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1. Introduction

Let (�, A, μ) be a finite measure space with μ(�) > 0. Let H be a real Hilbert space with inner 
product 〈·, ·〉 and induced norm ‖ · ‖. In this work, we consider the approximation of a vector-valued 
function f : � →H by its projection to a finite-dimensional subspace U ⊂H. For 1 ≤ p ≤ ∞, possible 
error measures are then the approximation numbers

d(p)

k ( f ) = inf
{‖ f − g‖L p(�;H) : U is a k-dimensional subspace of H and g ∈ Lp(�;U)

}
,

where ‖ · ‖Lp(�;H) defines the norm on the Lebesgue-Bochner space Lp(�; H).

The number d(p)

k ( f ) measures the best possible approximation of f in Lp(�; H) by a function g
that maps (almost all points in �) into some k-dimensional subspace U ⊆ H. Obviously, for given U
the best choice for g is g(y) = PU f (y) almost everywhere, where PU is the H-orthogonal projection 
onto U . With this notation, we have

d(p)

k ( f ) = inf
{‖ f − PU f ‖L p(�;H) : U is a k-dimensional subspace of H

}
. (1)

In the special case p = ∞, the quantity

d(∞)

k ( f ) = inf
{

ess sup
y∈�

‖ f (y) − PU f (y)‖: U is a k-dimensional subspace of H
}

is the Kolmogorov width [14,16] of the “essential” image of f in H. For general p < ∞, the quanti-
ties d(p)

k ( f ) are called average Kolmogorov widths and can even be generalized to non Hilbert-space 
settings, see, e.g., [15, Section 2.2] and references therein. Several results on the asymptotic order of 
d(p)

k ( f ) are available for the case that H is a Sobolev space and f is a Gaussian random variable; 
see [19] for an overview.

In many situations, one hopes or even expects that the above widths decay rapidly as the dimen-
sion k of the subspace increases. One then aims at constructing an actual k-dimensional subspace 
U that results in an error close to d(p)

k ( f ). A popular approach is to sample f at k well chosen 
points y1, . . . , yk ∈ � and define U as the span of f (y1), . . . , f (yk). For example, reduced basis meth-
ods [11,17] for solving parameter-dependent partial differential equations commonly use a greedy 
strategy for selecting parameter points y1, . . . , yk successively. Similarly, orthogonal matching pur-
suit [18] and the empirical interpolation method [2] can be viewed as greedy strategies. Recently, 
deep neural networks have been demonstrated to be effective at approximating f from (noisy) sam-
ples; see, e.g., [1].

Existing convergence analyses [2,4,9,18] of such sample-based methods typically establish error 
bounds that remain qualitatively close to (1), but the involved prefactors can be huge, often growing 
exponentially with k. For example, the result in [4, Section 2] for p = ∞ shows that a greedy selection 
of k points leads to an error (nearly) bounded by 2k+1(k + 1)d(∞)

k ( f ); this bound has been improved 
to 2k+1/

√
3 · d(∞)

k ( f ) in [3, Theorem 4.4]. The results from [3] also show that greedy algorithms 
recover algebraic or exponential decays of the Kolmogorov widths. On the other hand, the factor 2k

is, in general, unavoidable when using a greedy selection and this raises the question whether the 
use of samples necessarily leads to large prefactors or whether there exist sample selections leading 
to more favorable bounds (1). Again for the case p = ∞ it was shown in [3, Theorem 4.1] that there 
always exist sample points y1, . . . , yk for which the prefactor can indeed be reduced to k + 1. The 
proof of this result is nonconstructive and uses a maximum volume argument, a classical tool in 
approximation theory. A maximum volume principle also underlies a result from [10] on the rank-k
approximation of matrices in the elementwise maximum norm by cross interpolation. However, there 
is evidence [8] that such maximum volume arguments do not extend to the case p = 2, corresponding 
to approximation in Frobenius norm for matrices, but randomized sampling arguments can be used 
instead.
2
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Main result In this note, we treat the case p = 2 and establish a prefactor 
√

k + 1.

Theorem 1. Let f ∈ L2(�; H). Then there exists a measurable set �̂ ⊆ � × · · · × � = �k of positive product 
measure μ⊗k such that for μ⊗k-almost every y = (y1, . . . , yk) ∈ �̂ it holds that

d(2)

k ( f ) ≤ ‖ f − �y f ‖L2(�;U) ≤
√

k + 1 · d(2)

k ( f ), (2)

where �y f denotes the H-orthogonal projection of f onto the span of f (y1), . . . , f (yk).

Here we do not assume f to be continuous. In general, the elements f of L2(�; H) are equivalence 
classes of functions which are only μ-almost everywhere equal. The theorem is formulated in such 
a way that it applies to the whole equivalence class, in the sense that the set �̂ is the same for 
every representative. Note that the set of y ∈ �̂ that actually satisfy (2) can be different for two 
representatives, but only by a set of product measure zero. The rest of this note is concerned with 
the proof of Theorem 1.

Finite-dimensional setting The finite-dimensional analogue of Theorem 1 is due to Deshpande et al. [8]
and reads as follows: Given a matrix A = [a1, . . . , an] ∈ Rm×n and k < m ≤ n, there exist k column 
indices j1, . . . , jk ∈ {1, . . . , n} such that

(σ 2
k+1 + · · · + σ 2

m)1/2 ≤ ‖A − P j1,..., jk A‖F ≤
√

k + 1 · (σ 2
k+1 + · · · + σ 2

m)1/2, (3)

where ‖ · ‖F denotes the Frobenius norm, σ1 ≥ · · · ≥ σm ≥ 0 are the singular values of A, and P j1,..., jk

denotes the orthogonal projection onto span{a j1 , . . . , a jk }. This result is included in Theorem 1 by 
considering the uniform measure on � = {1, . . . , n}, the Euclidean space H =Rm and letting f (i) = ai
for i = 1, . . . , n. The proof in [8] uses a probabilistic method, showing that (3) holds in expectation 
when columns are sampled with a probability proportional to their induced volume.

An example from [8] shows that the prefactor 
√

k + 1 in (3) can, in general, not be improved. In 
follow-up work, Deshpande and Rademacher [7] derived a more efficient algorithm for computing 
a column subset selection satisfying (3); see [5] for further improvements concerning its numerical 
realization. For fixed j1, . . . , jk , even tiny changes of A may result in a significantly larger error ‖A −
P j1,..., jk A‖F [6]. This lack of continuity makes it difficult to combine the algorithms from [5,7] with a 
discretization of the infinite-dimensional setting. For the time being, Theorem 1 is an existence result 
based on a probabilistic argument and it remains an open problem to design an efficient sampling 
procedure that leads to an error (approximately) bounded by 

√
k + 1 · d(2)

k ( f ).
While our main strategy for the proof of Theorem 1 follows [8], several nontrivial modifications 

are needed in order to address the infinite-dimensional case.

Bochner integral and measurable functions Before proceeding, let us recall the basic definitions regard-
ing the Bochner integral. A function f : � → H is called strongly μ-measurable if it is the μ-almost 
everywhere pointwise strong limit of simple functions f� : � → H. It is called Bochner integrable if, 
in addition, 

∫
�

‖ f − f�‖ dμ → 0 for � → ∞. In this case the Bochner integral 
∫
�

f dμ of f is de-
fined as the limit of integrals of the simple functions f� which then does not depend on the choice 
of the sequence f� . Since the real-valued functions y �→ ‖ f (y) − f�(y)‖ are themselves strongly μ-
measurable, the integrals 

∫
�

‖ f − f�‖ in this definition are well-defined. In particular, the integrands 
are A-measurable functions if μ is a complete measure, or otherwise μ-almost everywhere equal 
to an A-measurable functions [13, Proposition 1.1.16]. Note that a similar reasoning will be implic-
itly assumed at other occurrences in the paper when composing real-valued functions from strongly 
μ-measurable H-valued functions without further mentioning.

The Hilbert space L2(�; H) consists of equivalence classes of Bochner integrable functions f for 
which 

∫
�

‖ f ‖2 dμ < ∞. While it is common practice to not distinguish between a function and its 
equivalence class, we will often work with pointwise arguments of particular representatives. For 
more details on Bochner integrals and the spaces Lp(�; H) we refer to [13].
3
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2. Schmidt decomposition

The Hilbert space L2(�; H) is isometrically isomorphic to the space H S(L2(�); H) of Hilbert–
Schmidt operators from L2(�) to H. This isometry is realized by associating f ∈ L2(�; H) with the 
bounded integral operator

T f : L2(�) → H, v �→ T f v =
∫
�

f v dμ.

To see this, let {ui : i ∈ I} and {v j : j ∈ J } be orthonormal bases of H and L2(�), respectively, with J
being countable. Then it can be routinely verified by properties of the Bochner integral that {ui v j : i ∈
I, j ∈ J } is an orthonormal basis of L2(�; H). The integral operator associated with ui v j is the rank-
one operator ui〈v j, ·〉L2(�) . These rank-one operators form an orthonormal basis of H S(L2(�); H); 
see, e.g., [12, Theorem 4.4.5]. This shows that f �→ T f is an isometric isomorphism between L2(�; H)

and H S(L2(�); H) and leads to the following well-known decomposition of f .

Theorem 2 (Schmidt decomposition). Let f ∈ L2(�; H). There exist at most countable orthonormal systems 
{ui ∈ H : i = 1, 2, . . . , r}, {v i ∈ L2(�, μ) : i = 1, 2, . . . , r} (with r ∈ N ∪ {+∞}) and singular values σ1 ≥
σ2 ≥ . . . with σi > 0 for i = 1, 2, . . . , r such that

f =
r∑

i=1

σiui v i,

with the series converging in L2(�; H). It holds that

f (y) ∈ span{ui : i = 1,2, . . . , r} μ-a.e.

and

f (y) =
r∑

i=1

σiui v i(y) μ-a.e., (4)

with the series converging in H.

Proof. By the singular value decomposition of T = T f there exist σi , ui , and v i with the stated 
properties such that T = ∑r

i=1 σiui〈v i, ·〉L2(�) , where the sum converges in Hilbert–Schmidt norm; 
see, e.g., [12, Theorem 4.3.2]. The isometric isomorphism discussed above then implies the claimed 
series representation of f in L2(�; H).

To show the second part of the theorem, we first note that the range of T is the separable Hilbert 
space H0 = span{ui : i = 1, 2, . . . , r}. As a consequence,∫

A

f dμ =
∫
�

f χA dμ = TχA ∈ H0 ∀A ∈ A.

Since the measure is finite, this implies – by Proposition 1.2.13 in [13] – that f (y) ∈H0 for μ-almost 
every y ∈ �. Since {ui} is an orthonormal basis of H0 , this in turn implies

f (y) =
r∑

i=1

〈 f (y), ui〉ui μ-a.e. (5)

For every i, the function strongly y �→ 〈 f (y), ui〉 is μ-measurable and hence μ-a.e. equal to an A-
measurable function [13, Proposition 1.1.16]. Then, for every A ∈A,
4
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∫
A

〈 f (y), ui〉dμ =
〈 ∫

A

f (y)dμ, ui

〉

= 〈TχA, ui〉 =
r∑

j=1

σ j〈u j, ui〉〈v j,χA〉L2(�) =
∫
A

σi v i(y)dμ

where we have used that the Bochner integral can be interchanged with bounded linear functionals; 
see, e.g., [13, Eq. (1.2)]. This implies

〈 f (y), ui〉 = σi v i(y) μ-a.e.,

which together with (5) shows (4). �
The singular values are uniquely determined by f and independent of its representative. The num-

ber r ∈ N ∪ {+∞} of positive singular values is called the rank of f , denoted by rank( f ). By the 
Schmidt–Mirsky theorem [12, Theorem 4.4.7] and the isomorphism explained above, it follows that 
the truncated function

fk =
k∑

i=1

σiui v i = PUk f , Uk = span{u1, . . . , uk},

is the best approximation of f by a function of rank at most k in the L2(�; H)-norm. As any other 
projection of f onto a k-dimensional subspace has rank at most k, it follows

d(2)

k ( f ) = ‖ f − fk‖L2(�;H) = (
σ 2

k+1 + σ 2
k+2 + · · · )1/2. (6)

3. Expected volume

For k ≥ 1, we consider the product measure space (�k, A⊗k, μ), where A⊗k denotes the product 
σ -algebra (the smallest σ -algebra containing Cartesian products A1 × · · ·× Ak of sets A1, . . . , Ak ∈A) 
and μ := μ⊗k denotes the product measure (the unique measure on A⊗k satisfying μ(A1 × · · · ×
Ak) = μ(A1) · · ·μ(Ak)). Let f ∈ L2(�; H). Given k sample points y = (y1, . . . , yk), the Gramian of 
f (y1), . . . , f (yk) ∈H is

G(k)(y) =
⎡
⎢⎣

〈 f (y1), f (y1)〉 · · · 〈 f (y1), f (yk)〉
...

...

〈 f (yk), f (y1)〉 · · · 〈 f (yk), f (yk)〉

⎤
⎥⎦ ∈Rk×k.

Its determinant

det G(k)(y) =
∑
π∈Sk

sign(π)

k∏
i=1

〈 f (yi), f (yπ(i))〉,

where Sk denotes the set of all permutations of (1, . . . , k), is often called the volume of the 
f (y1), . . . , f (yk). Note that in regard of the equivalence class of f this quantity is only μ-almost 
everywhere uniquely defined. We therefore regard det G(k)(y) as an equivalence class of μ-almost ev-
erywhere equal μ-measurable real-valued functions. In turn, the Lebesgue integral of det G(k) , called 
the expected volume, can be defined. The following lemma shows that this quantity can be computed 
from the singular values of f , in analogy to [8, Lemma 3.1].

Lemma 3. With the notation introduced above, it holds that∫

�k

det G(k) dμ =
r∑

j1,..., jk=1
j , . . . , j mutually distinct

σ 2
j1

· · ·σ 2
jk
.

1 k

5
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Proof. Consider the Schmidt decomposition from Theorem 2. For every finite n ≤ r, let

fn(y) =
n∑

i=1

σiui v i(y).

Since the v i are A-measurable, the corresponding determinant

det G(k)
n (y) =

∑
π∈Sk

sign(π)

k∏
i=1

〈 fn(yi), fn(yπ(i))〉 =
∑
π∈Sk

sign(π)

k∏
i=1

n∑
j=1

σ 2
j v j(yi)v j(yπ(i))

is a nonnegative A⊗k-measurable function, which satisfies, using Tonelli’s theorem,

∫

�k

det G(k)
n dμ =

∑
π∈Sk

sign(π)

∫

�k

k∏
i=1

n∑
j=1

σ 2
j v j(yi)v j(yπ(i))dμ

=
n∑

j1=1

· · ·
n∑

jk=1

σ 2
j1

· · ·σ 2
jk

∑
π∈Sk

sign(π)

∫
�

k∏
i=1

v ji (yi)v jπ(i)(yi)dμ

=
n∑

j1=1

· · ·
n∑

jk=1

σ 2
j1

· · ·σ 2
jk

∑
π∈Sk

sign(π)

k∏
i=1

〈v ji , v jπ(i)〉L2(�)

=
n∑

j1=1

· · ·
n∑

jk=1

σ 2
j1

· · ·σ 2
jk

∑
π∈Sk

sign(π)

k∏
i=1

δ ji , jπ(i)

=
n∑

j1=1

· · ·
n∑

jk=1

σ 2
j1

· · ·σ 2
jk

det(P j1,..., jk ),

with the matrix [P j1,..., jk ]α,β = δ jα , jβ for α, β = 1, . . . , k. If all j1, . . . , jd are distinct, then
det(P j1,..., jk ) = 1, otherwise det(P j1,..., jk ) = 0, since then P j1,..., jk contains identical rows. Therefore,

∫

�k

det G(k)
n dμ =

n∑
j1,..., jk=1

j1, . . . , jk mutually distinct

σ 2
j1

· · ·σ 2
jk
.

If r is finite, this proves the claim by taking n = r. Otherwise we take the limit n → ∞ and argue that

∫

�k

det G(k) dμ = lim
n→∞

∫

�k

det G(k)
n dμ

by dominated convergence. This is possible because det G(k)
n (y) → det G(k)(y) μ-almost everywhere (a 

consequence of (4)) and

∣∣∣det G(k)
n (y)

∣∣∣ ≤
∑
π∈Sk

∣∣∣
k∏

i=1

〈 fn(yi), fn(yπ(i))〉
∣∣∣ ≤

∑
π∈Sk

k∏
i=1

‖ fn(yi)‖2 ≤
∑
π∈Sk

k∏
i=1

‖ f (yi)‖2.

Since f ∈ L2(�; H), the right hand side is a dominating integrable function on �k . �

6
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4. Proof of Theorem 1

Let us assume that rank( f ) ≥ k. Then we can define

� = det G(k)∫
�k det G(k) dμ

.

By Lemma 3, the denominator is positive. We have � ≥ 0 (μ-almost everywhere) and 
∫
�k � dμ = 1. 

Thus, we can interpret � as a probability density function on the product measure space. We now 
aim to bound

E�

(‖ f − �y f ‖2
L2(�;H)

) =
∫

�k

‖ f − �y f ‖2
L2(�;H)

�(y)dμ(y),

where �y f : � → H is the H-orthogonal projection of f onto span{ f (y1), . . . , f (yk)}. Note that the 
projector �y depends on the chosen representative f in the equivalence class; indeed, the subspaces 
spanned by f (y1), . . . , f (yk) can be completely different for two different representatives in the same 
equivalence class, but only on a set of zero product measure. The statement and proof of the following 
theorem, which is the analog to [8, Theorem 1.3], pay attention to these subtleties.

Theorem 4. Given f ∈ L2(�; H), consider the Schmidt decomposition (4) and assume r = rank( f ) ≥ k. Then 
the following holds:

(i) For every fixed y ∈ �k the function y′ �→ f (y′) − �y f (y′), with �y f defined as above, defines an 
equivalence class of Bochner integrable functions which belongs to L2(�; H). The nonnegative function 
y �→ ‖ f − �y f ‖2

L2(�;H)
is therefore well-defined.

(ii) The class of μ-almost everywhere equal functions y �→ ‖ f −�y f ‖2
L2(�;H)

·�(y) contains a representative 
which is A⊗k-measurable. Hence E�(‖ f − �y f ‖2

L2(�;H)
) is well-defined.

(iii) It holds that

r∑
i=k+1

σ 2
i ≤E�

(‖ f − �y f ‖2
L2(�;H)

) ≤ (k + 1)

r∑
i=k+1

σ 2
i .

Proof. Ad (i). Consider a fixed representative of f . Then the orthogonal projector T = �y onto 
span{ f (y1), . . . , f (yk)} is a bounded linear operator on H. In turn, T f is Bochner-integrable. 
Moreover, ‖ f (y′) − T f (y′)‖ = ‖(I − T ) f (y′)‖ ≤ ‖ f (y′)‖ for every y′ ∈ �. Therefore, 

∫
�

‖ f (y′) −
T f (y′)‖2 dμ ≤ ∫

�
‖ f (y′)‖2 dμ < ∞. Obviously, for different choices of representatives f , the func-

tions f − �y f are μ-almost everywhere equal.
Ad (ii). Take a representative of f that is everywhere a pointwise strong limit of simple func-

tions [13, Proposition 1.1.16]. The corresponding volume function y �→ det G(k)(y) is then A⊗k-
measurable. Likewise, the function (y, y′) �→ det G(k+1)(y, y′) is A⊗(k+1)-measurable. By Tonelli’s the-
orem, the nonnegative function

g(y) =
∫
�

det G(k+1)(y, y′)dμ(y′)

is then A⊗k-measurable. Since the representative f is fixed, the projector �y is defined in a mean-
ingful way for every y ∈ �k . We claim that for every y it holds that

g(y) = det G(k)(y)

∫
‖ f (y′) − �y f (y′)‖2 dμ(y′). (7)
�

7
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After division by 
∫
�k det G(k) dμ > 0, this implies part (ii). To establish (7), we first note that if 

f (y1), . . . , f (yk) are linearly dependent then (7) trivially holds because it implies det G(k)(y) = 0
as well as g(y) = 0 (since det G(k+1)(y, y′) = 0 for all y′ ∈ �). We may therefore assume that 
f (y1), . . . , f (yk) are linearly independent. Then G(k)(y) is invertible and for all y′ ∈ � it holds that

G(k+1)(y, y′) =
[

G(k)(y) wy,y′
w T

y,y′ ‖ f (y′)‖2

]

=
[

I 0
w T

y,y′ G(k)(y)−1 1

][
G(k)(y) wy,y′

0 ‖ f (y′)‖2 − w T
y,y′ G(k)(y)−1 wy,y′

]
,

with the vector

wy,y′ = [〈 f (y1), f (y′)〉, . . . , 〈 f (yk), f (y′)〉]T ∈Rk.

It is straightforward to show that the orthogonal projection �y f (y′) of f (y′) onto the span of 
f (y1), . . . , f (yk) satisfies ‖�y f (y′)‖2 = w T

y,y′ G(k)(y)−1 wy,y′ . Hence we have

det G(k+1)(y, y′) = det G(k)(y) · ‖ f (y′) − �y f (y′)‖2,

which yields (7).
Ad (iii). The lower bound follows immediately from (6). It remains to prove the upper bound. Using 

the same representative for f as in (ii), by (7) we have

E�

(‖ f − �y f ‖2
L2(�;H)

) ·
∫

�k

det G(k) dμ =
∫

�k+1

det G(k+1) dμ⊗(k+1).

Applying Lemma 3 to both sides gives

E�

(‖ f − �y f ‖2
L2(�;H)

) =
∑

j1,..., jk+1
σ 2

j1
· · ·σ 2

jk
σ 2

jk+1∑
j1,..., jk

σ 2
j1

· · ·σ 2
jk

, (8)

where the summations are performed over mutually distinct indices ranging from 1 to r. As there are 
(k + 1)! different ways of arranging k + 1 mutually distinct numbers, one deduces that

∑
j1,..., jk+1

σ 2
j1

· · ·σ 2
jk
σ 2

jk+1
= (k + 1)!

∑
j1<···< jk+1

σ 2
j1

· · ·σ 2
jk
σ 2

jk+1

= (k + 1)!
r∑

j=k+1

σ 2
j

∑
j1<···< jk< j

σ 2
j1

· · ·σ 2
jk

≤ (k + 1)!
r∑

j=k+1

σ 2
j

∑
j1<···< jk

σ 2
j1

· · ·σ 2
jk

= (k + 1)

r∑
j=k+1

σ 2
j

∑
j1,..., jk

σ 2
j1

· · ·σ 2
jk
.

Inserting this inequality into (8) completes the proof. �
We are ready to state the main result of this section, which in light of (6) also proves Theorem 1.
8
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Theorem 5. Let f ∈ L2(�; H) with rank r ∈ N ∪ {∞}. There exists a measurable set �̂ ⊆ �k of positive 
product measure such that for every representative f in the equivalence class and μ-almost every sample 
tuple y ∈ �̂ it holds that

‖ f − �y f ‖2
L2(�;H)

≤ (k + 1)

r∑
i=k+1

σ 2
i .

Proof. For the moment, let us assume that r ≥ k. In this case, the proof boils down to the fact that 
the probability for a random variable to not being larger than its expected value is positive. For 
completeness, we provide the full argument. As argued in the proof of Theorem 4(ii) there exists a 
suitable representative f such that the two functions y �→ �(y) and y �→ ‖ f − �y f ‖2

L2(�;H)
· �(y) are 

both A⊗k-measurable. Hence, the sets B = {y ∈ �k : �(y) > 0} and

�̂ =
⎧⎨
⎩y ∈ B : ‖ f − �y f ‖2

L2(�;H)
≤ (k + 1)

r∑
i=k+1

σ 2
i

⎫⎬
⎭

=
⎧⎨
⎩y ∈ B : ‖ f − �y f ‖2

L2(�;H)
· �(y) − (k + 1)

r∑
i=k+1

σ 2
i · �(y) ≤ 0

⎫⎬
⎭

both belong to A⊗k . It is then a standard argument to show that we must have μ(�̂) > 0, since 
otherwise Theorem 4(iii) would be violated. For any other representative of f , the values of ‖ f −
�y f ‖2

L2(�;H)
remain the same for μ-almost all y. This completes the proof in the case r ≥ k.

In the case rank( f ) = r < k we can apply the theorem to r instead of k. Then

‖ f − �(y1,...,yr) f ‖2
L2(�;H)

≤ (r + 1)

r∑
i=r+1

σ 2
i = 0

for all tuples (y1, . . . , yr) in a subset �̃ of �r with positive μ⊗r -measure. Then for all y ∈ �̃ × �k−r , 
which has positive μ-measure, we also have

‖ f − �y f ‖2
L2(�;H)

≤ ‖ f − �(y1,...,yr) f ‖2
L2(�;H)

= 0

since the subspaces on which one projects only get larger. �
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