tier. The linear cor-
relation between IOD and the SPEI is negligibly low.

3.1.2. Bivariate lagged non-linear correlation
In this section, the lagged non-linear correlation between the

selected climate indices and the SPEI is statically quantified by per-
forming the XWT analysis of Section 2.3.2.2, and the results of the
wavelet spectrum coherence (in color) and phase differences (arrows)
are shown in Fig. 4.
More than six significant coherence peaks with different durations

(around the periodicity bands of 8–16 months, 18–64 months, and
20–36 months) are found for the wavelet coherence of AMO-SPEI, and
the corresponding phase differences within the identified coherence
peaks of AMO-SPEI are dominantly in-phase except for the anti-phase
around the periodicity of 8–16 months during 2000–2015 (Fig. 4a). In
the case of the AO-SPEI (Fig. 4b), the significant coherence is found
mostly around the 10–15 months bands during 1960–1965. ENSO has a
significantly positive correlation with the SPEI around the periodicity of
16–48 months during 1970–1988 and 1990–2000, and their averaged
phase differences implies that ENSO leads to the meteorological
droughts over the PLB by around 9.4 months (Fig. 4c). Fig. 4d shows that
the periodicity of the significant coherences between the case of IOD and
the SPEI is around 24–40 months during 1968–1980 and 1992–1998. In
the case of NAO, significantly negative correlation with the SPEI is found
around the periodicity of 10–16 months during 1960–1970 and 24–40
months during 2005–2015 (Fig. 4e), while in the case of PDO signifi-
cantly positive correlation is around the 48–64 months during
1985–2015 (Fig. 4f).
In addition, the effects of different climatic modes on local climate

variability can be classified by comparing the significant coherence
patterns of different climate indices. For example, ENSO and IOD have
the similar significant coherence pattern (IOD has weaker coherence)
which is around 16–48 months periodicity. The pattern of AO and NAO
also similar to each other, which share the same significant zone of 8–16
months periodicity. Hence, ENSO and IOD, NAO and AO can be cate-
gorized as two pairs with similar local influence patterns. That corre-
sponding to their spatially modes and physical meanings which is, ENSO
and IOD represent tropical SSTA, while NAO and AO indicate mid- and
high-latitude atmospheric circulation anomalies.
Table 2 summarizes the averaged values of the phase-angles (i.e.,

time lag) within the XWT-identified areas of significance around the

Fig. 3. Pearson’s correlation coefficient between the selected climate indices (PDO, NAO, IOD, ENSO, AO, AMO) and the basin-averaged SPEI over the PLB for
1960–2015, with a changed time lag from 0 to 12 months. Superimposed dots indicate that the correlations are statistically significant at the 95% confidence level.
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specific wavelengths, which represent the propagation time from
different climatic modes to the local climate conditions over the PLB.
Overall, the SPEI statistically responds to ENSO, IOD, and PDO with
relatively longer time lags (> 9 months) and to NAO with a shorter time
lag (around 4.6 months). Hence, we can infer that across temporal scales
the SPEI of the PLB promptly responds to the variations of NAO,

followed by AMO and AO, but relatively slowly responds to those of
ENSO, IOD, and PDO.

3.2. Influence of combined climate indices on meteorological droughts

In this section, the combined influence of the multiple climate

Fig. 4. Wavelet coherence (in color) and phase difference (arrows) between (a) AMO, (b) AO, (c) ENSO, (d) IOD, (e) NAO, (f) PDO and the SPEI averaged over the
PLB for 1960–2015. The thick black contour indicates the 95% confidence level against the red noise, and the cone of influence is shown as the lighter shade. The
color ranging from blue to red represents the spectrum coherence changing from weaker to stronger. Arrows pointing to the right direction denote in-phase, and the
left direction stands for antiphase. Arrows upwards indicate the phase lag of the SPEI to the climate indices by π/2, and the arrows downwards indicate the phase lead
of the SPEI to the climate indices by π/2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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indices on the meteorological droughts for the PLB is evaluated by using
the RF model of Section 2.3.3. Accordingly, the degree of importance of
the involved climate indices at four different LTs (here, at 1, 3, 6, and 9
months) is shown in Fig. 5. It is found that, among the six climate
indices, ENSO is the most important ranking index at all four LTs, fol-
lowed by NAO, AO, and IOD. The test for statistical significance in-
dicates that at shorter LTs (e.g., LT = 1 month) the meteorological
droughts forecasting for the PLB is strongly influenced by NAO and AO,
and at medium and longer LTs (LT ≥ 3 months) the forecasting is
dominantly driven by ENSO with the modulations of NAO, AO, and IOD.
In terms of the identified time lags, ENSO has the significant lagged
influences on the SPEI when the time lags are 3, 6, and 11 months at the
LTs longer than 3 months. By contrast, NAO and AO have a wider range
of the lagged influence, i.e., from 2 months to 9 months, and the degree
of importance of NAO and AO to the SPEI decreases with the LT becomes
longer. In addition, IOD is identified to have significant influences on the
SPEI at all four LTs but with relatively longer time lags (9–12 months).

3.3. Synthesis of combined and lagged influences results

Regarding the spatially combined influences, both the results of the
RF model-quantified predictor importance (Fig. 5) and the Pearson’s
lagged correlations (Fig. 3) generally agree about that ENSO and NAO
are the most pronounced forcing for the meteorological conditions over
the PLB. Regarding the temporally lagged influences, the time lags
quantified by the bivariate linear and nonlinear analysis of Section 3.1
and by the multivariate nonlinear analysis of Section 3.2 are mostly
overlapped. Specifically, we find that ENSO is the primary tele-
connection mode out of the selected six climate indices and has

significant influence on the meteorological droughts for the PLB. Among
the various antecedent intervals, the ENSO with lags ranging from 3 to 6
months (positively correlated with SPEI) or 11 months (negatively
correlated with SPEI) is one of major drivers likely triggering the
following dry or wet transformation. In addition to ENSO, the NAO with
lags of 2, 3 (negatively correlated with SPEI), and 8, 9 (positively
correlated with SPEI) months also detected as an important modulator
closely related to dryness/wetness of the PLB.
It is noticed that the RF model also highlights the importance of IOD

and AO. However, the bivariate analysis (Fig. 3 and Fig. 4) shows IOD
(AO) has similar correlation patterns (for both liner or non-liner corre-
lation) with ENSO (NAO). The correlation magnitude of IOD (AO) with
SPEI is lower than that of ENSO (NAO). Therefore, the teleconnection
effects of IOD (AO) on climate condition of PLB are similar with ENSO
(NAO) and can be represented by ENSO (NAO). Actually, NAO and AO
are highly overlapped (correlation coefficient is 0.63 with p< 0.05) and
both of them represent the main mode of low-frequency variability of
the high-latitudes extratropical atmosphere (Báez et al., 2013; Rogers
and McHugh, 2002). In that sense, NAO is considered more physically
relevant and robust with the Northern Hemisphere variability than the
AO (Ambaum et al., 2001). In addition, many studies demonstrate an
observable or modeled cross-correlation characteristics between ENSO
and IOD (Pillai et al., 2021; Stuecker et al., 2017; Wang et al., 2019;
Yuan and Li, 2008), and the correlation coefficient of 0.31 (p < 0.05)
also verifies the closely coupled relationship between them, which both
arise from inherent dynamical instabilities in the coupled tropical low-
latitudes air/sea system (Behera et al., 2006; Lestari and Koh, 2016).
Overall, ENSO and NAO are extracted from the multiple climate oscil-
lations as the dominant mode of interannual climate variability to
represent the spatially combined teleconnections.

3.4. Associated atmospheric processes for the lagged influences of
combined climate oscillations on regional droughts

It is found that changes in climate oscillations are generally char-
acterized by being asymmetric in terms of phase and temporal evalua-
tion (An et al., 2021). In this section, such asymmetric effects of climate
oscillations on droughts over the PLB via teleconnection are further
investigated by disentangling the atmospheric processes corresponding
to the spatially combined and temporally lagged influences identified in
Section 3.3. To this end, we regress the 850 hPa wind anomalies and the
500 hPa geopotential height anomalies onto each droughts-related
climate oscillations (here, the detrended ENSO and the detrended

Table 2
Time lag (month) between the selected climate indices and
the SPEI.

Climate index Time lag (month)

AMO 6.1
AO 6.6
ENSO 9.4
IOD 10.6
NAO 4.6
PDO 11.7

Note: The time lags are calculated by the average phase
angle within the XWT-identified areas of significance
around the specific wavelengths in Fig. 4.

Fig. 5. The degree of importance of the selected climate indices to the SPEI, four lead times, which is estimated by the RF model at four LTs (i.e., 1-, 3-, 6-, and 9-
month) for the lags from 1 month to 12 months. Superimposed dots indicate that the importance values are statistically significant at the 95% confidence level.

Z. Xing et al.



Atmospheric Research 310 (2024) 107603

9

NAO) with the relevant time lags to disentangle the atmospheric cir-
culation anomalies induced by individual climate oscillations (Fig. 6 and
Fig. 7). Moreover, we apply the Singular Value Decomposition (SVD)
analysis (Björnsson and Venegas, 1997) to the detrended and stan-
dardized 500 hPa geopotential height and the detrended and stan-
dardized SPEI over the PLB for October, when droughts over the PLB
most frequently occur, to disentangle the drought-related atmospheric
circulation patterns and their linkages with ENSO and NAO (Fig. 8).

3.4.1. Atmospheric circulation anomalies induced by ENSO and NAO
Fig. 6(Fig. 7) shows the regression patterns of 500 hPa geopotential

height anomalies and 800 hPa wind anomalies against ENSO (NAO)
with varied time lags, which generally reveals the lagged responses of
drying- or wetting-prone atmospheric conditions over the PLB to ENSO
(NAO).
In comparison to the regression pattern without the consideration of

time lag (Fig. 6a), the anomalous cyclone over the western North Pacific
(WNPC) at the time lag of 3 months (Fig. 6b) reinforces, extends west-
wards, and reaches areas close to the Lake Baikal region. Correspond-
ingly, the west Pacific subtropical high (WPSH) is inhibited by the
strengthened WNPC and the monsoonal southwesterlies over South
China become stronger. Thus, abundant moisture from the South China
Sea and the Bay of Bengal could be conveyed mostly through the junc-
tion zone between the higher- and lower-pressure circulation patterns,
which are favorable for the wetting atmospheric condition over the PLB.
At the lag of 6 months (Fig. 6c), the WNPC starts to be weakened and the
northern ridge of the WPSH continues to extend northwards, which
results in an anomalous high-pressure center over Northeast China.

Under such pattern, the PLB is still dominated by anomalous south-
westerlies along the western edge of the WPSH.
At the lag of 11months (Fig. 6d), the anomalous high-pressure center

over Northeast China detaches from the WPSH and migrates to
Mongolia-Siberian Region, which leads to the formation of Siberian
blocking High (SH) and the triggering of a positive Eurasia (EU)-like
teleconnection pattern, i.e., a high-pressure anomaly centered around
Lake Baikal and a low-pressure anomaly around the Ural Mountains
(Wallace and Gutzler, 1980). Such pattern leads to anomalous north-
erlies over East China including the PLB, in the south adjacent to the
anomalous SH, and further weakens the East Asia summer monsoon
(EASM). As a result, colder and drier air from the eastern side of the SH
flows southwards along the Eastern China Plain passing by the PLB, and
meanwhile warmer and wetter water vapor transported from the Indian
Ocean and South Pacific towards the South China is reduced, which
together leads to the occurrence of meteorological droughts over the
PLB. Overall, the SH and EU-like atmospheric circulation patterns partly
explain the atmospheric water deficits over the PLB, i.e., the high and
negative relationship between the 11 months preceding ENSO and the
SPEI over the basin (shown in Fig. 3).
Similar to Fig. 6, Fig. 7 shows the regression patterns against NAO

with the time lag of 0, 2, 3, and 8 months. With the time lag changing
from 0 to 2 months (comparing Fig. 7b to Fig. 7a), the NAO-induced
mid-latitude high-pressure anomalies shrunk and move northwards.
Meanwhile, the anomalous tropical cyclone over the South China Sea
(SCSC) and the WNPC initiates and the wind anomalies over the PLB
change from southeasterlies to northeasterlies. It is found that the
regression pattern shown in Fig. 7b, i.e., anomalous high pressure

Fig. 6. Spatial patterns of the linear regression of the 500 hPa geopotential height anomalies (shading; gpm) onto the ENSO index for the period 1960–2015 with a
time lag of (a) 0 month, (b) 3 months, (c) 6 months, and (d) 11 months. The arrows represent the linear regression of the 850 hPa wind anomalies onto the ENSO
index (vector; m/s). The anomalies are derived based on the climatology for the period 1960–2015. The curved red line delineates the basin boundary of the PLB.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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around Lake Baikal and low pressure centered in eastern East Asia, is
similar to the positive EU pattern. At the lag of 3 months (Fig. 7c), the SH
shown in Fig. 7b disappears, and the SCSC shifts northwards and merges
together with the enhanced WNPC, so that the atmospheric moisture
transport over entire East China is dominated by anomalous northerly
currents. At the lag of 8 months (Fig. 7d), the coverage of the WNPC
expands eastwards and low-latitude high pressure anomalies generate,
causing the change of wind anomalies to southwesterly.
Overall, the performed regression analysis shows that ENSO with lag

of 11 months and NAO with lag of 2–3 months trigger drought-prone
circulation patterns over the PLB, which corresponds to the anti-phase
correlation with the SPEI for the PLB; whereas ENSO with lag of 3–6
months and NAO with lag of 8 months arouse atmospheric circulation
anomalies that facilitate precipitation generation over the PLB, which
explains their in-phase correlation with the SPEI for the basin.

3.4.2. Autumn drought-related atmospheric circulation patterns induced by
combined climate oscillations
To further examine the robustness of the PLB drought-associated

atmospheric circulation patterns, e.g., positive EU-like patterns identi-
fied in Fig. 6d and Fig. 7b, and their combined linkages with ENSO and
NAO, Fig. 8 depicts the results of the performed SVD analysis during
1981–2016 between the SPEI of 3-month timescale for October (i.e.,
frequently occurred early autumn droughts covering the period of
August–September-October) for the PLB and the simultaneous 500 hPa
geopotential height of Northern Hemisphere.
The heterogeneous correlations of SPEI for the first mode of SVD

(SVD1) show a whole-basin drought pattern across the PLB (Fig. 8a).
Correspondingly, a northwest-southeast “− + −” wave train originating
from the Arctic Ocean and through Eurasia is apparently showed from
the first mode geopotential height pattern (Fig. 8b), which closely

resembles the EU teleconnection pattern, with anomalous low pressure
over the Kara Sea and East China Sea, and anomalous high pressure
between them around Lake Baikal. Temporally, the evolutions for SPEI
and geopotential height are significantly correlated with a coefficient of
0.65 (p < 0.01), suggesting that the first SVD mode of SPEI can well
capture the autumn drought characteristic of PLB and is highly related to
the EU pattern (explaining 55% of the total coupled variance). More-
over, the time series of SVD1 for geopotential height is significantly
correlated with these of ENSO of December previous year and NAO of
August current year, with correlation coefficients of 0.34 (p < 0.05) and
− 0.41 (p < 0.05), respectively. That confirms the autumn drought-
associated circulation anomalies are induced by preceding winter
ENSO and late-summer NAO. Together with the in-phase (anti-phase)
correlation between ENSO (NAO) and the SVD1 for geopotential height,
it is inferred that the positive ENSO (El Niño) of preceding winter and
negative NAO of late-summer jointly trigger autumn droughts over the
PLB.

4. Discussions

4.1. Temporally lagged influence of climate oscillations

In this study, we disentangled the temporally lagged influence of
multiple large-scale climate oscillations (i.e., AMO, AO, ENSO, NAO,
PDO, and IOD) on the meteorological droughts over the PLB by con-
ducting bivariate linear (Fig. 3) and non-linear (Fig. 4) correlation
analysis as well as multivariate analysis (Fig. 5). In general, the results
suggest that, among the six climate oscillation indices, the combined
effects of preceding ENSO and NAO are the dominate drivers for the
occurrence of meteorological droughts over the PLB. Our result is
consistent with findings of previous studies about teleconnections over

Fig. 7. As in Fig. 6, but onto the NAO index with the lags of (a) 0 month, (b) 2 months, (c) 3 months, (d) 8 months.
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the PLB (Liu et al., 2020; Zhang et al., 2017). Moreover, our study
quantitatively estimated that the lagged response time of the drying
atmospheric conditions over the PLB to ENSO is about 11 months and to
NAO about 2–3 months, while the response time of the wetting atmo-
spheric conditions to ENSO is about 3–6 months, and to NAO about 8–9
months. Specifically, the autumn meteorological droughts over the PLB
are triggered by the co-action of positive phase of preceding winter
ENSO (El Niño) and negative phase of summer NAO.
In additional to the quantification of the relationship between the

SPEI over the PLB and the six climate oscillation indices, we also dis-
entangled the associated atmospheric circulation patterns with respect
to two relevant indices (ENSO and NAO) and four different time lags
(Fig. 6–8). The changes in the ENSO- and NAO-induced atmospheric
circulation anomalies and horizontal wind anomalies with time lag
further explain the plausible atmospheric mechanisms behind the
derived temporally lagged relationship. We found that the co-
occurrence of ENSO- or NAO- induced drought-prone circulation
pattern, especially for autumn droughts over the PLB, is the enhance-
ment of the anomalous anticyclone over the Lake Baikal and the attri-
bution of the EU-like teleconnections. Such temporally lagged
teleconnections have been found as well in numerous studies about
extreme weather and climate events over regions in South China (Hu
and Wang, 2021; Wang and Zhang, 2015; Xu et al., 2021). For instance,
the occurrence of extreme rainfall events across the PLB is influenced
mainly by ENSO occurring in the previous year and NAO in the same
year (Zhang et al., 2014). Regarding seasonal droughts in the Yangtze
River basin, (Huang et al., 2019) found that the SPEI there is signifi-
cantly related to NAO and ENSO with lag of one year. On a continental
scale, the rainfall pattern in the following summer over East Asia is
significantly influenced by winter El Niño (Sun and Wang, 2019; Sun

et al., 2021; Wen et al., 2019).
Regarding the propagations from positive phase of preceding winter

ENSO to extreme events in the PLB, numerous studies (Li et al., 2020b;
Ma and Li, 2007; Yun et al., 2010) reveal that the mature phase of El
Niño strongly modulates boreal winter Walker–Hadley circulations and
meanwhile Indian Ocean SST warming is significantly maintained until
summer, which consequently weakens WNPC and enhances the north-
ward propagating Rossby waves, namely, the Pacific–Japan (PJ)
pattern. When comparing with that of ENSO, we found that the propa-
gation of NAO to extreme events in the PLB is more rapid. The lagged
influences of negative phase of summer NAO on East Asia precipitation
including the PLB have been reported in recent studies (Gu et al., 2009;
Hong et al., 2022; Wang et al., 2018). It is found that the summer NAO
primarily induces a triple North Atlantic SSTA persisting until autumn,
and the SSTA thereby excites southeastward-propagating Rossby waves
and induces a downstream plural zonal wave train (Han-Lie et al., 2013;
Hu et al., 2022; Yuan et al., 2022), which explains the EU-like pattern
shown in Fig. 8b.

4.2. Spatially combined effects of ENSO and NAO

The occurrence of regional meteorological droughts are often trig-
gered by multiple drivers and modulators across the globe, such as
anomalies of SST, sea ice, or snow cover, in association with persistently
recurring atmospheric circulation anomalies that result in regional at-
mospheric water deficits (Hao et al., 2018; Zhang et al., 2020b). Our
previous study provides a robust evidence that drought events of the PLB
are followed by strong ENSO episodes (Xing et al., 2022). In our present
study, we found that, in additional to ENSO (Fig. 6), NAO (including AO)
plays an important role in contributing to the drought-prone

Fig. 8. Atmospheric circulation patterns related to autumn droughts over the PLB. Heterogeneous correlation maps of the first SVD mode for the detrend and
normalized (a) SPEI of October and (b) 500 hPa geopotential height (HGT), during 1981–2016, and (c) their corresponding normalized time series for the first SVD
mode of SPEI and HGT, together with ENSO of preceding December and NAO of August. ** indicates the correlation is statistically significant at 99% confidence
level, and * at 95% confidence level.
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atmospheric circulations over the PLB (Fig. 7). Recent studies also
highlight that, NAO (AO) that describes high-latitude pressure vari-
abilities induced by, e.g., changes in Eurasian snow cover and Arctic sea-
ice cover, has more enhanced impacts on weather and climate extremes
in the Northern Hemisphere, particularly under a warming climate (Tian
and Fan, 2015; Wang et al., 2018; Zhou et al., 2022). For instance, (Chen
et al., 2013) found the variation of winter temperature and precipitation
in East Asia depends very much on the configuration of the AO and
ENSO phases rather than only one of them: when negative phase of AO
couples with positive phase of ENSO (a La Niña winter), a dipole pattern
of the precipitation anomalies over East Asia with more rainfall in the
coastal region of Southeast China and less rainfall in the Yangtze River
valley including our study region is found. (Wang et al., 2017) found
that extreme droughts in North China do not necessarily result from
strong El Niño, but depend on the occurrence of a positive EU pattern
induced by the synergistically involving of El Niño with reduced
Eurasian spring snow cover. Regarding the recent long-lasting severe
drought in South China during autumn -winter 2020/2021, (Sun et al.,
2022) attributes it to the combined effects of La Niña and negative Arctic
Sea ice anomalies and the induced anomalous Eurasian atmospheric
wave-train.
Regarding the atmospheric teleconnection mechanisms, the EU-like

“− + −” wave train is used in this study to describe the dominant
joint effects of ENSO and NAO on regional extremes in the PLB (Fig. 6
and Fig. 7). For the drought-prone atmospheric circulation patterns, we
found that in addition to the EU-like pattern a meridional PJ-like pattern
over East Asia and the northwestern Pacific might play a secondary role
in the propagation from ENSO via the Walker–Hadley circulation to the
SPEI, with cyclones over the tropical western Pacific and anticyclones
over the East China Sea and Japan (Nitta, 1987). We conclude that the
plausible atmospheric causes for joint the spatially combined and
temporally lagged effects of ENSO and NAO on seasonal droughts over
the PLB is likely due to PJ-EU combined teleconnections bridging Pacific
and Atlantic SSTA with the SPEI for the basin (Fig. 9), which is sup-
ported by recent studies (Hu et al., 2020; Wang and He, 2015).

4.3. Implications for the seasonal drought forecasting

Regional droughts occurring at seasonal and sub-seasonal scales
have been becoming one of the most globally recognized threats to the
sustainable development of such as environment, society, and human
heath (Rodriguez, 2022). It is reported that rivers and lakes are drying
across the globe (Toreti et al., 2022). This is particularly the case in our

study region PLB, where the largest freshwater lake of the country is.
The extreme drought over the PLB in 2022 lasts >80 days, which results
in a decreased lake area less to one ninth of its normal size and around 1
billion US dollar economic losses. However, skillful seasonal drought
forecasting at regional scales is still a challenging question due to the
complexity of drought occurrence with multiple drivers/modulators and
the decreased predictability of methods for drought forecasting with
leading time (Hao et al., 2018). Therefore, new awareness and con-
sciousness of skillful regional drought forecasting across spatial and
temporal scales are urgently needed. Recent community efforts in this
direction have been made jointly by scientists, stakeholders, and
decision-maker, for example, the Sub-seasonal to Seasonal prediction
project, in order to bridge the gap between the short-term weather and
long-term climate prediction (Pegion et al., 2019; Robertson et al., 2020;
Vitart et al., 2012, 2017). It has been revealed that the enhanced un-
derstandings of the interactions among oceans, land, and cryosphere can
potentially lead to an enhanced predictability, i.e., more skillful pre-
diction of dynamical processes and their variabilities at seasonal and
subseasonal scales (Cohen and Saito, 2003; Forootan et al., 2019; Hong
et al., 2022). In this regard, our study highlights the different propa-
gation times from multiple large-scale climate oscillations to regional
climatic extremes, which could guide the identification of suitable pre-
dictors for skillful seasonal drought forecasting in other regions
worldwide.
In this study, we have applied a consolidated univariate-to-

multivariate analysis framework to systematically disentangle multiple
large-scale climate oscillations on seasonal droughts over the PLB in
terms of strength, direction, periodicity, and significance of the rela-
tionship. Pearson’s correlation quantitively assesses linear relationships
by calculating the strength and direction of correlations (Fig. 3), which
sheds light on the positive or negative associations between climate
indices and drought conditions. XWT allows us to identify periodic
patterns in the influence of climate indices on droughts and to evaluate
how these patterns evolve over time (Fig. 4), which is particularly
applicable for understanding the non-stationarity in correlations. The RF
model addresses the complex interactions among multiple variables
(Fig. 5). The advantage of RF modeling is to evaluate variable impor-
tance, and to pinpoint the most influential climate indices among mul-
tiple variables. Although each method has its uniqueness in analyzing
the climate oscillation-drought relationship, their results complement
each other. Pearson’s correlation offers a straightforward way to un-
derstand linear relationships, XWT uncovers nonlinear interactions
across timescales, and the RF model tackles the complexity of

Fig. 9. Schematic diagram of the identified spatially combined and temporally lagged influences of the large-scale climate patterns induced by ENSO and NAO on the
seasonal droughts in the Poyang Lake basin for the period of 1960–2015.
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multivariate relationships. The statistically significant consensus among
these methods enhances the credibility of our findings. For example, the
Pearson’s correlation and XWT analyses identify the important time lags
at which the climate indices show significant correlation with the SPEI
over the PLB (Section 3.1), and the RF modeling shows that ENSO, NAO,
and AO with the specific lags dominate the variation of the SPEI at
different lead times (Section 3.2). Moreover, the composite analysis
reveals the bridging effect of the PJ-EU combined circulation patterns
for the occurrence of regional droughts (Section 3.4).
In terms of autumn droughts over the PLB, we have found that the

impacts of NAO are pronounced at a short lead (2–3 months), while
ENSO is a precursor for long lead times (11 months). The transformation
from wet-prone to dry-prone atmospheric circulation patterns following
ENSO (Fig. 6) indicates that the early warning signal from ENSO for
seasonal drought forecasting over the PLB can be extended up to almost
one year. Besides, the co-action of ENSO and NAO imply that combing
climatic oscillation signals at the high-latitude with these at the low-
latitude can improve the seasonal forecast skill of regional extremes. It
is expected that the derived predictive information about seasonal
droughts over the PLB here can be adapted to dynamical and/or statis-
tical forecasting models to achieve more skillful seasonal drought fore-
casting. Given the identified lagged influences of climate oscillations,
such as ENSO and NAO, on droughts in the PLB, there is a need to
enhance early warning systems by additionally monitoring changes in
the identified climate indices. Early warning systems should be
improved by explicitly considering the identified time lags in order to
increase the lead time for drought management and adaptation (Dikshit
et al., 2021). In this regard, potential policy recommendations for
mitigating droughts include, such as, implementing climate forecasts
information into regulation rules of reservoir operations (Giuliani et al.,
2019), promoting water-saving agricultural practices (Xing et al., 2020),
enhancing real-time monitoring systems (Zhang et al., 2019a, 2019b).

4.4. Limitation and future scope

The current study is subject to limitations. For example, although our
consolidated univariate-to-multivariate analysis framework analysis
provides insights into the dynamics of seasonal droughts occurrence and
development, our findings analyzed only the most dominant two climate
oscillations (ENSO and NAO) and our analysis period is restricted to
1960–2015. It is acknowledged that the disentangled empirical rela-
tionship has uncertainties due to the non-stationary of the climate sys-
tems. Such empirical relationship may change over time, particularly
under the future warming conditions. Therefore, timely accommodating
new datasets and evolving climate extremes, especially, in the real-time
forecasting system would narrow this uncertainty. This study lays the
groundwork for future research aiming at refining our understanding
and model predictivity for climate extremes. One future research di-
rection could be to integrate the derived statistical relationship between
large-scale ENSO, NAO and regional droughts from the perspective of
spatial correlations and time lags, in order to enhance the predictivity of
seasonal drought forecasting systems. The overarching goal would be to
develop a robust predictive framework that can provide reliable, timely,
and actionable information to stakeholders, thereby aiding in the
effective management and mitigation of drought risks.

5. Summary and conclusion

In this study, we have investigated the combined and lagged in-
fluences of large-scale climate patterns (AMO, AO, ENSO, IOD, NAO,
and PDO) on climate extremes in the Poyang Lake basin (PLB) for the
period of 1960–2015. The Standardized Precipitation Evapotranspira-
tion Index based on monthly precipitation and temperature records from
27 meteorological stations is used to determine meteorological droughts
over the basin. To statistically quantify such lagged and combined ef-
fects of teleconnections, Pearson’s correlation coefficients, cross-

wavelet transform, and random forests model have been applied to
perform a univariate-to-multivariate relation analysis. Moreover, asso-
ciated atmospheric mechanisms for the spatially combined and tempo-
rally lagged influences of climate oscillations have been investigated by
using the zonal and meridional wind fields at 850 hPa and the geo-
potential height at 500 hPa from the NCEP/NCAR reanalysis.
Our main results are summarized as follows:

1. The results of the univariate-to-multivariate analysis shows that,
regarding spatially combined influences, the co-action of ENSO and
NAO are the most important forcing for the meteorological condi-
tions over the PLB. Regarding the temporally lagged influences,
ENSO with lag of 11 months and NAO with lag of 2–3 months trigger
droughts over the PLB; whereas ENSO with lag of 3–6 months and
NAO with lag of 8–9 months arouse pluvial.

2. The results of lagged regression analysis correspond well with the
statistical lagged relationship. ENSO with lag of 11 months and NAO
with lag of 2–3 months trigger an EU-like drought-prone circulation
patterns over the PLB, which is favorable for anomalous northerly
currents and weakening the EASM. The wetness caused by 3–6
months lagged ENSO and 8 months lagged NAO is associated with
the anomalous southerly currents induced by enhanced and east-
wardly WNPC.

3. Our performed SVD analysis on the SPEI for the PLB and geopotential
height reveals that the combined effect of preceding winter El Niño
and late-summer negative NAO is the primary cause of autumn
droughts over the PLB, which accompanied with a positive EU-like
pattern.

Overall, it can be concluded that our findings improve the under-
standing of the physical mechanisms and drivers of seasonal droughts,
which may be used as predictor variables in statistical drought fore-
casting models. However, it is noted that these statistical models are
practically restricted by the underlying assumption of non-stationarity.
Thus, frequent updates and recalculations of the statistical model
equations are needed. In the future, a more detailed process-based
modeling study using regional climate models will be conducted to
gain further understanding of the impact of climate oscillations on
regional extremes.
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Enfield, D.B., Mestas-Nuñez, A.M., Trimble, P.J., 2001. The Atlantic Multidecadal
Oscillation and its relation to rainfall and river flows in the continental U.S.
Geophys. Res. Lett. 28, 2077–2080.

Feng, P., Wang, B., Luo, J.J., Liu, D.L., Waters, C., Ji, F., Ruan, H., Xiao, D., Shi, L.,
Yu, Q., 2020. Using large-scale climate drivers to forecast meteorological drought
condition in growing season across the Australian wheatbelt. Sci. Total Environ. 724,
138162 https://doi.org/10.1016/j.scitotenv.2020.138162.

Forootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van Dijk, A.I.J.
M., Brocca, L., Farzaneh, S., Akinluyi, F., Ramillien, G., Shum, C.K., Awange, J.,
Mostafaie, A., 2019. Understanding the global hydrological droughts of 2003–2016
and their relationships with teleconnections. Sci. Total Environ. 650, 2587–2604.
https://doi.org/10.1016/j.scitotenv.2018.09.231.

Fung, K.F., Huang, Y.F., Koo, C.H., Soh, Y.W., 2020. Drought forecasting: a review of
modelling approaches 2007–2017. J. Water Clim. Change 11, 771–799. https://doi.
org/10.2166/wcc.2019.236.

Gao, T., Wang, H.J., Zhou, T., 2017. Changes of extreme precipitation and nonlinear
influence of climate variables over monsoon region in China. Atmos. Res. 197,
379–389. https://doi.org/10.1016/j.atmosres.2017.07.017.

Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., Block, P., 2019. Detecting the state of
the climate system via artificial intelligence to improve seasonal forecasts and
inform reservoir operations. Water Resour. Res. 55, 9133–9147. https://doi.org/
10.1029/2019WR025035.

Gore, M., Abiodun, B.J., Kucharski, F., 2020. Understanding the influence of ENSO
patterns on drought over southern Africa using SPEEDY. Clim. Dyn. 54, 307–327.
https://doi.org/10.1007/s00382-019-05002-w.

Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Application of the cross wavelet transform
and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11,
561–566. https://doi.org/10.5194/npg-11-561-2004.

Gu, W., Li, C., Li, W., Zhou, W., Chan, J.C.L., 2009. Interdecadal unstationary
relationship between NAO and East China’s summer precipitation patterns. Geophys.
Res. Lett. 36, 2–5. https://doi.org/10.1029/2009GL038843.

Guo, R., Zhu, Y., Liu, Y., 2020. A comparison study of precipitation in the Poyang and the
Dongting Lake Basins from 1960-2015. Sci. Rep. 10, 1–12. https://doi.org/10.1038/
s41598-020-60243-8.

Haile, G.G., Tang, Q., Li, W., Liu, X., Zhang, X., 2020. Drought: Progress in broadening its
understanding. WIREs Water 7, 1–25. https://doi.org/10.1002/wat2.1407.

Han-Lie, X., Juan, F., Cheng, S., 2013. Impact of preceding summer North Atlantic
oscillation on early autumn precipitation over Central China. Atmos. Ocean. Sci.
Lett. 6, 417–422. https://doi.org/10.3878/j.issn.1674-2834.13.0027.

Hao, Z., Singh, V.P., Xia, Y., 2018. Seasonal drought prediction: advances, challenges,
and future prospects. Rev. Geophys. 56, 108–141. https://doi.org/10.1002/
2016RG000549.

Hermanson, L., Ren, H.-L., Vellinga, M., Dunstone, N.D., Hyder, P., Ineson, S., Scaife, A.
A., Smith, D.M., Thompson, V., Tian, B., Williams, K.D., 2017. Different types of
drifts in two seasonal forecast systems and their dependence on ENSO. Clim. Dyn.
https://doi.org/10.1007/s00382-017-3962-9.

Hong, X., Guo, S., Xiong, L., Liu, Z., 2014. Spatial and temporal analysis of drought using
entropy-based standardized precipitation index: a case study in Poyang Lake basin,
China. Theor. Appl. Climatol. 122, 543–556. https://doi.org/10.1007/s00704-014-
1312-y.

Hong, H., Sun, J., Wang, H., 2022. Interannual variations in summer extreme
precipitation frequency over Northern Asia and related atmospheric circulation
patterns. J. Hydrometeorol. 23, 619–636. https://doi.org/10.1175/JHM-D-21-
0177.1.

Hu, Y., Wang, S., 2021. Associations between winter atmospheric teleconnections in
drought and haze pollution over Southwest China. Sci. Total Environ. 766, 142599
https://doi.org/10.1016/j.scitotenv.2020.142599.

Hu, P., Cheng, J., Feng, G., Dogar, M.M.A., Gong, Z., 2020. The mechanism of EAP-EU
combined impact on summer rainfall over North Asia. Theor. Appl. Climatol. 142,
117–128. https://doi.org/10.1007/s00704-020-03295-0.

Hu, Y., Zhou, B., Han, T., Li, H., Wang, H., 2022. In-phase variations of spring and
summer droughts over Northeast China and their relationship with the North
Atlantic Oscillation. J. Clim. 1–33 https://doi.org/10.1175/jcli-d-22-0052.1.

Z. Xing et al.

https://psl.noaa.gov/gcos_wgsp/Timeseries/
https://psl.noaa.gov/gcos_wgsp/Timeseries/
https://www.jamstec.go.jp/e/about/informations/notification_2021_maintenance.html
https://www.jamstec.go.jp/e/about/informations/notification_2021_maintenance.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://doi.org/10.3390/atmos10060295
https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0015
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0015
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0015
https://doi.org/10.1007/s11269-020-02623-3
https://doi.org/10.5194/hess-20-2589-2016
https://doi.org/10.5194/hess-20-2589-2016
https://doi.org/10.1371/journal.pone.0062201
https://doi.org/10.1371/journal.pone.0062201
https://doi.org/10.1175/JCLI3797.1
https://doi.org/10.1175/JCLI3797.1
https://doi.org/10.1007/s40641-018-0095-0
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0045
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0045
https://doi.org/10.1007/978-3-030-62008-0_35
https://doi.org/10.1007/978-3-030-62008-0_35
https://doi.org/10.1175/JCLI-D-14-00707.1
https://doi.org/10.1155/2012/915053
https://doi.org/10.1155/2012/915053
https://doi.org/10.1007/s11434-012-5654-5
https://doi.org/10.2166/nh.2019.141
https://doi.org/10.2166/nh.2019.141
https://doi.org/10.1038/s41467-021-22314-w
https://doi.org/10.1029/2003GL018053
https://doi.org/10.1029/2003GL018053
https://doi.org/10.1016/j.physa.2016.03.014
https://doi.org/10.1002/wcc.81
https://doi.org/10.1016/j.atmosres.2020.104889
https://doi.org/10.1016/j.jhydrol.2022.127900
https://doi.org/10.1007/s11269-022-03297-9
https://doi.org/10.5194/esd-2016-65
https://doi.org/10.1016/j.scitotenv.2020.142638
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0120
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0120
http://refhub.elsevier.com/S0169-8095(24)00385-5/rf0120
https://doi.org/10.1016/j.scitotenv.2020.138162
https://doi.org/10.1016/j.scitotenv.2018.09.231
https://doi.org/10.2166/wcc.2019.236
https://doi.org/10.2166/wcc.2019.236
https://doi.org/10.1016/j.atmosres.2017.07.017
https://doi.org/10.1029/2019WR025035
https://doi.org/10.1029/2019WR025035
https://doi.org/10.1007/s00382-019-05002-w
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1029/2009GL038843
https://doi.org/10.1038/s41598-020-60243-8
https://doi.org/10.1038/s41598-020-60243-8
https://doi.org/10.1002/wat2.1407
https://doi.org/10.3878/j.issn.1674-2834.13.0027
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1007/s00382-017-3962-9
https://doi.org/10.1007/s00704-014-1312-y
https://doi.org/10.1007/s00704-014-1312-y
https://doi.org/10.1175/JHM-D-21-0177.1
https://doi.org/10.1175/JHM-D-21-0177.1
https://doi.org/10.1016/j.scitotenv.2020.142599
https://doi.org/10.1007/s00704-020-03295-0
https://doi.org/10.1175/jcli-d-22-0052.1


Atmospheric Research 310 (2024) 107603

15

Huang, T., Xu, L., Fan, H., 2019. Drought characteristics and its response to the global
climate variability in the Yangtze River Basin, China. Water (Basel) 11, 1–19.
https://doi.org/10.3390/w11010013.

Jiang, P., Yu, Z., Acharya, K., 2019. Drought in the western United States: its connections
with large-scale oceanic oscillations. Atmosphere (Basel) 10, 1–12. https://doi.org/
10.3390/ATMOS10020082.

Kim, J.S., Seo, G.S., Jang, H.W., Lee, J.H., 2017. Correlation analysis between Korean
spring drought and large-scale teleconnection patterns for drought forecasting. KSCE
J. Civ. Eng. 21, 458–466. https://doi.org/10.1007/s12205-016-0580-8.

Konapala, G., Mishra, A., 2020. Quantifying climate and catchment control on
hydrological drought in the continental United States. Water Resour. Res. 56, 1–25.
https://doi.org/10.1029/2018WR024620.

Lestari, R.K., Koh, T.Y., 2016. Statistical evidence for asymmetry in ENSO–IOD
interactions. Atmosphere-Ocean 54, 498–504. https://doi.org/10.1080/
07055900.2016.1211084.

Li, Xiao, Li, D., Li, Xing, Chen, L., 2018. Prolonged seasonal drought events over northern
China and their possible causes. Int. J. Climatol. 38, 4802–4817. https://doi.org/
10.1002/joc.5697.

Li, Z., Chen, T., Wu, Q., Xia, G., Chi, D., 2020a. Application of penalized linear regression
and ensemble methods for drought forecasting in Northeast China. Meteorog. Atmos.
Phys. 132, 113–130. https://doi.org/10.1007/s00703-019-00675-8.

Li, Y., Liu, F., Hsu, P.C., 2020b. Modulation of the Intraseasonal Variability of Pacific-
Japan Pattern by ENSO. J. Meteorol. Res. 34, 546–558. https://doi.org/10.1007/
s13351-020-9182-y.

Lin, Q., Wu, Z., Singh, V.P., Sadeghi, S.H.R., He, H., Lu, G., 2017. Correlation between
hydrological drought, climatic factors, reservoir operation, and vegetation cover in
the Xijiang Basin, South China. J. Hydrol. (Amst.) 549, 512–524. https://doi.org/
10.1016/j.jhydrol.2017.04.020.

Liu, P.C., 1994. Wavelet Spectrum Analysis and Ocean Wind Waves. NOAA Great Lakes
Environmental Research Laboratory. ACADEMIC PRESS, INC. https://doi.org/
10.1016/B978-0-08-052087-2.50012-8

Liu, W., Liu, L., 2019. Analysis of dry/wet variations in the Poyang Lake basin using
standardized precipitation evapotranspiration index based on two potential
evapotranspiration algorithms. Water (Basel) 11, 1–22. https://doi.org/10.3390/
w11071380.

Liu, Y., Song, P., Peng, J., Fu, Q., Dou, C., 2011. Recent increased frequency of drought
events in Poyang Lake basin, China: climate change or anthropogenic effects?. In:
Proceedings of Symposium J-H02 Held during IUGG2011 in Melbourne, Australia,
pp. 99–104.

Liu, Zhenchen, Lu, G., He, H., Wu, Z., He, J., 2018a. A conceptual prediction model for
seasonal drought processes using atmospheric and oceanic standardized anomalies:
Application to regional drought processes in China. Hydrol. Earth Syst. Sci. 22,
529–546. https://doi.org/10.5194/hess-22-529-2018.

Liu, Zhiyong, Zhang, X., Fang, R., 2018b. Multi-scale linkages of winter drought
variability to ENSO and the Arctic Oscillation: a case study in Shaanxi, North China.
Atmos. Res. 200, 117–125. https://doi.org/10.1016/j.atmosres.2017.10.012.

Liu, W., Zhu, S., Huang, Y., Wan, Y., Wu, B., Liu, L., 2020. Spatiotemporal variations of
drought and their teleconnections with large-scale climate indices over the Poyang
Lake Basin, China. Sustainability 12, 1–18. https://doi.org/10.3390/SU12093526.

Ma, J., Li, J., 2007. Strengthening of the boreal winter Hadley circulation and its
connection with ENSO. Prog. Nat. Sci. 17, 1327–1333.

Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C., 1997. A pacific
interdecadal climate Oscillation with impacts on Salmon production. Bull. Am.
Meteorol. Soc. 78, 1069–1079. https://doi.org/10.1175/1520-0477(1997)
078<1069:APICOW>2.0.CO;2.

Mariotti, A., Zeng, N., Lau, K.M., 2002. Euro-Mediterranean rainfall and ENSO-a
seasonally varying relationship. Geophys. Res. Lett. 29, 591–594. https://doi.org/
10.1029/2001GL014248.

Marj, A.F., Meijerink, A.M.J., 2011. Agricultural drought forecasting using satellite
images, climate indices and artificial neural network. Int. J. Remote Sens. 32,
9707–9719. https://doi.org/10.1080/01431161.2011.575896.

Meihan, L., 2022. China’s largest freshwater lake sees record early dry season [WWW
Document]. In: Sixth Tone. URL. https://www.sixthtone.com/news/1010936/chin
as-largest-freshwater-lake-sees-record-early-dry-season-.

Mishra, A.K., Singh, V.P., 2010. A review of drought concepts. J. Hydrol. (Amst.) 391,
202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012.

Mishra, A.K., Singh, V.P., 2011. Drought modeling - a review. J. Hydrol. (Amst.) 403,
157–175. https://doi.org/10.1016/j.jhydrol.2011.03.049.

Moore, G.W.K., Renfrew, I.A., Pickart, R.S., 2013. Multidecadal mobility of the North
Atlantic oscillation. J. Clim. 26, 2453–2466. https://doi.org/10.1175/JCLI-D-12-
00023.1.

Nguyen, P.L., Min, S.K., Kim, Y.H., 2021. Combined impacts of the El Niño-Southern
Oscillation and Pacific Decadal Oscillation on global droughts assessed using the
standardized precipitation evapotranspiration index. Int. J. Climatol. 1–18 https://
doi.org/10.1002/joc.6796.

Nitta, T., 1987. Convective activities in the tropical western Pacific and their impact on
the Northern Hemisphere summer circulation. J. Meteorol. Soc. Jpn. 65, 373–390.

Pegion, K., Kirtman, B.P., Becker, E., Collins, D.C., Lajoie, E., Burgman, R., Bell, R.,
Delsole, T., Min, D., Zhu, Y., Li, W., Sinsky, E., Guan, H., Gottschalck, J., Joseph
Metzger, E., Barton, N.P., Achuthavarier, D., Marshak, J., Koster, R.D., Lin, H.,
Gagnon, N., Bell, M., Tippett, M.K., Robertson, A.W., Sun, S., Benjamin, S.G.,
Green, B.W., Bleck, R., Kim, H., 2019. The subseasonal experiment (SUBX). Bull. Am.
Meteorol. Soc. 100, 2043–2060. https://doi.org/10.1175/BAMS-D-18-0270.1.

Pieper, P., Düsterhus, A., Baehr, J., 2021. Improving seasonal predictions of
meteorological drought by conditioning on ENSO states. Environ. Res. Lett. 16,
094027.

Pillai, P.A., Ramu, D.A., Nair, R.C., 2021. Recent changes in the major modes of Asian
summer monsoon rainfall: influence of ENSO-IOD relationship. Theor. Appl.
Climatol. 143, 869–881. https://doi.org/10.1007/s00704-020-03454-3.

Robertson, A.W., Vitart, F., Camargo, S.J., 2020. Subseasonal to seasonal prediction of
weather to climate with application to tropical cyclones. J. Geophys. Res. Atmos.
125 https://doi.org/10.1029/2018JD029375.

Rodriguez, S., 2022. Seen from space: Extreme drought dries up rivers across the globe.
Clim. Home News. https://www.climatechangenews.com/2022/08/26/visuals-e
xtreme-drought-dries-up-rivers-globe-satellite-images/.

Rogers, J., McHugh, M., 2002. On the separability of the North Atlantic oscillation and
Arctic oscillation. Clim. Dyn. 19, 599–608. https://doi.org/10.1007/s00382-002-
0247-7.

Saji, N.H., Goswami, P.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in
the tropical Indian Ocean. Nature 401, 360–363.

Sehgal, V., Sridhar, V., 2018. Effect of hydroclimatological teleconnections on the
watershed-scale drought predictability in the southeastern United States. Int. J.
Climatol. 38, 1139–1157. https://doi.org/10.1002/joc.5439.

Shao, J., Wang, J., Lv, S., Bing, J., 2016. Spatial and temporal variability of seasonal
precipitation in Poyang Lake basin and possible links with climate indices. Hydrol.
Res. 47, 51–68. https://doi.org/10.2166/nh.2016.249.

Shao, W., Chen, X., Zhou, Z., Liu, J., Yan, Z., Chen, S., Wang, J., 2017. Analysis of river
runoff in the Poyang Lake Basin of China: long-term changes and influencing factors.
Hydrol. Sci. J. 62, 575–587. https://doi.org/10.1080/02626667.2016.1255745.

Shi, P., Yang, T., Xu, C.Y., Yong, B., Shao, Q., Li, Z., Wang, X., Zhou, X., Li, S., 2017. How
do the multiple large-scale climate oscillations trigger extreme precipitation? Glob.
Planet. Chang. 157, 48–58. https://doi.org/10.1016/j.gloplacha.2017.08.014.

Skea, Jim, Shukla, P.R., Reisinger, A., Slade, R., Pathak, M., Al Khourdajie, A.,
Diemen, R., 2014. Climate Change 2022 Mitigation of Climate Change - Working
Group III Contribution to the Sixth Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press.

Sordo, C., Frías, M.D., Herrera, S., Cofiño, A.S., Gutiérrez, J.M., 2008. Interval-based
statistical validation of operational seasonal forecasts in Spain condition to El Niño-
Southern Oscillation events. J. Geophys. Res. 113, 1–11. https://doi.org/10.1029/
2007JD009536.

Stuecker, M.F., Timmermann, A., Jin, F.F., Chikamoto, Y., Zhang, W., Wittenberg, A.T.,
Widiasih, E., Zhao, S., 2017. Revisiting ENSO/Indian Ocean Dipole phase
relationships. Geophys. Res. Lett. 44, 2481–2492. https://doi.org/10.1002/
2016GL072308.

Su, H., Neelin, J.D., Meyerson, J.E., 2005. Mechanisms for lagged atmospheric response
to ENSO SST forcing. J. Clim. 18, 4195–4215. https://doi.org/10.1175/JCLI3514.1.

Sun, B., Wang, H., 2019. Enhanced connections between summer precipitation over the
Three-River-Source region of China and the global climate system. Clim. Dyn. 52,
3471–3488. https://doi.org/10.1007/s00382-018-4326-9.

Sun, H., Hu, H., Wang, Z., Lai, C., 2020. Temporal variability of drought in nine
agricultural regions of China and the influence of atmospheric circulation.
Atmosphere (Basel) 11. https://doi.org/10.3390/atmos11090990.

Sun, L., Yang, X.Q., Tao, L., Fang, J., Sun, X., 2021. Changing impact of enso events on
the following summer rainfall in eastern China since the 1950s. J. Clim. 34,
8105–8123. https://doi.org/10.1175/JCLI-D-21-0018.1.

Sun, B., Wang, H., Li, Huixin, Zhou, B., Duan, M., Li, Hua, 2022. A long-lasting
precipitation deficit in South China during Autumn-Winter 2020/2021: combined
effect of ENSO and Arctic Sea Ice. J. Geophys. Res. Atmos. 127, 1–18. https://doi.
org/10.1029/2021JD035584.

Thompson, D.W.J., Wallace, J.M., 1998. The Arctic oscillation signature in the
wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25,
1297–1300. https://doi.org/10.1029/98GL00950.

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate.
Geogr. Rev. 38, 55–94. https://doi.org/10.2307/210739.

Tian, B., Fan, K., 2015. A skillful prediction model for winter NAO based on Atlantic Sea
Surface Temperature and Eurasian Snow Cover. Weather Forecast. 30, 197–205.
https://doi.org/10.1175/WAF-D-14-00100.1.

Toreti, A., Masante, D., Acosta Navarro, J., Bavera, D., Cammalleri, C., De Jager, A., Di
Ciollo, C., Hrast Essenfelder, A., Maetens, W., Magni, D., Mazzeschi, M., Spinoni, J.,
De Felice, M., 2022. Drought in Europe July 2022. Luxembourg. https://doi.org/
10.2760/014884, JRC130253.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am.
Meteorol. Soc. 79, 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:
APGTWA>2.0.CO;2.

Veldkamp, T.I.E., Eisner, S., Wada, Y., Aerts, J.C.J.H., Ward, P.J., 2015. Sensitivity of
water scarcity events to ENSO driven climate variability at the global scale. Hydrol.
Earth Syst. Sci. Discuss. 12, 5465–5517. https://doi.org/10.5194/hessd-12-5465-
2015.
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