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Zusammenfassung

In dieser Arbeit untersuchen wir optische Kräfte und Dispersionskräfte, die auf kugelförmige Objekte
wirken. Speziell betrachten wir die Dispersionswechselwirkung zwischen makroskopischen Körpern,
die auch Casimir-Kraft genannt wird.

Befindet sich ein Objekt in einem Lichtfeld, so wirkt eine Kraft auf dieses. Bereits Kepler erkan-
nte bei der Beobachtung der Schweife von Kometen, dass der Lichtdruck, der durch die Sonne
entsteht, eine Krümmung des Schweifs verursacht. Diese Eigenschaft von Licht wird beispiel-
sweise beim Einfangen und der Manipulation von Objekten in sogenannten optischen Pinzetten
eingesetzt. Ursprünglich umfassten optische Pinzetten einen fokussierten Laserstrahl mit einem
gaußförmigen Intensitätsprofil. Objekte können dann in der Nähe des Fokus, dem Punkt höchster
Intensität, eingefangen werden. Seither entwickelten sich jedoch viele neue Realisierungen, dieses
ursprünglich von Ashkin [1] eingeführten Aufbaus. Insbesondere strukturierte Lichtfelder, wie zum
Beispiel Wirbelfelder, haben in den letzten Jahren steigendes Interesse erfahren. Bei Fokussierung
von Wirbelfeldern entsteht ein ringförmiges Intensitätsprofil und Objekte können zusätzlich einen
Bahndrehimpuls erfahren [2]. Im Rahmen dieser Arbeit betrachten wir einerseits die Eigenschaften
dieser Wirbelfelder und andererseits die Möglichkeiten, diese zur Charakterisierung der eingefan-
genen Objekte zu nutzen. Speziell betrachten wir die Wechselwirkung von kugelförmigen Objekten
mit dem Lichtfeld. Optische Pinzetten haben vielseitige Einsatzgebiete und eines davon ist als Kraft-
sensor mit einer Genauigkeit, die in den Femtonewtonbereich geht. Dadurch sind optische Pinzetten
auch geeignet, Dispersionskräfte zwischen makroskopischen Objekten zu messen [3, 4].

Dispersionskräfte treten als dominante Kraft zwischen neutralen, nicht-polarisierten Objekten auf,
auch wenn keine externen Felder vorhanden sind. Ihr Ursprung liegt in den Fluktuationen des quan-
tisierten elektromagnetischen Feldes. Als Erstes wurde diese Kraft, bei Temperatur Null, zwischen
zwei perfekt-leitenden Platten von Casimir [5] berechnet. Eine einfache Erklärung für die anziehende
Kraft zwischen den Platten erfolgt beispielsweise mit dem oben angesprochenen Strahlendruck. Auf-
grund der Randbedingungen sind zwischen den Platten nicht alle elektromagnetischen Feldmoden
realisierbar, wodurch der Strahlendruck zwischen den Platten geringer ist als der von außen, was
schließlich zu einer anziehenden Kraft führt. Bei endlichen Temperaturen tragen aber nicht nur die
Quantenfluktuationen zu der Kraft bei, sondern auch thermische Fluktuationen, die im Limes hoher
Temperaturen den dominanten Beitrag liefern und damit den Effekt zu einem rein klassischen Effekt
machen [6]. Wir untersuchen diesen Hochtemperaturbereich der Casimir-Kraft für verschiedene
Modellsysteme und zeigen auf, dass die Casimir-Wechselwirkung auch in biologischen Systemen
zu relevanten, langreichweitigen Kräften führt. Die Casimir-Kraft wird hauptsächlich mit einer
anziehenden Kraft in Verbindung gesetzt; in speziellen Fällen kann die Kraft allerdings auch repulsiv
sein. Eine repulsive Casimir-Kraft wird beispielsweise zwischen nicht reziproken Materialien, also
Materialien, in denen die Zeitumkehr-Symmetrie gebrochen ist, ermöglicht [7]. Wir untersuchen die
Casimir-Kraft anhand eines idealisierten, nicht-reziproken Modellsystems von perfekten elektromag-
netischen Leitern [8]. Wir zeigen auf, wie geometrische und thermische Effekte das Vorzeichen der
Casimir-Kraft beeinflussen können. Als Modellsystem für die Casimir-Wechselwirkung betrachten
wir, wie auch für die optische Pinzette, kugelförmige Objekte. Kugelförmige Objekte sind speziell
für experimentelle Realisierungen der Casimir-Kraft relevant. Im Gegensatz zu der Platte-Platte-
Geometrie, treten für Kugeln keine Probleme bei der parallelen Ausrichtung auf, weshalb diese
häufig in Experimenten Anwendung finden [9, 10].
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Introduction and Outline

Electromagnetic fields have the ability to transfer momentum, which means they can exert a force on
an object. Even if there is no external source field ⟨𝐸𝑖⟩ = 0, forces between neutral, unpolarised and
unmagnetised objects can still emerge due to fluctuations of the quantum electromagnetic vacuum
⟨𝐸𝑖𝐸 𝑗⟩ ≠ 0. The forces are called dispersion forces. Dispersion forces between microscopic objects
(like atom-atom interaction) are usually referred to as London-van-der-Waals interaction [11], which
are mostly considered in the non-retarded regime. If one macroscopic object is present, like in an
atom wall setup, we refer to the force as Casimir-Polder interaction [12]. Dispersion forces between
macroscopic objects are usually called Casimir or Casimir-Lifshitz forces. Casimir computed in
his seminal work [5] the force between perfect electric conductor plates arising from the vacuum
fluctuations. Later, Lifshitz [13, 14] extended the calculation to materials which account for losses.
The nomenclature for the dispersion forces in the different regimes might vary across communities;
for an overview, see the recent review by Fiedler et al. [15]. In this work, we will focus on the latter,
the interaction between macroscopic objects induced by quantum and also thermal fluctuations of the
quantum electromagnetic field.

Since its original proposal by Casimir, it has taken several decades for the first reliable observation
of the effect. Earlier experiments (see e. g. Ref. [16]) tried to probe the Casimir interaction between
planar surfaces. However, it was only much later that accurate measurements of the Casimir interaction
became possible [9, 17, 18]. In the earlier experiments, the perfect parallel alignment between plates
presented a challenge, which was circumvented by using a setup consisting of a metallic spherical
object and plate. Since then, rapid progress has been made to probe the Casimir interaction for various
systems, including two-sphere setups in Refs. [19] and [3, 4], where the latter probed the Casimir
interaction by using optical tweezers (see Fig. 2). For readers interested in recent developments,
we refer to Ref. [20]. Due to its experimental relevance, we study the Casimir interaction between
spherical objects in this work, as schematically illustrated in Fig. 1.

Considerable progress has been made on both the experimental and theoretical sides. Numerous
theoretical methods aim to calculate the Casimir interaction for various experimental setups. On the
forefront is the so-called scattering approach [21–23]. In this approach, the force resulting from the
fluctuations of the quantum electromagnetic field is reduced to a classical scattering problem based
on the T-matrix of the system. This method, in principle, allows for the calculation of the Casimir
force between arbitrarily shaped geometries and various materials.

Nevertheless, exact analytical results for the Casimir force are still rare and usually limited to
specific geometries and idealized materials. The high-temperature limit is one regime, where the
main contribution to the Casimir force comes from thermal fluctuations. For the experimentally
relevant systems of a metallic sphere and plate described by the Drude model, Bimonte and Emig
[24] were able to determine an exact expression for the Casimir free energy. Later, Zhao et al.
[25] found an analytical expression for two equally-sized spheres. However, it was doubted whether
similar calculations could be extended to two spheres of dissimilar size [26]. This work aims to
demonstrate that the scattering approach can be used to determine an analytical expression for the
two-sphere setup.

The thermal Casimir effect also plays a role in systems involving dielectric objects in an electrolytic
solution, which are usually not associated with Casimir interactions. This type of setup is commonly
found in colloidal and biophysical science, such as interacting lipid layers or filaments. The Casimir
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thermal fluctuations

quantum fluctuations

incident em-field

K

𝜕𝑉

⟨𝐸𝑖⟩ = 0

⟨𝐸𝑖𝐸 𝑗⟩ ≠ 0

Figure 1: The electromagnetic field can transfer momentum while interacting with an object. The momentum
flow can originate from an incident external light field, illustrated by the incident wave with wave vector
K. However, if a second object is placed in close proximity, the quantum vacuum fluctuations and thermal
fluctuations ⟨𝐸𝑖𝐸 𝑗 ⟩ of the electromagnetic field can also cause a momentum transfer to both objects, resulting
in an attractive or repulsive force.

interaction has potential relevance for self-assembly and cohesion in such systems [27, 28]. Until
recently, it was assumed that long-range interactions due to low-frequency fluctuations are completely
screened in these scenarios. However, it was shown in Ref. [27] and experimentally verified in
Ref. [4] that low-frequency transverse magnetic modes are not screened, as it was considered up
to that point [29]. Therefore, we are interested in computing the Casimir interaction from the
low-frequency fluctuations between dielectric spherical objects in an electrolyte. We aim to find a
simple expression that allows calculating the Casimir contribution in these systems without relying
on extensive numerical calculations.

Computing the T-matrix for arbitrary-shaped systems is highly non-trivial, which is why approxi-
mation methods are usually applied when dealing with more complicated geometries than plates or
spheres. Methods which are commonly used are the pairwise summation (PWS) approximation [30]
and the proximity force approximation (PFA) [14], to name two. Within the PWS approximation, the
Casimir force is evaluated by summing over van-der-Waals interactions between volume elements of
the respective objects. Conversely, PFA approximates the surfaces by infinitesimal planar elements
and the interaction between these planes is calculated via the Lifshitz formula [14]. However, due to
the non-additivity of dispersion forces, both approximations are limited in their applicability [31, 32].
Studies of the Casimir interaction between dielectric spherical objects revealed that the PFA result
is obtained from an asymptotic approximation of the scattering formula for large sphere radii [33].
Subsequently, leading corrections to PFA were determined, which helped to estimate the validity of
the PFA [34, 35]. There is no polarisation mixing upon scattering in the PFA regime for dielectric
objects, the two polarisation channels of the electromagnetic field thus contributed independently to
the Casimir force. In this work, we study materials that mix polarisation upon scattering. We aim to
analyse whether the PFA result could still be obtained from an asymptotic expansion of the scattering
formula and whether we find corrections to the PFA result. We use bi-isotropic materials as a model,
which allows for an exact calculation of the scattering at spherical objects.

Polarization-mixing materials have received more attention in recent years [36, 37] since they
might lead to a reduction of the attractive Casimir force or even a repulsive force. The Casimir
interaction becomes the dominant force between neutral objects on nano-length scales. Hence,
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𝐿𝑅1 𝑅2
𝐹Casimir𝐹tweezer

Figure 2: Illustration of the experimental setup in Refs. [4,
58] with two spheres of radii 𝑅1 and 𝑅2 in distance
𝐿, where one sphere is trapped by an optical tweezer.
The Casimir force 𝐹Casimir leads to a displacement of the
trapped sphere, which in turn results in a restoring force
from the tweezer 𝐹tweezer. The Casimir force can be deter-
mined from the displacement of the trapped sphere from
its axial equilibrium position.

an attractive Casimir force can influence the functionality of micro- and nano-electromechanical
systems. To avoid phenomena like stiction [38], which is the adhesion of surfaces by dispersion
forces, it would be advantageous to be able to control the strength or even the sign of the Casimir
force. Unfortunately, a no-go theorem stated that the Casimir interaction between a mirror-symmetric
setup is always attractive [39]. Later, it was found that reciprocal objects in a vacuum always attract
each other [40]. Nevertheless, Casimir repulsion can be achieved for objects in a medium. Dielectric
objects of relative permittivity 𝜖1 and 𝜖2, which are immersed in a liquid of permittivity 𝜖3 can repel
each other if the permittivities fulfil 𝜖1(i𝜉) > 𝜖3(i𝜉) > 𝜖2(i𝜉) at imaginary frequencies 𝜉 [14]. The
first experimental realization was carried out by Munday et al. [10] and various theoretical studies
[41, 42] examined the effect of geometry and temperature on the sign of Casimir interaction in these
setups.

It is also possible to achieve Casimir repulsion without a mediating medium by combining magnetic
and non-magnetic objects. This was already observed by Boyer in 1974 [43], who studied the Casimir
interaction between a perfect electric and magnetic conductor plate at zero temperature. Since
then, Casimir repulsion was examined between various systems involving meta-materials [44–46],
topological insulators [47–52], Weyl semi-metals [53, 54] or magneto-electric materials [55–57].
Recently, it was also shown more generally that non-reciprocal materials, which break time-reversal
symmetry, might lead to a repulsive Casimir force [7].

The studies [41, 42] of objects in a medium have shown that the sign of the Casimir force can change
with distance, leading to equilibrium configurations. Furthermore, it was revealed that the equilibrium
distance changes with temperature. In this work, we want to extend this study to polarisation-mixing
material in vacuum for the experimentally relevant setup of spherical objects.

Earlier, we mentioned that recent Casimir experiments have used optical tweezers to probe the
Casimir interaction between spheres [4, 58]. The high sensitivity of optical tweezers (in the femto-
newton range) allowed the measurement of the Casimir force at much larger distances than in previous
experiments. Usually the aspect ratio of sphere radius and distance 𝐿 lies between 100 and 5000
[59], for the above-mentioned optical tweezers experiment, the Casimir interaction was probed for
ratios below 10.

In fact, optical tweezers have many uses beyond measuring forces. They can, for example, also be
used to manipulate and characterize trapped objects [60]. Since the original proposal by Ashkin in
1979 [1, 61], a wide range of applications of optical tweezers has emerged [62]. The original setup
[61] involves a strongly focused laser beam with a high numerical aperture and an axial intensity
profile. This setup allows for trapping close to the focal spot with a single beam. In recent years,
there has been progress and increasing interest in using structured light fields (see e.g. Refs. [63–65]
for review), where the amplitude, phase or polarisation of the beam is modulated. Examples of such
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fields are vortex beams, in which the photons carry orbital angular momentum in addition to the
spin angular momentum associated with the polarisation. The focusing of such beams leads to a
ring-shaped focal spot [66, 67] and thus to a different trapping behaviour compared to the earlier-
mentioned single focal spot. We are interested in the trapping behaviour of spherical objects in a
vortex beam. The additional orbital angular momentum can enhance the torque exerted on the trapped
object [68]. This torque is dependent on the characteristics of the trapped object (see e. g. [69]),
and we aim to investigate how this dependence can be utilized to measure different quantities of the
trapped particle.

In summary, we investigate dispersion and optical forces on spherical objects and how temperature
and material properties of the sphere affect these forces. Both forces share the same problem of
solving the scattering of an electromagnetic field by a spherical object. However, the main difference
is that optical forces typically operate in a specific frequency range, depending on the application.
In contrast, when considering dispersion forces, fluctuations of the electromagnetic field at all
frequencies and wave vectors must be taken into account (schematically depicted in Fig. 1 by the
different wavelengths of the fluctuations). This broadband character of the Casimir effect makes it
inherently more complex.

This work is divided into three main parts. We start in Part I by recalling the basics of classical elec-
trodynamics in media and the extension to quantum electromagnetic fields. In Chap. 1, we introduce
a specific class of media, called bi-isotropic materials [70], which allows for cross-susceptibilities and
thus for polarisation-mixing upon scattering of electromagnetic waves. Bi-isotropic materials can
model chiral and also non-reciprocal systems. Optical and dispersion forces on an arbitrary-shaped
body can be computed through a volume integral over the electromagnetic force density (Chap. 2).
Dispersion forces arise from the quantum field fluctuations between at least two objects and the
fluctuation-dissipation theorem relates the fluctuations to the T-matrix of the system. We use the
Lippmann-Schwinger equation to determine the T-matrix and arrive at the famous scattering formula
for the Casimir interaction between macroscopic objects. The scattering formula constitutes the basis
of this work, which we use to derive the Casimir force. Alternatively, forces induced by electromag-
netic fields can also be computed from a surface integral over electromagnetic stresses. The surface
is chosen such that it surrounds the object (see Fig. 1), and the change of the momentum flux through
this surface is considered. We will use this approach as a starting point for the calculation of the
optical force on a spherical object in a structured light field. Solutions for the Maxwell equations are
presented in Chap. 3. In Chap. 4, we introduce the reflection matrix elements of a bi-isotropic sphere
for an incoming spherical or plane wave. The expressions are derived for imaginary frequencies and
analysed in several limiting cases.

Part II deals with optical forces experienced by illuminated spherical objects. Specifically, we
provide the force expressions for dielectric and chiral objects in a focused Laguerre-Gaussian beam.
We start in Chap. 5 by modelling the structured light field based on the Debye-Wolf diffraction
integral, which results in an angular spectrum representation of the field at the exit of the focusing
system. To account for optical aberrations present in most experimental setups, we employ the method
of vectorial ray tracing. We apply our theory in Chap. 6, where we analyse the trapping of dielectric
and chiral particles in a vortex field. We conclude Part II by introducing a method that utilizes vortex
beams to measure the size of trapped dielectric beads (see Chap. 7).

Part III of this work deals with the Casimir interaction between two spherical objects. First, we
recall the scattering approach for our specific geometry in Chap. 8. We examine the Casimir interaction
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for high temperatures in Chap. 9. The studied systems are metallic spheres in vacuum and dielectric
spheres in an electrolytic solution. In the following Chap. 10, we discuss the Casimir interaction
between two dissimilar bi-isotropic spheres. We analyse the Casimir interaction in the experimentally
relevant regime of short distances or equivalently large sphere radii. We show that the leading
asymptotic expansion agrees with the PFA result for polarisation-mixing materials. Additionally,
general expressions for the leading PFA corrections are derived. To analyse the dependence of the
sign of the Casimir force with distance, we also compute expressions for the Casimir free energy in
the dipole-dipole or dipole-plane limit. Chapter 11 uses the results for small and large distances to
study the Casimir interaction between an idealized class of non-reciprocal materials, namely so-called
perfect electromagnetic conductors.

We summarize our results from the discussion of the optical tweezers setup and Casimir calculation
in Chap. 12. Further details and technical calculations for the main body of this work can be found
in the appendices.

xiii





Part I

Spherical particles in the presence of the
electromagnetic field and its fluctuations

This thesis connects the behaviour of macroscopic objects for classical and quantum electromagnetic
fields by examining both optical and dispersion forces on spheres. Both cases have in common that
we need to solve the scattering problem at a spherical object. Hence, the first Part of the thesis
introduces various theoretical concepts needed to discuss the optical and dispersion forces. We start
in Chap. 1 by formulating the macroscopic electromagnetic field equations for bi-isotropic media.
Chap. 2 evaluates the force on an object in an electromagnetic field. We discuss how the scattering
formula for the Casimir interaction can be obtained from the Lorentz force. This method constitutes
one of many ways of deriving the scattering formula. An alternative would be to examine the Maxwell
stress tensor, which we will discuss in the context of optical forces. To solve the scattering problem
of a spherical object, it is practical to expand the electromagnetic field in an orthonormal basis set.
This is done in Chap. 3. We present the solutions for the scattering coefficient of a bi-isotropic sphere
in an isotropic medium in Chap. 4 and analyse the results in the limit of large sphere radii and low
frequencies.

1



1 Electromagnetic field in a bi-isotropic medium

A classical electromagnetic field is described by the Maxwell equations [71]. For a quantized field,
this still holds for a linear system, however, the electric field Ê, the magnetic induction B̂, the electric
displacement D̂ and the magnetic field Ĥ all become Hermitian operators [72, 73]. We consider
systems without any excess charges, which means that both the displacement field and the magnetic
induction field are divergence-free

∇r · D̂(r, 𝑡) = 0 , ∇r · B̂(r, 𝑡) = 0 . (1.1)

The fields are all functions of space r and time 𝑡. Moreover, we are mostly interested in systems with
no free currents, which means that the curl equations are according to Maxwell given by

∇r × Ê(r, 𝑡) = −𝜕𝑡 B̂(r, 𝑡) , ∇r × Ĥ(r, 𝑡) = 𝜕𝑡D̂(r, 𝑡) . (1.2)

The equations above are defined in the time domain. Since we consider time harmonic excitation, it
is more convenient to work with the equations in the frequency domain. The relation between the
electric field in the time and frequency domain is, for example, given by

Ê(r, 𝑡) =
∫ ∞

0

d𝜔
2𝜋

[
Ê(r, 𝜔)e−i𝜔𝑡 + h.c.

]
, (1.3)

where we denote the Fourier transform Ê(r, 𝜔) of Ê(r, 𝑡) just by the arguments. The same definition
also holds for all other vector fields. If not stated otherwise, all fields are, from now on, considered
in the frequency domain. Generally, the electric displacement and the magnetic field are respectively
related to the electric field and the magnetic induction through the following equations

D̂ = 𝜖0Ê + P̂ , Ĥ = B̂/𝜇0 − M̂ , (1.4)

where 𝜖0 and 𝜇0 define the vacuum permittivity and permeability, respectively. P̂ and M̂ define the
polarisation and magnetization, which account for the bound charge density �̂� = −∇𝑟 · P̂ and current
density ĵ = −i𝜔P̂ + ∇r × M̂ in the medium. We consider a local and bi-isotropic medium [74] in the
following, where both the polarisation and the magnetization show a linear response to the electric
and magnetic field according to [75, 76]

P̂ = 𝜖0

(
𝜖 − 1 − 𝛼𝛽𝜇−1

)
Ê + 𝑍−1

0 𝛼𝜇−1B̂ , M̂ = 𝑍−1
0 𝛽𝜇−1Ê + 𝜇0

(
1 − 𝜇−1

)
B̂ (1.5)

with the vacuum impedance 𝑍0 =
√︁
𝜇0/𝜖0. The parameters 𝜖 = 𝜖 (𝜔) and 𝜇 = 𝜇(𝜔) respectively

define the relative permittivity and permeability of the material. The cross-components 𝛼 = 𝛼(𝜔) and
𝛽 = 𝛽(𝜔) describe the electro-to-magnetic and magneto-to-electro coupling. The cross-couplings
are zero in the limiting case of isotropic materials. Materials with a chiro-optical response can also
be modeled by the above-given equations by considering the limit 𝛼 = −𝛽 = −i𝜅, where 𝜅 is the
so-called chirality parameter. These materials are reciprocal since 𝛼 = −𝛽. Bi-isotropic materials,
however, also include media which do not fulfil Onsager’s reciprocity relation [77]. These kinds of
systems are of interest in Casimir physics since they may lead to a repulsive Casimir interaction [7,
52]. An idealized system of non-reciprocal materials is a perfect electromagnetic conductor (PEMC)
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1 Electromagnetic field in a bi-isotropic medium

which interpolates between a perfect electric conductor (PEC) (𝜖 → ∞) and a perfect magnetic
conductor (PMC) (𝜇 → ∞). By choosing the material parameters as [8, 78]

𝛼 = 𝛽 = 𝑞 , 𝜖 = 𝑞 cot(𝜃) , 𝜇 = 𝑞 tan(𝜃) (1.6)

with 𝑞 → ∞ one obtains a PEMC, parameterized by the angle 𝜃 taking values between 0 and 𝜋/2
respectively accounting for the limiting cases of a PEC and a PMC. By inserting the relations (1.5)
for the polarisation and magnetisation into Eq. (1.4), one obtains the following constitutive equations
for the vector fields [70] (

D̂
B̂

)
=

(
𝜖0𝜖 𝛼/𝑐
𝛽/𝑐 𝜇0𝜇

) (
Ê
Ĥ

)
, (1.7)

where 𝑐 = 1/√𝜖0𝜇0 defines the speed of light in vacuum. Without any cross-couplings (𝛼 = 0 = 𝛽),
so for a linear isotropic medium, the constitutive equations take on the usual form with D̂ = 𝜖0𝜖Ê,
B̂ = 𝜇0𝜇Ĥ. The Maxwell equations (1.2) thus yield

∇r ×
(
Ê
Ĥ

)
= i𝜔

(
𝛽/𝑐 𝜇0𝜇

−𝜖0𝜖 −𝛼/𝑐
) (

Ê
Ĥ

)
. (1.8)

We switch to a basis where the material matrix in the equation above is diagonal by performing the
following linear transformation [79, 80](

Ê
Ĥ

)
=

(
1 𝑎R
𝑎L 1

) (
Q̂L
Q̂R

)
, 𝑎L =

𝑛L − i𝛽
i𝑐𝜇

, 𝑎R =
𝑛R − i𝛼

i𝑐𝜖
, (1.9)

where the indices denote left (L) and right (R) polarised light. The effective refractive indices for a
bi-isotropic medium are defined by

𝑛L,R =

√︂
𝜖 𝜇 − (𝛼 + 𝛽)2

4
± i
𝛽 − 𝛼

2
, (1.10)

where the sign +(−) corresponds to the index L(R). For an isotropic material, we get the well-known
expression 𝑛 = √

𝜖 𝜇 for the refractive index. Each vector field Q̂L,R fulfils the Helmholtz equation(
Δr +

𝜔2𝑛2
L,R

𝑐2

)
Q̂L,R = 0 (1.11)

with the Laplace operator Δr = ∇2
r . The auxiliary fields are divergence free ∇r · Q̂L,R = 0 and the curl

of the vector fields fulfil the relation ∇r × QL,R = ±(𝜔𝑛L,R/𝑐)Q̂L,R. The solutions of Eq. (1.11) are
thus given by plane waves with wave vectors, which fulfil the dispersion relation

|KL,R | = 𝐾L,R =
𝜔𝑛L,R

𝑐
. (1.12)

Hence, the general electromagnetic field in a bi-isotropic medium is a superposition of waves traveling
with wave vector KL and KR. In the following, we are thus going to discuss the solutions of the
Helmholtz equations only in isotropic medium, the solution for a bi-isotropic follows directly from
Eq. (1.9).
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2 Induced forces on objects and the scattering formalism

The Maxwell equations introduced in the previous Chapter describe both classical fields and fluc-
tuations of the vacuum electromagnetic field and the material. Without any external fields, the
quantum averages of the fields and sources vanish, e. g. the expectation value of the electric field
and the sources in the vacuum ground state yield zero ⟨Ê⟩ = 0, ⟨�̂�⟩ = 0. The same holds for the
magnetic field and the currents. However, both the fields and the body experience fluctuations, e.g.
⟨Ê2⟩ ≠ 0 and ⟨�̂�2⟩ ≠ 0, which are correlated and thus lead to a non-vanishing net force on an object
[76]. Casimir first determined in Ref. [5] the force between two perfect electric conductor plates at
zero temperature, which arises from these electromagnetic field fluctuations. Due to the imposed
boundaries by the plates the vacuum energy density changes, thus leading to an attractive force [81].
Since its original proposal, several approaches have been developed to evaluate the Casimir force
on arbitrarily shaped objects, materials which include losses and finite temperature. The theoretical
approaches are based on the electromagnetic stress-energy tensor or the quantization of path integrals
[22, 23]. We follow in this Chapter the derivation introduced by [82, 83], where the computation of
the forces arising from fluctuations reduces to solving the classical scattering problem by means of
the fluctuation-dissipation theorem [84].

In this Chapter, we will discuss forces exerted on arbitrarily shaped objects induced by the elec-
tromagnetic field and its fluctuations. The objects are in thermal equilibrium with their environment.
We will concentrate on magneto-electric bodies in vacuum that do not intersect. The resulting
force expressions are also valid for objects immersed in a dispersive dielectric medium [85] or for
bi-isotropic materials [7]. We will start in Sec. 2.1 with the Casimir force on an object due to the
presence of another object, which we obtain from a volume integral over the electromagnetic force
density. From there, the well-known scattering formula to the Casimir interaction can be derived,
which accounts for the reverberations of the electromagnetic field between the two objects. The
scattering problem is solved by using the so-called Lippmann-Schwinger equation. Equivalent to the
volume integral approach, the force on an object in an electromagnetic field can also be computed
from a surface integral over the electromagnetic energy-stress tensor, presented in Sec. 2.2, which
we will apply to determine the force on an object in an external source field, which is relevant for the
optical tweezers analysis in this thesis.

2.1 Volume integral approach

In general, the force on a body is given by the volume integral over the quantum symmetrized average
of the electromagnetic force density [76]

F =
∫
𝑉

d3r ⟨�̂�(r, 𝑡)Ê(r, 𝑡) + ĵ(r, 𝑡) × B̂(r, 𝑡)⟩sym , (2.1)

where �̂� and ĵ define the charge and current density within a magneto-electric body of volume 𝑉 .
The symmetrized average of two operators �̂� and �̂� is given by ⟨�̂��̂�⟩sym = 1

2 ⟨�̂��̂� + �̂� �̂�⟩.
There exist several approaches to evaluate the average of the quantum Lorentz force [76]. We

follow the calculation by [82, 86], where it is noticed that in stationary conditions, the correlators
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2.1 Volume integral approach

above do not depend on time, and can be expressed as

F =
∫
𝑉

d3r
∫ ∞

−∞

d𝜔
2𝜋

⟨𝜌(r)E∗(r) + j(r) × B∗(r)⟩𝜔 , (2.2)

where ⟨·⟩𝜔 defines spectral density for frequency 𝜔, since there is no correlations between different
frequency components. We assume that the internal charge and current density of the body obey the
continuity equation ∇r · j = i𝜔𝜌 and we also apply the Maxwell equation (1.2) to replace the magnetic
field. We specifically use [j × (∇r × E∗)]𝑖 = 𝑗𝑘𝜕𝑟𝑖𝐸𝑘 − 𝑗𝑘𝜕𝑟𝑘𝐸𝑖 , where we employ the summation
convention, that we sum over indices that appear twice. Furthermore, we assume that there are no
surface currents. We can thus omit the surface term and obtain

F =
∫
𝑉

d3r
∫ ∞

−∞

d𝜔
2𝜋

1
i𝜔

ê𝑖 ⟨ 𝑗𝑘
(
𝜕𝑟𝑖𝐸

∗
𝑘

)⟩𝜔 , (2.3)

where ê𝑖 defines the unit vector in r𝑖-direction. We consider a linear response between the sources
and the electric field. Using the Green’s function formalism, the electric field generated by the
currents is given by E = i𝜔𝜇0G0j (see, e. g. Ref. [71]), where G0 defines the free Green’s function[∇r × ∇r × −I𝜔2/𝑐2] G0(r, r′) = I𝛿(r − r′) with the unitary matrix I𝑖, 𝑗 = 𝛿𝑖, 𝑗 . Open face symbols
like G0, I, . . . represent 3× 3-matrices in position space. With the notation G0j, we abbreviate spatial
convolutions between a tensor of two spatial arguments and a vector

E(r) = i𝜔𝜇0 [G0j] (r) = i𝜔𝜇0

∫
d3r′G0(r, r′)j(r′) . (2.4)

Hence, the electric field at a position r is generated by a source at position r′ within the body. The
force expression thus involves the spectral density of the electric field. At thermal equilibrium, the
correlations are defined by the fluctuation-dissipation theorem [87, 88] which relates the fluctuations
of the field to the response of the body as follows

⟨𝐸 𝑗 (r)𝐸∗
𝑘 (r′)⟩𝜔 = sign(𝜔)2𝜋ℏ𝜇0𝜔

2
[
1
2
+ 𝑛(𝜔,𝑇)

]
Im

(
G 𝑗 ,𝑘 (r, r′)

)
, (2.5)

where the first term in the bracket accounts for the vacuum fluctuations, while the second part
originates from thermal fluctuations, with the population of the field modes described by the Bose
distribution 𝑛(𝜔,𝑇) = [exp (ℏ𝜔/𝑘B𝑇) − 1]−1. G 𝑗 ,𝑘 defines the components of the dyadic retarded
Green’s tensor via the wave equation[

∇r × ∇r − 𝜔2

𝑐2 I − V
]
G(r, r′) = 𝛿(r − r′)I , (2.6)

where V defines the potential introduced by the presence of a scatterer, also referred to as collective
susceptibility [89]

V(r, 𝜔) = I
𝜔2

𝑐2 (𝜖 (r, 𝜔) − 1) + ∇r ×
(
1 − 1

𝜇(r, 𝜔)

)
∇r × . (2.7)

The expression above can be derived from the Maxwell equations (1.1) and (1.2), assuming a linear
response with D = 𝜖0𝜖 (r, 𝜔)E and B = 𝜇0𝜇(r, 𝜔)H, where 𝜖 and 𝜇 take the values of the permittivity
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2 Induced forces on objects and the scattering formalism

and permeability of the scatterer, e.g. 𝜖 (r, 𝜔) = 𝜖 (𝜔) for r ∈ 𝑉 and 𝜖 (r, 𝜔) = 1 everywhere else.
Hence, the potential V is only non-zero in the presence of the body and vanishes everywhere else. For
V = 0, the Green’s function G coincides with the free Green’s function G0. Introducing the relation
for the spectral density into the force expression, we obtain

F = ℏIm
∫ ∞

0

d𝜔
2𝜋

coth
(
ℏ𝜔

2𝑘B𝑇

)
tr
��
𝑉

(
∇GG−1

0

)
, (2.8)

where we used that the trace over an operator is given by tr
��
𝑉
A =

∑
𝑖

∫
𝑉

d3rA𝑖𝑖 (r, r). Note also that
the derivative ∇ is taken with respect to the first argument of the Greens function. Hence, according
to the fluctuation-dissipation theorem, the calculation of the dispersion force reduces to finding the
Green’s function of the system. In the following, we discuss how the Green’s function for a system
of two scatterers can be derived.

2.1.1 Solving the scattering problem between two objects

We assume that E0 is the solution to the Helmholtz equation in free space, while E is the field in the
presence of one body. The two fields are related through the Green’s tensor by [82]

E = GG−1
0 E0 . (2.9)

The Green’s function can iteratively be constructed by the Lippmann-Schwinger equation [90], where
the electric field in the presence of a body is given by the field in free space and the field scattered by
the object

E = E0 + G0VE . (2.10)

By solving the equation above for the scattered field, we get E = (1 − G0V)−1 E0. To single out the
free field, we introduce this expression in Eq. (2.10) and thus get the well-known relation of the field
in terms of the T-matrix, which is also illustrated in Fig. 2.1a

E = (1 + G0T) E0 , T = V (I − G0V)−1 . (2.11)

From the definition (2.7) of the potential V, follows that T = T(r, r′) is only non-zero if r and r′ are
within the body, which we will exploit later on. A comparison with Eq. (2.9), allows one to read of
the Green’s tensor for one scatterer as

G = G0 + G0TG0 , G = [I − G0V]−1 G0 . (2.12)

In the second equation, we expressed the Green’s tensor in terms of the potential V. From the above
solution, it is clear that in thermal equilibrium, there is no force displacing the object.

The situation changes, however, if at least one additional object is added. We thus consider two
scatterers described by potentials V1 and V2. The solution of the wave equation for object 1 in the
presence of object 2 can again be constructed iteratively as

E1 = Ẽ1 + G1V2E1 , (2.13)

where the first term accounts for the field of the isolated object 1 with Ẽ1 = G1G−1
0 E0. The second
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2.1 Volume integral approach

m+

V

E0

E0 + G0TE0

(a)

O1

O2

G0T1G0T2

(b)

Figure 2.1: (a) Scattering of the free electromagnetic field at an object, described by the potential V. The
initial and scattered field are related through the T-matrix, which is defined in Eq. (2.11). (b) Illustration of
the round-trip operator M1,2 = G0T1G0T2 for two objects.

term represents the field scattered from object 2 to object 1. We determine the Green’s function G of
the system with E1 = GG−1

0 E0. Therefore, we first express the Green’s function G1 in terms of the
potential V1 (2.12) and then solve for E1, which leads to the following expression

[I − G0 (V1 + V2)] E1 = (I − G0V1) Ẽ1 . (2.14)

We again employ the definition of the Green’s function (2.12), but now represent the potential in
terms of the Green’s function with V𝑖 = G−1

0 − G−1
𝑖 for 𝑖 = 1, 2. Additionally, we use the matrix

identity (AB)−1 = B−1A−1 and multiply both sides of the equation with G1G−1
0 from the left, which

in total yields (
−G1G−1

0 G2G−1
0 + G2G−1

0 + G1G−1
0

) (
G2G−1

0

)−1
E1 = Ẽ1 (2.15)

with G𝑖 = (I + G0T𝑖) G0, we find for the Green’s function

G = (I + G0T2)
(
I −M1,2

)−1 (I + G0T1) G0 , (2.16)

where we introduced the matrix
M1,2 = G0T1G0T2 , (2.17)

which accounts for the multiple scattering processes between the two objects as depicted in Fig. 2.1b.
We are only interested in the interaction force, hence only terms with even numbers of the T-operators
are relevant. After inserting Eq. (2.16) into Eq. (2.8), we thus obtain for the force on object 1 [7, 82]

F1 =
ℏ
𝜋

Im
∫ ∞

0
d𝜔 coth

(
ℏ𝜔

2𝑘B𝑇

)
tr

[
∇G0T2

(
I −M1,2

)−1 G0T1

]
. (2.18)

The T1-operator is only defined within the body. We thus extended the trace integral over the whole
space. The force on object 2 can similarly derived, one only needs to interchange the indices of the
operators from 1 to 2 and vice versa. We want to express the force on object 2 in terms M1,2 and
thus apply the identity

[
I −M2,1

]−1
G0T2 = G0T2

[
I −M1,2

]−1, which then results in the following
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2 Induced forces on objects and the scattering formalism

expression for the force on body 2

F2 =
ℏ
𝜋

Im
∫ ∞

0
d𝜔 coth

(
ℏ𝜔

2𝑘B𝑇

)
tr

[
∇G0T1G0T2

(
I −M1,2

)−1
]
. (2.19)

In thermal equilibrium F1 = −F2, we can thus introduce F = (F1 − F2)/2. Taking into consideration
that the trace is invariant under cyclic permutation and that we can move the derivative past the free
Green’s function, we find

F =
ℏ

2𝜋
Im

∫ ∞

0
d𝜔 coth

(
ℏ𝜔

2𝑘B𝑇

)
tr

[ (
I −M1,2

)−1 G0 (T1∇G0 − ∇T1G0) T2

]
. (2.20)

The derivatives are only taken with respect to components located in object 1. The derivatives can thus
also be rewritten as total derivatives with respect to the position O1 of the object [82], see also auxiliary
calculation in Sec. B.1. Making use of the identity (I −M1,2)−1∇O1M1,2 = −∇O1 log(I −M1,2), we
get

F = − ℏ
2𝜋

∫ ∞

0
d𝜔 coth

(
ℏ𝜔

2𝑘B𝑇

)
Im

[
tr∇O1 log(I − G0T1G0T2)

]
. (2.21)

The expression above constitutes the well-known TGTG formula for the Casimir force [39]. The same
expression can be found for non-reciprocal scatterers, as shown in Ref. [7]. The interaction free energy
F , which we will be considering throughout this work is given by F = −∇O1F . Furthermore, we note
that within a partial-wave expansion the free Green’s function and the T-operator can respectively
replaced by operators T𝑖 𝑗 , which describe the translation of the electromagnetic field form object 𝑗 to
𝑖 and by reflections operators R𝑖 , which describe the reflection at body 𝑖 at a reference point within
the object (see e. g. [23, 82]), as it is depicted for the two-body setup in Fig. 2.1b. The Casimir free
energy thus reads

F =
ℏ

2𝜋

∫ ∞

0
d𝜔 coth

(
ℏ𝜔

2𝑘B𝑇

)
Im [tr log (I −M(𝜔))] , (2.22)

where M = T21R1T12R2 is known as the so-called round-trip operator.

2.1.2 Analysis in imaginary frequencies, the Matsubara formalism

Due to the rapidly oscillating integrand, expression (2.22) is not practical for evaluations of the
Casimir free energy. To avoid these oscillations, a Wick rotation to imaginary frequencies is usually
performed [14]. We are thus examining the integrand of Eq. (2.22) in the complex frequency plane
𝑧 = 𝜔 + i𝜉. We define 𝑒(𝜔) = tr log(1 −M(𝜔)) and note that since the fields are real the following
relation 𝑒∗(𝜔) = 𝑒(−𝜔) holds, according to the Schwarz reflection principle. As a consequence,
the imaginary part of 𝑒(𝜔) is an odd function in 𝜔, which allows us to extend the integration in
Eq. (2.22) over the whole real frequency axis. The function 𝑒(𝑧) is analytical in the upper half
(𝜉 > 0) of the complex plane, since both Green’s functions and the T-operators are causal functions.
The hyperbolic cotangent, on the other hand, introduces singularities along the imaginary axis at the
Matsubara frequencies 𝑧 = i𝜉𝑛, with

𝜉𝑛 =
2𝜋𝑛𝑘B𝑇

ℏ
, 𝑛 ∈ Z . (2.23)
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Im(𝑧) = 𝜉

Re(𝑧) = 𝜔

C

𝜉𝑛

Figure 2.2: Integration contour C in the complex
frequency plane. The red circle symbols denote the
equidistant single poles of the hyperbolic cotangent
coth(ℏ𝑧/2𝑘B𝑇) along the imaginary axis, which
define the Matsubara frequencies 𝜉𝑛 = 2𝜋𝑛𝑘B𝑇/ℏ.

The integral over 𝑓 (𝑧) = coth(ℏ𝑧/2𝑘B𝑇)𝑒(𝑧) can thus be evaluated by applying the Cauchy residue
theorem for a contour C which encloses the singularities at i𝜉𝑛>0 as depicted in Fig. 2.2. The poles
are all simple and we obtain∮

C
d𝑧 𝑓 (𝑧) = 2𝜋i

∞∑︁
𝑛=1

Res ( 𝑓 (𝑧), i𝜉𝑛) = 2𝜋i
2𝑘B𝑇

ℏ

∞∑︁
𝑛=1

𝑒(i𝜉𝑛) . (2.24)

The integral along the semi-circle vanishes due to the high-frequency transparency of most real
materials. The pole at 𝜉0 = 0 is located directly on the contour and thus only contributes with a
factor 1/2 [91]. In summary, the Casimir free energy is given as a sum over Matsubara frequencies
as follows

F = 𝑘B𝑇
∞∑︁
𝑛=0

′
tr log(I −M(i𝜉𝑛)) , (2.25)

where the prime at the sum denotes that the term 𝑛 = 0 is counted with a factor 1/2.
In the zero-temperature limit (𝑇 = 0), the hyperbolic cotangent in Eq. (2.22) yields one. There are

thus no singularities along the positive imaginary axis and the Casimir energy follows from a Wick
rotation of (2.22), leading to

E =
ℏ

2𝜋

∫ ∞

0
d𝜉tr log (I −M(i𝜉)) . (2.26)

Our analytical and numerical calculation of the Casimir interactions between two spherical objects
will be based on Eqs. (2.25) and (2.26).

2.2 Surface integral approach

Another way to express the force on an object in an electromagnetic field is by examining the
electromagnetic stresses. By applying the Maxwell equations (1.1) and (1.2), the force density (2.1)
can also be written as

�̂�(r, 𝑡)Ê(r, 𝑡) + ĵ(r, 𝑡) × B̂(r, 𝑡) = ∇r · Ẑ(r, 𝑡) + 𝜖0
𝜕

𝜕𝑡

(
Ê(r, 𝑡) × B̂(r, 𝑡)

)
(2.27)

with the Maxwell stress tensor in vacuum [71]

Ẑ(r, 𝑡) = 𝜖0Ê(r, 𝑡) ⊗ Ê(r, 𝑡) − 𝜖0
I
2

Ê(r, 𝑡) · Ê(r, 𝑡) + 1
𝜇0

B̂(r, 𝑡) ⊗ B̂(r, 𝑡) − I
2𝜇0

B̂(r, 𝑡) · B̂(r, 𝑡) , (2.28)
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2 Induced forces on objects and the scattering formalism

where ⊗ denotes the tensor product. We assume stationary conditions, hence, the time-derivative of
the momentum density Ê × B̂ vanishes. Together with the divergence theorem, the volume integral
can be cast to a surface integral

F =
∮
𝜕𝑉

d2A · ⟨Ẑ(r, 𝑡)⟩sym (2.29)

with 𝜕𝑉 defining the boundary of the volume, which encloses the object, as illustrated in Fig. 2.1a.
In a medium, the stress tensor is given by [92, 93]

Ẑ(r, 𝑡) = D̂(r, 𝑡) ⊗ Ê(r, 𝑡) − I
2

D̂(r, 𝑡) · Ê(r, 𝑡) + Ĥ(r, 𝑡) ⊗ B̂(r, 𝑡) − I
2

Ĥ(r, 𝑡) · B̂(r, 𝑡) . (2.30)

We want to note that there is an ongoing debate about the correct form of the energy-stress tensor in
media [94] between the Minkowski and Abraham forms. However, this does not have any effect on
the time-averaged force, as both forms result in the same expression.

We will apply the surface-integral approach for the calculation of the optical force on objects
trapped by optical tweezers. For classical time-harmonic fields, the averages yield

⟨𝐷𝑖 (r, 𝑡)𝐸 𝑗 (r, 𝑡)⟩ = 1
2

Re
[
𝐷𝑖 (r, 𝜔)𝐸∗

𝑗 (r, 𝜔)
]
. (2.31)

Furthermore, we assume linear media for our optical force calculation with D = 𝜖0𝜖E and B = 𝜇0𝜇H.
The time-averaged force on a body of volume 𝑉 in an electromagnetic field is thus given by

F =
1
2

Re
∮
𝜕𝑉

d𝐴 𝑗
[
𝜖0𝜖𝐸𝑖𝐸

∗
𝑗 + 𝜇0𝜇𝐻𝑖𝐻

∗
𝑗 − 𝛿𝑖, 𝑗

1
2

(
𝜖𝜖0 |E|2 + 𝜇𝜇0 |H|2

)]
ê𝑖 , (2.32)

where 𝐸𝑖 and 𝐻𝑖 denote the electromagnetic field components on the boundary 𝜕𝑉 .
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3 Solutions to the Maxwell equations

In the previous Chapter, we introduced the scattering formula for the Casimir free energy between
two objects and the optical force expression based on the Maxwell stress tensor. The expressions
do not depend on any basis and can, in principle, be applied to any geometry of the objects in the
electromagnetic field. This Section will introduce partial-wave bases, which solve the Helmholtz
equation. Once we have the solution, we can calculate the matrix elements of the reflection and
translation operators, which enter the scattering formula for the Casimir force. We will examine
spherical objects both for the dispersion force and optical force, we are considering in this work. An
appropriate basis for this geometry is the plane-wave or spherical-wave basis, which we will both
discuss in the following Secs. 3.1 and 3.2.

3.1 A plane-wave expansion

In this work, we examine systems that consist of one or two objects. Without loss of generality, we can
thus align the objects along the positive or negative 𝑧-axis, which allows us to distinguish between
waves propagating in the positive and negative 𝑧-direction. Furthermore, due to the dispersion
relation, the components of the wave vector K = (𝐾𝑥 , 𝐾𝑦 , 𝐾𝑧) are not independent from each other,
we thus define

K = (k, 𝜎𝑘𝑧) , k = (𝐾𝑥 , 𝐾𝑦) , 𝑘𝑧 =
√︁
𝑛2𝜔2/𝑐2 − k2 , (3.1)

where k is the projection of the wave vector on a plane perpendicular to the propagation direction
and 𝜎 = ± determines the sign of 𝐾𝑧 and thus the propagation direction along the 𝑧-direction. We
additionally used the dispersion relation with the refractive index of the medium 𝑛 to express the
axial wave vector 𝑘𝑧 . The electric and magnetic fields are transverse vector fields, meaning they are
perpendicular to the wave vector. Thus, it is convenient to introduce an orthonormal basis in which
the fields are expanded. For the polarisation vectors of the electric field, we choose

ϵ̂TE(K̂) = 𝑧 × K̂ = 𝜙𝐾 , ϵ̂TM(K̂) = ϵ̂TE(K̂) × K̂ = 𝜃𝐾 , (3.2)

therefore (K̂, ϵ̂TM, ϵ̂TE) defines a right-handed basis. Note that the hat over the vectors indicates
that these are unit vectors, so K̂ = K/|K| = (sin 𝜃𝐾 cos 𝜙𝐾 , sin 𝜃𝐾 sin 𝜙𝐾 , cos 𝜃𝐾 ) in spherical
coordinates. ϵ̂TE defines the transversal electric (TE) polarisation for which the electric field is
orthogonal to the plane spanned by the 𝑧-axis and the wave vector, called the Fresnel plane (F). Both
polarisation vectors can be expressed in terms of the unit vectors of spherical coordinates denoted by
𝜙𝐾 = (− sin 𝜙𝐾 , cos 𝜙𝐾 , 0) and 𝜃𝐾 = (cos 𝜃𝐾 cos 𝜙𝐾 , cos 𝜃𝐾 sin 𝜙𝐾 ,− sin 𝜃𝐾 ).

According to Eq. (1.2), the electric and magnetic fields are orthogonal to each other with K × E =
𝜔B, which means that the unit vectors for the magnetic field can also be expressed in terms of Eq. (3.2)
with

β̂𝑝 = K̂ × ϵ̂𝑝 , (3.3)

where 𝑝 = TE,TM. The unit vector β̂TM = ϵ̂TE thus defines the transversal magnetic (TM)
polarisation for which the magnetic field is orthogonal to the plane spanned by the 𝑧-axis and the
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3 Solutions to the Maxwell equations

wave vector. The expression of the electromagnetic field in a planar wave expansion is thus given by

E(r, 𝑡) =
∑︁
𝑀

[
𝑎𝑀 ϵ̂𝑝e−i𝜔𝑡+ik·ρ+i𝜎𝑘𝑧 𝑧 + 𝑐.𝑐.] (3.4)

with ρ = (𝑥, 𝑦) and the multi-index 𝑀 summing over all field modes (𝜔, k, 𝑝, 𝜎) according to∑︁
𝑀

=
∑︁

𝑝=TE,TM

∑︁
𝜎=±

∫
d2k
(2𝜋)2

∫ ∞

0

d𝜔
2𝜋𝑐

𝑛2𝜔

𝑐𝑘𝑧
, (3.5)

where we again used the dispersion relation (3.1), to rewrite the integral over the axial wave vector in
terms of a frequency integral. The magnetic field can be obtained from the electric field by applying
the Maxwell equation (1.2). For a classical field, the expansion coefficients 𝑎𝑀 describe the field
amplitudes. In Chap. 5, we will derive the field amplitudes for a structured light field, used in an optical
tweezer setting. The plane-wave expansion above is also known as angular spectrum decomposition
[95]. For a quantum field, the amplitudes are operators which obey the Bose commutation relations
[96] [

𝑎𝑀 , 𝑎
†
𝑀′

]
= 𝛿𝑀,𝑀′ , [𝑎𝑀 , 𝑎𝑀′] = 0 =

[
𝑎†𝑀 , 𝑎

†
𝑀′

]
, (3.6)

where 𝛿𝑀,𝑀′ = (2𝜋)3𝛿 (2) (k−k′)𝛿(𝑘𝑧−𝑘 ′𝑧)𝛿𝜎,𝜎′ . In the following, we are using the basis independent
notation |k, 𝑝, 𝜎⟩ for the plane-wave modes such that the spatial representation corresponds with
⟨r|k, 𝑝, 𝜎⟩ ∝ ϵ̂𝑝 (K̂)eik·ρ+i𝜎𝑘𝑧 𝑧 . We refrained from adding the frequency dependence to the mode
definition since the frequency is conserved during scattering processes in all cases studied in this
thesis. Note that the plane-wave basis defines an orthogonal and complete set with the identity given
by [97]

Id =
∑︁

𝑝=TE,TM

∑︁
𝜎=±

∫
d2k
(2𝜋)2 |k, 𝑝, 𝜎⟩ ⟨k, 𝑝, 𝜎 | . (3.7)

3.2 A spherical-wave expansion

Apart from plane waves, solutions to the Helmholtz equation can also be expanded in terms of
spherical waves. The electric field is then given by [80]

E(r) =
∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

[
𝑒𝑙,𝑚N𝑠𝑙,𝑚(r) + 𝑓𝑙,𝑚M𝑠

𝑙,𝑚(r)
]
, (3.8)

where the spherical vector fields M𝑠
𝑙,𝑚 and N𝑠𝑙,𝑚 respectively define the magnetic (M) and electric (E)

modes of the field. They are, in general, defined by [80]

M𝑠
𝑙,𝑚(r) = 𝑧𝑙 (𝐾𝑟)X𝑙,𝑚(r̂) , (3.9a)

N𝑠𝑙,𝑚(r) =
1
𝐾
∇r × M𝑙,𝑚(r) = 1

𝐾𝑟

[
i
√︁
𝑙 (𝑙 + 1)𝑧𝑙 (𝐾𝑟)Z𝑙,𝑚(r̂) + 𝜕

𝜕𝑟
(𝑟𝑧𝑙 (𝑘𝑟))Y𝑙,𝑚(r̂)

]
. (3.9b)

The indices 𝑙 and 𝑚 are associated with the eigenvalues of the angular-momentum operators L̂2

and �̂�𝑧 . Charge-neutrality forbids a monopole term, which is why 𝑙 takes values between 1 and
∞. The radial field dependence 𝑧𝑙 (𝐾𝑟) with 𝑟 = |r| is defined by the spherical Bessel functions
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3.2 A spherical-wave expansion

of order 𝑙, which for regular (reg) waves is given by the spherical Bessel functions of the first kind
𝑗𝑙 (𝐾𝑟), while for outgoing (out) waves, we have to consider spherical Hankel functions of the first
kind ℎ (1)𝑙 (𝐾𝑟). The spherical Hankel functions correctly reproduce the large distance behaviour
expected for spherical waves far from the origin of the coordinate system with lim𝐾𝑟→∞ ℎ

(1)
𝑙 (𝐾𝑟) =

(−1)𝑙+1ei𝐾𝑟/𝐾𝑟. We will differentiate between the two cases with the superscript 𝑠 = reg, out in
the spherical vector fields. We furthermore introduced the so-called vector spherical harmonics
X𝑙,𝑚,Y𝑙,𝑚 and Z𝑙,𝑚 with X𝑙,𝑚(r̂) ≡ X𝑙,𝑚(𝜃, 𝜑), where the unit vector in radial direction is given by
r̂ = r/|r| = (sin 𝜃 cos 𝜑, sin 𝜃 sin 𝜑, cos 𝜃). According to [98, p.210], they are defined by

X𝑙,𝑚(r̂) =
−i(r̂ × ∇r)𝑌𝑚𝑙 (r̂)√︁

𝑙 (𝑙 + 1)
, Y𝑙,𝑚(r̂) = r̂ × X𝑙,𝑚(r̂) , Z𝑙,𝑚(r̂) = r̂𝑌𝑚𝑙 (r̂) , (3.10)

with the spherical harmonics 𝑌𝑚𝑙 (r̂) ≡ 𝑌𝑚𝑙 (𝜃, 𝜑) given by

𝑌𝑚𝑙 (𝜃, 𝜑) =
√︄

(2𝑙 + 1)
4𝜋

(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃

𝑚
𝑙 (cos 𝜃)ei𝑚𝜑 (3.11)

and the associated Legendre polynomials 𝑃𝑚𝑙 (𝑧). The vector spherical harmonics are orthonormal
on the unit sphere 𝑆2, with e. g.

∫
𝑆2 dΩX𝑙,𝑚 · X𝑙′ ,𝑚′ = 𝛿𝑙,𝑙′𝛿𝑚,𝑚′ and

∫
𝑆2 dΩX𝑙,𝑚 · Y𝑙′ ,𝑚′ = 0. The

same relations apply to the combinations of the other vector fields. Note that Z𝑙,𝑚 is a longitudinal
vector field. For classical fields, the amplitudes 𝑒𝑙,𝑚 and 𝑓𝑙,𝑚 are just expansion coefficients, which
one can evaluate by making use of the orthonormality of the vector spherical harmonics as we will
see in the next Chapter. For a quantum field they are promoted to operators [99, 100], which obey
the canonical commutation relations.

Similar to the plane-wave expansion, we also introduce a basis independent notation for the
spherical waves with |ℓ, 𝑚, 𝑃, 𝑠⟩, where the spatial representation of the modes given in Eq. (3.8)
is determined by ⟨r|ℓ, 𝑚, 𝑃, 𝑠⟩. The frequency dependence is implicit again. The multipole basis
defines a complete set, where the identity is defined by [97]

Id =
∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

∑︁
𝑃=E,M

∑︁
𝑠=reg,out

|𝑙, 𝑚, 𝑃, 𝑠⟩ ⟨𝑙, 𝑚, 𝑃, 𝑠 | . (3.12)

We are going to make use of the respective identities when changing from one representation of
the electromagnetic field to the other.
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4 Scattering of electromagnetic waves at a spherical
object

The scattering amplitudes of a PEMC sphere, derived in Sec. 4.2 and Sec. 4.3, can be found in the
published article [101].

In this Chapter, we will discuss the scattering of electromagnetic waves at a bi-isotropic sphere.
We provide explicit expressions for the reflection coefficients in both the spherical- and plane-wave
basis. All results are derived for imaginary frequencies, which is relevant for calculating the Casimir
free energy, as we discussed in Sec. 2.1.2. In Sec. 4.1, we present the reflection coefficients for
a bi-isotropic sphere for incident spherical waves. Furthermore, we also discuss the scattering of
planar waves at a spherical object. In this work, we examine various limiting cases of the Casimir
interaction, requiring the corresponding asymptotic expansions of the reflection coefficients. We
provide asymptotic expansions for large radii in Sec. 4.2, which can be related to the geometrical
optics approximation for real frequencies. Furthermore, we also derive expressions in the static
limit in Sec. 4.3, which will be particularly important for our study of the Casimir interaction in the
high-temperature limit. Within the static limit, we also consider the large-sphere regime.

4.1 Scattering at a bi-isotropic sphere

We consider a spherical object of radius 𝑅 located in the centre of the coordinate system. The material
of the sphere is bi-isotropic, defined by the constitutive equations (1.7), while the surrounding medium
is non-chiral with material properties described by permittivity 𝜖m and permeability 𝜇m. To determine
the scattered field, we need to employ appropriate boundary conditions. We assume that there are no
free charges and no surface currents. The boundary conditions for the tangential components of the
electric and magnetic field thus read [80]

[r̂ × E1(r) = r̂ × E2(r)]𝑟=𝑅 , [r̂ × H1(r) = r̂ × H2(r)]𝑟=𝑅 , (4.1)

where r̂ = r/|r| represents the unit vector in radial direction. The indices 1 and 2 account for the
fields outside and inside of the sphere. Equivalently, the continuity of the normal components of D
and B can be considered.

4.1.1 Scattering of a spherical wave at a spherical object

The Mie coefficients are well-known for an isotropic sphere from [80], while analytical solutions for
bi-isotropic materials are also available [79, 102] and will be used in the following. Note, however, that
the constitutive equations used in Ref. [79] differ from the ones we defined in Eq. (1.7). Furthermore,
the results are computed for real frequencies while we provide expressions for imaginary frequencies.

As we discussed earlier, there are two contributions to the field outside an object, the initial incident
(inc) field and the scattered (scat) field

E1(r) = Einc(r) + Escat(r) . (4.2)
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4.1 Scattering at a bi-isotropic sphere

The incident field is regular within the sphere. We thus define

Einc(r) =
∑︁
𝑙,𝑚

[
𝑒𝑙,𝑚Nreg

𝑙,𝑚(r) + 𝑓𝑙,𝑚Mreg
𝑙,𝑚(r)

]
, (4.3)

where 𝑒𝑙,𝑚 and 𝑓𝑙,𝑚 are general expansion coefficients of the electric and magnetic field modes
introduced in Sec. 3.2. For real frequencies, the radial dependence of the vector spherical functions
is defined by the spherical Bessel function of the first kind, as discussed earlier. For imaginary
frequencies 𝜔 → i𝜉, the spherical Bessel functions are replaced by the modified Bessel function of
the first kind 𝐼𝑙+1/2(𝑥)

𝑗𝑙 (i𝑥) → i𝑙
√︂

2
𝜋𝑥
𝐼𝑙+1/2(𝑥) (4.4)

with the aspect ratio 𝑥 = K𝑅, where K defines the modulus of the wave vector K in the medium after
Wick rotation, which is together with the dispersion relation in the surrounding medium given by

K =
𝜉𝑛m(i𝜉)

𝑐
. (4.5)

Note that the refractive index of the medium is also evaluated at imaginary frequencies. In contrast
to the incident field, the scattered field is described by outgoing vector spherical waves, as follows

Escat(r) =
∑︁
𝑙,𝑚

[
𝑎𝑙,𝑚Nout

𝑙,𝑚(r) + 𝑏𝑙,𝑚Mout
𝑙,𝑚(r)

]
. (4.6)

For real frequencies, the radial dependence is given by the spherical Hankel functions. For imaginary
frequencies, we have to replace them by modified Hankel functions 𝐾𝑙+1/2(𝑥)

ℎ (1)𝑙 (i𝑥) → −i𝑙
2
𝜋

√︂
2
𝜋𝑥
𝐾𝑙+1/2(𝑥) . (4.7)

The Maxwell equation ∇ × E = −i𝜔𝜇m𝜇0H can be used to obtain the respective magnetic fields.
As shown in Eq. (1.9), the electromagnetic field within a bi-isotropic medium can be expressed as a
superposition of waves with wave numbers 𝐾L,R (1.12). The electric and magnetic field thus yield
[79]

E2(r) =
∑︁
𝑙,𝑚

[
𝐴𝑙,𝑚

(
Mreg,L
𝑙,𝑚 (r) + Nreg,L

𝑙,𝑚 (r)
)
+ 𝐵𝑙,𝑚

(
Mreg,R
𝑙,𝑚 (r) − Nreg,R

𝑙,𝑚 (r)
)]
, (4.8a)

H2(r) = 𝑎𝐿
∑︁
𝑙,𝑚

[
𝐴𝑙,𝑚

(
Mreg,L
𝑙,𝑚 (r) + Nreg,L

𝑙,𝑚 (r)
)
+ 𝐵𝑙,𝑚
𝑎L𝑎R

(
Mreg,R
𝑙,𝑚 (r) − Nreg,R

𝑙,𝑚 (r)
)]
, (4.8b)

where the additional superscripts ’L’ and ’R’ at the spherical vector fields account for wave propaga-
tion with the wave numbers 𝐾L,R. The coefficients 𝑎L,R are defined in Eq. (1.9). Note that the vector
fields M𝑙,𝑚 ± N𝑙,𝑚 are so-called Beltrami fields [103], which are vector fields that are proportional
to their curl. The spherical Bessel functions, which enter the spherical vector fields, are given by
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4 Scattering of electromagnetic waves at a spherical object

𝑗𝑙 (i𝑚L,R𝑥), where 𝑚L,R accounts for the ratio of the refractive index of the sphere and medium (1.10)

𝑚L,R =
𝑛L,R

𝑛m
=

1
𝑛m

√︂
𝜖 𝜇 − (𝛼 + 𝛽)2

4
± i
𝛽 − 𝛼

2
. (4.9)

We solve the boundary equation (4.1) by making use of the expansion of the spherical vector fields in
terms of vector spherical harmonics (3.9) and their orthonormality along the unit sphere. The electric
and magnetic expansion coefficients of the scattered field are then found as linear superposition of
the expansion coefficients for the incident field(

𝑎𝑙,𝑚

𝑏𝑙,𝑚

)
= −

(
𝑟 (E,E)𝑙 i𝑟 (E,M)

𝑙

−i𝑟 (M,E)𝑙 𝑟 (M,E)𝑙

) (
𝑒𝑙,𝑚

𝑓𝑙,𝑚

)
. (4.10)

The diagonal entries 𝑟 (𝑃,𝑃)𝑙 account for the polarisation-conserving Mie reflection coefficients, which
are given by

𝑟 (E,E)𝑙 (𝑥) = 𝐶𝑙 (𝑥)
𝑊𝑅
𝑙 (𝑥)𝐴L

𝑙 (𝑥) +𝑊𝐿
𝑙 (𝑥)𝐴𝑅𝑙 (𝑥)

𝑊𝑅
𝑙 (𝑥)𝑉L

𝑙 (𝑥) +𝑊𝐿
𝑙 (𝑥)𝑉𝑅𝑙 (𝑥) , (4.11a)

𝑟 (M,M)
𝑙 (𝑥) = 𝐶𝑙 (𝑥)

𝑉𝑅𝑙 (𝑥)𝐵L
𝑙 (𝑥) +𝑉𝐿𝑙 (𝑥)𝐵𝑅𝑙 (𝑥)

𝑊𝑅
𝑙 (𝑥)𝑉L

𝑙 (𝑥) +𝑊𝐿
𝑙 (𝑥)𝑉𝑅𝑙 (𝑥) , (4.11b)

where we adapted the notation from Ref. [80] and introduced the following auxiliary variables(
𝐴L,R
𝑙

𝐵L,R
𝑙

)
=

(
1 −𝑚∓

𝑚∓ −1

) ( {𝐼, 𝑥}
{𝐼, 𝑚L,R𝑥}

)
,

(
𝑉L,R
𝑙

𝑊L,R
𝑙

)
=

(
1 𝑚∓

𝑚∓ 1

) ( −{𝐾, 𝑥}
{𝐼, 𝑚L,R𝑥}

)
(4.12)

which we have written in a matrix-vector equation for convenience. 𝑚± defines the relative impedance

𝑚± =
√︂
𝜖m𝜇

𝜖𝜇m


√︄

1 − (𝛼 + 𝛽)2

4𝜖 𝜇
∓ i

(𝛼 + 𝛽)2

4𝜖 𝜇

 . (4.13)

The expressions {𝐼, 𝑧} and {𝐾, 𝑧} account for logarithmic derivatives of the modified Bessel functions
with

{I, 𝑧} =
I′
𝑙+1/2(𝑧)
I𝑙+1/2(𝑧)

+ 1
2𝑧
, (4.14)

where I𝑙+1/2(𝑧) either represents the modified Bessel functions of the first kind 𝐼𝑙+1/2(𝑧) or the
modified Hankel functions 𝐾𝑙+1/2(𝑧). The notation was inspired by a similar one in Ref. [104]. The
prefactor 𝐶𝑙 (𝑥) in Eq. (4.11) accounts for the ratio of the two Bessel functions

𝐶𝑙 (𝑥) = (−1)𝑙 𝜋
2
𝐼𝑙+1/2(𝑥)
𝐾𝑙+1/2(𝑥)

. (4.15)

The reflection coefficients are deliberately only written in ratios of Bessel functions. One reason is
that the given form of the reflections coefficient is helpful when examining several limiting cases, such
as the large sphere regime or the static limit, as we will see in the following Sections. Furthermore,
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4.1 Scattering at a bi-isotropic sphere

routines already exist for an efficient calculation of the ratios of Bessel functions (see e.g. Ref. [105]),
which is relevant for the numerical computation of the Casimir free energy. Lastly, in this work, we
examine the Casimir force on spherical objects and the optical force induced by an external laser
field. In the latter case, we need the reflection coefficients for real frequencies. For real frequencies,
the modified Bessel functions are replaced by the spherical Bessel functions and the spherical Hankel
functions of the first kind, as we discussed above in Eqs. (4.4) and (4.7).

For the polarisation-mixing Mie reflection coefficient 𝑟 (𝑃,�̄�)𝑙 , we find

𝑟 (M,E)𝑙 = i𝐶𝑙 (𝑥) [{𝐼, 𝑥} − {𝐾, 𝑥}] 𝑚−{𝐼, 𝑚R𝑥} − 𝑚+{𝐼, 𝑚L𝑥}
𝑊𝑅
𝑙 𝑉

L
𝑙 +𝑊𝐿

𝑙 𝑉
𝑅
𝑙

, (4.16a)

𝑟 (E,M)
𝑙 = i𝐶𝑙 (𝑥) [{𝐼, 𝑥} − {𝐾, 𝑥}] 𝑚−{𝐼, 𝑚L𝑥} − 𝑚+{𝐼, 𝑚R𝑥}

𝑊𝑅
𝑙 (𝑥)𝑉L

𝑙 (𝑥) +𝑊𝐿
𝑙 (𝑥)𝑉𝑅𝑙 (𝑥) . (4.16b)

In the isotropic limit, we get 𝑚L = 𝑚R and 𝑚+ = 𝑚− and the scattering coefficients reduce to the
known Mie expressions [80] for imaginary frequencies with 𝑟 (E,E)𝑙 = 𝐶𝑙𝐴𝑙/𝑉𝑙 and 𝑟 (M,M)

𝑙 = 𝐶𝑙𝐵𝑙/𝑊𝑙
while the polarisation-mixing coefficients yield zero. Furthermore, one also notices that for reciprocal
material (𝛼 = −𝛽) the relative impedance 𝑚±, defined in Eq. (4.13) becomes the same and the
reflection coefficients 𝑟 (E,M)

𝑙 and 𝑟 (M,E)𝑙 only differ by a minus sign.
We are particularly interested in non-reciprocal materials, with the earlier introduced PEMC

materials as a special case. According to Eq. (1.6), the parameter 𝑚L,R is going to infinity in the
PEMC limit, while 𝑚± = ∓i tan(𝜃), where 𝜃 conveys the transition from perfect electric 𝜃 = 0 to
perfect magnetic 𝜃 = 𝜋/2 conductor. The polarisation-conserving Mie coefficients thus yield

𝑟 (E,E)𝑙 (𝑥) = −𝐶𝑙 (𝑥)
[
cos2(𝜃) {𝐼, 𝑥}{𝐾, 𝑥} + sin2 𝜃

]
, (4.17a)

𝑟 (M,M)
𝑙 (𝑥) = −𝐶𝑙 (𝑥)

[
cos2(𝜃) + sin2 𝜃

{𝐼, 𝑥}
{𝐾, 𝑥}

]
. (4.17b)

The two polarisation-mixing coefficients become identical, and they are given by

𝑟 (M,E)𝑙 (𝑥) = 𝑟 (E,M)
𝑙 (𝑥) = −𝐶𝑙 (𝑥) sin(2𝜃)

2

[ {𝐼, 𝑥}
{𝐾, 𝑥} − 1

]
. (4.18)

The Mie coefficients for a PEMC sphere can thus also be obtained from a duality transformation of
the Mie coefficients of either one of the two limiting cases 𝜃 = 0 or 𝜃 = 𝜋/2, which we will discuss
below in more detail.

We conclude by providing the expression for the matrix elements of the reflection operator R of a
bi-isotropic sphere in the multipole basis, which yield

⟨𝑙′, 𝑚′, 𝑃′, 𝑠′ |R |𝑙, 𝑚, 𝑃, 𝑠⟩ = −i𝑃
′−𝑃𝑟 (𝑃

′ ,𝑃)
𝑙 𝛿𝑙,𝑙′𝛿𝑚,𝑚′𝛿𝑠,reg𝛿𝑠′ ,out , (4.19)

where we identify the polarisation in the exponents of the imaginary unit as 1 (2) for E (M). The
expression represents the scattering of an incident 𝑃-polarised spherical wave, regular at the origin,
into an outgoing 𝑃′-polarised spherical wave. The amplitude is given by the Mie reflection coefficients
𝑟 (𝑃

′ ,𝑃)
𝑙 which are independent of 𝑚. 𝑙 and 𝑚 are conserved during the scattering process.
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4 Scattering of electromagnetic waves at a spherical object
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Figure 4.1: Scattering geometry at a sphere. The incident
wave vector K𝑖 and the symmetry axis 𝑧 define the Fresnel plane
(F), while the scattering plane (S) is spanned by the incident and
the outgoing wave vector K 𝑗 . The scattering angle Θ is defined
by cos(Θ) = K̂𝑖 · K̂ 𝑗 .

4.1.2 Scattering of a plane wave at a spherical object

In this Section, we consider the scattering of a plane wave with a wave vector K𝑖 , as shown in Fig. 4.1
and polarisation 𝑝𝑖 , which is scattered at a sphere. The scattered wave is then defined by a wave
vector K 𝑗 and a polarisation 𝑝 𝑗 . The plane spanned by the incident and reflected wave vector is
called scattering plane (S). To make use of the results, which we obtained in the previous Section, we
perform a basis change from plane waves to spherical waves by introducing the identity (3.12) in the
multipole basis as follows

⟨k 𝑗 , 𝑝 𝑗 ,±|R|k𝑖 , 𝑝𝑖 ,∓⟩ =
∑︁
𝑃,𝑃′

∑︁
𝑙,𝑚,𝑙′ ,𝑚′

⟨k 𝑗 , 𝑝 𝑗 ,±|𝑙′, 𝑚′, 𝑃′, out⟩

× ⟨𝑙′, 𝑚′, 𝑃′, out|R |𝑙, 𝑚, 𝑃, reg⟩ ⟨𝑙, 𝑚, 𝑃, reg|k𝑖 , 𝑝𝑖 ,∓⟩ ,
(4.20)

where we already accounted for the fact that the propagation direction changes upon scattering. Due
to conservation of the angular momentum numbers (𝑙, 𝑚), the reflection matrix elements simplify
with the earlier obtained Mie reflections coefficients (4.19) to

⟨k 𝑗 , 𝑝 𝑗 ,±|R|k𝑖 , 𝑝𝑖 ,∓⟩ = −
∑︁
𝑃,𝑃′

∑︁
𝑙,𝑚

i𝑃
′−𝑃𝑟 (𝑃

′ ,𝑃′ )
𝑙 ⟨k 𝑗 , 𝑝 𝑗 ,±|𝑙, 𝑚, 𝑃′, out⟩ ⟨𝑙, 𝑚, 𝑃, reg|k𝑖 , 𝑝𝑖 ,∓⟩ .

(4.21)
The basis transformation coefficient can be computed by expressing both bases in their respective

spatial form. Already Canaguier-Durand et al. determined in Ref. [106] the coefficients for a
transformation from the spherical to the plane-wave basis. The set of transformation coefficients was
completed by Messina et al. in Ref. [107]. The transformation coefficient from a spherical wave to a
plane wave is given by

⟨k, 𝑝,±|𝑙, 𝑚, 𝑃, out⟩ = 2𝜋
i1−𝑝√︁
𝑙 (𝑙 + 1)

1
K𝜅

(
𝑚

sin 𝜃𝐾

) 𝛿𝑝,𝑃 (
𝜕

𝜕𝜃𝐾

)1−𝛿𝑝,𝑃
Y𝑚𝑙 (K̂) (4.22)

with the spherical harmonics in reciprocal space Y𝑚𝑙 (K̂) ≡ Y𝑚𝑙 (𝜃𝐾 , 𝜙𝐾 ). The coefficient for a
transformation from a planar wave to a spherical wave is given by

⟨𝑙, 𝑚, 𝑃, reg|k, 𝑝,±⟩ = −4𝜋
i𝑝−1√︁
𝑙 (𝑙 + 1)

(
𝑚

sin 𝜃𝐾

) 𝛿𝑝,𝑃 (
𝜕

𝜕𝜃𝐾

)1−𝛿𝑝,𝑃
Y𝑚𝑙

∗(K̂) . (4.23)

We identify the polarisation coefficient 𝑝 = TE (TM) with 1 (2) and 𝑃 = E (M) accordingly with 1
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4.1 Scattering at a bi-isotropic sphere

(2) as before. An angle addition theorem for spherical harmonics allows us to carry out the sum over
𝑚 with [98, p. 164]

𝑃𝑙 (cos(Θ)) = 4𝜋
2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

(
𝑌𝑚𝑙 (K̂𝑖)

)∗
𝑌𝑚𝑙 (K̂ 𝑗) , (4.24)

where the argument of the Legendre polynomials of order 𝑙 depends on the angle between the incident
and the reflected wave vector, illustrated in Fig. 4.1, and for imaginary frequencies defined by

cosΘ = K̂𝑖 · K̂ 𝑗 = − 1
K2

(
k𝑖 · k 𝑗 + 𝜅𝑖𝜅 𝑗

)
. (4.25)

After introducing the basis transformations coefficients (4.22) and (4.23) into Eq. (4.21) and perform-
ing the sum over 𝑚 with (4.24), we obtain the following expression for the reflection matrix elements
in the plane-wave basis

⟨k 𝑗 , 𝑝 𝑗 ,±|R|k𝑖 , 𝑝𝑖 ,∓⟩ = 2𝜋
K𝜅 𝑗

[
𝐴 𝑗 ,𝑖𝑆𝑝 𝑗 , 𝑝𝑖 (Θ) + (−1) 𝑝 𝑗+𝑝𝑖𝐵 𝑗 ,𝑖𝑆 �̄� 𝑗 , �̄�𝑖 (Θ)

− (−1) 𝑝 𝑗𝐶 𝑗 ,𝑖𝑆 �̄� 𝑗 , 𝑝𝑖 (Θ) + (−1) 𝑝𝑖𝐷 𝑗 ,𝑖𝑆𝑝 𝑗 , �̄�𝑖 (Θ)
]
.

(4.26)

The bar over a polarisation refers to the other polarisation, i.e. 𝑝 = TE if 𝑝 = TM and vice versa.
𝑆𝑝,𝑝′ defines the amplitude scattering matrix elements [80] for a bi-isotropic sphere, which are given
by

𝑆𝑝,𝑝′ (Θ) =
∞∑︁
𝑙=1

2𝑙 + 1
𝑙 (𝑙 + 1)

[
𝑟 (𝑃,𝑃

′ )
𝑙 𝜏𝑙 (cosΘ) + (−1)𝑃′−𝑃𝑟 ( �̄�, �̄�

′ )
𝑙 𝜋𝑙 (cosΘ)

]
, (4.27)

where 𝑝 = TM(TE) corresponds to 𝑃 = E(M). The angular functions 𝜋𝑙 (cosΘ) and 𝜏𝑙 (cosΘ) are
defined by [80]

𝜋𝑙 (𝑧) = 𝑃′
𝑙 (𝑧) =

𝑃1
𝑙 (𝑧)√
𝑧2 − 1

, 𝜏𝑙 (𝑧) = −𝑧𝜋𝑙 (𝑧) + 𝑙 (𝑙 + 1)𝑃𝑙 (𝑧) . (4.28)

The coefficients 𝐴 𝑗 ,𝑖 , 𝐵 𝑗 ,𝑖 , 𝐶 𝑗 ,𝑖 and 𝐷 𝑗 ,𝑖 account for the conversion from the scattering plane (S) to
the Fresnel plane (F), both illustrated in Fig. 4.1. They are given by [33]

𝐴 𝑗 ,𝑖 = 𝐴(K̂ 𝑗 , K̂𝑖) =
K4 cos(𝜙 𝑗 ,𝑖) −

[
𝜅𝑖𝜅 𝑗 + 𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)

] [
𝑘𝑖𝑘 𝑗 + 𝜅𝑖𝜅 𝑗 cos(𝜙 𝑗 ,𝑖)

]
K4 − [

𝜅𝑖𝜅 𝑗 + 𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)
]2 , (4.29a)

𝐵 𝑗 ,𝑖 = 𝐵(K̂ 𝑗 , K̂𝑖) = − K2𝑘𝑖𝑘 𝑗 sin2(𝜙 𝑗 ,𝑖)
K4 − [

𝜅𝑖𝜅 𝑗 + 𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)
]2 , (4.29b)

𝐶 𝑗 ,𝑖 = 𝐶 (K̂ 𝑗 , K̂𝑖) = +K sin(𝜙 𝑗 ,𝑖)
𝜅 𝑗 𝑘

2
𝑖 + 𝜅𝑖𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)

K4 − [
𝜅𝑖𝜅 𝑗 + 𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)

]2 , (4.29c)

𝐷 𝑗 ,𝑖 = 𝐷 (K̂ 𝑗 , K̂𝑖) = −K sin(𝜙 𝑗 ,𝑖)
𝜅𝑖𝑘

2
𝑗 + 𝜅 𝑗 𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)

K4 − [
𝜅𝑖𝜅 𝑗 + 𝑘𝑖𝑘 𝑗 cos(𝜙 𝑗 ,𝑖)

]2 , (4.29d)

where 𝜙 𝑗 ,𝑖 = 𝜙𝐾 𝑗 − 𝜙𝐾𝑖 . Note that in the zero-frequency limit (K = 0), expect for 𝐴 𝑗 ,𝑖 , all other
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4 Scattering of electromagnetic waves at a spherical object

polarisation conversion coefficient yield zero and 𝐴 𝑗 ,𝑖 = 1. The same holds for k𝑖 = k 𝑗 . We will
employ this simplification on several occasions in this thesis.

We note that in the isotropic limit, the Mie reflection coefficient 𝑟 (E,M)
𝑙 and 𝑟 (M,E)𝑙 vanish and the

reflection matrix elements (4.26) agree with the ones presented in Ref. [33].

4.2 Scattering at a large sphere, the geometrical optics regime

The Casimir interaction between large spheres is of particular interest. We thus analyse the reflection
at large bi-isotropic spheres. First, we determine the expression for the reflection coefficients and
follow up with the expansion of the scattering amplitudes. The discussion shown in the following
is valid for finite frequency, but the zero-frequency limit is discussed in detail in the next Section.
The general approach is demonstrated for the PEMC spheres. Results for bi-isotropic spheres are
presented in Appendix B.2.

4.2.1 Reflection coefficients for a large sphere

We derive the asymptotic expansion of the Mie coefficients (4.11) and (4.16) by employing the Debye
expansion of the modified Bessel functions for 𝑥 = K𝑅 ≫ 1. With the expansion of the logarithmic
derivatives of the Bessel functions of the first (A.3a) and second kind (A.3b), we find for (4.14)

{𝐼, 𝑥} ≈
√︁

1 + Λ2 + 1
2𝑥

Λ2

1 + Λ2 , {𝐾, 𝑥} ≈ −
√︁

1 + Λ2 + 1
2𝑥

Λ2

1 + Λ2 , (4.30)

where we introduced Λ = 𝜆/𝑥 with 𝜆 = 𝑙 +1/2. The ratio of the Bessel functions defined in Eq. (4.15)
yields together with (A.1)

𝐶𝑙 (𝑥) ≈ (−1)𝑙 e
Ψ(Λ)

2

[
1 + 𝑐(Λ)

𝑥

]
, 𝑐(Λ) = 1

4
√

1 + Λ2
− 5Λ2

12(1 + Λ2)3/2 , (4.31)

where the argument of the exponential is given by

Ψ(Λ) = 2𝑥
[√︁

1 + Λ2 − Λarcsinh(Λ)
]
. (4.32)

With the above-introduced expression, we find that the Mie reflection coefficients (4.11) and (4.16),
can be cast to the following form

𝑟 (𝑃,𝑃
′ )

𝑙 = (−1)𝑙 e
Ψ

2
𝑟𝑝,𝑝′ (Λ)

[
1 + 𝜌𝑝,𝑝′ (Λ)

𝑥
+ O(𝑥−2)

]
. (4.33)

The coefficient 𝑟𝑝,𝑝′ (Λ) accounts for the leading-order term, while 𝜌𝑝,𝑝′ (Λ) presents the leading
correction in the 𝑥 ≫ 1 expansion. As mentioned above, we are only going to present the expansion
for the PEMC spheres here, the corresponding terms for general bi-isotropic materials can be found
in Appendix B.2. The leading terms for PEMC spheres are according to Eqs. (4.17) and (4.18) given
by

𝑟TM,TM = cos(2𝜃) , 𝑟TE,TE = − cos(2𝜃) , 𝑟TE,TM = 𝑟TM,TE = − sin(2𝜃) . (4.34)
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4.2 Scattering at a large sphere, the geometrical optics regime

Recall that the material parameter 𝜃 takes values between 0 and 𝜋/2, accounting for a PEC and PMC.
The subleading terms in Eq. (4.33) yield

𝜌TM,TM(Λ) = 𝑐(Λ) + cos2(𝜃)
cos(2𝜃)

Λ2

(1 + Λ2)3/2 , 𝜌TE,TE(Λ) = 𝑐(Λ) − sin2(𝜃)
cos(2𝜃)

Λ2

(1 + Λ2)3/2 , (4.35a)

𝜌TM,TE(Λ) = 𝜌TE,TM(Λ) = 𝑐(Λ) + 1
2

Λ2

(1 + Λ2)3/2 , (4.35b)

where 𝑐(Λ) (4.31) defines the leading correction of 𝐶𝑙 (𝑥). The term appears as a prefactor for all
reflection coefficients and thus does not depend on the explicit material properties.

4.2.2 Amplitude scattering matrix for a large sphere

The expansion in Eq. (4.33) is sufficient for calculations in the multipole representation of the
reflection operator but not for the plane-wave representation. There, it is necessary to evaluate the
sum over angular momenta 𝑙 of the scattering amplitudes (4.26). The localization principle [108]
plays an important role in this expansion. According to this principle, the scattering of a ray with an
impact parameter 𝑏 on the sphere (see Fig. 4.2) is dominated by angular momenta of the order of K𝑏.
Given the localization principle, we must account for angular momenta 𝜆 = 𝑙 + 1/2 ≲ 𝑥. Since the
size parameter 𝑥 = K𝑅 for a fixed frequency K becomes large for large radii 𝑅, we can approximate
the sums in Eq. (4.27) by integrals over 𝜆 [34]

𝑆𝑝,𝑝′ = 2
∞∑︁
𝑙=1

(𝑙 + 1/2)ℎ(𝑙 + 1/2) ≈ 2
∫ ∞

1/2
d𝜆𝜆ℎ(𝜆) . (4.36)

The summands ℎ(𝑙 + 1/2) of the amplitudes scattering matrix elements involve the reflection
coefficients and the angular functions 𝜏𝑙 and 𝜋𝑙, which we expand according to (A.6) and thus find
for the term of the scattering amplitudes the following approximation

ℎ(𝑙 + 1/2) = 𝑟 (𝑃,𝑃′ )
𝑙

𝜏𝑙 (cosh(Θ))
𝑙 (𝑙 + 1) + (−1)𝑃′−𝑃𝑟 ( �̄�, �̄�

′ )
𝑙

𝜋𝑙 (cosh(Θ))
𝑙 (𝑙 + 1)

≈ (−1)𝑙e𝜆𝑢√︁
2𝜋𝜆sinh(𝑢)

[
𝑟 (𝑃,𝑃

′ )
𝑙 + 1

𝜆

( (−1)𝑃′−𝑃

sinh(𝑢) 𝑟
( �̄�, �̄�′ )
𝑙 − 7

8
coth(𝑢)𝑟 (𝑃,𝑃′ )

𝑙

)]
,

(4.37)

where 𝑢 is defined through cosh(𝑢) = − cosh(Θ) and we also employed the convention that the bar
above the polarisation parameter defines the "other" polarisation, e. g. if 𝑃 = E then �̄� = M. Next,
we use the expansion of the reflection coefficients 𝑟 (𝑃,𝑃

′ )
𝑙 we derived earlier in Eq. (4.33) and insert

it in the above expression. We have to include the leading and sub-leading terms of the expansions
for the first term in the brackets, while the leading order is sufficient for the Mie coefficients in the
round brackets. Combining the expansions and rewriting the sum over angular momenta as integral
as described above leads to the following expression for the amplitudes scattering matrix elements

𝑆𝑝,𝑝′ ≈ −i𝑝
′−𝑝 𝑥3/2√︁

2𝜋 sinh(𝑢)

∫ ∞

1/𝑥
dΛ𝑔𝑝,𝑝′ (Λ)e−𝑥 𝑓 (Λ) , (4.38)

where we substituted Λ = 𝜆/𝑥. The argument of the exponential combines the exponential scaling
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4 Scattering of electromagnetic waves at a spherical object

'

Θ

c − Θ
2

1

Figure 4.2: Scattering geometry at a sphere of radius
𝑅 for a scattering angle Θ. The corresponding impact
parameter 𝑏 in ray optics is given by 𝑅 cos(Θ/2). The
total path difference between rays reflected at the surface
and the centre (denoted by the dotted lines) is given by
2𝑅 sin(Θ/2).

(4.31) of the reflection coefficients and the angular functions (4.37) and yields

𝑓 (Λ) = −Ψ(Λ)/𝑥 − Λ𝑢 = −2
√︁

1 + Λ2 + 2Λarcsinh(Λ) − Λ𝑢 . (4.39)

The term 𝑔𝑝,𝑝′ combines all the remaining terms and is given by

𝑔𝑝,𝑝′ (Λ) =
√
Λ𝑟𝑝,𝑝′ (Λ)

[
1 + 1

𝑥

(
𝜌𝑝,𝑝′ (Λ) + (−1) 𝑝′−𝑝

iΛ sin(Θ)
𝑟 �̄�, �̄�′ (Λ)
𝑟𝑝,𝑝′ (Λ) −

7
8

i cot(Θ)
Λ

)]
. (4.40)

𝑓 as a function of Λ has one global minimum, which means that the main contribution to the integral
comes from the function around this minimum. The saddle point (sp) is found at [35]

Λsp = i cos(Θ/2) = i sin((𝜋 − Θ/2)) . (4.41)

We expand 𝑓 and 𝑔𝑝,𝑝′ in a Taylor expansion around this minimum with 𝑓 (Λ) ≈ ∑4
𝑛=1 𝑓

(𝑛)
sp (Λ −

Λsp)𝑛/𝑛!, where 𝑓 (𝑛)sp denotes the 𝑛-th derivative evaluated at the saddle Λsp. A similar expansion
can also be performed for 𝑔𝑝,𝑝′ . The size parameter 𝑥 is large, we can thus apply the saddle-point
approximation discussed in Sec. A.6.2, which leads to the following expression for the scattering
amplitude of large bi-isotropic spheres

𝑆𝑝,𝑝′ ≈
𝑥𝑔𝑝,𝑝′ (Λsp)e−𝑥 𝑓sp√︃

𝑓 (2)sp sinh(𝑢)

1 + 1
2𝑥

(
𝑔 (2)𝑝,𝑝′ (Λsp)
𝑔𝑝,𝑝′ (Λsp)

(
𝑓 (2)sp

)−1
−
𝑔 (1)𝑝,𝑝′ (Λsp)
𝑔𝑝,𝑝′ (Λsp) 𝑓

(3)
sp

(
𝑓 (2)sp

)−2

−1
4
𝑓 (4)sp

(
𝑓 (2)sp

)−2
+ 5

12

(
𝑓 (3)sp

)2 (
𝑓 (2)sp

)−3
)]
.

(4.42)

We note that the leading corrections of the scattering matrix elements consist of two contributions.
One part includes the corrections from the leading saddle-point approximation, which are contained
in 𝑔𝑝,𝑝′ (Λsp). The other part arises from the next-to-leading order in the saddle-point approximation.
It is thus sufficient for the derivatives of 𝑔𝑝,𝑝′ , appearing in Eq. (4.42), to consider only the leading
term

√
Λ𝑟𝑝,𝑝′ (Λ), since the subleading term would contribute to higher-order corrections. This

allows us to express the derivatives of 𝑔𝑝,𝑝′ (Λ) only in terms of derivatives of 𝑟𝑝,𝑝′ (Λ)

𝑔 (1)𝑝,𝑝′
𝑔𝑝,𝑝′

=
1

2Λsp
+
𝑟 (1)𝑝,𝑝′
𝑟𝑝,𝑝′

,
𝑔 (2)𝑝,𝑝′
𝑔𝑝,𝑝′

= − 1
4Λ2

sp
+ 1
Λsp

𝑟 (1)𝑝,𝑝′
𝑟𝑝,𝑝′

+
𝑟 (2)𝑝,𝑝′
𝑟𝑝,𝑝′

, (4.43)

where all functions are evaluated at the saddle Λsp.
After inserting the saddle point (4.41) into (4.42), and performing some basic algebraic transfor-

22



4.2 Scattering at a large sphere, the geometrical optics regime

mations, the asymptotic expansion of the scattering amplitudes for large aspect ratio 𝑥 yields

𝑆𝑝,𝑝′ =
𝑥

2
𝑟𝑝,𝑝′ (Λsp)e−2𝑥 sin(Θ/2)

[
1 + 𝑠𝑝,𝑝′

𝑥
+ O(𝑥−2)

]
(4.44)

with the leading corrections given by

𝑠𝑝,𝑝′ = 𝜌𝑝,𝑝′ (Λsp) + 1 − 10 sin2(Θ/2)
12 sin2(Θ/2)

− 1
2 sin(Θ/2) cos2(Θ/2)

(
1 − (−1) 𝑝′−𝑝 𝑟 �̄�, �̄�′

𝑟𝑝,𝑝′

)
− i cos(Θ/2)

4 sin(Θ/2)
𝑟 (1)𝑝,𝑝′
𝑟𝑝,𝑝′

+ sin(Θ/2)
4

𝑟 (2)𝑝,𝑝′
𝑟𝑝,𝑝′

.

(4.45)

The expression is consistent with the well-known Debye expansion of the scattering amplitudes [104],
but for imaginary frequencies. The leading term of (4.44) accounts for the direct reflection term.
The terms 𝑟𝑝,𝑝′ (Λsp) agree with the Fresnel reflection coefficients with an incident angle (𝜋 − Θ)/2
as illustrated in Fig. 4.2 and calculated for general bi-isotropic spheres in Appendix B.2. The leading
correction 𝑠𝑝,𝑝′ accounts for the diffraction corrections.

As shown earlier, the Fresnel reflection coefficients for PEMC materials are only functions of the
material parameter (see Eq. (4.34)). They do not depend on the incident angle of the wave. For the
leading correction (4.45), all derivatives of the reflection coefficients thus vanish, and we obtain

𝑠PEMC
𝑝,𝑝′ =

1 − 2 sin2(Θ/2)
2 sin3(Θ/2)

− cos2(Θ/2)
sin3(Θ/2)


cos2 (𝜃 )
cos(2𝜃 ) 𝑝 = 𝑝′ = TM

− sin2 (𝜃 )
cos(2𝜃 ) 𝑝 = 𝑝′ = TE

1
2 𝑝′ = 𝑝

. (4.46)

It is easy to verify that the terms given above agree with the ones obtained in Ref. [34] for a perfect
electric conductor (𝜃 = 0).

In Fig. 4.3, we analyse the validity of the asymptotic expansion for the PEMC sphere. We evaluated
the amplitude scattering matrix elements for cos(Θ) = −2 in Fig. 4.3a and for cos(Θ) = −1 in Fig. 4.3b
as function of the size parameter 𝑥 = K𝑅. In both cases, the panels on the left depict the scattering
amplitudes for 𝜃 = 𝜋/4, while the panels on the right show the scattering amplitudes for a perfect
magnetic conductor sphere (𝜃 = 𝜋/2). A similar analysis for perfect electric conductors can be found
in Ref. [109]. It is evident from the left panel of Fig. 4.3a, that the polarisation-conserving and
polarisation-changing coefficients show a different scaling behaviour. According to our discussion
above, the leading order for the polarisation-conserving coefficients is given by the subleading term
in Eq. (4.44) for 𝜃 = 𝜋/4. This term is of order O(1), and the subleading term thus scales with 1/𝑥,
as depicted by the dashed line in the left panel. The polarisation-changing coefficients, on the other
hand, are proportional to 1/𝑥2 as indicated by the solid line. For a perfect magnetic conductor (right
panel of Fig. 4.3a), there are no polarisation-changing coefficients and the polarisation-conserving
coefficients scale with 1/𝑥2. Fig. 4.3a depicts the results for cos(Θ) = −1. We see that for 𝜃 = 𝜋/4
(left panel), the polarisation-conserving coefficients vanish, while the next-to-leading order for the
polarisation-changing coefficients scales with 1/𝑥4, as depicted by the dash-dotted line. For 𝜃 = 𝜋/2
(right panel), the polarisation-changing coefficients yield zero while the polarisation-conserving
coefficients also scale with 1/𝑥4. The different scaling behaviour of the scattering amplitudes for the
material parameters 𝜃 will directly translate to the behaviour of the Casimir energy for large sphere
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Figure 4.3: Comparison between the scattering amplitudes 𝑆𝑝,𝑝′ for a PEMC sphere and their asymptotic
approximation defined in Eq. (4.44) as function of the aspect ratio 𝑥. (a) Relative deviation computed for
cos(Θ) = −2. The left panel shows the results for a PEMC sphere with 𝜃 = 𝜋/4 and the right panel for a PMC
sphere (𝜃 = 𝜋/2). The solid line in both panels indicates a 1/𝑥2-scaling, while the dashed line represents a
proportionality to 1/𝑥. (b) Relative deviation computed for cos(Θ) = −2, where the left and right panels again
depict the cases 𝜃 = 𝜋/2 and 𝜋/2. The dash-dotted line indicates a 1/𝑥4-scaling.

radii, as we will see later in Chap. 11.

4.3 Low-frequency limit, the Rayleigh regime

This Section will examine the scattering at spherical objects in the limit 𝑥 = K𝑅 → 0. This limit
includes the static case K = 0. The static limit is particularly interesting as it allows for exact
calculations of the Casimir interaction, which we will discuss later. Furthermore, the analytical
expressions for the reflection coefficients obtained in this Section are also helpful for numerical
calculation to avoid instabilities caused by diverging quantities in the low-frequency limit.

4.3.1 Reflection coefficients

We start with the reflection coefficients derived in Sec. 4.1.1 and apply the expansion of the modified
Bessel functions for small arguments as presented in Eq. (A.4b). We thus find for the logarithmic
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derivative of the Bessel functions (4.14), the following expressions

{𝐼, 𝑧} ≈ 𝑙 + 1
𝑧

+ 𝑧
2
, {𝐾, 𝑧} ≈ − 𝑙

𝑧
+ 𝑧

2𝑙 − 1
. (4.47)

Similarly, we apply the expansion for the ratio of the Bessel functions of the first and second kind
(4.15), which leads to

𝐶𝑙 (𝑥) ≈ (−1)𝑙 [𝑙!]2

2(2𝑙 + 1) [(2𝑙)!]2 (2𝑥)
2𝑙+1 . (4.48)

The auxiliary functions introduced in Eq. (4.12), thus read

𝐴L,R
𝑙 =

𝑙 + 1
𝑥

[
1 − 𝑚∓

𝑚L,R

]
, 𝐵L,R

𝑙 =
𝑙 + 1
𝑥

[
𝑚∓ − 1

𝑚L,R

]
, (4.49)

𝑉L,R
𝑙 =

𝑙 + 1
𝑥

[
𝑚∓
𝑚L,R

+ 𝑙

𝑙 + 1

]
, 𝑊L,R

𝑙 =
𝑙 + 1
𝑥

[
1

𝑚L,R
+ 𝑚∓

𝑙

𝑙 + 1

]
. (4.50)

Introducing the quantities given above into the four Mie reflection coefficients (4.11) and (4.16), we
find a general expression of the form

𝑟 (𝑃,𝑃
′ )

𝑙 = (−1)𝑙 [𝑙!]2

2(2𝑙 + 1) [(2𝑙)!]2
𝑙 + 1
𝑙

(2𝑥)2𝑙+1X𝑝,𝑝′ (𝑙) + O
(
𝑥2𝑙+2

)
, (4.51)

where we again associate the polarisation 𝑝 = TM(TE) with 𝑃 = E(M). The expansion coefficient
X𝑝,𝑝′ (𝑙) accounts for the material properties of the sphere and the surrounding medium. For the
polarisation-conserving coefficients, we find

XTM,TM(𝑙) = 𝑙

Δ(𝑙)

{[
1 − 𝑚−

𝑚L

] [
1
𝑚R

+ 𝑚+
𝑙

𝑙 + 1

]
+

[
1 − 𝑚+

𝑚R

] [
1
𝑚L

+ 𝑚−
𝑙

𝑙 + 1

]}
, (4.52a)

XTE,TE(𝑙) = 𝑙

Δ(𝑙)

{[
𝑚− − 1

𝑚L

] [
𝑚+
𝑚R

+ 𝑙

𝑙 + 1

]
+

[
𝑚+ − 1

𝑚R

] [
𝑚−
𝑚L

+ 𝑙

𝑙 + 1

]}
, (4.52b)

where the function in the denominator is defined as

Δ(𝑙) = (𝑙 + 1)
[

1
𝑚L

+ 𝑚−
𝑙

𝑙 + 1

] [
𝑚+
𝑚R

+ 𝑙

𝑙 + 1

]
+

[
1
𝑚R

+ 𝑚+
𝑙

𝑙 + 1

] [
𝑚−
𝑚L

+ 𝑙

𝑙 + 1

]
. (4.53)

The polarisation-mixing coefficients, on the other hand, can be cast to

XTM,TE =
i𝑙

Δ(𝑙)

(
𝑚−
𝑚L

− 𝑚+
𝑚R

)
, XTE,TM =

i𝑙
Δ(𝑙)

(
𝑚−
𝑚R

− 𝑚+
𝑚L

)
. (4.54)

From Eqs. (4.17) and (4.18), we can obtain the following expression for the expansion coefficients of
a PEMC sphere

XTM,TM = cos2(𝜃) − sin2(𝜃) 𝑙

𝑙 + 1
, XTE,TE = sin2(𝜃) − cos2(𝜃) 𝑙

𝑙 + 1
, (4.55a)
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4 Scattering of electromagnetic waves at a spherical object

XTM,TE = XTE,TM = − sin(𝜃) cos(𝜃)
[
1 + 𝑙

𝑙 + 1

]
. (4.55b)

We observe that the coefficients are obtained through a duality transformation of the coefficients for
a perfect electric conductor [76], which is given by(XTM,TM XTM,TE

XTE,TM XTE,TE

)
= D

(
1 0
0 −𝑙/(𝑙 + 1)

)
D−1 , D =

(
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

)
, (4.56)

where D−1 = D(−𝜃). Alternatively, one could also use the coefficients for a perfect magnetic
conductor.

For non-magnetic and isotropic media 𝑚± =
√︁
𝜖m/𝜖s = 1/𝑚L,R, the polarisation mixing and also

the magnetic coefficients vanish, while the electric coefficients yield

XTM,TM =
𝑙 (𝜖s − 𝜖m)

𝑙𝜖s + (𝑙 + 1)𝜖m
, (4.57)

which is in agreement with the expansion obtained by Ref. [97].

4.3.2 Amplitude scattering matrix elements
Next, we are discussing the amplitude scattering matrix elements for low frequencies. The argument
cos(Θ) of the angular functions scales like 1/K2 for low frequency, according to Eq. (4.25). We thus
employ the large-argument approximation of the angular functions and find together with (A.7)

𝜏𝑙 (cos(Θ)) ≈ (−1)𝑙 (2𝑙)!
2𝑙 [(𝑙 − 1)!]2

(k · k′ + 𝑘𝑘 ′)𝑙
K2𝑙 , (4.58)

while 𝜋𝑙 (cos(Θ)) ∝ K2𝜏𝑙 (cos(Θ)) and thus does not contribute to the leading low-frequency asymp-
totic. Combining all quantities, which enter into the summand of the amplitude scattering matrix
elements (4.27), we obtain

𝑆𝑝,𝑝′ ≈ 𝑥
∞∑︁
𝑙=1

X𝑝,𝑝′ (𝑙) 𝑦
2𝑙

(2𝑙)! (4.59)

with
𝑦 = 𝑅

√︁
2 (k · k′ + 𝑘𝑘 ′) = 2𝑥 sin(Θ/2) , (4.60)

where we employed that cos(Θ) = 1 − 2 sin2(Θ/2).
In certain limiting cases, it is possible to carry out the sum over angular momenta analytically,

which will be discussed in detail in Chap. 9, when we study the low-frequency contributions to the
Casimir interaction. Earlier, we analysed the regime of large sphere radii for finite frequency. Now,
we will derive the corresponding expressions for the low-frequency limit. For large radii, 𝑦 also
becomes large. The main contribution to the sum will thus come from large momenta, which allows
us, similar to before, to transform the sum over angular momenta into an integral. Furthermore, we
approximate the factorial with the Stirling formula (2𝑙)! ≈

√
4𝜋𝑙 (2𝑙)2𝑙e−2𝑙 and introduce a scaled

variable Λ = 2𝑙/𝑦. The amplitude scattering matrix elements thus yield [109]

𝑆𝑝,𝑝′ ≈ 𝑥√︁
2𝜋𝑦

∫ ∞

2/𝑦
dΛ

X𝑝,𝑝′ (𝑦Λ/2)√
Λ

e−𝑦 𝑓 (𝜆) , (4.61)
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where 𝑓 (Λ) = Λ − Λ log(Λ). 𝑓 has a minimum at Λsp = 1 which means, that due to e−𝑦 𝑓 all
other contributions decay exponentially. We can thus employ the saddle-point approximation (see
Sec. A.6.2) to evaluate the integral given above, which leads to

𝑆𝑝,𝑝′ ≈ 𝑥

2
X𝑝,𝑝′ (𝑦/2)e2𝑥 sin(Θ/2) . (4.62)

It can now easily be shown, that for 𝑦 ≫ 1 the expansion coefficients X𝑝,𝑝′ (𝑦/2) agree with the
respective Fresnel coefficients for a bi-isotropic plane presented in Sec. B.2

𝑟𝑝,𝑝′ ≈ lim
𝑦→∞X𝑝,𝑝′ (𝑦/2) . (4.63)

From (4.55), we immediately recover the Fresnel reflection coefficients for a PEMC plane (4.34).
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Part II

Trapping spherical particles with a vortex beam

This part of the thesis investigates how chiral or non-chiral microspheres interact with a vortex beam.
Specifically, we consider circularly polarised Laguerre-Gaussian beams. We determine an explicit
analytical expression for the optical force components on a spherical object.
It is crucial to have an accurate model for studying the behaviour of nano- and micro-sized particles in
vortex beams. We thus start in Chap. 5 by modelling the focused laser field for realistic applications.
Experimental setups usually include optical aberrations, which, for example, arise from misalignments
of the optical components and thus lead to a deterioration of the trapping efficiency. We include
such effects in our theory. We solve the scattering problem at the spherical object by computing
the multipole expansion of the focused field and applying standard Mie theory. The optical force
components are then obtained by integrating the Maxwell stress tensor over a surface which encloses
the trapped sphere. We provide explicit expressions for the force components which are then evaluated
numerically. We apply our theory in Chap. 6, where we examine the different trapping regimes of a
dielectric or chiral sphere in a vortex beam. In Chap. 7, we introduce an in situ method which allows
us to determine the radius of trapped microspheres with nanometer-precision. The method utilizes
our theoretical model to fit experimentally obtained data of spheres trapped by vortex beams.
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5 Mie-Debye theory for optical forces including optical
aberrations

Optical trapping of objects involves highly focused laser beams, meaning beams that are focused
up to the diffraction limit 𝜆/2NA [110], where 𝜆 is the wavelength of the laser beam and NA is
the numerical aperture, which defines the opening cone of the focused beam. Focusing with a high
NA (NA > 1) is necessary to create a gradient field, which ensures objects are stably trapped.
Furthermore, it reduces scattering forces that push the object in the propagation direction of the beam
[61]. Early theoretical models applied the paraxial approximation for focused beams [111], where it
is assumed that the angle between a ray passing through an imaging system and the optical axis is
small. However, this assumption is invalid for high NA objectives. Also, the electromagnetic field
within the paraxial models is only transversely polarised to the propagation direction, which also does
not reflect reality. The focusing leads to longitudinal polarisation components [112, 113], which is a
direct consequence of Heisenberg’s uncertainty principle for spatially confined photons.

A more realistic description of the focused beam comes with the vectorial diffraction theory
introduced by Stratton and Chu [114]. Within this theory, the field at any observation point (e. g. the
focus) is given as a superposition of planar waves propagating from a reference surface towards that
point. If the reference surface is spherical, as required for focused beams, the theory is commonly
known as the Debye-Wolf diffraction integral [115]. This method can be applied to different input
fields that enter the imaging system. Usually, a paraxial beam model is employed at the entrance. In
this particular study, we will focus on trapping with a Laguerre-Gaussian field as input. We include
primary optical aberrations for a more realistic description of experimental setups.

This Chapter establishes the theoretical foundation for investigating the trapping of spherical objects
in vortex beams. Our approach builds on previous results for a Gaussian beam with aberrations [116,
117] and a Laguerre-Gaussian beam without aberrations [118]. The general setup will be introduced
in Sec. 5.1. We will use the Debye-Wolf integral representation for the electromagnetic field at the
exit of the objective. To account for modulations of the field through the optical system, we will
apply the vectorial ray tracing method. We consider the trapping of spherical objects with radii in
the range of the beam wavelength. Hence, it is necessary to apply Mie-theory to obtain the scattered
field. Based on the results for the incident and scattered field, we derive an expression for the optical
force components (see Sec. 5.2).

5.1 Vectorial diffraction and focusing through an interface

Our studied system is shown in Fig. 5.2a. We consider a monochromatic Laguerre-Gaussian beam
at the entrance of an imagining system. The beam is focused through an interface into a sample
region of refractive index 𝑛w, where the trapped particle is located. In the following, we present an
expression for the electromagnetic field in the sample region.

Laguerre-Gaussian (LG) beam modes LG𝑝,ℓ have an azimuthal phase exp(iℓ𝜙), where the topo-
logical charge ℓ defines the orbital angular momentum carried per photon. The wavefront of a vortex
beam is helicoidal, with the sign of ℓ determining the handedness of the vortex. The modulus |ℓ |
defines the number of helices within one wavelength, as illustrated in the bottom panels of Fig. 5.1
for ℓ = 1 and 2. LG𝑝,ℓ modes have 𝑝 + 1 intensity nodes. In this work, we will only consider the
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5.1 Vectorial diffraction and focusing through an interface

Figure 5.1: Illustration of the Laguerre-
Gaussian modes LG0,ℓ for ℓ = 1 and ℓ = 2.
The top panels present the intensity profiles and
the bottom panels show the phase structure of
the beams. Taken from Ref. [120].

case 𝑝 = 0, where the transverse intensity profile is ring-shaped (see intensity profiles in Fig. 5.1).
The electric field vector for a LG0,ℓ mode, at the entrance of the objective is defined by [119]

Einc(r) = 𝐸0

(√
2𝜌
𝑤0

) |ℓ |
exp

(
− 𝜌

2

𝑤2
0

)
eiℓ𝜙ε̂𝜎 , (5.1)

where ε̂𝜎 = (x̂ + i𝜎ŷ)/
√

2 is the unit vector of a left- (𝜎 = 1) or right- (𝜎 = −1) circularly polarised
wave Einc(r)ei𝐾0𝑧 traveling along the 𝑧-direction with wave vector K0 = 𝐾0𝑧. The field amplitude
varies with distance 𝜌 =

√︁
𝑥2 + 𝑦2 from the centre axis of the beam. 𝑤0 defines the so-called

beam-waist. Laguerre-Gaussian beams with ℓ = 0 describe the standard Gaussian beam, used in
most optical tweezer setups. It follows from (5.1), that the ring of highest intensity is defined by
𝜌 = 𝑤0

√︁
|ℓ |/2. Hence, the radius of the ring increases with the topological charge.

The field in the image space of an optical system is described by vectorial diffraction integrals,
with the Debye-Wolf integral [115, 121] as the most common representation. At an observation point
r near the focus, the field is determined by a field Ers at a Gaussian reference surface (rs) within this
approximation. The reference surface is assumed to be far from the observation point [122]. The
angular spectrum representation of the electric field in the vicinity of the focus yields [121, 123]

E(r) = −i𝐾 𝑓 ei𝐾 𝑓

2𝜋

∫
Ωm

dΩErs(𝜃, 𝜙)eiKw ·r , (5.2)

where 𝑓 defines the focal length and 𝐾 = 𝑛𝑠𝐾0 determines the modulus of the wave vector at the
exit of the objective K = 𝐾K̂ with unit vector K̂ = (sin(𝜃) cos(𝜙), sin(𝜃) sin(𝜙), cos(𝜃)), as it is
illustrated in Fig. 5.2a. The wave vector in the sample region is defined by Kw = 𝐾wK̂w, where
K̂w = (sin(𝜃w) cos(𝜙w), sin(𝜃w) sin(𝜙w), cos(𝜃w)) with 𝐾w = 𝑛w𝐾0 and the solid angle Ωm accounts
for the numerical aperture of the system. Hence, the electric field at the objective exit is a superposition
of plane waves with wave vectors spanning a cone defined by 𝜙 ∈ [0, 2𝜋] and 𝜃 ∈ [0, 𝜃m]. In the
following, we will specify the value of the maximal polar angle 𝜃m.

5.1.1 Vectorial ray tracing

The electric field at the spherical reference frame can be obtained by tracing the field at the entrance
of the objective given by Eq. (5.1) through the optical system to the sample region. The macroscopic
size of the optical system justifies the use of geometrical optics to describe the focusing process [124].
The incident field Einc is focused by a lens and then transmitted through an interface, which leads to
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Figure 5.2: Focusing a beam through an interface. Figure (a) depicts an electromagnetic wave travelling
along the 𝑧-direction with wave vector K0 = 𝐾0ẑ, which is refracted at an objective into a medium with
refractive index 𝑛s. The direction of the wave vector K in the medium at the exit of the objective is defined by
the polar angle 𝜃, which takes values from 0 to 𝜃0 = sin−1 (NA/𝑛s), where NA is the numerical aperture of the
objective. The optical system is assumed to fulfil the sine condition with 𝜌 = 𝑓 sin(𝜃), where 𝑓 is the focal
length. The electromagnetic wave with wave vector K enters a second medium of index 𝑛w and is refracted
once more with a refraction angle 𝜃w, which defines the direction of the wave vector Kw. Ers defines the
corresponding electric field vector. Without an interface (𝑛s = 𝑛w) rays focus all in one point, which defines
the origin of the coordinate system. The distance of this nominal focus to the interface is denoted as 𝐿. Figure
(b) represents the transformation of the electric field vector during the focusing as described in Eq. (5.3).
After passing the interface, the incident field vector Einc transforms into E′ ∝ R2 (𝜃w)R3 (𝜙)Einc which leads
to a polarisation change compared to the initial input field. The corrected vector field is obtained by rotating
around the 𝑧-axis about −𝜙: Ers ∝ R−1

3 (𝜙w)E′ , where the azimuth angle in the sample region 𝜙w is the same
as the polar angle 𝜙 at the exit of the objective.

the following expression for the field Ers at the reference surface

Ers = R−1
3 (𝜙w)R2(𝜃w)eiΨg-w (𝜃 )𝑇 (𝜃)R−1

2 (𝜃)eiΨast (𝜃,𝜙)𝐴(𝜃)R2(𝜃)R3(𝜙)Einc . (5.3)

It is important to note that these transformations describe standard setups in optical tweezers experi-
ments, particularly the one we discuss in Chap. 7.

We apply vectorial ray tracing as described in Refs. [125–127] to obtain the electromagnetic field
in the sample region. Within this approach, so-called Jones matrices transform the field vectors as
they pass through the optical systems. In our case, the ray enters the objective at the azimuthal angle
𝜙, where it is refracted by an angle 𝜃 into a medium of refractive index 𝑛s. This transformation can
be described by the first two rotation matrices from the right to the left in Eq. (5.3), which are given
by

R3(𝜙) =
©«

cos(𝜙) sin(𝜙) 0
− sin(𝜙) cos(𝜙) 0

0 0 1

ª®®¬ , R2(𝜃) =
©«

cos(𝜃) 0 sin(𝜃)
0 1 0

− sin(𝜃) 0 cos(𝜃)

ª®®¬ . (5.4)

The input beam is focused aplanatically [128], which means that the field intensity is modulated
in such a way that |Ers |2 = cos(𝜃) |Einc |2, to ensure energy conservation upon transforming from a
plane wavefront to a spherical wavefront. We assume that the medium at the entrance and exit of the
objective are the same. The electric field amplitude is thus modulated by a factor 𝐴(𝜃) =

√︁
cos(𝜃).
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5.1 Vectorial diffraction and focusing through an interface

Note also that we are not accounting for the modulation of the field amplitude due to the transmission
through the objective. We assume that the Fresnel transmission coefficients [80] are almost one, due
to near index matching between the optical system and the medium at the exit.

Misalignment in the optical system can lead to optical aberrations like astigmatism and coma.
Here, we are going to take astigmatism into account, which includes the effect of an elongation of
the focal spot in a direction perpendicular to the propagation axis, and thus breaking the rotational
symmetry of the incident beam [129], through the phase factor eiΨast (𝜃,𝜙) introduced in Eq. (5.3).
This asymmetry in the field intensity leads to interesting effects, as we will discuss in more detail in
Chap. 7. The direction of elongation is defined by an angle 𝜙ast measured with respect to the 𝑥-axis,
and the amplitude 𝐴ast describes the amount of elongation. The Zernike polynomials present the
phase-shift due to the astigmatism [117]

Ψast(𝜃, 𝜙) = 2𝜋𝐴ast

(
sin(𝜃)
sin(𝜃0)

)2
cos [2(𝜙ast − 𝜙)] . (5.5)

As the light ray passes from the medium with refractive index 𝑛s to the medium with 𝑛w, it gets
refracted. Fresnel transmission coefficients for the transverse electric and magnetic field modes
generally account for refraction at an interface. However, we assume that the transmission coefficients
are nearly identical due to near-index matching. As a result, we introduce a single modulation
amplitude which accounts for the transmission [116, 130]

𝑇 (𝜃) = 2 cos(𝜃)
cos(𝜃) + 𝑁 cos(𝜃w) , 𝑁 =

𝑛w
𝑛s
. (5.6)

The polar angles 𝜃 and 𝜃w are related through Snell’s law: 𝑛s sin(𝜃) = 𝑛w sin(𝜃w). When light travels
from one medium to another, its phase velocity changes. The phase shift gets larger as the incident
angle 𝜃 increases, leading to a focus distortion. Consequently, for 𝑛s > 𝑛w, the rays intersect on the
optical axis at a position between the interface and the nominal focus. The nominal focus is defined
by the position of the focus when there is no interface, as depicted by the red dashed lines in Fig. 5.2a.
The distance between the nominal focus and the interface is denoted by 𝐿. The function that defines
the phase shift is called the spherical aberration function [131], which is defined by

Ψg-w(𝜃) = 𝐿𝐾w cos(𝜃w) − �̃�𝐾 cos(𝜃) , (5.7)

with the distance 𝐿 between the paraxial focal and the interface measured in the sample region, while
�̃� = 𝐿/𝑁 defines the distance measured in the medium with refractive index 𝑛s. We change the
direction of the vector field by performing the rotations R2(𝜃w)R−1

2 (𝜃).

In total, the direction of the electric field vector is defined by E′ ∝ R2(𝜃w)R3(𝜙)Einc, depicted in
Fig. 5.2b. After performing all the transformations we discussed up to this point, the polarisation
at the entrance and exit of the objective no longer match. To readjust the polarisation vector, we
rotate the electric field around the 𝑧-axis about −𝜙w, leading to Ers ∝ R−1

3 (𝜙w)E′ . Note, also that the
azimuthal angle 𝜙w of the wave vector Kw is the same as 𝜙 for the wave vector K.
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5.1.2 Debye-Wolf integral representation of the focused field
Inserting expression (5.3) into the vectorial Debye-Wolf diffraction integral (5.2), we find for the
electric field in the sample region

E(r) =
∫
Ωm

dΩ𝐸 (𝜃, 𝜙)eiKw ·reiKw ·Rϵ̂𝜎 (K̂w) , (5.8)

where we integrate over the solid angle Ωm with the maximal polar angle 𝜃m. The maximal polar
angle is usually defined by the NA of the objective with sin−1(NA/𝑛𝑠) as illustrated in Fig. 5.2a.
However, for NA > 𝑛s, we instead use the angle 𝜃m determined by sin(𝜃m) = min{𝑁,NA/𝑛𝑠}. We
discard the contribution from the evanescent sector. Evanescent waves decay exponentially and can
thus be neglected if the interface is far away from the focus where the sphere is trapped. Furthermore,
we also added a phase eiKw ·R in Eq. (5.8) which translates the origin of the coordinate system from
the focus to the centre of the trapped sphere. The vector R = R(𝑟𝑅, 𝜑𝑅, 𝜃𝑅) defines the position of
the sphere with respect to the focus. This transformation becomes important when considering the
scattering of the focused field at the spherical object. The complex amplitude 𝐸 (𝜃, 𝜙) is given by

𝐸 (𝜃, 𝜙) = −i𝐸0𝐾 𝑓 ei𝐾 𝑓

2𝜋
√︁

cos(𝜃)𝑇 (𝜃)
(√

2𝛾 sin(𝜃)
) |ℓ |

e−𝛾
2 sin2 (𝜃 )eiℓ𝜙eiΨg-w (𝜃 )+iΨast (𝜃,𝜙) , (5.9)

where we also applied Abbe’s sine condition 𝜌 = 𝑓 sin(𝜃) [132]. Moreover, we introduced the ratio
𝛾 = 𝑓 /𝑤0 of the focal length 𝑓 and beam waist radius 𝑤0. The polarisation vector in the sample
region was obtained by performing the rotations defined in Eq. (5.3) with ϵ̂𝜎 = R−1

3 (𝜙w)R2(𝜃w)ε̂𝜎 ,
resulting in the following expression

ϵ̂𝜎 (K̂w) = ei𝜎𝜙w

√
2

(
ϵ̂TM(K̂w) + i𝜎ϵ̂TE(K̂w)

)
, (5.10)

where we use the notation ϵ̂𝜎 (K̂w) ≡ ϵ̂𝜎 (𝜃w, 𝜙w). Additionally, we introduced the unit vectors ϵ̂𝑝
for TM- and TE-polarised modes defined in Eq. (3.2), which are related to the unit vector in spherical
coordinates as follows: ϵ̂TM(K̂w) = θ̂w and ϵ̂TE(K̂w) = ϕ̂w.

5.2 Multipole expansion of the optical force components, the MDSA+
theory

The time-averaged optical force exerted by the focused laser beam can be calculated from the surface
integral over the Maxwell stress tensor as discussed in Sec. 2.2. We are interested in the trapping
of spherical objects of radius 𝑅, which are immersed in a homogeneous, linear and non-magnetic
medium. We thus choose a spherical surface of radius 𝑅> > 𝑅, which encloses the object with the
surface area element dA = r̂𝑅2

>dΩ, as illustrated in Fig. 5.3. The time-averaged force thus yields

F =
𝑅2
>

2
Re

∮
𝑆2

dΩ
[
𝜖0𝜖wE∗(E · r̂) + 𝜇0H∗(H · r̂) − 1

2

(
𝜖0𝜖w |E|2 + 𝜇0 |H|2

)
r̂
]
𝑟=𝑅>

. (5.11)

The surface integral is carried out over the unit sphere 𝑆2, and the fields are evaluated at radial
distance 𝑟 = 𝑅>, which can be chosen arbitrarily as long as it is larger than the radius of the trapped

34



5.2 Multipole expansion of the optical force components, the MDSA+ theory

Einc(𝑒𝑙,𝑚, 𝑓𝑙,𝑚)

𝑅 𝑅>

Escat(𝑎𝑙,𝑚, 𝑏𝑙,𝑚)

Figure 5.3: Illustration of the scattering at a spherical particle
of radius 𝑅. An incident field Einc, defined by the multipole
expansion coefficients 𝑒𝑙,𝑚, 𝑓𝑙,𝑚 is scattered into a field Escat,
defined by the coefficients 𝑎𝑙,𝑚, 𝑏𝑙,𝑚. We analyse the momentum
transfer through a surface of radius 𝑅> > 𝑅 surrounding the
spherical object.

object. The field outside the scatterer, which enters the Maxwell stress tensor, consists of the incident
and scattered field

E = Einc + Escat . (5.12)

Terms quadratic in the incident field, which are of the form 𝐸∗
inc,𝑖𝐸inc, 𝑗 , describe the density flux

through the closed surface in the absence of the scatterer and thus do not contribute to the momentum
change in lossless media. The terms quadratic in the scattered field, of the form 𝐸∗

scat,𝑖𝐸scat, 𝑗 , describe
the momentum carried away from the object, while the cross-terms 𝐸∗

scat,𝑖𝐸inc, 𝑗 and 𝐸∗
inc,𝑖𝐸scat, 𝑗

account for the interference between the scattered and incident field and make up for the extinction
(ext) part of the force. The optical force can thus be separated into two parts [133]

F = Fscat + Fext . (5.13)

Due to the spherical symmetry of the scatterer, it is convenient to expand the incident and scattered
field in a spherical-wave basis with expansion coefficients (𝑒𝑙,𝑚, 𝑓𝑙,𝑚) and (𝑎𝑙,, 𝑏𝑙,𝑚), as introduced in
Sec. 4.1.1. The surface integral can be computed analytically by using the definition of the spherical
vector fields N𝑙,𝑚 and M𝑙,𝑚 in terms of the vector spherical harmonics X𝑙,𝑚, Y𝑙,𝑚 and Z𝑙,𝑚 defined
in Eq. (3.9). The calculation of the surface integral involves quite a lot of algebra by applying various
recursion relations for the spherical harmonics. Explicit results for the 𝑧-component 𝐹𝑧 of the optical
force and also for 𝐹𝑥 + i𝐹𝑦 can be found in Refs. [111, 134]. All three force components for spherical
scatterer were derived in Refs. [123, 135]. A detailed evaluation of the two separate parts of the
force was carried out in detail in Ref. [136]. Due to the different notations used in the mentioned
works, we provide the explicit force expression in terms of the coefficients (𝑎𝑙,𝑚, 𝑏𝑙,𝑚, 𝑒𝑙,𝑚, 𝑓𝑙,𝑚) in
Appendix C.1. Note that the results for the optical force given there are not unique to a spherical
scatterer, they apply to any object, where the scattered field can be written in a multipole expansion,
and the scatterer itself can be enclosed by a spherical surface.

Hence, with the expressions provided in Appendix C.1, the optical force can be immediately
obtained if the multipole expansion coefficients of the incident and scattered field are known. We are
thus going to derive the multipole expansion of the incident focused field given in Eq. (5.8) and also
derive the scattered field in the following Sections.

5.2.1 Multipole expansion of the focused vortex beam

In general, the multipole expansion of an electromagnetic field can be obtained by using the or-
thogonality of vector spherical harmonics, as explained in detail in Appendix C.2. We found that
the multipole expansion coefficients are given by a surface integral over the Fourier components of
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the incident electromagnetic field. The Fourier components can be extracted by using the angular
spectrum decomposition of the focused field given in Eq. (5.8), which yields

E(K′) = (2𝜋)3
∫
Ωm

dΩ𝐸 (𝜃, 𝜙)eiKw ·reiKw ·Rϵ̂𝜎 (K̂w)𝛿(K′ − Kw) . (5.14)

Introducing the Fourier component in Eq. (C.14), we obtain the following expression for the electric
and magnetic multipole expansion coefficients (𝑒𝑙,𝑚, 𝑓𝑙,𝑚) of the incident beam{

𝑓𝑙,𝑚
𝑒𝑙,𝑚

}
= 4𝜋i𝑙

∫
Ωm

dΩ𝐸 (𝜃, 𝜙)eiKw ·RX∗
𝑙,𝑚(K̂w) ·

{
ϵ̂𝜎 (K̂w)

iK̂w × ϵ̂𝜎 (K̂w)
}
, (5.15)

with vector spherical harmonics in reciprocal space X𝑙,𝑚(K̂w) = −i(K̂w + ∇𝐾w)𝑌𝑚𝑙 (K̂w)/
√︁
𝑙 (𝑙 + 1).

It is sufficient to compute either the electric or magnetic multipole coefficients since the polarisation
vectors (5.10) only differ by a sign iK̂w × ϵ̂𝜎 = 𝜎ϵ̂𝜎 . The scalar product of the vector spherical
harmonics with the polarisation unit vector ϵ̂𝑝, 𝑝 = TM,TE is presented in Eqs. (C.15b) and (C.16b)
and we thus find

X∗
𝑙,𝑚(K̂w) · ϵ̂𝜎 (K̂w) =

√︂
2𝑙 + 1

4𝜋
𝑑𝑙𝑚,𝜎 (𝜃w)e−i(𝑚−𝜎)𝜙w , (5.16)

where we used [98, Eq. (5) from Sec. 4.17] to introduce the Wigner d-matrix elements 𝑑𝑙𝑚,𝜎 (𝜃w).
Inserting (5.16) into (5.15) the multipole expansion coefficients yield

𝑓𝑙,𝑚 = 𝜎𝑒𝑙,𝑚 = i𝑙
√︁

4𝜋(2𝑙 + 1)
∫
Ωm

dΩ𝐸 (𝜃, 𝜙)eiKw ·R𝑑𝑙𝑚,𝜎 (𝜃w)e−i(𝑚−𝜎−ℓ )𝜙w , (5.17)

where 𝐸 (𝜃, 𝜙) was defined in Eq. (5.9). We simplify the above-given expression by carrying out the
integral over the azimuth angle. For this purpose, we introduce the following integral which includes
all components in Eq. (5.17) depending on 𝜙 = 𝜙w

𝐼 =
∫ 2𝜋

0
d𝜙eiKw ·Re−i𝑀𝜙ei�̃�ast cos(2(𝜙ast−𝜙) ) (5.18)

with 𝑀 = 𝑚 − 𝜎 − ℓ and �̃�ast = 2𝜋𝐴ast sin(𝜃)/sin(𝜃0), which accounts for the phase introduced by
astigmatism (5.5). A similar integral was evaluated in Ref. [137], we present a slightly simplified
version of the calculation in Appendix C.3, where we found (C.21)

𝐼 = 2𝜋i𝑀e−i𝑀𝜑𝑅ei𝐾w𝑧𝑅 cos(𝜃w )𝑔𝜎,ℓ𝑚 (R) (5.19)

with the position vector R expressed in cylindrical coordinates (𝜌𝑅, 𝜑𝑅, 𝑧𝑅). The coefficient
𝑔 (𝜎,ℓ )𝑚 (R) accounts for the astigmatism and is defined by

𝑔 (𝜎,ℓ )𝑚 (R) =
∞∑︁

𝑠=−∞
(−i)𝑠𝐽𝑠

(
2𝜋𝐴ast

sin2 𝜃

sin2 𝜃0

)
𝐽2𝑠+𝑚−𝜎−ℓ (𝐾𝜌𝑅 sin 𝜃)e2i𝑠 (𝜙ast−𝜑𝑅 ) . (5.20)
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5.2 Multipole expansion of the optical force components, the MDSA+ theory

In the absence of astigmatism (𝐴ast = 0), the first Bessel function in the sum yields 𝐽𝑠 (0) = 𝛿𝑠,0.
Hence, only the 𝑠 = 0 term contributes and the coefficient 𝑔 (𝜎,ℓ )𝑚 reduces to [133]

𝑔 (𝜎,ℓ )𝑚 (R) = 𝐽𝑚−𝜎−ℓ (𝐾𝜌𝑅 sin 𝜃) . (5.21)

The multipole expansion coefficients of the vortex field (5.8) thus yield

𝑓𝑙,𝑚 = 𝜎𝑒𝑙,𝑚 = i𝐸0𝐾 𝑓 e−i𝐾 𝑓 i𝑙
√︁

4𝜋(2𝑙 + 1)e−i(𝑚−𝜎−ℓ )𝜑𝑅𝐺 (𝜎,ℓ )
𝑙,𝑚 , (5.22)

where we factored out the integral over the polar angle, which is defined by

𝐺 (𝜎,ℓ )
𝑙,𝑚 (R) =

(√
2𝛾

) |ℓ | ∫ 𝜃m

0
d𝜃

√︁
cos(𝜃) (sin(𝜃)) |ℓ |+1 e−𝛾

2 sin2 (𝜃 )𝑑𝑙𝑚,𝜎 (𝜃w)𝑔 (𝜎,ℓ )𝑚 (R)

× exp
[
i𝐾w cos(𝜃)𝑧𝑅 + iΨg-w(𝜃)

]
.

(5.23)

5.2.2 Multipole expansion of the scattered field

In a lot of optical tweezer setups, the diameter of the trapped objects is much smaller than the
wavelength of the beam, it is thus sufficient to obtain the scattered field within the Rayleigh limit
[138]. On the other hand, if the particle is much larger, a ray optics approach can be conducted to
obtain the optical force [139]. While studying spheres with radii in the range of the wavelength,
we need to calculate the scattered field from Mie theory, as discussed in Chap. 4. We consider the
scattering at chiral spherical particles, which can be obtained as a limiting case of bi-isotropic media
with constitutive equations given by [140](

D
B

)
=

(
𝜖0𝜖 i𝜅/𝑐0

−i𝜅/𝑐0 𝜇0𝜇

) (
E
H

)
. (5.24)

The chirality parameter 𝜅 accounts for the circular dichroism, resulting in the material’s distinct
response to left- and right-circularly polarised fields. Within the Mie theory, the multipole expansion
coefficients for a chiral sphere are given by (4.10)

𝑎𝑙,𝑚 = −𝑎𝑙𝑒𝑙,𝑚 , 𝑎𝑙 = 𝑟
(E,E)
𝑙 + 𝜎𝑟 (E,M)

𝑙 , (5.25a)

𝑏𝑙,𝑚 = −𝑏𝑙 𝑓𝑙,𝑚 , 𝑏𝑙 = 𝑟
(M,M)
𝑙 + 𝜎𝑟 (M,E)𝑙 , (5.25b)

where the coefficients 𝑟 (𝑃,𝑃
′ )

𝑙 are defined in Eqs. (4.11) and (4.11). Recall that we presented the Mie
coefficients for imaginary frequencies. For optical forces, we however need the expressions in real
frequencies. The transformation of the reflection coefficients from imaginary to real frequencies is
detailed in Sec. 4.1.1.

5.2.3 Optical force exerted by a vortex beam on a spherical object

The trapping force is usually expressed as a force efficiency [141] Q = F/(𝑛w𝑃/𝑐), with the refractive
index 𝑛w of the medium surrounding the trapped sphere and the speed of light 𝑐. 𝑃 defines the energy
flux per unit-time through the objective, which can be computed from the surface integral over
the objective entrance over the time-averaged Poynting vector 𝑃 =

∫
d2a⟨S⟩. The energy flux is
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in propagation direction and for a time-harmonic field we get [71]: ⟨S⟩ = |E(r) |2K/2𝜔𝜇0. After
introducing the field expression, we obtain the following energy flux

𝑃 = 2𝜋
𝑛|𝐸0 |2
𝑐𝜇0

∫ 𝑓 sin(𝜃0 )

0
d𝜌𝜌

(
2𝜌2

𝑤2
0

) |ℓ |
exp

(
−2𝜌2

𝑤2
0

)
𝑇2(𝜃) , (5.26)

where 𝑇 (𝜃), defined in Eq. (5.6), accounts for the transmission coefficients through the interface. We
use the sine condition 𝜌 = 𝑓 sin(𝜃) and get 𝑃 = (𝜋𝑛s𝑤

2
0 |𝐸0 |2/8𝑐𝜇0)𝐴ℓ with 𝐴ℓ given by

𝐴ℓ = 8(2𝛾2) |ℓ |+1
∫ sin(𝜃0 )

0
d𝑡𝑡2 |ℓ |+1e−2𝛾2𝑡2

√︁
(1 − 𝑡2) (𝑁2 − 𝑡2)(√

1 − 𝑡2 +
√
𝑁2 − 𝑡2

)2 . (5.27)

We express the force in cylindrical coordinates to account for the symmetry of the optical tweezer
setup. We write Q = 𝑄𝜌ρ̂ + 𝑄𝜑φ̂ + 𝑄𝑧 ẑ, with the radial force component 𝑄𝜌, the azimuthal force
component𝑄𝜑 and the force in the axial direction𝑄𝑧 . We insert the multipole expansion coefficients
of the incident (5.17) and scattered field (5.25) in the force expression presented in Sec. C.1.

The scattering part of the axial force efficiency yields (C.2)

𝑄scat,𝑧 = − 8𝛾2

𝐴ℓ𝑁
Re

∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

[√︁
𝑙 (𝑙 + 2) (𝑙 − 𝑚 + 1) (𝑙 + 𝑚 + 1)

𝑙 + 1
(𝑎𝑙𝑎∗𝑙+1 + 𝑏𝑙𝑏∗𝑙+1)𝐺 (𝜎,ℓ )

𝑙,𝑚 𝐺 (𝜎,ℓ )∗
𝑙+1,𝑚

+𝑚 2𝑙 + 1
𝑙 (𝑙 + 1) 𝑎𝑙𝑏

∗
𝑙

���𝐺 (𝜎,ℓ )
𝑙,𝑚

���2] (5.28)

and the extinction part is given by (C.3)

𝑄ext,𝑧 =
4𝛾2

𝐴ℓ𝑁
Re

∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

(2𝑙 + 1) (𝑎𝑙 + 𝑏𝑙)𝐺 (𝜎,ℓ )
𝑙,𝑚

(
𝐺

′ (𝜎,ℓ )
𝑙,𝑚

)∗
. (5.29)

The coefficient 𝐺
′ (𝜎,ℓ )
𝑙,𝑚 abbreviates a sum of multipole coefficients 𝐺 (𝜎,ℓ )

𝑙,𝑚 of different degrees, given
by

𝐺
′ (𝜎,ℓ )
𝑙,𝑚 =

√︃
𝑙 (𝑙 + 2) [(𝑙 + 1)2 − 𝑚2

]
(2𝑙 + 1) (𝑙 + 1) 𝐺 (𝜎,ℓ )

𝑙+1,𝑚+
√︁
(𝑙2 − 𝑚2) (𝑙2 − 1)
𝑙 (2𝑙 + 1) 𝐺 (𝜎,ℓ )

𝑙−1,𝑚+𝜎
𝑚

𝑙 (𝑙 + 1)𝐺
(𝜎,ℓ )
𝑙,𝑚 . (5.30)

The transverse force components in cylindrical coordinates can be obtained with (C.8). From
Eq. (C.5), we obtain, after some algebraic transformation, the following expression for the scattering
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part of the transverse force components{
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while the extinction part according to (C.6) yields{
𝑄ext,𝜌
𝑄ext,𝜑

}
=
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Note that the upper (lower) sign corresponds to the radial (azimuthal) force component. The coeffi-
cients 𝐺±, (𝜎,ℓ )

𝑙,𝑚∓1 are functions of 𝐺 (𝜎,ℓ )
𝑙,𝑚∓1

𝐺±, (𝜎,ℓ )
𝑙,𝑚 = ∓

√︁
(𝑙 ± 𝑚) (𝑙 ± 𝑚 + 1) (𝑙2 − 1)

𝑙 (2𝑙 + 1) 𝐺 (𝜎,ℓ )
𝑙−1,𝑚 + 𝜎
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±
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(𝑙 ∓ 𝑚) (𝑙 ∓ 𝑚 + 1) ((𝑙 + 1)2 − 1)

(𝑙 + 1) (2𝑙 + 1) 𝐺 (𝜎,ℓ )
𝑙+1,𝑚 .

(5.33)

The force expressions (5.28), (5.29) and (5.31), (5.32) constitute the so-called Mie-Debye Spherical
Aberration + Astigmatism (MDSA+) theory for spherical objects trapped by a focused, circular-
polarised vortex beam. The MDSA+ theory was first derived for dielectric spheres in focused
Gaussian beams [129]. If astigmatism is disregarded, 𝐴ast = 0, the theory is referred to as Mie-
Debye Spherical Aberration (MDSA), which was first discussed in Ref. [116]. If there is also no
spherical aberration (𝑛s = 𝑛w), one obtains the Mie-Debye (MD) theory introduced in Ref. [133]. It
is worth noting that the force expressions mentioned earlier are quite similar to those used in the MD
theory. However, there are a few key differences, such as the multipole expansion coefficients and the
normalization function 𝐴ℓ , which take the structure of the light field and the aberrations into account.

We conclude this Chapter with some remarks regarding the numerical evaluation of the force
components. First, we note that the expressions for the coefficients 𝐺

′ (𝜎,ℓ )
𝑙,𝑚 and 𝐺±, (𝜎,ℓ )

𝑙,𝑚 presented
in Eqs. (5.30) and (5.33) respectively, agree with recursion relation for the Wigner d-matrix elements
𝑑ℓ𝑚,𝜎 , given in Ref. [98, p. 90]. By using these recursion relations, we can obtain the following
integral expressions for the coefficients

𝐺
′ (𝜎,ℓ )
𝑙,𝑚 =

(√
2𝛾

) |ℓ | ∫ 𝜃𝑚

0
d𝜃

√︁
cos(𝜃) cos(𝜃w) (sin(𝜃)) |ℓ |+1 e−𝛾

2 sin2 (𝜃 )𝑑𝑙𝑚,𝜎 (𝜃w)𝑔 (𝜎,ℓ )𝑚 (R)

× exp
[
i𝐾w cos(𝜃)𝑧𝑅 + iΨg-w(𝜃)

] (5.34)
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and

𝐺±, (𝜎,ℓ )
𝑙,𝑚 =

(√
2𝛾

) |ℓ | ∫ 𝜃𝑚

0
d𝜃

√︁
cos(𝜃) sin(𝜃w) (sin(𝜃)) |ℓ |+1 e−𝛾

2 sin2 (𝜃 )𝑑𝑙𝑚±1,𝜎 (𝜃w)𝑔 (𝜎,ℓ )𝑚 (R)

× exp
[
i𝐾w cos(𝜃)𝑧𝑅 + iΨg-w(𝜃)

]
.

(5.35)
Earlier works (see e. g. Refs. [129, 142]) based their calculations on the above given integral
expressions. However, this means that for each pair (𝑙, 𝑚), three integrals have to be computed
numerically to obtain the optical force. In our approach, we only compute the multipole expansion
coefficient 𝐺 (𝜎,ℓ )

𝑙,𝑚 and evaluate the other expansion coefficients from the recursion relations (5.30)
and (5.33), which thus saves computation time.

The numerical results shown in the following Chapters were obtained from an implementation of
the force expression in Python using the scientific libraries NumPy [143], SciPy [144] as well as
Numba [145] for just-in-time compilation.
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6 Trapping chiral and non-chiral particles with vortex
beams

In the previous Chapter, we introduced the MDSA+ theory for vortex beams, which allows us to
calculate the optical force on a spherical particle. In this Chapter, we will apply our theory to
investigate the trapping of spherical objects using a focused Laguerre-Gaussian (LG) beam.

The critical difference between Gaussian and Laguerre-Gaussian beams is that, before being
focused by a high numerical aperture objective, a Gaussian beam only carries spin angular momentum
associated with the two polarisation states (left- or right-circularly polarised). However, a Laguerre-
Gaussian beam also carries orbital angular momentum. During the focusing, spin angular momentum
is converted into orbital angular momentum, as discussed in Refs. [67, 146, 147]. The resulting
angular momentum carried by the vortex can thus be larger or smaller, depending on the polarisation
before focusing. Furthermore, the focusing with a high NA objective leads to a doughnut-shaped
intensity profile, where the energy spirals around the optical axis [148]. Depending on the size of
the sphere compared to the annular focal spot, there thus exist different trapping regimes [2]. If the
particle is way smaller than the radius of the ring of maximal intensity, it orbits around the beam axis
[66]. This is a result of the response of the particle to the intensity profile of the beam. The electric
field induces a dipole in the polarisable particle pel ∝ E, which leads to a force F = ∇(pel ·E) ∝ ∇|E|2
pointing to the region of highest intensity. The same gradient force also keeps particles trapped along
the optical axis for a Gaussian beam, where the region of highest intensity is along the beam axis
and not in a ring-shaped area around the axis. In contrast, if the object is large enough, it can also
be trapped in the dark spot on the beam axis [149]. Note also that the additional orbital angular
momentum carried by the vortex beam increases the transferred momentum to the sphere, allowing
it to orbit around the axis if trapped in the ring regime [68].

The enhanced torque and the different trapping regimes in a vortex beam lead to interesting effects,
which we will discuss below. Our findings benefit the analysis in Chap. 7, where we use our theory to
fit experimental data. First, we analyse in Sec. 6.1 the trapping of dielectric spheres by applying the
MD theory without including any aberrations. Then, in Sec. 6.2, we consider trapping particles with
a chirooptical response. Finally, we discuss how spherical aberration affects the trapping in Sec. 6.3.

6.1 Dielectric sphere trapped by a vortex beam

If not stated otherwise, we consider the trapping of a polystyrene microsphere of refractive index
𝑛 = 1.5694 [150] in water with refractive index 𝑛w = 1.3246 at 𝑇 = 19 ◦C [151]. The beam has a
vacuum wave length of 𝜆0 = 1.064 μm and is left-circularly polarised (𝜎 = 1). It enters an objective
with numerical aperture NA = 1.4 through an entrance port of radius ℎ = 2.8 mm. The medium at the
exit of the objective has a refractive index 𝑛s = 1.518. The beam waist 𝑤0 is in experimental setups
with a vortex beam chosen such that optimal filling is ensured [152]. For our theoretical analysis we
are using a beam waist of 𝑤0( |ℓ |) taken from Ref. [153], which ensures a filling factor of the objective
of about 50 %

(
𝑤0( |ℓ | > 1) ≈ 0.5

√︁
2/|ℓ |

)
.
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6 Trapping chiral and non-chiral particles with vortex beams
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Figure 6.1: Radial and azimuthal force component. Both figures show the radial 𝑄𝜌 and azimuthal 𝑄𝜑
force efficiency as function of the radial displacement 𝜌 for spheres of radii 1.5 μm in (a) and 0.5 μm in
(b). The force components for all four cases are calculated at 𝑧 = 0 and for topological charges ℓ = 0, ±4,
and ±8. Vertical lines, shown in Figure (b), represent the radial off-axis equilibrium positions, defined by
𝑄𝜌 (𝜌 = 𝜌eq) = 0. The lines in the top Figure connect to corresponding values of the azimuthal force, as
shown in the bottom Figure.

6.1.1 On- and off-axis trapping

For a Gaussian beam at the entrance of an objective, there exists one stable on-axis regime (𝜌eq = 0).
For Laguerre-Gaussian beams, on the other hand, an object can also be trapped on the ring spot [68].
Whether a particle is trapped on-axis or off-axis (on the ring) depends on the size of the object and the
topological charge ℓ, which defines the radius of maximum intensity. As can be seen in the top panels
of Fig. 6.1, where we show the radial force efficiency 𝑄𝜌 as a function of the radial displacement
for 𝑧 = 0, calculated from Eqs. (5.31)-(5.32). The radial equilibrium is defined by a vanishing radial
force component 𝑄𝜌 (𝜌 = 𝜌eq). For a sphere with radius 𝑅 = 1.5 μm, as shown in Fig. 6.1a, there
is only an on-axis equilibrium for ℓ = 0, 4. However, for ℓ = 8, there exist three equilibria, one is
located at 𝜌eq = 0 and the other two at 𝜌eq > 0. In contrast, for spheres with radius 𝑅 = 0.5 μm
(Fig. 6.1b), off-axis equilibria can already be found for |ℓ | = 4. Where the sphere is trapped in an
experimental setting depends on the stability of the equilibrium position. A negative force gradient
defines a stable radial equilibrium. For the large sphere shown in Fig. 6.1a, the on-axis equilibrium is
stable for all displayed values of ℓ. There is also a stable off-axis equilibrium that corresponds to the
ring regime for ℓ = 8. The topological charge increase causes the equilibrium positions to transition
from one stable equilibrium to an unstable equilibrium and a stable periodic orbit [2]. In contrast,
for the small sphere depicted in Fig. 6.1a, only for ℓ = 0 there is a stable on-axis equilibrium. In all
other cases, the sphere is trapped in an orbit around the axis. Hence, various trapping regimes exist
depending on the topological charge and size of the sphere.

Optical tweezers are three-dimensional traps, therefore a stable equilibrium Req = Req(𝜌eq, 𝑧eq) is
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6.1 Dielectric sphere trapped by a vortex beam
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&d &I Figure 6.2: On- and off-axis trap-
ping. Top: Equilibrium positions
of a microbead with radius 1.5 μm,
trapped in a vortex beam with topolog-
ical charge ℓ = 8. The first two figures
show the radial and axial force fields
in the 𝜌𝑧-plane. The solid and dashed
lines, respectively, depict the vanishing
of the radial and axial force. The last
Figure combines the zero-force curves
and highlights one unstable (un-filled
circle) and the two stable (filled cir-
cles) equilibrium positions. Bottom:
Stable radial equilibrium distance 𝜌eq
as function of the topological charge
ℓ for various values of the sphere ra-
dius. 𝜌eq = 0 is an on-axis equilib-
rium, while 𝜌eq > 0 indicates trapping
in the ring-regime.

defined by the vanishing of both the axial and radial force

𝐹𝜌 (Req) = 0 = 𝐹𝑧 (Req) and
𝜕𝐹𝜌

𝜕𝜌

�����
eq

,
𝜕𝐹𝑧
𝜕𝑧

�����
eq

< 0 . (6.1)

The respective derivatives of the force components are negative at the equilibrium to ensure stability.
To better understand how the stable equilibrium is evaluated, we have depicted the force fields of a
sphere with radius 1.5 μm, displaced in the axial and radial directions in the top panels of Fig. 6.2.
The first two figures show the force field of the radial and axial force components, with the curves of
vanishing forces depicted as solid and dashed red lines, respectively, for the radial and axial force.
The equilibrium positions are defined by the three intersection points of the curves (see third figure).
All three equilibria points are stable in axial direction, as the force becomes negative with increasing
axial displacement of the sphere from the focus. However, there is one unstable equilibrium in
the radial direction, which is represented by the unfilled circle. Small radial deviations from the
unstable equilibrium result in a sphere jumping to the on-axis equilibrium or the ring-shaped regime,
represented by filled circle symbols. In the bottom panel of Fig. 6.2, we determined the stable radial
equilibrium distance 𝜌eq as function of the topological charge ℓ for various sphere radii 𝑅. It is
evident from Fig. 6.2 that with increasing radius, higher order beam modes ℓ are necessary to get a
sphere trapped in an orbit. Furthermore, stable on- and off-axis equilibria exist for spheres with radii
𝑅 ≤ 1μm. The radial equilibrium increases with topological charge [118].

Theoretical studies of this kind offer insights into the position where particles get trapped, de-
pending on their size and the beam mode ℓ used. This is especially useful when trapping in the ring
regimes needs to be avoided. We will explore this matter further in the next Chapter.

We now return to Fig. 6.1 to analyse the azimuthal force component 𝑄𝜑 . In the on-axis regime,
there is no force in the azimuthal direction. However, if the object is displaced radially, it experiences
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Figure 6.3: Rotation angle 𝛼. Schematic illustration of a
trapped particle (blue) in a vortex beam, with the ring of highest
intensity shown in red. The direction of the torque in the ring
regime is shown with a red arrow. If a particle is displaced from
the optical axis (coordinate origin), it can experience a torque
F𝜑 , which is orientated in the opposite direction to the torque
in the ring of highest intensity. If additionally a constant trans-
verse force FS is applied, the particle finds its new equilibrium
in a position rotated about an angle 𝛼.

a torque as can be seen in the bottom panels of Fig. 6.1, where we depict 𝑄𝜑 calculated from
Eqs. (5.31)-(5.32). It is known that objects trapped in the orbit rotate in the direction defined by the
sign of ℓ [68]. We depict the radial equilibrium positions, which define the ring-shaped regime, in
Fig. 6.1b, by vertical lines. The lines connect to the respective azimuthal force values in the bottom
panel. We confirm that the sign of ℓ matches the sign of 𝑄𝜑 . For the 1.5 micron sphere, shown
in Fig. 6.1a, we however note that in the cases ℓ = ±8, for small displacements from the axis, the
particle experiences a torque in the opposite direction to the torque in the ring-shaped regime. This
so-called negative optical torque was theoretically analysed in Ref. [57] and experimentally probed in
Ref. [142] for an elliptical polarised Gaussian beam. In the next Section, we want to further analyse
the torque experienced for small displacements from the optical axis.

6.1.2 Negative optical torque
The negative optical torque can be probed by applying a constant transverse force on the sphere [142].
The motion of a microbead trapped in the medium by a focused beam with a constant force F𝑆 = 𝐹𝑆 x̂
along the positive and negative 𝑥-direction can be described by the following set of equations in
cylindrical coordinates

𝑚( ¥𝜌𝑅 − 𝜌𝑅 ¤𝜑2
𝑅) = 𝐹𝜌 + 𝐹𝑆 cos(𝜑𝑅) − 𝛾 ¤𝜌𝑅

𝑚(2 ¤𝜌𝑅 ¤𝜑𝑅 + 𝜌𝑅 ¥𝜑𝑅) = 𝐹𝜑 − 𝐹𝑆 sin(𝜑𝑅) − 𝛾𝜌𝑅 ¤𝜑𝑅
𝑚 ¥𝑧𝑅 = 𝐹𝑧 − 𝛾 ¤𝑧𝑅 ,

(6.2)

with the mass 𝑚 of the microbead and the Stokes drag coefficient 𝛾 of the medium. If the sphere
is displaced from the optical axis, it rotates into a new equilibrium, as shown in Fig. 6.3. The
equilibrium position Req = R(𝜌𝑅 = 𝜌eq, 𝜑𝑅 = 𝛼, 𝑧𝑅 = 𝑧eq) is defined by

𝐹𝑧 (Req) = 0 , arctan
(
𝐹𝜑 (Req)
|𝐹𝜌 (Req) |

)
= 𝛼 . (6.3)

Already, our analysis in Fig. 6.1 suggested that the rotation and thus the rotation angle 𝛼 changes
with the size of the sphere and the topological charge. We thus analysed the rotation angles as a
function of the sphere radius in Fig. 6.4. The rotation angles were computed for a fixed displacement
𝜌 = 0.01 μm and topological charges ℓ = 0 and ±1. It is evident from Fig. 6.4 that a negative optical
torque strongly depends on the radius of the sphere and the topological charge of the beam. Notice
that it is not always possible to find new equilibrium positions. If the object is too small, it will
immediately jump into the ring if displaced. Furthermore, we notice that the rotation angle oscillates
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6.2 Chiral sphere trapped by a vortex beam
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Figure 6.4: Radius dependence of the rotation angle. The left panel presents the rotation angle 𝛼 as a
function of the sphere radius 𝑅 for vortex beams with ℓ = 0 and ±1. The rotation angle is computed for a small
displacement of 𝜌 = 0.01 μm from the beam axis. The right panel shows the dependence of the rotation angle
on the displacement 𝜌 for a sphere of radius 1.5 μm (dotted lines) and for a sphere of radius 2.5 μm (solid
lines). We use the same colour convention for the different topological charges as in the left panel, where
circle symbols mark the corresponding radii.

for radii larger than the beam wavelength. This corresponds to radii larger than 𝜆0/𝑛 ≈ 0.68 μm for
our chosen parameters. Origin of the oscillations is the interference between rays scattered at the
front of the sphere (with respect to the propagation direction of the beam) and rays which perform
one round-trip within the sphere. Constructive interference appears if the path accumulated during
one round-trip within the sphere is a multiple of the wavelength [154]. For a sphere of radius 𝑅,
the total path within one round-trip is thus 4𝑅. The distance between two local minima/maxima
extracted from Fig. 6.4 yields Δ𝑅 ≈ 0.17 μm, which agrees with the theoretical expected value of
𝜆0/4𝑛. We also remark that the amplitude of the torque for ℓ = −1 is smaller than for ℓ = 1, which is
related to the chosen polarisation of the incident beam. We used a left-circular polarised beam, which
is associated with a spin angular momentum +ℏ and thus partially cancels with the orbital angular
momentum −ℏ. For ℓ = 1, on the other hand, the resulting angular momentum is enhanced.

The depicted rotation angles were calculated for a fixed displacement 𝜌 = 0.01 μm, we thus also
analysed in the left panel of Fig. 6.4 the dependence of the rotation angle against radial displacements.
We found that the rotation angle is robust against variations within 𝜌 < 0.05 μm. The sphere is
immersed in water, causing a Brownian motion. It is thus important to find measurable quantities
like the rotation angle that are robust against small spatial variations. The fact that the rotation angle
does not depend on 𝜌 for very small displacements was also utilized in a previous study by [142].

6.2 Chiral sphere trapped by a vortex beam
Chirality is generally related to the geometrical structure of an object, where the mirror image is
not identical to the original state, regardless of how it is rotated or translated. Chiral objects can be
found everywhere in nature, with the DNA being the most prominent example. Characterizing or
even selecting objects based on their chirality is of great interest [155, 156]. In a first approximation,
chirality can be modeled by a chiroptical parameter 𝜅 [156, 157] as introduced in Sec. 5.2.2, which
we will employ in the following.

Earlier studies analysed the trapping of chiral particles [158, 159] with a focused Gaussian beam
and found that the rotation angle is sensitive to chirality. Recent work also analysed the trapping
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Figure 6.5: Chirality dependence of the rotation angle. Figure (a) presents the rotation angle 𝛼(𝜅) as a
function of the chirality parameter 𝜅 for a sphere of radius 𝑅 = 0.5 μm. The rotation angle is normalized by
the angle for zero chirality (𝜅 = 0) and is calculated for topological charges ranging from ℓ = −2 to 2. Figure
(b) depicts the derivative of 𝛼 with respect to 𝜅 evaluated at 𝜅 = 0 as a function of the topological charge. The
derivatives are calculated for spheres of radii 𝑅 = 0.5 μm and 1 μm.

with azimuthally-polarised vortex beams [160]. However, realising an azimuthally-polarised beam
is much more difficult (see e.g. for review [161]) than circularly polarised beams, which we are
considering in our analysis. The chirality of objects modifies the azimuthal component of the optical
force. We computed in Fig. 6.5a the rotation angle 𝛼 for a sphere of radius 𝑅 = 0.5 μm and chirality
parameters ranging from −0.005 to 0.005, the refractive index is the same as before. The rotation
angle was normalized by the rotation angle 𝛼(𝜅 = 0) for zero chirality. We found that depending
on the topological charge ℓ, the rotation angle for a chiral particle is either larger or smaller than
the rotation angle for a non-chiral sphere. Furthermore, we also found that certain beam modes are
more sensitive to chiral objects than others. It is evident from the depicted cases in Fig. 6.5a, that the
beam with topological charge ℓ = −2 is most sensitive to variations in 𝜅, since it shows the strongest
variation with 𝜅. This suggests that there is an optimal beam mode ℓopt to probe chirality. The beam
mode that exhibits the highest sensitivity depends on the radius of the sphere. We thus examined
in Fig. 6.5b the slope of 𝛼(𝜅) at 𝜅 = 0 as function of the topological charge for a sphere of radius
𝑅 = 0.5 μm and 𝑅 = 1 μm. The absolute value of the gradient is largest for ℓopt = −2 and ℓopt = 3,
respectively for the two spheres. The studies [158, 159] proposed to use the rotation angle as a
probe for chirality. They used a Gaussian beam at the entrance of the objective. However, our result
suggests that Laguerre-Gaussian beams are better suited, specifically if the optimal beam mode for a
certain sphere size is known.

6.3 Influence of spherical aberrations on optical trapping

In this Section, we will briefly discuss how spherical aberrations influence the trapping in a vortex
beam. Spherical aberration occurs due to the refraction of the beam at an interface. As we discussed
earlier, spherical aberration is characterized by the distance 𝐿 between the interface and the paraxial
focus, as shown in Figure 5.2a. The parameter 𝐿 is typically determined theoretically by simulating
the experimental procedure, as it is not usually accessible in experiments [116]. The sphere is first
placed on the interface, and then displaced by a fixed distance 𝑑. Theoretically, this amounts to
determining the axial equilibrium position 𝑧𝑅 = 𝑧eq, where the sphere touches the interface, as shown
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6.3 Influence of spherical aberrations on optical trapping

in Fig. 6.6a. Recall that 𝑧𝑅 defines the distance of the sphere centre from the focal spot. Therefore,
the distance 𝐿0 from the focus to the interface can be calculated from 𝐿0 = 𝑅 − 𝑧eq, with 𝑧eq as
solution of

𝑄𝑧 (𝜌𝑅 = 0, 𝜙𝑅 = 0, 𝑧𝑅 = 𝑧eq, 𝐿 = 𝑅 − 𝑧eq) = 0 . (6.4)

The distance after displacing the sphere is 𝐿 = 𝐿0 + 𝑑/𝑁 .
In Fig. 6.6b, we analysed the focal distance as function of the topological charge ℓ for a sphere

of radius 𝑅 = 1.5 μm and found that the focal distance decreases with increasing |ℓ |. The intensity
profile of a vortex beam along the beam axis depends on the topological charge. It can thus lead to
additional changes in the focus position on top of the distortion due to the refraction at the interface.
Additionally, we analysed in Fig. 6.6c how the rotation angle 𝛼 changes with increasing distance
between the nominal focus position and the interface. We computed rotation angles within the
MDSA theory for a sphere of radius 𝑅 = 1.5 μm as a function of the topological charge ℓ. The
rotation angles were computed for different displacements 𝑑. Furthermore, we subtracted the rotation
angle 𝛼MD, the rotation angle calculated within the MD theory, without spherical aberration. It is
evident from Fig. 6.6c that the rotation angles for higher beam modes |ℓ | > 0 are more sensitive to
changes in the distance 𝑑. For ℓ = 0, there are almost no variation with distance 𝑑.
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Figure 6.6: Spherical aberration. Figure (a) depicts the paraxial focal distance 𝐿0 for a trapped spherical
particle touching the interface. Figure (b) represents the distance 𝐿 between the paraxial focal and the interface
as a function of the topological charge ℓ for a sphere of radius 𝑅 = 1.5 μm. The distance is calculated from
𝐿 = 𝐿0 + 𝑑/𝑁 , where 𝑑 = 2 μm and 𝑁 = 𝑛w/𝑛s. 𝐿0 is obtained as solution from Eq. (6.4). Figure (c) presents
the difference between the rotation angle calculated within the MDSA theory (𝛼MDSA) and within the MD
theory (𝛼MD) as a function of the topological charge ℓ. The rotation angles are computed for a sphere of radius
1.5 μm for various focal distances 𝑑. The inset depicts the rotation angles calculated with the MD theory for
comparison.
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7 Characterizing microbeads by trapping in a vortex
beam

The content discussed in this Chapter can be found in Ref. [153] and, therefore, also contains
input from numerous discussions with all authors of the article. The idea of using vortex beams for
determining the radius of microbeads was developed by Kain�̃� Diniz and collaborators from UFRJ.
The author of this thesis carried out the numerical calculation, as well as parts of the analysis of the
experimental data.

In the previous Chapter, we discussed two trapping regimes for particles trapped by a vortex beam.
Where the object is trapped depends on the size and the topological charge of the beam. Objects
which are large compared to the size of the ring-shaped trap find their stable position on the optical
axis. For small displacements from the on-axis regime, the particle experiences a rotation which
results from the optical torque. The direction of the torque depends on the size and topological
charge and can point in the opposite direction to the angular momentum of the vortex. For higher
beam modes ( |ℓ | > 0), we observed that the rotation angle is extremely sensitive to the radius of the
sphere. In this Chapter, we will discuss how these results can be practically applied in experiments
to determine the size of trapped microspheres. This can be done by measuring the rotation angle for
different topological charges ℓ.

Various techniques exist in the literature to identify the size of particles immersed in a liquid, as
is the case for the system we are studying. One common approach is dynamic light scattering [162],
which, however, cannot determine the size of an individual trapped particle but instead the average
size of the dilute mixture of colloids. Another way is to extract the trapped particle from the liquid
and measure it with an electron microscope or other imaging systems. This method is also limited
in its applicability since the trapped particle is usually used for further measurements. Our proposed
in situ method provides a solution to this problem. Other approaches apply machine learning to
characterize colloids [163–165]. The latter uses a generative model based on the Lorentz-Mie theory
to fit holograms of individual particles in a liquid. However, this approach again does not work when
considering an individual trapped particle, which is used in further experiments where the knowledge
of the size of the bead is needed, like for measuring the stiffness or trapping efficiency of optical
tweezers (see e. g. [166]).

The following Section provides a detailed overview of the proposed radius measurement method.
We begin in Sec. 7.1 by giving an overview of the experimental setup and also explaining how the
rotation angles can be extracted from the experimental data. We apply the theory developed in the
previous Chapter to fit the experimental data, as detailed in Sec. 7.2. This allows us to determine the
characteristics of the trapped bead. Furthermore, we found that our method also provides information
about other quantities of the optical system.

7.1 Experimental setup and analysis of the data

We consider the same setup and parameters as in the previous Section, with a polystyrene sphere
trapped by a vortex beam of topological charge ℓ. The bead was trapped, while touching the interface
and is then moved upwards by a height 𝑑 = (2 ± 1) μm. We described this procedure in Sec. 6.3,
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7.1 Experimental setup and analysis of the data
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Figure 7.1: Illustration of the experimental setup. A
bead of refractive index 𝑛 is trapped in a laser beam focused
through an interface with refractive indices 𝑛s and 𝑛w on
either side of the interface. A glass slide at the interface is
displaced by a positioning system (p) along the 𝑥-direction
with a velocity vStokes = 𝑣Stokesx̂, thus leading to a Stokes
drag force, which displaces the bead from its equilibrium
position.

which allows us to extract the paraxial focal distance 𝐿, also shown in Fig. 7.1. The rotation angle is
measured by applying a constant force on the sphere, as discussed in Sec. 6.1.2. In the experiment,
this is achieved indirectly. A glass slide is placed at the interface (see Fig. 7.1) and moved in a
transverse direction. Hence, a Stokes drag force arises, which displaces the trapped particle from its
axial equilibrium position. Once the bead is displaced from its on-axis equilibrium, it will rotate to
its new equilibrium, as illustrated in Fig. 6.3. The procedure was repeated for several beam modes
ℓ for each trapped sphere. We refer to Refs. [142, 153] for readers interested in more details on the
experimental setup and technical realization.

In the following, we will discuss how to efficiently extract the rotation angle from a large number
of data sets. For each beam mode ℓ, the position of the microsphere is measured over a time 𝑇 = 10 s,
resulting in 1000 data points, as it is shown for the 𝑥- and 𝑦-coordinate as a function of the time in the
left and top panel of Fig. 7.2. The central panel displays the data points within the 𝑥𝑦-plane, resulting
in two distinct clusters originating from the displacement in positive and negative 𝑥-direction. We
use a scikit-learn routine, an open-source machine learning software package [167], to identify
the two clusters, which are depicted by yellow and blue points in Fig. 7.2. The open circles that lie
between the two identified clusters are disregarded in the analysis. They correspond to the measured
positions of the spheres during the displacement. Using machine learning software facilitates the data
analysis significantly, since it works for a large number of data sets and we do not need to introduce
criteria for each individual data set to identify the clusters. Next, we determine the probability
histogram distributions with respect to each direction and test whether it is normally distributed.
Finally, a 2D Gaussian model of the form

𝑓 (𝑥, 𝑦) = 𝐴 exp
[−𝑎(𝑥 − 𝑥𝑖)2 − 𝑏(𝑥 − 𝑥𝑖) (𝑦 − 𝑦𝑖) − 𝑐(𝑦 − 𝑦𝑖)2] (7.1)

is used to fit each cluster. The Gaussian function is parameterized by the amplitude 𝐴, the centre
coordinates r𝑖 = (𝑥𝑖 , 𝑦𝑖) and parameters 𝑎, 𝑏 and 𝑐, which characterize the spread in the 𝑥𝑦-plane.
The centre coordinates of the Gaussian model determine the equilibrium position of the bead. We
assume that the equilibrium positions are symmetrically displaced from the optical axis, which allows
us to deduce the rotation angle 𝛼 from the slope of the line connecting the two equilibrium positions
with tan(𝛼) = (𝑦2 − 𝑦1)/(𝑥2 − 𝑥1). The error of 𝛼 was found by propagating the fitting errors of the
coordinates. Previous work [142] determined the rotation angle by performing a linear fit of all data
points. However, the linear fit is inadequate for a two-dimensional problem since it only minimizes
the error in the 𝑦-direction. Exchanging 𝑥- and 𝑦-coordinates and again performing a linear fit reveals
that it leads to a different rotation angle, as can be seen by the dashed black lines in the central panel
of Fig. 7.2. Our method avoids this ambiguity. Furthermore, we are also able to evaluate the radial
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Figure 7.2: Extracting the rotation angle from the experimental data. The x- and y- coordinates of the
bead were measured over a period of 𝑇 = 10 𝑠 as depicted at the top and left panel, respectively. The central
panel illustrates the position distribution in the 𝑥𝑦-plane with probability histograms for each coordinate as
depicted on the right and bottom panels. The yellow and blue coloured data points, corresponding to the two
equilibrium positions, were identified with a machine-learning routine. Data points depicted as open circles
are disregarded. The histograms indicate that the 𝑥- and 𝑦-coordinate are normally distributed, which allows
for a fit with a 2D Gaussian model to determine the two equilibrium positions r1 and r2 of the bead, shown
as red dots. We assume that the equilibria are symmetrically displaced from the optical axis. The rotation
angle can thus be evaluated from the slope of the line connecting the two equilibria. The whole experimental
setup was rotated by an offset angle, which needs to be subtracted to obtain the angle 𝛼. Furthermore, we find
the radial equilibrium displacement 𝜌eq from the distance between the two equilibria. The black dashed lines
depict the result of a linear fit of the data in 𝑥- and 𝑦-direction.

equilibrium displacement 𝜌eq from the distance between the two points with 2𝜌eq = |r1 − r2 |, which
is needed for the theoretical evaluation of the rotation angle, as we discussed in connection with
Fig. 6.4.

Data sets which fail the normality test, are analysed separately. The clusters in some data sets
exhibit an overall drift during the measurement, as it is shown in Fig. 7.3a for the 𝑥-coordinate of a
certain data set. The corresponding probability distribution (shown at the right panel of Fig. 7.3a) thus
exhibits some skewness or even two distinct maxima, which does not allow for a fit with a Gaussian
model. We analyse the viability of a data set by identifying each individual cluster in the time series
of the 𝑥- and 𝑦-coordinate and determine the mean values, as well as, the standard deviations (as
depicted by the crosses and error bars in Fig. 7.3a). Next, the minimal and maximal mean coordinates
are extracted, both indicated by the dashed lines for each equilibrium position (respectively the blue
and yellow data points). We furthermore evaluated the mean value of the standard deviations of the
individual clusters. If the distance between the minimum and maximum mean is larger than twice
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Figure 7.3: Data analysis. (a) The left panel depicts the 𝑥-coordinates of the displaced bead as function of
the time 𝑡, similar to Fig. 7.2 but for a different data set. The crosses present the mean x-coordinate within
each cluster, while the dashed lines present the maximum and minimum mean values. For each cluster, we
additionally computed the mean standard deviation, which is illustrated by the vertical lines. The right panel
depicts the corresponding histogram of the position distribution. We shifted the upper histogram from the
zero-axis to avoid an overlap with the lower histogram. (b) Position distribution of the bead in the 𝑥𝑦-plane
for three rounds of measurement for a particular beam mode. The red dots present the equilibrium position of
the bead extracted from the corresponding position distributions.

the mean of the standard deviation, we disregarded the data set.
The measurement for each mode ℓ was repeated several times. The obtained data sets of the

individual runs are presented in Fig. 7.3b. It is evident that there is a significant shift in the data,
which makes combining data sets for a particular beam mode impossible. Hence, the rotation angle
for each individual run had to be determined separately.

7.2 Fitting the experimental data to theory

This Section is devoted to the theoretical analysis of the experimentally obtained data for the rotation
angles. First, in Sec. 7.2.1, we present our fitting procedure. In Sec. 7.2.2, we discuss the results for
two beads of nominal size (1.50 ± 0.04) μm which are in the following referred to as beads A and B.
We follow up with a discussion of beads of nominal size (2.260 ± 0.075) μm, which we refer to as
beads C and D in Sec. 7.2.3.

7.2.1 Numerical analysis

The rotation angle 𝛼 is determined by solving the system (6.3), where we used the radial equilibrium
distance 𝜌eq extracted from the experimental data. The rotation angles show little dependence on 𝜌
for small displacements as we already confirmed in Sec. 6.1.2. We thus use the average displacement
of all rounds for one beam mode as input for the numerical calculation of the rotation angle.

We fit the experimental data by minimizing a weighted sum of squared errors between the theo-
retically and experimentally obtained rotation angles, denoted as 𝜒2. We sum over all beam modes
for which measurements were performed and all rounds of measurement, leading to the following
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Figure 7.4: Beads with a nominal size of 1.5 microns. The figure represents the experimental and theoretical
rotation angles for bead A (left) and bead B (right) as a function of the topological charge ℓ. The circle symbols
depict the mean values of the experimentally obtained rotation angles from the several runs of measurement.
The error bars depict the standard deviations from the different runs. We fitted the experimental data points by
using the MDSA theory (squared symbols) and the MDSA+ theory (triangle symbols). Furthermore, a joint fit
with common astigmatism parameters for beads A and B was performed (cross symbols). The corresponding
radii found from the fits are shown in the legends. The dotted line connecting the two figures illustrates the
difference between the rotation angles for the two beads measured for ℓ = 1. Similar figures can be found in
Ref. [153] but without the results for the joint fit.

definition of the loss function

𝜒2 =
1
𝑁

∑︁
ℓ

1
𝑀ℓ

∑︁
𝑟

(
𝛼(ℓ) − 𝛼exp(ℓ, 𝑟)

Δ𝛼exp(ℓ, 𝑟)

)2
(7.2)

with the experimentally determined rotation angle 𝛼exp(ℓ, 𝑟) ± Δ𝛼exp(ℓ, 𝑟) and its uncertainty for the
beam mode ℓ from measurement round 𝑟. 𝑁 is the number of beam modes, and 𝑀ℓ is the number
of measurement rounds for each beam mode. 𝑀ℓ depends on ℓ, which is a result of the fact that
sometimes beads are lost during the measurement process or certain data sets are disregarded, as we
discussed in the previous Section. We used the MDSA and MDSA+ theory presented in Sec. 5.2.3
to compute the theoretical rotation angles. The paraxial focal distance 𝐿 was determined by the
approach described in Sec. 6.3 with the experimentally measured displacement 𝑑 = (2 ± 1) μm of
the bead from the interface.

The minimization of 𝜒2 is performed with the Minuit class from the iminuit package [168],
which provides the fitting parameters, their uncertainties and correlations. The computation time,
especially for the MDSA+ theory, was quite time-consuming. As a result, we computed the rotation
angles for the different beam modes in parallel on several processes.

7.2.2 Beads of nominal size 1.5 microns

For beads A and B of nominal radius 1.5 microns, measurements were performed for |ℓ | up to 4
to ensure on-axis trapping. Three to four rounds of measurement were performed for each beam
mode ℓ. The averaged rotation angles from the different rounds of measurement are depicted in
Fig. 7.4 as circles, with error bars showing the standard deviations. We notice that the two rotation
angles for ℓ = 0 are indistinguishable within their error bars. However, higher beam modes enable
a distinction between the two beads, as shown for ℓ = 1 by the dotted lines in Fig. 7.4. Hence, only
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7.2 Fitting the experimental data to theory

bead 𝑅 (μm) 𝜒2

A 1.500 ± 0.004 21.7
B 1.494 ± 0.003 26.4

Table 7.1: Parameters from a fit with the MDSA theory. Optimal radii from a fit with the MDSA theory
together with the corresponding value of 𝜒2 for beads A and B of nominal size 1.50 μm.

Laguerre-Gaussian beams of topological charges |ℓ | > 0 can be used to distinguish trapped beads
based on their radius, as already expected from our discussion in connection with Fig. 6.4. The
rotation is mostly opposite to the one in the ring regime, which is defined by the sign of ℓ, which we
also found for 𝑅 = 1.5 , μm in Fig. 6.4. It is also notable that the modulus of the rotation angle for
ℓ = 4 is way smaller than the angle for ℓ = −4. A theoretical calculation of the rotation angle for
the nominal radius using the MDSA theory yields a value of about −15.7◦, so it is way smaller than
what was experimentally found, which is about −2.7◦ and −0.8◦, respectively for bead A and B. We
suspect that this discrepancy originates from the torque exerted along the ring regime of the beam.
For ℓ = 4, the bead is in the limiting case between the on-axis and ring regime. While there is a
stable on-axis equilibrium, the bead also experiences a positive torque from the ring [152]. We thus
excluded the rotation angle for ℓ = 4 from the fit. We chose the nominal radius as the initial value for
our fit and restricted the fitting interval of the radius to twice the standard deviation provided by the
manufacturer, resulting in an interval ranging from 1.42 to 1.58 μm.

First, we applied the MDSA theory to fit the experimental rotation angles. The fitted data points are
depicted as squares in Fig. 7.4 and the optimal radii are shown in Tab. 7.1 together with the value of 𝜒2

for both bead A and B. Apart from the rotation angle for ℓ = 0, there is good agreement between theory
and experiment. The theoretical and experimental obtained rotation angles for ℓ = 0 have an opposite
sign. This suggests that the MDSA theory is not sufficient to explain the experimental data accurately.
According to our discussion from the previous Sections, the rotation angle for ℓ = 0 is smaller than
the rotation angle for higher-order beam modes. The positive rotation angle for ℓ = 0 and also the
relative large rotation angle for ℓ = −1, originate from additional field asymmetries introduced by
effects like astigmatism. We thus also performed a fit with the MDSA+ theory with 𝐴ast, 𝜙ast and 𝐿
as additional fitting parameters to account for the optical aberrations of the system. We introduce 𝐿
as a fitting parameter due to the large uncertainty of the experimentally measured height 𝑑. This is
also supported by our results from the previous Chapter, where we found in Fig. 6.6c, that rotation
angles for higher beam modes are more sensitive to spherical aberration. The results are depicted in
Fig. 7.4 by the triangle symbols and the fitted parameter can be found in Tab. 7.2. Including optical
aberrations yields an almost perfect fit of the experimental data and thus also correctly reproduces the
positive rotation angle in the case ℓ = 0. Note that 𝜒2 > 1, so there is no indication for over-fitting.

bead 𝑅 (μm) 𝐿 (μm) 𝐴ast 𝜙ast (rad) 𝜒2

A 1.503 ± 0.007 5.8 ± 0.6 0.245 ± 0.026 0.37 ± 0.14 2.2
B 1.492 ± 0.005 4.7 ± 0.6 0.262 ± 0.024 0.44 ± 0.12 2.3

Table 7.2: Parameters from a fit with the MDSA+ theory. Optimal radius 𝑅, paraxial focal distance 𝐿 and
astigmatism parameters 𝐴ast, 𝜙ast found from a fit with the MDSA+ theory for beads A and B of nominal size
1.5 μm. The corresponding values of 𝜒2 are shown in the last column.
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7 Characterizing microbeads by trapping in a vortex beam

𝑅A (μm) 𝑅B (μm) 𝐿A (μm) 𝐿B (μm) 𝐴ast 𝜙ast (rad) 𝜒2
𝐴,𝐵

1.502 ± 0.010 1.492 ± 0.007 5.6 ± 0.8 4.8 ± 0.8 0.254 ± 0.026 0.41 ± 0.14 2.3, 2.4

Table 7.3: Joint fit of two beads with the MDSA+ theory. Parameters from the joint fit of beads A and B
with shared values for the astigmatism parameters but separate values for the focal distance 𝐿.

We want to highlight that the astigmatism parameters 𝐴ast, 𝜙ast of beads A and B are well within
the error bars of each other. This is expected since these are characteristics of the experimental setup,
which are not influenced by the measurement for a particular bead. Taking this into account, we
also performed a combined fit for beads A and B with joint parameters for astigmatism, which are
depicted by the cross symbols in Fig. 7.4 and the fitting parameter can be found in Tab. 7.3. There
is no significant change to the results found from the individual fits. These findings have important
implications. First, we can reduce the number of fitting parameters by using joint astigmatism
parameters. Based on our findings, only six are necessary instead of eight fitting parameters for the
two beads. This also reduces the overall computation time. However, it is important to note that
this approach requires the experimental setup to stay the same while performing measurements for
different beads. The paraxial distance 𝐿 is adjusted for every bead, so individual fitting parameters
are necessary here. The second conclusion, which we can draw from our joint fit results, is that our
method for measuring radii also works to estimate optical aberrations. We will revisit this point later.

The radii from the MDSA and MDSA+ theory are both within each other’s error bars. Hence,
if only the radius of a trapped sphere is of interest, it is sufficient to apply the MDSA theory for
fitting, which drastically reduces the computation time if only one fitting parameter is used instead of
four. Furthermore, we also found that, in principle, one round of measurement for each beam mode
ℓ is sufficient, as can be seen in Fig. 7.5a. We fitted the data for each round of measurement and
compared the radius with the fitted radius of all rounds of measurement. Again, this also reduces the
computation time, but also time for performing the experiment and analysing of the data.

Apart from determining the radius, we can also characterize the primary optical aberrations of the
system defined by the parameters 𝐴ast, 𝜙ast and 𝐿, as mentioned above. Due to the relatively large
number of fitting parameters, there are, however, also cross-correlations, which translates into the
uncertainty of the fitted radii within the MDSA+ theory compared to the MDSA theory. As can
be seen from the correlation matrices illustrated in Fig. 7.5b, 𝐴ast and 𝐿 are particularly strongly
correlated. Both parameters are responsible for a defocusing, hence an increase of one parameter can
be compensated by a reduction of the other which is reflected by the negative correlation value of
these two parameters. Variation in 𝜙ast can be reversed by a change in 𝐴ast, as was already discussed in
Ref. [117]. The effect of spherical aberration is enhanced with increasing displacement 𝐿, however,
larger spheres average out these changes in the energy density profile, which explains the positive
correlation between 𝐿 and the bead radius 𝑅.

All results presented are performed for a temperature of 𝑇 = 19 ◦C. To account for temperature
variations, which specifically affect the refractive index of water, we also repeated the calculations
for a temperature of 𝑇 = 24 ◦C and found no significant changes in the fitted rotation angles within
the error bars of the measured angles.
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Figure 7.5: Figure (a) shows the fitted radii for each round of measurement for bead A (cross symbols) and B
(diamond symbols). For comparison, we also present the fitted radii shown in Tab. 7.1 as dotted and dashed
lines, respectively, for beads A and B. (b) The left panel depicts the correlation matrix for the fitting parameters
of bead A in the MDSA+ theory, and the right panel depicts the correlation matrix from the joint fit of beads
A and B. Both matrices are symmetric with ones on the diagonal entries, which are not shown. A value of 0
means that the parameters are uncorrelated.

7.2.3 Beads of nominal size 2.26 microns

Next, we discuss the results for beads C and D with a nominal size of 2.26 μm. The larger size of the
spheres allows trapping in the on-axis regime for higher beam modes ℓ than for the smaller beads,
as we discussed in the previous Chapter in connection with Fig. 6.2. The experiment was performed
for |ℓ | ≤ 7 as it is depicted by the black circle symbols in Fig. 7.6. The sign of the rotation angles
is opposite to the corresponding sign of the topological charges. This is, again, a consequence of
the negative optical torque. However, theoretically stable trapping positions were only found for
|ℓ | ≤ 6. As a result, we excluded the rotation angles for ℓ = ±7 from the fitting process. The fit
with the MDSA theory was performed within an interval ranging from 2.11 μm to 2.41 μm with the
nominal radius as starting point. The results from the fit are depicted as squared symbols in Fig. 7.6,
and the fitted radii with their uncertainties can be found in the Tab. 7.4 for both beads C and D.
The results obtained from the fitting procedure are in good agreement with the experimental data.
To estimate the sensitivity of the procedure, we also computed the rotation angles obtained for the
nominal radius, which are represented by open square symbols in Fig. 7.6. As we can see, the rotation
angles for |ℓ | = 1, 2, 3 are opposite to those found in the experiment. Hence, higher beam modes
allow the distinction between beads of different sizes. For a Gaussian beam (ℓ = 0), it is impossible to
differentiate between two beads within the experimental error bars. Additionally, we performed a fit
with the MDSA+ theory by using the astigmatism parameters we found from the joint fit for beads A
and B, again assuming that the optical aberrations of the system did not change during measurement.
The fitted values are depicted in Fig. 7.6 as cross symbols and the fitting parameters are given in

bead 𝑅 (μm) 𝜒2

C 2.339 ± 0.003 40.1
D 2.331 ± 0.003 67.7

Table 7.4: Parameters from a fit with the MDSA theory. Optimal radii from a fit with the MDSA theory
together with the corresponding value of 𝜒2 for beads C and D of nominal size 2.26 μm.
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7 Characterizing microbeads by trapping in a vortex beam

−6 −4 −2 0 2 4 6

−25
−20
−15
−10
−5

0
5

10
15

ℓ

U
(d

eg
re

es
)

data bead C

' = 2.339 μm

'
joint
+ = 2.336 μm

'N = 2.26 μm

C

−6 −4 −2 0 2 4 6
ℓ

data bead D

' = 2.331 μm

'
joint
+ = 2.327 μm

'N = 2.26 μm

D

Figure 7.6: Beads with a nominal size of 2.26 microns. The figure represents the rotation angles for beads
C (left) and D (right) as function of the topological charge ℓ. Similar to Fig. 7.4, the experimental results are
shown as circle symbols. The error bars correspond to the standard deviations of the mean values computed
from the several rounds of measuring 𝛼. Only for bead D there is one round of measurement for ℓ = 3, 4, 5. In
these case the error bars correspond to the errors of 𝛼exp (ℓ). The data points were fitted by using the MDSA
theory (filled squared symbols) and the MDSA+ theory (cross symbols) with the astigmatism parameters
obtained from the joint fit of beads A and B. For comparison, also the theoretical data points within the MDSA
theory for the nominal radius 𝑅N = 2.26 μm are shown (unfilled squares). A similar figure can be found in
Ref. [153] but without the result for the joint fit shown here.

Tab. 7.5. Introducing astigmatism shows no significant improvement. Objects in the geometrical
optics regime, with 𝑅 ≫ 𝜆 are less sensitive to field asymmetries introduced by optical aberrations.
The asymmetries are averaged out over the sphere. Even if 𝐴ast and 𝜙ast are used as additional fitting
parameters, there is no significant improvement. These results suggest that it is sufficient to apply the
MDSA theory to fit the radius of beads in the geometrical optics regime. We observed in Sec. 6.1.2,
that the rotation angle is not a unique function of the bead radius. There are oscillations due to
interference between waves scattered at the back and front of the sphere. Examining 𝜒2 as a function
of the bead radius 𝑅 as shown in Fig. 7.7a, we thus also find multiple minima for the loss function.
The distance between the minima is close to the expected value of 𝜆0/4𝑛 ≈ 0.169μm as depicted by
the arrows in Fig. 7.7a. It is possible to resolve the ambiguity of the fitting radius by analysing the
values of 𝜒2. The radii at ≈ 2.17 microns can be ruled out due to the large value of 𝜒2 compared to
the values of 𝜒2 for the two other found radii. Additionally, by including astigmatism (dotted lines in
Fig. 7.7a), we found no stable trapping position for a beam mode of ℓ = 6, which also suggests that
the radii for ≈ 2.17 microns can be ruled out. The radii found at ≈ 2.5 microns deviate by more than
three times the standard deviation of the manufacturer-provided value for the radius and can thus also
be neglected. For the smaller beads of nominal radii 1.5 μm, such ambiguities do not appear, as can
be seen in Fig. 7.7b. It is evident that the fitted radii, shown by the horizontal lines, define the global
minima of 𝜒2.

bead 𝑅 (μm) 𝐿 (μm) 𝐴ast 𝜙ast (rad) 𝜒2

C 2.336 ± 0.004 4.4 ± 0.78 0.254 (fixed) 0.41 (fixed) 47.1
D 2.327 ± 0.003 4.4 ± 0.47 0.254 (fixed) 0.44 (fixed) 84.7

Table 7.5: Parameters from a fit with the MDSA+ theory. Fit parameters for beads C and D of nominal size
2.26 μm, where the astigmatism parameters are fixed to the values found from the joint fit given in Tab. 7.3.
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Figure 7.7: (a) Top and bottom panel respectively show 𝜒2 for bead C and D as function of the radius 𝑅.
The values of 𝜒2 were calculated from the MDSA (solid lines) and the MDSA+ (dotted lines) theory. The
grey-shaded areas represent the nominal values of the bead with their error bars (2.260 ± 0.075) μm. We
determined the minima of 𝜒2 from the MDSA theory. The found radii and the 𝜒2 values are presented in the
legends. The distance between the minima is depicted by the arrows. Figure (b) presents 𝜒2 for beads A and
B calculated within the MDSA theory. The grey-shaded area accounts for the interval (1.50 ± 0.04) μm. The
horizontal lines represent the global minima of 𝜒2 of beads A and B. Similar Figure in Ref. [142].
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Part III

Casimir interaction between spherical objects

In the previous Part of this thesis, we explored the behaviour of spherical objects in a structured
light field. If we disregard any external source fields and place the sphere near a second sphere,
macroscopic dispersion forces, known as the Casimir force, arise. Compared to optical forces, where
a beam with a certain frequency is used, Casimir forces are a broadband phenomenon, which makes
them more complicated. Apart from certain limiting cases, fluctuations at every frequency and wave
vector contribute to the force.
In this Part of the thesis, we will analyse the Casimir interaction between two spherical objects. The
starting point will be the scattering formula, which we introduced in a basis-independent way in
Sec. 2.1. In Chap. 8, we use the symmetries of the spherical geometry and present the scattering
formula in a plane-wave and spherical-wave description. Chapter 9 provides a comprehensive study of
the classical Casimir interaction of Drude spheres in vacuum and dielectric spheres in an electrolyte.
In Chap. 10, we study the Casimir interaction between bi-isotropic spheres for arbitrary temperatures
but within the limit of small and large distances. We apply our findings in Chap. 11 to an idealized
system of perfect electromagnetic conductor spheres, where we study the influence of distance and
temperature on the sign of the Casimir force. Our analytical results in the various limiting cases,
e. g. short and large distances as well as low and high temperatures, are supported by numerical
calculation in the intermediate regimes.
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8 Scattering approach to the sphere-sphere geometry

In this Chapter, we are going to apply the scattering formula to the studied setup of two bi-isotropic
spheres. This geometry has two natural basis sets. A common approach to computing the Casimir
free energy between two spheres involves using a spherical-wave basis. This basis is adequate for
large separations between the spheres, where only a few multipoles are needed. However, for small
distances, several thousand multipoles are necessary. It was not long ago that numerical calculations
were able to reach the experimental relevant distance scale of 𝐿/𝑅 ∝ 10−3 for a sphere-plane setup,
where 𝑅 is the sphere radius and 𝐿 the surface-to-surface distance [59, 169]. Other approaches with a
bi-spherical wave basis were able to reduce the number of relevant multipoles [170]. A more efficient
approach follows from a plane-wave description of the scattering formula [33, 171]. As we will see in
the following discussions, not only numerical but also analytical calculations become more feasible
within the plane-wave basis.

First, we start in Sec. 8.1 by introducing the general geometry under consideration and all relevant
parameters used throughout this part of the thesis. Section 8.2 employs the plane-wave basis to
describe the scattering process between the two objects. The expressions presented there will be the
basis for the calculations in the following Chapters. For large distances between spheres, we use the
multipole description of the scattering formula presented in Section 8.3.

8.1 General definitions for the sphere-sphere setup

As discussed in Sec. 2.1, the Casimir free energy at finite temperatures within the scattering approach
is given by a functional evaluated at the Matsubara frequencies 𝜉𝑛 = 2𝜋𝑛𝑘B𝑇/ℏ (2.25)

F = 𝑘B𝑇
∞∑︁
𝑛=0

′
F (𝜉𝑛) , F (𝜉) = tr log(I −M(i𝜉)) (8.1)

with the round-trip operator M = T12R2T21R1. We study the interaction between two stationary
objects, meaning the frequency is conserved during the scattering process. It is thus sufficient to
examine each frequency contribution to the free energy separately in the form F (𝜉). Since trM < 1
[172], we can expand the logarithm in a Mercator series, and each frequency contribution is given by

F (𝜉) = −
∞∑︁
𝑟=1

trM𝑟

𝑟
, (8.2)

where the dependence of the round-trip operator on the frequency is implicit in the following. The
expansion given above has practical advantages, as we will see in the following. However, it also
allows for a direct physical interpretation. Each summation index 𝑟 can be understood as the number
of round-trips the electromagnetic field performs between the two objects. A single round-trip (𝑟 = 1)
is, for example, depicted in Fig. 8.1. At first, the electromagnetic field is reflected by sphere 1, then
it gets transferred to sphere 2 where it is reflected again and finally returns to sphere 1. Neglecting
multiple round-trips between the objects is equivalent to the Born approximation in scattering theory
[173]. The expression (8.2) is the foundation for all analytical calculations of the Casimir free energy
in this work. The two spheres of radii 𝑅1 and 𝑅2 are centred along the 𝑧-axis with a surface-to-surface
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8.2 Angular spectrum decomposition of the scattering formula
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Figure 8.1: Sphere-sphere/plane geometry. Scattering geometry
consisting of two spheres of radii 𝑅1 and 𝑅2 or, in the limit 𝑅1 → ∞,
a sphere in front of a plane placed along the 𝑧-axis with a surface-to-
surface distance 𝐿. In the sphere-sphere geometry, we also define the
centre-to-centre distance with L = 𝐿 + 𝑅1 + 𝑅2, and for the sphere-
plane setup, we will use L = 𝐿 + 𝑅2. The loop between the sphere
centres indicates the round-trip operator M. The round-trip operator
accounts for the reverberation of the electromagnetic field between
the two spheres. It includes the reflection of the electromagnetic
field at sphere 1 with the operator R1, the translation from sphere 1
to sphere 2 is described by the operator T21, the reflection at sphere
2 with R2 and finally the translation back to sphere 1 with T12.

distance 𝐿. Note that the two spheres form a cavity, where the dominant wavelength scales with the
distance. Therefore, the convergence of the round-trip expansion (8.2) is controlled by the ratio of
the surface distance to the radius. We thus introduce

𝑥 =
𝐿

𝑅eff
, 𝑅eff =

𝑅1𝑅2
𝑅1 + 𝑅2

, (8.3)

where 𝑅eff refers to the effective (eff) radius. We remark that the aspect ratio 𝑥 = 𝐿/𝑅eff should
not be confused with the size parameter K𝑅 we used in the first Part of this thesis. Here and in the
following 𝑥 always refers to the above introduced aspect ratio. The sphere-plane geometry is obtained
as a limiting case by taking one radius to infinity, as depicted in Fig. 8.1. Instead of using one of the
radii as a control parameter to switch between the sphere-sphere and sphere-plane setup, it is more
convenient to introduce the following parameter

𝑢 =
𝑅eff

𝑅1 + 𝑅2
(8.4)

which takes values between 0 and 1/4, respectively, accounting for a sphere in front of a plane and
two equally sized spheres. We also assume that the spheres are dissimilar and bi-isotropic while the
surrounding medium is isotropic.

As explained in Sec. 2.1, the Casimir force can be obtained by taking the negative gradient of
the Casimir free energy with respect to the relative position of the objects. For our axial symmetric
geometry, the force points along the 𝑧-direction. The derivative of the free energy (8.1) with respect
to the surface-to-surface distance thus gives the Casimir force

𝐹 = −𝜕F
𝜕𝐿

= 𝑘B𝑇
∞∑︁
𝑛=0

′
tr

[(I −M(i𝜉𝑛))−1𝜕𝐿M(i𝜉𝑛)
]
. (8.5)

8.2 Angular spectrum decomposition of the scattering formula

To compute the Casimir free energy, as given in Eq. (8.2), we need to evaluate the trace of the
round-trip operator in a specific basis. In this Section, we are going to employ the plane-wave basis
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8 Scattering approach to the sphere-sphere geometry

introduced in Sec.3.1. The trace of the 𝑟-th fold round-trip matrix yields

trM𝑟 =
∑︁

𝑝1=TE,TM

∫
d2k1

(2𝜋)2 ⟨k1, 𝑝1,−| (T12R2T21R1)𝑟 |k1, 𝑝1,−⟩ . (8.6)

Recall that the plane-wave basis |k, 𝑝, 𝜎⟩ is defined by the transverse wave vector k, the polarisation
𝑝 and the propagation direction 𝜎 = ±. Note that sphere 1 only reflects waves travelling in the
negative 𝑧-direction, which means R1 |k, 𝑝, +⟩ vanishes. The plane-wave basis has the advantage
that the translation operator is diagonal within this basis and yields a phase factor T12 |k, 𝑝,−⟩ =
e−i𝜎𝑘𝑧L |k, 𝑝,−⟩, where 𝑘𝑧 is the modulus of the z-component of the wave vector

𝑘𝑧 = i𝜅 = i
√︁
K2 + k2 (8.7)

with the imaginary wave number K in a medium of refractive index 𝑛m defined in Eq. (4.5) and the
axial wave vector 𝜅 for imaginary frequencies. The matrix elements of the translation operator in the
plane-wave basis are thus given by

⟨k′, 𝑝′, 𝜎′ |T |k, 𝑝, 𝜎⟩ = e−𝜅L𝛿𝑝′ , 𝑝𝛿𝜎′ ,𝜎𝛿(k′ − k) . (8.8)

We assume a non-chiral medium between the spheres. Hence, there is no mixing of polarisations
during the translation process. By using the resolution of the identity in the plane-wave basis, given
in Eq. (3.7) and taking advantage of the diagonal nature of the translation operator, the trace reads
[33]

trM𝑟 =
∑︁

𝑝1,..., 𝑝2𝑟

∫
d2k1 . . . d2k2𝑟

(2𝜋)4𝑟

𝑟∏
𝑗=1

e−𝜅2 𝑗Le−𝜅2 𝑗−1L

× ⟨k2 𝑗+1, 𝑝2 𝑗+1,−|R2 |k2 𝑗 , 𝑝2 𝑗 , +⟩⟨k2 𝑗 , 𝑝2 𝑗 , +|R1 |k2 𝑗−1, 𝑝2 𝑗−1,−⟩ ,
(8.9)

where the summation indices are cyclic to account for the trace, so e. g. we identify 2𝑟 + 1 with 1.
The cyclic character will become relevant on several occasions throughout this work. Note that the
matrix elements of the reflection operator are defined in Eq. (4.26).

8.3 Multipole expansion of the scattering formula

In this Section, we provide the trace expression in the multipole basis. The multipole expansion of
the scattering formula for the sphere-plane geometry with isotropic objects was already determined
in Ref. [174]. Here, we derive the expression for two spheres and also include polarisation mixing.

As a reminder, the multipole basis |𝑙, 𝑚, 𝑃, 𝑠⟩, introduced in Sec. 3.2 is defined by the multipole
moments 𝑙, 𝑚, the polarisation 𝑃 = E,M and 𝑠 = reg, out, which distinguishes between regular and
outgoing waves with respect to a sphere’s centre. The multipole moments 𝑙 and 𝑚 are conserved
upon scattering at a bi-isotropic sphere. Furthermore, the geometry is invariant under rotations about
the symmetry axis, which we have chosen as the 𝑧-axis. The round-trip operator thus commutes
with the 𝑧-component of the angular momentum operator, which means 𝑚 is also conserved upon
translation of the electromagnetic field from one sphere to the other. The round-trip matrix becomes
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8.3 Multipole expansion of the scattering formula

block-diagonal and the trace of the 𝑟-fold round-trip matrix yields

trM𝑟 =
∞∑︁

𝑚=−∞

∞∑︁
𝑙1=max(1, |𝑚 | )

∑︁
𝑃1=M,E

⟨𝑙1, 𝑚, 𝑃1, out| (T12R2T21R1)𝑟 |𝑙1, 𝑚, 𝑃1, reg⟩ , (8.10)

where we exchanged the summation over 𝑚 and 𝑙 to make use of the block-diagonal character. Only
incident regular waves |reg⟩ scatter into outgoing ⟨out| modes at the spheres, so we already carried
out the sum over 𝑠. After inserting the identity in the spherical-wave basis (3.12) and making use of
the Mie coefficients (4.19), we obtain

trM𝑟 =
∞∑︁

𝑚=−∞

∑︁
𝑙1,...,𝑙2𝑟

∑︁
𝑃1,...,𝑃2𝑟

∑︁
𝑄1,...,𝑄2𝑟

2𝑟∏
𝑗=1

i𝑃2 𝑗−𝑄2 𝑗−1 i𝑃2 𝑗−1−𝑄2 𝑗𝑟
2;(𝑄2 𝑗−1,𝑃2 𝑗 )
𝑙2 𝑗+1

𝑟
1;(𝑄2 𝑗 ,𝑃2 𝑗−1 )
𝑙2 𝑗

× ⟨𝑙2 𝑗+1, 𝑚, 𝑃2 𝑗+1, reg|T12 |𝑙2 𝑗 , 𝑚, 𝑄2 𝑗+1, out⟩⟨𝑙2 𝑗 , 𝑚, 𝑃2 𝑗 , reg|T21 |𝑙2 𝑗−1, 𝑚, 𝑄2 𝑗 , out⟩ .
(8.11)

We added a superscript 𝑡 = 1, 2 to the Mie coefficients 𝑟 𝑡;(𝑃,𝑃
′ )

𝑙 to distinguish between spheres 1 and
2. The summation indices are cyclic, equivalent to what we discussed for the plane-wave expansion.
The multipole moment 𝑙 and polarisation 𝑃 are, in general, not conserved while the field propagates
from one sphere to the other. To determine the matrix elements of the translation operator in the
multipole basis, it is convenient to perform a basis change into the plane-wave basis, where the
translation operator is diagonal (8.8)

⟨𝑙′, 𝑚, 𝑃′, reg|T |𝑙, 𝑚, 𝑃, out⟩ =
∑︁

𝑝=TE,TM

∫
d2k
(2𝜋)2 e−𝜅L ⟨𝑙′, 𝑚, 𝑃′, reg|k, 𝑝,±⟩ ⟨k, 𝑝,±|𝑙, 𝑚, 𝑃, out⟩ .

(8.12)
The integral given above can be evaluated by using the basis transformation coefficients introduced in
Eqs. (4.22) and (4.23), together with the expansion [98]: e−𝜅L =

∑∞
𝑙=0(2𝑙+1)i𝑙ℎ𝑙 (iKL)𝑃𝑙 (cos(𝜃𝐾 )),

where 𝜅 = K cos(𝜃𝐾 ). The solution is well-known in the literature [175]

⟨𝑙′, 𝑚, 𝑃′, reg|T |𝑙, 𝑚, 𝑃, out⟩ = 2(−1)𝑚+1√𝜋(±i)𝑙−𝑙′

𝜋
√︁
𝑙 (𝑙 + 1)𝑙′(𝑙′ + 1)

𝑙+𝑙′∑︁
𝑙′′= |𝑙−𝑙′ |

√
2𝑙′′ + 1𝑘𝑙′′ (KL)𝑐𝑃,𝑃′

𝑙,𝑙′ ,𝑙′′ ,𝑚𝑌
𝑙,𝑙′ ,𝑙′′
−𝑚,𝑚,0 .

(8.13)
We remark that the translation coefficients for imaginary frequencies can also be obtained from a
Wick rotation of the coefficients for real frequencies, known for a long time, see e.g. Ref. [176].
The +(−) sign corresponds to a wave travelling in positive (negative) 𝑧-direction and 𝑘𝑙 (KL) =
−(𝜋i𝑙/2)ℎ𝑙 (iKL) defines the modified spherical Hankel function. Depending on whether the polar-
ization is conserved or not, the coefficient 𝑐𝑃,𝑃

′
𝑙,𝑙′ ,𝑙′′ ,𝑚 yield

𝑐𝑃,𝑃
′

𝑙,𝑙′ ,𝑙′′ ,𝑚 =

{
𝑙 (𝑙 + 1) + 𝑙′(𝑙′ + 1) − 𝑙′′(𝑙′′ + 1) 𝑃 = 𝑃′

±2𝑚KL 𝑃 ≠ 𝑃′ (8.14)

and 𝑌 𝑙,𝑙
′ ,𝑙′′

−𝑚,𝑚,0 defines the Gaunt coefficients with two Wigner-3j symbols

𝑌 𝑙,𝑙
′ ,𝑙′′

−𝑚,𝑚,0 =

√︂
(2𝑙 + 1) (2𝑙′ + 1) (2𝑙′′ + 1)

4𝜋

(
𝑙 𝑙′ 𝑙′′

0 0 0

) (
𝑙 𝑙′ 𝑙′′

−𝑚 𝑚 0

)
. (8.15)
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9 Universal Casimir interaction and approximate
conformal invariance

The content discussed in this Chapter is published in Refs. [177, 178] and [179] and, therefore, also
contains input from discussions with authors of the articles. All analytical calculations performed
in Ref. [177], which are presented in Secs. 9.2 and 9.3, have been done by the author of this work.
The work presented in Secs. 9.4 and 9.4.3 was done in close collaboration with Benjamin Spreng,
who has provided the numerical results for the Casimir interaction between dielectric spheres in an
electrolytic solution.

The Casimir interaction is usually known as a quantum effect arising from the vacuum fluctuations
of the electromagnetic field. However, at finite temperatures, thermal photons with wavelength
𝜆𝑇 = ℏ𝑐/𝑘B𝑇 also contribute, which can dominate the quantum contribution at high temperatures.
This leads to a finite Casimir force between objects even in the classical limit ℏ → 0, which, given the
definition of the thermal wavelength, is equivalent to 𝑇 → ∞. As a result, the Casimir free energy
becomes linear in temperature, yielding a constant Casimir entropy [6].

Within the scattering approach, the high-temperature limit amounts to taking the zero-frequency
term of the Matsubara sum. For metallic objects described by the Drude (Dr) model

𝜖Dr(𝜉) = 1 + 𝜎(i𝜉)
𝜖0𝜉

, 𝜎(i𝜉) =
𝜖0𝜔

2
p

𝜉 + 𝛾 (9.1)

the dielectric function 𝜖Dr diverges in this limit. The reason for the divergence is the finite dc-
conductivity 𝜎(0) = 𝜖0𝜔p/𝛾, where 𝜔𝑝 denotes the plasma frequency and 𝛾 defines the relaxation
frequency. The Casimir free energy thus becomes independent of the dielectric properties of the
system and the Casimir entropy is exclusively a function of the geometric properties. Analytical
results for the plane-plane [180, 181], the sphere-plane [24], and two equally-sized spheres [25] were
obtained successfully in the past. A setup, which we found to be dual to the metallic objects in
vacuum, involves dielectric objects in an electrolytic solution. Here, the finite dc-conductivity of
the medium is responsible for the high-temperature behaviour. Until recently, the contribution of
the Casimir effect in these setups was never considered [27], but experiments [4, 58] confirmed that
the Casimir interaction could lead to a long-range force between dielectric objects in a conducting
medium.

In this Chapter, we want to study the Casimir interaction for these two types of systems involving
two spherical objects. We start in Sec. 9.1 by defining the high-temperature limit and the duality
relation between the two systems mentioned above. In the following Sec. 9.2, we determine the high-
temperature result for a scalar field between two spheres with Dirichlet boundary conditions. The
scalar result is known to be the dominant contribution at short distances for metallic objects in vacuum,
and we found that this also holds for dielectric objects in an electrolytic solution. Sec. 9.3 discusses
the derivation of the analytical result of the Casimir free energy for two Drude spheres, which was
suspected to be impossible to derive within the scattering approach [182]. For the dielectric objects
in an electrolyte, we could not derive analytical expressions for the Casimir free energy. However, in
Sec. 9.4, we present several limiting results and a semi-analytical approximation formula. We end
with a discussion of the importance of our result for biological and colloidal systems.

64
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9.1 Casimir interaction at high-temperatures and duality relation

As we discussed earlier, the Casimir free energy at finite temperatures is given by the sum over
Matsubara frequencies (8.1). The Matsubara frequencies scale with the temperature 𝑇 , hence any
contribution at finite frequencies are exponentially suppressed at high temperatures, due to the
exponential decay of the translation coefficients exp(−𝜅𝐿) with 𝜅 =

√
K2 + k2, K = 𝜉

√
𝜖m/𝑐. The

dominant term will thus come from the zero Matsubara frequency 𝜉 = 0. In this Section, we are
going to compute the zero-frequency terms of the Casimir free energy, which is purely of entropic
origin. We introduce the following notation for the thermal Casimir free energy

F𝑇 = − 𝑘B𝑇

2
𝑓 , 𝑓 =

∞∑︁
𝑟=1

𝑓 (𝑟 ) , 𝑓 (𝑟 ) =
trM𝑟 (0)

𝑟
(9.2)

with the dimensionless free energy 𝑓 and the 𝑟-th round-trip term 𝑓 (𝑟 ) . Note that the Casimir entropy
𝑘B 𝑓 /2 is constant.

We assume that the dielectric function of the surrounding medium 𝜖m, diverges slower than 1/𝜉2

in the zero-frequency limit. This assumption is valid in vacuum, where 𝜖m(𝜉) = 1, and also holds
for a conducting electrolytic solution which is modelled with a Drude-type dielectric function for the
transverse waves [27]. According to Eq. (9.1), the dielectric function scales like 𝜖m(𝜉) ∝ 1/𝜉 at low
frequency. The axial wave vector component in the static limit is therefore given by the modulus of
the transverse wave vector 𝜅 = |k| = 𝑘 . Based on (8.9), the angular spectrum representation of the
round-trip contribution 𝑓 (𝑟 ) reads

𝑓 (𝑟 ) =
1
𝑟

∑︁
𝑝1,..., 𝑝2𝑟

∫
d2k1 . . . d2k2𝑟

(2𝜋)4𝑟

𝑟∏
𝑗=1

e−𝑘2 𝑗Le−𝑘2 𝑗−1L

× ⟨k2 𝑗+1, 𝑝2 𝑗+1,−|R2 |k2 𝑗 , 𝑝2 𝑗 , +⟩⟨k2 𝑗 , 𝑝2 𝑗 , +|R1 |k2 𝑗−1, 𝑝2 𝑗−1,−⟩ .
(9.3)

The reflection matrix elements in the plane-wave basis, defined in Eq. (4.26), depend on the
polarisation-conversion coefficients 𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝐶𝑖, 𝑗 and 𝐷𝑖, 𝑗 and the scattering amplitudes 𝑆𝑝𝑖 , 𝑝 𝑗 .
Apart from 𝐴𝑖, 𝑗 , the other three coefficients vanish all at zero frequency, and 𝐴𝑖, 𝑗 simply yields one.
Together with the low-frequency expansion of the scattering amplitudes (4.59), the reflection matrix
elements yield

⟨k𝑖 , 𝑝𝑖 |R |k 𝑗 , 𝑝 𝑗⟩ = 2𝜋𝑅
𝑘𝑖

∞∑︁
𝑙=1

X𝑝𝑖 , 𝑝 𝑗 (𝑙)
𝜒2𝑙
𝑖, 𝑗

(2𝑙)! (9.4)

with
𝜒𝑖, 𝑗 = 2𝑅

√︁
𝑘𝑖𝑘 𝑗 cos

(𝜑𝑖 − 𝜑 𝑗
2

)
. (9.5)

Recall that the expansion coefficients X𝑝𝑖 , 𝑝 𝑗 account for the materials of the spheres and the sur-
rounding medium (see Eqs. (4.52) and (4.54)). For dielectric spheres of permittivity 𝜖s in a medium
with permittivity 𝜖m only the transverse-magnetic modes contribute, hence only XTM,TM is non-zero
(see Eq. (4.57)). The coefficients for a Drude sphere in vacuum (Dv) and a dielectric sphere in an
electrolyte (de) can both be obtained from the general case of two dielectrics. The former one is a
result of taking the limit 𝜖s → ∞, while the latter one can be obtained for 𝜖m → ∞, as shown in
Tab. 9.1. The two cases can thus be seen as dual to each other. The sum over angular momenta in
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9 Universal Casimir interaction and approximate conformal invariance

𝜖m → ∞

𝜖s → ∞

𝜖m

𝜖s

de-modelDv-model

sphere-medium 𝜖s/𝜖m XTM,TM

dielectric-dielectric finite 𝑙 (𝜖s−𝜖m )
𝑙 𝜖s+(𝑙+1) 𝜖m

Drude-vacuum (Dv) ∞ 1

dielectric-electrolyte (de) 0 − 𝑙
𝑙+1

Figure 9.1 & Table 9.1: Illustration of the duality between a Drude sphere in vacuum (Dv) and a dielectric
sphere in an electrolyte (de). On the left-hand side of the figure, we depict a metallic sphere with a divergent
dielectric function 𝜖s → ∞ in the static limit. The medium dielectric constant, which should be finite, is
taken as that for vacuum 𝜖m = 1. The figure on the right depicts a dielectric sphere with a finite dielectric
constant 𝜖s in an electrolyte with 𝜖m → ∞. The table provides the corresponding expansion coefficients
XTM,TM for the scattering amplitude.

Eq. (9.4) can be carried out in both cases. For the Drude spheres in vacuum, the matrix elements
yield

⟨k𝑖 ,TM|RDv |k 𝑗 ,TM⟩ = 2𝜋𝑅
𝑘𝑖

[
cosh(𝜒𝑖, 𝑗) − 1

]
(9.6)

while for a dielectric sphere in an electrolyte, we get

⟨k𝑖 ,TM|Rde |k 𝑗 ,TM⟩ = −2𝜋𝑅
𝑘𝑖

[
cosh(𝜒𝑖, 𝑗) − 2

sinh(𝜒𝑖, 𝑗)
𝜒𝑖, 𝑗

+ 2
cosh(𝜒𝑖, 𝑗) − 1

𝜒2
𝑖, 𝑗

]
. (9.7)

Note that both cases have one term in common, namely cosh(𝜒) =
∑∞
𝑙=0 𝜒

2𝑙/(2𝑙)!. This term
originates from taking the monopole term 𝑙 = 0 in Eq. (9.4) into account and thus corresponds to the
reflection coefficient for a sphere with Dirichlet boundary conditions in a scalar field. The relation
between the Casimir interaction for Drude spheres and Dirichlet spheres was already established
by [24]. We found that the result for Dirichlet spheres is also applicable to the Casimir interaction
between dielectric spheres in an electrolyte.

We thus first derive the Casimir interaction for a scalar field. The results for Drude spheres in
vacuum and dielectric spheres in an electrolyte are then obtained by taking the remaining terms in
Eqs. (9.6) and (9.7) into account.

9.2 Scalar field between two spheres with Dirichlet boundary
conditions

In this Section, we will present the result for the Casimir free energy for a scalar field between
Dirichlet boundary conditions using the scattering approach in the plane-wave basis. The result was
formerly determined by using bispherical coordinates [24]. Here, we want to show that a plane-wave
description can also be applied and that the result is dual to the one presented in Ref. [24]. The
formalism introduced in this Section will be helpful for future discussions of the Casimir energy for
Drude and dielectric spheres.
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9.2 Scalar field between two spheres with Dirichlet boundary conditions

9.2.1 Derivation of the Casimir free energy

According to the discussion in the previous Section, the round-trip contribution 𝑓 (𝑟 ) to the Casimir
free energy for a scalar field (sc) and two spheres with Dirichlet boundary conditions can be expressed
as

𝑓 (𝑟 )sc =
1
𝑟

∑︁
𝑝1,..., 𝑝2𝑟

∫
d2k1 . . . d2k2𝑟

(2𝜋)4𝑟

𝑟∏
𝑗=1

e−𝑘2 𝑗Le−𝑘2 𝑗−1L cosh
(
𝜒 (2)

2 𝑗 ,2 𝑗+1

)
cosh

(
𝜒 (1)

2 𝑗−1,2 𝑗

)
, (9.8)

where the superscript in 𝜒 (𝑛) distinguishes between the two spheres of radii 𝑅𝑛, 𝑛 = 1, 2.
To evaluate the above given multidimensional integral, we note that integrals over consecutive wave

vector components are coupled through (9.5). Hence, we first perform a variable transformation to
decouple 𝜒𝑖, 𝑗 . We substitute the polar coordinates (𝑘𝑖 , 𝜙𝑖) with 𝑘𝑖 = 𝑢2

𝑖 , 𝜙𝑖 = 2𝜑𝑖 . The 𝜑𝑖-integration
goes from 0 to 𝜋. Due to the symmetry of the cosine function in Eq. (9.5) under shifts by a half period
and the fact that the hyperbolic cosine is an even function, we find that the integral over the interval
[𝜋, 2𝜋] yields the same result as the integral over [0, 𝜋]. We can thus expand the integration interval
of 𝜑𝑖 to [0, 2𝜋] by adding a factor of 1/2. Next, we change from polar coordinates to Cartesian
coordinates by substituting (𝑥𝑖 , 𝑦𝑖) = 𝑢𝑖 (cos 𝜑𝑖 , sin 𝜑𝑖). The trace over the round-trip operator yields

𝑓 (𝑟 )sc =
1
𝑟

(𝜌1𝜌2)𝑟
(2𝜋)2𝑟

∫ ∞

−∞
d2𝑟x

∫ ∞

−∞
d2𝑟y

𝑟∏
𝑗=1

e−
(
𝑥2

2 𝑗+𝑦2
2 𝑗

)
e−

(
𝑥2

2 𝑗−1+𝑦2
2 𝑗−1

)

×
[
e𝜒

(2)
2 𝑗 + e−𝜒

(2)
2 𝑗

] [
e𝜒

(1)
2 𝑗−1 + e−𝜒

(1)
2 𝑗−1

]
,

(9.9)

where we have rewritten the hyperbolic cosines in terms of exponential functions: cosh(𝜒) =
(e𝜒 + e−𝜒)/2. The arguments are defined by

𝜒 (𝑛)
𝑖 = 2𝜌𝑛 (𝑥𝑖𝑥𝑖+1 + 𝑦𝑖𝑦𝑖+1) , 𝜌𝑛 =

𝑅𝑛
L , (9.10)

with aspect ratios 𝜌𝑛 for 𝑛 = 1, 2. Changing the coordinates decoupled the 4𝑟-dimensional in-
tegral in Eq. (9.8) into a product of two 2𝑟-dimensional integrals in x𝑡 = (𝑥1, 𝑥2, . . . 𝑥2𝑟 ) and
y𝑡 = (𝑦1, 𝑦2, . . . , 𝑦2𝑟 ), where 𝑡 denotes the transposed vector. Each integral is of Gaussian type.
After expanding the product in Eq. (9.9), one obtains in total 22𝑟 Gaussian integrals with a bilinear
form given by a 2𝑟 × 2𝑟-dimensional symmetric, semi-definite and cyclic Toepliz matrix

M±
2 =

(
1 𝑎1 + 𝑎2

𝑎1 + 𝑎2 1

)
, M±

2𝑟 =

©«

1 𝑎1 0 . . . 0 𝑎2𝑟
𝑎1 1 𝑎2 0

0 𝑎2 1 . . .
...

...
. . .

. . . 0
0 𝑎2𝑟−1
𝑎2𝑟 0 . . . 0 𝑎2𝑟−1 1

ª®®®®®®®®®®¬
. (9.11)

The off-diagonal elements alternate between 𝑎2𝑘−1 = ±𝜌1 for all odd indices and 𝑎2𝑘 = ±𝜌2 for
even indices. There are in total 22𝑟 possible sign combinations. However, as we will see later, only
the total number of entries with a negative sign is relevant for the result of the integral. We thus
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9 Universal Casimir interaction and approximate conformal invariance

introduced a superscript + (−) for even (odd) numbers of off-diagonal elements with a negative sign.
As explained in Appendix A.6.3, the result of a multidimensional Gaussian integral is determined by
the determinant of the matrix M±

2𝑟 . We will evaluate the determinant in the following.

We can interpret the symmetric band matrix as a Hamiltonian for a tight-binding model with
varying hopping elements between adjacent sites. It is well known that the determinant of such
matrices can be computed using the transfer matrix method [183]

det M±
2𝑟 = − det (T − 1)

2𝑟∏
𝑛=1

𝑎𝑛 . (9.12)

The transfer matrix T = T2𝑟T2𝑟−1 . . .T2T1 results from applying successively transfer matrices T𝑛
which connect consecutive pairs of components of the eigenvectors of M±

2𝑟 . The one-step transfer
matrix is defined by

T𝑛 =
( −𝑎−1

𝑛 −𝑎−1
𝑛 𝑎𝑛−1

1 0

)
=

( −𝑎−1
𝑛 0

0 1

)
A𝑛−1

(
1 0
0 𝑎−1

𝑛−1

)
with A𝑛−1 =

(
1 −𝑎2

𝑛−1
1 0

)
.

(9.13)

In the second line, we factorized the one-step transfer matrix according to [184] to use the periodicity of
the Toepliz matrix. We apply the identity det (T − 1) = 1+det T− trT for symmetric two-dimensional
matrices. Determinants are furthermore multiplicative, so the determinant of the transfer matrix is
given by the product of the determinants of each one-step transfer matrix: det T =

∏2𝑟
𝑛=1 det T𝑛. The

entries in the Toeplitz matrix are periodic and cyclic, resulting in a determinant of the transfer matrix
equal to one. To proceed with the calculation of det (T − 1), we use that the trace is invariant under
permutation, thus leading to

trT =
2𝑟∏
𝑛=1

tr(A1A2)𝑟 . (9.14)

Whenever we multiply two consecutive matrices A𝑛 and A𝑛−1, the product is always the same due to
the periodic alternating entries of the Toepliz matrix. Finally, taking into account that the trace over
the 𝑟-th power of a matrix is equivalent to sum of the 𝑟-th power of the eigenvalues, we find

tr (A1A2)𝑟 =
(
𝑦 +

√︁
𝑦2 − 1

)𝑟
+

(
𝑦 −

√︁
𝑦2 − 1

)𝑟
= 2𝑇𝑟 (𝑦) . (9.15)

We introduced the Chebyshev polynomials [185, Chap. 18] 𝑇𝑟 (𝑦) of the first kind of order 𝑟 and
argument

𝑦 =
1 − 𝜌2

1 − 𝜌2
2

2𝜌1𝜌2
=
L2 − 𝑅2

1 − 𝑅2
2

2𝑅1𝑅2
. (9.16)

The distance measure 𝑦 is conformal invariant [186] it remains unchanged if two exterior spheres are
mapped to a symmetry, where one sphere is within the other. We also note that 𝑦 can be expressed
in terms of the earlier introduced aspect ratio 𝑥 = 𝐿/𝑅eff and geometry parameter 𝑢 = 𝑅eff/(𝑅1 + 𝑅2)

𝑦 = 1 + 𝑥 + 𝑢
2
𝑥2 . (9.17)
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9.2 Scalar field between two spheres with Dirichlet boundary conditions

The above-given definition simplifies the interpretation of 𝑦 for small (𝑦 → 1) and large (𝑦 → ∞)
distances between the spheres and also the transition from the sphere-sphere to the sphere-plane
geometry via the parameter 𝑢.

In summary, the determinant of the periodic Toepliz matrix (9.11) yields

det M±
2𝑟 = 2(𝜌1𝜌2)𝑟 (𝑇𝑟 (𝑦) ∓ 1) . (9.18)

Note that the definition above also includes the determinant for a single round-trip, where 𝑇1(𝑦) = 𝑦
and the determinant yields: det M±

2 = 1 − 𝜌2
1 − 𝜌2

2 ∓ 2𝜌1𝜌2.
We can now proceed with the evaluation of the integrals (9.9). We note that half of the 22𝑟 Gaussian

integrals are characterized by the bilinear form M+
2𝑟 , while the other half is represented by M−

2𝑟 . We
thus obtain for the round-trip contribution (9.9)

𝑓 (𝑟 )sc =
1
2𝑟

( 𝜌1𝜌2

𝜋2

)𝑟 ∑︁
𝜎=±

(∫
d2𝑟xe−x𝑡M𝜎

2𝑟x
)2

=
(𝜌1𝜌2)𝑟

2𝑟

∑︁
𝜎=±

1
det M𝜎

2𝑟
. (9.19)

We used the result for a multidimensional Gaussian integral defined in Eq. (A.28).
Finally, we insert the result of the determinant (9.18) and perform the sum over the round-trips

according to (9.2). The dimensionless Casimir free energy 𝑓sc =
∑∞
𝑟=1 𝑓

(𝑟 )
sc for Dirichlet spheres in a

scalar field thus yields

𝑓sc =
∞∑︁
𝑟=1

1
2𝑟

𝑇𝑟 (𝑦)
𝑇2
𝑟 (𝑦) − 1

=
∞∑︁
𝑟=1

𝑍𝑟

𝑟

1 + 𝑍2𝑟

(1 − 𝑍2𝑟 )2 . (9.20)

Following the notation introduced in Ref. [24], we defined

𝑍 = exp(−𝜇) = 𝑦 −
√︁
𝑦2 − 1 , 𝜇 = arcosh(𝑦) (9.21)

and expressed the Chebyshev polynomials in terms of exponential functions with: 𝑇𝑟 (𝑦) = (𝑍−𝑟 −
𝑍𝑟 )/2.

We can also write the dimensionless Casimir free energy for a scalar field as

𝑓sc = 𝑍
d

d𝑍

∞∑︁
𝑟=1

1
𝑟2

𝑍𝑟

1 − 𝑍2𝑟 = −
∞∑︁
𝑙=0

(2𝑙 + 1) log
(
1 − 𝑍2𝑙+1

)
. (9.22)

The distance measure 𝑦 is always greater than one, thus 0 < 𝑍 < 1. The last factor in the first sum
was thus expanded in a geometrical series. In the next step, we evaluated the round-trip sum with the
Mercator series and reproduced the result found in Ref. [24] for the Casimir free energy.

Notably, the reduced Casimir free energy for a scalar field between two spheres with Dirichlet
boundary conditions is a function of 𝑦, meaning it obeys exact conformal invariance. This property
makes this problem analogous to the critical Casimir effect [187, 188].

9.2.2 Convergence and limiting behaviour
In the following, we are going to compare the two representations (9.20) and (9.22) derived above for
the Casimir free energy of a scalar field.

For large distances 𝑦 > 1, the multipole expansion turns out to converge much faster than the
round-trip expansion, as can be seen in Fig. 9.2a, where we compared the convergence of both sums
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Figure 9.2: Convergence of the scalar Casimir free energy. Both figures show the relative deviation
Δ =

��1 − 𝑓max
sc / 𝑓 ref

sc
��. The free energy 𝑓max

sc is calculated either with the round-trip sum (9.20) (filled symbols)
or with the multipole sum (9.22) (un-filled symbols) with the summations respectively performed up to 𝑙max
or 𝑟max and 𝑓 ref

sc is the numerically exact result for the free energy evaluated for 𝑙ref ≫ 𝑙max or 𝑟ref ≫ 𝑟max.
(a) Analysis of the convergence for large distances 𝑦 > 1 with a reference result which was calculated for
𝑙ref
max = 50. (b) Analysis of the convergence for small distances 𝑦 − 1 ≪ 1 with a reference result which was

computed for 𝑟ref
max = 1000.

for 𝑦 − 1 = 1 and 10. The leading order can be extracted from the first term (𝑙 = 0) in Eq. (9.22) by
using 𝑍 = 1/(2𝑦) + O(𝑦−3). We obtain the following expression for the Casimir free energy at large
separations

𝑓sc ≈ 1
2𝑦
. (9.23)

Of particular interest is the small distance regime 𝑦 → 1, which according to Eq. (9.21) corresponds
to 𝜇 → 0. The round-trip sum converges much faster in this regime compared to the expansion in
bispherical multipoles. Each summand decays with e−𝜇𝑥/𝑥 in the 𝑟-sum, while each summand in
the 𝑙-sum scales with 𝑥e−𝜇𝑥 . In Fig. 9.2b, we depicted the convergence of each sum for distances
𝑦−1 = 10−2 and 10−4. It is evident that even for small round-trip numbers 𝑟 < 10, the approximation
of the Casimir free energy is extremely accurate. Later on, we will utilize these findings.

The 𝑟-sum simplifies not only the numerical computation for small distances but also the evaluation
of the asymptotic expansion of the Casimir free energy. We can express (9.20) in terms of so-called
F-series [189], which is a generalization of the Lambert series and defined as

L𝑞 (𝑠, 𝑧) =
∞∑︁
𝑘=1

𝑘𝑠𝑞𝑘𝑧

1 − 𝑞𝑘 . (9.24)

After decomposing the fraction in Eq. (9.20), we find for the total free energy

𝑓sc = 𝑍
d

d𝑍
[L𝑍 (−2, 1) − L𝑍2 (−2, 1)] . (9.25)

Small distances correspond to 𝑍 = 1 + O(
√︁
𝑦 − 1). The expansion of the Lambert series in the limit

𝑍 → 1 is known [190] and presented in Appendix A.4. After some basic algebraic transformations,
which are in detail given in Appendix D.1, we find for the asymptotic expansion of Casimir free
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9.3 Metallic spheres described by the Drude model in vacuum

energy Fsc = −(𝑘B𝑇/2) 𝑓sc for small distances

Fsc =
𝑘B𝑇

2

[
− 𝜁 (3)

2𝜇2 + 1
12

log(𝜇) + 1
12

− log(𝐴) + 1
6

log(2)

+
∞∑︁
𝑛=1

2𝑛 + 1
2𝑛

𝐵2𝑛𝐵2𝑛+2
(2𝑛 + 2)!

(
22𝑛+1 − 1

)
𝜇2𝑛

]
,

(9.26)

where we introduced the Apéry constant 𝜁 (3) = 1.202 . . ., the Glaisher’s constant 𝐴 = 1.28242 . . .
and the Bernoulli numbers 𝐵𝑘 . Instead of 𝜇 as an expansion coefficient, it is more natural to use the
aspect ratio 𝑥 = 𝐿/𝑅eff. According to Eqs. (9.21) and (9.17) is 𝜇 given by

√
2𝑥 + O(𝑥3/2) for short

distances. The leading term in Eq. (9.26) thus yields Fsc ≈ 2𝜋𝑅effFpp(𝐿) with Fpp = −𝑘B𝑇𝜁 (3)/16𝐿
which corresponds to the proximity-force-approximation result. The divergence of the leading term
for 𝜇 → 0 is related to the zero-eigenvalue of the matrix M±

2𝑟 , which originates from the cyclic
character of the matrix associated with closed boundary conditions. We furthermore remark that
the terms up to the order of 𝜇4 in Eq. (9.26) are in agreement with the values given in Ref. [24].
Our expansion goes, however, beyond the known results and also provides a simple relation for the
expansion coefficients in terms of the Bernoulli numbers.

9.3 Metallic spheres described by the Drude model in vacuum

In this Section, we will derive the Casimir free energy for two Drude spheres in vacuum. First,
we will identify the monopole contributions (Secs. 9.3.1 and 9.3.2), which are not present for an
electromagnetic field compared to the scalar field. We will present in Sec. 9.3.3 the result for the
Casimir free energy for arbitrary radii as well as for geometrical limiting cases like the sphere-plane
setup. Finally, we derive in Sec. 9.3.4 an expansion of the free energy for small separations.

9.3.1 Identifying the monopole terms in a scalar field

We insert the reflection coefficients (9.6) for a Drude sphere in vacuum into the round-trip contribution
to the thermal Casimir free energy (9.3). After performing the same variable transformation as for
the scalar field, the 𝑟-th round-trip contribution for the Drude-vacuum-Drude (DvD) model reads

𝑓 (𝑟 )DvD =
1
𝑟

(𝜌1𝜌2)𝑟
(2𝜋)2𝑟

∫
d2𝑟x

∫
d2𝑟y

𝑟∏
𝑗=1

e−
(
𝑥2

2 𝑗+𝑦2
2 𝑗

)
e−

(
𝑥2

2 𝑗−1+𝑦2
2 𝑗−1

)

×
[
e𝜒

(2)
2 𝑗 + e−𝜒

(2)
2 𝑗 − 2

] [
e𝜒

(1)
2 𝑗−1 + e−𝜒

(1)
2 𝑗−1 − 2

]
,

(9.27)

where 𝜒 (𝑛)
𝑖 was defined in Eq. (9.10). As highlighted earlier, the Casimir free energy for two Drude

spheres differs from the Casimir free energy for a scalar field only by contributions from the monopole
terms. Hence, we need to identify all terms which originate from couplings to monopole modes.
These are all terms in Eq. (9.27), which contain at least one factor −2 after expanding the product.
We introduce the following definition for the monopole terms

Δ𝑟 = 𝑓 (𝑟 )DvD − 𝑓 (𝑟 )sc . (9.28)
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9 Universal Casimir interaction and approximate conformal invariance

There are in total 32𝑟 − 22𝑟 monopole terms, which are all of Gaussian-type. The bilinear form
in the exponent can be described by tridiagonal matrices similar to the matrix (9.11) for the scalar
case. However, with each factor −2 appearing in the expansion of the product in Eq. (9.27) the
corresponding pair of off-diagonal matrix elements vanish, thus breaking the cyclic invariance given
in the scalar case. The matrices are thus block-diagonal, where the number of blocks depends on the
numbers of −2 factors. Each block matrix is given by a symmetric tridiagonal 2-Toepliz matrix [191]
of the form

m(1/2)
𝑛 =

©«

1 ±𝜌1/2 · · · 0
±𝜌1/2 1 ±𝜌2/1
... ±𝜌2/1 1 . . .

. . .
. . .

0 1

ª®®®®®®®¬
. (9.29)

The pairs of off-diagonal matrices alternate between 𝜌1 and 𝜌2 and come either with a positive or
negative sign, similar to what we discussed earlier. Each block matrix is characterized by its size
𝑛 and the index of the first off-diagonal entry indicated as a superscript with either 1 or 2. For a
2𝑟-dimensional block matrix with 𝑘 blocks, we write

M𝑤 = diag
(
m(𝑠1 )
𝑛1 m(𝑠2 )

𝑛2 m(𝑠3 )
𝑛3 . . .m(𝑠𝑘 )

𝑛𝑘

)
. (9.30)

The index 𝑤 denotes an element of a set Π2𝑟 ,𝑘 containing a multiset of tuples {(𝑛1, 𝑠1), (𝑛2, 𝑠2),
. . . , (𝑛𝑘 , 𝑠𝑘)}, where each tuple characterizes the dimension 𝑛𝑖 of the block matrix and the index
𝑠𝑖 ∈ {1, 2} of the first off-diagonal entry. The sizes of the blocks 𝑛𝑖 ∈ {1, 2, . . . 2𝑟} are chosen such
that

∑𝑘
𝑖=1 𝑛𝑖 = 2𝑟 . Furthermore, we cannot set 𝑠𝑖 freely. The value rather depends on the size 𝑛𝑖−1

and the index 𝑠𝑖−1 of the previous block in the following way

𝑠𝑖 =

{
𝑠𝑖−1 if 𝑛𝑖−1 = 2𝑚 − 1, 𝑚 ∈ N

𝑠𝑖−1 if 𝑛𝑖−1 = 2𝑚, 𝑚 ∈ N
(9.31)

with 𝑠 = 2(1) if 𝑠 = 1(2). This means that if the previous block is odd-dimensional, the superscript
changes from 2 to 1 or vice versa. We depicted in the left panel of Fig. 9.3 a block matrix M𝑤

consisting of three blocks. The Gaussian integrals are computed from the determinants of the block-
matrices (9.30) which are simply given by the product of the determinants of each individual block.
The blocks m(1,2)

𝑛 are submatrices of the earlier introduced matrix M(±)
2𝑟 given in Eq. (9.11). Hence,

a Laplace expansion of the latter one can be expressed in terms of the minors det m(1,2)
𝑛 . We find

det M±
2𝑟 = det m(1)

2𝑟−1 − 𝜌2
1 det m(1)

2𝑟−2 − 𝜌2
2 det m(2)

2𝑟−2 ± 2(𝜌1𝜌2)𝑟 . (9.32)

By exchanging the superscripts of the matrices and indices of 𝜌𝑛 from 1 to 2 and vice versa,
we get the same expansion for det m(2)

𝑛 . We expressed the determinant of M±
2𝑟 in terms of the

Chebychev polynomials of the first kind (9.18), which on the other hand are related to Chebychev
polynomials of the second kind𝑈𝑛 (𝑦) by the following recursion relation [185, Eq. 18.9.9]: 2𝑇𝑛 (𝑦) =
𝑈𝑛 (𝑦) −𝑈𝑛−2(𝑦). With the recursion relation and the Laplace expansion given above, in principle,
it is possible to get the determinants of the blocks. Alternatively, the determinants can also be found
in Ref. [192], where the characteristic polynomials of the blocks were derived. For odd-sized blocks,
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9.3 Metallic spheres described by the Drude model in vacuum

m(1)
1

m(2)
2

m(2)
3

0

0

0

0

0

0 (1, 0) (2, 1) (3, 1)

Figure 9.3: Diagrammatic representation. Left: Block matrix M𝑤 = diag
(
m(1)

1 m(2)
3 m(1)

2

)
corresponding

to the multiset 𝑤 = {(1, 1), (2, 2), (3, 2)} of the set or partitions Π6,2 for 𝑟 = 3 round-trips. The block colours
illustrate the superscript 1 in black and 2 in white. Right: Diagrammatic representation of the block matrix
as a chain with 2𝑟 + 1 = 7 alternating between black and white nodes. The colour of the first node depends on
the superscript of the first block matrix m(1)

1 , which is here chosen to be black. The nodes are equidistantly
placed, and the length of lines connecting two nodes represents the dimension of a block matrix. Similar
Figure in Ref. [177].

we find
det m(1,2)

2𝑘+1 = (𝜌1𝜌2)𝑘𝑈𝑘 (𝑦) (9.33)

and for even-sized matrices

det m(1,2)
2𝑘 = (𝜌1𝜌2)𝑘

[
𝑈𝑘 (𝑦) +

𝜌2,1

𝜌1,2
𝑈𝑘−1(𝑦)

]
. (9.34)

Note that the determinants of the blocks do not depend on the sign of the off-diagonal matrix elements.
After accounting for the multiplicity related to the signs, we thus find for the monopole terms

Δ𝑟 =
1
𝑟

(𝜌1𝜌2)𝑟
𝜋2𝑟

2𝑟∑︁
𝑘=1

(−1)𝑘
∑︁

𝑤∈Π2𝑟,𝑘

(∫
d2𝑟xe−x𝑡M𝑤x

)2

=
(𝜌1𝜌2)𝑟
𝑟

2𝑟∑︁
𝑘=1

(−1)𝑘
∑︁

𝑤∈Π2𝑟,𝑘

1
det M𝑤

,

(9.35)

where we applied (A.28) to evaluate the multidimensional Gaussian integral. Note also, that the
determinant of the block matrix M𝑤 is not unique to the given set 𝑤 ∈ Π2𝑟 ,𝑘 . Due to the cyclic
character of the determinant, permutations of the block matrices yield the same determinant. In the
following, we are identifying all possible partitions Π2𝑟 ,𝑘 for a given round-trip number 𝑟 .

9.3.2 Combinatorial structure of the round-trip partitions

We introduce a diagrammatic representation for the block matrix to analyse all compositions 𝑤 ∈
Π2𝑟 ,𝑘 . For 𝑟 round-trips, we consider a directed graph of 2𝑟 + 1 equally spaced bi-coloured nodes.
The colour of the nodes alternates between black and white, while the first and last nodes are always
identical. Each node represents one of the two spheres. Without loss of generality, the black-coloured
nodes represent sphere 1, and the white nodes represent sphere 2. The blocks m(1,2)

𝑛 themselves are
presented by coloured lines connecting the nodes, where the colour again refers to the node where
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9 Universal Casimir interaction and approximate conformal invariance

the line starts. The relation between a block matrix and a graph is illustrated in Fig. 9.3 for the
6-dimensional block matrix M𝑤 = diag(m(1)

1 m(2)
3 m(1)

2 ) consisting of 3 blocks. The corresponding
diagram consists of 7 nodes and 3 lines. An edge between two adjacent nodes represents a block of
size 𝑛 = 1. Within the scattering picture, it can be seen as half a round-trip, starting at one sphere
and ending at the other. An edge of size 𝑛 = 2 is the shortest line connecting two nodes of the
same colour. In the scattering picture, it thus illustrates one round-trip. Hence, a single round-trip
can be represented in two ways: either by two lines of opposite colours or one edge connecting two
nodes of the same colour. As the round-trip number increases, the number of possible partitions also
grows. Note, furthermore, that odd-dimensional matrices are always presented by lines connecting
two nodes of opposite colours. On the other hand, even-dimensional matrices are presented by lines
connecting nodes of the same colour. Whenever there is an edge with an odd length, the following
line will change its colour. This directly relates to the condition introduced earlier in Eq. (9.31),
where the values of the tuples (𝑛𝑖 , 𝑠𝑖) in the multiset 𝑤 depend on the values of the preceding tuple
(𝑛𝑖−1, 𝑠𝑖−1).

The connection between colour and dimension of neighbouring lines can be accounted for via a
recursive description, which we present in the following. First, we abbreviate the inverse determinants
of the block by

𝑑 (𝑠)𝑛 =
1

det m(𝑠)
𝑛

. (9.36)

We consider 𝑟 round-trips, which corresponds to a chain of length 2𝑟. The chain can either start with
a white node or a black node. We thus introduce two sets of partitions, which we denote as ℎ (𝑠)2𝑟 with
𝑠 ∈ {1, 2}. All possible partitions can be expressed by the following recursion relation

ℎ (𝑠)2𝑟 (𝑡) = 𝑡𝑑 (𝑠)2𝑟 − 𝑡
𝑟−1∑︁
𝑛=1

𝑑 (𝑠)2𝑛 ℎ
(𝑠)
2𝑟−2𝑛 (𝑡) − 𝑡

𝑟∑︁
𝑛=1

𝑑 (𝑠)2𝑛−1ℎ
(𝑠)
2𝑟−2𝑛+1(𝑡) (9.37)

which we depicted explanatory in Fig. 9.4a for graphs starting and ending with a black node. The
first term 𝑑 (𝑠)2𝑟 accounts for a single edge of maximal length 2𝑟 connecting the first and last node of
the same colour. The other two terms account for graphs with more than one edge. There are two
possibilities to consider: On the one hand, if the first edge has an even length, as given by the second
term in Eq. (9.37), the following edge will begin with a node of the same colour as the first one. On
the other hand, if the first edge has an odd length, then the second edge will begin with a node of the
opposite colour, which is indicated by the bar above 𝑠, in the last term of Eq. (9.37).

The auxiliary variable 𝑡 counts the total number of lines. Each new edge comes with a factor
𝑡, hence if we want to determine all partitions consisting of 𝑘 lines, we take the 𝑘-th derivative of
Eq. (9.37) with respect to 𝑡 and set 𝑡 = 0. The relative minus sign between the first term and the other
two terms is due to the fact that each new block contributes a minus sign leading to a factor (−1)𝑘
in Eq. (9.35). We similarly derive a recursion relation for graphs which start and end with nodes of
different colours, given by

ℎ (𝑠)2𝑟−1(𝑡) = 𝑡𝑑
(𝑠)
2𝑟−1 − 𝑡

𝑟−2∑︁
𝑛=1

𝑑 (𝑠)2𝑛 ℎ
(𝑠)
2𝑟−2𝑛−1(𝑡) − 𝑡

𝑟−2∑︁
𝑛=1

𝑑 (𝑠)2𝑛−1ℎ
(𝑠)
2𝑟−2𝑛 (𝑡) (9.38)

and illustrated in Fig. 9.4b. The first term represents a graph with one edge of length 2𝑟 − 1, and the
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2A 2A
=

2= 2A − 2=
+

2= − 1 2A − 2= + 1
+

(a)

2A − 1 2A − 1
=

2= 2A − 2= − 1
+

2= − 1 2A − 2=
+

(b)

Figure 9.4: Recursion relation. Illustration of the possible partitions between two nodes of the same colour
(a) and of opposite colours (b). Figure (a) depicts the recursion relations given in Eq. (9.37) for 𝑠 = 1 and
Figure (b) depicts the recursion relations given in Eq. (9.38) for 𝑠 = 1.

two remaining terms account for partitions into at least to edges.
Before we proceed with the evaluation of the monopole terms Δ𝑟 , we want to highlight that the

recursion relations given above are reminiscent of the Laplace expansions of appropriately chosen
matrices. We found that the recursion relations are related to lower Hessenberg matrices

H(𝑠)
𝑛

({
𝑑 (𝑠)𝑖

}
𝑖=1,...,𝑛

;
{
𝑑 (𝑠)𝑗

}
𝑗=1,...,𝑛−1

)
=

©«

𝑑 (𝑠)1 1 0

𝑑 (𝑠)2 𝑑 (𝑠)1 1

𝑑 (𝑠)3 𝑑 (𝑠)2 𝑑 (𝑠)1 1
...

...
...

... 1

𝑑 (𝑠)𝑛 𝑑 (𝑠)𝑛−1 𝑑 (𝑠)𝑛−2 𝑑 (𝑠)𝑛−3 · · · 𝑑 (𝑠)1

ª®®®®®®®®®¬
(9.39)

by [193]
ℎ (𝑠)𝑛 (𝑡 = 1) = (−1)𝑛+1 det H(𝑠)

𝑛 . (9.40)

If we disregard the colour of the nodes, thus assuming 𝑑 (1)𝑛 = 𝑑 (2)𝑛 = 𝑑𝑛, the problem reduces to
finding integer partitions. A partition of 𝑛 elements into 𝑘 non-empty subsets can be described by
the so-called partial ordinary (o) Bell polynomials [194, 195]

𝐵o
𝑛,𝑘 (𝑑1, 𝑑2, . . . , 𝑑𝑛) =

∑︁
𝑚𝑖

𝑘!
𝑚1!𝑚2! · · ·𝑚𝑛!

𝑑𝑚1
1 𝑑𝑚2

2 · · · 𝑑𝑚𝑛𝑛 with
𝑛∑︁
𝑖=1

𝑚𝑖 = 𝑘,
𝑛∑︁
𝑖=1

𝑖𝑚𝑖 = 𝑛 .

(9.41)
The ordinary Bell polynomials are commutative. The pre-factor 𝑘!/(𝑚1!𝑚2! · · ·𝑚𝑛!) of each mono-
mial considers all possible permutations of the factors in the monomial. Summing over all possible
partitions, one obtains the complete ordinary Bell polynomials 𝐵o

𝑛, which are directly linked to the
determinant of the above-introduced Hessenberg matrix [195]

𝐵o
𝑛 ({𝑑𝑖}) =

𝑛∑︁
𝑘=1

𝐵o
𝑛,𝑘 ({𝑑𝑖}) = det H𝑛 ({𝑑𝑖}) . (9.42)

In our case, however, not all realizations of partitions are possible which is why we have to take care
of the multiplicity of each partition separately.

So far, we have considered open-chain diagrams with the starting point chosen at a specific node.
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× (A = 3)

/ (: = 4)

(a)

× (A = 3)

/ (: = 6)

(b)

Figure 9.5: Multiplicity of the round-trip partitions. The first panel in Figure (a) illustrates the partition
𝑤 = {(2, 1), (1, 1), (2, 2), (1, 1)} of Π6,4 and all its non-equal permutations from top to bottom. There are
four graphs in total. The second panel on the right depicts the partitions in a closed-loop graph. Each partition
can start from one of the three nodes in a closed-loop graph, as it is highlighted by the arrows. In total, there
are only three distinct closed loop graphs which present the partition of the three round-trips into four blocks.
A similar figure can be found in Ref. [177]. Figure (b) illustrates the partition of three round-trips into six
blocks which corresponds with the multiset 𝑤 = {(1, 1), (1, 2), (1, 1), (1, 2), (1, 1), (1, 2)} ∈ Π6,6. There are
only two non-equal partitions as depicted in the first panel. In a closed-loop representation, there is only one
unique graph for the partition.
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9.3 Metallic spheres described by the Drude model in vacuum

However, the starting point can, in principle, be at every node within the chain, no node is set apart
from the others. Hence, rather than an open chain, we consider closed chain diagrams in the following.
Every configuration thus has 𝑟 different nodes as starting points, as it is depicted in Fig. 9.5a and
9.5b for a chain of length 2𝑟 = 6 with 4 and 6 edges, respectively. To account for this multiplicity,
we are introducing a factor 𝑟 to ℎ (𝑠)2𝑟 . In our recursive description of the possible partitions we,
however, already include all non-equal circular permutations of the blocks. Hence, to avoid any
double counting, we have to remove the 𝑘 cyclic permutation of a partition in 𝑘 blocks, as illustrated
with the third panel in Fig. 9.5a and 9.5b. We can extract the partitions in 𝑘 blocks from ℎ (𝑠)2𝑟 (𝑡) by
taking the 𝑘-th derivative with respect to 𝑡 as we discussed earlier, which allows us to modify the
multiplicity. We thus find for monopole contributions (9.35)

Δ𝑟 = − (𝜌1𝜌2)𝑟
𝑟

∞∑︁
𝑘=1

1
𝑘

[
d𝑘

d𝑡𝑘
(
ℎ (1)2𝑟 (𝑡) + ℎ (2)2𝑟 (𝑡)

)]
𝑡=0

, (9.43)

where the factor 𝑟/𝑘 adjusts the multiplicity as described above. We further remark that the overall
negative sign arises from the fact that according to (9.35), odd numbers of blocks come with a negative
sign. The functions ℎ (𝑠)2𝑟 (𝑡) are polynomials in 𝑡, where the lowest order is linear in 𝑡. Hence, we can
express the sum over the derivatives also in terms of an integral

Δ𝑟 = −(𝜌1𝜌2)𝑟
∫ 1

0
d𝑡
ℎ (1)2𝑟 (𝑡) + ℎ (2)2𝑟 (𝑡)

𝑡
. (9.44)

The full result for the monopole contributions is given after taking the sum over the round-trips,
which will be discussed in detail in the next Section.

9.3.3 Casimir free energy for general radii and limiting cases

In this Section, we proceed with the evaluation of the earlier derived monopole terms. The aim is
to derive the full result for the Casimir free energy of two Drude spheres in vacuum. We define the
contribution from all monopole terms as Δ, which according to Eq. (9.2) is given by the round-trip
sum over Δ𝑟

Δ = 𝑓DvD − 𝑓sc =
∞∑︁
𝑟=1

Δ𝑟
𝑟
. (9.45)

We introduce the following generating function for the partitions ℎ (𝑠)2𝑟 (𝑡), which enters the monopole
term (9.44)

𝐻 (𝑠) (𝑥; 𝑡) =
∞∑︁
𝑛=1

ℎ (1,2)𝑛 (𝑡)𝑥𝑛

=
∞∑︁
𝑟=1

ℎ (𝑠)2𝑟 (𝑡)𝑥2𝑟 +
∞∑︁
𝑟=1

ℎ (1,2)2𝑟−1 (𝑡)𝑥2𝑟−1 = 𝐻 (𝑠)
e (𝑥; 𝑡) + 𝐻 (𝑠)

o (𝑥; 𝑡) ,
(9.46)

where we separated the sums with even (e) and odd (o) powers in the auxiliary variable 𝑥. Hence,
the exponent of 𝑥 counts the number of round-trips. After introducing (9.44) into (9.45), we obtain
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together with the generating functions, the following expression for the monopole contributions

Δ = −
∫ 1

0
d𝑡
𝐻 (1)

e (√𝜌1𝜌2; 𝑡) + 𝐻 (2)
e (√𝜌1𝜌2; 𝑡)

𝑡
. (9.47)

To proceed with the evaluation of the monopole term, we introduce generating functions for the
inverse determinants of individual blocks 𝑑 (𝑠)𝑛 defined in Eq. (9.36)

𝐷 (𝑠) (𝑥) =
∞∑︁
𝑛=1

𝑑 (𝑠)𝑛 𝑥𝑛 = 𝐷 (𝑠)
e (𝑥) + 𝐷 (𝑠)

o (𝑥) , (9.48)

where we performed the same decomposition in an even and odd part as in Eq. (9.46). The gener-
ating functions 𝐻 (1,2)

e are determined by summing over the recurrence relations (9.37) and (9.38),
respectively for the even and odd partitions, and they yield

𝐻 (𝑠)
e (𝑡) = 𝑡𝐷 (𝑠)

e − 𝑡𝐷 (𝑠)
e 𝐻 (𝑠)

e (𝑡) − 𝑡𝐷 (𝑠)
o 𝐻 (𝑠)

o (𝑡) , (9.49a)

𝐻 (𝑠)
o (𝑡) = 𝑡𝐷 (𝑠)

o − 𝑡𝐷 (𝑠)
e 𝐻 (𝑠)

o (𝑡) − 𝑡𝐷 (𝑠)
o 𝐻 (𝑠)

e (𝑡) , (9.49b)

where we omitted the 𝑥-dependence for convenience. We solve the set of equations for the even
function 𝐻 (𝑠)

e both for 𝑠 = 1 and 𝑠 = 2 and get

𝐻 (1)
e + 𝐻 (2)

e = 𝑡
𝐷 (1)

e + 𝐷 (2)
e + 𝑡𝐷 (1)

e 𝐷 (2)
e − 𝑡𝐷 (1)

o 𝐷 (2)
o(

1 + 𝑡𝐷 (1)
e

) (
1 + 𝑡𝐷 (2)

e

)
− 𝑡2𝐷 (1)

o 𝐷 (2)
o

. (9.50)

Noting that the numerator equals the derivative with respect to 𝑡 of the denominator, it is straightfor-
ward to evaluate the integral in Eq. (9.47), and we find

Δ = − log
[(

1 + 𝐷 (1)
e

) (
1 + 𝐷 (2)

e

)
− 𝐷 (1)

o 𝐷 (2)
o

]
. (9.51)

The sums 𝐷 (𝑠)
e and 𝐷 (𝑠)

o over the inverse determinants (9.36) yield together with (9.34) and (9.33)

𝐷 (1)
e (√𝜌1𝜌2) =

∞∑︁
𝑛=1

1
𝑈𝑛 (𝑦) + 𝛼+𝑈𝑛−1(𝑦) , (9.52a)

𝐷 (2)
e (√𝜌1𝜌2) =

∞∑︁
𝑛=1

1
𝑈𝑛 (𝑦) + 𝛼−𝑈𝑛−1(𝑦) , (9.52b)

𝐷 (1)
o (√𝜌1𝜌2) = 𝐷 (2)

o (√𝜌1𝜌2) = √
𝜌1𝜌2

∞∑︁
𝑛=0

1
𝑈𝑛 (𝑦) . (9.52c)

Recall that the Chebyshev polynomials of the second kind 𝑈𝑛 (𝑦) are functions of the conformal
distance scale 𝑦, which we defined in Eq. (9.16). Additionally, we introduced the parameter 𝛼±,
which accounts for the ratio of the sphere radii

𝛼+ =
1
𝛼−

=
𝑅2
𝑅1

=
1 − 2𝑢 ±

√
1 − 4𝑢

2𝑢
. (9.53)
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9.3 Metallic spheres described by the Drude model in vacuum

As a reminder the parameter 𝑢, defined in Eq. (8.4), takes values between 0 and 1/4, respectively
accounting for the sphere-plane geometry and two equally-sized spheres.

By expanding the logarithm, we can convince ourselves that all partitions of round-trips are
contained in Eq. (9.51). We, therefore, first factorize the argument of the logarithm and then apply
the Mercator series

Δ = − log
(
1 + 𝐷 (1)

e

)
− log

(
1 + 𝐷 (2)

e

)
− log

(
1 + 𝐷 (1)

o 𝐷 (2)
o

(
1 + 𝐷 (1)

e

)−1 (
1 + 𝐷 (2)

e

)−1
)

= −
{ ∞∑︁
𝑘=1

(−1)𝑘
𝑘

[(
𝐷 (1)

e

) 𝑘
+

(
𝐷 (2)

e

) 𝑘]
+

∞∑︁
𝑛=1

1
𝑛

[ ∞∑︁
𝑙=0

(
−𝐷 (1)

e

) 𝑙
𝐷 (1)

o

∞∑︁
𝑚=0

(
−𝐷 (2)

e

)𝑚
𝐷 (2)

o

]𝑛}
.

(9.54)
The first sum accounts for arbitrary repetitions of full round-trips starting either on sphere 1 or on
sphere 2 as represented by 𝐷 (1)

e or 𝐷 (2)
e , respectively. Expressions containing both 𝐷 (1)

e and 𝐷 (2)
e

can only arise if half round-trips represented by 𝐷 (1)
o and 𝐷 (2)

o occur as it is the case in the second
term. It can be clearly seen that half a round-trip induces a change between full round-trips starting
on sphere 1 and on sphere 2. The number of factors (−1) correctly reflects the number of blocks in
the matrices M𝑤 .

Notably, Fosco et al. [196], showed that the difference between the Casimir free energy of objects
made of Drude metals and the Casimir free energy for a scalar field with Dirichlet boundary conditions
is related to the capacitance matrix C of the arrangement of conductors. For the special case of two
conductors, Ref. [196] found

Δ = − log
[
det(C)𝑇2] . (9.55)

Note that we adopt the choice of units of [196], where their quantity Δ𝐹 equals 𝑇Δ/2. Even though
this was not mentioned in Ref. [196], the capacitance matrix elements of two conducting spheres
of arbitrary radii were already known to Maxwell [197]. Following the more modern notation in
Ref. [198], the capacitance coefficients can be expressed as

𝑐11 = 𝑅1

[
1 + 𝐷 (1)

e (√𝜌1𝜌2)
]
, (9.56a)

𝑐22 = 𝑅2

[
1 + 𝐷 (2)

e (√𝜌1𝜌2)
]
, (9.56b)

𝑐12 = 𝑐21 = −
√︁
𝑅1𝑅2𝐷

(1,2)
o (√𝜌1𝜌2) . (9.56c)

Comparing these coefficients and (9.55) with our result (9.51) connects the capacitance coefficients to
the scattering of electromagnetic waves in the static limit. It thus highlights the connection between
our round-trip description and the method of image charges used by Maxwell [197] to obtain the
capacitance coefficients. We remark that the general result (9.55) and our result (9.51) differ by a
factor 𝑅1𝑅2𝑇

2 in the logarithm. This factor is irrelevant to the Casimir force. However, it affects the
Casimir entropy. The term arises from the Casimir self energies of the spheres at an infinite distance
[6, 199]. These contributions are excluded in the scattering approach, as discussed in connection
with Eq. (2.18), but they are included in Ref. [196]. For our result in Eq. (9.51), the entropy in the
high-temperature limit becomes a constant, as expected [6].

Similar to the scalar result, we are going to express the Casimir free energy in terms of the
parameter 𝑍 = exp(−𝜇) with 𝜇 = arcosh(𝑦) as introduced in Eq. (9.21). The Chebyshev polynomials
of the second kind are given by [185, Eq. 18.5.2] 𝑈𝑛 (𝑦) = (𝑍−(𝑛+1) − 𝑍𝑛+1)/(𝑍−1 − 𝑍). The series
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Figure 9.6: Casimir free energy for two
Drude spheres in vacuum. Negative free
energy in units of 𝑘B𝑇 as a function of the
conformal invariant distance scale 𝑦 − 1 for
geometry parameters ranging from 𝑢 = 0 for
the sphere-plane setup to 𝑢 = 0.25 for two
equally-sized spheres. For comparison, also
the dimensionless free energy for Dirichlet
spheres in a scalar field is shown (solid black
line). The dotted and dashed lines represent
the scaling at large distances for the scalar
result (∝ 1/𝑦) and the Drude case (∝ 1/𝑦3),
respectively.

presented in Eq. (9.52a)-(9.52c) are thus given by

𝐷 (1,2)
e = (1 − 𝑔2

±)
∞∑︁
𝑛=1

𝑍𝑛

1 − 𝑔2±𝑍2𝑛
, 𝐷 (1,2)

o =
√︃
(1 − 𝑔2+) (1 − 𝑔2−)

∞∑︁
𝑛=1

𝑍𝑛

1 − 𝑍2𝑛 , (9.57)

where we introduced the following function

𝑔± = 𝑔±(𝑍) =
(
𝑍2 + 𝛼±𝑍
1 + 𝛼±𝑍

)1/2

. (9.58)

Note that 𝑔+ and 𝑔− are related by 𝑔+𝑔− = 𝑍 . The parameter 𝑍 = 𝑦 −
√︁
𝑦2 − 1 is always smaller or

equal to one, hence also 𝑔± < 1, which allows us to expand the summand in 𝐷 (1,2)
e, o in a geometrical

series and perform a similar resummation as in the scalar case. The high-temperature limit of the
Casimir free energy for two Drude spheres in vacuum F𝑇,DvD = −(𝑘B𝑇/2) 𝑓DvD with 𝑓DvD = 𝑓sc + Δ
thus yields

F𝑇,DvD =
𝑘B𝑇

2

{ ∞∑︁
𝑙=0

(2𝑙 + 1) log(1 − 𝑍2𝑙+1)

+ log

[(
1 + 1 − 𝑔2+

𝑔+

∞∑︁
𝑙=0

(𝑍𝑔+)2ℓ+1

1 − 𝑍2ℓ+1

) (
1 + 1 − 𝑔2−

𝑔−

∞∑︁
𝑙=0

(𝑍𝑔−)2ℓ+1

1 − 𝑍2ℓ+1

)
− (1 − 𝑔2+) (1 − 𝑔2−)

𝑔+𝑔−

( ∞∑︁
𝑙=0

𝑍2𝑙+1

1 − 𝑍2𝑙+1

)2
 .

(9.59)

We remark that the explicit dependence of Δ on 𝑢 via 𝛼± breaks the conformal invariance found for
the scalar case.

In Fig. 9.6, we depict the negative free energy as function of 𝑦 − 1 for different geometrical
parameters 𝑢 ranging from 𝑢 = 0 for the sphere-plane geometry to 𝑢 = 1/4 for two equally-sized
spheres. The free energy is a monotonically decreasing function of the distance, which for short
distances 𝑦 − 1 ≪ 1 converges towards the scalar result, depicted as a black line. Furthermore, we
note that the 𝑢-dependence is very weak. The variation remains in a rather thin band between the two
limiting cases 𝑢 = 0 and 1/4 but increases for larger distances, where the deviation from the scalar
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9.3 Metallic spheres described by the Drude model in vacuum

result is largest. An asymptotic expansion for large distances 𝑍 ≈ 1/(2𝑦) reveals the different scaling
for the sphere-sphere and sphere-plane geometry, with

𝑓DvD(𝑢 ≠ 0) ≈ 3
4𝑦3 , 𝑓DvD(𝑢 = 0) ≈ 1

2𝑦3 . (9.60)

Recall that the scalar result only decreases with 1/𝑦 according to Eq. (9.23). The almost conformal
invariance was also used in Ref. [25] for evaluating the Casimir free energy for two equally-sized
spheres by applying the transformation optics approach.

The Casimir free energy for two spheres of the same radii can easily be obtained from Eq. (9.59)
by using 𝑔+ = 𝑔− =

√
𝑍 =: 𝑌 , which leads to the following expression for the monopole term

Δ𝑢=0 = − [log (1 + 𝐷e + 𝐷o) + log (1 + 𝐷e − 𝐷o)]

= −
[
log

(
1 −

∞∑︁
𝑙=1

(1 − 𝑌2) (1 − 𝑌2𝑙)𝑌2𝑙+1

1 − 𝑌2𝑙+1

)
+ log

(
1 +

∞∑︁
𝑙=1

(1 − 𝑌2) (1 − 𝑌2𝑙)𝑌2𝑙+1

1 + 𝑌2𝑙+1

)
− log(1 − 𝑌2)

]
.

(9.61)

Similar to 𝑍 also the parameter 𝑌 can be expressed in terms of the aspect ratio 𝛿 = 𝐿/2𝑅 of the
system with 𝑌 = 1 + 𝛿 −

√︁
𝛿(2 + 𝛿). The other limit, where expressions for the classical Casimir

free energy are already known, is the sphere-plane geometry. By setting 𝑢 = 0, we get 𝑔+ = 𝑍 and
𝑔− = 1. The contribution from the sums 𝐷 (2)

e, o given in Eq. (9.52) thus vanishes and what remains of
the monopole term yields

Δ𝑢=0 = − log
(
1 + 𝐷 (1)

e

)
= − log

[
1 + (1 − 𝑍2)

∞∑︁
𝑙=0

𝑍4𝑙+1

1 − 𝑍2𝑙+1

]
, (9.62)

where the dependence on the aspect ratio 𝜖 = 𝐿/𝑅 is given by 𝑍 = 1 + 𝜖 −
√︁
𝜖 (2 + 𝜖). Agreement

with the result obtained in Ref. [24] can be found after a resummation, which is carried out in
Appendix D.3 for interested readers.

9.3.4 Expansion for short separations

Typical distances-ranges in experiments probing the Casimir interaction between two metallic spheres
[19] are about 𝐿 ≈ 30 nm− 4 μm with effective radii of about 𝑅eff = 13 μm− 46 μm leading to aspect
ratios smaller than 𝑥 ⪅ 10−3. We already know from the results shown in Fig. 9.6, that the dominant
contribution at small distances comes from the scalar expression. Here, we want to analyse the
leading corrections by performing a small distance expansion of (9.59). We already determined the
short-distance expansion for the scalar term in Sec. 9.2.2. In the following, we are thus deriving the
expansion of the monopole term Δ. Similar to the scalar case, we are going to expand (9.59) by using
the Lambert series. Therefore, we introduce the following notation for the functions 𝑔± (9.58)

𝑔+ = 𝑍1/2+𝑣 (𝜇) with 𝑣(𝜇) = 1
2
− 1

2𝜇
[log(1 + 𝛼+e𝜇) − log(1 + 𝛼+e−𝜇)] , (9.63)
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Figure 9.7: Coefficients of the short
distance expansion. First three expan-
sion coefficients 𝜖𝑛 and 𝛿𝑛 as defined
in Eqs. (D.34a)–(D.36b) as function of
the geometry parameter 𝑢. The explicit
results for the limiting cases 𝑢 = 0 and
1/4 can be found in Tab. 9.2.

where we used the identity 𝑥 = exp(log(𝑥)) and 𝑔− = 𝑍1/2−𝑣 . Furthermore, we define

𝐽 (𝑐) = 1 − 𝑍2(𝑐−1)

𝑍𝑐−1 (9.64)

to account for the prefactors in Eq. (9.59) with 𝑐 = 3/2 ± 𝑣. We abbreviate the sum by using the
Lambert series defined in Eq. (9.24)

𝐼 (𝑐) =
∞∑︁
𝑙=0

𝑍𝑐 (2𝑙+1)

1 − 𝑍2𝑙+1 = L𝑍 (0, 𝑐) − L𝑍2 (0, 𝑐) . (9.65)

The monopole term, given by the second half of Eq. (9.59), takes thus the following form

Δ = − log {[1 + 𝐽 (3/2 − 𝑣) 𝐼 (3/2 − 𝑣)] [1 + 𝐽 (3/2 + 𝑣) 𝐼 (3/2 + 𝑣)]
− 𝐽 (3/2 − 𝑣) 𝐽 (3/2 + 𝑣) 𝐼2(1)} . (9.66)

The expansion of each individual term into a power series of 𝜇 is quite technical. For details on the
calculation we refer to Appendix D.2, where we found (D.33)

Δ = − log

[ 2∑︁
𝑛=0

𝜖𝑛 (𝑢) (𝛾1 − log 𝜇) + 𝛿𝑛 (𝑢)
(2𝑛 + 1)! 𝜇2𝑛 + O(𝜇6)

]
, (9.67)

with 𝛾1 = 𝛾 + log 2 and the Euler-Mascheroni constant 𝛾 = 0.577 . . .. The expansion coefficients
𝜖𝑛 (𝑢) and 𝛿𝑛 (𝑢) are functions of 𝑢, they are defined in Eqs. (D.34a) to (D.36b) and depicted in
Fig. 9.7. For the limiting cases 𝑢 = 0 and 1/4, the explicit values can be found in Tab. 9.2. All
coefficients fulfil the relation: −1 ≤ 𝜖𝑛, 𝛿𝑛 ≤ 1. Furthermore, we see that 𝜖𝑛 ≤ 𝜖𝑛−1, which we can
use to expand the logarithm in a power series in 𝜇

Δ = −
{
log [𝜖0(𝛾1 − log 𝜇) + 𝛿0] + 1

6
𝜖1(𝛾1 − log 𝜇) + 𝛿1
𝜖0(𝛾1 − log 𝜇) + 𝛿0

𝜇2

+ 1
360

[
3 [𝜖2(𝛾1 − log 𝜇) + 𝛿2]
𝜖0(𝛾1 − log 𝜇) + 𝛿0

− 5 [𝜖1(𝛾1 − log 𝜇) + 𝛿1]2

[𝜖0(𝛾1 − log 𝜇) + 𝛿0]2

]
𝜇4 + O(𝜇6)

}
.

(9.68)

It is worth noting that the monopole term does not lead to an algebraic divergence, unlike the scalar
result (9.26). In the interpretation of a tight-binding model, this is related to the fact that for the
monopole contributions, the bilinear form M𝑤 describes open boundary conditions that cannot give
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𝑢 0 1/4
𝜖0 1 log(2)
𝛿0 0 log2 (2)
𝜖1 1 1

2

(
log(2) − 1

8

)
𝛿1 1/12 1

2

(
log2 (2) − 1

12 log(2)
)

𝜖2 1 1
3

(
log(2) − 47

128

)
𝛿2 107/360 1

3

(
log2 (2) − 83

320 log(2) − 5
384

)
Table 9.2: Expansion coefficients 𝜖𝑛 (𝑢) and 𝛿𝑛 (𝑢) defined in Eqs. (D.34a)–(D.36b) in the limit of the sphere-
plane geometry 𝑢 = 0 and of equally-sized spheres 𝑢 = 1/4.

rise to zero-eigenvalues.
Emig&Bimonte determined in Ref. [24] a small distance expansion for the sphere-plane geometry

of the form

Δ𝑢=0 = −
[
log(𝛾1 − log 𝜇) + 1

6
−𝛾2 + log 𝜇
−𝛾1 + log 𝜇

𝜇2 − 1
180

𝛾3 − 𝛾4 log 𝜇 + log2 𝜇

(−𝛾1 + log 𝜇)2 𝜇4 + O(𝜇6)
]
, (9.69)

where the expansion coefficients 𝛾𝑖 were evaluated numerically. Upon comparing their expression
with our result (9.68) for 𝑢 = 0, we are able to find analytical expressions for the expansion coefficients

𝛾1 = 𝛾 + log(2) , (9.70a)

𝛾2 = 𝛾1 + 1
12
, (9.70b)

𝛾3 =
1
2

(
5𝛾2

2 − 3𝛾2
1 −

107
120

𝛾1

)
, (9.70c)

𝛾4 = 5𝛾2 − 3𝛾1 − 107
240

. (9.70d)

9.4 Dielectric spheres in an electrolytic solution

In this Section, we consider the other setup, where the high-temperature limit leads to a universal
expression for the dimensionless Casimir free energy, namely dielectric objects in an electrolytic
solution. In this setup, the dielectric function of the medium diverges due to a finite dc-conductivity
of the medium. Hence, the Casimir interaction no longer depends on the explicit material properties
in the high-temperature limit for a sphere with finite static dielectric function. The dimensionless
Casimir free energy becomes a universal function of the geometrical parameters.

In Sec. 9.4.1, we will first introduce the explicit expression for the round-trip contribution to the
Casimir free energy, which we then evaluate in the single-round-trip approximation. In Sec. 9.4.2,
we discuss the duality between the previous setup of Drude spheres in vacuum and the dielectric
spheres in an electrolyte. Furthermore, we provide a semi-analytical approximation, allowing for
a simple calculation of the Casimir free energy for all distances. The distance range, where the
high-temperature result is valid, is much larger for dielectrics in an electrolyte compared to Drude
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9 Universal Casimir interaction and approximate conformal invariance

spheres in a vacuum. This has consequences for experiments and potential relevance for biophysical
and colloidal systems, which we will discuss in Sec. 9.4.3.

9.4.1 Explicit expression and round-trip approximation

We introduced the reflection matrix element for a dielectric sphere in an electrolyte in Eq. (9.7). How-
ever, the given expression is impractical for analytical calculations due to the 𝜒𝑖, 𝑗-term in the denomi-
nators. We can circumvent the problem by rewriting the expansion coefficientsXTM,TM(𝑙) = −𝑙/(𝑙+1)
of the scattering amplitude. We introduce the following integral representation: XTM,TM(𝑙) =

−
∫ 1

0 d𝑡 (1 − 2𝑡2𝑙+1). After inserting the coefficients XTM,TM into Eq. (9.4) for the matrix elements of
the reflection operator and performing the sum over angular momenta, we arrive at

⟨k𝑖 ,TM|Rde |k 𝑗 ,TM⟩ = −2𝜋𝑅
𝑘𝑖

∫ 1

0
d𝑡

[
cosh(𝜒𝑖, 𝑗) − 2𝑡 cosh(𝑡 𝜒𝑖, 𝑗)

]
(9.71)

with 𝜒𝑖, 𝑗 defined in Eq. (9.5). We insert the reflection matrix elements given above into the trace
expression (9.3) and perform the same variable transformation to Cartesian coordinates as in Sec. 9.2.
Furthermore, we exchange the order of the 𝑡-integral with the integrals associated with the transverse
wave vectors. We thus find for the 𝑟-th round-trip contribution of the free energy for a dielectric-
electrolyte-dielectric (ded) setup

𝑓 (𝑟 )ded =
1
𝑟

(𝜌1𝜌2)𝑟
𝜋2𝑟

∫ 1

0
d2𝑟 t

∫
d2𝑟x

∫
d2𝑟y

𝑟∏
𝑗=1

e−
(
𝑥2

2 𝑗+𝑦2
2 𝑗

)
e−

(
𝑥2

2 𝑗−1+𝑦2
2 𝑗−1

)

×
[
cosh(𝜒 (2)

2 𝑗 ) − 2𝑡2 𝑗 cosh(𝑡2 𝑗 𝜒 (2)
2 𝑗 )

] [
cosh(𝜒 (1)

2 𝑗−1) − 2𝑡2 𝑗−1 cosh(𝑡2 𝑗−1𝜒
(1)
2 𝑗−1)

]
,

(9.72)

where t𝑡 = (𝑡1, 𝑡2, . . . , 𝑡2𝑟 ) with cyclic indices 2𝑟 + 1 ≡ 1. The argument 𝜒 (1/2)
𝑗 of the hyperbolic

cosines is defined in Eq. (9.10). The 2𝑟-dimensional integrals over x and y are again of Gaussian-type
with the bilinear form given by a symmetric and cyclic Toepliz matrix

M±
2𝑟 (t) =

©«

1 ±𝑡1𝜌1 0 . . . 0 ±𝑡2𝑟 𝜌2
±𝑡1𝜌1 1 ±𝑡2𝜌2 0

0 ±𝑡2𝜌2 1 . . .
...

...
. . .

. . . 0
0 ±𝑡2𝑟−1𝜌1

±𝑡2𝑟 𝜌2 0 . . . 0 ±𝑡2𝑟−1𝜌1 1

ª®®®®®®®®®®¬
. (9.73)

The off-diagonal elements depend on the auxiliary variable 𝑡𝑖 . Similar to the previous cases, the
matrix can be associated with a tight-binding model. For the scalar case, the hopping matrix
elements between adjacent sites varied periodically between two values, but here, the hopping matrix
elements are generically non-periodic. By applying the transfer-matrix approach introduced for the
scalar case in Sec. 9.2, specifically in Eqs. (9.12)-(9.13), we find for the determinant of the matrix
M(±)

2𝑟 (t)

det M±
2𝑟 (t) = tr

[(
1 −(𝑡1𝜌1)2

1 0

)
· · ·

(
1 −(𝑡2𝑟 𝜌2)2

1 0

)]
± 2(𝜌1𝜌2)𝑟

2𝑟∏
𝑖=1

𝑡𝑖 . (9.74)
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9.4 Dielectric spheres in an electrolytic solution

Note that while all sign combinations are possible in the matrix (9.73), the determinant depends
only on the total number of off-diagonal entries with a negative sign. We observed this dependence
already in our discussion of the Casimir interaction for a scalar field.

To proceed with the evaluation of the round-trip contribution (9.72), we rewrite the first hyperbolic
cosine in the brackets with the help of the 𝛿-function as cosh(𝑧) = 2

∫ 1
0 d𝑡𝑡 cosh(𝑡𝑧)𝛿(𝑡 − 1). Fur-

thermore, we applied the convention that the integral yields a factor 1/2 if the 𝛿-function is located
on the boundary of the integration interval. Formally, the integration over x and y can be carried out
with the result for multi-dimensional Gaussian integral presented in Eq. (A.28)

𝑓 (𝑟 )ded =
(4𝜌1𝜌2)𝑟

2𝑟

∑︁
𝜎=±1

∫ 1

0
d2𝑟 t

∏2𝑟
𝑖=1 𝑡𝑖 [𝛿(𝑡𝑖 − 1) − 1]

detM𝜎
𝑟 (t)

. (9.75)

Recall that the terms without a 𝑡𝑖-dependence contribute to the scalar result, which is included in
the round-trip term for dielectric spheres in an electrolyte, as we established at the beginning of this
Chapter. Similar to the previously discussed DvD-model, the round-trip term will be of the form
𝑓 (𝑟 )ded = 𝑓 (𝑟 )sc + . . .. Due to the non-periodic nature of the matrix M±

2𝑟 (t), it is, however, challenging to
find a closed analytical expression for the determinant and additionally evaluate the 𝑡𝑖-integrals.

It is feasible to perform the integrals in the single-round-trip approximation, where the value of 𝑟
is equal to 1. For 𝑟 = 1, the determinant of the bilinear form yields

det M±
2 (t) = det

(
1 𝑡1𝜌1 ± 𝑡2𝜌2

𝑡1𝜌1 ± 𝑡2𝜌2 1

)
= 1 − (𝑡1𝜌1 ± 𝑡2𝜌2)2 . (9.76)

After substituting the result for the determinant into Eq. (9.75) and performing the product in the
integrand, we obtain

𝑓 (1)ded = 𝑓 (1)sc + 2
∑︁
𝜎=±1

∫ 1

0
d2t 𝑡1𝑡2

𝑧 − (𝑡1√𝛼− + 𝜎𝑡2√𝛼+)2 [1 − 𝛿(𝑡1 − 1) − 𝛿(𝑡2 − 1)] , (9.77)

where we separated the scalar contribution 𝑓 (1)sc and used the same geometrical parameters 𝛼± as for
the DvD-model, which are defined in Eq. (9.53). Furthermore, we introduced the parameter 𝑧, which
is given by

𝑧 =
1

𝜌1𝜌2
= 2𝑦 + 𝛼+ + 𝛼− . (9.78)

We decompose the fraction in the integrand of Eq. (9.77), into two partial fractions and carry out
the 𝑡1, 𝑡2 integrals. After some algebraic transformations, we find the single-round-trip term of the
Casimir free energy for two dielectric spheres in an electrolyte

𝑓 (1)ded (𝑦, 𝑢) = 𝑓 (1)sc (𝑦) + 𝑧
6

log
[
𝑧2(𝑦2 − 1)
(𝑦𝑧 + 1/2)2

]
+ 1

6
√
𝑧

∑︁
𝜎=±

1
𝛼3/2
𝜎

log

[
2𝑦2 + 𝛼𝜎𝑦 − 1 + √

𝛼𝜎𝑧

2𝑦2 + 𝛼𝜎𝑦 − 1 − √
𝛼𝜎𝑧

]
. (9.79)

The single-round-trip expression for a scalar field is given by

𝑓 (1)sc (𝑦) = 𝑦

2(𝑦2 − 1) (9.80)
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33

!O1 O2
Figure 9.8: A single round-trip between two equally-
sized spheres with a distance 𝐿 can be interpreted as two
round-trips performed between a sphere and a plane in a
distance 𝑑 = 𝐿/2.

which can either be extracted from Eq. (9.20) or by setting 𝑡1 = 1 = 𝑡2 in the expression for the
determinant in Eq. (9.76). Note that the dependence on 𝑢 via 𝛼±, breaks the conformal invariance
similar to what we also observed for the DvD-model.

In the remainder of this Section, we analyse the geometrical limiting cases of the single-round-trip
expression and the validity of the round-trip approximation. For two equally-sized spheres (𝑢 = 1/4),
the single-round-trip result simplifies with 𝛼+ = 𝛼− = 1 to

𝑓 (1)ded (𝑦, 𝑢 = 1/4) = 𝑓 (1)sc (𝑦) + 𝑦 + 1
3

log
[ (𝑦2 − 1) (𝑦 + 1)2

(𝑦 + 1/2)4

]
+ 1

3
√︁

2(𝑦 + 1)
log

[
2𝑦 − 1 +

√︁
2/(𝑦 + 1)

2𝑦 − 1 −
√︁

2/(𝑦 + 1)

]
.

(9.81)

In the plane-sphere geometry (𝑢 = 0), on the other hand, 𝛼+ goes to infinity thus leading to a non-
vanishing contribution of the 𝜎 = + term in Eq. (9.79). By summarizing the remaining terms, we
find

𝑓 (1)ded (𝑦, 𝑢 = 0) = 𝑓 (1)sc (𝑦) + 𝑦
2

log
(
𝑦2 − 1
𝑦2

)
. (9.82)

The setup with two spheres of equal radius 𝑅 is symmetric with respect to a plane perpendicular to
the 𝑧-axis, as shown in Fig. 9.8. The distance 𝐿 between the two sphere surfaces can be interpreted
as twice the distance 𝑑 between a sphere and a plane. We can thus transform the single-round-
trip expression for two equally-sized spheres into the double-round-trip result for the sphere-plane
geometry. Wirzba already recognized this connection in Ref. [200] for the Casimir interaction in a
scalar field with Dirichlet and Neumann boundary conditions on the spheres. We found that by a
simple replacement of 𝑦 in Eq. (9.81) with 2𝑦2 − 1, we obtain the double-round-trip expression for
the sphere-plane setup

𝑓 (2)ded (𝑦, 𝑢 = 0) = 1
16

2𝑦2 − 1
𝑦2(𝑦2 − 1) +

𝑦2

3
log

(
𝑦6(𝑦2 − 1)
(𝑦2 − 1/4)4

)
+ 1

12𝑦
log

(
4𝑦3 − 3𝑦 + 1
4𝑦3 − 3𝑦 − 1

)
, (9.83)

where 𝑦 = 1 + 𝑑/𝑅 for the sphere-plane geometry.

Our discussion of the Casimir interaction between Dirichlet spheres showed that small round-trip
numbers are sufficient to describe the Casimir free energy for two spheres far apart (see Fig. 9.2a).
Upon expanding the hyperbolic cosines for small arguments (𝜒 (𝑛) ∝ 𝑅𝑛/L) in Eq. (9.72), we see
that the round-trip contribution scales with 𝑓 (𝑟 ) ∝ (𝑅1𝑅2/L)3𝑟 . The single-round-trip term is thus
the dominant term for large distances. Based on these findings, we propose the following round-trip
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Figure 9.9: Round-trip approximation for
the sphere-plane geometry. Ratio between
the exact Casimir free energy 𝑓ded and the
round-trip approximation 𝑓ded,𝑟max as defined
in Eq. (9.84). For increasing numbers of
round-trips 𝑟max, the accuracy of the approx-
imation increases over the whole domain of
distances between the sphere and the plane.
Additionally, the exact result is compared
to an approximation, shown as a solid line,
which includes the result for a scalar field
and the round-trip terms up to 𝑟 = 3 as de-
fined in Eq. (9.85).

approximation for the dimensionless Casimir free energy

𝑓ded,𝑟max =
𝑟max∑︁
𝑟=1

𝑓 (𝑟 )ded , (9.84)

where 𝑟max → ∞ corresponds to the exact result (9.2). Fig. 9.9 presents a comparison of the round-
trip approximation for 𝑟max = 1 (dashed line) and 𝑟max = 2 (dotted line) with the exact result for the
sphere-plane geometry. The ratio goes to one for large distances, which shows that low round-trip
numbers are sufficient for large distances. Furthermore, we find that the error at short distances can
be reduced by more than a factor of two if the double round-trip is included in the approximation
compared to only taking the single-round-trip term (9.82) into account.

In order to obtain an even better description for small separations, one could think of replacing the
round-trip expansion of the scalar field contribution by its exact expression as given in Eq. (9.20).
However, the scalar contribution up to three round-trips contains contributions of order of (𝑅1𝑅2/L)3

even though the single round-trip 𝑓 (1)ded yields already the correct large-distance limit. In other words,
the terms 𝑓 (𝑟 )ded needs to be taken into account for up to three round-trips so that no contribution
with (𝑅1𝑅2/L)3 for large L appears. Only then can one expect to reproduce the small- and large-
distance limit for the ded-model correctly. We thus end up with the following approximation for the
dimensionless free energy

𝑓
approx
ded ≈ 𝑓sc +

3∑︁
𝑟=1

(
𝑓 (𝑟 )ded − 𝑓 (𝑟 )sc

)
. (9.85)

Note that we have to remove the scalar parts 𝑓 (𝑟 )sc from the round-trip expression 𝑓 (𝑟 )ded , since they
are already included in 𝑓sc =

∑∞
𝑟=1 𝑓

(𝑟 )
sc . The approximation formula given above is based on the

fact that analytical results for three round-trips are available. We already introduced the single- and
double-round-trip expressions for the sphere-plane geometry, respectively, in Eq. (9.82) and (9.83).
We were also able to find a result for three round-trips. The calculation is quite technical, we thus
refer readers interested in details to Appendix E. The final result for 𝑓 (3)ded = trM3

ded/𝑟 can be found
in Eq. (E.18). We used this result to plot the round-trip approximation for 𝑟max = 3, presented in
Fig. 9.9 by the dash-dotted line and also to compute the approximation introduced in Eq. (9.85),
which is depicted by the solid line in Fig. 9.9. As expected, the short- and large-distance behaviour
is correctly captured by our introduced approximation formula. It only deviates for intermediate
distances 𝑦 − 1 ≈ 0.1.

87



9 Universal Casimir interaction and approximate conformal invariance

10−4 10−2 100 102

1

1.05

1.1

1.15

1.2

H − 1

q
D
=
5/
5(

1)

D = 0
D = 0.04
D = 0.1
D = 0.25

ded

DvD

sc

(a)

0.001 0.01 0.1 1 10

0.99

0.9925

0.995

0.9975

1

H − 1

q
D
/q

D
=

0.
25

ded

DvD

(b)

Figure 9.10: Approximation of the full Casimir free energy. (a) Ratio 𝜙 of the full free energy 𝑓 with
respect to the single-round-trip result 𝑓 (1) as function of the distance 𝑦 − 1. The ratio is depicted for various
geometry parameters 𝑢. The ratio goes to one for large distances 𝑦−1 ≫ 1 and approaches the Apéry constant
𝜁 (3) for small distances 𝑦 − 1 ≪ 1. The ratio 𝜙𝑢 only weakly dependence on 𝑢 for intermediate distance
𝑦 − 1 ≈ 0.1 as can be seen in Figure (b), where we compared the ratio 𝜙𝑢 with 𝜙𝑢=0.25. Both adapted from
[178].

In summary, we obtained the single-round-trip approximation of the Casimir free energy between
two dielectric spheres in an electrolyte. We found that the approximation correctly captures the
behaviour of the Casimir free energy at large distances. For the sphere-plane geometry, we improved
the model by introducing higher round-trip numbers. However, a formula for any sphere size and
distance range would be of interest for practical applications. The following Section will introduce
an approximation that fulfils these conditions.

9.4.2 Duality between the ded- and DvD-model and approximate conformal
invariance

As discussed in the context of Fig. 9.9, the single-round-trip result yields the correct result for
large distances. We are thus comparing the total free energy with the respective single-round-trip
expressions by defining

𝜙𝑢 (𝑦) = 𝑓 (𝑦, 𝑢)
𝑓 (1) (𝑦, 𝑢) . (9.86)

The results are shown in Fig. 9.10a, where we also included the ratio for the Drude-vacuum-Drude
(DvD) setup. The single round-trip result can be calculated from Eq. (9.27) for 𝑟 = 1 and yields

𝑓 (1)DvD(𝑦, 𝑢) = 𝑓 (1)sc (𝑦) + 1
𝑧
−

∑︁
𝜎=±

1
2𝑦 + 𝛼𝜎 . (9.87)

The ratios were in both cases computed for 𝑢 = 0, 0.04, 0.1 and 0.25 to capture the variation from
the sphere-plane geometry to two equally-sized spheres. We found that for both models and for all
depicted values of 𝑢, the ratio goes to one in the limit of large distances 𝑦 ≫ 1, meaning that the
single-round-trip expression dominates the full result. In contrast, for short distances 𝑦 → 1, the
ded-model and DvD-model approach the same constant, which is determined by the divergent part of
the scalar result, which for comparison is also depicted in Fig. 9.10a. Remarkably, already the single-
round-trip results reproduce this divergence for small separations with 𝑓 (1)sc = 1/(4(𝑦 − 1)) + O(1),
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Figure 9.11: Error of the rational model. (a) Maximal relative error of the rational model defined in
Eq. (9.89) for 𝑛 = 2 and 𝑛 = 4, as a function of 𝑢. For each 𝑢, the maximal error of the rational model over the
whole parameter space (𝑦, 𝑢) was computed for both the ded-model (top figure) and the DvD-model (bottom
figure). The maximal error is minimized for a 𝑢∗ded ≈ 0.1 and 𝑢∗DvD ≈ 0.15. (b) Relative deviation between
the ratio 𝜙𝑢 as given in Eq. (9.86) and the rational model calculated for 𝑢∗: 𝜙∗rm = 𝜙rm (𝑢∗). The ratios were
computed for 𝑢 = 0, 0.1 and 0.25.

thus leading to

𝑓 ≈
∞∑︁
𝑟=1

𝑓 (1)

𝑟3 ≈ 𝜁 (3)
4(𝑦 − 1) for 𝑦 → 1 , (9.88)

which we also obtained in Sec. 9.2.2. The constant approached by 𝜙𝑢 is given by the Apéry’s constant
𝜁 (3) = ∑∞

𝑟=1 1/𝑟3 = 1.202 . . .. Both for the Drude spheres in vacuum and for the dielectrics, the ratio
decreases monotonically from 𝜁 (3) to one as the distance increases. Remarkably, for both cases the
ratios 𝜙𝑢 very weakly depend on the geometry parameter 𝑢. This is a result of the definition of the
parameter 𝑦 = 1 + 𝑥 + 𝑢𝑥2/2, which already captures parts of the 𝑢-dependence. The 𝑢-dependence
is particularly weak for the ded-model as we found by analysing the ratio between 𝜙𝑢 and 𝜙𝑢=1/4 in
Fig. 9.10b. Curves with ratios below 1 correspond to the DvD-model, while those with ratios above 1
correspond to the ded-model. The green curve stays at a ratio of 1 as it represents the 𝑢-independent
case. Again, the small deviations of 𝜙𝑢/𝜙𝑢=1/4 from 1 show a weak breaking of conformal invariance.

The 𝜙𝑢-curves for the ded- and DvD-model are monotonic, thus allowing for an approximation
with a rational model (rm) of the form [179]

𝜙rm(𝑦) =
𝑛∏
𝑘=1

e𝑦−1 + 𝜇𝑘 − 1
e𝑦−1 + 𝜈𝑘 − 1

. (9.89)

In this model, the exponential term e𝑦−1 becomes dominant for large distances, and as a result,
𝜙rm(𝑦 → ∞) approaches one. On the other hand, for short distances, the ratio is determined by the
model parameters 𝜇𝑘 and 𝜈𝑘 with 𝜙rm(𝑦 → 1) → ∏

𝑘 𝜇𝑘/𝜈𝑘 . To obtain the model parameters, we
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9 Universal Casimir interaction and approximate conformal invariance

ded-model DvD-model
𝑘 1 2 3 4 1 2 3 4

𝑛 = 2
𝜈𝑘 0.004618 0.09639 0.011495 0.19868
𝜇𝑘 0.004415 0.08397 0.011359 0.16728

𝑛 = 4
𝜈𝑘 0.000889 0.02990 0.02991 0.08200 0.031645 0.08542 0.08542 0.16187
𝜇𝑘 0.000878 0.02132 0.05374 0.05394 0.029993 0.10121 0.10122 0.10122

Table 9.3: Fitting parameters of the rational model. Expansion coefficients 𝜈𝑘 , 𝜇𝑘 of the rational model
(9.89) for 𝑛 = 2, with a maximal deviation of 𝜖ded = 1.2 × 10−3 and 𝜖DvD = 5.9 × 10−3, respectively
for the ded-model and the DvD-model and for 𝑛 = 4 with a maximal deviation of 𝜖ded = 0.9 × 10−3 and
𝜖DvD = 5.7 × 10−3.

need to minimize the relative deviation of 𝜙rm from 𝜙𝑢 for a fixed value of 𝑢 according to

𝜖 = min𝜇𝑘 ,𝜈𝑘

{���� 𝜙𝑢 (𝑦)𝜙rm(𝑦) − 1
����} . (9.90)

Due to the weak 𝑢-dependence, it is possible to fit the numerical data for a specific 𝑢∗, such that the
relative deviation for all the other 𝑢 values is minimized. We thus determined the rational model in
Fig. 9.11a for each 𝑢 and computed the maximal deviation over the whole parameter space (𝑦, 𝑢).
For a rational model with 𝑛 = 2 (presented by the circle symbols in Fig. 9.11a), we found that the
optimal fitting parameters are obtained for 𝑢∗ ≈ 0.1 and 𝑢∗ ≈ 0.15, respectively for the ded-model
and the DvD-model. The corresponding fitting coefficients 𝜇𝑘 , 𝜈𝑘 are given in Tab. 9.3. Remarkably,
the maximal deviation obtained with the rational model is as low as 0.12 % (ded) and 0.59 % (DvD)
over the whole parameter space. Fig. 9.11b depicts the deviation of 𝜙𝑢 from the rational model 𝜙∗rm
which is calculated for 𝑢∗. The deviations were computed as functions of the distance scale 𝑦 − 1
for 𝑢 = 0, 0.1 and 0.25 and show that the largest discrepancy arises at intermediate distances for the
two limiting cases 𝑢 = 0 and 0.25. We repeated the procedure for a rational model with four fitting
parameters (𝑛 = 4). The maximal deviations as functions of 𝑢 are depicted as triangle symbols in
Fig. 9.11a and the fitting parameters, for which the deviation is minimized, are also given in Tab. 9.3.
We found that the fit is slightly improved.

In conclusion, combining the single-round-trip result (9.79) or (9.87) for the ded- or DvD-model
together with the respective rational model 𝜙∗rm in the following form

𝑓 (𝑦, 𝑢) = 𝑓 (1) (𝑦, 𝑢)𝜙∗rm(𝑦) , (9.91)

provides an extremely good approximation of the universal Casimir free energy between two arbitrary-
sized spheres. The formula allows for an easy calculation of the Casimir free energy over the whole
distance range without the need to perform extensive numerical calculations.

In the next Section, we will discuss the relevance of our results in practical applications.

9.4.3 Relevance for colloidal and biophysical systems

Colloidal and biological systems involve dielectric objects immersed in an electrolytic solution like
salted water. Up to recently, it was assumed that long-range interactions are completely screened in
these scenarios. It was theoretically shown in Ref. [27] and experimentally verified in Ref. [4] that
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Figure 9.12: Comparison with experimental results. (a) Ratio F/F𝑇 − 1 with the full free energy F given
in Eq. (2.25) and the high-temperature result F𝑇 (9.2) as function of the surface-to-surface distance 𝐿. The
free energies were calculated for a setup of two silica spheres in water at 𝑇 = 296 K as discussed in Ref. [4]
with radius 𝑅1 = 2.35 μm and 𝑢 = 0.14 (bright yellow). The ratio was also calculated for 𝑢 = 0 (red) and
𝑢 = 0.25 (green) with the same value for 𝑅1. The dashed line indicates the threshold, where the relative
deviation between the full free energy and the high-temperature result is only 10%. The figure is taken from
[178]. (b) Interaction free energy 𝑈 between two silica spheres of radii 𝑅1 = 2.35 μm and 𝑅2 = 11.74 μm
as function of the distance 𝐿. The figure was taken from [4]. Shown are the experimental points and the
theoretical values of the Casimir free energy (𝑈 ≡ F ). The zero-frequency term is excluded in the red curve,
while the black curve takes thermal contributions into account. The dashed yellow curve was added to the
figure and depicts the result obtained from the approximation (9.91) for dielectric spheres in an electrolyte.

the behaviour at long distances (above the Debye screening length) is dominated by non-screened
interaction due to the low-frequency transverse magnetic thermal fluctuations.

We compared in Fig. 9.12a the full Casimir free energy for two dielectric spheres in salted water
with the high-temperature contribution to the Casimir interaction. The curves show that the zero-
frequency mode provides the dominant contribution at distances as small as 0.1 μm. The distance
is thus way smaller than the one for metallic spheres in vacuum, where the zero-frequency modes
only become the dominant part for distances of the order of the thermal wavelength 𝜆𝑇 = ℏ𝑐/𝑘B𝑇 ,
which at room temperature corresponds to distances of about 8 μm [106]. This makes the universal
expression (9.91), we derived earlier for dielectric objects applicable for a much larger distance range
then it is the case for Drude spheres. In addition, the high-temperature contribution to the Casimir
free energy thus becomes accessible in experiments. A recent experiment [4] probed the Casimir
interaction for two silica spheres of radii 2.35 μm and 11.74 μm in salted water. They probed the
Casimir force by trapping the smaller sphere in optical tweezers, which, as we already mentioned
in Part II of this thesis, allows for an extremely sensitive force measurement. Agreement between
experiment and theory could only be found by including the zero-frequency modes, as shown by the
black curve in Fig. 9.12b. If the zero-frequency contributions are disregarded, as shown by the red
curve in Fig. 9.12b, agreement with the experimental results becomes worse. We also added the
result obtained from our approximation formula (9.91) for the specific setup. The dashed yellow line
in Fig. 9.12b was obtained with the above-given values for the radii and the fitting parameters given
in Tab. 9.3. This shows that our simple approximation formula correctly captures the full numerical
result at distances 𝐿 ⪆ 0.1 μm. Additionally, the comparison with the experiment shows that the
accuracy of the approximation formula is sufficient for practical proposes.

The Casimir interaction has relevance for biophysical and colloidal science, if it is of the order of
𝑘B𝑇 , since the immersion in water imposes a Brownian motion to the spheres. We computed the
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Figure 9.13: Universal Casimir free energy for two dielectric spheres in an electrolyte. Negative Casimir
free energy for the ded-model in units of 𝑘B𝑇 as function of the aspect ratio 𝑥 = 𝐿/𝑅eff. The Casimir energy
was calculated for the same values of 𝑢 as in Fig 9.10a. The dashed line corresponds to a free energy of order
𝑘B𝑇 . Adapted from Ref. [179].

universal Casimir free energy for the ded-model as a function of the aspect ratio 𝑥 = 𝐿/𝑅eff and found
that for distances 𝐿 of the order of or smaller than one-tenth of the effective radius 𝑅eff, the Casimir
interaction is of the order of 𝑘B𝑇 , which makes it thus relevant for such scenarios.

Recently the study of the Casimir interaction between dielectric objects in an electrolytic solution
was extended to cylindrical geometries [28, 201], which for example, serve as a model for filaments
in a cell. The Casimir interaction becomes even more important for these geometries since the
interaction increases with the length of the cylinders. Compared to the sphere-sphere geometry, no
analytical results for the single-round-trip result between cylinders or even just a cylinder and plane
were found.
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10 Casimir interaction between bi-isotropic spheres in
vacuum

Parts of this Chapter, which refer to results for bi-isotropic spheres are published in Ref. [101] and
thus also contain input from the authors of the article.

In the previous Chapter, we discussed the Casimir interaction between two metallic spheres in
vacuum and two dielectric spheres in an electrolyte. The spheres in both cases consist of the same
material, which, according to [39], always leads to an attractive Casimir force between the objects.
However, a repulsive Casimir force can also appear if we consider two spheres of dissimilar materials
and additionally allow for polarisation mixing. This Chapter provides general expressions for the
Casimir interaction between two bi-isotropic spheres, which allow for the mixing of polarisations
upon scattering as we discussed in Chap. 4.

Most Casimir experiments are performed with two objects in close vicinity to each other to be able
to detect a Casimir signal. At close distances, the Casimir force between two smooth but arbitrarily
shaped objects can be evaluated from the so-called proximity force approximation (PFA) [202]. The
method is based on a local approximation of the surfaces by infinitesimal small parallel surface
elements, as schematically illustrated in Fig. 10.1 for two spheres of radii 𝑅1 and 𝑅2. The local
plane-plane (pp) interactions are evaluated by the Casimir-Lifshitz formula [13, 14]

Fpp(𝑙) = 𝑘B𝑇
∞∑︁
𝑛=0

′ ∑︁
𝑝=TE,TM

∫ ∞

K

d𝜅
2𝜋
𝜅 log

(
1 − 𝑟 (1)𝑝 𝑟 (2)𝑝 𝑒−2𝜅𝑙

)
(10.1)

for two planes within a distance 𝑙, with Fresnel reflection coefficients 𝑟𝑝 ≡ 𝑟𝑝,𝑝. To obtain the PFA
result, we integrate over all local distances. In the sphere-sphere setup, the integration goes from the
surface-to-surface distance 𝐿 to ∞. PFA assumes that the Casimir force is additive, which is generally
not valid for fluctuation-induced forces. The validity of these approximations is thus limited [31, 203,
204]. A recent study for dielectric spheres [33] showed that the PFA result follows from a large-sphere
approximation of the general scattering formula for two spheres, with FPFA = 2𝜋𝑅eff

∫ ∞
𝐿

d𝑙Fpp(𝑙).
The TE and TM modes contribute separably to the Casimir interaction between dielectric spheres in
the PFA regime. We want to analyse whether the PFA result can still be obtained from an asymptotic
expansion of the scattering approach if we consider polarisation-mixing materials instead. Within
our study, we also include the leading corrections in the asymptotic expansion of the Casimir free
energy to determine the next-to-leading order in a large-radii approximation. This extends previous
calculations for perfect electric reflectors [34, 35] and dielectric spheres [109].

𝐿

𝑅1

𝑅2

Fpp(𝑙)

Figure 10.1: Illustration of the proximity force
approximation (PFA) for the Casimir free energy
between two spherical objects of effective radius
𝑅eff = 𝑅1𝑅2/(𝑅1 + 𝑅2). The sphere surfaces are
approximated by parallel planar surface elements
in a distance 𝑙 with an interaction energy of Fpp (𝑙).
Within the PFA, the total Casimir free energy FPFA
is obtained by integrating from the minimal dis-
tance 𝐿 to infinity: FPFA = 2𝜋𝑅eff

∫ ∞
𝐿 Fpp (𝑙)𝑑𝑙.
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10 Casimir interaction between bi-isotropic spheres in vacuum

Apart from the small distance limit, we are also interested in the Casimir interaction between two
bi-isotropic spheres that are far apart. This gives insight into the change of the Casimir force with
distance and allows us to analyse whether effects, like a repulsive Casimir force found for small
distances, persist even at large separations.

In Secs. 10.1 and 10.2, we derive the leading and subleading term of the Casimir free energy for
two bi-isotropic spheres with large radii. Our calculation follows the one presented in Refs. [33,
109] and has been adapted for bi-isotropic materials where necessary. Additionally, in Sec. 10.3, we
discuss the Casimir interaction between bi-isotropic spheres in the large-distance limit.

10.1 Large radii approximation, the leading saddle-point
approximation

In this Section, we are going to evaluate the Casimir free energy between two bi-isotropic spheres with
radii 𝑅1, 𝑅2 much larger, than the surface-to-surface distance 𝐿. For this purpose, we are applying
the expansion of the scattering amplitudes for large radii, which according to our previous discussion
in Sec. 4.2.2 is given by

𝑆𝑝 𝑗 , 𝑝𝑖 (Θ) =
𝑅K
2

e2𝑅K sin(Θ/2)𝑟𝑝 𝑗 , 𝑝𝑖 (Θ) . (10.2)

By applying Eq. (4.25), we can express the argument of the exponential function in terms of the in- and
out-going wave vector components like: 2K sin(Θ/2) =

√︃
2
(K2 + 𝜅𝑖𝜅 𝑗 + k𝑖 · k 𝑗

)
. The coefficient

𝑟𝑝 𝑗 , 𝑝𝑖 accounts for the leading and subleading term in the large-sphere expansion at finite frequency,
which according to Eq. (4.44) is given by

𝑟𝑝 𝑗 , 𝑝𝑖 (Θ) = 𝑟𝑝 𝑗 , 𝑝𝑖
(
𝜋 − Θ

2

) [
1 + 𝑠𝑝 𝑗 , 𝑝𝑖 (Θ)

𝑅K + O(𝑅−2)
]
. (10.3)

Recall that the leading term represents the geometrical optics limit with 𝑟𝑝 𝑗 , 𝑝𝑖 being the Fresnel
reflection coefficients for a bi-isotropic plane and an incident angle of (𝜋 − Θ)/2, where Θ stands
for the scattering angle defined between the in- and out-going wave vector. The leading corrections,
denoted by 𝑠𝑝 𝑗 , 𝑝𝑖 take diffraction correction at the sphere into account. Note that for vanishing-
frequency, the leading term of the scattering amplitude is identical to the one given above, as we have
seen in Eq. (4.59). We are going to use the plane-wave representation of the free energy within the
scattering approach (8.9) to derive the large-sphere approximation. We thus need the reflection matrix
elements in the plane-wave basis (4.26), which, with the representation of the scattering amplitude
given above, can be written as

⟨k 𝑗 , 𝑝 𝑗 ,±|R|k𝑖 , 𝑝𝑖 ,∓⟩ = 𝜋𝑅

𝜅 𝑗
e2𝑅K sin(Θ/2) 𝜌𝑝 𝑗 , 𝑝𝑖 , (10.4)

where we introduce 𝜌𝑝 𝑗 , 𝑝𝑖 = 𝜌𝑝 𝑗 , 𝑝𝑖 (k 𝑗 , k𝑖) with

𝜌𝑝 𝑗 , 𝑝𝑖 = 𝐴 𝑗 ,𝑖𝑟𝑝 𝑗 , 𝑝𝑖 + (−1) 𝑝 𝑗+𝑝𝑖𝐵 𝑗 ,𝑖𝑟 �̄� 𝑗 , �̄�𝑖 − (−1) 𝑝 𝑗𝐶 𝑗 ,𝑖𝑟 �̄� 𝑗 , 𝑝𝑖 + (−1) 𝑝𝑖𝐷 𝑗 ,𝑖𝑟𝑝 𝑗 , �̄�𝑖 . (10.5)
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10.1 Large radii approximation, the leading saddle-point approximation

Inserting the reflection matrix elements (10.4) into the trace expression (8.9), we get

trM𝑟 =

(
𝑅1𝑅2

16𝜋2

)𝑟 ∫
d2𝑟k𝑔(k1, . . . , k2𝑟 )e− 𝑓 (k1,...,k2𝑟 ) . (10.6)

The function 𝑓 in the exponential accounts for all terms which scale with the sphere radii, which
includes the part from the translation matrix elements in the plane-wave basis as well as the part from
the large sphere expansion of the scattering matrix elements (10.2). In total, the argument of the
exponential is defined by

𝑓 (k1, . . . , k2𝑟 ) =
𝑟∑︁
𝑗=1

(𝑅1𝜂2 𝑗 + 𝑅2𝜂2 𝑗−1) , 𝜂𝑖 = 𝜅𝑖 + 𝜅𝑖+1 −
[
2
(
K2 + 𝜅𝑖𝜅𝑖+1 + k𝑖 · k𝑖+1

)]1/2
.

(10.7)
We recall that the summation indices are cyclic and make use of the identification 𝑖 ≡ 2𝑟 + 𝑖. The
function 𝑔(k1, . . . , k2𝑟 ) accounts for all the remaining terms and is defined by

𝑔(k1, . . . , k2𝑟 ) =
∑︁

𝑝1,..., 𝑝2𝑟

𝑟∏
𝑗=1

e−(𝜅2 𝑗+𝜅2 𝑗−1 )𝐿

𝜅2 𝑗𝜅2 𝑗−1
𝜌 (1)𝑝2 𝑗+1, 𝑝2 𝑗 𝜌

(2)
𝑝2 𝑗 , 𝑝2 𝑗−1 . (10.8)

We note that the trace expression (10.6) is identical to the one for dielectric spheres derived in Ref. [33].
The main difference is the definition of the function 𝑔, more precisely the coefficients 𝜌𝑝,𝑝′ , which
compared to the earlier analysis now also includes polarisation-mixing reflection coefficients 𝑟TM,TE
and 𝑟TE,TM.

10.1.1 Leading-order saddle-point approximation

One or both radii 𝑅1 and 𝑅2 are considered large, so there exists a point where |e− 𝑓 | is largest
and decays exponentially away from this saddle-point. The saddle is defined at the point where the
gradient of 𝑓 vanishes. We find that 𝜕𝑘𝑖𝛼 𝑓 = 0, 𝛼 = 𝑥, 𝑦 is equivalent to 𝑘𝑖,𝛼 = 𝑘𝑖+1,𝛼. The saddle
points ksp, given by

k1 = k2 = . . . = k2𝑟 ≡ ksp , (10.9)

thus define a two-dimensional manifold. To gain a better understanding of the saddle point, we
depicted the function 𝑓 = 𝑓 (k1, k2) for 𝑟 = 1 in Fig. 10.2. The left panel shows the projection of 𝑓
for 𝑘1,𝑦 = 0 = 𝑘2,𝑦 , where the saddle is defined by the line 𝑘1,𝑥 = 𝑘2,𝑥 . The right panel shows the
projection for 𝑘2,𝑥 = 0 = 𝑘2,𝑦 , where the saddle point is defined by a single-point (𝑘1,𝑥 = 0 = 𝑘1,𝑦).

The dominant contribution for large sphere radii, thus, comes from the leading-order (LO) saddle-
point approximation of the trace expression (10.6). In the first part of this thesis, we used the one-
dimensional saddle-point approximation multiple times. Now, we will apply it to a multidimensional
integral. The procedure is similar to the one-dimensional case, we discussed in Appendix A.6.2.
First, we expand 𝑓 and 𝑔 in a Taylor series around the saddle to obtain the leading contribution of
(10.6) for large radii. At the saddle point k𝑖 = k 𝑗 = ksp, the polarisation-conversion coefficients
𝐵 𝑗 ,𝑖 , 𝐶 𝑗 ,𝑖 and 𝐷 𝑗 ,𝑖 all vanish while the coefficient 𝐴 𝑗 ,𝑖 yields one. The coefficients 𝜌𝑝,𝑝′ defined
in Eq. (10.5), thus correspond with the leading expansion coefficient of the scattering amplitudes:
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10 Casimir interaction between bi-isotropic spheres in vacuum
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Figure 10.2: Illustration of the function 𝑓 defined in Eq. (10.7) for a single round-trip (𝑟 = 1) in the zero-
frequency limit (K = 0), which yields 𝑓 (k1, k2) = (𝑅1 + 𝑅2)

[
𝑘1 + 𝑘2 +

√︁
2(𝑘1𝑘2 + k1 · k2)

]
. We depict

𝑓 as function of the scaled variables 𝑥𝑖 = (𝑅1 + 𝑅2)𝑘𝑖,𝑥 and 𝑦𝑖 = (𝑅1 + 𝑅2)𝑘𝑖,𝑦 . The left panel shows 𝑓 as
function of 𝑥1 and 𝑥2 for fixed 𝑦1 = 0 = 𝑦2 with 𝑓 being minimal along 𝑥1 = 𝑥2. The right panel shows 𝑓 as
function of 𝑥1 and 𝑦1 with 𝑥2 = 0 = 𝑦2, where 𝑓 is minimal for 𝑥1 = 0 = 𝑦1.

𝜌𝑝,𝑝′
��
sp = 𝑟𝑝,𝑝′

��
sp. The function 𝑔 at the saddle point is thus given by

𝑔sp := 𝑔(k𝑖 = ksp) = e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∏
𝑗=1

𝑟 (1)𝑝2 𝑗+1, 𝑝2 𝑗

���
sp
𝑟 (2)𝑝2 𝑗 , 𝑝2 𝑗−1

���
sp
. (10.10)

For convenience, we will omit the index ’sp’ at the reflection coefficients in the following. 𝑓 vanishes
along the saddle point, with the first non-vanishing contribution given by

𝑓 ≈ 1
2

∑︁
𝛼,𝛽=𝑥,𝑦

2𝑟∑︁
𝑖, 𝑗=1

(
𝜕2 𝑓

𝜕𝑘𝑖,𝛼𝜕𝑘 𝑗 ,𝛽

)
sp
(𝑘𝑖,𝛼 − 𝑘sp,𝛼) (𝑘 𝑗 ,𝛽 − 𝑘sp,𝛽)

≈ 1
2

∑︁
𝛼=𝑥,𝑦

2𝑟∑︁
𝑖, 𝑗=1

𝐻𝑖, 𝑗 (𝑘𝑖,𝛼 − 𝑘sp,𝛼) (𝑘 𝑗 ,𝛼 − 𝑘sp,𝛼) .
(10.11)

At the saddle point, only second derivatives of 𝑓 with respect to the same component 𝛼 = 𝛽 yield
a non-vanishing contribution. This fact is also evident from the projections of 𝑓 displayed in the
right panel of Fig. 10.2. Furthermore, we introduced the Hessian 𝐻𝑖, 𝑗 . The Hessian is a cyclic and
periodic Toepliz matrix with entries

𝐻𝑖, 𝑗 =
1

2𝜅sp

[(𝑅1 + 𝑅2)𝛿𝑖, 𝑗 − 𝑅2−(𝑖+1)mod2𝛿𝑖+1, 𝑗 − 𝑅2−𝑖mod2𝛿𝑖, 𝑗+1
]
. (10.12)

𝛿𝑖, 𝑗 denotes the Kronecker delta symbol, where the equality of the indices is taken modulo 2𝑟 to
account for the cyclic character of the summation indices. The cyclic character of the Hessian gives,
however, rise to a zero-eigenvalue. As the Hessian matrix is not positive definite, we cannot use the
Gaussian integral A.6.3, as we did, to determine the one-dimensional saddle-point approximation
(Sec. A.6.2). We perform a discrete Fourier transformation of the transverse wave vector components
to single-out the zero-eigenvalue, which is defined by

𝑘 𝑗 ,𝛼 =
2𝑟−1∑︁
𝑛=0

𝑤 𝑗𝑛𝑣𝑛,𝛼 , 𝑤 =
exp

(
2𝜋i
2𝑟

)
√

2𝑟
. (10.13)
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10.1 Large radii approximation, the leading saddle-point approximation

The discrete Fourier transform is a unitary transformation with
∑2𝑟−1
𝑚=0 𝑤

𝑘𝑚𝑤−𝑚𝑛 = 𝛿𝑘,𝑛. The saddle
point in the new coordinates is defined by 𝑣1,𝛼 = 0 = 𝑣2,𝛼 = 𝑣3,𝛼 = . . . = 𝑣2𝑟−1,𝛼. The eigendirection
v2𝑟 = v0 to the zero-eigenvalue thus corresponds with the saddle. We can thus write

ksp =
v0√
2𝑟
. (10.14)

The Fourier transformation of 𝑓 yields

𝑓 ≈ 1
2

∑︁
𝛼=𝑥,𝑦

2𝑟−1∑︁
𝑚,𝑛=0

�̃�𝑚,𝑛𝑣𝑚,𝛼𝑣𝑛,𝛼 , (10.15)

where �̃�𝑚,𝑛 define the matrix elements of the Fourier transformed Hessian 𝐻𝑖, 𝑗 , which are given by

�̃�𝑚,𝑛 =
1
2𝑟

2𝑟−1∑︁
𝑖, 𝑗=0

𝑤−𝑖𝑚𝑤− 𝑗𝑚𝐻𝑖, 𝑗

=
1
𝜅sp

[
(𝑅1 + 𝑅2) sin2

(𝜋𝑚
2𝑟

)
𝛿𝑚,−𝑛 − i(𝑅1 − 𝑅2) sin

(𝜋𝑚
2𝑟

)
cos

(𝜋𝑚
2𝑟

)
𝛿𝑚,−𝑛±𝑟

]
.

(10.16)

The entries �̃�0,𝑛 = 0 = �̃�𝑚,0, associated with the zero-eigenvalue of the Hessian, do not contribute
to 𝑓 . We are thus able to separate the integral over v0 from the remaining integrals over v𝑡 =
(v1, . . . v2𝑟−1). The leading-order (LO) saddle-point approximation of the trace over the 𝑟-th round-
trip operator thus yields

[trM𝑟 ]LO =

(
𝑅1𝑅2

16𝜋2

)𝑟 ∫
d2v0𝑔sp

∏
𝛼=𝑥,𝑦

∫
d2𝑟−1v𝛼 exp

(
−1

2
v𝑡𝛼Mv𝛼

)
. (10.17)

The matrix M with entries �̃�𝑚,𝑛, 𝑚, 𝑛 = 1, . . . 2𝑟 − 1, is positive definite and a block matrix of the
form

M =
©«
B C

𝑀𝑟 ,𝑟
D B∗

ª®®¬ , (10.18)

with 𝑀𝑟 ,𝑟 = (𝑅1 + 𝑅2)𝜅−1
sp and each block B,C and D is a (𝑟 − 1)-dimensional anti-diagonal matrix

with entries, which according to Eq. (10.16), are given by

𝐵𝑚,𝑛 = −i(𝑅1 − 𝑅2)𝜅−1
sp sin

(𝜋𝑚
2𝑟

)
cos

(𝜋𝑚
2𝑟

)
𝛿𝑚,𝑟−𝑛 , (10.19a)

𝐶𝑚,𝑛 = (𝑅1 + 𝑅2)𝜅−1
sp sin2

(𝜋𝑚
2𝑟

)
𝛿𝑚,𝑟−𝑛 , 𝐷𝑚,𝑛 = (𝑅1 + 𝑅2)𝜅−1

sp cos2
(𝜋𝑚

2𝑟

)
𝛿𝑚,𝑟−𝑛 . (10.19b)

The integral over v𝑡𝛼 = (𝑣1,𝛼, 𝑣2,𝛼, . . . 𝑣2𝑟−1,𝛼) is of Gaussian-type and can directly be evaluated
with (A.28). By performing a Laplace expansion with respect to the 𝑟-th row or column, we find
the determinant det(M) = (−1)𝑟−1𝑀𝑟 ,𝑟 det(BB∗ − CD). The products of the anti-diagonal matrices
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10 Casimir interaction between bi-isotropic spheres in vacuum

B,C and D are diagonal and the determinant is thus given by the product of the entries yielding

det M = (𝑅1 + 𝑅2)𝜅−2𝑟+1
sp (−1)𝑟−1

𝑟−1∏
𝑚=1

sin2
(𝜋𝑚

2𝑟

)
cos2

(𝜋𝑚
2𝑟

) [(𝑅1 − 𝑅2)2 − (𝑅1 + 𝑅2)2]
= (𝑅1 + 𝑅2)𝜅−2𝑟+1

sp (𝑅1𝑅2)𝑟−1
𝑟−1∏
𝑚=1

sin2
(𝜋𝑚
𝑟

)
,

(10.20)

where in the second line we used the trigonometric relation sin(2𝑥) = 2 sin(𝑥) cos(𝑥). We apply the
identity [205]

∏𝑟−1
𝑚=1 sin(𝜋𝑚/𝑟) = 𝑟21−𝑟 and thus obtain

det M =
𝑟241−𝑟 𝜅−2𝑟+1

sp

𝑅eff
(𝑅1𝑅2)𝑟 . (10.21)

With the above-given expression for the determinant, we find for the leading-order saddle-point
approximation (10.17), the following expression

[trM𝑟 ]LO =
𝜋𝑅eff
𝑟

∫ d2ksp

(2𝜋)2 𝜅
2𝑟−1
sp 𝑔sp , (10.22)

where we also replaced the integral over v0 with ksp according to Eq. (10.14). Note that the expression
above is equivalent to the one for dielectric spheres in Ref. [33]. The key difference is the function
𝑔sp given in Eq. (10.10), which accounts for the polarisation-mixing.

In the next Section, we are going to evaluate the expression above and show that it agrees in
leading order with the proximity force approximation for bi-isotropic spheres. We will also derive
the correction to PFA within the leading saddle-point approximation which arise from the subleading
term of the scattering amplitudes 𝑠𝑝,𝑝′ which account for the diffraction corrections.

10.1.2 Proximity force approximation in the presence of polarisation mixing

For dielectric spheres, there is no polarisation-mixing upon scattering. The function 𝑔sp in Eq. (10.10)
can directly be evaluated to 𝑔sp =

(
e−2𝑟 𝜅sp𝐿/𝜅2𝑟

sp

) ∑
𝑝=TE,TM

(
𝑟 (1)𝑝,𝑝𝑟

(2)
𝑝,𝑝

)𝑟
. The TE- and TM-modes

separately contribute to the Casimir interaction. For bi-isotropic spheres, on the other hand, we
have to take all polarisation combinations during the 𝑟 round-trips into account. This means four
possible contributions for a single round-trip, as schematically shown in Fig. 10.3. Fig. 10.3a depicts
an incoming TM-polarised wave on sphere 1 which is either reflected into a TM- or TE-polarised
mode and Fig. 10.3b illustrates an incoming TE-polarised wave on sphere 1. Consequently, for 𝑟
round-trips, there are 4𝑟 possible sequences of reflection combination between the two spheres. The
problem of finding all possible combinations is similar to our discussion for the zero-frequency case,
where we had to find all partitions of the 𝑟 round-trips. There, we found that an evaluation of the
Casimir free energy is simpler when performing the sum over all round-trips and then introducing a
recursive description of the various combinations. The reflection coefficients are all evaluated at the
saddle point, so we are only working with eight different reflection coefficients, four for each sphere.
Hence, finding all possible combinations of the eight coefficients is more straightforward than the
partition problem, we solved for the Drude spheres. In this case, the number of ’building blocks’
increased with increasing round-trip numbers.
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Figure 10.3: Illustration of the four possible polarisation combinations within one round-trip. Figure (a) and
(b) respectively depict the scattering channels 𝐴TM,TM and 𝐴TE,TE defined in Eq. (10.27), where on the one
hand incoming TM-modes are reflected at sphere 1 and on the other hand TE-modes are reflected at sphere 1.
In both cases, the polarisation of the wave reflected from sphere 2 is either transverse-electric or -magnetic.

After carrying out the summation over all round-trips with (10.22), the leading-order frequency
contribution of the Casimir free energy yields

FLO(𝜉) = −𝜋𝑅eff

∫ d2ksp

(2𝜋)2𝜅sp
P2(ksp) , (10.23)

where we introduced the function P2(ksp), which accounts for all polarisation combinations and is
defined by

P𝑛 (ksp) =
∞∑︁
𝑟=1

e−2𝑟 𝜅sp𝐿

𝑟𝑛

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∏
𝑗=1
𝑟 (1)𝑝2 𝑗+1, 𝑝2 𝑗𝑟

(2)
𝑝2 𝑗 , 𝑝2 𝑗−1 . (10.24)

The subscript 𝑛 refers to the power of the round-trip index 𝑟 , which is two in the case discussed above.
The importance of the function P𝑛 will become evident in the remainder of this Section.

Not all combinations of reflection coefficients are realized. There are some restrictions. For 𝑟
round-trips, the mode of polarisation 𝑝1 incident on sphere 2 must match the polarisation 𝑝2𝑟+1
reflected from sphere 1, as it is illustrated for one round-trip in Fig. 10.3. This condition mathe-
matically arises from the trace expression. We thus introduce functions ℎ𝑝

′ , 𝑝
𝑟 , which account for all

polarisation sequences, where the polarisation 𝑝 is incident on sphere 2 and 𝑝′ is the polarisation
of the reflected wave from sphere 1. The polarisation does not change during the translation from
one sphere to the other, since we assume that the medium in which the spheres are immersed is not
optically active. The polarisation contribution (10.24) then becomes

P2 =
∫ 1

0

d𝑡2
𝑡2

∫ 𝑡2

0

d𝑡1
𝑡1

∞∑︁
𝑟=1

𝑡𝑟1

(
ℎTM,TM
𝑟 + ℎTE,TE

𝑟

)
, (10.25)

where we have rewritten the factor 1/𝑟2 in terms of integrals over auxiliary variables 𝑡1 and 𝑡2. The
possible polarisation sequences described by ℎ𝑝

′ , 𝑝
𝑟 can be build up by successively performing single

round-trips between the two spheres. Hence, after one round-trip, there are 𝑟 − 1 round-trips left,
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10 Casimir interaction between bi-isotropic spheres in vacuum

which can be accounted for in the following recursive relation

ℎ𝑝
′ , 𝑝
𝑟 = 𝐴𝑝

′ ,TMℎTM, 𝑝
𝑟−1 + 𝐴𝑝′ ,TEℎTE, 𝑝

𝑟−1 . (10.26)

𝐴𝑝
′ , 𝑝′ = ℎ𝑝

′ , 𝑝
1 defines one round-trip, where a 𝑝-polarised wave incoming on sphere 2 can either be

reflected into a TM- or TE-polarised wave. The wave reflected from sphere 1 is 𝑝′-polarised, thus
leading to the following definition

𝐴𝑝
′ , 𝑝 =

(
𝑟 (1)𝑝′ ,TM𝑟

(2)
TM, 𝑝 + 𝑟

(1)
𝑝′ ,TE𝑟

(2)
TE, 𝑝

)
e−2𝜅sp𝐿 . (10.27)

Note that Fig. 10.3a and 10.3b respectively illustrate the cases 𝐴TM,TM and 𝐴TE,TE. Similar to the
discussion for the Drude spheres in Sec. 9.3, we introduce generating functions for the polarisation
sequences defined by

𝐻 𝑝′ , 𝑝 (𝑡) =
∞∑︁
𝑟=1

𝑡𝑟 ℎ𝑝
′ , 𝑝
𝑟 (10.28)

which, together with the recursion relations given in Eq. (10.26), yield

𝐻 𝑝′ , 𝑝 (𝑡) = 𝑡𝐴𝑝′ , 𝑝 + 𝑡 [𝐴𝑝′ ,TM𝐻TM, 𝑝 (𝑡) + 𝐴𝑝′ ,TE𝐻TE, 𝑝 (𝑡)] . (10.29)

We thus obtain for the auxiliary functions P2, defined in Eq. (10.25)

P2 =
∫ 1

0

d𝑡2
𝑡2

∫ 𝑡2

0

d𝑡1
𝑡1

[
𝐻TM,TM(𝑡1) + 𝐻TE,TE(𝑡1)

]
. (10.30)

Solving (10.29) for 𝐻TM,TM and 𝐻TE,TE leads to

𝐻TM,TM(𝑡) + 𝐻TE,TE(𝑡) = 𝑡 𝐴
TM,TM + 𝐴TE,TE − 2𝑡𝐴TM,TM𝐴TE,TE + 2𝑡𝐴TM,TE𝐴TE,TM

(1 − 𝑡𝐴TM,TM) (1 − 𝑡𝐴TE,TE) − 𝑡2𝐴TM,TE𝐴TE,TM . (10.31)

The nominator is the derivative with respect to 𝑡 of the denominator, hence the integral over 𝑡1 in
Eq. (10.30) yields

P2 = −
∫ 1

0

d𝑡
𝑡

log det(I − 𝑡A) , A =

(
𝐴TM,TM 𝐴TM,TE

𝐴TE,TM 𝐴TE,TE

)
, (10.32)

where we set 𝑡2 = 𝑡 for convenience. The elements of the matrix A are defined in Eq. (10.27).
Recall that the coefficient 𝑟𝑝,𝑝′ = 𝑟𝑝,𝑝′

(
1 − 𝑠𝑝,𝑝′/𝑅K

)
contains the leading term 𝑟𝑝,𝑝′ and also the

subleading term 𝑠𝑝,𝑝′ of the large sphere approximation. We can thus expand A for large radii as
A ≈ A0 + A1/K. The matrix A0 accounts for the round-trip matrix in the plane-wave basis between
two bi-isotropic planes separated by a distance 𝐿

A0 = R1R2e−2𝜅sp𝐿 (10.33)

with the corresponding reflection matrices at each plane defined by

R𝑖 =
(
𝑟 (𝑖)TM,TM 𝑟 (𝑖)TM,TE
𝑟 (𝑖)TE,TM 𝑟 (𝑖)TE,TE

)
. (10.34)
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10.1 Large radii approximation, the leading saddle-point approximation

The components of A1 take the subleading terms of the reflection matrix into account, which also
include diffraction at the sphere. They are given by

𝐴𝑝
′ , 𝑝

1 =
∑︁

𝑞=TM,TE
𝑟 (1)𝑝′ ,𝑞𝑟

(2)
𝑞,𝑝

©«
𝑠 (1)𝑝′ ,𝑞
𝑅1

+ 𝑠
(2)
𝑞,𝑝

𝑅2

ª®¬ e−2𝜅sp𝐿 . (10.35)

Furthermore, we approximate the determinant in (10.32) by using det(I − 𝜖X) = 1 − 𝜖 trX for small
𝜖 . Additionally, we expand the logarithm in a Mercator series, leading to

log det(I − 𝑡A) ≈ log det (I − 𝑡A0) + 1
K tr

[(I − 𝑡A0)−1𝑡A1
]
. (10.36)

Based on this separation, we can write the leading saddle-point approximation of the Casimir free
energy as

FLO(𝜉) ≈ FPFA(𝜉) + Fdiff(𝜉) . (10.37)

By substituting 𝑡 = exp(−2𝜅sp(𝑙 − 𝐿)) in Eq. (10.32), we immediately find that the leading order
agrees with the PFA result of the Casimir free energy for two bi-isotropic spheres

FPFA(𝜉) = 2𝜋𝑅eff

∫ ∞

𝐿
d𝑙

∫ d2ksp

(2𝜋)2 log det(I − R1R2e−2𝜅sp𝑙) . (10.38)

More specifically, this holds for any material of the sphere as long as the large-sphere approximation
of the scattering amplitudes can be written in the form presented in Eq. (10.2). At the beginning of
this Chapter, we introduced the Lifshitz formula for dielectric objects, which depends on the Fresnel
reflection coefficients. For bi-isotropic materials, we have to replace the coefficients with reflection
matrices, as shown above. The integral over 𝑙 can be evaluated by diagonalizing the round-trip matrix
A0, where the eigenvalues for the 2× 2-matrix can be expressed in terms of its trace and determinant

𝜆1,2 =
1
2

[
trA0 ±

√︁
tr2A0 − 4 det A0

]
. (10.39)

The PFA expression is thus given in terms of the dilogarithm Li2(𝜆1,2)

FPFA(𝜉) = 𝜋𝑅eff

∫ d2ksp

(2𝜋)2𝜅sp
[Li2(𝜆1) + Li2(𝜆2)] . (10.40)

Note that the round-trip matrix A0 is diagonal if there is no mixing of polarisations and the entries
are given by

𝜙TM ≡ 𝜆1 = 𝑟 (1)TM,TM𝑟
(2)
TM,TMe−2𝜅sp𝐿 , 𝜙TE ≡ 𝜆2 = 𝑟 (1)TE,TE𝑟

(2)
TE,TEe−2𝜅sp𝐿 , (10.41)

where we adopted the notation from Ref. [33].

To summarize, we have shown that also for polarisation-mixing spheres, the PFA result arises from
an asymptotic expansion of the scattering formula for large radii. Next, we want to discuss the leading
corrections Fdiff, which arise from the diffraction coefficients. The leading corrections originate from
the next order of the expansion of A, as defined in Eq. (10.36), which with the coefficients (10.33)
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10 Casimir interaction between bi-isotropic spheres in vacuum

and (10.35) yields

tr
[(I − 𝑡A0)−1𝑡A1

]
=

𝛼0𝑡 + 𝛼1𝑡
2

(1 − 𝑡𝜆1) (1 − 𝑡𝜆2) . (10.42)

The expansion coefficients 𝛼0, 𝛼1 are defined by

𝛼0 = trA1 = 𝐴TM,TM
1 + 𝐴TE,TE

1 , (10.43a)

𝛼1 = −𝐴TM,TM
0 𝐴TE,TE

1 − 𝐴TE,TE
0 𝐴TM,TM

1 + 𝐴TM,TE
0 𝐴TE,TM

1 + 𝐴TE,TM
0 𝐴TM,TE

1 . (10.43b)

The leading diffraction corrections are thus given by

Fdiff(𝜉) = −2𝜋
𝑅eff
K

∫ ∞

𝐿
d𝑙

∫ d2ksp

(2𝜋)2

(
𝛼0 + 𝛼1e−2𝜅sp (𝑙−𝐿) ) e−2𝜅sp (𝑙−𝐿)(

1 − 𝜆1e−2𝜅sp (𝑙−𝐿) ) (
1 − 𝜆2e−2𝜅sp (𝑙−𝐿) ) . (10.44)

After evaluating the integral over 𝑙, we arrive at (A.12)

Fdiff(𝜉) = 𝜋𝑅eff
K

∫ d2ksp

(2𝜋)2𝜅sp

{
𝛼0𝜆1 + 𝛼1
𝜆1 (𝜆1 − 𝜆2) log(1 − 𝜆1) + 𝛼0𝜆2 + 𝛼1

𝜆2 (𝜆2 − 𝜆1) log(1 − 𝜆2)
}
. (10.45)

Considering dielectric spheres, we can recover the diffraction corrections obtained in Eq. (6.38) of
Ref. [109], where the pre-factors of the logarithm reduce to

𝛼0𝜆1 + 𝛼1
𝜆1 (𝜆1 − 𝜆2) = 𝜙TM

©«
𝑠 (1)TM,TM

𝑅1
+
𝑠 (2)TM,TM

𝑅2

ª®¬ , 𝛼0𝜆2 + 𝛼1
𝜆2 (𝜆2 − 𝜆2) = 𝜙TE

©«
𝑠 (1)TE,TE

𝑅1
+
𝑠 (2)TE,TE

𝑅2

ª®¬ (10.46)

with 𝜙TM(TE) defined in Eq. (10.41).

10.2 The subleading saddle-point approximation

In the previous Section, we utilized two approximations. We restricted ourselves to the first two
leading terms in the reflection coefficients and, in addition evaluated the leading term of the saddle-
point approximation. As a consequence, corrections arise from two sources. We already computed
with (10.45) the PFA correction from the subleading term of the reflection coefficients. For the
second contribution, we remain within the geometrical optics, i. e. we only keep the leading-order
terms of the reflection coefficients, but go one order further in the saddle-point approximation. In
this Section, we are going to derive the next-to-leading-order in the saddle-point approximation.

In the previous Section, we only considered the first non-vanishing contribution of 𝑔 and 𝑓 along
the saddle 𝑣𝑖,𝛼 = 0 with 𝑖 = 1, . . . 2𝑟−1 and 𝛼 = 𝑥, 𝑦. Here, we include the next orders. Similar to the
one-dimensional saddle-point approximation discussed in Appendix A.6.2, we expand the function
𝑔 up to the second order

𝑔 = 𝑔sp + 𝑔𝛼𝑖 𝑣𝑖,𝛼 + 1
2
𝑔
𝛼𝛽
𝑖 𝑗 𝑣𝑖,𝛼𝑣 𝑗 ,𝛽 + O

(
(𝑣𝛼𝑖 )3

)
. (10.47)

We employed the summation convention, which is that we sum over repeated indices. The derivatives
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10.2 The subleading saddle-point approximation

of 𝑔 are evaluated at the saddle and abbreviated by

𝑔𝛼𝑖 =
𝜕𝑔

𝜕𝑣𝑖,𝛼

����
sp
, 𝑔

𝛼𝛽
𝑖 𝑗 =

𝜕2𝑔

𝜕𝑣𝑖,𝛼𝑣 𝑗 ,𝛽

����
sp

(10.48)

with equivalent expressions for higher-order derivatives. The function 𝑓 is Taylor expanded up to the
fourth order

𝑓 = −1
2

v𝑡𝛼Mv𝛼 + 1
6
𝑓
𝛼𝛽𝛾
𝑖 𝑗𝑘 𝑣𝑖,𝛼𝑣 𝑗 ,𝛽𝑣𝑘,𝛾 + 1

24
𝑓
𝛼𝛽𝛾𝛿
𝑖 𝑗𝑘𝑙 𝑣𝑖,𝛼𝑣 𝑗 ,𝛽𝑣𝑘,𝛾𝑣𝑙, 𝛿 + O

(
(𝑣𝛼𝑖 )5

)
(10.49)

with the same convention for the derivatives as introduced above. When computing the product
𝑔 exp(− 𝑓 ) in Eq. (10.6), we approximate the exponential of the subleading terms by exp(−𝑥) ≈
(1 − 𝑥 + 𝑥2/2) and thus find

𝑔e− 𝑓 ≈ exp
(
−1

2
v𝑡𝛼Mv𝛼

) [
𝑔sp + 1

2
𝑔
𝛼𝛽
𝑖 𝑗 𝑣𝑖,𝛼𝑣 𝑗 ,𝛽 −

1
24

(
𝑔sp 𝑓

𝛼𝛽𝛾𝛿
𝑖 𝑗𝑘𝑙 − 4𝑔𝛼𝑖 𝑓

𝛽𝛾𝛿
𝑗𝑘𝑙

)
𝑣𝑖,𝛼𝑣 𝑗 ,𝛽𝑣𝑘,𝛾𝑣𝑙, 𝛿

+ 1
72
𝑔sp 𝑓

𝛼𝛽𝛾
𝑖 𝑗𝑘 𝑓

𝛿𝜖 𝜂
𝑙𝑚𝑛 𝑣𝑖,𝛼𝑣 𝑗 ,𝛽𝑣𝑘,𝛾𝑣𝑙, 𝛿𝑣𝑚,𝜖 𝑣𝑛,𝜂

]
. (10.50)

Note that we disregard any odd powers of 𝑣𝑖,𝛼, since they vanish when performing the integral. The
2-, 4- and 6-point correlation functions (see definition in Eq. (A.29)) can conveniently be computed
by applying Wick theorem according to (A.28). Note also that the 2-point correlation function ⟨𝑣𝛼𝑖 𝑣𝛽𝑗 ⟩
only yields a non-vanishing contribution if the indices 𝛼 and 𝛽 are the same. In summary, we thus
find for the trace of the 𝑟-th round-trip operator

trM𝑟 ≈ 𝜋𝑅eff
𝑟

∫ d2ksp

(2𝜋)2 𝜅
2𝑟−1
sp

[
𝑔sp + 1

2
𝑔𝛼𝛼𝑖 𝑗 𝑀

−1
𝑖, 𝑗 −

1
8

(
𝑔sp 𝑓

𝛼𝛼𝛽𝛽
𝑖 𝑗𝑘𝑙 − 4𝑔𝛼𝑖 𝑓

𝛼𝛽𝛽
𝑗𝑘𝑙

)
𝑀−1
𝑖, 𝑗𝑀

−1
𝑘,𝑙

+ 1
24
𝑔sp

(
3 𝑓 𝛼𝛼𝛽𝑖 𝑗𝑘 𝑓

𝛽𝛾𝛾
𝑙𝑚𝑛 𝑀

−1
𝑖, 𝑗𝑀

−1
𝑘,𝑙𝑀

−1
𝑚,𝑛 + 2 𝑓 𝛼𝛽𝛾𝑖 𝑗𝑘 𝑓

𝛼𝛽𝛾
𝑙𝑚𝑛 𝑀

−1
𝑖,𝑙 𝑀

−1
𝑗 ,𝑚𝑀

−1
𝑚,𝑛

)]
,

(10.51)

where we also accounted for the fact that the order in which derivatives are taken is not relevant, e.g.
𝑓
𝛼𝛼𝛽
𝑖 𝑗𝑘 = 𝑓

𝛼𝛽𝛼
𝑗𝑘𝑖 = 𝑓

𝛼𝛽𝛼
𝑖𝑘 𝑗 . . ., and thus leads to the multiplicative factors. 𝑀−1

𝑖, 𝑗 defines the elements of
the inverse of the matrix M. The matrix M is a block matrix (10.18) and its inverse is also a block
matrix with

M−1 =
©«
B̃ C̃

1/𝑀𝑟 ,𝑟
D̃ B̃∗

ª®®¬ (10.52)

with anti-diagonal blocks B̃, C̃ and D̃, whose entries are given by

�̃�𝑚,𝑛 = − i𝜅sp(𝑅1 − 𝑅2)
4𝑅eff(𝑅1 + 𝑅2)

1
sin

(
𝜋𝑚
2𝑟

)
cos

(
𝜋𝑚
2𝑟

) 𝛿𝑚,𝑟−𝑛 ,
�̃�𝑚,𝑛 =

𝜅sp

4𝑅eff

1
sin2 (

𝜋𝑚
2𝑟

) 𝛿𝑚,𝑟−𝑛 , �̃�𝑚,𝑛 =
𝜅sp

4𝑅eff

1
cos2 (

𝜋𝑚
2𝑟

) 𝛿𝑚,𝑟−𝑛 . (10.53)

For convenience, we introduced the effective radius 𝑅eff = 𝑅1𝑅2/(𝑅1 + 𝑅2). The first term in
Eq. (10.51) accounts for the leading saddle-point approximation, which we computed in the previous
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10 Casimir interaction between bi-isotropic spheres in vacuum

Section, and the remaining terms are all contributing to the next-to-leading-order corrections, which
we are going to evaluate in the following. The derivatives are taken with respect to the Fourier
transformed components 𝑣𝑖,𝛼, the functions 𝑓 and 𝑔, however depend on the wave vector components
𝑘𝑛,𝛼 , hence, we apply the chain rule to evaluate the various derivatives. The second term in
Eq. (10.51) is, for example, given by

𝑔𝛼𝑖 𝑀
−1
𝑖, 𝑗 =

2𝑟−1∑︁
𝑖=1

𝑀−1
𝑖, 𝑗

2𝑟−1∑︁
𝑛=0

(
𝜕𝑔

𝜕𝑘𝑛,𝛼

)
sp
𝑤𝑛𝑖 (10.54)

with the Fourier components 𝑤𝑛𝑖 introduced in Eq. (10.13). The function 𝑔 is symmetric in the wave
vector components, which means that a single derivative evaluated at the saddle point does not depend
explicitly on the index 𝑛. The sum above, thus, only goes over the Fourier components 𝑤𝑛𝑖 , which
due to the orthogonality of the discrete Fourier transformation yields zero. For the same reasoning
also the expression 𝑓 𝛼𝛼𝛽𝑖 𝑗𝑘 𝑀−1

𝑖 𝑗 vanishes. The only terms which contribute to the next-to-leading-order
(NTLO) of the saddle-point approximation are

[trM𝑟 ]NTLO =
𝜋𝑅eff

2𝑟

∫ d2ksp

(2𝜋)2 𝜅
2𝑟−1
sp

[
𝑔𝛼𝛼𝑖 𝑗 𝑀

−1
𝑖, 𝑗 −

1
4
𝑔sp 𝑓

𝛼𝛼𝛽𝛽
𝑖 𝑗𝑘𝑙 𝑀−1

𝑖, 𝑗𝑀
−1
𝑘,𝑙

+1
6
𝑔sp 𝑓

𝛼𝛽𝛾
𝑖 𝑗𝑘 𝑓

𝛼𝛽𝛾
𝑙𝑚𝑛 𝑀

−1
𝑖,𝑙 𝑀

−1
𝑗 ,𝑚𝑀

−1
𝑚,𝑛

]
.

(10.55)

Each of the expressions above involves incomplete Fourier transforms of the inverse matrix M−1.
According to Ref. [109], the elements are given by a symmetric function, defined as

𝑑±(𝑚 − 𝑛) =
2𝑟−1∑︁
𝑖, 𝑗=1

𝑤𝑖𝑚𝑤 𝑗𝑛𝑀−1
𝑖, 𝑗 =

𝜅sp

2𝑟

[ (−1)𝑚−𝑛

𝑅1 + 𝑅2
± 𝑑2(𝑚 − 𝑛) 𝑅1 − 𝑅2

𝑅1𝑅2
+ 𝑑3(𝑚 − 𝑛)

4𝑅eff

]
, (10.56)

where the auxiliary functions 𝑑2,3(𝑘) are defined by

𝑑2(𝑘) =
{
𝑟 − 𝑘 for 𝑘 odd

0 else , 𝑑3(𝑘) = 1
3

(
4𝑟2 − 12𝑘𝑟 + 6𝑘2 − 1

)
− (−1)𝑘 . (10.57)

Of particular importance are the diagonal entries, which are given by

𝑑 (0) = 𝜅sp

6𝑟𝑅eff
(𝑟2 + 3𝑢 − 1) , (10.58)

where we introduced the geometry parameter 𝑢 = 𝑅eff/(𝑅1 + 𝑅2). Before we proceed with the
evaluation of Eq. (10.55), we note that we can use several results already derived for the dielectric
spheres. The expressions involving derivatives with respect to 𝑓 do not depend on the material of the
sphere. A detailed discussion in Ref. [109] showed that they are proportional to 𝑑 (0) and given by

−1
4
𝑓
𝛼𝛼𝛽𝛽
𝑖 𝑗𝑘𝑙 𝑀−1

𝑖 𝑗 𝑀
−1
𝑘𝑙 + 1

6
𝑓
𝛼𝛽𝛾
𝑖 𝑗𝑘 𝑓

𝛼𝛽𝛾
𝑙𝑚𝑛 𝑀

−1
𝑖𝑙 𝑀

−1
𝑗𝑚𝑀

−1
𝑘𝑛 =

2K2

𝜅4
sp

(2𝑟 − 1)𝑑 (0) . (10.59)

The function 𝑔 also consists of two parts (10.8), where only the functions 𝜌 (𝑡 )𝑝,𝑝′ explicitly take the
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10.2 The subleading saddle-point approximation

bi-isotropy of the spherical particles into account. The remaining part, which includes the translation
coefficient, is the same as for dielectric objects. We thus separate the derivatives of 𝑔𝑖 𝑗 into two
contributions

𝑔𝑖 𝑗 = 𝑔
(𝑎)
𝑖 𝑗 + 𝑔 (𝑏)𝑖 𝑗 , (10.60)

where we omitted the superscript ’𝛼𝛼’ for convenience. The first part indicated by the superscript
(𝑎) accounts for the derivatives which do not depend on the character of the spheres and given by

𝑔 (𝑎)𝑖 𝑗 =
©«
𝑟∏
𝑗=1

e−(𝜅2 𝑗+𝜅2 𝑗−1 )𝐿

𝜅2 𝑗𝜅2 𝑗−1

ª®¬𝑖 𝑗
∑︁

𝑝1,..., 𝑝2𝑟

𝑟∏
𝑗=1
𝑟 (1)𝑝2 𝑗+1, 𝑝2 𝑗𝑟

(2)
𝑝2 𝑗 , 𝑝2 𝑗−1 . (10.61)

It was found in Ref. [109], that this expression is proportional to 𝑔 evaluated at the saddle

𝑔 (𝑎)𝑖 𝑗 𝑀
−1
𝑖, 𝑗 = −𝑔sp

2𝑟
[
𝐿𝜅sp(𝜅2

sp + K2) + 2K2]
𝜅4

sp
𝑑 (0) . (10.62)

The second part, with the superscript (𝑏) accounts for derivatives of 𝜌 (𝑡 )𝑝,𝑝′ = 𝜌
(𝑡 )
𝑝,𝑝′ (k, k′)

𝑔 (𝑏)𝑖 𝑗 =
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

©«
∑︁

𝑝1,..., 𝑝2𝑟

𝑟∏
𝑗=1

𝜌 (1)𝑝2 𝑗+1, 𝑝2 𝑗 𝜌
(2)
𝑝2 𝑗 , 𝑝2 𝑗−1

ª®¬𝑖 𝑗 . (10.63)

Single derivatives at either one of the parts of 𝑔 evaluated at the saddle point vanish due to the
symmetry character, which we discussed earlier. The distinction between the two different parts of
the next-to-leading-order corrections, allows us to write

[trM𝑟 ]NTLO = [trM𝑟 ] (𝑖)NTLO + [trM𝑟 ] (𝑖𝑖)NTLO , (10.64)

where the part denoted with the superscript (𝑖) accounts for the terms which do not depend on the
material of the sphere and is together with (10.59) and (10.62) given by

[trM𝑟 ] (𝑖)NTLO = − 𝜋

6𝑟2

∫ d2ksp

(2𝜋)2 𝜅
2𝑟−4
sp 𝑔sp

[
𝑟𝐿𝜅sp(𝜅2

sp + K2) + K2] (𝑟2 + 3𝑢 − 1) . (10.65)

The corresponding contribution to the free energy follows by summing over all round-trips 𝑟 , which
allows us to evaluate different polarisation combinations in 𝑔sp by introducing the same generating
functions as in the previous Section. We thus find that the NTLO contribution of the Casimir free
energy yields

F (𝑖)
NTLO(𝜉) =

𝜋

6

∫ d2ksp

(2𝜋)2
1
𝜅4

sp

{
𝐿𝜅sp(𝜅2

sp + K2) [P0 + (3𝑢 − 1)P2] + K2 [P1 + (3𝑢 − 1)P3]
}
,

(10.66)
where P𝑛 account for the earlier introduced generating functions, which is given by

P𝑛 = Li𝑛 (𝜆1) + Li𝑛 (𝜆2) , (10.67)

with the eigenvalues𝜆1,2 of the round-trip matrix in the geometrical optics limit, defined in Eq. (10.39)
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10 Casimir interaction between bi-isotropic spheres in vacuum

For dielectric spheres, the result above agrees with Eq. (6.62) of Ref. [109].
Part (ii) of Eq. (10.64) accounts for 𝑔 (𝑏)𝑖 𝑗 and is thus given by

[trM𝑟 ] (𝑖𝑖)NTLO =
𝜋𝑅eff

2𝑟

∫ d2ksp

(2𝜋)2 𝜅
2𝑟−1
sp 𝑔 (𝑏)𝑖 𝑗 𝑀

−1
𝑖, 𝑗 . (10.68)

Together with (10.63) and the Fourier transformed matrix elements (10.56), we can express 𝑔 (𝑏)𝑖 𝑗 𝑀
−1
𝑖, 𝑗

as follows

𝑔 (𝑏)𝑖 𝑗 𝑀
−1
𝑖, 𝑗 =

e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

2𝑟−1∑︁
𝑖, 𝑗=1

𝑀−1
𝑖 𝑗

∑︁
𝛼=𝑥,𝑦

𝜕2

𝜕𝑣𝑖,𝛼𝜕𝑣 𝑗 ,𝛼

©«
𝑟∏
𝑗=1

𝜌 (1)𝑝2 𝑗+1, 𝑝2 𝑗 𝜌
(2)
𝑝2 𝑗 , 𝑝2 𝑗−1

ª®¬
=

e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

2𝑟−1∑︁
𝑚,𝑛=0

𝑑𝜎 (𝑚 − 𝑛)
∑︁
𝛼=𝑥,𝑦

𝜕2

𝜕𝑘𝑚,𝛼𝜕𝑘𝑛,𝛼

©«
𝑟∏
𝑗=1

𝜌 (1)𝑝2 𝑗+1, 𝑝2 𝑗 𝜌
(2)
𝑝2 𝑗 , 𝑝2 𝑗−1

ª®¬ .
(10.69)

The evaluation of the above-given expression is quite technical. We thus only outline the general
approach in the following. We refer to Appendix F for details on the calculation. We can identify
two distinct contributions in the sum provided above, which are denoted by 𝐼 and 𝐽 in the following
and thus lead to 𝑔 (𝑏)𝑖 𝑗 𝑀

−1
𝑖, 𝑗 = 𝐼 + 𝐽. In Fig. 10.4, we illustrated the two cases for 𝑟 = 4 round-trips.

Case 𝐼 accounts for all derivatives of the form 𝜕2
𝑘𝑖

, 𝜕2
𝑘𝑖+1

and 𝜕2
𝑘𝑖+1,𝑘𝑖

which are taken with respect
to either 𝜌 (1)𝑝,𝑝′ or 𝜌 (2)𝑝,𝑝′ . We can always take both derivatives within the first round-trip, depicted
by the two arrows at the top of the diagrams in the left panel of Fig. 10.4. The cyclic character of
the summation indices in Eq. (10.69) makes this possible. We then employ a recursive description
to account for all polarisation combinations during the 𝑟 round-trips, where we only have to keep
in mind that the incoming wave in the first round-trip and the outgoing wave in the 𝑟-th round-trip
match. We illustrated this in Fig. 10.4 by separating each circle into two halves, each presenting the
polarisation of the incoming and outgoing wave. The colours of the first and last circles must match.
As depicted by the black-coloured halves. The discussion of case I is detailed in Sec. F.3 and the
contributions to the free energy are given in Eqs. (F.28), (F.38) and (F.40).

The other contribution 𝐽 involves single derivatives 𝜕𝑘𝑖 and 𝜕𝑘 𝑗 taken at any point during the 𝑟
round-trips. Without loss of generality, one derivative is always taken within the first round-trip
(𝑟 = 1), as it is depicted by the arrow at the top of each diagram in the right panel of Fig. 10.4. Again,
this is a consequence of the cyclic character of the indices. The second derivative is taken at any other
point during the 𝑟-round-trips. The derivative can be taken at the same sphere as the first derivative
or at the sphere with the other label. Therefore, there are four possible scenarios, as depicted in
the right panel of Fig. 10.4. We illustrate the cases where the second derivative is taken within the
second round-trip. The two diagrams at the top illustrate the cases where the first derivative is taken
at sphere 1 and the second derivative at sphere 1 or sphere 2. The two possibilities are denoted by
𝐽 (1,1) and 𝐽 (1,2) . We adopted the notation used in Ref. [109], to facilitate the comparison with results
obtained for dielectric spheres. Correspondingly, the two diagrams at the bottom of the right panel
in Fig. 10.4 represents the case, where the first derivative is taken at sphere 2 while the second one
at sphere 1 (𝐽 (2,1) ) or again at sphere 2 (𝐽 (2,2) ). The contribution to the free energy from the case
𝐽 (2,1) is discussed in Sec. F.4.1, with results given in Eqs. (F.74) and (F.80). Case 𝐽 (2,2) can be found
in Sec. F.4.2 with the final results given in Eqs. (F.91) and (F.93).
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Figure 10.4: Schematic illustration of terms arising in Eq. (10.69) for 𝑟 = 4 round-trips. We start the first
round-trip at the top at sphere 1 (2) and continue clockwise. Each sphere is separated into two halves to depict
the possible polarisation-mixing, as already done in Fig. 10.3. We assume the incoming wave at sphere 1 (2) at
the top to be TM-polarised (black-coloured half). Respectively, the polarisation of the outgoing wave at sphere
2 (1) in the fourth round-trip also has to be TM-polarised (black-coloured half). All kinds of polarisation
combinations are possible between the starting and ending points. Left panel: Representation of case I,
where both derivatives are taken at a single sphere, either at sphere 1 or sphere 2. Right panel: Illustration of
case J, where the derivatives are taken at different points during the round-trips. We distinguish between four
cases, with the first derivatives taken at sphere 1 and the second derivatives either at sphere 1 or 2, respectively
denoted by 𝐽 (1,1) and 𝐽 (1,2) . Similarly, the first derivative can be taken at sphere 2 and the second one either
at sphere 2 again or at sphere 1. The two cases are denoted by 𝐽 (2,2) and 𝐽 (2,1) .
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10 Casimir interaction between bi-isotropic spheres in vacuum

10.3 Large-distance limit, the dipole approximation

In the previous Section, we considered the Casimir interaction for distances smaller than the sphere
radii. In this Section, we are going to examine the opposite case, where the sphere radii are small
compared to the surface-to-surface separation, and specifically 𝐿 ≫ 𝑅1, 𝑅2. Each matrix element
of the round-trip matrix scales with exp(−2𝜅L) from the translation coefficients, hence, for large
distances, each round-trip adds an exponential decay, which is why it is usually sufficient to consider
only the single-round-trip approximation of the Casimir free energy with F (𝜉) ≈ −trM(𝜉), according
to Eq. (8.2).

Additionally, we assume that the sphere radii are small enough to apply the Rayleigh limit.
According to our discussion in Sec. 4.3, the reflection coefficients scale with (K𝑅)2𝑙+1 for small
radii. Hence, the dominant contribution arises from the dipolar polarisabilities. Instead of using the
plane-wave description for the scattering formula, we are now utilizing the multipole expansion, which
we introduced in Sec. 8.3. Combining both the single-round-trip and the dipolar approximation, the
Casimir free energy can, according to Eq. (8.10), be written as

F (𝜉) ≈ −
1∑︁

𝑚=−1

∑︁
𝑃=E,M

𝑀 (1,𝑚)
𝑃,𝑃 , 𝑀 (1,𝑚)

𝑃,𝑃′ = ⟨1, 𝑚, 𝑃 |T12R2T21R1 |1, 𝑚, 𝑃⟩ , (10.70)

where we introduced the matrix elements 𝑀 (1,𝑚)
𝑃,𝑃′ of the round-trip matrix in the dipole limit 𝑙 = 1.

From the discussion in Sec. 4.3, we obtain the following expression for the Mie reflection coefficients
in the dipole limit

⟨1, 𝑚, 𝑃′ |R |1, 𝑚, 𝑃⟩ ≈ −𝜉3
(
𝑅

L

)3
𝛼𝑃′ ,𝑃 . (10.71)

We introduced the reduced frequency 𝜉 = KL and the dimensionless polarisability 𝛼𝑃′ ,𝑃, which
according to Eq. (4.51) is given by

𝛼𝑃′ ,𝑃 = −i𝑃−𝑃
′ 2
3
X𝑝′ , 𝑝 (𝑙 = 1) . (10.72)

Recall that we identify 𝑃 = E(M) with 𝑝 = TM(TE) in the subscripts. For instance, using (4.55) for
a PEMC sphere yields the following polarisabilities

𝛼E,E = −1
2

(
1
3
+ cos(𝜃)

)
, 𝛼M,M = −1

2

(
1
3
− cos(𝜃)

)
, 𝛼E,M = −𝛼M,E = i

sin(𝜃)
2

. (10.73)

In the following, we will derive the Casimir free energy for two dipoles and a dipole in front of a
plane, which respectively constitutes the large-distance limits of the sphere-sphere and sphere-plane
geometry.

10.3.1 Interaction between two dipoles

We start by discussing the interaction between two bi-isotropic dipoles. For the evaluation of the
round-trip matrix elements in Eq. (10.70), we employ the translations coefficients introduced in
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10.3 Large-distance limit, the dipole approximation

Eq. (8.13). In the dipolar limit, the polarisation-conserving coefficients yield

⟨1, 𝑚, 𝑃 |T |1, 𝑚, 𝑃⟩ = e−𝜉

2𝜉3

{
2(1 + 𝜉) for 𝑚 = 0
−(1 + 𝜉 + 𝜉2) for 𝑚 = ±1 (10.74)

while we obtain for the polarisation-changing coefficients

⟨1, 𝑚, 𝑃 |T |1, 𝑚, �̄�⟩ = ±e−𝜉

2𝜉3
(1 + 𝜉) for 𝑚 = ±1 . (10.75)

Note that for 𝑚 = 0 the polarisation-changing translation coefficients vanish.

Inserting the reflection and translation coefficients into Eq. (10.70), we find for the diagonal matrix
elements of the round-trip matrix

𝑀 (1,0)
E,E = 9

(
𝑅1𝑅2

L2

)3 (
𝛼 (1)

E,E𝛼
(2)
E,E + 𝛼 (1)

E,M𝛼
(2)
M,E

)
(1 + 𝜉)2e−2𝜉 . (10.76)

For 𝑚 = ±1, on the other hand, the matrix elements are given by

𝑀 (1,±1)
E,E =

9
4

(
𝑅1𝑅2

L2

)3 [ (
𝛼 (1)

E,E𝛼
(2)
E,E + 𝛼 (1)

E,M𝛼
(2)
M,E

)
(1 + 𝜉 + 𝜉2)2

−
(
𝛼 (1)

E,E𝛼
(2)
M,M + 𝛼 (1)

E,M𝛼
(2)
E,M

)
(𝜉 + 𝜉2)2

±
(
𝛼 (1)

E,E𝛼
(2)
E,M + 𝛼 (1)

E,M𝛼
(2)
M,M

)
(𝜉 + 𝜉2) (1 + 𝜉 + 𝜉2)

∓
(
𝛼 (1)

E,E𝛼
(2)
M,E + 𝛼 (1)

E,M𝛼
(2)
E,E

)
(𝜉 + 𝜉2) (1 + 𝜉 + 𝜉2)

]
e−2𝜉 ,

(10.77)

where the first term accounts for the channels, where the polarisation in both directions is conserved,
while for the other three terms, in at least one propagation direction, the polarisation is changing.

The matrix elements for the magnetic modes 𝑀 (1,𝑚)
M,M are obtained by replacing E with M and

vice versa in the respective expressions for 𝑚 = 0 and 𝑚 = ±1. We concentrate on the case where
the coefficients 𝛼𝑃,𝑃′ are not frequency dependent. We can thus directly carry out the sum over
Matsubara frequencies for the Casimir free energy F = 𝑘B𝑇

∑′∞
𝑛=0 F (𝜉𝑛). The Matsubara sum

involves expressions of the form
∑′∞
𝑛=0 𝑛

𝑠e−2𝜈𝑛, with the dimensionless temperature 𝜈 given by

𝜈 =
2𝜋L
𝜆𝑇

(10.78)

with the thermal wave length 𝜆𝑇 = ℏ𝑐/𝑘B𝑇 . The Matsubara sum can be evaluated by taking
derivatives with respect to 𝑛, we can thus write

∑′∞
𝑛=0 𝑛

𝑠e−2𝜈𝑛 = 𝛿𝑠,0/2+ (−1)𝑠𝜕2𝜈 (e2𝜈 −1)−1. Within
the dipole-dipole (dip) limit, the Casimir free energy yields

Fdip-dip = − 9ℏ𝑐
2𝜋L

(
𝑅1𝑅2

L2

)3 {[
𝛼 (1)

E,E𝛼
(2)
E,E + 𝛼 (1)

E,M𝛼
(2)
M,E + 𝛼 (1)

M,M𝛼
(2)
M,M + 𝛼 (1)

M,E𝛼
(2)
E,M

] 𝑓𝑃↔𝑃 (𝜈)
5

− [
𝛼 (1)

E,E𝛼
(2)
M,M + 𝛼 (1)

E,M𝛼
(2)
E,M + 𝛼 (1)

M,M𝛼
(2)
E,E + 𝛼 (1)

M,E𝛼
(2)
M,E

] 𝑓𝑃↔�̄� (𝜈)
4

}
,

(10.79)
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Figure 10.5: Temperature dependence of the polarisation-
conserving (𝑃 ↔ 𝑃) and polarisation-changing scattering
channels (𝑃 ↔ �̄�). The contributions are shown for
both the dipole-dipole ( 𝑓 (𝜈)) and dipole-plane (𝑔(𝜈))
geometry as function of the dimensionless temperature 𝜈.

where the function 𝑓𝑃↔𝑃 (𝜈) accounts for the polarisation-conserving channels upon translation and
is defined as

𝑓𝑃↔𝑃 (𝜈) = 5
8

[
6𝑔(𝜈) cosh(𝜈) + 6𝑔2(𝜈) + 5𝑔3(𝜈) cosh(𝜈) + 𝑔4(𝜈) (1 + 2 cosh2(𝜈))
+ 𝑔5(𝜈) cosh(𝜈) (2 + cosh2(𝜈))] , (10.80)

where we adapted the notation from [206], with

𝑔(𝜈) = 𝜈

sinh(𝜈) . (10.81)

Correspondingly, the function 𝑓𝑃↔�̄� (𝜈) results from the channels, where the polarisation changes
during translation and is defined by

𝑓𝑃↔�̄� (𝜈) =
1
2

[
𝑔3(𝜈) cosh(𝜈) + 𝑔4(𝜈) (1 + 2 cosh2(𝜈)) + 𝑔5(𝜈) cosh(𝜈) (2 + cosh2(𝜈))] . (10.82)

First we remark that 𝑓𝑃↔𝑃 and 𝑓𝑃↔�̄� both can also be obtained by combining Eqs. (42)-(46) in
Ref. [206]. Both functions are positive for all temperatures and 𝑓𝑃↔𝑃 (𝜈) > 𝑓𝑃↔�̄� (𝜈) for all 𝜈 as can
be seen in Fig. 10.5. The polarisation-conserving channel monotonically increases with temperature
from 𝑓𝑃↔𝑃 (𝜈 = 0)/5 = 23/8 in the quantum regime to 𝑓𝑃↔𝑃 (𝜈 → ∞)/5 = 6/8𝜈 in the classical limit.
In contrast, the polarisation-mixing channel monotonically decreases from 𝑓𝑃↔�̄� (𝜈 = 0)/4 = 7/8 to
zero in the high-temperature limit. If the cross-polarisabilities vanish 𝛼𝑃,�̄� = 0, the zero-temperature
limit of (10.79) reproduces the well-known result from Ref. [207] for the van-der-Waals interaction
between two polarisable systems.

10.3.2 Dipole interacting with a planar surface

Next, we determine the Casimir free energy for a dipole and plane. Without loss of generality, we
assume that the operator R1 accounts for the spherical object, while R2 describes a planar surface.
Introducing the reflection coefficients (10.71) for the dipole in Eq. (10.70), the elements of the
round-trip matrix read

𝑀 (1,𝑚)
𝑃,𝑃 = −𝜉3

(
𝑅

L

)3 ∑︁
𝑃′=E,M

𝑈 (1,𝑚)
𝑃,𝑃′ 𝛼

(1)
𝑃′ ,𝑃 , 𝑈 (1,𝑚)

𝑃,𝑃′ = ⟨1, 𝑚, 𝑃 |T12R2T21 |1, 𝑚, 𝑃′⟩ , (10.83)
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10.3 Large-distance limit, the dipole approximation

where we introduced 𝑈 (1,𝑚)
𝑃,𝑃′ , which account for the matrix elements of the translation operators and

the reflection operator at the plane. Instead of using the spherical-wave basis, it is more convenient to
derive the matrix elements in the plane-wave basis. Making use of the diagonality of the translations
coefficients (8.8), we obtain

𝑈 (1,𝑚)
𝑃,𝑃′ =

∑︁
𝑝1, 𝑝2=TE,TM

∫
d2k
(2𝜋)2 e−2𝜅L𝑟 (2)𝑝1, 𝑝2 ⟨1, 𝑚, 𝑃 |k, 𝑝2, +⟩ ⟨k, 𝑝1,−|1, 𝑚, 𝑃′⟩ (10.84)

with the Fresnel reflection coefficients 𝑟 (2)𝑝′ , 𝑝 for a bi-isotropic plane (see Eq. (B.11)). We assume that
the Fresnel coefficients are constants, as it is the case for the reflection coefficient for a PEMC plane
in Eq. (4.34). We can then directly evaluate the integral given above by using the basis conversion
coefficients defined in Eqs. (4.22) and (4.23). We exemplify the calculation for 𝑈 (1,0)

E,E . For 𝑚 = 0
and 𝑃 = E = 𝑃′, the sum over 𝑝1 and 𝑝2 only yields a contribution for 𝑝1 = TM = 𝑝2 and the
polarisation-changing coefficient yield ⟨1, 0,E|k,TM, +⟩ = i

√
6𝜋 sin 𝜃𝐾 and ⟨k,TM,−|1, 0,E⟩ =

i
√︁

3𝜋/2 sin 𝜃𝐾/𝜅K. Making use of sin(𝜃𝐾 ) = −i𝑘/K for imaginary frequencies the integral over the
transverse wave vector yields

𝑈 (1,0)
E,E =

3
2
𝑟 (2)TM,TM

∫ ∞

K

d𝜅
K

[
𝜅2

K2 − 1
]

e−2𝜅L , (10.85)

where we transformed the integral into polar coordinates and substituted the transverse wave vector
with the axial wave vector component 𝜅 =

√
K2 + k2. A similar expression can also be obtained for

𝑈 (1,0)
E,M and we find

𝑈 (1,0)
E,E =

3
2
(𝐼2(𝜉)) − 𝐼0(𝜉))𝑟 (2)TM,TM , 𝑈 (1,0)

E,M = i
3
2
(𝐼2(𝜉)) − 𝐼0(𝜉))𝑟 (2)TM,TE (10.86)

with the following integral

𝐼𝑛 (𝜉) =
∫ ∞

1
𝑥𝑛e−2𝜉 𝑥d𝑥 = (−1)𝑛

(
𝑑𝑛

𝑑𝑧𝑛
e−𝑧

𝑧

)
𝑧=2𝜉

. (10.87)

The coefficients 𝑈M,M and 𝑈M,E can be respectively obtained by replacing the Fresnel reflection
coefficient 𝑟TM,TM with 𝑟TE,TE and 𝑟TM,TE with −𝑟TM,TE. Similar calculations can be performed for
𝑚 = ±1, yielding

𝑈 (1,±1)
E,E =

3
4

[
𝐼2𝑟

(2)
TM,TM ∓ i𝐼1(𝑟 (2)TM,TE + 𝑟 (2)TE,TM) − 𝐼0𝑟 (2)TE,TE

]
, (10.88a)

𝑈 (1,±1)
E,M =

3
4

[
∓ 𝐼1𝑟 (2)TM,TM + i𝐼0𝑟 (2)TE,TM + i𝐼2𝑟 (2)TM,TE ± 𝐼1𝑟 (2)TE,TE

]
. (10.88b)

After introducing the coefficients𝑈 (1,𝑚)
𝑃,𝑃′ into Eq. (10.83) and summing over the Matsubara frequen-

cies, as we did before for the dipole-dipole limit, we find for the Casimir free energy between a dipole
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10 Casimir interaction between bi-isotropic spheres in vacuum

and plane

Fdip-plane = − ℏ𝑐
2𝜋L

(
𝑅

L

)3
{
−

[
𝛼 (1)

E,E𝑟
(2)
TM,TM + 𝛼 (1)

M,M𝑟
(2)
TE,TE + i𝛼 (1)

M,E𝑟
(2)
TM,TE − i𝛼 (1)

E,M𝑟
(2)
TE,TM

]
𝑔𝑃↔𝑃 (𝜈)

+
[
𝛼 (1)

E,E𝑟
(2)
TE,TE + 𝛼 (1)

M,M𝑟
(2)
TM,TM − i𝛼 (1)

M,E𝑟
(2)
TE,TM + i𝛼 (1)

E,M𝑟
(2)
TM,TE

]
𝑔𝑃↔�̄� (𝜈)

}
.

(10.89)
The coefficients 𝑔𝑃↔𝑃 (𝜈) and 𝑔𝑃↔�̄� (𝜈) are respectively describing the polarisation-conserving and
-mixing channels. They are defined by

𝑔𝑃↔𝑃 (𝜈) = 3
16

[
2𝑔(𝜈) cosh(𝜈) + 2𝑔2(𝜈) + 𝑔3(𝜈) cosh(𝜈)] , (10.90a)

𝑔𝑃↔�̄� (𝜈) =
3
16
𝑔3(𝜈) cosh(𝜈) . (10.90b)

The functions behave in the same way as their counterparts in the dipole-dipole limit (see Fig. 10.5),
with the zero-temperature limit given by 𝑔𝑃↔𝑃 (𝜈 = 0) = 15/16 and 𝑔𝑃↔�̄� (𝜈 = 0) = 3/16 while the
polarisation-conserving channel yields 3𝜈/8 for high temperatures, and the mixing channel goes to
zero.

The different temperature dependence of the scattering channels suggests that, in some instances,
the interaction changes with temperature, which we will examine in the next Chapter for the case of
perfect electromagnetic conductors in detail.
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11 Application to perfect electromagnetic conductor
spheres

Most of the results presented in this Chapter can be found in Refs. [101, 208] and thus also contains
input from authors of these articles.

After providing general expressions for the scattering formalism of two spherical objects, we have
studied several model systems in various limiting cases in the previous Chapters 9 and 10. From
high-temperature results to small- and large-distance expansions of the Casimir free energy. In this
Chapter, we apply our findings to a particular system of bi-isotropic objects, namely two perfect
electromagnetic conductor (PEMC) spheres in a vacuum. The lossless and frequency-independent
boundary conditions of PEMCs are characterized by a duality angle 𝜃, defined in Eq. (1.6). The
parameter tunes the electromagnetic response of the object from a perfect electric (PEC) to a perfect
magnetic (PMC) conductor by taking values between 0 and 𝜋/2. This idealized model allows us to
disentangle the interplay between geometry, boundary conditions and temperature. Already Rode et
al. have shown in Ref. [56] that the Casimir interaction between two PEMC planes at zero temperature
only depends on the difference between the duality angles

𝛿 = |𝜃1 − 𝜃2 | . (11.1)

The Casimir interaction changes its sign as a function of 𝛿 from attraction to repulsion, as illustrated
in the left panel in Fig. 11.1. The force thus vanishes at a certain 𝛿crit. In this Chapter, we want to
discuss whether this dependence of the Casimir force on 𝛿 still holds for spherical objects and whether
𝛿crit changes for spherical objects at finite temperature. We thus analyse the Casimir interaction in the
whole parameter range of different temperatures and distances between the spheres. A schematic of
the Chapter outline can be found in the right panel of Fig. 11.1. We provide explicit analytical results
for several limiting cases based on the expressions derived in the previous Chapters. For intermediate
distance- and temperature-ranges, we resort to numerical calculations. Our numerical calculations
are based on an extension of the numerical approach introduced in Ref. [171] to bi-isotropic spheres.

We start in Sec. 11.1 with the short distance limit, which is equivalent to the PFA, and we derive
temperature corrections to the quantum vacuum energy derived in Ref. [56]. Going beyond the PFA
gives insights into how the curvature of the spheres affects the sign of the Casimir force. By increasing
the distance even further, we end up in the dipole-dipole or dipole-plane regime (Sec. 11.2), where
we again discuss the Casimir interaction for arbitrary temperatures. Of particular interest will be the
high-temperature limit, discussed in Sec. 11.3, where we introduce an approximation formula for the
whole distance range. In Sec. 11.4, we show that a sum rule found by Rode et al. in Ref. [56] for two
planes is no longer valid when considering the Casimir interaction between spherical objects. We
summarize our findings in Sec. 11.5, where we analyse the existence of stable equilibrium positions
of the spheres and how changing the temperature affects the equilibrium.

11.1 Short-distance asymptotics, the PFA regime
In this Section, we are going to discuss the Casimir interaction between two PEMC spheres at short
distances compared to the radii of the spheres. Earlier, we derived an expression for the Casimir free
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Figure 11.1: Left panel: Schematic illustration of the Casimir force between two PEMC planes characterized
by the parameters 𝜃1, 𝜃2 ∈ [0, 𝜋/2], as function of the difference 𝛿 = |𝜃1 − 𝜃2 |. While 𝛿 increases from 0 to
𝜋/2, the force transitions from attraction to repulsion. The force vanishes at 𝛿crit. Right panel: Overview of
the limiting cases for the Casimir interaction between two PEMC spheres, which we discuss in the Sections of
this Chapter. We start in Sec. 11.1 with the short-distance limit, where low- and high-temperature results are
presented. In Sec. 11.2, we analyse the opposite side of the distance spectrum by considering small spheres at
large separations. High-temperature results over the whole distance range are discussed in Sec. 11.3.

energy for arbitrary bi-isotropic spheres (10.40), in terms of the eigenvalues of the round-trip matrix
for two planar objects. Together with the Fresnel reflection coefficients for PEMC planes (4.34), are
the eigenvalues of the round-trip matrix (10.39) given by

𝜆1/2 = exp(±2i𝛿) exp(−2𝜅𝐿) . (11.2)

The eigenvalues only depend on the difference between the PEMC parameters 𝜃1 and 𝜃2 via 𝛿
introduced above in Eq. (11.1), as it was already expected from the result for two PEMC planes in
Ref. [56]. Inserting the eigenvalues in the PFA expression (10.40) and transforming the integral over
the transverse wave vector into an integral over the axial wave component with 𝜅 =

√︁
𝜉2/𝑐2 + 𝑘2, we

obtain

FPFA(𝜉) = −𝑅effRe
∫ ∞

𝜉/𝑐
d𝜅

∞∑︁
𝑟=1

1
𝑟2 e2i𝛿𝑟e−2𝜅𝐿𝑟

= − 1
2𝑥

Re
∞∑︁
𝑟=1

1
𝑟3 e2i𝛿𝑟e−2𝜉 𝐿𝑟/𝑐 .

(11.3)

Note that we omitted the index ’sp’ for the integral along the saddle in Eq. (10.40). We carried out
the integral in the second step and introduced the aspect ratio 𝑥 = 𝐿/𝑅eff . The expression above
constitutes the frequency contribution to the Casimir free energy. It allows us to calculate the Casimir
interaction at any temperature.

At zero temperature, the Casimir energy is given by an integral over imaginary frequencies (2.26)
EPFA = (ℏ/2𝜋)

∫ ∞
0 d𝜉F (𝜉), which yields

EPFA = − ℏ𝑐
8𝜋𝑥𝐿

ReLi4(e2i𝛿) = − ℏ𝑐
720𝜋𝐿𝑥

[
𝜋4 − 30𝛿2(𝜋 − 𝛿)2] . (11.4)

We simplified the real part of the polylogarithm Li4(e2i𝛿) by means of the Jonquiere inversion formula
[185, Eq. 25.12.13]

Li𝑛 (e2𝜋i𝑥) + (−1)𝑛Li𝑛 (e2𝜋i𝑥) = −(2𝜋i)𝑛𝐵𝑛 (𝑧)/𝑛! , (11.5)
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11.1 Short-distance asymptotics, the PFA regime

with the Bernoulli polynomials 𝐵𝑛 (𝑧) of order 𝑛. We could thus reproduce the result obtained by [56]
for two PEMC planes at zero temperature. For 𝛿 = 0 the expression agrees with the well-known result
obtained by Casimir [5] EPFA = −ℏ𝑐𝜋𝑅eff/720𝐿2. Note also, that the Casimir energy for two perfect
electric conductors agrees with the sum of the Casimir energy for a scalar field confined between
two planes with Dirichlet and Neumann boundary conditions. For 𝛿 = 𝜋/2, on the other hand, we
obtain the result by Boyer [43] for a PEC and PMC plane, with EPFA = 7ℏ𝑐𝜋𝑅eff/5760𝐿2. This
result is equivalent to the one for a scalar field between two planes, one with Neumann and the other
plane with Dirichlet boundary conditions and vice versa. The transition from Dirichlet to Neumann
boundary conditions can be parameterized by so-called quasi-periodic boundaries [209], which lead
to the same result as (11.4). Earlier works found that the PFA result and the leading corrections for
an electromagnetic field between perfect reflectors correspond to expressions for scalar fields [210].
We will later also show that this still holds for PEMCs at finite temperatures.

The Casimir energy and due to 𝐹PFA = −𝜕𝐿EPFA = 2EPFA/𝐿 also the Casimir force, changes its
sign at a critical angle 𝛿crit, which can be computed analytically and is given by

𝛿𝑇=0
crit =

©«1 −
√︄

1 −
√︂

2
15

ª®¬ 𝜋2 = 0.961 . . .
𝜋

4
. (11.6)

Here and in the following, it is convenient to express critical angles in units of the central angle
𝜋/4. The force thus changes its sign at 𝛿crit and is attractive for systems with 𝛿 < 𝛿crit while being
repulsive for 𝛿 > 𝛿crit. In the following, we are going to determine the temperature and distance
corrections to the PFA result (11.4) and analyse how 𝛿crit changes when we increase the temperature
or the separation between the spheres.

11.1.1 Temperature corrections to the zero-temperature result

The Casimir free energy at finite temperatures follows from the sum over the Matsubara frequencies
(8.1) and yields together with (11.3)

FPFA = − 𝑘B𝑇

2𝑥
Re

∞∑︁
𝑛=0

′ ∞∑︁
𝑟=1

1
𝑟3 e2i𝛿𝑟e−2𝜏𝑛𝑟 , (11.7)

where we introduced the dimensionless temperature 𝜏 = 2𝜋𝐿/𝜆𝑇 . We are interested in the low-
temperature corrections to (11.4) and thus analyse the expression above in the regime 𝐿 ≪ 𝜆𝑇 ≪ 𝑅eff .
The convergence of (11.7) is either ensured by the oscillatory function or the exponentially decaying
function, depending on 𝛿 > 𝜏 or 𝛿 < 𝜏. We are particularly interested in the temperature dependence
of 𝛿crit, so we will focus on the case where 𝛿 > 𝜏. We employ the Mellin transform for exponential
functions [185, Eq. 8.6.11] exp(𝑧) =

∫ 𝑐+i∞
𝑐−i∞ Γ(𝑠)𝑧−𝑠𝑑𝑠/(2𝜋i) to extract the leading temperature

corrections. After carrying out the Matsubara and round-trip sum, we obtain

FPFA = − 𝑘B𝑇

4𝑥

[
Re

[
Li3(e2i𝛿)] + 2

∫ 𝑐+i∞

𝑐−i∞

d𝑠
2𝜋i

Γ(𝑠)𝜁 (𝑠)Re
[
Li𝑠+3(e2i𝛿)] (4𝜏)−𝑠] . (11.8)

The integration contour in the complex 𝑠-plane is chosen such that 𝑐 is larger than one. For 𝛿 > 0,
the integrand has a single pole at 𝑠 = 1 arising from the Riemann zeta function 𝜁 (𝑠). Additionally,
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Figure 11.2: Low-temperature expansion
of the PFA result. Temperature correc-
tions to the zero-temperature result of the
Casimir free energy in units of 𝑘B𝑇 for var-
ious values of 𝛿, including the critical an-
gles in the low-temperature (filled squares)
and high-temperature (crosses) limit, respec-
tively defined in Eqs. (11.6) and (11.11).
The solid lines represent the low-temperature
expansion given in Eq. (11.9), while the
dashed lines depict the difference between
the high-temperature result (11.10) and the
zero-temperature Casimir energy. Adapted
from [208].

there are single poles at 𝑠 = 0 and at all negative odd integers 𝑠 = −2𝑛 − 1, 𝑛 = 0, 1, 2, . . . which
originate from the gamma function Γ(𝑠). We will discuss this case in more detail later. We carry
out the integral by applying the Cauchy theorem and evaluating the residues at the respective poles.
Note that the zero-temperature result (11.4) arises from the pole at 𝑠 = 1, while the others contribute
to the low-temperature corrections. We find for the first two leading terms

ΔFPFA = FPFA − EPFA ≈ − ℏ𝑐𝑅eff

720𝜋𝐿2

[
5
(
𝜋2 − 6𝛿(𝜋 − 𝛿)

)
𝜏2 + 𝜏4 + O(𝜏6)

]
, (11.9)

where we again applied the Jonquiere’s relation (11.5) to express the dilogarithm Li2(e2i𝛿) arising
from the 𝑠 = −1 pole as a polynomial in 𝛿. The limit 𝛿 = 𝜋/2 agrees with the low-temperature expan-
sion performed in Ref. [210]. We compared the asymptotic expansion with numerical calculations in
Fig. 11.2 of the free energy in the low-temperature regime. We analysed several values of 𝛿 including
the critical value (11.6), which is depicted with filled symbols compared to the other values of 𝛿.
It is evident from Fig. 11.2 that with decreasing temperature 𝜏 < 1, the numerical results converge
towards the expansion (11.9), which is depicted by solid lines.

The non-vanishing and positive temperature corrections for 𝛿𝑇=0
cri indicate that the critical angle

decreases with temperature, which is corroborated by analysing the high-temperature limit of the
Casimir free energy. The high-temperature result is obtained by taking the zero-frequency (𝑛 = 0)
term in Eq. (11.3), yielding

F𝑇,PFA = − 𝑘B𝑇

4𝑥
Re

[
Li3(e2i𝛿)] . (11.10)

It implies that the Casimir force vanishes at a critical value

𝛿𝑇→∞
crit = 0.923 . . .

𝜋

4
< 𝛿𝑇=0

crit , (11.11)

which we determined numerically. The high-temperature result is also depicted in Fig. 11.2 with
dashed lines. The numerical results converge towards the high-temperature results for 𝜏 > 2.

A clearer picture of temperature- and material-dependence of the Casimir force can be obtained
from Fig. 11.3, where we analyse the Casimir force for two PEMC spheres relative to the result for two
PEC (𝛿 = 0) spheres. The Casimir interaction between two PEC spheres is always attractive. Hence,
a negative value of the force ratio accounts for a repulsive force, as shown by the orange-shaded
area in Fig. 11.3 and a positive value corresponds to an attractive force (purple-shaded area). The
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Figure 11.3: PFA result for two
PEMC spheres. Casimir force as a
function of the duality parameter 𝛿
and the dimensionless temperature 𝜏,
normalized by the Casimir force for
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The asymptotic values for low and
high temperatures are shown as dashed
lines.

line separating the two regions defines 𝛿crit. For comparison, we also added the curve where the
Casimir energy vanishes, presented by a dotted line in Fig. 11.3. We see that 𝛿crit as a function of the
temperature decreases monotonically from the zero-temperature result (11.6) to the high-temperature
limit (11.11). Hence, if we consider a system with a 𝛿-value between the two limiting cases, for
example, 𝛿 = 0.94𝜋/4, we can observe a sign change of the Casimir force with temperature.

Next, we want to briefly discuss the low-temperature expansion for 𝛿 < 𝜏, thus also including the
case 𝛿 = 0. For this purpose, we express the PFA result (11.7) in terms of the Lambert series, which
yields

FPFA = − 𝑘B𝑇

4𝑥
Re

[
Li3(e2i𝛿) + 2Lexp(−2𝜏 )

(
−3, 1 + i

𝛿

𝜏

)]
. (11.12)

We apply the asymptotic expression of the Lambert series for 𝜏 ≪ 1 given in Sec. A.4 and expand
the result in terms of 𝛿/𝜏 < 1, which yields

ΔFPFA ≈ − ℏ𝑐
𝜋𝐿𝑥

[
𝛿2

(
log(4𝜋) + 2 log(𝛿/𝜏) − 4 + 𝜋

2

72

)
𝜏 + 1

144

(
𝜋2 + 6𝛿2

)
𝜏2 − 𝜁 (3)

8𝜋
𝜏3

]
. (11.13)

In the limit 𝛿 = 0, we can reproduce the low-temperature corrections found by Ref. [210]. Compared
to the previous results for 𝛿 > 𝜏, the subleading term for 𝛿 = 0 is of the order of 𝜏3 compared to
𝜏4. One also notices that compared to before, there are logarithmic corrections log(𝛿/𝜏). These
logarithmic corrections were also observed in a study of the Casimir interaction for a scalar field
[211].

11.1.2 Beyond PFA, distance corrections to the zero-temperature result

We observed in the previous Section that 𝛿crit changes with temperature. More specifically, the
critical angle in the small-distance regime decreases with temperature. Next, we analyse how the
spherical geometry affects the Casimir force in comparison to planar surfaces. For this purpose, we
are applying the PFA correction formulas we derived in the previous Chapter for bi-isotropic spheres.
Corrections to the PFA result involve two contributions, the diffraction and geometrical corrections

ΔE = E − EPFA ≈ Ediff + Egeo . (11.14)
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11 Application to perfect electromagnetic conductor spheres

The diffraction corrections arise from the leading correction of the scattering amplitudes in the large-
sphere approximation. We determined the asymptotic expansion of the scattering amplitudes for
a PEMC sphere in Eq. (4.46). Inserting these expressions into (10.43), we find for the expansion
coefficients 𝛼0 and 𝛼1, the following expressions

𝛼0 = − cos(2𝛿)𝛼1 , 𝛼1 =
𝜉

𝑐𝑅eff𝜅
. (11.15)

Together with the earlier introduced eigenvalues (11.2), we insert the expansion coefficients 𝛼0 and
𝛼1 into Eq. (10.45) to obtain the frequency contribution Fdiff(𝜉). After carrying out the integral over
imaginary frequencies, the diffraction correction to the Casimir energy EPFA yields

Ediff = −ℏ
4

Re
∫ ∞

0

d𝜉
2𝜋

∫ ∞

𝜉/𝑐

d𝜅
𝜅

log(1 − e2i𝛿−2𝜅𝐿) , (11.16)

where we performed the same variable transformation from the transverse wave vector 𝑘 to the axial
component 𝜅, as earlier for the evaluation of the PFA result. The integral is carried out, and the result
can be expressed in terms of polylogarithms of the second order: Ediff = (ℏ𝑐/16𝜋𝐿)ReLi2(e2i𝛿).
Together with the Jonquiere inversion formula (11.5), the diffraction correction for two PEMC spheres
are given by

Ediff = EPFA𝛽diff𝑥 , 𝛽diff = −15
𝜋2 − 6𝛿(𝜋 − 𝛿)
𝜋4 − 30𝛿2(𝜋 − 𝛿)2 , (11.17)

where we factored out the PFA result and used 𝑥 = 𝐿/𝑅eff. For 𝛿 = 0, we reproduce 𝛽diff = −15/𝜋2

found in Ref. [34] and for the other limiting case 𝛿 = 𝜋/2, we obtain 𝛽diff = 4/7𝜋2.

The geometrical corrections follow from the next-to-leading-order (NTLO) correction of the
saddle-point approximation of the Casimir free energy, as discussed in detail in Sec. 10.2. We
identified two contributions to the geometrical corrections

Fgeo(𝜉) = F (𝑖)
NTLO(𝜉) + F (𝑖𝑖)

NTLO(𝜉) (11.18)

with F (𝑖)
NTLO(𝜉) defined in Eq. (10.66), which is fully determined by the eigenvalues 𝜆1,2 of the round-

trip matrix between PEMC plates. The evaluation of the second term is much more evolved, as shown
in Appendix F. In the case of PEMC spheres, the contribution simplifies, however, significantly. In
fact it can be shown that F (𝑖𝑖)

NTLO(𝜉) = 0, as discussed in Sec. F.5.

The geometrical corrections thus only come from the term F (𝑖)
NTLO(𝜉). After inserting the eigen-

values 𝜆1,2 into (10.66) and performing the integral over imaginary frequencies, we thus find for the
geometrical corrections to the Casimir energy in the short-distance limit

Egeo =
ℏ
6

Re
∫ ∞

0

d𝜉
2𝜋

∫ ∞

𝜉/𝑐

d𝜅
𝜅

{
𝐿𝜅

(
1 + 𝜉2

𝑐2𝜅2

) [
Li0(e2i𝛿−2𝜅𝐿) + (3𝑢 − 1)Li2(e2i𝛿−2𝜅𝐿)

]
+ 𝜉2

𝑐2𝜅2

[
− log(1 − e2i𝛿−2𝜅𝐿) + (3𝑢 − 1)Li3(e2i𝛿−2𝜅𝐿)

]} (11.19)

with 𝑢 = 𝑅eff/(𝑅1 + 𝑅2). The integral over the axial wave component and the frequency can be
carried out if one introduces the series expansion of the polylogarithms (A.8). We then find, after
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11.1 Short-distance asymptotics, the PFA regime

0 0.5 1 1.5 2

−0.025

0

0.025

0.05

0.075

X/(c/4)

Δ
E(

ℏ2
/!

)

D = 0
D = 0.04
D = 0.1
D = 0.25

0.7 0.8 0.9 1
−0.005

0

0.005

X)=0
crit

Figure 11.4: Corrections to the PFA result. Lowest-order corrections of the Casimir energy for small
distances as a function of the system parameter 𝛿, for various values of 𝑢 (see Eq. (11.21)). The PFA
result vanishes at 𝛿𝑇=0

crit , which makes ΔE, the leading-order term of the Casimir energy. The lowest-order
corrections have two contributions: ΔE = Ediff + Egeo. The diffraction correction is shown as a dotted line,
and the geometrical corrections are depicted as dashed lines for the respective 𝑢-values. Inset: Zoom to the
behaviour at 𝛿 ≈ 0.85𝜋/4, where the diffraction correction changes its sign. Similar figure in Ref. [101].

some algebraic transformations, the following result for the geometrical corrections to the PFA result

Egeo = EPFA𝛽geo𝑥, 𝛽geo =
1
3
− 𝑢 + 𝛽diff

3
, (11.20)

where we again factored out the PFA result and introduced the expression 𝛽diff given above in
Eq. (11.17). Note that the geometrical corrections depend on 𝑢, indicating that curvature corrections
become more important with increasing distance between the sphere.

The small distance expansion of the Casimir energy for two PEMC spheres is thus, in total, given
by E = EPFA [1 + 𝛽𝑥 + 𝑜(𝑥)], where 𝛽 = 𝛽diff + 𝛽geo. Our result is consistent with the limiting cases
for 𝛿 = 0, which can be found in Ref. [34, 212] and 𝛿 = 𝜋/2 [213]. The term 𝑜(𝑥) accounts for PFA
corrections, which decay faster than linear. Recent studies on the limiting case of perfect electric
reflectors suggest that the next-to-next-to-leading-order correction follows a fractional power-law
behaviour with 𝑜(𝑥) ∝ 𝑥3/2 [101, 109]. In total, the leading corrections ΔE ≈ EPFA𝛽𝑥 are given by

ΔE ≈ ℏ𝑐
720𝜋𝐿

[
20(𝜋2 − 6𝛿(𝜋 − 𝛿)) − 1 − 3𝑢

3

(
𝜋4 − 30𝛿2(𝜋 − 𝛿)2

)]
. (11.21)

The PFA corrections as function of 𝛿 are depicted in Fig. 11.4 for 𝑢 ranging from 0 to 1/4. The
corrections are most significant for the case of two equally sized spheres, as expected since this
geometry deviates the most from the plane-plane geometry. At 𝛿𝑇=0

crit , we find that the PFA corrections
yield a finite contribution, which is the same for all values of 𝑢. As a consequence, the corrections ΔE
then become the leading contribution to the Casimir energy between two PEMC spheres and instead
of a 𝐿−2-power law, the Casimir energy scales with 𝐿−1. This confirms our observation from Sec. 4.2,
where we observed different scaling behaviour of the scattering amplitudes with sphere radius for
different values of 𝜃1,2. Furthermore, we depicted the diffraction (dotted line) and geometrical
(dashed lines) corrections separately in Fig. 11.4. The majority of the PFA correction comes from
the diffraction contribution, which remains constant for all values of 𝑢. Only at the transition point,
where Ediff changes its sign (shown in the inset) are geometrical corrections the primary contribution.
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11 Application to perfect electromagnetic conductor spheres
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Figure 11.5: Casimir energy in the
plane-sphere geometry. PFA corrections
for the Casimir energy of a sphere and
plane as a function of the aspect ratio 𝑥.
The Casimir energy is presented for the
same 𝛿-values as in Fig. 11.2. In the small-
distance regime 𝑥 ≪ 1, the corrections
converge towards the result presented in
Eq. (11.21), which is depicted by the solid
lines. For large-distances 𝑥 ≫ 1, the cor-
rections converge towards the dipole-plane
result found in Eq. (11.28). Adapted from
[208].

The validity of the PFA corrections is analysed in Fig. 11.5, where we compare the analytical
result with a numerical calculation of the Casimir energy as a function of 𝑥. We calculated the PFA
correction for the same values of 𝛿 as in Fig. 11.2. As expected, for 𝑥 ≪ 1, the Casimir energy
converges towards (11.21), which is depicted by the solid lines. As we have already seen in Fig. 11.4,
the PFA corrections do not vanish for the critical angle found in the PFA regime, which means that
𝛿crit changes with increasing distance between the spheres. Additionally, we tested the validity of our
numerical results by examining the Casimir energy in the large-distance regime. It is evident from
Fig. 11.5, that the numerical results converge towards the dipole-plane limit, which is represented by
the dashed lines. We will analyse this limit in more detail in the following Section.

11.2 Long-range asymptotics, the dipole regime

This Section aims to study the behaviour of the Casimir interaction between two PEMC spheres that
are far apart. We want to determine whether the temperature dependence of 𝛿crit found for short
distances extends to the long-distance regime. In Sec. 10.3 we introduced the expression for the
Casimir interaction between two dipoles or a dipole in front of a plane for bi-isotropic objects, here
we will apply these results to the PEMCs. First, we will discuss the result for two dipoles (Sec. 11.2.1)
and follow with a discussion of the dipole-plane setup in Sec. 11.2.2.

11.2.1 Dipole-dipole regime

We consider two PEMC spheres with radii 𝑅1, 𝑅2 which are much smaller than the distance 𝐿
between the spheres. Inserting polarisabilities 𝛼𝑃,𝑃′ for a PEMC sphere, given in Eq. (10.73) into
the dipole-dipole result for the Casimir free energy (10.79), we obtain

Fdip-dip = − ℏ𝑐
2𝜋L

(
𝑅1𝑅2

L2

)3 [
cos2(𝛿) (

𝑓𝑃↔𝑃 (𝜈) + 𝑓𝑃↔�̄� (𝜈)
) − sin2(𝛿)

(
4
5
𝑓𝑃↔𝑃 (𝜈) + 5

4
𝑓𝑃↔�̄� (𝜈)

)]
,

(11.22)
where 𝑓𝑃↔𝑃 and 𝑓𝑃↔�̄� are defined in Eqs. (10.80)-(10.82) and account for the polarisation-conserving
and -changing channels upon translation of the electromagnetic field between the two spheres.
They are functions of the effective temperature 𝜈 = 2𝜋L/𝜆𝑇 , which should not be confused with
𝜏 = 2𝜋𝐿/𝜆𝑇 introduced in the previous Section. In the zero-temperature limit 𝜈 → 0, the channel
functions are in leading order given by the numerical factor 115/8 and 7/2, respectively and the
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11.2 Long-range asymptotics, the dipole regime

Casimir energy thus yields

Edip-dip = − ℏ𝑐
16𝜋L

(
𝑅1𝑅2

L2

)3
[8 + 135 cos(2𝛿)] . (11.23)

We thus reproduce known results for 𝛿 = 0, 𝜋/2 computed in Refs. [214] and [43], respectively.
Earlier, we found that the critical angle changes if we go beyond the PFA limit to larger distances. We
can now determine the upper bound of 𝛿crit at zero-temperature. Since the Casimir force is given by
𝐹dip-dip = 7Edip-dip/L, we can immediately determine the critical angle from the energy expression
above

𝛿𝑇=0
crit =

𝜋

4
+ 1

2
arcsin

(
8

135

)
= 1.037 . . .

𝜋

4
. (11.24)

At high temperatures 𝜈 → ∞, there is no contribution from the polarisation-changing channel
𝑓𝑃↔�̄� = 0 and the polarisation-conserving channel yields 𝑓𝑃↔𝑃 ≈ 30𝜈/8 in leading order. The free
energy thus reduces to

F𝑇,dip-dip = −2𝑘B𝑇

8

(
𝑅1𝑅2

L2

)3
[1 + 9 cos(2𝛿)] . (11.25)

For 𝛿 = 0, the result is in agreement with results obtained in Ref. [206] for perfect electric conductors.
We can directly determine the critical angle in this limit since the force is proportional to energy with
𝐹dip-dip = 6Fdip-dip/L

𝛿𝑇→∞
crit =

𝜋

4
+ 1

2
arcsin

(
1
9

)
= 1.070 . . .

𝜋

4
. (11.26)

We depicted the Casimir force 𝐹, normalized by the perfect reflector result 𝐹PEC, as function of 𝛿
and the effective temperature 𝜈 in Fig. 11.6 with the same conventions as in Fig. 11.3. The zero-force
curve is represented by a solid line which separates the attractive force region above the curve from
the repulsive force region below it. The critical angle increases monotonically with temperature. For
low and high temperatures, the curve converges towards the two limiting results we determined above,
which are presented as dashed lines in Fig. 11.3. The Casimir energy shows a similar behaviour
(dotted line). Hence, for systems with 𝛿 between the two limiting cases 𝛿𝑇=0

crit and 𝛿𝑇→∞
crit , the force

transitions from repulsion to attraction upon increasing the temperature. This behaviour is contrary to
what we observed in the short-distance regime. One explanation might be that due to the vanishing of
the polarisation-mixing channels at higher temperatures ( 𝑓𝑃↔�̄� (𝜈 → ∞) → 0), the magneto-electric
effect responsible for the repulsion reduces.

11.2.2 Dipole-plane regime

Next, we are going to examine the case where a dipole is in front of a planar surface. We use the results
derived in Eq. (10.89), together with the polarisibilities (10.73) and Fresnel reflection coefficients
(4.34) for PEMCs and obtain

Fdip-plane = − ℏ𝑐
2𝜋L

(
𝑅

L

)3
cos(2𝛿) [

𝑔𝑃↔𝑃 (𝜈) + 𝑔𝑃↔�̄� (𝜈)
]
. (11.27)
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Figure 11.6: Dipole-dipole result for
two PEMC spheres. Casimir force 𝐹
normalized by 𝐹PEC calculated for var-
ious values of 𝛿 and the effective tem-
perature 𝜈, similar to Fig. 11.3. The
solid line depicts the parameter values
where the force vanishes and the dotted
line where the free energy is zero. For
low and high temperatures, the curve
converges towards the respective limit-
ing values of the critical angle (11.24)
and (11.26).

The functions 𝑔𝑃↔𝑃 and 𝑔𝑃↔�̄� arise from the polarisation-conserving and -changing channels
during translation of the electromagnetic field between the dipole and plane. They are defined in
Eqs. (10.90a)-(10.90b). In the zero-temperature limit, they are given by 15/16 and 3/16, respectively,
which leads to the following expression for the Casimir energy

Edip-plane = − 9ℏ𝑐
16𝜋L

(
𝑅

L

)3
cos(2𝛿) . (11.28)

A comparison with the full numerical results, depicted in Fig. 11.5, showed qualitative good agreement
for aspect ratios 𝑥 = 𝐿/𝑅 > 1. At high temperatures, the polarisation-changing contribution vanishes
and the polarisation-conserving channel 𝑔𝑃↔𝑃 yields 3𝜈/8.

Note that the Casimir force changes its sign at 𝛿crit = 𝜋/4 for all temperatures, hence, compared to
the dipole-dipole result (11.22) there is no change of the critical angle with increasing temperature.
The temperature dependence only comes into play if we take higher-order corrections to the dipole-
plane limit into account. These corrections arise from higher round-trip numbers, as we will see in
the following Section.

11.3 High-temperature limit

An explicit analytical expression for the Casimir energy can usually only be derived within the limits
of small or large distances between the objects, as shown in the previous two Sections. The Casimir
force at intermediate distances is, in most cases, calculated numerically. In this Section, we employ
our findings from Chap. 9 and derive a semi-analytical expression for the Casimir free energy based
on the single-round-trip result for two PEMC spheres.

In the high-temperature limit, the scattering amplitude matrix of a PEMC matrix follows from a
duality transformation (4.56) of the scattering matrix of a PEC or PMC sphere: SPEMC = DSPECD−1 =
D−1SPMCD. The reflection matrix elements (9.4) of a PEMC sphere in the plane-wave basis can thus
be written as

⟨k𝑖 , 𝑝,±|RPEMC |k 𝑗 , 𝑝′,±⟩ = 2𝜋𝑅
𝑘𝑖

(D(𝜃)SPECD(−𝜃)) 𝑝,𝑝′ . (11.29)

The scattering matrices for a PEC or PMC sphere are diagonal and can be related to the scattering
matrices, we discussed earlier for a Drude sphere in vacuum 𝑆PEC

TM,TM = 𝑆Dv
TM,TM = cosh(𝜒𝑖, 𝑗) − 1 or a

dielectric sphere in an electrolyte 𝑆PEC
TE,TE = 𝑆de

TM,TM = −
∫ 1

0 d𝑡
[
cosh(𝜒𝑖, 𝑗) − 2𝑡 cosh(𝑡 𝜒𝑖, 𝑗)

]
with 𝜒𝑖, 𝑗

defined in Eq. (9.5). After inserting the matrix elements into Eq. (9.3) for the single round-trip, we
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11.3 High-temperature limit

obtain
trM = cos2(𝛿)trMPEC−PEC − sin2(𝛿)trMPEC−PMC . (11.30)

By using the known connection between the scattering amplitudes, we can easily express the trace
expression for two identical electric reflectors in terms of the trace expression for the ded- and
DvD-model

trMPEC−PEC = trMDvD + trMded . (11.31)

Together with the single-round-trip result for the ded-model derived in Eq. (9.79) and the DvD-model
presented in Eq. (9.87), we obtain the following expression for the single-round-trip term of two
perfect electric conductors

trMPEC−PEC =
𝑦

𝑦2 − 1
+ 1
𝑧
+ 𝑧

6
log

(
𝑧2(𝑦2 − 1)
(𝑦𝑧 + 1/2)2

)
−

∑︁
𝜎=±

[
1

2𝑦 + 𝛼𝜎 − 1
6
√
𝑧

1
𝛼3/2
𝜎

log

(
2𝑦2 + 𝛼𝜎𝑦 − 1 + √

𝛼𝜎𝑧

2𝑦2 + 𝛼𝜎𝑦 − 1 − √
𝛼𝜎𝑧

) ]
.

(11.32)

Recall that 𝑦 = 1+ 𝑥 +𝑢𝑥2/2 introduced in Eq. (9.17), 𝛼± accounts for the ratio of the sphere radii and
is defined in Eq. (9.53) and 𝑧 = 2𝑦 + 𝛼+ + 𝛼− (9.78). For the case of mixed boundaries, so one sphere
is a perfect electric conductor, while the other sphere is a perfect magnetic conductor, the trace over
the round-trip operator yields

trMPEC−PMC =
𝜌1𝜌2

𝜋2

∫ 1

0
d2t

∫ ∞

−∞
d2x

∫ ∞

−∞
d2ye−(𝑥2

1+𝑥2
2 )e−(𝑦2

1+𝑦2
2 )

×
[ (

cosh(𝜒 (1)
1 ) − 1

) (
cosh(𝜒 (2)

2 ) − 2𝑡2 cosh(𝑡2𝜒 (2)
2 )

)
+

(
cosh(𝜒 (1)

1 ) − 2𝑡1 cosh(𝑡1𝜒 (1)
1 )

) (
cosh(𝜒 (2)

2 ) − 1
) ]
.

(11.33)

We performed the same variable transformation as in Sec 9.2.1, where the arguments of the hyperbolic
cosines according to Eq. (9.10) are given by 𝜒 (1)

1 = 2𝜌1(𝑥1𝑥2 + 𝑦1𝑦2) and 𝜒 (2)
2 = 2𝜌2(𝑥1𝑥2 + 𝑦1𝑦2).

After rewriting the hyperbolic cosines as exponential functions, we can apply the results for two-
dimensional Gaussian integrals. In summary, we find

trMPEC−PMC =
𝑦

𝑦2 − 1
+ 𝑧 − 2𝑦

2
log

(
𝑧2(𝑦2 − 1)
(𝑦𝑧 + 1/2)2

)
−

∑︁
𝜎=±

[
1

2𝑦 + 𝛼𝜎 − 1
2
√
𝑧

1
𝛼3/2
𝜎

log

(
2𝑦2 + 𝛼𝜎𝑦 − 1 + √

𝛼𝜎𝑧

2𝑦2 + 𝛼𝜎𝑦 − 1 − √
𝛼𝜎𝑧

) ]
.

(11.34)

The single-round-rip expressions simplify significantly for the sphere-plane geometry (𝑢 = 0). As
we discussed earlier, for the dielectrics in an electrolyte, 𝛼− becomes zero in this limit while 𝛼+ goes
to infinity. The terms for 𝜎 = + in Eqs. (11.32) and (11.34), thus vanish, and the remaining terms in
both cases summarize to

trM𝑢=0
PEC−PEC = trM𝑢=0

PEC−PMC =
𝑦

𝑦2 − 1
− 1

2𝑦
+ 𝑦

2
log

(
𝑦2 − 1
𝑦2

)
. (11.35)
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Figure 11.7 & Table 11.1: High-temperature result for two PEMC spheres. Ratio of the high-temperature
free energy F𝑇 and the single-round-trip result F (1)

𝑇 = −(𝑘B𝑇/2)trM scaled by the Apéry constant 𝜁 (3) =
1.202 . . .. The ratio is shown for 𝑢 = 0 (solid lines) and for 𝑢 = 1/4 (dashed lines) for 𝛿 = 0, 𝜋/6, 𝜋/3
and 𝜋/2. For small distances 𝑦 − 1 ≪ 1, the ratio converges towards the PFA result depicted by the dotted
lines with values 1, 2/3, 8/9 and 3/4 respectively for the different 𝛿-values. The table presents the expansion
coefficients for the rational model (11.37), with maximal relative deviations over the 𝑦, 𝑢 parameter space
given by: Δ × 103 = 4.6, 5.1, 5.0, 1.9 respectively for the four 𝛿-values. Adapted from [208].

Hence, we see that the repulsive magneto-electric term (11.34) and the attractive term (11.32) become
identical in the sphere-plane limit, which already Pirozhenko et al. [215] observed when they studied
the dipole-plane expansion of the Casimir free energy for the 𝛿 = 0 and 𝜋/2 limits. This also explains
the critical angle 𝛿crit = 𝜋/4 found in the dipole-plane limit we discussed in the previous Section.

Upon comparing the single-round-trip expression F (1)
𝑇 = −(𝑘B𝑇/2)trM with the full free energy

F𝑇 (see Fig. 11.7) we find that the single-round-trip result becomes exact for large distances 𝑦−1 ≫ 1,
while it only deviates by a numerical factor for small distances 𝑦 − 1 ≈ 𝑥 ≪ 1, depicted by the dotted
lines in Fig. 11.7. For small distances the contribution from (11.32) and (11.34) become identical:
trMPEC−PEC = trMPEC−PMC ≈ 1/2(𝑦 − 1) ≈ 1/2𝑥. The ratio with the PFA result (11.10) yields

F𝑇
F (1)
𝑇

=
ReLi3(e2i𝛿)

cos(2𝛿) for 𝑦 → 1 . (11.36)

As shown in Fig. 11.7, the ratio is a monotonic function in 𝑦 and has a weak dependence on 𝑢. It is
possible to capture the monotonic behaviour with a rational model, similar to our previous discussion
for the ded- and DvD-setup

𝜙𝛿 =
𝑛∏
𝑘=1

e𝑦−1 − 1 + 𝜈𝑘 (𝛿)
e𝑦−1 − 1 + 𝜇𝑘 (𝛿)

, (11.37)

where the fitting parameters 𝜈𝑘 and 𝜇𝑘 now depend on 𝛿. We fitted the data for 𝑢 = 0.25 and 𝑢 = 0
such that the maximal deviation over the distance range 𝑦 and over 𝑢 is minimized. The obtained
fitting parameters are presented in Tab. 11.1. Hence, combining the single-round-trip expression
(11.30) with the rational model (11.37) provides a good approximation for the full free energy.

Note that for the special case of 𝑢 = 0 and 𝛿 = 𝜋/4 the single round-trip does not contribute. Then,
the next order in the round-trip expansion needs to be considered. The double-round-trip expression
for the sphere-plane setup is given by

trM2
𝑢=0 = cos2(2𝛿)trM2

PEC−PEC − sin2(2𝛿)trM2
PEC−PMC . (11.38)
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11.4 A sum rule for PEMC objects

We already observed in Sec. 9.4.1, that the double-round-trip contributions for the sphere-plane setup
can be derived from the respective single-round-trip expressions for two equally sized spheres by
replacing 𝑦 with 2𝑦2 − 1, which leads to

trM2
PEC−PEC =

2𝑦2 − 1
4𝑦2(𝑦2 − 1) +

1
4𝑦2 + 2𝑦2

3
log

(
𝑦6(𝑦2 − 1)
(𝑦2 − 1/4)4

)
− 2

4𝑦2 − 1
+ 1

6𝑦
log

(
4𝑦3 − 3𝑦 + 1
4𝑦3 − 3𝑦 − 1

)
trM2

PEC−PMC =
2𝑦2 − 1

4𝑦2(𝑦2 − 1) + log
(
𝑦6(𝑦2 − 1)
(𝑦2 − 1/4)4

)
− 2

4𝑦2 − 1
+ 1

2𝑦
log

(
4𝑦3 − 3𝑦 + 1
4𝑦3 − 3𝑦 − 1

)
,

(11.39)
where 𝑦 = 1 + 𝑑/𝑅 with the surface-to-surface distance 𝑑 between sphere and plane.

11.4 A sum rule for PEMC objects

In this Section, we are going to examine a certain characteristic of the system of two PEMC objects.
Rode et al. [56] observed, that the Casimir force between two PEMC plates at zero temperature obeys
a sum rule, where the integral

∫ 𝜋

0 d𝛿𝐹 (𝛿) over the system parameter 𝛿 yields zero. A more recent
work involving the study of the Casimir interaction between a PEMC plate and a Weyl semi-metal
also found that this sum rule holds [216]. Here, we will show that this is, in general, no longer true
for spherical objects.

In the PFA limit (11.3), we find that independent of the temperature, the integral over 𝛿 is
proportional to

∫ 𝜋/2
0 d𝛿 cos(2𝛿𝑟) = sin(𝜋𝑟)/2𝑟 which is zero for integer numbers 𝑟 of round-trips.

Hence, the sum rule holds in the PFA regime for all temperatures. However, if we go beyond the PFA
limit and look, for example, at the large-distance result for two spheres (11.22), where the integral
over the force 𝐹dip-dip = −𝜕𝐿Fdip-dip yields∫ 𝜋/2

0
d𝛿𝐹dip-dip(𝛿) = − ℏ𝑐

32L2

(
𝑅1𝑅2

L2

)3 [
18𝑔(𝜈) cosh(𝜈) + 18𝑔(𝜈)2 + 14𝑔(𝜈)3 cosh(𝜈)

+ 2𝑔(𝜈)4 (2 cosh2(𝜈) + 1
) ] (11.40)

with 𝑔(𝜈) = 𝜈/sinh(𝜈). The integral is non-zero for all temperatures. To examine how the sum rule
changes with distance, we thus examine the integral over the Casimir force in the high-temperature
limit for various distances, as it is depicted in Fig. 11.8. We determined the integral over the
dimensionless thermal Casimir force

I =
L
𝑘B𝑇

∫ 𝜋

0
d𝛿𝐹𝑇 (𝛿) (11.41)

for 𝑢 = 0.01, 0.05 and 0.25 scaled by the factor 𝑦3 which for large distances behaves like (𝑢𝑥2/2)3 ≈
(𝐿2/2𝑅1𝑅2)3 and thus accounts for the scaling of the dimensionless Casimir force in the large
distance limit (depicted by the dotted line in Fig. 11.8). In contrast to the sphere-sphere geometry,
the sphere-plane (𝑢 = 0) geometry fulfils the sum-rule also for large distances, as it is depicted in
the upper panel of Fig. 11.8. However, the sum rule no longer holds for intermediate distances. The
discrepancy can only be explained if higher round-trip orders are taken into account. As we have
seen from the discussion in the previous Section, the single-round-trip result scales with cos(2𝛿)
and thus vanishes if we perform the integral over 𝛿, which is not the case for the double-round-trip
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11 Application to perfect electromagnetic conductor spheres
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Figure 11.8: Sum rule in the high-
temperature limit. Integral of the dimen-
sionless Casimir force given in Eq. (11.41)
scaled by the distance ratio 𝑦3. The lower
panel depicts the integral for 𝑢 = 0.01
(squared symbols), 𝑢 = 0.05 (diamond sym-
bols) and 𝑢 = 0.25 (triangle symbols), which
for large distances 𝑦 − 1 ≫ 1 converge to-
wards the dipole-dipole result −9𝜋/64, pre-
sented by the dotted lines. The boxed region
for 𝑦 − 1 < 10 is zoomed out in the upper
panel, which additionally shows the result for
𝑢 = 0 (filled circle symbols). The integral
converges towards zero for small and large
distances. The violation of the sum rule at
intermediate distances can only be explained
when taking at least double round-trips (blue
dashed line) into account. Adapted from
[208].

term (11.38). The dashed line in the upper panel of Fig. 11.8, depicts the double-round-trip result.
As expected, it converges towards the numerical results (filled circles) for large distances, where the
double-round-trip approximation F𝑇/𝑘B𝑇 ≈ −trM − trM2/2 is exact.

11.5 Switching the sign between PEMC spheres

In the previous Sections, we examined the Casimir interaction for small and large distances and low
and high temperatures. We found that the critical angle 𝛿crit changes as a function of the system
parameters. In the following, we utilize these findings to examine the range of 𝛿 where an equilibrium
position exists and how it changes with temperature and radius variations of one of the spheres. While
stable equilibrium positions were ruled out for reciprocal objects in vacuum [40], they are possible
for non-reciprocal materials [7], as we observe here.

In Fig. 11.9, we depict the zero-force curves in the 𝑥𝛿-plane for the sphere-plane geometry (solid
lines) and two equally sized spheres (dashed lines). The zero-force curves separate the domains,
where the force changes its sign as a function of 𝑥 and 𝛿. The force is always repulsive above a curve
and attractive below. We examined the zero- (blue curves) and high-temperature (red curves) limits
for both geometries. Finite-temperature results can be found between these two limiting cases in the
yellow-shaded area. The curves for geometries with 0 < 𝑢 < 1/4 lie between the 𝑢 = 0 and 1/4
limit, which is explanatory presented for the zero-temperature curves by the blue-shaded area. The
zero-force curves increase monotonically with distance for all mentioned cases and converge towards
the critical angles we computed earlier for small and long distances, which are depicted as dash-dotted
lines. While discussing the PFA corrections in Sec. 11.1.2, we observed that the curvature effects
become more important as the distance between the objects increases. With the result in Fig. 11.9,
we can now confirm that the variation in the critical angle is smaller for a sphere in front of a plane
compared to two equally sized spheres.

Instead of the effect of geometrical variation, we are more interested in how the temperature changes
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Figure 11.9: Left Panel: Curves of vanishing Casimir force as a function of the aspect ratio 𝑥 = 𝐿/𝑅eff
and the duality parameter 𝛿 in units of 𝜋/4. The zero-force curves are shown for the sphere-plane geometry
(𝑢 = 0) as solid lines and two equally-sized spheres (𝑢 = 1/4) depicted as dashed lines. Blue-coloured curves
present the zero-temperature result, while the red curves for each geometry represent the high-temperature
limit. In each of the four cases, the Casimir force is attractive for values of 𝑥 and 𝛿, which lay below the curve
and repulsive for values above the curve. The yellow-shaded area between the zero- and high-temperature
limit of the sphere-plane geometry depicts the area where the zero-force curve for intermediate temperatures
are located. Zero-force curves at zero temperature for geometries with 0 < 𝑢 < 1/4 can be found in the
blue-shaded area. Dash-dotted lines depict the critical angles 𝛿crit in the small- and large distances limit,
which we determined in Sec. 11.1 and Sec. 11.2. For the sphere-sphere geometry, we found that the zero-force
curves intersect at a point which is highlighted by the black dotted lines. The arrows marked with (a)-(d)
present parameter ranges which are analysed in the right panel. Right Panel: 2D-force plots as function of
the distance 𝐿/𝑅eff and temperature 𝐿/𝜆𝑇 scaled by the force for two perfect reflectors. The force fields are
shown for different values of 𝑢 and 𝛿. Figures (a) and (b) depict the Casimir force between a PEMC sphere
and plane, while Figures (c) and (d) present the results for two equally sized spheres. The solid lines present
the zero-force curves and the dotted lines define where the Casimir energy is vanishing. Similar figures can
be found in Ref. [208].
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11 Application to perfect electromagnetic conductor spheres

the equilibrium positions. Variations in temperature are more relevant for experimental setups since
the temperature can serve as an external control parameter, while geometrical and material parameters
are usually fixed. Therefore, 𝑢 and 𝛿 have set values in the following.

We start with the sphere-plane geometry. According to Fig. 11.9 the equilibrium distance grows
with increasing temperature if 0.96𝜋/4 ⪅ 𝛿 < 𝜋/4. There is no equilibrium for 𝛿 larger than 𝜋/4
and for 0.92𝜋/4 ⪅ 𝛿 ⪅ 0.96𝜋/4, the force vanishes only at a finite temperature. To further analyse
the temperature dependence, we computed the force map for fixed values of 𝛿, as can be seen in
Fig. 11.9 (a) and (b) for 𝛿 = 0.95𝜋/4 and 0.98𝜋/4, with each value as representative of the two just
mentioned regimes. The Casimir force was calculated for various temperatures and distances and is
normalized by the Casimir force for two perfect electric conductors (𝛿 = 0). The zero-force curve is
depicted as a black line, and we also show the curve where the energy vanishes as a dotted line. We
can observe from (a) that repulsion only occurs for distances 𝐿 < 0.3𝑅eff and for 𝐿 > 0.2𝜆𝑇 . At room
temperature, this would correspond to distances 𝐿 ≈ 1.5 μm and effective radii of about 𝑅eff ≈ 5 μm,
which can be reached in experiments [217]. On the contrary, for 𝛿 = 0.98𝜋/4 depicted in (b) the force
is repulsive for all temperatures in the small-distance regime. There is only a narrow band around
𝐿 ≈ 0.5𝑅eff, where the zero-force curve is pushed to the right for increasing temperature, meaning
that for fixed sphere radii, the equilibrium distance increases with temperature.

Next, we want to analyse how increasing the temperature modifies the equilibrium distance between
two equally-sized spheres (𝑢 = 1/4). As shown in Fig. 11.9, there exists a critical angle (≈ 0.99𝜋/4),
where the zero-temperature and high-temperature curves intersect. This equilibrium point is stable
against temperature changes. For values of 𝛿 below this angle, the sphere-sphere geometry behaves
similarly to the sphere-plane geometry discussed earlier, where increasing the temperature pushes
the equilibrium distance to higher values. The behaviour changes for values of 𝛿 above this angle but
below 𝛿 ≈ 1.04𝜋/4 where an increase in temperature results in a smaller equilibrium distance. The
force vanishes only at a certain temperature in the range 1.04𝜋/4 ⪅ 𝛿 ⪅ 1.07𝜋/4 range. We again
analyse force fields for certain 𝛿-values to analyse the temperature dependence further. We choose
a system with 𝛿 = 𝜋/4 and one with 𝛿 = 1.05𝜋/4, respectively depicted in Fig. 11.9 (c) and (d).
Compared to (b) is, the distance range of repulsion in (c) larger, and raising the temperature causes the
equilibrium distance to move towards smaller values. Contrarily, for 𝛿 = 1.05𝜋/4 repulsion occurs
only for 𝐿 > 0.5𝜆𝑇 and 𝐿 > 3𝑅eff. At room temperature, this would lead to a distance of about
3.8 μm and an effective radius of about 1.8 μm.
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12 Conclusions and Outlook

This thesis gave insights into forces acting on spherical objects in both the quantum and classical
regimes. Specifically, we examined how particular spheres behave when subjected to a structured
light field and studied the Casimir force between two spherical objects.

The scattering of electromagnetic fields at spherical objects forms the basis for discussing the
optical and dispersion forces. In the first part of this thesis, we thus solved the scattering problem
for a bi-isotropic sphere. Bi-isotropic materials introduce cross-polarisabilities, which lead to the
mixing of transverse electric and magnetic field modes when scattered at an object. Additionally, we
obtained analytical expressions for the reflection coefficients in various limiting cases, such as the
geometrical optics regime and the static limit.

Optical trapping with a vortex beam

One of the most prominent applications of optical forces is the trapping of objects in a focused beam.
A number of factors affect the trapping, such as the type of the structured field, the geometry of the
trapped particle, and its material. Thus, an accurate model is needed to capture the complex interplay
between these factors.

We studied a focused Laguerre-Gaussian beam by applying the Debye-Wolf integral representation.
This model goes beyond the paraxial approximation and accurately captures the strongly focused
light beam used in most applications of optical tweezers. Optical setups often introduce aberrations,
which may impact the trapping efficiency. We thus incorporated aberrations in our theory by using
the method of vectorial ray tracing. Specifically, we considered spherical aberration caused by the
transfer of the light beam through an interface. Furthermore, we accounted for astigmatism, which
typically arises from a misalignment in the optical setup. We computed the multipole expansion
from the angular spectrum representation of the focused beam and derived the scattered field by
applying Mie theory for a chiral sphere. The spherical symmetry of the trapped object allows for
analytic calculations of the optical force components. We thus obtained the MDSA+ theory for chiral
objects trapped by a vortex beam. Our obtained force expression extended previous results [129].
The force components are presented in a multipole expansion, which we evaluated numerically. Our
implementation allowed for an efficient and fast calculation of the optical force.

We applied the MDSA+ theory to study the trapping of chiral and dielectric objects in vortex beams
with topological charge ℓ. We observed different trapping regimes depending on the sphere size and
the topological charge. If the spherical object is much smaller than the ring of maximal intensity, the
object is trapped in the annular spot. In the opposite case, where the sphere is larger than the ring, it
can be trapped along the optical axis. Within the ring regime, the particles exhibit a torque, which
is orientated in the same direction as defined by the sign of the topological charge. On-axis trapped
particles displaced from their equilibrium position, on the other hand, experience a negative torque.
This torque is highly sensitive to the size of the trapped sphere and relatively robust against small
radial displacements from the optical axis.

One important application of optical tweezers is the enantioselection of particles. Many biological
structures are chiral and can, in the first step, be modelled by a spherical object with a chiral response.
We investigated how the torque on a sphere is influenced by chirality and discovered that certain
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12 Conclusions and Outlook

beam modes are more affected by the chiral nature of the trapped particle than others.
Furthermore, we discussed how spherical aberration influences vortex beams of different topolog-

ical charges. We also examined the influence of spherical aberrations on the trapping.
Finally, we applied our theory to fit an experimentally measured torque. The torque is accessed

by measuring the rotation angle of a trapped bead that is displaced from its on-axis equilibrium by
a constant force. Our theoretical analysis indicates that the trapped bead’s characteristics can be
determined by its rotation angle. We thus proposed a method that allows us to determine the size of
the bead from the measured rotation angles. For this method to work, it is necessary to determine the
rotation angle with a high accuracy from the experimental data. Compared to earlier studies [142],
we thus proposed a new scheme to extract the rotation angle based on a two-dimensional Gaussian
fit of the spatial distribution of the bead. We fitted the rotation angles with the MDSA+ theory,
where the radius of the bead was used as a free parameter. The proposed method allows for an in
situ measurement of the radius of a trapped bead, with a high accuracy. Additionally, we found that
the method is relatively robust against optical aberrations, specifically for spheres in the geometrical
optics limit.

Our findings suggest that further research is possible. In our discussions above, we assumed that
the refractive index of the bead is known. Our method could also serve as a probe for the refractive
index of a trapped bead if the radius of the particle is known but not the refractive index. Additionally,
beads trapped by a vortex beam could potentially be utilized to probe the optical aberrations of the
system. Furthermore, we found that higher-order vortex beams are more sensitive to a chiral optical
response. Future studies might involve specific applications of vortex beams to select particles based
on their chiral polarisabilities.

Casimir interaction

In the third part of this thesis, we studied the Casimir interaction between spherical objects. The
Casimir interaction is generally considered a quantum effect arising from the fluctuations of the
electromagnetic vacuum. However, at high temperatures, thermal fluctuations can make the dominant
contribution, making the Casimir force purely classical.

We began by analysing the classical limit of the Casimir interaction, specifically with the well-
studied system of Drude spheres in vacuum. One unique property of this system is that the Casimir
interaction in the high-temperature limit becomes a universal function of the geometrical parameters.
The finite DC-conductivity of the spheres causes the static dielectric function to diverge, making
the system independent of any material properties. Earlier work questioned whether an analytical
derivation of the Casimir free energy for this system is feasible. However, we were able to derive
an analytical expression by using a bi-coloured partition scheme for the scattering process between
the spheres. Additionally, we introduced a diagrammatic representation for the scattering process
to account for multiplicities arising from a cyclic invariance. We established a relation between
electrostatics and Casimir physics by relating our result for the Drude sphere to the capacitance
matrix elements of two spherical conductors. With the exact expression for the Casimir free energy
available, we also computed an analytical expansion in the small-distance regime.

Two dielectric spheres in an electrolytic solution exhibit similar behaviour to the Drude spheres
in vacuum. The universality of the Drude setup in the static limit originates from the divergence
of the dielectric function of the spheres. In contrast, for the dielectric spheres in an electrolyte, the
dielectric function of the surrounding medium diverges for vanishing frequency. The two setups can
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thus be seen as dual to each other. Based on the methods introduced for the Drude case, we developed
a semi-analytical expression for the Casimir interaction between the dielectric objects. We found
a formula applicable to all distances between objects, which enables simple calculations without
extensive numerical computations. The main difference between the Drude- and dielectric-setup is
the minimal distance over which the universal contribution dominates. In the case of Drude spheres,
this distance is essentially the thermal wavelength of about≃ 8 μm at room temperature, while a much
smaller distance ∼ 100 nm is found in the case of dielectric spheres. Thus, the universal Casimir
free energy of the dielectrics in an electrolyte covers a much broader distance range. Our result for
dielectric objects in an electrolyte also has relevance for colloidal and biological systems. We found
that the Casimir interaction is of the order of 𝑘B𝑇 in the range where the universal interaction provides
the dominant contribution to the Casimir interaction. Recent studies already extended our finding
to another simple setup relevant to biological systems of cylinders [28]. Future research might also
look into more realistic geometries. While our semi-analytical approach to the Casimir free energy
is sufficient for most realistic applications, determining a full analytical result for the two dielectric
spheres in an electrolyte is also still of interest.

The last two Chapters of this work were devoted to the Casimir force between bi-isotropic spheres.
The Casimir interaction is often computed with the proximity force approximation (PFA). Based on
earlier calculations [33], we demonstrated that the PFA result can also be obtained for polarisation-
mixing materials through an asymptotic expansion of the scattering formula. Unlike previous calcula-
tions for dielectric objects, we determined the PFA expression by considering all possible polarisation
combinations in the scattering process. We introduced a recursive description for mixing of the reflec-
tion coefficients for fixed numbers of round-trips. We evaluated the round-trip contributions by using
the method of generating functions. Furthermore, we also determined general expressions for PFA
corrections. Additionally, we derived an expression for the Casimir free energy in the large-distance
limit. Specifically, we evaluated the dipole-dipole and dipole-plane approximation for bi-isotropic
materials.

We applied our findings for small and large distances to an idealized system, namely perfect
electromagnetic conductor (PEMC) spheres. This model interpolates between a perfect electric and
perfect magnetic conductor with a single parameter, allowing us to disentangle the interplay between
material response, geometry and temperature. We studied the Casimir force between two dissimilar
spheres for all distance and temperature regimes. The numerical calculation is based on a plane-wave
method developed by [109], which we extended to bi-isotropic materials. Based on our earlier find-
ings for general bi-isotropic spheres, we derived analytical results for several limiting cases between
PEMCs. We used numerical results to discuss the Casimir interaction at intermediate separations and
temperatures. We discovered that the Casimir force changes its sign for specific material parameters
with increasing distance from repulsion to attraction. Hence, it allows for the existence of a stable
equilibrium. Further analysis revealed that the equilibrium position can also change with tempera-
ture. Although PEMC materials constitute an idealized system, our results show that temperature
can tune stable equilibria. To explore more realistic materials, we can consider a situation where
the response of the PEMC is limited to certain frequencies. Whether a narrow-band response can
lead to an equilibrium state or even a reduction in the Casimir force needs to be examined in the future.
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A Special functions and integrals

In this appendix, we provide definitions and limiting cases of several special functions, which we use
throughout this thesis. Furthermore, we present results for certain integrals.

A.1 Modified Bessel function

Studying the scattering of electromagnetic waves at spherical objects for imaginary frequencies
yields reflection coefficients expressed in terms of modified Bessel functions of the first kind 𝐼𝜆(𝑧)
and modified Hankel functions 𝐾𝜆(𝑧).

We apply the Debye expansion to expand the reflection coefficients at large aspect ratios, as
discussed in Section 4.2. For large orders of 𝜆 ≫ 1, the Debye expansions of the modified Bessel
functions are given by [185, Eqs. 10.41.3, 10.41.4]

𝐼𝜆(𝜆𝑧) ≈ 1
(2𝜋𝜆)1/2

e𝜆𝜂

(1 + 𝑧2)1/4

(
1 + 𝑈1(𝑝)

𝜆

)
, (A.1a)

𝐾𝜆(𝜆𝑧) ≈
( 𝜋
2𝜆

)1/2 e−𝜆𝜂

(1 + 𝑧2)1/4

(
1 − 𝑈1(𝑝)

𝜆

)
, (A.1b)

where 𝜂 =
√

1 + 𝑧2 − arcsinh(1/𝑧),𝑈1 = (3𝑝 − 5𝑝3)/24 with 𝑝 = 1/
√

1 + 𝑧2. The Debye expansions
of the derivatives are given by [185, Eqs. 10.41.5, 10.41.6]

𝐼 ′𝜆(𝜆𝑧) ≈
1

(2𝜋𝜆)1/2
(1 + 𝑧2)1/4e𝜆𝜂

𝑧

(
1 + 𝑉1(𝑝)

𝜆

)
, (A.2a)

𝐾 ′
𝜆(𝜆𝑧) ≈ −

( 𝜋
2𝜆

)1/2 (1 + 𝑧2)1/4e−𝜆𝜂

𝑧

(
1 − 𝑉1(𝑝)

𝜆

)
(A.2b)

with 𝑉1(𝑝) = (−9𝑝 + 7𝑝3)/24. We are particularly interested in the logarithmic derivatives of the
modified Bessel functions, which, according to the expressions above, yield

𝐼 ′𝜆(𝜆𝑧)
𝐼𝜆(𝜆𝑧) ≈

√
1 + 𝑧2

𝑧

[
1 − 1

2𝜆
𝑧2

(1 + 𝑧2)3/2

]
, (A.3a)

𝐾 ′
𝜆(𝜆𝑧)

𝐾𝜆(𝜆𝑧) ≈ −
√

1 + 𝑧2

𝑧

[
1 + 1

2𝜆
𝑧2

(1 + 𝑧2)3/2

]
. (A.3b)

We apply [185, Eqs. 10.30.1, 10.30.2] to get the expansion of the modified Bessel functions for
small arguments 𝑥 ≪ 1

𝐼𝑙+1/2(𝑥) ≈
√︂

2
𝜋

𝑥𝑙+1/2

(2𝑙 + 1)!! +
√︂

1
2𝜋

𝑥𝑙+5/2

(2𝑙 + 3)!! , (A.4a)

𝐾𝑙+1/2(𝑥) ≈
√︂
𝜋

2
(2𝑙 − 1)!!
𝑥𝑙+1/2 . (A.4b)

We apply these formulas for the expansion of the reflection coefficients in the static limit, discussed
in Sec. 4.3.
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A.2 Angular function
The angular functions defined in Eq. (4.28) are expressed as function of associated Legendre poly-
nomials 𝑃𝑚𝑙 (𝑧) of degree 𝑙 and order 𝑚, as follows

𝜋𝑙 (𝑧) = 𝑃′
𝑙 (𝑧) =

𝑃1
𝑙 (𝑧)√
𝑧2 − 1

, 𝜏𝑙 (𝑧) = −𝑧𝜋𝑙 (𝑧) + 𝑙 (𝑙 + 1)𝑃𝑙 (𝑧) . (A.5)

For large orders 𝑙, we use the expansion for the Legendre polynomial given in [185, Eq. 14.15.13],
which is based on the Debye expansion for the Bessel functions. We get

𝜋𝑙 (cosh 𝑢)
𝑙 (𝑙 + 1) ≈ (−1)𝑙−1

𝜆

(
1

2𝜋𝜆 sinh3 𝑢

)1/2
e𝜆𝑢 , (A.6a)

𝜏𝑙 (cosh 𝑢)
𝑙 (𝑙 + 1) ≈ (−1)𝑙

(
1

2𝜋𝜆 sinh 𝑢

)1/2
e𝜆𝑢

(
1 − 7

8
coth 𝑢
𝜆

)
, (A.6b)

where 𝜆 = 𝑙 + 1/2.
Using known results for the Legendre polynomials given in [185, Eq. 14.8.12], we obtain the

following expansions for large arguments

𝜋𝑙 (𝑧) ≈ (2𝑙)!
2𝑙𝑙!(𝑙 − 1)! 𝑧

𝑙−1 , 𝜏𝑙 (𝑧) ≈ (2𝑙)!
2𝑙 [(𝑙 − 1)!]2 𝑧

𝑙 . (A.7)

Note that 𝜏𝑙 (𝑧) ≈ 𝑧𝑙𝜋𝑙 (𝑧) in the limit 𝑧 ≫ 1.

A.3 Polylogarithm
The polylogarithm of order 𝑛 is defined by [185, Eq. 25.12.10]

Li𝑛 (𝑧) =
∞∑︁
𝑟=1

𝑧𝑟

𝑟𝑛
. (A.8)

The polylogartihms of order 𝑛 = 0 and 𝑛 = 1 are given by

Li0(𝑧) = 𝑧

1 − 𝑧 , Li1(𝑧) = − log(1 − 𝑧) . (A.9)

The order of the polylogarithms can be lowered or increased by respectively differentiating or inte-
grating with respect to the argument, as follows

𝑧
d
d𝑧

Li𝑛 (𝑧) = Li𝑛−1(𝑧) , (A.10)

Li𝑛+1(𝑧) =
∫ 𝑧

0

Li𝑛 (𝑡)
𝑡

d𝑡 . (A.11)

Both expressions can be obtained directly from the series expansion given above.
In Part III of this work, we introduce various multivariant integrals over rational functions, which

can be evaluated with the help of the polylogarithms. In particular, we define the following three
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integrals ∫ 1

0

d𝑡𝑚
𝑡𝑚

. . .

∫ 𝑡2

0

d𝑡1
𝑡1

𝑐𝑡1 + 𝑑𝑡21 + 𝑒𝑡31 + 𝑓 𝑡41
(1 − 𝑧1𝑡1) (1 − 𝑧2𝑡1) =

=
𝑧3

1𝑐 + 𝑧2
1𝑑 + 𝑧1𝑒 + 𝑓

𝑧3
1(𝑧1 − 𝑧2)

Li𝑚(𝑧1) +
𝑧3

2𝑐 + 𝑧2
2𝑑 + 𝑧2𝑒 + 𝑓

𝑧3
2(𝑧2 − 𝑧1)

Li𝑚(𝑧2)

+ 𝑒

𝑧1𝑧2
+ 𝑓 (𝑧1 + 𝑧2)

(𝑧1𝑧2)2 + 1
2𝑚

𝑓

𝑧1𝑧2
,

(A.12)

∫ 1

0

d𝑡𝑚
𝑡𝑚

. . .

∫ 𝑡2

0

d𝑡1
𝑡1

𝑐𝑡1 + 𝑑𝑡21 + 𝑒𝑡31 + 𝑓 𝑡41

[(1 − 𝑧1𝑡1) (1 − 𝑧2𝑡1)]2 =

=
2𝑧3

1𝑧2𝑐 − 𝑧2
1(𝑧1 + 𝑧2)𝑑 − 2𝑧2

1𝑒 − (3𝑧1 − 𝑧2) 𝑓
𝑧2

1(𝑧1 − 𝑧2)3
Li𝑚(𝑧1)

+ 2𝑧3
2𝑧1𝑐 − 𝑧2

2(𝑧1 + 𝑧2)𝑑 − 2𝑧2
2𝑒 − (3𝑧2 − 𝑧1) 𝑓

𝑧2
2(𝑧2 − 𝑧1)3

Li𝑚(𝑧2)

+ 𝑧
3
1𝑐 + 𝑧2

1𝑑 + 𝑧1𝑒 + 𝑓

𝑧2
1(𝑧1 − 𝑧2)2

Li𝑚−1(𝑧1) +
𝑧3

2𝑐 + 𝑧2
2𝑑 + 𝑧2𝑒 + 𝑓

𝑧2
2(𝑧2 − 𝑧1)2

Li𝑚−1(𝑧2) ,

(A.13)

∫ 1

0

d𝑡𝑚
𝑡𝑚

. . .

∫ 𝑡2

0

d𝑡1
𝑡1

𝑐𝑠𝑡1 + 𝑑𝑠3𝑡21 + 𝑒𝑠5𝑡31 + 𝑓 𝑠4𝑡41
(1 − 𝑧1𝑡1) (1 − 𝑧2𝑡1) (1 − 𝑧1𝑠2𝑡1) (1 − 𝑧2𝑠2𝑡1)

=

=
𝑠𝑧3

1𝑐 + 𝑠3𝑧2
1𝑑 + 𝑠5𝑧1𝑒 + 𝑠5 𝑓

𝑧2
1(𝑠2 − 1) (𝑧1 − 𝑧2) (𝑧1𝑠2 − 𝑧2) (𝑧1 − 𝑠2𝑧2)

(𝑧2 − 𝑠2𝑧1)Li𝑚(𝑧1)

+ 𝑠𝑧3
2𝑐 + 𝑠3𝑧2

2𝑑 + 𝑠5𝑧2𝑒 + 𝑠5 𝑓

𝑧2
2(𝑠2 − 1) (𝑧2 − 𝑧1) (𝑧2𝑠2 − 𝑧1) (𝑧2 − 𝑠2𝑧1)

(𝑧1 − 𝑠2𝑧2)Li𝑚(𝑧2)

+ 𝑠(𝑠2𝑧1)3𝑐 + 𝑠3(𝑠2𝑧1)2𝑑 + 𝑠5𝑠𝑧1𝑒 + 𝑠5 𝑓

(𝑠2𝑧1)2(𝑠2 − 1) (𝑧1 − 𝑧2) (𝑧1𝑠2 − 𝑧2) (𝑧1 − 𝑠2𝑧2)
(𝑧1 − 𝑠2𝑧2)Li𝑚(𝑠2𝑧1)

+ 𝑠(𝑠2𝑧2)3𝑐 + 𝑠3(𝑠2𝑧2)2𝑑 + 𝑠5𝑠𝑧2𝑒 + 𝑠5 𝑓

(𝑠2𝑧2)2(𝑠2 − 1) (𝑧2 − 𝑧1) (𝑧2𝑠2 − 𝑧1) (𝑧2 − 𝑠2𝑧1)
(𝑧2 − 𝑠2𝑧1)Li𝑚(𝑠2𝑧2) .

(A.14)

All three integrals can be evaluated by first performing a partial fraction decomposition of the
integrand and then by applying (A.9) and (A.11). Alternatively, they can also be evaluated by using
a standard library for symbolic mathematics like SymPy [218].

A.4 Generalized Lambert series

Here, we present a special case of the generalized Lambert series introduced by [189] as the so-called
F-series. We follow the notation and results presented in Ref. [190], where the Lambert series is
defined by

L𝑞 (𝑠, 𝑧) =
∞∑︁
𝑘=1

𝑘𝑠𝑞𝑘𝑥

1 − 𝑞𝑘 . (A.15)

We will apply the Lambert series for the short-distance expansion of the Casimir free energy, which
we carried out in Chap. D. For our purposes, we set 𝑞 = exp(−𝜇) with 𝜇 ≤ 0. The expansion of the
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Lambert series for 𝑞 → 1 or equivalently 𝜇 ≈ 0 is discussed in Ref. [190]. For 𝑠 = 0, the asymptotic
expansion reads

Lexp(−𝜇) (0, 𝑧) = − 1
𝜇

[
𝜓(𝑧) + log(𝜇) −

∞∑︁
𝑘=1

𝜁 (1 − 𝑘)
𝑘!

𝐵𝑘 (𝑧) (−𝜇)𝑘
]
, (A.16)

where 𝜓(𝑧) defines the digamma function, while 𝐵𝑘 (𝑧) accounts for the Bernoulli polynomial of
degree 𝑘 . For negative integers 𝑠 = −𝑚, the expansion of the Lambert series reads

Lexp(−𝜇) (−𝑚, 𝑧) = − 1
𝜇

{
[𝑚𝜁 ′(1 − 𝑚, 𝑧) + (log(𝜇) − 𝐻𝑚−1)𝐵𝑚(𝑧)] (−𝜇)

𝑚

𝑚!

−
∞∑︁
𝑘=0
𝑘≠𝑚

𝜁 (1 + 𝑚 − 𝑘)
𝑘!

𝐵𝑘 (𝑧) (−𝜇)𝑘
 .

(A.17)

The first term in the expansion refers to the derivative of the Hurwitz-Zeta function 𝜁 (𝑠, 𝑧) with
respect to the first argument. The Hurwitz-zeta function is a generalization of the Riemann zeta
function with 𝜁 (𝑠) = 𝜁 (𝑠, 1). 𝐻𝑛 defines the harmonic number with 𝐻𝑛 =

∑𝑛
𝑘=1 1/𝑘 .

A.5 Bell polynomial

In this Section, we present a special class of multivariate polynomials known as the partial ordinary
(o) Bell polynomials. They are defined using a generating function [194, 195]( ∞∑︁

𝑛=1
𝑥𝑛𝑧

𝑛

) 𝑘
=

∞∑︁
𝑛=𝑘

𝐵o
𝑛,𝑘 (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑧𝑛 . (A.18)

The Bell polynomials of weight 𝑛 and degree 𝑘 , have the following representation

𝐵o
𝑛,𝑘 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =

∑︁
𝑚𝑖

𝑘!
𝑚1!𝑚2! · · ·𝑚𝑛!

𝑥𝑚1
1 𝑥𝑚2

2 · · · 𝑥𝑚𝑛𝑛 with
𝑛∑︁
𝑖=1

𝑚𝑖 = 𝑘 ,
𝑛∑︁
𝑖=1

𝑖𝑚𝑖 = 𝑛

(A.19)
with the conventions

𝐵0,0 = 1 , 𝐵𝑛,0 = 0 . (A.20)

A.6 Gaussian integral

In this Section, we review the results for one- and multidimensional Gaussian-type integrals, which
we utilize throughout this work.
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A.6.1 One dimensional Gaussian integral

First, we consider the following Gaussian integral over a single variable∫
d𝑥 exp

(
−1

2
𝑎𝑥2 + 𝑏𝑥

)
=

√︂
2𝜋
𝑎

exp
(
𝑏2

2𝑎

)
(A.21)

which goes from −∞ to ∞ and is valid for 𝑎 > 0. We are particularly interested in the 𝑚-th moment,
which is defined as

⟨𝑥𝑚⟩ =
∫

d𝑥𝑥𝑚 exp
(
− 1

2𝑎𝑥
2
)

∫
d𝑥 exp

(
− 1

2𝑎𝑥
2
) . (A.22)

When 𝑚 takes odd values, the expression becomes zero. For even values of 𝑚 (𝑚 = 2𝑛), we obtain:

⟨𝑥2𝑛⟩ = (2𝑛 − 1)!! 1
𝑎𝑛
. (A.23)

A.6.2 Saddle-point approximation

Throughout this work, we have to deal with integrals of the form [219]

𝐼 =
∫

d𝑥𝑔(𝑥) exp(−𝑎 𝑓 (𝑥)) (A.24)

which we evaluate for 𝑎 ≫ 1. We assume that 𝑓 is an analytic function and has an isolated minimum
at 𝑥sp, called the saddle point (sp), which is defined by

d 𝑓 (𝑥)
d𝑥

���
𝑥=𝑥sp

= 0 ,
d2 𝑓 (𝑥)

d𝑥2

���
𝑥=𝑥sp

< 0 . (A.25)

The main contribution to the integral comes from 𝑥 ≈ 𝑥sp. All other contributions are exponentially
suppressed for large 𝑎. We thus obtain the dominant contribution to the integral 𝐼 by expanding 𝑓 and
𝑔 in a Taylor expansion around the saddle, with 𝑓 =

∑∞
𝑛=0 𝑓

(𝑛)
sp (𝑥 − 𝑥sp)𝑛/𝑛!, where 𝑓 (𝑛)sp denotes the

𝑛-th derivative of 𝑓 evaluated at the saddle. A similar expansion can be carried out for 𝑔. Inserting
the Taylor expansions in Eq. (A.24) and approximating the exponential with exp(−𝑧) ≈ 1 − 𝑧 + 𝑧2/2,
we obtain

𝐼 ≈ e−𝑎 𝑓sp

∫
d𝑢

{
𝑔sp + 1

2
𝑔 (2)sp 𝑢

2 − 𝑎

24

[
4𝑔 (1)sp 𝑓 (3)sp + 𝑔sp 𝑓

(4)
sp

]
𝑢4

+ 1
72

[
𝑎2

(
𝑓 (3)sp

)2
− 3𝑎𝑔 (2)sp 𝑓 (4)sp

]
𝑢6

}
e−

𝑎
2 𝑓

(2)
sp 𝑢2

,

(A.26)

where we substituted 𝑢 = 𝑥 − 𝑥sp and neglected all odd powers in 𝑢. We evaluate the integral with
(A.23). The first two leading terms for 𝑎 ≫ 1, yield [219]

𝐼 ≈ e−𝑎 𝑓sp

√︄
2𝜋
𝑎 𝑓 (2)sp

[
𝑔sp + 1

2𝑎
𝑔 (2)sp

(
𝑓 (2)sp

)−1
− 1

8𝑎

(
4𝑔 (1)sp 𝑓 (3)sp + 𝑔sp 𝑓

(4)
sp

) (
𝑓 (2)sp

)−2

+ 5
24𝑎

(
𝑓 (3)sp

)2 (
𝑓 (2)sp

)−3
]
.

(A.27)
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A.6.3 Multidimensional Gaussian integral
We consider the multidimensional Gaussian integral∫

d𝑛x exp
(
−1

2
x𝑡Mx + J𝑡x

)
=

√︂
(2𝜋)𝑛
det M exp

(
J𝑡M−1J

)
, (A.28)

where M is a real symmetric positive-definite 𝑛-dimensional matrix and x and J are 𝑛-dimensional
vectors. Correlation functions are defined as

⟨. . .⟩ =
∫

d𝑛x . . . exp
(
− 1

2 x𝑡Mx
)

∫
d𝑛x exp

(
− 1

2 x𝑡Mx
) , (A.29)

where the dots . . . are replaced by products of 𝑥𝑖 . The correlation function is evaluated from (A.28)
by taking derivatives with respect to 𝐽𝑖 and setting J afterwards to zero. The 2-point correlation
function, for example, yields

⟨𝑥𝑖𝑥 𝑗⟩ = 𝑀−1
𝑖, 𝑗 . (A.30)

Correlation functions with odd numbers of points are zero, and correlation functions with even
numbers of points can be expressed in terms of 2-point correlation functions by means of the Wick
theorem [220]

⟨𝑥 𝑗1𝑥 𝑗2𝑥 𝑗3 . . . 𝑥 𝑗2𝑛⟩ =
∑︁
𝑃

𝑀−1
𝑃1,𝑃2

𝑀−1
𝑃3,𝑃4

. . . 𝑀−1
𝑃2𝑛−1,𝑃2𝑛

, (A.31)

where𝑃 accounts for all non-equal pairings (𝑃1, 𝑃2) (𝑃3, 𝑃4) . . . (𝑃2𝑛−1𝑃2𝑛) of the indices 𝑗1, 𝑗2, . . . 𝑗2𝑛.
In total, there are (2𝑛 − 1)!! distinct pairings.
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B Auxiliary calculations for the scattering of
electromagnetic fields

In this appendix, we provide additional information and details on the discussion of the scattering
formula in Sec. 2 and the asymptotic expansion of the Mie coefficients for a bi-isotropic sphere in
Sec. 4.2.

B.1 Derivation of the scattering formula

In this Section, we want to show the equivalence between Eqs. (2.20) and (2.21). Here, we concentrate
on the trace of the GTGT-operator, which, in position space is given by

tr [G0T1G0T2] =
∫
𝑉2

d3r
∫
𝑉1

d3s
∫
𝑉1

d3t
∫
𝑉2

d3uG0(r, s)T1(s, t)G0(t, u)T2(u, r) . (B.1)

The T-matrices T𝑖 (r, r′) are only non-zero if both r, r′ ∈ 𝑉𝑖 , which is why we limited the spatial
integration to the respective volumes of the scatterer. The two arguments of the free Green’s function
are thus located at the two scatterers. Consequently, G0 describes the propagation from one scatterer
to another. The derivative of the trace expression with respect to the position O1 of scatterer 1 yields

∇O1 tr [G0T1G0T2] =
∫
𝑉2

d3r
∫
𝑉1

d3s
∫
𝑉1

d3t
∫
𝑉2

d3u [∇𝑠G0(r, s)T1(s, t)G0(t, u)T2(u, r)

+ G0(r, s)∇𝑠T1(s, t)G0(t, u)T2(u, r)
+ G0(r, s)∇𝑡T1(s, t)G0(t, u)T2(u, r)
+ G0(r, s)T1(s, t)∇𝑡G0(t, u)T2(u, r)] .

(B.2)
Note that the Nabla operator only acts on the function to its right. We can use integration by parts
for the first term and move the derivations past the free Green’s function, which then cancels with
the second expression. For the third expression, we can make use of the symmetry of the T-operator,
which thus leads to the expression in Eq. (2.20)

∇O1 tr [G0T1G0T2] =
∫
𝑉2

d3r
∫
𝑉1

d3s
∫
𝑉1

d3t
∫
𝑉2

d3u [−G0(r, s)∇𝑠T1(s, t)G0(t, u)T2(u, r)

+ G0(r, s)T1(s, t)∇𝑡G0(t, u)T2(u, r)] .
(B.3)

B.2 Asymptotic expansion for a large sphere and Fresnel reflection
coefficients

In this Section, we provide the explicit expressions for the reflections coefficients of a bi-isotropic
sphere in the large radii limit. According to our discussion in Sec. 4.2, the auxiliary functions (4.12)
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are given by
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where the leading order coefficients are denoted with the subscript ’0’ and are defined by
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while the leading-order corrections for 𝑥 ≫ 1, are denoted by the subscript 1 and yield
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with the auxiliary variable Λ = (𝑙 + 1/2)/𝑥. After substituting the above-given expansions into the
definition of the Mie coefficients (4.11), (4.16), we obtain the following results for the coefficient
𝑟𝑝,𝑝′ (Λ) of the asymptotic expansion defined in Eq. (4.33):

𝑟TM,TM(Λ) = 𝑤𝐿0 𝑎
𝑅
0 + 𝑤𝑅0 𝑎𝐿0

𝑤𝐿0 𝑣
𝑅
0 + 𝑤𝑅0 𝑣𝐿0

, 𝑟TE,TE(Λ) =
𝑣𝐿0 𝑏

𝑅
0 + 𝑣𝑅0 𝑏𝐿0

𝑤𝐿0 𝑣
𝑅
0 + 𝑤𝑅0 𝑣𝐿0

, (B.7)

and

𝑟TE,TM(Λ) = 2i
√︁

1 + Λ2
𝑚−

√︃
1 + Λ2/𝑚2

R − 𝑚+
√︃

1 + Λ2/𝑚2
L

𝑤𝐿0 𝑣
𝑅
0 + 𝑤𝑅0 𝑣𝐿0

, (B.8a)

𝑟TE,TM(Λ) = 2i
√︁

1 + Λ2
𝑚−

√︃
1 + Λ2/𝑚2

L − 𝑚+
√︃

1 + Λ2/𝑚2
R

𝑤𝐿0 𝑣
𝑅
0 + 𝑤𝑅0 𝑣𝐿0

. (B.8b)

In Section 4.2.2, we found that for large sphere radii, the leading term of the amplitude scattering
matrix elements depends on 𝑟𝑝,𝑝′ (Λsp) with Λsp = i cos(Θ/2). In this limit, the above-given
expressions coincide with the Fresnel reflection coefficients for a bi-isotropic plane

𝑟𝑝,𝑝′ (Λsp) ≡ 𝑟𝑝,𝑝′ (𝜃0) , (B.9)

where the incident angle is defined by 𝜃0 = (𝜋 − Θ)/2. Together with Snells’law

𝑚L,R sin(𝜃L,R) = sin(𝜃0) , (B.10)

we also introduce the transmitted angles 𝜃L,R, which are illustrated in Fig. B.1. From that, we recover
the Fresnel reflection coefficients for a bi-isotropic plane [221]

𝑟TM,TM(𝜃0) = (𝑐0 − 𝑚−𝑐L) (𝑐R + 𝑚+𝑐0) + (𝑐0 − 𝑚+𝑐R) (𝑐L + 𝑚−𝑐0)
(𝑚−𝑐L + 𝑐0) (𝑐R + 𝑚+𝑐0) + (𝑚+𝑐R + 𝑐0) (𝑐L + 𝑚−𝑐0) , (B.11a)
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\0

\L
\R

=m
=L, =R Figure B.1: Fresnel reflection. Reflection and transmission of

a plane wave at a bi-isotropic half space. The wave is incident at
an angle 𝜃0 and separates into two transmitted waves at angles
𝜃L and 𝜃R.

𝑟TE,TE(𝜃0) = (𝑚−𝑐0 − 𝑐L) (𝑚+𝑐R + 𝑐0) + (𝑚+𝑐0 − 𝑐R) (𝑚−𝑐L + 𝑐0)
(𝑚−𝑐L + 𝑐0) (𝑐R + 𝑚+𝑐0) + (𝑚+𝑐R + 𝑐0) (𝑐L + 𝑚−𝑐0) , (B.11b)

𝑟TE,TM(𝜃0) = 2i𝑐0 (𝑚−𝑐R − 𝑚+𝑐L)
(𝑚−𝑐L + 𝑐0) (𝑐R + 𝑚+𝑐0) + (𝑚+𝑐R + 𝑐0) (𝑐L + 𝑚−𝑐0) , (B.11c)

𝑟TM,TE(𝜃0) = 2i𝑐0 (𝑚−𝑐L − 𝑚+𝑐R)
(𝑚−𝑐L + 𝑐0) (𝑐R + 𝑚+𝑐0) + (𝑚+𝑐R + 𝑐0) (𝑐L + 𝑚−𝑐0) , (B.11d)

where we abbreviated the cosine of the incident and transmitted angles by

𝑐0 = cos(𝜃0) , 𝑐L,R = cos(𝜃L,R) . (B.12)
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C Auxiliary calculations for the multipole expansion of
optical forces

In this appendix, we provide calculations and background information supporting the results presented
in Sec. 5. In particular, we present in Sec. C.1 the expression for the optical force on a spherical particle
used in Sec. 5.2.3. In Sec. C.2, we discuss the multipole expansion of a generic electromagnetic field.
Further, we discuss in Sec. C.3 the evaluation of the azimuthal integral presented in Eq. (5.18).

C.1 Multipole expansion of the optical force

In this Section, we provide the explicit force expression for an object in a light field. As discussed in
Sec. 5.2, the optical force is calculated in a multipole basis with expansion coefficients (𝑒𝑙,𝑚, 𝑓𝑙,𝑚) for
the incident field and (𝑎𝑙,𝑚, 𝑏𝑙,𝑚) for the scattered field. The optical force is furthermore separated
into two parts, the scattering (scat) and the extinction (ext) contribution

F = Fscat + Fext . (C.1)

We present the optical force in Cartesian coordinates F = 𝐹𝑥 x̂ + 𝐹𝑦 ŷ + 𝐹𝑧 ẑ, where we will refer to
𝐹𝑧 as axial force component and 𝐹𝑥 and 𝐹𝑦 define the transverse force components. The results are
taken from [136].

C.1.1 Axial force components

The scattering contribution to the axial force component 𝐹𝑧 is given by

𝐹scat,𝑧 = −𝜖0𝜖

𝐾2

∑︁
𝑙,𝑚

{
𝑈𝑙+1,𝑚

𝑙 + 1
Re

[
i
(
𝑎∗𝑙+1,𝑚𝑎𝑙,𝑚 + 𝑏∗𝑙+1,𝑚𝑏𝑙,𝑚

)]
+ 𝑚

𝑙 (𝑙 + 1)Re
(
𝑏∗𝑙,𝑚𝑎𝑙,𝑚

) }
(C.2)

and the extinction term is defined by

𝐹ext,𝑧 = − 𝜖0𝜖

2𝐾2

∑︁
𝑙,𝑚

{
𝑈𝑙+1,𝑚

𝑙 + 1
Re

[
i
(
𝑎∗𝑙+1,𝑚𝑒𝑙,𝑚 + 𝑏∗𝑙+1,𝑚 𝑓𝑙,𝑚 + 𝑒∗𝑙+1,𝑚𝑎𝑙,𝑚 + 𝑓 ∗𝑙+1,𝑚𝑏𝑙,𝑚

)]
+ 𝑚

𝑙 (𝑙 + 1)Re
[
𝑎∗𝑙,𝑚 𝑓𝑙,𝑚 + 𝑏∗𝑙,𝑚𝑒𝑙,𝑚

] }
,

(C.3)

where 𝜖 defines the dielectric function of the medium, in which the spherical object is immersed and
𝐾 is the wave number. The summation indices 𝑙 and 𝑚 take the values 𝑙 = 1, . . .∞ and 𝑚 = −𝑙, . . . 𝑙.
We furthermore introduced the coefficient

𝑈𝑙+1,𝑚 =

√︄
𝑙 (𝑙 + 2) [(𝑙 + 1)2 − 𝑚2]

(2𝑙 + 1) (2𝑙 + 3) . (C.4)
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C Auxiliary calculations for the multipole expansion of optical forces

C.1.2 Transverse force components

Next, we present the multipole expansion of the transverse force components 𝐹𝑥 and 𝐹𝑦 . The
scattering part is given by{

𝐹scat,𝑥
𝐹scat,𝑦

}
=
𝜖0𝜖

2𝐾2

∑︁
𝑙,𝑚

{
𝑉𝑙+1,𝑚

𝑙 + 1

{ −Im
Re

} (
𝑎∗𝑙+1,𝑚+1𝑎𝑙,𝑚 + 𝑏∗𝑙+1,𝑚+1𝑏𝑙,𝑚

−𝑎∗𝑙+1,−(𝑚+1)𝑎𝑙,−𝑚 − 𝑏∗𝑙+1,−(𝑚+1)𝑏𝑙,−𝑚
)

−
𝑐+𝑙,𝑚

𝑙 (𝑙 + 1)

{
Re
−Im

} (
𝑎∗𝑙,𝑚𝑏𝑙,𝑚+1 + 𝑏∗𝑙,𝑚𝑎𝑙,𝑚+1

) } (C.5)

and the extinction terms are defined by{
𝐹ext,𝑥
𝐹ext,𝑦

}
=
𝜖0𝜖

4𝐾2

∑︁
𝑙,𝑚

{
𝑉𝑙+1,𝑚

𝑙 + 1

{ −Im
Re

} (
𝑎∗𝑙+1,𝑚+1𝑒𝑙,𝑚 + 𝑏∗𝑙+1,𝑚+1 𝑓𝑙,𝑚

+ 𝑒∗𝑙+1,𝑚+1𝑎𝑙,𝑚 + 𝑓 ∗𝑙+1,𝑚+1𝑏𝑙,𝑚

− 𝑎∗𝑙+1,−(𝑚+1)𝑒𝑙,−𝑚 − 𝑏∗𝑙+1,−(𝑚+1) 𝑓𝑙,−𝑚

−𝑒∗𝑙+1,−(𝑚+1)𝑎𝑙,−𝑚 − 𝑓 ∗𝑙+1,−(𝑚+1)𝑏𝑙,−𝑚
)

−
𝑐+𝑙,𝑚

𝑙 (𝑙 + 1)

{
Re
−Im

} (
𝑎∗𝑙,𝑚 𝑓𝑙,𝑚+1 + 𝑏∗𝑙,𝑚𝑒𝑙,𝑚+1 + 𝑎∗𝑙,𝑚+1 𝑓𝑙,𝑚 + 𝑏∗𝑙,𝑚+1𝑒𝑙,𝑚

) }
,

(C.6)
where we introduced the following coefficients

𝑉𝑙+1,𝑚 =

√︄
𝑙 (𝑙 + 2) (𝑙 + 𝑚 + 1) (𝑙 + 𝑚 + 2)

(2𝑙 + 1) (2𝑙 + 3) , 𝑐+𝑙,𝑚 =
√︁
(𝑙 − 𝑚) (𝑙 + 𝑚 + 1) . (C.7)

For scattering problems with a cylinder symmetry, it is convenient to introduce cylindrical force
components: F = 𝐹𝜌ρ̂ + 𝐹𝜑φ̂ + 𝐹𝑧 ẑ. The transverse force components 𝐹𝜌 and 𝐹𝜑 can be obtained
from 𝐹𝑥 and 𝐹𝑦 by a simple rotation about the azimuthal angle 𝜑, as shown below

𝐹𝜌 = Re
[(𝐹𝑥 − i𝐹𝑦)ei𝜑] , 𝐹𝜑 = Im

[(𝐹𝑥 + i𝐹𝑦)e−i𝜑] . (C.8)

C.2 Evaluation of the multipole expansion coefficients

We consider an electromagnetic field E(r) with the multipole expansion

E(r) =
∑︁
𝑙,𝑚

[
𝑒𝑙,𝑚Nreg

𝑙,𝑚(r) + 𝑓𝑙,𝑚Mreg
𝑙,𝑚(r)

]
. (C.9)

In the following, we present the evaluation of the expansion coefficients 𝑒𝑙,𝑚 and 𝑓𝑙,𝑚. According
to (3.9), the magnetic modes are given by Mreg

𝑙,𝑚(r) = 𝑗𝑙 (𝐾𝑟)X𝑙,𝑚(r̂), where the vector spherical
harmonic X𝑙,𝑚(r̂) is defined in Eq. (3.10). We make use of the orthonormality of the vector spherical
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harmonics an thus multiply (C.9) with X∗
𝑙′ ,𝑚′ (r̂) and integrate over the unit sphere, which leads to

𝑓𝑙′ ,𝑚′ 𝑗𝑙′ (𝐾𝑟) =
∫
𝑆2

dΩ𝑟X∗
𝑙′ ,𝑚′ (r̂) · E(r) . (C.10)

Next, we use the Fourier representation of the electric field with

E(r) =
∫

d3K′

(2𝜋)3
𝛿(𝐾 − 𝐾 ′)

(𝐾 ′)2 E(K′)eiK′ ·r , (C.11)

where we accounted for the fact that the modulus of the wave vector K is conserved. We insert the
above-given expansion into (C.10) and apply spherical coordinates

𝑓𝑙′ ,𝑚′ 𝑗𝑙′ (𝐾𝑟) =
∫
𝑆2

dΩ𝑟X∗
𝑙′ ,𝑚′ (r̂)

∫ ∞

0

d𝐾 ′

(2𝜋)3 𝛿(𝐾 − 𝐾 ′)
∫
𝑆2

dΩ𝐾 ′eiK′ ·rE(K′)

=
∫ ∞

0

d𝐾 ′

(2𝜋)3 𝛿(𝐾 − 𝐾 ′)
∫
𝑆2

dΩ𝐾 ′4𝜋i𝑙
′
𝑗𝑙′ (𝐾 ′𝑟)X∗

𝑙′ ,𝑚′ (K̂′) · E(K′) .
(C.12)

In the second step, we evaluated the integral over the unit sphere in K′-space with [98, p. 226] and
introduced the vector spherical harmonic in reciprocal space

X𝑙,𝑚(K̂) = −i(K̂ × ∇𝐾 )𝑌𝑚𝑙 (K̂)√︁
(𝑙 (𝑙 + 1))

=
i√︁

(𝑙 (𝑙 + 1))

[
𝜃𝐾

sin 𝜃𝐾
𝜕

𝜕𝜙𝐾
− 𝜙𝐾 𝜕

𝜕𝜃𝐾

]
𝑌𝑚𝑙 (K̂) . (C.13)

After carrying out the integral over 𝐾 ′, we find the following expression for the magnetic multipole
expansion coefficients, in terms of the Fourier components of a given electric field

𝑓𝑙,𝑚 =
i𝑙

2𝜋2

∫
𝑆2

dΩ𝐾 ′X𝑙,𝑚(K̂′) · E(K′) . (C.14)

The electric multipole expansion coefficients can be obtained from a similar expansion but with the
Fourier components of the magnetic field instead of the electric field: E(K) → (i𝜔/𝐾)B(K) =
iK̂×E(K), where we used the Maxwell equations to rewrite the magnetic field in terms of the electric
field.

In a plane-wave expansion, the electric field is expressed in terms of the polarisation unit vectors
𝜖TM and 𝜖TE. We present the scalar product of the vector spherical harmonics X𝑙,𝑚(K̂) with the
polarisation unit vectors, which are defined in Eq. (3.2). We obtain

X𝑙,𝑚(K̂) · 𝜖TM(K̂) = i√︁
(𝑙 (𝑙 + 1))

1
sin 𝜃𝐾

𝜕𝑌𝑚𝑙 (K̂)
𝜕𝜙𝐾

(C.15a)

=
1

2
√︁
𝑙 (𝑙 + 1)

[
cos 𝜃𝐾

(
𝑐+𝑙,𝑚𝑌

𝑚+1
𝑙 (K̂)e−i𝜙𝐾 + 𝑐−𝑙,𝑚𝑌𝑚−1

𝑙 (K̂)ei𝜙𝐾
)

(C.15b)

−2𝑚 sin 𝜃𝐾𝑌𝑚𝑙 (K̂)] ,
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X𝑙,𝑚(K̂) · 𝜖TE(K̂) = − i√︁
(𝑙 (𝑙 + 1))

𝜕𝑌𝑚𝑙 (K̂)
𝜕𝜃𝐾

(C.16a)

=
1

2
√︁
𝑙 (𝑙 + 1)

[−𝑐+𝑙,𝑚𝑌𝑚+1
𝑙 (K̂)e−i𝜙𝐾 + 𝑐−𝑙,𝑚𝑌𝑚−1

𝑙 (K̂)ei𝜙𝐾
]
, (C.16b)

where in both cases, we applied recursion relations for the spherical harmonics [98] and introduced

𝑐±𝑙,𝑚 =
√︁
(𝑙 ∓ 𝑚) (𝑙 ± 𝑚 + 1) . (C.17)

C.3 Multipole expansion of a focused laser beam
In this Section, we evaluate the azimuthal part of the integral representation of the focused vortex
beam. According to Eq. (5.18) is the integral given by

𝐼 =
∫ 2𝜋

0
d𝜙eiKw ·Rei𝐴ast cos(2(𝜙ast−𝜙) )e−i𝑀𝜙 . (C.18)

We use spherical coordinates to express the scalar product of the wave vector Kw and the position
vector R and get Kw · R = 𝐾w𝑟𝑅 [sin(𝜃w) sin(𝜃𝑅) cos(𝜙 − 𝜑𝑅) + cos(𝜃𝑅) cos(𝜃w)] with 𝜙w = 𝜙.
To extract the 𝜙-dependence from the argument of the cosine functions, we are going to apply the
Jacobi-Anger expansion [185, Eq. 10.12.1]

exp
( 𝑧
2
(𝑡 − 𝑡−1)

)
=

∞∑︁
𝑛=−∞

𝑡𝑛𝐽𝑛 (𝑧) , (C.19)

where 𝐽𝑛 (𝑧) is the Bessel function of the first kind. Furthermore, we use the expansion of the cosine
in terms of exponential functions: i cos(Φ) = (𝑡 − 𝑡−1)/2 with 𝑡 = ieiΦ. In our case, Φ takes the
values 𝜙 − 𝜑𝑅 and 2(𝜙ast − 𝜙), which leads to the following expression

𝐼 = ei𝐾w𝑟𝑅 cos(𝜃𝑅 ) cos(𝜃𝑤 )
∞∑︁

𝑠=−∞
i𝑠𝐽𝑠 (𝐴ast)e2i𝑠𝜙ast

∞∑︁
𝑛=−∞

i𝑛𝐽𝑛 (𝐾w𝑟𝑅 sin(𝜃𝑤) sin(𝜃𝑅))e−i𝑛𝜑𝑅

×
∫ 2𝜋

0
d𝜙ei(𝑛−2𝑠−𝑀 )𝜙 .

(C.20)

Only terms with 𝑛 = 2𝑠 + 𝑀 yield a non-vanishing contribution, and we find

𝐼 = 2𝜋i𝑀e−i𝑀𝜑𝑅ei𝐾w𝑧𝑅 cos(𝜃𝑤 )
∞∑︁

𝑠=−∞
(−i)𝑠𝐽𝑠 (𝐴ast)𝐽2𝑠+𝑀 (𝐾𝜌𝑅 sin(𝜃))e2i𝑠 (𝜙ast−𝜑𝑅 ) , (C.21)

where we expressed the position vector R in cylindrical coordinates (𝜌𝑅, 𝑧𝑅, 𝜑𝑅) and applied Snell’
Law: 𝐾w sin(𝜃w) = 𝐾 sin(𝜃).
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D Auxiliary calculations for the universal Casimir
interaction

In this appendix, we provide details on the results of the Casimir free energy in the zero-frequency
limit discussed in Chap. 9. We present the small-distance approximation of the Casimir free energy
for Dirichlet and Drude spheres in vacuum (see Sec. D.1 and Sec. D.2). The calculation in both cases
relies on the representation of the analytical expression in terms of the Lambert series. Furthermore,
we are also discussing an alternative representation of the Casimir free energy between a Drude
sphere and a plane in Sec. D.3.

D.1 Two Dirichlet spheres in close proximity to each other

We found that the dimensionless Casimir free energy for a scalar field between two Dirichlet spheres
can be expressed in terms of the derivative of the difference between two Lambert series (9.25)

𝑓sc =
d

d(−𝜇)
[Lexp(−𝜇) (−2, 1) − Lexp(−2𝜇) (−2, 1)] , (D.1)

where we replaced 𝑍 = exp(−𝜇). The parameter 𝜇, defined in Eq. (9.21) goes to zero in the short-
distance limit, which means exp(−𝜇) → 1. We can thus apply the expansion of the Lambert series
given in Eq. (A.17). The difference between the two Lambert series yields

Lexp(−𝜇) (−2, 1) − Lexp(−2𝜇) (−2, 1) =

=
𝜇

2
[2𝜁 ′(−1) + 2𝐵2 log(2) − 𝐵2 + 𝐵2 log(𝜇)] + 1

𝜇

∞∑︁
𝑘=0
𝑘≠2

𝜁 (3 − 𝑘)
𝑘!

𝐵𝑘

(
2𝑘−1 − 1

)
(−𝜇)𝑘 . (D.2)

We introduced the Bernoulli numbers using 𝐵𝑘 (𝑧 = 1) = 𝐵𝑘 . We extract the term for 𝑘 = 0 from
the sum and use that the Bernoulli numbers of odd orders are zero. Furthermore, we express the
Riemann zeta function for negative integer arguments in terms of the Bernoulli numbers by applying
[185, Eq. 25.6.3]: 𝜁 (−𝑛) = (−1)𝑛𝐵𝑛+1/(𝑛 + 1). We thus obtain

Lexp(−𝜇) (−2, 1) − Lexp(−2𝜇) (−2, 1) =

=
𝜁 (3)
2𝜇

+ 𝜇
[
− log(𝐴) + log(2)

6
+ log(𝜇)

12

]
+

∞∑︁
𝑛=1

𝐵2𝑛
2𝑛

𝐵2𝑛+2
(2𝑛 + 2)!

(
22𝑛+1 − 1

)
𝜇2𝑛+1 ,

(D.3)

where we have rewritten the derivative of the Riemann zeta function according to [185, Eq. 5.17.7]:
𝜁 ′(−1) = −𝐵2/2 − log(𝐴), with the Glaisher–Kinkelin constant 𝐴 = 1.282 . . .. After taking the
negative derivative with respect to 𝜇, the small-distance expansion of the dimensionless Casimir free
energy for two Dirichlet spheres yields

𝑓sc =
𝜁 (3)
2𝜇2 − 1

12
log(𝜇) − 1

12
+ log(𝐴) − 1

6
log(2) −

∞∑︁
𝑛=1

2𝑛 + 1
2𝑛

𝐵2𝑛𝐵2𝑛+2
(2𝑛 + 2)!

(
22𝑛+1 − 1

)
𝜇2𝑛 . (D.4)
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D.2 Two Drude sphere in close proximity to each other

In Section 9.3, we discussed that the Casimir free energy of two Drude spheres equals the free energy
of two Dirichlet spheres minus the monopole contributions. Since we have already determined
the small-distance expansion for the Dirichlet spheres in the previous Section, we will present the
expansion of the monopole terms. We use the representation introduced in Eq. (9.66), which we
display again below for convenience

Δ = − log {[1 + 𝐽 (3/2 − 𝑣) 𝐼 (3/2 − 𝑣)] [1 + 𝐽 (3/2 + 𝑣) 𝐼 (3/2 + 𝑣)]
− 𝐽 (3/2 − 𝑣) 𝐽 (3/2 + 𝑣) 𝐼2(1)} . (D.5)

The auxiliary functions 𝐽 (𝑐) and 𝐼 (𝑐) are respectively defined in Eqs. (9.64) and (9.65), which we
will present here again

𝐽 (𝑐) = 1 − e−2𝜇 (𝑐−1)

e−𝜇 (𝑐−1) , 𝐼 (𝑐) = Lexp(−𝜇) (0, 𝑐) − Lexp(−2𝜇) (0, 𝑐) , (D.6)

where we replaced 𝑍 = exp(−𝜇) and the variable 𝑐 takes the values 3/2 ± 𝑣(𝜇) and 1. 𝑣(𝜇) was
introduced in Eq. (9.63)

𝑣(𝜇) = 1
2
− 1

2𝜇
[log(1 + 𝛼+e𝜇) − log(1 + 𝛼+e−𝜇)] (D.7)

with 𝛼+ defined in Eq. (9.53), which accounts for the ratio of the sphere radii.
The following presents the Taylor expansions of the above-given terms in the short-distance limit

for 𝜇 → 0. We first expand 𝑣(𝜇) in a power series in 𝜇, which we then use for 𝐽 (𝑐 = 3/2 ± 𝑣(𝜇))
and 𝐼 (𝑐 = 3/2 ± 𝑣(𝜇)).

D.2.1 Expansion of 𝑣(𝜇)

By adding a zero (𝛼+ − 𝛼+) to the argument of the logarithms in Eq. (D.7), we find

𝑣(𝜇) − 1
2
= − 1

2𝜇

[
log

(
1 − 𝛼+(1 − e𝜇)

1 + 𝛼+

)
− log

(
1 − 𝛼+(1 − e−𝜇)

1 + 𝛼+

)]
=

1
2𝜇

∞∑︁
𝑘=1

1
𝑘

(
𝛼+

1 + 𝛼+

) 𝑘 [(1 − e𝜇)𝑘 − (1 − e−𝜇)𝑘 ] , (D.8)

where we used that |1 − e±𝜇 | < 1 in the short distance regime and thus applied the Mercator series
to expand the logarithms. To proceed with the expansion of 𝑣(𝜇), we apply the binomial formula to
(1 − e±𝜇)𝑘 and use the series expansion of the exponential. We thus find

(1 − e𝜇)𝑘 − (1 − e−𝜇)𝑘 = 2
𝑘∑︁
𝑗=1

(
𝑘

𝑗

)
(−1) 𝑗

∞∑︁
𝑛=0

(𝜇 𝑗)2𝑛+1

(2𝑛 + 1)!

= 2𝜇
∞∑︁
𝑛=0

𝜇2𝑙

(2𝑛 + 1)! (−1)𝑘𝑘!𝑆(2𝑛 + 1, 𝑘) .
(D.9)
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In the second step, we carried out the sum over 𝑗 by applying the definition of the Stirling numbers
of the second kind 𝑆(𝑛, 𝑘) [185, Eq. 26.8.6]. Inserting the expression given above into Eq. (D.8) and
interchanging the sum over 𝑘 and 𝑛, we obtain the following power series expansion for 𝑣(𝜇)

𝑣(𝜇) =
∞∑︁
𝑛=0

𝑣𝑛𝜇
2𝑛 , (D.10)

where the coefficients for 𝑛 = 0 and 𝑛 > 0 are respectively given by

𝑣0 =
1
2

1 − 𝛼+
1 + 𝛼+ =

√
1 − 4𝑢

2
, 𝑣𝑛 =

1
(2𝑛 + 1)!

2𝑛∑︁
𝑘=0

𝑘!𝑆(2𝑛 + 1, 𝑘 + 1) (𝑣0 − 1/2)𝑘+1 (D.11)

with 𝑢 defined in Eq. (8.4). For convenience, we present the explicit expression for the first two
coefficients

𝑣1 = −𝑣0
3
𝑢 , 𝑣2 = − 𝑣0

60
𝑢(1 − 12𝑢) . (D.12)

Similarly we introduce the expansion for the auxiliary function 𝑐(𝜇) = 3/2 ± 𝑣(𝜇)

𝑐(𝜇) =
∞∑︁
𝑛=0

𝑐𝑛𝜇
2𝑛 , 𝑐0 =

3
2
± 𝑣0 , 𝑐𝑛 = ±𝑣𝑛 . (D.13)

Note that the expansion coefficients of 𝑣(𝜇) fulfil |𝑣𝑛 | ≤ |𝑣0 |. The upper bound of |𝑣(𝜈) | in the small
distance regime is thus given by 1/2, which means |𝑐(𝜇) − 1| ≤ 1.

D.2.2 Expansion of 𝐽 (𝑐)
Next, we are going to discuss the expansion of 𝐽 (𝑐) given in Eq. (D.6), which we express in terms of
the hyperbolic sine

𝐽 (𝑐(𝜇)) = 2 sinh [𝜇(𝑐(𝜇) − 1)] = 2
∞∑︁
𝑛=0

[𝜇(𝑐(𝜇) − 1)]2𝑛+1

(2𝑛 + 1)! . (D.14)

Recalling that |𝑐(𝜇) − 1| ≤ 1, we applied the series expansion of the hyperbolic sine in the second
step. In the following, we are going to expand the argument (𝑐(𝜇) − 1)2𝑛+1 in a power series in 𝜇.
We thus first insert the series expansion of 𝑐(𝜇) given in Eq. (D.13), which yields

(𝑐(𝜇) − 1)2𝑛+1 =
1

𝜇4𝑛+2

( ∞∑︁
𝑙=0

𝑐𝑙𝜇
2𝑙+2 − 𝜇2

)2𝑛+1

. (D.15)

A further simplification can be obtained by using the generating function of the partial ordinary Bell
polynomials (A.18), which allows us to extract the 𝜇 dependence and find

(𝑐(𝜇) − 1)2𝑛+1 =
1

𝜇4𝑛+2

∞∑︁
𝑚=2𝑛+1

𝐵o
𝑚,2𝑛+1(𝑐0 − 1, 𝑐1, 𝑐2, . . .)𝜇2𝑚

=
1
𝜇2𝑛

∞∑︁
𝑚=𝑛

𝐵o
𝑚+𝑛+1,2𝑛+1(𝑐0 − 1, 𝑐1, 𝑐2, . . .)𝜇2𝑚 .

(D.16)
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D Auxiliary calculations for the universal Casimir interaction

Note that we shifted the sum over 𝑚 by 𝑛 + 1 in the second step. We insert the expansion from above
in Eq. (D.14) and interchange the 𝑚- and 𝑛-sum and thus find for the Taylor expansion of 𝐽 (𝑐(𝜇))

𝐽 (𝑐(𝜇)) = 2𝜇
∞∑︁
𝑚=0

𝐽𝑚(𝑐)𝜇2𝑚 , 𝐽𝑚(𝑐) =
𝑚∑︁
𝑛=0

𝐵◦
𝑚+𝑛+1,2𝑛+1(𝑐0 − 1, 𝑐1, 𝑐2, . . .)

(2𝑛 + 1)! . (D.17)

The first three expansion coefficients of 𝐽 (𝑐 = 3/2 ± 𝑣) are together with (D.13) given by

𝐽0(3/2 ± 𝑣) = 𝐵o
1,1 = 𝑐0 − 1 =

(
1
2
± 𝑣0

)
, (D.18a)

𝐽1(3/2 ± 𝑣) = 𝐵o
2,1 +

𝐵o
3,3

6
= 𝑐1 + (𝑐0 − 1)3

6
=

1 − 3𝑢
6

(
1
2
± 𝑣0

)
, (D.18b)

𝐽2(3/2 ± 𝑣) = 𝐵o
3,1 +

𝐵o
4,3

6
+
𝐵o

5,5

120
= 𝑐2 + (𝑐0 − 1)𝑐1

2
+ (𝑐0 − 1)5

120
(D.18c)

=
1 − 15𝑢(1 − 3𝑢)

120

(
1
2
± 𝑣0

)
.

D.2.3 Expansion of 𝐼 (𝑐)

Next, we derive the series expansion of 𝐼 (𝑐) given in Eq. (D.6). Similar to the discussion for the scalar
result (see Sec. D.1), we apply the asymptotic expansion of the Lambert series given in Sec. A.4,
which leads to the following result

𝐼 (𝑐(𝜇)) = 1
2𝜇

[
log 2 − log 𝜇 − 𝜓(𝑐(𝜇)) +

∞∑︁
𝑛=1

𝐵2𝑛 (22𝑛 − 2)
2𝑛(2𝑛)! 𝐵2𝑛 (𝑐(𝜇))𝜇2𝑛

]
. (D.19)

We again applied 𝐵𝑘 (1) = 𝐵𝑘 and 𝜁 (−𝑛) = (−1)𝑛𝐵𝑛+1/(𝑛 + 1) together with the fact that only
Bernoulli numbers of even orders yield a non-vanishing contribution. In the following, we are deriving
the expansions of the digamma function 𝜓(𝑐(𝜇)) and of the Bernoulli polynomials 𝐵2𝑛 (𝑐(𝜇)).

Expansion of the digamma function 𝜓(𝑐)

We rewrite the argument of the digamma function as 𝜓(1 + 𝑐 − 1) and apply the Taylor series for
|𝑐 − 1| < 1 [185, Eq. 5.7.4], which yields

𝜓 (𝑐(𝜇)) = −𝛾 −
∞∑︁
𝑘=1

𝜁 (𝑘 + 1) (−1)𝑘 (𝑐(𝜇) − 1)𝑘 (D.20)
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D.2 Two Drude sphere in close proximity to each other

with the Euler-Mascheroni constant 𝛾 = 0.57721 . . .. Next, we insert the power series of 𝑐(𝜇),
defined in Eq. (D.13) and apply the binomial formula to (𝑐 − 1)𝑘

(𝑐(𝜇) − 1)𝑘 = (𝑐0 − 1)𝑘 +
𝑘∑︁
𝑛=1

(
𝑘

𝑛

)
(𝑐0 − 1)𝑘−𝑛

( ∞∑︁
𝑚=1

𝑐𝑚𝜇
2𝑚

)𝑛
= (𝑐0 − 1)𝑘 +

𝑘∑︁
𝑛=1

(
𝑘

𝑛

)
(𝑐0 − 1)𝑘−𝑛

∞∑︁
𝑚=𝑛

𝐵o
𝑚,𝑛 (𝑐1, 𝑐2, . . .)𝜇2𝑚 .

(D.21)

In the second step, we used the generating function for the Bell polynomials. After inserting the
expression from above in Eq. (D.20) and interchanging the sum over 𝑘 and 𝑛, we get the following
expansion for the digamma function 𝜓(𝑐(𝜇))

𝜓(𝑐(𝜇)) = 𝜓(𝑐0) +
∞∑︁
𝑚=1

𝑚∑︁
𝑛=1

𝜓 (𝑛) (𝑐0)
𝑛!

𝐵◦
𝑚,𝑛 (𝑐1, 𝑐2, . . .)𝜇2𝑚, (D.22)

where 𝜓 (𝑛) (𝑧) = 𝑑𝑛𝜓(𝑧)/𝑑𝑧𝑛 refers to the polygamma functions which are the 𝑛-th derivatives of the
digamma function.

Expansion of the Bernoulli polynomial 𝐵2𝑛 (𝑐)

To proceed with the expansion of 𝐼 (𝑐(𝜇)) given in Eq. (D.19), we also need to expand the Bernoulli
polynomial 𝐵2𝑛 (𝑐(𝜇)). First, we apply the definition of the Bernoulli polynomials as an expansion
over Bernoulli numbers

𝐵2𝑛 (𝑐(𝜇)) =
2𝑛∑︁
𝑘=0

(
2𝑛
𝑘

)
𝐵𝑘 (𝑐(𝜇))2𝑛−𝑘 . (D.23)

With the series expansion of 𝑐(𝜇) given in Eq. (D.13) and the generating function of the ordinary
partial Bell polynomials (A.18), we find

(𝑐(𝜇))2𝑛−𝑘 =
1

𝜇4𝑛−2𝑘

(∑︁
𝑛=1

𝑐𝑛−1𝜇
2𝑛

)2𝑛−𝑘

=
1

𝜇4𝑛−2𝑘

∞∑︁
𝑚=2𝑛−𝑘

𝐵o
𝑚,2𝑛−𝑘 (𝑐0, 𝑐1, 𝑐2, . . .)𝜇2𝑚 .

(D.24)

We shift the sum over 𝑚 by 𝑛 − 𝑘 and insert the expansion above in Eq. (D.23), which yields

𝐵2𝑛 (𝑐(𝜇)) = 1
𝜇2𝑛

2𝑛∑︁
𝑘=0

(
2𝑛
𝑘

)
𝐵𝑘

∞∑︁
𝑚=𝑛

𝐵◦
𝑚+𝑛−𝑘,2𝑛−𝑘 (𝑐0, 𝑐1, . . .)𝜇2𝑚

=
1
𝜇2𝑛

𝑛∑︁
𝑘=−𝑛

(
2𝑛
𝑘 + 𝑛

)
𝐵𝑘+𝑛

∞∑︁
𝑚=𝑛

𝐵◦
𝑚+𝑘,𝑛−𝑘 (𝑐0, 𝑐1, . . .)𝜇2𝑚 .

(D.25)
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In the second step, the sum over 𝑘 was shifted by −𝑛. We insert the result from above into Eq. (D.19)
and find

∞∑︁
𝑛=1

𝐵2𝑛 (22𝑛 − 2)
2𝑛(2𝑛)! 𝐵2𝑛 (𝑐(𝜇))𝜇2𝑛 =

∞∑︁
𝑚=1

𝑚∑︁
𝑛=1

𝐵2𝑛 (22𝑛 − 2)
2𝑛

𝑛∑︁
𝑘=−𝑛

𝐵𝑛+𝑘𝐵◦
𝑚−𝑘,𝑛−𝑘 (𝑐0, 𝑐1, . . .)

(𝑛 − 𝑘)!(𝑛 + 𝑘)! 𝜇2𝑚 ,

(D.26)
where we exchanged the summation over 𝑛 and 𝑚, thus leading to a power series in 𝜇.

Summary of the expansion of 𝐼 (𝑐)

We insert the expansions of the digamma function (D.22) and the Bernoulli polynomials (D.26) into
Eq. (D.19) and find

𝐼 (𝑐) = 1
2𝜇

∞∑︁
𝑚=0

𝐼𝑚(𝑐)𝜇2𝑚 . (D.27)

The expansion coefficient 𝐼0(𝑐) is given by

𝐼0(𝑐) = 𝛾1 − log 𝜇 − 𝜓(𝑐0) − 𝛾 , (D.28)

where we added the Euler-Mascheroni constant 𝛾 and introduced 𝛾1 = 𝛾 + log 2. The coefficients
with 𝑚 > 0 are determined by

𝐼𝑚(𝑐) =
𝑚∑︁
𝑛=1

[
𝐵2𝑛 (22𝑛 − 2)

2𝑛

𝑛∑︁
𝑘=−𝑛

𝐵𝑛+𝑘𝐵◦
𝑚−𝑘,𝑛−𝑘 (𝑐0, 𝑐1, . . .)

(𝑛 − 𝑘)!(𝑛 + 𝑘)! − 𝜓 (𝑛) (𝑐0)
𝑛!

𝐵◦
𝑚,𝑛 (𝑐1, 𝑐2, . . .)

]
.

(D.29)
Again, we provide the explicit expressions of the first three expansion coefficients for convenience.
For 𝑐 = 1, we obtain

𝐼0(1) = 𝛾1 − log 𝜇 , 𝐼1(1) = 1
72
, 𝐼2(1) = 7

43200
(D.30)

and the first three coefficients for 𝑐 = 3/2 ± 𝑣 yield

𝐼0(3/2 ± 𝑣) = 𝛾1 − log 𝜇 − Ψ (±)
0 , (D.31a)

𝐼1(3/2 ± 𝑣) = −Ψ (±)
1 + 1

72
+ 2 − 𝑢

12
− 1

6

(
1
2
∓ 𝑣0

)
, (D.31b)

𝐼2(3/2 ± 𝑣) = −Ψ (±)
2 + 7

43200
− 28 + 4𝑢 − 73𝑢2

1440
+ 7 + 13𝑢

360

(
1
2
∓ 𝑣0

)
, (D.31c)

where we introduced the abbreviation Ψ (±)
𝑛 , which accounts for the coefficients of the Taylor

expansion of the digamma function presented in Eq. (D.22)

Ψ (±)
0 = 𝜓 (0) (3/2 ± 𝑣0) + 𝛾 , (D.32a)

Ψ (±)
1 = ±𝑣1𝜓

(1) (3/2 ± 𝑣0) , (D.32b)

Ψ (±)
2 = ±𝑣2𝜓

(1) (3/2 ± 𝑣0) + 𝑣2
1𝜓

(2) (3/2 ± 𝑣0)/2 . (D.32c)
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D.2.4 Leading expressions of the short-distance expansion

We summarize all results from above to determine the short-distance expansion of the monopole
term. The variable 𝜇 is small for short distances. Hence, considering only terms up to the order
of 𝜇4 is sufficient. We write 𝐽 (𝑐) ≈ 2𝜇(𝐽0 + 𝐽1𝜇

2 + 𝐽2𝜇
4) with 𝐽𝑚 given in Eq. (D.18) and

𝐼 (𝑐) ≈ (𝐼0 + 𝐼1𝜇2 + 𝐼2𝜇4)/(2𝜇) with 𝐼𝑚 given in Eq. (D.30) and (D.31) and insert the expansions into
(D.5). After some algebraic transformations, we find the following small-distance expansion of the
monopole terms

Δ = − log

[ 2∑︁
𝑛=0

𝜖𝑛 (𝑢) (𝛾1 − log 𝜇) + 𝛿𝑛 (𝑢)
(2𝑛 + 1)! 𝜇2𝑛 + O(𝜇6)

]
(D.33)

with the expansion coefficients 𝜖𝑛 (𝑢) and 𝛿𝑛 (𝑢), which are only functions of the geometry parameter
𝑢. The zero-order coefficients are given by

𝜖0(𝑢) = 1 − 𝑢𝜑0,0 , (D.34a)

𝛿0(𝑢) = 1 − 𝜑0,1 + 𝑢2 𝜃0,0 (D.34b)

and the coefficients of the first-order yield

𝜖1(𝑢) = (1 − 3𝑢) (1 − 2𝑢𝜑0,0) + 𝑢(1 − 𝑢 − 6𝜑1,0) , (D.35a)

𝛿1(𝑢) = 13 − 30𝑢
12

− 6𝜑1,1 + (1 − 3𝑢) (𝑢𝜃0,0 − 𝜑0,1) (D.35b)

+ 𝑢
[
6𝜃0,1 − 13 − 6𝑢

12
𝜑0,0 + 𝜑0,1

]
.

The second-order coefficients yield

𝜖2(𝑢) = −120𝑢𝜑2,0 − 𝑢(14 − 22𝑢 − 73𝑢2)
6

(D.36a)

+ (1 − 15𝑢(1 − 3𝑢)) (1 − 2𝑢𝜑0,0) − 10𝑢(1 − 3𝑢)2

3
𝜑0,0

+ 20𝑢(1 − 3𝑢)
3

(1 − 𝑢 − 6𝜑1,0) ,

𝛿2(𝑢) = 10(1 − 3𝑢)
3

[
13 − 30𝑢

12
− 6𝜑1,1

]
+ 120(𝑢𝜃0,2 − 𝜑2,1) (D.36b)

− 833 + 120𝑢 − 2190𝑢2

360
(1 − 𝑢𝜑0,0) + 𝑢(7 + 13𝑢)

3
(2 − 𝜑0,1)

− (1 − 15𝑢(1 − 3𝑢)) (𝜑0,1 − 𝑢𝜃0,0) + 5𝑢(1 − 3𝑢)2

3
𝜃0,0

+ 20𝑢(1 − 3𝑢)
3

[
6𝜃0,1 − 13 − 6𝑢

12
𝜑0,0 + 𝜑0,1

]
+ 60𝑢𝜃1,1 − 5𝑢(13 − 6𝑢)

3
𝜑1,0 + 20𝑢𝜑1,1 + 5𝑢(1 + 5𝑢 + 3𝑢2)

18
.
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D Auxiliary calculations for the universal Casimir interaction

We introduced abbreviations for the sums of the polygamma functions

𝜑𝑛,𝑚 = (1/2 + 𝑣0)𝑚Ψ (+)
𝑛 + (1/2 − 𝑣0)𝑚Ψ (−)

𝑛 . (D.37)

For the products of polygamma functions, we defined

𝜃𝑛,𝑚 = Ψ (+)
𝑛 Ψ (−)

𝑚 + Ψ (+)
𝑚 Ψ (−)

𝑛 . (D.38)

Note that for the two limiting cases, 𝑢 = 0 for the sphere-plane geometry and 𝑢 = 1/4 for equal
spheres, the coefficients 𝑣1 and 𝑣2 introduced in Eq. (D.12) vanish. Hence, 𝜑1,𝑚 and 𝜑2,𝑚 yield zero
and all 𝜃𝑛,𝑚 except for 𝜃0,0 vanish. The resulting values for 𝜖𝑛 and 𝛿𝑛 are presented in Tab. 9.2.

D.3 Resummation of the plane-sphere result
Here, we compare our result for the monopole contribution in the plane-sphere geometry, given in
Eq. (9.62) with the result reported in Ref. [24]. First, we expand our result by a factor (1− 𝑍), which
leads to

Δ𝑢=0 + log(1 − 𝑍) = log

[
1 − 𝑍 + (1 − 𝑍2)

∞∑︁
𝑙=0

(1 − 𝑍)𝑍4𝑙+1

1 − 𝑍2𝑙+1

]
. (D.39)

Next, we make use of the fact that 𝑍 = exp(−𝜇) < 1 and introduce the geometrical series (1−𝑍2)−1 =∑∞
𝑙=0 𝑍

2𝑙

Δ𝑢=0 + log(1 − 𝑍) = log

[
1 − 𝑍 (1 − 𝑍2)

∞∑︁
𝑙=0

𝑍2𝑙 + (1 − 𝑍2)
∞∑︁
𝑙=0

(1 − 𝑍)𝑍4𝑙+1

1 − 𝑍2𝑙+1

]
. (D.40)

Finally, by summarizing the terms in the argument of the logarithm, we obtain

Δ𝑢=0 + log(1 − 𝑍) = log

[
1 −

∞∑︁
𝑙=1

(1 − 𝑍2) (1 − 𝑍2𝑙)𝑍2𝑙+1

1 − 𝑍2𝑙+1

]
(D.41)

which agrees with the result found by [24].
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E Auxiliary calculation for the round-trip approximation
of the Casimir free energy

In this appendix, we provide additional information on the calculation of the triple round-trip expres-
sion of the Casimir free energy between a dielectric sphere and plane in an electrolyte.

We introduced the reflection matrix elements for a dielectric sphere in an electrolyte in Eq. (9.71)
and the reflection matrix for a planar surface are given by the Fresnel coefficient (B.11) in the limit
𝜖s/𝜖m → 0 which yields: ⟨k 𝑗 ,TM|Rde |k𝑖 ,TM⟩ = −1𝛿 (2) (k𝑖 − k 𝑗) . Inserting the reflection matrix
elements in the trace expression, which is derived in Eq. (9.3), and performing the same variable
transformation as we did for the sphere-sphere geometry in Sec. 9.4.1, we find for the trace over the
3-fold round-trip operator

trM3
ded =

𝜌3

(2𝜋)3

∫ 1

0
d3t

∫
d3x

∫
d3y e−𝑥

2
1−𝑥2

2−𝑥2
3 e−𝑦

2
1−𝑦2

2−𝑦2
3

3∏
𝑖=1

[cosh(𝜒𝑖) − 2𝑡𝑖 cosh(𝑡𝑖𝜒𝑖)] ,
(E.1)

where the argument of the hyperbolic cosine is given by 𝜒𝑖 = 𝜌(𝑥𝑖𝑥𝑖+1 + 𝑦𝑖𝑦𝑖+1) with 𝜌 = 𝑅/L.
Note that L = 𝑅 + 𝐿 in the sphere-plane geometry. Similar to our discussion for the sphere-sphere
geometry, the trace expression above is given by Gaussian-type integrals with the bilinear form

M±
3 (t) =

©«
1 ±𝑎𝑡1 ±𝑎𝑡3

±𝑎𝑡1 1 ±𝑎𝑡2
±𝑎𝑡3 ±𝑎𝑡2 1

ª®®¬ , 𝑎 = 𝜌/2 . (E.2)

For convenience, we introduced the variable 𝑎 = 𝜌/2, which is related to the conformal distance scale
𝑦 = 1/𝜌 = 1 + 𝐿/𝑅, defined in Eq. (9.16), by

𝑎 = 1/2𝑦 . (E.3)

After evaluating the Gaussian integral with (A.28), we obtain

trM3
ded = 4𝑎3

∑︁
𝜎=±

∫
d3t 𝑡1𝑡2𝑡3

∏3
𝑗=1 [𝛿(𝑡 𝑗 − 1) − 1]

1 − 𝑎2(𝑡21 + 𝑡22 + 𝑡23 + 2𝜎𝑎𝑡1𝑡2𝑡3)
≡ 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 ,

(E.4)

where t𝑡 = (𝑡1, 𝑡2, 𝑡3). After expanding the product over the 𝛿-functions, we obtain four integrals de-
noted as 𝐼𝑘 , which will be evaluated in the following. First, we compute the integral 𝐼0, corresponding
to the term with a product of four 𝛿-functions. We thus obtain

𝐼0 =
𝑎3

2

∑︁
𝜎=±

1
1 − 𝑎2(3 + 2𝜎𝑎) =

1
2

𝑦(4𝑦2 − 3)
(4𝑦2 − 1)2(𝑦2 − 1) , (E.5)

where we used Eq. (E.3) in the second step to express 𝐼0 in terms of 𝑦. Note that this term agrees with
the trace over the round-trip operator for a scalar field between the sphere and plane 𝐼0 = trM3

sc. Next,
we discuss the term 𝐼1, which corresponds to three integrals, each with a product of two 𝛿-functions

153



E Auxiliary calculation for the round-trip approximation of the Casimir free energy

in the integrand. After carrying out the integral over the 𝛿-functions, we obtain

𝐼1 = −3𝑎
∑︁
𝜎=±

∫ 1

0
d𝑡

𝑡

1 − 𝑎2(2 + 𝑡2 + 2𝜎𝑎𝑡)

=
3𝑎

2(1 − 𝑎2)

[
2(1 − 𝑎2) log(1 − 𝑎2) − 2(1 − 2𝑎2) log(1 − 2𝑎2) + (1 − 2𝑎2) log(1 − 4𝑎2)

]
,

(E.6)

where we evaluated the integral over 𝑡 by factorizing the denominator and applying (A.12). The term
𝐼2 is given by three integrals, but with only one 𝛿-function in the integrand, which thus leads to the
following two-dimensional integral

𝐼2 = 6𝑎3
∑︁
𝜎=±

∫ 1

0
d2t 𝑡1𝑡2

1 − 𝑎2 (
1 + 𝑡21 + 𝑡22 + 2𝜎𝑎𝑡1𝑡2

) . (E.7)

The first integral over the rational function can be directly evaluated and leads to

𝐼2 = −3
𝑎

∫ 𝛼

0
d𝜃

{
sin(𝜃) cos(𝜃) [ log(cos(𝜃 + 2𝛼) cos(𝜃 − 2𝛼)) + 2 log(cos(𝜃))

− 2 log(cos(𝜃 + 𝛼) cos(𝜃 − 𝑎))]
+ sin2(𝜃) tan(𝛼)

[
2 log

(
cos(𝜃 + 𝛼)
cos(𝜃 − 𝛼)

)
− log

(
cos(𝜃 + 2𝛼)
cos(𝜃 − 2𝛼)

)] }
,

(E.8)

where we performed the following variable transformation

𝑡 = sin(𝜃)/𝑎 (E.9)

with the upper integration limit given by 𝛼 = arcsin(𝑎). The integral over the term in the first and
second line can be obtained by integrating by parts, while for the integral over the expression in
the third line we are using a variation of the integral representation of the imaginary part of the
dilogarithm, which is given by [185, Eqs. 25.12.7 and 25.12.9]

Im
[
Li2(−e2i𝛾)] = −2

∫ 𝛾

0
d𝑢 log (2 cos(𝑢)) . (E.10)

In summary, the integral 𝐼2 yields

𝐼2 =
3

4𝑎

{
8(1 − 𝑎2) log(1 − 𝑎2) − 8(1 − 2𝑎2) log(1 − 2𝑎2) + 2(1 − 4𝑎2) log(1 − 4𝑎2)

− 𝑎√
1 − 𝑎2

Im
[
Li2(−e6i𝛼) − 4Li2(−e4i𝛼) + Li2(−e2i𝛼)] }

.

(E.11)

Finally, we compute the integral 𝐼3, which is given by

𝐼3 = −4𝑎3
∑︁
𝜎=±

∫ 1

0
d3t 𝑡1𝑡2𝑡3

1 − 𝑎2
(
𝑡21 + 𝑡22 + 𝑡23 + 2𝜎𝑎𝑡1𝑡2𝑡3

) . (E.12)
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𝜃1

𝜃2

𝑢

𝑣

𝛼

−𝛼

2𝛼
𝛼

𝛼

𝛼

Figure E.1: Illustration of the coordinate transfor-
mation (𝜃1, 𝜃2) → (𝑢, 𝑣) defined in Eq. (E.14).
The grey-shaded areas depict the integration inter-
val. The dashed and dotted arrows illustrate the inte-
gration directions defined in Eqs. (E.15) and (E.16).

First, we evaluate the integral over 𝑡3 and then transform the 𝑡1,2-integrals with (E.9), which lead to

𝐼3 =
1
𝑎3

∫ 𝛼

0
d𝜃1

∫ 𝛼

0
d𝜃2

{ [
cos(𝑢) cos(𝑣) − cos2(𝑢)] log

(
cos(𝑢 − 𝛼) cos(𝑢 + 𝛼)

cos2(𝑢)

)
− [

cos(𝑢) cos(𝑣) − cos2(𝑣)] log
(
cos(𝑣 − 𝛼) cos(𝑣 + 𝛼)

cos2(𝑣)

) }
,

(E.13)

where the arguments of the cosines only depend on the sum and difference of 𝜃1 and 𝜃2

𝑢 = 𝜃1 + 𝜃2, 𝑣 = 𝜃1 − 𝜃2 . (E.14)

It is thus convenient to transform the integral over 𝜃1, 𝜃2 to an integral over 𝑢, 𝑣, as illustrated in
Fig. E.1. There are two ways to change the integration limits when using the new variables, both
given below ∫ 𝛼

0
d𝜃1

∫ 𝛼

0
d𝜃2 𝑓 (𝜃1 + 𝜃2, 𝜃1 − 𝜃2) =

=
1
2

[∫ 𝛼

0
d𝑢

∫ 𝛼−𝑢

−𝛼+𝑢
d𝑣 +

∫ 2𝛼

𝛼
d𝑢

∫ −𝑢+2𝛼

𝑢−2𝛼
d𝑣

]
𝑓 (𝑢, 𝑣) (E.15)

=
1
2

[∫ 0

−𝛼
d𝑣

∫ 𝑣+2𝛼

−𝑣
d𝑢 +

∫ 𝛼

0
d𝑣

∫ −𝑣+2𝛼

𝑣
d𝑢

]
𝑓 (𝑢, 𝑣) . (E.16)

Inserting the above given transformations into (E.13) and upon employing (E.10), we find after some
algebraic transformations

𝐼3 =
1

8𝑎3

{
Re

[
6Li3(−e4i𝛼) − 15Li3(−e2i𝛼) + 10Li3(−1) − Li3(−e6i𝛼)]

− 2𝑎
√︁

1 − 𝑎2Im
[
3Li2(−e6i𝛼) − 12Li2(−e4i𝛼) + 15Li2(−e2i𝛼)]

+ 24(1 − 𝑎2) (2 − 𝑎2) log(1 − 𝑎2) − 12(1 − 2𝑎2) (3 − 2𝑎2) log(1 − 2𝑎2)

+ 6(1 − 𝑎2) (1 − 4𝑎2) log(1 − 4𝑎2)
}
.

(E.17)
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E Auxiliary calculation for the round-trip approximation of the Casimir free energy

Combining (E.5), (E.6), (E.11) and (E.17), the trace over the 3-fold round-trip matrix yields

trM3
ded =

1
2

𝑦(4𝑦2 − 3)
(4𝑦2 − 1)2(𝑦2 − 1) +

𝑦

2(4𝑦2 − 1)

{
12(32𝑦4 − 12𝑦2 + 1) log

(
1 − 1

4𝑦2

)
− 12(24𝑦4 − 14𝑦2 + 1) log

(
1 − 1

2𝑦2

)
+ 3(16𝑦4 − 16𝑦2 + 1) log

(
1 − 1

𝑦2

)
− 2𝑦2(4𝑦2 − 1)Re

[
Li3(−e6i𝛼) − 6Li3(−e4i𝛼) + 15Li3(−e2i𝛼) − 10Li3(−1)]

− 12𝑦2
√︁

4𝑦2 − 1Im
[
Li2(−e6i𝛼) − 4Li2(−e4i𝛼) + 5Li2(−e2i𝛼)] }

(E.18)

with

e2i𝛼 = 1 − 2𝑎2 + 2i𝑎
√︁

1 − 𝑎2 =
2𝑦2 − 1 + i

√︁
4𝑦2 − 1

2𝑦2 , (E.19)

where we used the relation (E.3) to express the final result in terms of 𝑦.
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F Auxiliary calculation for the next-to-leading order in
the saddle-point approximation

In this Section, we are going to derive the remaining contributions from the next-to-leading order of
the saddle-point approximation of the Casimir free energy. According to our discussion in Sec. 10.2,
the remaining parts of the saddle-point approximation are given by

F (𝑖𝑖)
NTLO(𝜉) = −

∞∑︁
𝑟=1

[trM𝑟 ] (𝑖𝑖)NTLO
𝑟

, [trM𝑟 ] (𝑖𝑖)NTLO =
𝜋𝑅eff

2𝑟

∫ d2ksp

(2𝜋)2 𝜅
2𝑟−1
sp 𝑔 (𝑏)𝑖 𝑗 𝑀

−1
𝑖, 𝑗 , (F.1)

where the integrand is given by (10.69)

𝑔 (𝑏)𝑖 𝑗 𝑀
−1
𝑖, 𝑗 =

e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

2𝑟∑︁
𝑚,𝑛=1

𝑑𝜎 (𝑚 − 𝑛)
∑︁
𝛼=𝑥,𝑦

𝜕2

𝜕𝑘𝑚,𝛼𝜕𝑘𝑛,𝛼

©«
𝑟∏
𝑗=1

𝜌 (1)𝑝2 𝑗+1, 𝑝2 𝑗 𝜌
(2)
𝑝2 𝑗 , 𝑝2 𝑗−1

ª®¬sp

.

(F.2)

The function 𝑑𝜎 (𝑘) arises from the Fourier transform of 𝑀−1
𝑖, 𝑗 and is defined in Eq. (10.56).

F.1 Derivatives of 𝜌𝑝,𝑝′

Here, we present the derivatives of the function 𝜌𝑝,𝑝′ = 𝜌𝑝,𝑝′ (k𝑖 , k 𝑗). According to Eq. (10.5) is
𝜌𝑝,𝑝′ defined by

𝜌𝑝,𝑝′ = 𝐴𝑖, 𝑗𝑟𝑝,𝑝′ + (−1) 𝑝+𝑝′𝐵𝑖, 𝑗𝑟 �̄�, �̄�′ − (−1) 𝑝𝐶𝑖, 𝑗𝑟 �̄�, 𝑝 + (−1) 𝑝′𝐷𝑖, 𝑗𝑟𝑝, �̄�′ . (F.3)

Recall that 𝑝 = TE (TM) is identified with 1 (2) in the exponents, and 𝑝 denotes the ’opposite’
polarisation of 𝑝. The Fresnel reflection coefficients 𝑟𝑝,𝑝′ = 𝑟𝑝,𝑝′ (k𝑖 , k 𝑗) are defined in Eq. (B.11),
while the polarisation-conversion coefficients 𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝐶𝑖, 𝑗 and 𝐷𝑖, 𝑗 can be found in Eq. (4.29).
First, we provide the derivatives of the polarisation-conversion coefficients evaluated at the saddle
point (sp): k𝑖 = k 𝑗 = ksp. The single derivatives yield

𝜕𝐶𝑖, 𝑗

𝜕𝑘𝑖,𝛼

�����
sp

= ±K 𝑘sp, �̄�

2𝜅sp𝑘
2
sp

= − 𝜕𝐶𝑖, 𝑗
𝜕𝑘 𝑗 ,𝛼

�����
sp

= −𝜕𝐷𝑖, 𝑗
𝜕𝑘𝑖,𝛼

�����
sp

=
𝜕𝐷𝑖, 𝑗

𝜕𝑘 𝑗 ,𝛼

�����
sp

, (F.4)

where �̄� = 𝑦 for 𝛼 = 𝑥 and vice versa. The upper (lower) sign corresponds to an incoming plane
wave propagating in positive (negative) 𝑧-direction. The first derivatives of 𝐴𝑖, 𝑗 and 𝐵𝑖, 𝑗 vanish at
the saddle point. For the double derivatives, we find∑︁
𝛼=𝑥,𝑦

𝜕2𝐴𝑖, 𝑗

𝜕𝑘2
𝑖,𝛼

�����
sp

= − K2

2𝜅2
sp𝑘

2
sp

= −
∑︁
𝛼=𝑥,𝑦

𝜕2𝐴𝑖, 𝑗

𝜕𝑘𝑖,𝛼𝜕𝑘 𝑗 ,𝛼

�����
sp

= −
∑︁
𝛼=𝑥,𝑦

𝜕2𝐵𝑖, 𝑗

𝜕𝑘2
𝑖,𝛼

�����
sp

=
∑︁
𝛼=𝑥,𝑦

𝜕2𝐵𝑖, 𝑗

𝜕𝑘𝑖,𝛼𝜕𝑘 𝑗 ,𝛼

�����
sp

.

(F.5)
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Note, if both derivatives are taken at the second argument (𝑘 𝑗 ,𝛼), we yield the same result as for the
derivatives taken at the first argument (𝑘𝑖,𝛼). The derivatives of 𝐶𝑖, 𝑗 and 𝐷𝑖, 𝑗 yield∑︁

𝛼=𝑥,𝑦

𝜕2𝐶𝑖, 𝑗

𝜕𝑘2
𝑖,𝛼

�����
sp

= ± K
2𝜅sp𝑘

2
sp

[
3 sin(2𝜙sp)

𝜅2
sp

(𝜅2
sp + 𝑘2

sp) − 2

]
=

∑︁
𝛼=𝑥,𝑦

𝜕2𝐷𝑖, 𝑗

𝜕𝑘2
𝑗 ,𝛼

�����
sp

, (F.6a)

∑︁
𝛼=𝑥,𝑦

𝜕2𝐶𝑖, 𝑗

𝜕𝑘2
𝑗 ,𝛼

�����
sp

= ± K
2𝜅sp𝑘

2
sp

[
2 − sin(2𝜙sp)

𝜅2
sp

(5𝜅2
sp + 3𝑘2

sp)
]
=

∑︁
𝛼=𝑥,𝑦

𝜕2𝐷𝑖, 𝑗

𝜕𝑘2
𝑖,𝛼

�����
sp

, (F.6b)

∑︁
𝛼=𝑥,𝑦

𝜕2𝐶𝑖, 𝑗

𝜕𝑘 𝑗 ,𝛼𝜕𝑘𝑖,𝛼

�����
sp

= ±K sin(2𝜙sp)
𝜅sp𝑘

4
sp

=
∑︁
𝛼=𝑥,𝑦

𝜕2𝐷𝑖, 𝑗

𝜕𝑘 𝑗 ,𝛼𝜕𝑘𝑖,𝛼

�����
sp

. (F.6c)

We integrate over the azimuth angle 𝜙sp in Eq. (F.1), hence all terms proportional to sin(2𝜙sp) vanish
and will thus be disregarded in the following. With the above-obtained expressions for the derivatives
of the polarisation-conversion coefficients, we are able to derive the derivatives of 𝜌𝑝,𝑝′ . Derivatives
with respect to a single component yield

𝜕𝜌𝑝,𝑝′

𝜕𝑘𝑖,𝛼

�����
sp

= (𝑟𝑝,𝑝′)𝑖 ± (−1) 𝑝−1K𝑘sp, �̄�

2𝜅sp𝑘
2
sp

[
𝑟 �̄�, 𝑝′ + (−1) 𝑝−𝑝′𝑟𝑝, �̄�′

]
, (F.7a)

𝜕𝜌𝑝,𝑝′

𝜕𝑘 𝑗 ,𝛼

�����
sp

= (𝑟𝑝,𝑝′) 𝑗 ∓ (−1) 𝑝−1K𝑘sp, �̄�

2𝜅sp𝑘
2
sp

[
𝑟 �̄�, 𝑝′ + (−1) 𝑝−𝑝′𝑟𝑝, �̄�′

]
. (F.7b)

All expressions are evaluated at the saddle point and for simplicity, we abbreviate the derivatives of
the Fresnel reflection coefficients

(
𝜕𝑘𝑖,𝛼𝑟𝑝,𝑝′

)
sp by (𝑟𝑝,𝑝′)𝑖 . For the double derivatives, we find

∑︁
𝛼=𝑥,𝑦

𝜕2𝜌𝑝,𝑝′

𝜕𝑘2
𝑖,𝛼

�����
sp

=
K2

2𝜅2
sp𝑘

2
sp

(
−𝑟𝑝,𝑝′ + (−1) 𝑝−𝑝′𝑟 �̄�, �̄�′

)
+ (
𝑟𝑝,𝑝′

)
𝑖𝑖 (F.8a)

± (−1) 𝑝 K
𝜅sp𝑘

2
sp

(
𝑟 �̄�, 𝑝′ + (−1) 𝑝−𝑝′𝑟𝑝, �̄�′

)
,

∑︁
𝛼=𝑥,𝑦

𝜕2𝜌𝑝,𝑝′

𝜕𝑘2
𝑗 ,𝛼

�����
sp

=
K2

2𝜅2
sp𝑘

2
sp

(
−𝑟𝑝,𝑝′ + (−1) 𝑝−𝑝′𝑟 (𝑡 )�̄�, �̄�′

)
+ (
𝑟𝑝,𝑝′

)
𝑗 𝑗 (F.8b)

∓ (−1) 𝑝 K
𝜅sp𝑘

2
sp

(
𝑟 �̄�, 𝑝′ + (−1) 𝑝−𝑝′𝑟𝑝, �̄�′

)
,

∑︁
𝛼=𝑥,𝑦

𝜕2𝜌𝑝,𝑝′

𝜕𝑘 𝑗 ,𝛼𝜕𝑘𝑖,𝛼

�����
sp

=
K2

2𝜅2
sp𝑘

2
sp

(
𝑟𝑝,𝑝′ − (−1) 𝑝−𝑝′𝑟 �̄�, �̄�′

)
+ (
𝑟𝑝,𝑝′

)
𝑖 𝑗 , (F.8c)

where we also performed the sum over 𝛼 as defined in Eq. (F.2).

F.2 General definitions

We already discussed in Sec. 10.2, that there are two types of terms in Eq. (F.2), which are also
illustrated in Fig. 10.4. On the one hand, there are terms where we take both derivatives at one sphere
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F.3 Case I: Derivatives taken at one sphere

during the 𝑟 round-trips. We denote these terms with 𝐼 in the following. They are illustrated in the
left panel of Fig. 10.4. On the other hand, the two derivatives can also be taken at different points
during the 𝑟 round-trips as it is depicted in the right panel of Fig. 10.4. We denote these terms with
𝐽, so in total we write (F.2) as

𝑔 (𝑏)𝑖 𝑗 𝑀
−1
𝑖 𝑗 = 𝐼 + 𝐽 . (F.9)

Before, we proceed with the evaluation of the two terms, we introduce the following notation for
the derivatives of 𝜌 (𝑡 )𝑝𝑖 , 𝑝 𝑗 (k𝑖 , k 𝑗)

𝑑 (𝑡 );1,2𝑝𝑖 , 𝑝 𝑗 =

(
𝜌 (𝑡 )𝑝𝑖 , 𝑝 𝑗 (k𝑖 , k 𝑗)

)
𝑖 𝑗

𝑟 (𝑡 )𝑝𝑖 , 𝑝 𝑗
. (F.10)

The superscript takes values 𝑡 = 1, 2 and distinguishes between spheres 1 and 2. The other super-
scripts determine whether the derivatives are taken with respect to the first or second argument of
𝜌 (𝑡 )𝑝𝑖 , 𝑝 𝑗 (k𝑖 , k 𝑗). Hence, the 1 denotes the derivative with respect to 𝑘𝑖,𝛼 and 2 the derivative with
respect to 𝑘 𝑗 ,𝛼. Moreover, we introduce for the products of Fresnel reflection coefficients (evaluated
at the saddle point)

𝑋 (1,2)
𝑟 =

𝑟∏
𝑗=1
𝑟 (1)𝑝2 𝑗−1, 𝑝2 𝑗𝑟

(2)
𝑝2 𝑗 , 𝑝2 𝑗+1 . (F.11)

The order of 𝑟 (𝑡 )𝑝,𝑝′ is important in the following, which is why we added the superscript (1, 2) to 𝑋 .

F.3 Case I: Derivatives taken at one sphere

In case I, both derivatives in Eq. (F.2) are taken at one sphere. Within 𝑟 round-trips, there are 𝑟
possibilities for each sphere, we thus get

𝐼 =
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

{ [
𝑑 (0)

(
𝑑 (1);1,1𝑝2𝑙+1, 𝑝2𝑙 + 𝑑 (1);2,2𝑝2𝑙+1, 𝑝2𝑙

)
+ 2𝑑+(1)𝑑 (1);1,2𝑝2𝑙+1, 𝑝2𝑙

]
𝑋 (1,2)
𝑟

+
[
𝑑 (0)

(
𝑑 (2);1,1𝑝2𝑙 , 𝑝2𝑙−1 + 𝑑 (2);2,2𝑝2𝑙 , 𝑝2𝑙−1

)
+ 2𝑑− (1)𝑑 (2);1,2𝑝2𝑙 , 𝑝2𝑙−1

]
𝑋 (2,1)
𝑟

}
.

(F.12)

The terms proportional to 𝑑 (0) include the case, where both derivatives are taken with respect to the
first or second argument of 𝜌 (𝑡 )𝑝,𝑝′ . For the terms proportional to 𝑑±(1), the derivatives are taken with
respect to both arguments of 𝜌 (𝑡 )𝑝,𝑝′ . We can arbitrarily choose the point where the derivatives are
taken due to the cyclic invariance of the summation indices. Without loss of generality, we will take
the derivative in the first round-trip. The sum over 𝑙 can thus be carried out, yielding a factor 𝑟 .

Next, we use the results for the derivatives of 𝜌 (𝑡 )𝑝𝑝′ which are given in Eq. (F.8). They allow us to
write the derivatives given above in the following form

𝑑 (𝑡 );1,1𝑝,𝑝′ + 𝑑 (𝑡 );2,2𝑝,𝑝′ = 𝐷 (𝑡 )
𝐼0, 𝑝, 𝑝′

− 𝐷 (𝑡 )
𝐼2, 𝑝, 𝑝′

, (F.13a)

2𝑑 (𝑡 );1,2𝑝,𝑝′ = 𝐷 (𝑡 )
𝐼1, 𝑝, 𝑝′

+ 𝐷 (𝑡 )
𝐼2, 𝑝, 𝑝′

. (F.13b)
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The coefficient 𝐷 𝐼0 and 𝐷 𝐼1 account for the terms, where the derivatives are taken at the Fresnel
reflection coefficients 𝑟𝑝,𝑝′ , they are given by

𝐷 (𝑡 )
𝐼0, 𝑝, 𝑝′

=

(
𝑟 (𝑡 )𝑝,𝑝′

)
𝑖𝑖

𝑟 (𝑡 )𝑝,𝑝′
+

(
𝑟 (𝑡 )𝑝,𝑝′

)
𝑗 𝑗

𝑟 (𝑡 )𝑝,𝑝′
, 𝐷 (𝑡 )

𝐼1, 𝑝, 𝑝′
= 2

(
𝑟 (𝑡 )𝑝,𝑝′

)
𝑖 𝑗

𝑟 (𝑡 )𝑝,𝑝′
(F.14)

while the coefficient 𝐷 𝐼2 represents the terms, where we take the derivatives of the polarisation-
conversion coefficients, which are given by

𝐷 (𝑡 )
𝐼2, 𝑝, 𝑝′

=
K2

𝜅2
sp𝑘

2
sp

𝑟 (𝑡 )𝑝,𝑝′ − (−1) 𝑝−𝑝′𝑟 (𝑡 )�̄�, �̄�′
𝑟 (𝑡 )𝑝,𝑝′

. (F.15)

Hence, we can separate the terms in Eq. (F.12) into three different expression, based on the just
introduced definition of the derivatives 𝐼 = 𝐼0 + 𝐼1 + 𝐼2 with

𝐼0 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

[
𝑑 (0)𝐷 (1)

𝐼0, 𝑝1, 𝑝2
𝑋 (1,2)
𝑟 + 𝑑 (0)𝐷 (2)

𝐼0, 𝑝1, 𝑝2
𝑋 (2,1)
𝑟

]
, (F.16)

𝐼1 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

[
𝑑+(1)𝐷 (1)

𝐼1, 𝑝1, 𝑝2
𝑋 (1,2)
𝑟 + 𝑑− (1)𝐷 (2)

𝐼1, 𝑝1, 𝑝2
𝑋 (2,1)
𝑟

]
, (F.17)

𝐼2 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

[
(𝑑+(1) − 𝑑 (0)) 𝐷 (1)

𝐼2, 𝑝1, 𝑝2
𝑋 (1,2)
𝑟 + (𝑑− (1) − 𝑑 (0)) 𝐷 (2)

𝐼2, 𝑝1, 𝑝2
𝑋 (2,1)
𝑟

]
. (F.18)

We are now going to determine the frequency contributions to F (𝑖𝑖)
NTLO(𝜉) defined in Eq. (F.1) for

these three terms. Similar to our discussion in Sec. 10.1.2, we describe the different polarisation
combinations recursively. The contribution from 𝐼0 to the trace [trM𝑟 ] (𝑖𝑖)NTLO yields

[trM𝑟 ] (𝑖𝑖)NTLO

�����
𝐼0

=
𝑅eff
4

∫ d2ksp

2𝜋𝜅sp
𝑑 (0)

(
ℎ (1,2);TM,TM
𝐼0,𝑟

+ ℎ (1,2);TE,TE
𝐼0,𝑟

+ ℎ (2,1);TM,TM
𝐼0,𝑟

+ ℎ (2,1);TE,TE
𝐼0,𝑟

)
.

(F.19)

Equivalent expressions can be derived for 𝐼1 and 𝐼2. For 𝑟 > 1 the known recursion relation (10.26)
holds, with

ℎ (1,2);𝑝,𝑝
′

𝐼𝑛 ,𝑟
= 𝐴(1,2);𝑝TM

0 ℎ (1,2);TM, 𝑝′
𝐼𝑛 ,𝑟−1 + 𝐴(1,2);𝑝,TE

0 ℎ (1,2);TM, 𝑝′
𝐼𝑛 ,𝑟−1 , (F.20)

where 𝐴(1,2);𝑝,𝑝′
0 describes a single round-trip similar to Eq. (10.27)

𝐴(1,2);𝑝,𝑝′
0 =

[
𝑟 (1)𝑝,TM𝑟

(2)
TM, 𝑝′ + 𝑟

(1)
𝑝,TE𝑟

(2)
TE, 𝑝′

]
e−2𝜅sp𝐿 . (F.21)

By exchanging the superscripts 1 and 2 in the expressions given above, one obtains the corresponding
recursion relations for ℎ (2,1);𝑝,𝑝

′
𝐼𝑛 ,𝑟

. Note that the eigenvalues 𝜆1 and 𝜆2 of the round-trip matrix A0 are
the same for the two superscripts (10.39)

𝜆1,2 =
1
2

[
trA(1,2)

0 ±
√︃

tr2A(1,2)
0 − 4 det A(1,2)

0

]
=

1
2

[
trA(2,1)

0 ±
√︃

tr2A(2,1)
0 − 4 det A(2,1)

0

]
. (F.22)
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F.3 Case I: Derivatives taken at one sphere

The case 𝑟 = 1 is discussed separately. Here, we have to take into account that we take the
derivative at one of the spheres in the first round-trip, thus leading to

ℎ (1,2);𝑝,𝑝
′

𝐼𝑛 ,1 =
[
𝐷 (1)
𝐼𝑛 , 𝑝,TM𝑟

(1)
𝑝,TM𝑟

(2)
TM, 𝑝′ + 𝐷

(1)
𝐼𝑛 , 𝑝,TE𝑟

(1)
𝑝,TE𝑟

(2)
TE, 𝑝′

]
e−2𝜅sp𝐿 . (F.23)

Inserting the definitions for 𝐷 𝐼0 and 𝐷 𝐼1 in the above-given relation, we get

ℎ (1,2);𝑝,𝑝
′

𝐼0,1 =

[((
𝑟 (1)𝑝,TM

)
𝑖𝑖
+

(
𝑟 (1)𝑝,TM

)
𝑗 𝑗

)
𝑟 (2)TM, 𝑝′ +

((
𝑟 (1)𝑝,TE

)
𝑖𝑖
+

(
𝑟 (1)𝑝,TE

)
𝑗 𝑗

)
𝑟 (2)TE, 𝑝′

]
e−2𝜅sp𝐿 , (F.24)

ℎ (1,2);𝑝,𝑝
′

𝐼1,1 =

[(
𝑟 (1)𝑝,TM

)
𝑖 𝑗
𝑟 (2)TM, 𝑝′ +

(
𝑟 (1)𝑝,TE

)
𝑖 𝑗
𝑟 (2)TE, 𝑝′

]
e−2𝜅sp𝐿 , (F.25)

while we find for 𝐷 𝐼2 , the following four relations for the first round-trip

ℎ (1,2);TM,TM
𝐼2,1 =

K2

𝜅2
sp𝑘

2
sp

[
Δ𝑟 (1)𝑏 𝑟 (2)TM,TM + Δ𝑟 (1)𝑎 𝑟 (2)TE,TM

]
e−2𝜅sp𝐿 , (F.26a)

ℎ (1,2);TM,TE
𝐼2,1 =

K2

𝜅2
sp𝑘

2
sp

[
Δ𝑟 (1)𝑏 𝑟 (2)TM,TE + Δ𝑟 (1)𝑎 𝑟 (2)TE,TE

]
e−2𝜅sp𝐿 , (F.26b)

ℎ (1,2);TE,TM
𝐼2,1 =

K2

𝜅2
sp𝑘

2
sp

[
Δ𝑟 (1)𝑎 𝑟 (2)TM,TM − Δ𝑟 (1)𝑏 𝑟 (2)TE,TM

]
e−2𝜅sp𝐿 , (F.26c)

ℎ (1,2);TE,TE
𝐼2,1 =

K2

𝜅2
sp𝑘

2
sp

[
Δ𝑟 (1)𝑎 𝑟 (2)TM,TE − Δ𝑟 (1)𝑏 𝑟 (2)TE,TE

]
e−2𝜅sp𝐿 , (F.26d)

where we defined

Δ𝑟 (𝑡 )𝑏 = 𝑟 (𝑡 )TM,TM − 𝑟 (𝑡 )TE,TE , Δ𝑟 (𝑡 )𝑎 = 𝑟 (𝑡 )TM,TE + 𝑟 (𝑡 )TE,TM . (F.27)

After inserting the recursion relation (F.20) with (F.23) together with 𝑑 (0) = 𝜅sp
(
𝑟2 + 3𝑢 − 1

) /6𝑟𝑅eff
into Eq. (F.19) and performing the round-trip sum, according to (F.1), the frequency contribution to
the Casimir energy yields

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐼0

= − 1
24

∫ d2ksp

2𝜋

[
P (1,2)
𝐼0,0 + P (2,1)

𝐼0,0 + (3𝑢 − 1)
(
P (1,2)
𝐼0,2 + P (2,1)

𝐼0,2

)]
, (F.28)

where we introduced for the round-trip sum over ℎ𝐼𝑛 ,𝑟 the following function

P (1,2)
𝐼𝑛 ,𝑚

=
∞∑︁
𝑟=1

1
𝑟𝑚

[
ℎ (1,2);TM,TM
𝐼𝑛 ,𝑟

+ ℎ (1,2);TE,TE
𝐼𝑛 ,𝑟

]
. (F.29)

Similar to the discussion in Sec. 10.1.2, we evaluate the round-trip sum by rewriting 1/𝑟𝑚 in terms
of 𝑚 integrals over auxiliary variables and introduce generating functions for the round-trip sums

P (1,2)
𝐼𝑛 ,𝑚

=
∫ 1

0

d𝑡𝑚
𝑡𝑚

. . .

∫ 𝑡2

0

d𝑡1
𝑡1

(
𝐻 (1,2);TM,TM
𝐼𝑛

(𝑡1) + 𝐻 (1,2);TE,TE
𝐼𝑛

(𝑡1)
)
. (F.30)
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F Auxiliary calculation for the next-to-leading order in the saddle-point approximation

The generating function is defined as

𝐻 (1,2);𝑝,𝑝′
𝐼𝑛

(𝑡) :=
∞∑︁
𝑟=1

𝑡𝑟 ℎ (1,2);𝑝,𝑝
′

𝐼𝑛 ,𝑟
= 𝑡ℎ (1,2);𝑝,𝑝

′
𝐼𝑛 ,1 + 𝑡

∞∑︁
𝑟=1

𝑡𝑟 ℎ (1,2);𝑝,𝑝
′

𝐼𝑛 ,𝑟+1 . (F.31)

In the second step, we extracted the single-round-trip term and shifted the index of the remaining sum.
The coefficients ℎ𝐼𝑛 ,𝑟+1 can now be rewritten with the above introduced recursion relation (F.20) and
we find

𝐻 (1,2);𝑝,𝑝′
𝐼𝑛

(𝑡) = 𝑡ℎ (1,2);𝑝,𝑝′𝐼𝑛 ,1 + 𝑡𝐴(1,2);𝑝,TM
0 𝐻 (1,2);TM, 𝑝′

𝐼𝑛
(𝑡) + 𝐴(1,2);𝑝,TE

0 𝐻 (1,2);TM, 𝑝′
𝐼𝑛

(𝑡) . (F.32)

We solve the expression for the generating functions and obtain

𝐻 (1,2);TM,TM
𝐼𝑛

(𝑡) + 𝐻 (1,2);TE,TE
𝐼𝑛

(𝑡) =
𝑡𝑐 (1,2)𝐼𝑛

+ 𝑡2𝑑 (1,2)𝐼𝑛

(1 − 𝑡𝜆1) (1 − 𝑡𝜆2) , (F.33)

where we introduced the eigenvalues𝜆1,2 of the round-trip matrix given in Eq. (F.22) and the following
expansion coefficients

𝑐 (1,2)𝐼𝑛
= ℎ (1,2);TM,TM

𝐼𝑛 ,1 + ℎ (1,2);TE,TE
𝐼𝑛 ,1 , (F.34a)

𝑑 (1,2)𝐼𝑛
= −ℎ (1,2);TM,TM

𝐼𝑛 ,1 𝐴(1,2);TE,TE
0 − ℎ (1,2);TE,TE

𝐼𝑛 ,1 𝐴(1,2);TM,TM
0 (F.34b)

+ ℎ (1,2);TE,TM
𝐼𝑛 ,1 𝐴(1,2);TM,TE

0 + ℎ (1,2);TM,TE
𝐼𝑛 ,1 𝐴(1,2);TE,TM

0 .

The integrals over 𝑡𝑖 in Eq. (F.30) can easily be evaluated with (A.12) and expressed in terms of
polylogarithms. For 𝑚 > 0, we get

P (1,2)
𝐼𝑛 ,𝑚

=
𝑐 (1,2)𝐼𝑛

𝜆1 + 𝑑 (1,2)𝐼𝑛

𝜆1(𝜆1 − 𝜆2) Li𝑚 [𝜆1] +
𝑐 (1,2)𝐼𝑛

𝜆2 + 𝑑 (1,2)𝐼𝑛

𝜆2(𝜆2 − 𝜆1) Li𝑚 [𝜆2] (F.35)

and for 𝑚 = 0 we can employ the definition of the zero-order polylogarithm (A.9)

P (1,2)
𝐼𝑛 ,0 =

𝑐 (1,2)𝐼𝑛
+ 𝑑 (1,2)𝐼𝑛

𝜆1𝜆2
Li0 [𝜆1]Li0 [𝜆2] . (F.36)
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F.3 Case I: Derivatives taken at one sphere

For 𝐼1, defined in Eq. (F.17) we use

𝑑±(1) =
𝜅sp

6𝑟𝑅eff

[
𝑟2 − 3𝑟

(
1 ∓ 𝑅1 − 𝑅2

𝑅1 + 𝑅2

)
+ 2 − 3𝑢 ∓ 3

𝑅1 − 𝑅2
𝑅1 + 𝑅2

]
(F.37)

and thus obtain for the free energy contribution

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐼1

= − 1
24

∫ d2ksp

2𝜋

{
P (1,2)
𝐼1,0 − 3

(
1 − 𝑅1 − 𝑅2

𝑅1 + 𝑅2

)
P (1,2)
𝐼1,1 +

(
2 − 3𝑢 − 3

𝑅1 − 𝑅2
𝑅1 + 𝑅2

)
P (1,2)
𝐼1,2

(F.38)

+ P (2,1)
𝐼1,0 − 3

(
1 + 𝑅1 − 𝑅2

𝑅1 + 𝑅2

)
P (2,1)
𝐼1,1 +

(
2 − 3𝑢 + 3

𝑅1 − 𝑅2
𝑅1 + 𝑅2

)
P (2,1)
𝐼1,2

}
.

For the case 𝐼2, defined in Eq. (F.18), we apply

𝑑±(1) − 𝑑 (0) =
𝜅sp𝑢

𝑟𝑅eff

[
−𝑟

(
1 + 𝑅2/1

𝑅1/2

)
+ 𝑅2/1

𝑅1/2

]
, (F.39)

where the upper (lower) sign corresponds to the first (second) index. The contribution to the free
energy yields

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐼2

= −𝑢
4

∫ d2ksp

2𝜋

{
−

(
1 + 𝑅1

𝑅2

)
P (2,1)
𝐼2,1 + 𝑅1

𝑅2
P (2,1)
𝐼2,2 (F.40)

−
(
1 + 𝑅2

𝑅1

)
P (1,2)
𝐼2,1 + 𝑅2

𝑅1
P (1,2)
𝐼2,2

}
.

Finally, we compare our results with known expressions for the limit of two dielectric spheres given
in Ref. [109]. In this limit, the polarisation-changing reflections coefficients 𝑟TE,TM and 𝑟TM,TE vanish
and the eigenvalues are given by 𝜆1 = 𝜙TM and 𝜆2 = 𝜙TE defined in Eq. (10.41). The coefficients
(F.23) thus yield

ℎ (1,2);𝑝,𝑝𝐼0,1 =

[
(𝑟 (1)𝑝,𝑝) 𝑗 𝑗
𝑟 (1)𝑝,𝑝

+ (𝑟 (1)𝑝,𝑝)𝑖𝑖
𝑟 (1)𝑝,𝑝

]
𝜙𝑝 , (F.41)

ℎ (1,2);𝑝,𝑝𝐼1,1 =
(𝑟 (1)𝑝,𝑝)𝑖 𝑗
𝑟 (1)𝑝,𝑝

𝜙𝑝 , (F.42)

ℎ (1,2);𝑝,𝑝𝐼2,1 = −(−1) 𝑝 K2

𝑘2
sp𝜅

2
sp

Δ𝑟 (1)𝑏
𝑟 (1)𝑝,𝑝

𝜙𝑝 . (F.43)

It is now easy to show that Eq. (F.28) together with Eq. (F.41) and Eq. (F.38) together with Eq. (F.42)
reproduce Eq. (6.63) of Ref. [109], while Eq. (F.40) together with Eq. (F.43) yields Eq. (6.67) of the
same reference.
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F Auxiliary calculation for the next-to-leading order in the saddle-point approximation

F.4 Case J: Derivatives taken at two spheres

In this Section, we will discuss the case 𝐽, where the derivatives are taken at different points during
the 𝑟 round-trips. As already depicted in Fig. 10.4, there are four contributions to 𝐽. Terms where
both derivatives are taken at the same sphere are denoted by 𝐽 (1,1) or 𝐽 (2,2) and for derivatives at
different spheres, we introduced 𝐽 (1,2) or 𝐽 (2,1) . In total, we write

𝐽 = 𝐽 (1,1) + 𝐽 (2,2) + 𝐽 (1,2) + 𝐽 (2,1) . (F.44)

𝐽 (𝑡 ,𝑠) accounts for round-trips where the first derivative is taken at sphere 𝑡 and the second derivative
at sphere 𝑠. In the following, we are discussing the cases 𝐽 (2,2) and 𝐽 (2,1) in detail. For 𝐽 (1,1) and
𝐽 (1,2) one only needs to exchange the indices 2 and 1 in the result for the discussed cases.

F.4.1 Cases 𝐽 (2,1) and 𝐽 (1,2)

Similar to our discussion before, we make use of the cyclic invariance of the indices and take the first
derivative always in the first round-trip. We start at sphere 2 (𝑑 (2);1/2

𝑝2, 𝑝1 ), where we take the derivative
either with respect to 𝑘2,𝛼 or 𝑘1,𝛼. During the 𝑟 round-trips, there are 𝑟 possibilities of taking the
derivative at sphere 1. Hence, we set 𝑑 (1);1/2

𝑝2𝑙+1, 𝑝2𝑙 and sum over 𝑙 = 1, . . . 𝑟. The sum (F.2), thus yields

𝐽 (2,1) = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

[
𝑑+(2𝑙 − 1)𝑑 (2);1𝑝2, 𝑝1𝑑

(1);1
𝑝2𝑙+1, 𝑝2𝑙 + 𝑑− (2𝑙 − 1)𝑑 (2);2𝑝2, 𝑝1𝑑

(1);2
𝑝2𝑙+1, 𝑝2𝑙 (F.45)

+ 𝑑 (2𝑙)𝑑 (2);2𝑝2, 𝑝1𝑑
(1);1
𝑝2𝑙+1, 𝑝2𝑙 + 𝑑 (2𝑙 − 2)𝑑 (2);1𝑝2, 𝑝1𝑑

(1);2
𝑝2𝑙+1, 𝑝2𝑙

]
𝑋 (2,1)
𝑟 ,

where we used 2𝑑 (2𝑙) = 𝑑+(2𝑙) + 𝑑− (2𝑙). The multiplicative factor 𝑟 appearing in the expression
above originates from the 𝑟 possibilities of choosing the starting point at sphere 2. With the results for
the derivatives of 𝜌 (𝑡 )𝑝,𝑝′ determined in Eqs. (F.7a) and (F.7b), we find for the product of the derivatives

𝑑 (𝑡 );1/2
𝑝,𝑝′ 𝑑 (𝑠);1/2

𝑞,𝑞′ = 𝐸 (𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ + 𝐹

(𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ , (F.46a)

𝑑 (𝑡 );1/2
𝑝,𝑝′ 𝑑 (𝑠);2/1

𝑞,𝑞′ = 𝐸 (𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ − 𝐹

(𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ . (F.46b)

Here, the function 𝐸 (𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ takes the derivatives of the Fresnel coefficients into account

𝐸 (𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ =

(
𝑟 (𝑡 )𝑝,𝑝′

)
𝑖

(
𝑟 (𝑠)𝑞,𝑞′

)
𝑗

𝑟 (𝑡 )𝑞,𝑝′𝑟
(𝑠)
𝑞,𝑞′

(F.47)

while 𝐹 (𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ contains the terms, where the derivatives are taken on the polarisation-conversion

coefficients and thus yields

𝐹 (𝑡 );𝑝,𝑝′
(𝑠);𝑞,𝑞′ = ± K2

4𝑘2
sp𝜅

2
sp

(−1) 𝑝
(
𝑟 (𝑡 )�̄�, 𝑝′ + (−1) 𝑝−𝑝′𝑟 (𝑡 )𝑝, �̄�′

)
𝑟 (𝑡 )𝑝,𝑝′

(−1)𝑞
(
𝑟 (𝑠)𝑞,𝑞′ + (−1)𝑞−𝑞′𝑟 (𝑠)

𝑞,𝑞′

)
𝑟 (𝑠)𝑞,𝑞′

, (F.48)
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F.4 Case J: Derivatives taken at two spheres

where the upper (lower) sign corresponds to 𝑡 = 𝑠 (𝑡 ≠ 𝑠). The above-introduced relations for the
products of the derivatives, allows us to separate Eq. (F.45) into two terms: 𝐽 (2,1) = 𝐽 (2,1)𝐹 + 𝐽 (2,1)𝐸

with

𝐽 (2,1)𝐹 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

𝐹 (2);𝑝2, 𝑝1
(1);𝑝2𝑙+1, 𝑝2𝑙

(
𝑑+(2𝑙 − 1) + 𝑑− (2𝑙 − 1) − 𝑑 (2𝑙) − 𝑑 (2𝑙 − 2)

)
𝑋 (2,1)
𝑟 ,

(F.49)

𝐽 (2,1)𝐸 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

𝐸 (2);𝑝2, 𝑝1
(1);𝑝2𝑙+1, 𝑝2𝑙

(
𝑑+(2𝑙 − 1) + 𝑑− (2𝑙 − 1) + 𝑑 (2𝑙) + 𝑑 (2𝑙 − 2)

)
𝑋 (2,1)
𝑟 .

(F.50)

We evaluate the sums of 𝑑±(𝑘) functions with (10.56) and get

𝑑+(2𝑙 − 1) + 𝑑− (2𝑙 − 1) − 𝑑 (2𝑙) − 𝑑 (2𝑙 − 2) = − 2𝜅sp

𝑟 (𝑅1 + 𝑅2) , (F.51)

𝑑+(2𝑙 − 1) + 𝑑− (2𝑙 − 1) + 𝑑 (2𝑙) + 𝑑 (2𝑙 − 2) = 𝜅sp

2𝑟
4𝑟2 − 12𝑟 (2𝑙 − 1) + 6(2𝑙 − 1)2 + 2

3𝑅eff
. (F.52)

We start with the evaluation of 𝐽 (2,1)𝐹 , where the contribution to the trace yields

[trM𝑟 ] (𝑖𝑖)NTLO

�����
𝐽
(2,1)
𝐹

= −𝑢
2

∫ d2ksp

2𝜋
e−2𝑟 𝜅sp𝐿

𝑟

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

𝐹 (2);𝑝2, 𝑝1
(1);𝑝2𝑙+1, 𝑝2𝑙

𝑋 (2,1)
𝑟 . (F.53)

We obtain the free energy by summing over all round-rips. As before, we compute the round-trip
sum via a generating function and thus write

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,1)
𝐹

=
𝑢

2

∫ d2ksp

2𝜋

∞∑︁
𝑟=1

e−2𝑟 𝜅sp𝐿

𝑟2

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

𝐹 (2);𝑝2, 𝑝1
(1);𝑝2𝑙+1𝑝2𝑙

𝑋 (2,1)
𝑟 (F.54)

= −𝑢
8

∫ d2ksp

2𝜋
K2

𝑘2
sp𝜅

2
sp

∫ 1

0

d𝑡1
𝑡1

∫ 𝑡1

0

d𝑡
𝑡

(
𝐻 (2,1);TM,TM(𝑡, 1) + 𝐻 (2,1);TE,TE(𝑡, 1)

)
,

where we introduced a generating function with two auxiliary variables

𝐻 (2,1);𝑝,𝑝′ (𝑡, 𝑠) =
∞∑︁
𝑟=1

𝑡𝑟
𝑟∑︁
𝑙=1

𝑠2𝑙−1ℎ (2,1);𝑝,𝑝
′

𝑟 ,𝑙 . (F.55)

The term 𝑠2𝑙−1 accounts for the factors (2𝑙 − 1) in Eq. (F.50). We determine the generating function
by applying recursion relations for ℎ𝑟 ,𝑙.

For 𝑟 ≠ {𝑙, 1} the known recursion relation holds

ℎ (2,1);𝑝,𝑝
′

𝑟 ,𝑙 = 𝐴(2,1);𝑝,TM
0 ℎ (2,1);TM, 𝑝′

𝑟−1,𝑙 + 𝐴(2,1);𝑝,TE
0 ℎ (2,1);TE, 𝑝′

𝑟−1,𝑙 . (F.56)
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For 𝑙 ≠ 1 is the beginning of the recursion (𝑟 = 1) given by

ℎ (2,1);𝑝,𝑝
′

1,𝑙 = �̂�(2,1);𝑝,𝑝′
0 , (F.57)

with (F.48) we find for the first round-trip, where the derivative is taken at sphere 2, the following
expressions

�̂�(2,1);TM,TM
0 =

(
Δ𝑟 (2)𝑎 𝑟 (1)TM,TM − Δ𝑟 (2)𝑏 𝑟 (1)TE,TM

)
e−2𝜅sp𝐿 , (F.58a)

�̂�(2,1);TM,TE
0 =

(
Δ𝑟 (2)𝑎 𝑟 (1)TM,TE − Δ𝑟 (2)𝑏 𝑟 (1)TE,TE

)
e−2𝜅sp𝐿 , (F.58b)

�̂�(2,1);TE,TM
0 = −

(
Δ𝑟 (2)𝑎 𝑟 (1)TE,TM + Δ𝑟 (2)𝑏 𝑟 (1)TM,TM

)
e−2𝜅sp𝐿 , (F.58c)

�̂�(2,1);TE,TE
0 = −

(
Δ𝑟 (2)𝑎 𝑟 (1)TE,TE + Δ𝑟 (2)𝑏 𝑟 (1)TM,TE

)
e−2𝜅sp𝐿 , (F.58d)

where we introduced Δ𝑟 (2)𝑎 and Δ𝑟 (2)𝑏 defined in Eq. (F.27). For 𝑟 = 𝑙 the derivative is taken at sphere
1 (see also Fig. F.1) and the recursion is thus given by

ℎ (2,1);𝑝,𝑝
′

𝑙,𝑙 = �̃�(2,1);𝑝,TM
0 ℎ (2,1);TM, 𝑝′

𝑙−1,𝑙 + �̃�(2,1);𝑝,TE
0 ℎ (2,1);TE, 𝑝′

𝑙−1,𝑙 (F.59)

with

�̃�(2,1);TM,TM
0 =

(
𝑟 (2)TM,TMΔ𝑟 (1)𝑎 − 𝑟 (2)TM,TEΔ𝑟

(1)
𝑏

)
e−2𝜅sp𝐿 , (F.60a)

�̃�(2,1);TM,TE
0 = −

(
𝑟 (2)TM,TMΔ𝑟 (1)𝑏 + 𝑟 (2)TM,TEΔ𝑟

(1)
𝑎

)
e−2𝜅sp𝐿 , (F.60b)

�̃�(2,1);TE,TM
0 =

(
𝑟 (2)TE,TMΔ𝑟 (1)𝑎 − 𝑟 (2)TE,TEΔ𝑟

(1)
𝑏

)
e−2𝜅sp𝐿 , (F.60c)

�̃�(2,1);TE,TE
0 = −

(
𝑟 (2)TE,TMΔ𝑟 (1)𝑏 + 𝑟 (2)TE,TEΔ𝑟

(1)
𝑎

)
e−2𝜅sp𝐿 . (F.60d)

Special care is needed for the case 𝑟 = 𝑙 = 1, where both derivatives are taken within the first
round-trip. Here, we obtain with (F.48), the following expressions for ℎ1,1

ℎ (2,1);𝑝,𝑝1,1 =
(
Δ𝑟 (2)𝑎 Δ𝑟 (1)𝑎 + Δ𝑟 (2)𝑏 Δ𝑟 (1)𝑏

)
e−2𝜅sp𝐿 , (F.61a)

ℎ (2,1);𝑝, �̄�1,1 = (−1) 𝑝−1
(
Δ𝑟 (2)𝑎 Δ𝑟 (1)𝑏 − Δ𝑟 (2)𝑏 Δ𝑟 (1)𝑎

)
e−2𝜅sp𝐿 . (F.61b)

Before we proceed with the evaluation of Eq. (F.54), we want to highlight that the recursion
relations defined in Eqs. (F.56), (F.57) and (F.59) are also applicable to the other cases 𝐽 (𝑡 ,𝑠) . The
only difference is the definition of �̂�𝑝,𝑝

′
0 and �̃�𝑝,𝑝

′
0 , which respectively define where the derivative is

taken in the first and 𝑙-th round-trip.
In order to apply the recursion relations to the generating function in Eq. (F.55), we exchange the

sum over 𝑟 and 𝑙 and separate the term ℎ𝑙,𝑙

𝐻 (2,1);TM,TM(𝑡, 𝑠) =
∞∑︁
𝑙=1

∞∑︁
𝑟=𝑙+1

𝑡𝑟 𝑠𝑙−1ℎ (2,1) ,TM,TM
𝑟 ,𝑙 + 𝐺 (2,1) ,TM,TM(𝑡, 𝑠) , (F.62)

where we introduced a generating function 𝐺 (2,1);TM,TM, which accounts for all polarisation combi-
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Figure F.1: Schematic illustration of the generation function 𝐻 (2,1) ,TM,TM defined in Eq. (F.65). The
generating function accounts for scattering processes where the derivatives are taken at spheres 2 and 1. We
start at the top of the two graphs, at sphere 2, and continue clockwise with our description of the graphs.
Within the first round-trip, the incoming mode on sphere 2 is either TM-polarised (black half in the first graph)
or TE-polarised (white half in the second graph). In both cases, the reflected wave can either be TM- or TE-
polarised, which is why the second half of the sphere is coloured in grey. We take the first derivative at sphere
2 in the first round-trip. Hence, the first round-trip is described by �̂�(2,1);𝑝,TM

0 (on the left) and �̂�(2,1);𝑝,TE
0

(on the right). After 𝑙 round-trips, we arrive at sphere 1 (end of the blue- or red-coloured line), where we
again take a derivative. The outgoing wave is, in both cases, TM-polarised. Hence, the 𝑙-th round-trip is in
both cases described by �̃�(2,1);TM, 𝑝

0 . Between the first and 𝑙-th round-trip, various polarisation combinations
are possible. The combinations are captured by functions 𝐺 (2,1);TM,TM and 𝐺 (2,1);TE,TM.

nations between the first and 𝑙-th round-trip as illustrated in the left panel of Fig. F.1. The function
is defined by

𝐺 (2,1);TM,TM(𝑡, 𝑠) =
∞∑︁
𝑙=1

𝑡𝑙𝑠2𝑙−1ℎ (2,1);TM,TM
𝑙,𝑙 . (F.63)

With the above introduced recursion relation (F.56) for 𝑟 ≠ 𝑙, 1, the generating function 𝐻 (2,1);TM,TM

yields

𝐻 (2,1);TM,TM(𝑡, 𝑠) = 𝑡𝐴(2,1);TM,TM
0 𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝑡𝐴(2,1);TM,TE

0 𝐻 (2,1);TE,TM(𝑡, 𝑠)
+ 𝐺 (2,1);TM,TM(𝑡, 𝑠) .

(F.64)

A similar recursion relation can be obtained for the other polarisation combinations, which can then
be solved for 𝐻 (2,1);TM,TM and leads to

𝐻 (2,1);TM,TM(𝑡, 𝑠) =

(
1 − 𝑡𝐴(2,1);TE,TE

0

)
𝐺 (2,1);TM,TM(𝑡, 𝑠) + 𝑡𝐴(2,1);TM,TE

0 𝐺 (2,1);TE,TM(𝑡, 𝑠)(
1 − 𝑡𝐴(2,1);TE,TE

0

) (
1 − 𝑡𝐴(2,1);TM,TM

0

)
− 𝑡2𝐴(2,1);TM,TE

0 𝐴(2,1);TE,TM
0

.

(F.65)
We now determine an expression for the generating function 𝐺 (2,1);TM,TM. First, we separate the
𝑙 = 1 term and then we use the recursion relation (F.59) and shift the summation index. We thus
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F Auxiliary calculation for the next-to-leading order in the saddle-point approximation

obtain

𝐺 (2,1);TM,TM(𝑡, 𝑠) = 𝑡𝑠ℎ (2,1);TM,TM
1,1 + 𝑡𝑠2

∞∑︁
𝑙=1

𝑡𝑙𝑠2𝑙−1
[
�̃�(2,1);TM,TM

0 ℎ (2,1);TM,TM
𝑙,𝑙+1

+ �̃�(2,1);TM,TE
0 ℎ (2,1);TE,TM

𝑙,𝑙+1

]
.

(F.66)

Now, the sum over ℎ (2,1);𝑝,𝑝
′

𝑙,𝑙+1 can be carried out by applying the recursion (F.56) with (F.57), which
leads to

𝐺 (2,1);TM,TM(𝑡, 𝑠) = 𝑡𝑠ℎ (2,1);TM,TM
1,1 (F.67)

+ 𝑡2𝑠3 �̃�(2,1);TM,TE
0

(
1 − 𝑡𝑠2𝐴(2,1);TM,TM

0

)
�̂�(2,1);TM,TE

0 + 𝑡𝑠2𝐴(2,1);TE,TM
0 �̂�(2,1);TM,TM

0(
1 − 𝑡𝑠2𝐴(2,1);TE,TE

0

) (
1 − 𝑡𝑠2𝐴(2,1);TM,TM

0

)
− 𝑡2𝑠4𝐴(2,1);TM,TE

0 𝐴(2,1);TE,TM
0

+ 𝑡2𝑠3 �̃�(2,1);TM,TM
0

(
1 − 𝑡𝑠2𝐴(2,1);TE,TE

0

)
�̂�(2,1);TM,TM

0 + 𝑡𝑠2𝐴(2,1);TM,TE
0 �̂�(2,1);TE,TM

0(
1 − 𝑡𝑠2𝐴(2,1);TE,TE

0

) (
1 − 𝑡𝑠2𝐴(2,1);TM,TM

0

)
− 𝑡2𝑠4𝐴(2,1);TM,TE

0 𝐴(2,1);TE,TM
0

.

We sort the terms according to the powers of the parameters 𝑡 and 𝑠 and get

𝐺 (2,1);TM,TM(𝑡, 𝑠) = 𝑡𝑠ℎ (2,1);TM,TM
1,1 + 𝑡

2𝑠3𝛿TM,TM + 𝑡3𝑠5𝜖TM,TM

(1 − 𝜆1𝑠2𝑡) (1 − 𝜆2𝑠2𝑡) , (F.68)

where we introduced the eigenvalues 𝜆1,2 given in Eq. (F.22) and defined the following expansion
coefficients

𝛿TM,TM = �̂�(2,1);TM,TM
0 �̃�(2,1);TM,TM

0 + �̂�(2,1);TM,TE
0 �̃�(2,1);TE,TM

0 , (F.69a)

𝜖TM,TM = −𝐴(2,1);TM,TM
0 �̂�(2,1);TM,TE

0 �̃�(2,1);TE,TM
0 − 𝐴(2,1);TE,TE

0 �̂�(2,1);TM,TM
0 �̃�(2,1);TM,TM

0 (F.69b)

+ 𝐴(2,1);TM,TE
0 �̂�(2,1);TE,TM

0 �̃�(2,1);TM,TM
0 + 𝐴(2,1);TE,TM

0 �̂�(2,1);TM,TM
0 �̃�(2,1);TM,TE

0 .

The generating function 𝐺 (2,1);TE,TM, appearing in Eq. (F.65) can be carried out similarly. In this
case, we obtain

𝐺 (2,1);TE,TM(𝑡, 𝑠) =
∞∑︁
𝑙=1

𝑡𝑙𝑠2𝑙−1ℎ (2,1);TE,TM
𝑙,𝑙 =𝑡𝑠ℎ (2,1);TE,TM

1,1 + 𝑡
2𝑠3𝛿TE,TM + 𝑡3𝑠5𝜖TE,TM

(1 − 𝜆1𝑠2𝑡) (1 − 𝜆2𝑠2𝑡) , (F.70)

where the expansion coefficients are now given by

𝛿TE,TM = �̂�(2,1);TE,TM
0 �̃�(2,1);TE,TE

0 + �̂�(2,1);TM,TM
0 �̃�(2,1);TE,TM

0 , (F.71a)

𝜖TE,TM = −𝐴(2,1);TM,TM
0 �̂�(2,1);TE,TM

0 �̃�(2,1);TE,TE
0 − 𝐴(2,1);TE,TE

0 �̂�(2,1);TM,TM
0 �̃�(2,1);TE,TM

0 (F.71b)

+ 𝐴(2,1);TM,TE
0 �̂�(2,1);TE,TM

0 �̃�(2,1);TE,TM
0 + 𝐴(2,1);TE,TM

0 �̂�(2,1);TM,TM
0 �̃�(2,1);TE,TE

0 .

The same rules apply to the generating function 𝐻 (2,1);TE,TE, one simply has to exchange the super-
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F.4 Case J: Derivatives taken at two spheres

scripts TM and TE in all expressions given above. The sum of both functions yields

𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝐻 (2,1);TE,TE(𝑡, 𝑠) = (F.72)

= 𝑠
𝑐 (2,1)1 𝑡 + 𝑑 (2,1)1 𝑡2

(1 − 𝜆1𝑡) (1 − 𝜆2𝑡) +
𝑑 (2,1)2 𝑠3𝑡2 + 𝑒 (2,1)2 𝑠3𝑡3 + 𝑒 (2,1)3 𝑠5𝑡3 + 𝑓 (2,1)2 𝑠5𝑡4

(1 − 𝜆1𝑡) (1 − 𝜆2𝑡) (1 − 𝜆1𝑠2𝑡) (1 − 𝜆2𝑠2𝑡) ,

where the expansion coefficients are given by

𝑐 (2,1)1 = ℎ (2,1);TM,TM
1,1 + ℎ (2,1);TE,TE

1,1 , (F.73a)

𝑑 (2,1)1 = −ℎ (2,1);TM,TM
1,1 𝐴(2,1);TE,TE

0 − ℎ (2,1);TE,TE
1,1 𝐴(2,1);TM,TM

0 (F.73b)

+ ℎ (2,1);TE,TM
1,1 𝐴(2,1);TM,TE

0 + ℎ (2,1);TM,TE
1,1 𝐴(2,1);TE,TM

0 ,

𝑑 (2,1)2 = 𝛿TM,TM + 𝛿TE,TE , (F.73c)

𝑒 (2,1)2 = −𝐴(2,1);TE,TE
0 𝛿TM,TM − 𝐴(2,1);TM,TM

0 𝛿TE,TE (F.73d)

+ 𝐴(2,1);TM,TE
0 𝛿TE,TM + 𝐴(2,1);TE,TM

0 𝛿TM,TE ,

𝑒 (2,1)3 = 𝜖TM,TM + 𝜖TE,TE , (F.73e)

𝑓 (2,1)2 = −𝐴(2,1);TE,TE
0 𝜖TM,TM − 𝐴(2,1);TM,TM

0 𝜖TE,TE (F.73f)

+ 𝐴(2,1);TM,TE
0 𝜖TE,TM + 𝐴(2,1);TE,TM

0 𝜖TM,TE .

We insert the generating functions (F.72) into Eq. (F.54) and perform the 𝑡𝑖-integrals with the help of
(A.12) and (A.13). The free energy contribution of the case 𝐽 (2,1)𝐹 , thus yields

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,1)
𝐹

= −𝑢
8

∫ d2ksp

2𝜋
K2

𝑘2
sp𝜅

2
sp

[
𝜆1𝑐1 + 𝑑1
𝜆1(𝜆1 − 𝜆2)Li2 [𝜆1] + 𝜆2𝑐1 + 𝑑1

𝜆2(𝜆2 − 𝜆1)Li2 [𝜆2] (F.74)

+ −𝜆2
1(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

1(𝑒2 + 𝑒3) − (3𝜆1 − 𝜆2) 𝑓2
𝜆2

1(𝜆1 − 𝜆2)3
Li2 [𝜆1]

+ −𝜆2
2(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

2(𝑒2 + 𝑒3) − (3𝜆2 − 𝜆1) 𝑓2
𝜆2

2(𝜆2 − 𝜆1)3
Li2 [𝜆2]

+ 𝜆
2
1𝑑2 + 𝜆1(𝑒2 + 𝑒3) + 𝑓2

𝜆2
1(𝜆1 − 𝜆2)2

Li1 [𝜆1]

+ 𝜆
2
2𝑑2 + 𝜆2(𝑒2 + 𝑒3) + 𝑓2

𝜆2
2(𝜆2 − 𝜆1)2

Li1 [𝜆2]
]
.

If there are no polarisation-mixing reflections coefficient, the eigenvalues 𝜆1,2 are given by 𝜙TM,TE
defined in Eq. (10.41) and the expansion coefficients reduce to: 𝑐1 = 2Δ𝑟 (1)𝑏 Δ𝑟 (1)𝑏 e−2𝜅sp𝐿 , 𝑑1 =

−(𝜆1 +𝜆2)Δ𝑟 (1)𝑏 Δ𝑟 (1)𝑏 e−2𝜅sp𝐿 , 𝑑2 = −𝑑1, 𝑒2 + 𝑒3 = (𝜆1 +𝜆2)𝑑1 and 𝑓2 = 𝜆1𝜆2𝑑2. Equation (F.74) then
agrees with the first part of Eq. (6.66) of Ref. [109].
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F Auxiliary calculation for the next-to-leading order in the saddle-point approximation

Next, we are going to discuss the contribution of 𝐽 (2,1)𝐸 given in Eq. (F.50). Together with (F.52),
the trace over the round-trip operator yields

[trM𝑟 ] (𝑖𝑖)NTLO

�����
𝐽
(2,1)
𝐸

=
1
24

∫ d2ksp

2𝜋
e−2𝑟 𝜅sp𝐿

𝑟

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

𝐸 (2);𝑝2, 𝑝1
(1);𝑝2𝑙+1𝑝2𝑙

𝑋 (2,1)
𝑟

×
(
4𝑟2 − 12𝑟 (2𝑙 − 1) + 6(2𝑙 − 1)2 + 2

)
.

(F.75)
After summing over all round-trips, we obtain for the free energy contribution from 𝐽 (2,1)𝐸

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,1)
𝐸

= − 1
24

∫ d2ksp

2𝜋

[
4
(
𝐻 (2,1);TM,TM(1, 1) + 𝐻 (2,1);TM,TM(1, 1)

)
(F.76)

− 12
(

d
d𝑠

∫ 1

0

d𝑡
𝑡
𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝐻 (2,1);TM,TM(𝑡, 𝑠)

)
𝑠=1

+ 6
(

d
d𝑠
𝑠

d
d𝑠

∫ 1

0

d𝑡1
𝑡1

∫ 𝑡1

0

d𝑡
𝑡
𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝐻 (2,1);TM,TM(𝑡, 𝑠)

)
𝑠=1

+ 2
∫ 1

0

d𝑡1
𝑡1

∫ 𝑡1

0

d𝑡
𝑡

(
𝐻 (2,1);TM,TM(𝑡, 1) + 𝐻 (2,1);TM,TM(𝑡, 1)

) ]
.

Note that we used that derivatives of the generating functions 𝐻 (𝑡, 𝑠) with respect to 𝑠 yield a factor
2𝑙 − 1 in the 𝑙-sum of (F.55). The generating functions have the same form as (F.72) with the same
expansion coefficient, only the definitions of �̂�(2,1);𝑝,𝑝′

0 and �̃�(2,1);𝑝,𝑝′
0 change to

�̂�(2,1);𝑝,𝑝′
0 =

[(
𝑟 (2)𝑝,TM

)
𝑖
𝑟 (1)TM, 𝑝′ +

(
𝑟 (2)𝑝,TE

)
𝑖
𝑟 (1)TE, 𝑝′

]
e−2𝜅sp𝐿 , (F.77)

�̃�(2,1);𝑝,𝑝′
0 =

[
𝑟 (2)𝑝,TM

(
𝑟 (1)TM, 𝑝′

)
𝑖
+ 𝑟 (2)𝑝,TE

(
𝑟 (1)TE, 𝑝′

)
𝑖

]
e−2𝜅sp𝐿 (F.78)

and ℎ (2,1);𝑝,𝑝
′

1,1 is given by

ℎ (2,1);𝑝,𝑝
′

1,1 =
[(
𝑟 (2)𝑝,TM

)
𝑖

(
𝑟 (1)TM, 𝑝′

)
𝑖
+

(
𝑟 (2)𝑝,TM

)
𝑖

(
𝑟 (1)TM, 𝑝′

)
𝑖

]
e−2𝜅sp𝐿 . (F.79)
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We use the results (A.12), (A.13) and (A.14) for the integrals in Eq. (F.76). The derivatives with
respect to 𝑠 can be carried out by applying the relation (A.10) 𝑧𝜕𝑧Li𝑛 [𝑧] = Li𝑛−1 [𝑧]. We then find

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,1)
𝐸

= − 1
24

∫ d2ksp

2𝜋

[
4(𝑐1 + 𝑑1)
𝜆1𝜆2

Li0 [𝜆1]Li0 [𝜆2] (F.80)

+ 4(𝑑2 + 𝑒2 + 𝑒3 + 𝑓2)
𝜆1𝜆2

Li−1 [𝜆1]Li−1 [𝜆2]

− 4(𝜆2
1𝑑2 + 𝜆1(𝑒2 + 𝑒3) + 𝑓2)
𝜆2

1(𝜆1 − 𝜆2)2
Li−1 [𝜆1] −

4(𝜆2
2𝑑2 + 𝜆2(𝑒2 + 𝑒3) + 𝑓2)
𝜆2

2(𝜆1 − 𝜆2)2
Li−1 [𝜆2]

− 12(𝑐1𝜆1 + 𝑑1)
𝜆1(𝜆1 − 𝜆2) Li1 [𝜆1] + 12(𝑐1𝜆2 + 𝑑1)

𝜆2(𝜆1 − 𝜆2) Li1 [𝜆2]

+ 12(𝑑2𝜆
2
1 + 2𝑒2𝜆1 + 𝑓2)

𝜆2
1(𝜆1 − 𝜆2)2

Li1 [𝜆1] +
12(𝑑2𝜆

2
2 + 2𝑒2𝜆2 + 𝑓2)

𝜆2
2(𝜆1 − 𝜆2)2

Li1 [𝜆2]

+ 24(2𝑑2𝜆1𝜆2 + (𝑒2 + 𝑒3) (𝜆1 + 𝜆2) + 2 𝑓2)
(𝜆1 − 𝜆2)4 (Li1 [𝜆1] + Li1 [𝜆2])

+ 8(𝑐1𝜆1 + 𝑑1)
𝜆1(𝜆1 − 𝜆2) Li2 [𝜆1] − 8(𝑐1𝜆2 + 𝑑1)

𝜆2(𝜆1 − 𝜆2) Li2 [𝜆2]

− 8(𝑑2𝜆
2
1(𝜆1 + 𝜆2) + 2(𝑒2 + 𝑒3)𝜆2

1 + 𝑓2(3𝜆1 − 𝜆2))
𝜆2

1(𝜆1 − 𝜆2)3
Li2 [𝜆1]

+ 8(𝑑2𝜆
2
2(𝜆1 + 𝜆2) + 2(𝑒2 + 𝑒3)𝜆2

2 + 𝑓2(3𝜆2 − 𝜆1))
𝜆2

2(𝜆1 − 𝜆2)3
Li2 [𝜆2]

− 48(𝑑2𝜆1𝜆2(𝜆1 + 𝜆2) + 2𝑒2𝜆1𝜆2 + 𝑒3(𝜆2
1 + 𝜆2

2) + 𝑓2(𝜆1 + 𝜆2))
(𝜆1 − 𝜆2)5 (Li2 [𝜆1] − Li2 [𝜆2])

]
.

The expression vanishes in the limit of dielectric spheres, which is in agreement with the discussion
in Ref. [109]. After evaluating the expansion coefficients for dielectrics and inserting them in the
expression above, one finds that all terms cancel each other out. However, this can also already be
seen in Eq. (F.75), where the coefficient 𝐸 (2);𝑝2, 𝑝1

(1);𝑝2𝑙+1𝑝2𝑙
does not depend on 𝑙 for dielectrics and the sum

over 𝑙 yields
∑𝑟
𝑙=1

(
4𝑟2 − 12𝑟 (2𝑙 − 1) + 6(2𝑙 − 1)2 + 2

)
= 0.
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F.4.2 Cases 𝐽 (1,1) and 𝐽 (2,2)

Next, we examine the case 𝐽 (2,2) . Again, we start at sphere 2 and take the derivative of 𝜌 (2)𝑝2, 𝑝1 . For the
next derivative, we have (𝑟−1) possibilities, 𝑑 (2);1/2

𝑝2𝑙 , 𝑝2𝑙−1 with 𝑙 = 2, . . . 𝑟. Considering all combinations
in Eq. (F.2), we find

𝐽 (2,2) = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=2

[
𝑑 (2𝑙 − 2)𝑑 (2);1𝑝2, 𝑝1𝑑

(2);1
𝑝2𝑙 , 𝑝2𝑙−1 + 𝑑+(2𝑙 − 3)𝑑 (2);1𝑝2, 𝑝1𝑑

(2);2
𝑝2𝑙 , 𝑝2𝑙−1 (F.81)

+ 𝑑− (2𝑙 − 1)𝑑 (2);2𝑝2, 𝑝1𝑑
(2);1
𝑝2𝑙 , 𝑝2𝑙−1 + 𝑑 (2𝑙 − 2)𝑑 (2);2𝑝2, 𝑝1𝑑

(2);2
𝑝2𝑙 , 𝑝2𝑙−1

]
𝑋 (2,1)
𝑟 .

Similar to before, we use (F.46a) and (F.46b) which allows us to separate 𝐽 (2,2) into two terms
𝐽 (2,2) = 𝐽 (2,2)𝐹 + 𝐽 (2,2)𝐸 with

𝐽 (2,2)𝐹 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=2

𝐹 (2);𝑝2, 𝑝1
(2);𝑝2𝑙 , 𝑝2𝑙−1

(
2𝑑 (2𝑙 − 2) − 𝑑− (2𝑙 − 1) − 𝑑+(2𝑙 − 3)

)
𝑋 (2,1)
𝑟 , (F.82)

𝐽 (2,2)𝐸 = 𝑟
e−2𝑟 𝜅sp𝐿

𝜅2𝑟
sp

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=2

𝐸 (2);𝑝2, 𝑝1
(2);𝑝2𝑙 , 𝑝2𝑙−1

(
2𝑑 (2𝑙 − 2) + 𝑑− (2𝑙 − 1) + 𝑑+(2𝑙 − 3)

)
𝑋 (2,1)
𝑟 , (F.83)

where 𝐸 and 𝐹 can be found in Eqs. (F.47) and (F.48). Next, we determine the sum over the
𝑑±-functions, appearing in the expression above, which yield

2𝑑 (2𝑙 − 2) − 𝑑− (2𝑙 − 1) − 𝑑+(2𝑙 − 3) = − 2𝜅sp

𝑟 (𝑅1 + 𝑅2)
𝑅1
𝑅2
, (F.84)

2𝑑 (2𝑙 − 2) + 𝑑− (2𝑙 − 1) + 𝑑+(2𝑙 − 3) = (F.85)

=
𝜅sp

2𝑟
1

3𝑅eff

[
2
(
1 + 3

𝑅1 − 𝑅2
𝑅1 + 𝑅2

)
+ 4𝑟2 − 12𝑟 (2𝑙 − 2) + 6(2𝑙 − 2)2

]
.

We start again by first evaluating the case 𝐽 (2,2)𝐹 . Here the contribution to the free energy yields

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,2)
𝐹

=
𝑢

2
𝑅1
𝑅2

∫ d2ksp

2𝜋

∞∑︁
𝑟=1

e−2𝑟 𝜅sp𝐿

𝑟2

∑︁
𝑝1,..., 𝑝2𝑟

𝑟∑︁
𝑙=1

𝐹 (2);𝑝2, 𝑝1
(2);𝑝2𝑙 , 𝑝2𝑙−1

𝑋 (2,1)
𝑟 (F.86)

=
𝑢

8
𝑅1
𝑅2

∫ d2ksp

2𝜋
K2

𝑘2
sp𝜅

2
sp

∫ 1

0

d𝑡1
𝑡1

∫ 𝑡1

0

d𝑡
𝑡

(
𝐻 (2,1);TM,TM(𝑡, 1) + 𝐻 (2,1);TE,TE(𝑡, 1)

)
,

where the generating function is given by

𝐻 (2,1);𝑝,𝑝 (𝑡, 𝑠) =
∞∑︁
𝑟=2

𝑡𝑟
𝑟∑︁
𝑙=2

𝑠2𝑙−2ℎ (2,1);𝑝,𝑝𝑟 ,𝑙 . (F.87)

Note that the exponent of the parameter 𝑠 is now given by (2𝑙 − 2) to account for the terms in
Eq. (F.85). The recursion relations for ℎ (2,1);𝑝,𝑝

′
𝑟 ,𝑙 are given in Eqs. (F.56), (F.59) and (F.57). We then
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F.4 Case J: Derivatives taken at two spheres

find for the generating functions

𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝐻 (2,1);TE,TE(𝑡, 𝑠) = 𝑑 (2,1)2 𝑠2𝑡2 + 𝑒 (2,1)2 𝑠2𝑡3 + 𝑒 (2,1)3 𝑠4𝑡3 + 𝑓 (2,1)2 𝑠4𝑡4

(1 − 𝜆1𝑡) (1 − 𝜆2𝑡) (1 − 𝜆1𝑠2𝑡) (1 − 𝜆2𝑠2𝑡) . (F.88)

The expansion coefficients 𝑑 (2,1)2 , 𝑒 (2,1)2 and 𝑓 (2,1)2 are the same as before, only that the definition of
�̂�(2,1);𝑝,𝑝′

0 and �̃�(2,1);𝑝,𝑝′
0 changed to

�̂�(2,1);TM,TM
0 = �̃�(2,1);TM,TM

0 =
(
Δ𝑟 (2)𝑎 𝑟 (1)TM,TM − Δ𝑟 (2)𝑏 𝑟 (1)TE,TM

)
e−2𝜅sp𝐿 , (F.89a)

�̂�(2,1);TM,TE
0 = �̃�(2,1);TM,TE

0 =
(
Δ𝑟 (2)𝑎 𝑟 (1)TM,TE − Δ𝑟 (2)𝑏 𝑟 (1)TE,TE

)
e−2𝜅sp𝐿 , (F.89b)

�̂�(2,1);TE,TM
0 = �̃�(2,1);TE,TM

0 = −
(
Δ𝑟 (2)𝑎 𝑟 (1)TE,TM + Δ𝑟 (2)𝑏 𝑟 (1)TM,TM

)
e−2𝜅sp𝐿 , (F.89c)

�̂�(2,1);TE,TE
0 = �̃�(2,1);TE,TE

0 = −
(
Δ𝑟 (2)𝑎 𝑟 (1)TE,TE + Δ𝑟 (2)𝑏 𝑟 (1)TM,TE

)
e−2𝜅sp𝐿 . (F.89d)

After carrying out the 𝑡𝑖-integrals with Eq. (A.13), we get

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,2)
𝐹

=
𝑢

8
𝑅1
𝑅2

∫ d2ksp

2𝜋
K2

𝑘2
sp𝜅

2
sp

[
𝜆2

1𝑑2 + 𝜆1(𝑒2 + 𝑒3) + 𝑓2

𝜆2
1(𝜆1 − 𝜆2)2

Li1 [𝜆1] (F.90)

+ 𝜆
2
2𝑑2 + 𝜆2(𝑒2 + 𝑒3) + 𝑓2

𝜆2
2(𝜆2 − 𝜆1)2

Li1 [𝜆2]

+ −𝜆2
1(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

1(𝑒2 + 𝑒3) − (3𝜆1 − 𝜆2) 𝑓2
𝜆2

1(𝜆1 − 𝜆2)3
Li2 [𝜆1]

+ −𝜆2
2(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

2(𝑒2 + 𝑒3) − (3𝜆2 − 𝜆1) 𝑓2
𝜆2

2(𝜆2 − 𝜆1)3
Li2 [𝜆2]

]
.

The expansion coefficients reduce to 𝑑2 = 2𝑟 (1)TM,TM𝑟
(1)
TE,TE(Δ𝑟

(2)
𝑏 e−2𝜅sp𝐿)2, 𝑒2 + 𝑒3 = −(𝜆1 +𝜆2)𝑑2 and

𝑓2 = 𝜆1𝜆2𝑑2. Equation (F.91) then reproduces Eq. (6.66) of Ref. [109].

Finally, for 𝐽 (2,2)𝐸 defined in Eq. (F.83), the free energy contributions reads

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,2)
𝐸

= − 1
24

∫ d2ksp

2𝜋

[
4
(
𝐻 (2,1);TM,TM(1, 1) + 𝐻 (2,1);TM,TM(1, 1)

)
(F.91)

− 12
(

d
d𝑠

∫ 1

0

d𝑡
𝑡
𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝐻 (2,1);TM,TM(𝑡, 𝑠)

)
𝑠=1

+ 6
(

d
d𝑠
𝑠

d
d𝑠

∫ 1

0

d𝑡1
𝑡1

∫ 𝑡1

0

d𝑡
𝑡
𝐻 (2,1);TM,TM(𝑡, 𝑠) + 𝐻 (2,1);TM,TM(𝑡, 𝑠)

)
𝑠=1

+ 2
(
1 + 3

𝑅1 − 𝑅2
𝑅1 + 𝑅2

) ∫ 1

0

d𝑡1
𝑡1

∫ 𝑡1

0

d𝑡
𝑡

(
𝐻 (2,1);TM,TM(𝑡, 1) + 𝐻 (2,1);TM,TM(𝑡, 1)

) ]
.

The generating functions are again given by (F.88), however the definition of �̂�(2,1);𝑝,𝑝′
0 and �̃�(2,1);𝑝,𝑝′

0
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F Auxiliary calculation for the next-to-leading order in the saddle-point approximation

changed to

�̂�(2,1);𝑝,𝑝′
0 = �̃�(2,1);𝑝,𝑝′

0 =
[(
𝑟 (2)𝑝,TM

)
𝑖
𝑟 (1)TM, 𝑝′ +

(
𝑟 (2)𝑝,TE

)
𝑖
𝑟 (1)TE, 𝑝′

]
e−2𝜅sp𝐿 . (F.92)

Note also that we used that derivatives of 𝐻 (𝑡, 𝑠) with respect to 𝑠 yield a factor (2𝑙 − 2) in the 𝑙-sum
in Eq. (F.87). Applying the integrals (A.13) and (A.14) together with the relation for derivatives of
polylogarithms, we obtain

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽
(2,2)
𝐸

= − 1
24

∫ d2ksp

2𝜋

{
4(𝑑2 + 𝑒2 + 𝑒3 + 𝑓2)Li−1 [𝜆1]Li−1 [𝜆2]

𝜆1𝜆2
(F.93)

− 4(𝑑2𝜆
2
1 + (𝑒2 + 𝑒3)𝜆1 + 𝑓2)
𝜆2

1(𝜆1 − 𝜆2)2
Li−1 [𝜆1] −

4(𝑑2𝜆
2
2 + (𝑒2 + 𝑒3)𝜆2 + 𝑓2)
𝜆2

2(𝜆1 − 𝜆2)2
Li−1 [𝜆2]

+ 24(2𝑑2𝜆1𝜆2 + (𝑒2 + 𝑒3) (𝜆1 + 𝜆2) + 2 𝑓2)
(𝜆1 − 𝜆2)4 (Li1 [𝜆1] + Li1 [𝜆2])

− 24(2𝑑2𝜆1𝜆2 + (𝑒2 + 𝑒3) (𝜆1 + 𝜆2) + 2 𝑓2)
(𝜆1 − 𝜆2)5 (𝜆1 + 𝜆2) (Li2 [𝜆1] − Li2 [𝜆2])

+ 6
(
1 + 𝑅1 − 𝑅2

𝑅1 + 𝑅2

) [
𝜆2

1𝑑2 + 𝜆1(𝑒2 + 𝑒3) + 𝑓2

𝜆2
1(𝜆1 − 𝜆2)2

Li1 [𝜆1] +
𝜆2

2𝑑2 + 𝜆2𝑒2 + 𝑓2

𝜆2
2(𝜆2 − 𝜆1)2

Li1 [𝜆2]
]

+ 2
(
1 + 3

𝑅1 − 𝑅2
𝑅1 + 𝑅2

) [
−𝜆2

1(𝜆1 + 𝜆2)𝑑2 − 2𝜆2
1(𝑒2 + 𝑒3) − (3𝜆1 − 𝜆2) 𝑓2

𝜆2
1(𝜆1 − 𝜆2)3

Li2 [𝜆1]

+ −𝜆2
2(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

2(𝑒2 + 𝑒3) − (3𝜆2 − 𝜆1) 𝑓2
𝜆2

2(𝜆2 − 𝜆1)3
Li2 [𝜆2]

]}
.

The expansion coefficients yield

𝑑2 =
[
𝑟 (1)TM,TM(𝑟 (2)TM,TM)𝑖e−2𝜅sp𝐿

]2
+

[
𝑟 (1)TE,TE(𝑟

(2)
TE,TE)𝑖e−2𝜅sp𝐿

]2
,

𝑒2 + 𝑒3 = −2𝜙TE

[
𝑟 (1)TM,TM(𝑟 (2)TM,TM)𝑖e−2𝜅sp𝐿

]2
− 2𝜙TM

[
𝑟 (1)TE,TE(𝑟

(2)
TE,TE)𝑖e−2𝜅sp𝐿

]2
,

𝑓2 = 𝜙2
TE

[
𝑟 (1)TM,TM(𝑟 (2)TM,TM)𝑖e−2𝜅sp𝐿

]2
+ 𝜙2

TM

[
𝑟 (1)TE,TE(𝑟

(2)
TE,TE)𝑖e−2𝜅sp𝐿

]2

for dielectric spheres and Eq. (F.93) then agrees with Eq. (6.63) of Ref. [109].
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F.5 Application to PEMC spheres

F.5 Application to PEMC spheres

In this Section, we apply the results we derived in the previous Section for general bi-isotropic spheres
to the idealized system of PEMCs. The Fresnel reflection coefficients of PEMCs only depend on the
material parameter 𝜃. They yield (4.34):

𝑟TM,TM = −𝑟TE,TE = cos(2𝜃) , 𝑟TM,TE = 𝑟TE,TM = − sin(2𝜃) .

This particularly means that only terms in Eq. (F.2), where derivatives are taken at the polarisation-
conversion coefficients 𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝐶𝑖, 𝑗 and 𝐷𝑖, 𝑗 contribute.

For the case I, discussed in Sec. F.3, this means only (F.40) is not vanishing

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐼

= −𝑢
4

∫ d2ksp

2𝜋

{
−

(
1 + 𝑅1

𝑅2

)
P (2,1)
𝐼,1 + 𝑅1

𝑅2
P (2,1)
𝐼,2 −

(
1 + 𝑅2

𝑅1

)
P (1,2)
𝐼,1 + 𝑅2

𝑅1
P (1,2)
𝐼,2

}
(F.94)

with (F.35)

P (1,2)
𝐼,𝑚 =

𝑐 (1,2)𝐼 𝜆1 + 𝑑 (1,2)𝐼

𝜆1(𝜆1 − 𝜆2) Li𝑚 [𝜆1] +
𝑐 (1,2)𝐼 𝜆2 + 𝑑 (1,2)𝐼

𝜆2(𝜆2 − 𝜆1) Li𝑚 [𝜆2] . (F.95)

The eigenvalues of the round-trip matrix for two PEMC plates is given by (11.2)

𝜆1/2 = exp(±2i𝛿) exp(−2𝜅sp𝐿) ,

where 𝛿 = |𝜃1 − 𝜃2 |. The expansion coefficients, defined in Eq. (F.34) simplify to 𝑐 (1,2)𝐼 = 𝑐 (2,1)𝐼 =

4K2 cos(2𝛿)e−2𝜅sp𝐿/(𝜅sp𝑘sp)2 and 𝑑 (1,2)𝐼 = 𝑑 (2,1)𝐼 = −4K2e−4𝜅sp𝐿/(𝜅sp𝑘sp)2.

Next, we present the expressions from case 𝐽, discussed in Sec. F.4, which are not vanishing. For
the case 𝐽 (2,1) only expression (F.74) contributes, with

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽 (2,1)

= −𝑢
8

∫ d2ksp

2𝜋
K2

𝑘2
sp𝜅

2
sp

[
𝜆1𝑐1 + 𝑑1
𝜆1(𝜆1 − 𝜆2)Li2 [𝜆1] + 𝜆2𝑐1 + 𝑑1

𝜆2(𝜆2 − 𝜆1)Li2 [𝜆2] (F.96)

+ −𝜆2
1(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

1(𝑒2 + 𝑒3) − (3𝜆1 − 𝜆2) 𝑓2
𝜆2

1(𝜆1 − 𝜆2)3
Li2 [𝜆1]

+ −𝜆2
2(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

2(𝑒2 + 𝑒3) − (3𝜆2 − 𝜆1) 𝑓2
𝜆2

2(𝜆2 − 𝜆1)3
Li2 [𝜆2]

+ 𝜆
2
1𝑑2 + 𝜆1(𝑒2 + 𝑒3) + 𝑓2

𝜆2
1(𝜆1 − 𝜆2)2

Li1 [𝜆1]

+ 𝜆
2
2𝑑2 + 𝜆2(𝑒2 + 𝑒3) + 𝑓2

𝜆2
2(𝜆2 − 𝜆1)2

Li1 [𝜆2]
]
,

where the expansion coefficients for PEMC spheres yield: 𝑐1 = 8 cos(2𝛿)e−2𝜅sp𝐿 , 𝑑1 = −8e−4𝜅sp𝐿

and 𝑑2 = −8 cos(4𝛿)e−4𝜅sp𝐿 , 𝑒2 + 𝑒3 = −16 cos(2𝛿)e−6𝜅sp𝐿 , 𝑓2 = 8e−8𝜅sp𝐿 . We get the same result for
the case 𝐽 (1,2) .
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For 𝐽 (2,2) only (F.91) yields a non-vanishing contribution with

F (𝑖𝑖)
NTLO(𝜉)

�����
𝐽 (2,2)

=
𝑢

8
𝑅1
𝑅2

∫ d2ksp

2𝜋
K2

𝑘2
sp𝜅

2
sp

[
𝜆2

1𝑑2 + 𝜆1(𝑒2 + 𝑒3) + 𝑓2

𝜆2
1(𝜆1 − 𝜆2)2

Li1 [𝜆1] (F.97)

+ 𝜆
2
2𝑑2 + 𝜆2(𝑒2 + 𝑒3) + 𝑓2

𝜆2
2(𝜆2 − 𝜆1)2

Li1 [𝜆2]

+ −𝜆2
1(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

1(𝑒2 + 𝑒3) − (3𝜆1 − 𝜆2) 𝑓2
𝜆2

1(𝜆1 − 𝜆2)3
Li2 [𝜆1]

+ −𝜆2
2(𝜆1 + 𝜆2)𝑑2 − 2𝜆2

2(𝑒2 + 𝑒3) − (3𝜆2 − 𝜆1) 𝑓2
𝜆2

2(𝜆2 − 𝜆1)3
Li2 [𝜆2]

]
.

The expansion coefficients are given by: 𝑑2 = −8 cos(4𝛿)e−4𝜅sp𝐿 , 𝑒2 + 𝑒3 = 16 cos(2𝛿)e−6𝜅sp𝐿 and
𝑓2 = −8e−8𝜅sp𝐿 . For 𝐽 (1,1) only the pre-factor 𝑅1/𝑅2 in the expression above has to be replaced by
𝑅2/𝑅1.

After inserting all expansion coefficients in the respective expression, we find that the case I and J
precisely cancel each other out, so F (𝑖𝑖)

NTLO(𝜉) = 0 for two PEMC spheres.

176



Bibliography

1. Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24,
156–159. doi:10.1103/PhysRevLett.24.156 (1970).

2. Ng, J., Lin, Z. & Chan, C. T. Theory of Optical Trapping by an Optical Vortex Beam. Phys.
Rev. Lett. 104, 103601. doi:10.1103/PhysRevLett.104.103601 (2010).

3. Ether, D. S. et al. Probing the Casimir force with optical tweezers. Europhys. Lett. 112, 44001.
doi:10.1209/0295-5075/112/44001 (2015).

4. Pires, L. B. et al. Probing the screening of the Casimir interaction with optical tweezers. Phys.
Rev. Res. 3, 033037. doi:10.1103/PhysRevResearch.3.033037 (2021).

5. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned.
Akad. Wetenschappen 51, 79 (1948).

6. Feinberg, J., Mann, A. & Revzen, M. Casimir Effect: The Classical Limit. Ann. Phys. 288,
103–136. doi:10.1006/aphy.2000.6118 (2001).

7. Gelbwaser-Klimovsky, D., Graham, N., Kardar, M. & Krüger, M. Equilibrium forces on
nonreciprocal materials. Phys. Rev. B 106, 115106. doi:10.1103/PhysRevB.106.115106
(2022).

8. Lindell, I. V., Sihvola, A. H., Tretyakov, S. & Viitanen, A. Electromagnetic waves in chiral
and bi-isotropic media isbn: 0890066841 (Artech House, Norwood, 1994).

9. Lamoreaux, S. K. Demonstration of the Casimir Force in the 0.6 to 6𝜇𝑚 Range. Phys. Rev.
Lett. 78, 5–8. doi:10.1103/PhysRevLett.78.5 (1997).

10. Munday, J. N., Capasso, F. & Parsegian, V. A. Measured long-range repulsive Casimir–Lifshitz
forces. Nature 457, 170–173. doi:10.1038/nature07610 (2009).

11. London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Physik 63, 245–279 (1930).

12. Casimir, H. B. G. & Polder, D. The Influence of Retardation on the London-van der Waals
Forces. Phys. Rev. 73, 360–372. doi:10.1103/PhysRev.73.360 (1948).

13. Lifshitz, E. The Theory of Molecular Attractive Forces between Solids. Sov. Phys. JETP 2, 73
(1956).

14. I.E. Dzyaloshinskii, E. L. & Pitaevskii, L. The general theory of van der Waals forces. Adv.
Phys. 10, 165–209. doi:10.1080/00018736100101281 (1961).

15. Fiedler, J. et al. Perspectives on weak interactions in complex materials at different length
scales. Phys. Chem. Chem. Phys. 25, 2671–2705. doi:10.1039/D2CP03349F (2023).

16. Sparnaay, M. Measurements of attractive forces between flat plates. Physica 24, 751–764.
doi:10.1016/S0031-8914(58)80090-7 (1958).

17. Mohideen, U. & Roy, A. Precision Measurement of the Casimir Force from 0.1 to 0.9𝜇𝑚.
Phys. Rev. Lett. 81, 4549–4552. doi:10.1103/PhysRevLett.81.4549 (1998).

18. Decca, R. S., López, D., Fischbach, E. & Krause, D. E. Measurement of the Casimir Force
between Dissimilar Metals. Phys. Rev. Lett. 91, 050402. doi:10.1103/PhysRevLett.91.05
0402 (2003).

177

https://doi.org/10.1103/PhysRevLett.24.156
https://doi.org/10.1103/PhysRevLett.104.103601
https://doi.org/10.1209/0295-5075/112/44001
https://doi.org/10.1103/PhysRevResearch.3.033037
https://doi.org/10.1006/aphy.2000.6118
https://doi.org/10.1103/PhysRevB.106.115106
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1038/nature07610
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1080/00018736100101281
https://doi.org/10.1039/D2CP03349F
https://doi.org/10.1016/S0031-8914(58)80090-7
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.91.050402
https://doi.org/10.1103/PhysRevLett.91.050402


Bibliography

19. Garrett, J. L., Somers, D. A. T. & Munday, J. N. Measurement of the Casimir Force between
Two Spheres. Phys. Rev. Lett. 120, 040401. doi:10.1103/PhysRevLett.120.040401
(2018).

20. Gong, T., Corrado, M. R., Mahbub, A. R., Shelden, C. & Munday, J. N. Recent progress in
engineering the Casimir effect – applications to nanophotonics, nanomechanics, and chemistry.
Nanophotonics 10, 523–536. doi:10.1515/nanoph-2020-0425 (2021).

21. Lambrecht, A., Maia Neto, P. A. & Reynaud, S. The Casimir effect within scattering theory.
New J. Phys. 8, 243. doi:10.1088/1367-2630/8/10/243 (2006).

22. Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Casimir Forces between Arbitrary Compact
Objects. Phys. Rev. Lett. 99, 170403. doi:10.1103/PhysRevLett.99.170403 (2007).

23. Rahi, S. J., Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Scattering theory approach to
electrodynamic Casimir forces. Phys. Rev. D 80, 085021. doi:10.1103/PhysRevD.80.0850
21 (2009).

24. Bimonte, G. & Emig, T. Exact Results for Classical Casimir Interactions: Dirichlet and Drude
Model in the Sphere-Sphere and Sphere-Plane Geometry. Phys. Rev. Lett. 109, 160403. doi:1
0.1103/PhysRevLett.109.160403 (2012).

25. Zhao, R., Luo, Y., Fernández-Domínguez, A. I. & Pendry, J. B. Description of van der Waals
Interactions Using Transformation Optics. Phys. Rev. Lett. 111, 033602. doi:10.1103/Phys
RevLett.111.033602 (2013).

26. Bimonte, G. Beyond-proximity-force-approximation Casimir force between two spheres at
finite temperature. II. Plasma versus Drude modeling, grounded versus isolated spheres. Phys.
Rev. D 98, 105004. doi:10.1103/PhysRevD.98.105004 (2018).

27. Maia Neto, P. A. et al. Scattering theory of the screened Casimir interaction in electrolytes.
Eur. Phys. J. D 73, 178. doi:10.1140/epjd/e2019-100225-8 (2019).

28. Spreng, B. et al. Universal Casimir attraction between filaments at the cell scale. New J. Phys.
26, 013009. doi:10.1088/1367-2630/ad1846 (2024).

29. Parsegian, V. & Ninham, B. Toward the correct calculation of van der Waals interactions
between lyophobic colloids in an aqueous medium. J. Colloid Interface Sci. 37, 332–341.
doi:10.1016/0021-9797(71)90301-8 (1971).

30. Hamaker, H. The London—van der Waals attraction between spherical particles. Physica 4,
1058–1072. doi:10.1016/S0031-8914(37)80203-7 (1937).

31. Gies, H. & Klingmüller, K. Casimir Effect for Curved Geometries: Proximity-Force- Approxi-
mation Validity Limits. Phys. Rev. Lett. 96, 220401. doi:10.1103/PhysRevLett.96.220401
(2006).

32. Liu, Y., Xie, H., Li, C., Jeng, D.-S. & Zhang, B. N. Influence of Particle Geometry on Dispersion
Forces. Phys. Rev. Appl. 19, 044019. doi:10.1103/PhysRevApplied.19.044019 (2023).

33. Spreng, B., Hartmann, M., Henning, V., Maia Neto, P. A. & Ingold, G.-L. Proximity force
approximation and specular reflection: Application of the WKB limit of Mie scattering to the
Casimir effect. Phys. Rev. A 97, 062504. doi:10.1103/PhysRevA.97.062504 (2018).

178

https://doi.org/10.1103/PhysRevLett.120.040401
https://doi.org/10.1515/nanoph-2020-0425
https://doi.org/10.1088/1367-2630/8/10/243
https://doi.org/10.1103/PhysRevLett.99.170403
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1103/PhysRevLett.109.160403
https://doi.org/10.1103/PhysRevLett.109.160403
https://doi.org/10.1103/PhysRevLett.111.033602
https://doi.org/10.1103/PhysRevLett.111.033602
https://doi.org/10.1103/PhysRevD.98.105004
https://doi.org/10.1140/epjd/e2019-100225-8
https://doi.org/10.1088/1367-2630/ad1846
https://doi.org/10.1016/0021-9797(71)90301-8
https://doi.org/10.1016/S0031-8914(37)80203-7
https://doi.org/10.1103/PhysRevLett.96.220401
https://doi.org/10.1103/PhysRevApplied.19.044019
https://doi.org/10.1103/PhysRevA.97.062504


Bibliography

34. Henning, V., Spreng, B., Hartmann, M., Ingold, G.-L. & Maia Neto, P. A. Role of diffraction
in the Casimir effect beyond the proximity force approximation. J. Opt. Soc. Am. B 36, C77.
doi:10.1364/JOSAB.36.000C77 (2019).

35. Henning, V., Spreng, B., Maia Neto, P. A. & Ingold, G.-L. Casimir Interaction between a Plane
and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures.
Universe 7, 129. doi:10.3390/universe7050129 (2021).

36. Woods, L. M. et al. Materials perspective on Casimir and van der Waals interactions. Rev.
Mod. Phys. 88, 045003. doi:10.1103/RevModPhys.88.045003 (2016).

37. Lu, B.-S. The Casimir Effect in Topological Matter. Universe 7, 237. doi:10.3390/univers
e7070237 (2021).

38. Serry, F. M., Walliser, D. & Maclay, G. J. The role of the casimir effect in the static deflection
and stiction of membrane strips in microelectromechanical systems (MEMS). J. Appl. Phys.
84, 2501–2506. doi:10.1063/1.368410 (1998).

39. Kenneth, O. & Klich, I. Opposites Attract: A Theorem about the Casimir Force. Phys. Rev.
Lett. 97, 160401. doi:10.1103/PhysRevLett.97.160401 (2006).

40. Rahi, S. J., Kardar, M. & Emig, T. Constraints on Stable Equilibria with Fluctuation-Induced
(Casimir) Forces. Phys. Rev. Lett. 105, 070404. doi:10.1103/PhysRevLett.105.070404
(2010).

41. Rodriguez, A. W. et al. Nontouching Nanoparticle Diclusters Bound by Repulsive and Attrac-
tive Casimir Forces. Phys. Rev. Lett. 104, 160402. doi:10.1103/PhysRevLett.104.160402
(2010).

42. Rodriguez, A. W. et al. Achieving a Strongly Temperature-Dependent Casimir Effect. Phys.
Rev. Lett. 105, 060401. doi:10.1103/PhysRevLett.105.060401 (2010).

43. Boyer, T. H. Van der Waals forces and zero-point energy for dielectric and permeable materials.
Phys. Rev. A 9, 2078–2084. doi:10.1103/PhysRevA.9.2078 (1974).

44. Rosa, F. S. S., Dalvit, D. A. R. & Milonni, P. W. Casimir-Lifshitz Theory and Metamaterials.
Phys. Rev. Lett. 100, 183602. doi:10.1103/PhysRevLett.100.183602 (2008).

45. Yannopapas, V. & Vitanov, N. V. First-Principles Study of Casimir Repulsion in Metamaterials.
Phys. Rev. Lett. 103, 120401. doi:10.1103/PhysRevLett.103.120401 (2009).

46. Zhao, R., Zhou, J., Koschny, T., Economou, E. N. & Soukoulis, C. M. Repulsive Casimir Force
in Chiral Metamaterials. Phys. Rev. Lett. 103, 103602. doi:10.1103/PhysRevLett.103.10
3602 (2009).

47. Grushin, A. G. & Cortĳo, A. Tunable Casimir Repulsion with Three-Dimensional Topological
Insulators. Phys. Rev. Lett. 106, 020403. doi:10.1103/PhysRevLett.106.020403 (2011).

48. Grushin, A. G., Rodriguez-Lopez, P. & Cortĳo, A. Effect of finite temperature and uniaxial
anisotropy on the Casimir effect with three-dimensional topological insulators. Phys. Rev. B
84, 045119. doi:10.1103/PhysRevB.84.045119 (2011).

49. Rodriguez-Lopez, P. Casimir repulsion between topological insulators in the diluted regime.
Phys. Rev. B 84, 165409. doi:10.1103/PhysRevB.84.165409 (2011).

179

https://doi.org/10.1364/JOSAB.36.000C77
https://doi.org/10.3390/universe7050129
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.3390/universe7070237
https://doi.org/10.3390/universe7070237
https://doi.org/10.1063/1.368410
https://doi.org/10.1103/PhysRevLett.97.160401
https://doi.org/10.1103/PhysRevLett.105.070404
https://doi.org/10.1103/PhysRevLett.104.160402
https://doi.org/10.1103/PhysRevLett.105.060401
https://doi.org/10.1103/PhysRevA.9.2078
https://doi.org/10.1103/PhysRevLett.100.183602
https://doi.org/10.1103/PhysRevLett.103.120401
https://doi.org/10.1103/PhysRevLett.103.103602
https://doi.org/10.1103/PhysRevLett.103.103602
https://doi.org/10.1103/PhysRevLett.106.020403
https://doi.org/10.1103/PhysRevB.84.045119
https://doi.org/10.1103/PhysRevB.84.165409


Bibliography

50. Nie, W., Zeng, R., Lan, Y. & Zhu, S. Casimir force between topological insulator slabs. Phys.
Rev. B 88, 085421. doi:10.1103/PhysRevB.88.085421 (2013).

51. Rodriguez-Lopez, P. & Grushin, A. G. Repulsive Casimir Effect with Chern Insulators. Phys.
Rev. Lett. 112, 056804. doi:10.1103/PhysRevLett.112.056804 (2014).

52. Fuchs, S. et al. Casimir-Lifshitz force for nonreciprocal media and applications to photonic
topological insulators. Phys. Rev. A 96, 062505. doi:10.1103/PhysRevA.96.062505 (2017).

53. Wilson, J. H., Allocca, A. A. & Galitski, V. Repulsive Casimir force between Weyl semimetals.
Phys. Rev. B 91, 235115. doi:10.1103/PhysRevB.91.235115 (2015).

54. Ema, Y., Hazumi, M., Iizuka, H., Mukaida, K. & Nakayama, K. Zero Casimir force in axion
electrodynamics and the search for a new force. Phys. Rev. D 108, 016009. doi:10.1103/Phy
sRevD.108.016009 (2023).

55. Pappakrishnan, V. K., Mundru, P. C. & Genov, D. A. Repulsive Casimir force in magnetodi-
electric plate configurations. Phys. Rev. B 89, 045430. doi:10.1103/PhysRevB.89.045430
(2014).

56. Rode, S., Bennett, R. & Buhmann, S. Y. Casimir effect for perfect electromagnetic conductors
(PEMCs): a sum rule for attractive/ repulsive forces. New J. Phys. 20, 043024. doi:10.1088
/1367-2630/aaaa44 (2018).

57. Li, Y., Zhou, L.-M. & Zhao, N. Anomalous motion of a particle levitated by Laguerre–Gaussian
beams. Opt. Lett. 46, 106–109. doi:10.1364/OL.405696 (2021).

58. Ether, D. S. et al. Double-layer force suppression between charged microspheres. Phys. Rev.
E 97, 022611. doi:10.1103/PhysRevE.97.022611 (2018).

59. Hartmann, M., Ingold, G.-L. & Maia Neto, P. A. Advancing numerics for the Casimir effect
to experimentally relevant aspect ratios. Phys. Scr. 93, 114003. doi:10.1088/1402-4896/a
ae34e (2018).

60. G. Volpe et al. Roadmap for optical tweezers. J. Phys. Photonics 5, 022501. doi:10.1088/25
15-7647/acb57b (2023).

61. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient
force optical trap for dielectric particles. Opt. Lett. 11, 288–290. doi:10.1364/OL.11.000288
(1986).

62. Bustamante, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule
biophysics. Nat. Rev. Methods Primers 1, 25. doi:10.1038/s43586-021-00021-6 (2021).

63. Otte, E. & Denz, C. Optical trapping gets structure: Structured light for advanced optical
manipulation. Appl. Phys. Rev. 7, 041308. doi:10.1063/5.0013276 (2020).

64. Yang, Y., Ren, Y., Chen, M., Arita, Y. & Rosales-Guzmán, C. Optical trapping with structured
light: a review. Adv. Photon. 3, 034001. doi:10.1117/1.AP.3.3.034001 (2021).

65. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262
(2021).

66. Curtis, J. E. & Grier, D. G. Structure of Optical Vortices. Phys. Rev. Lett. 90, 133901. doi:10
.1103/PhysRevLett.90.133901 (2003).

180

https://doi.org/10.1103/PhysRevB.88.085421
https://doi.org/10.1103/PhysRevLett.112.056804
https://doi.org/10.1103/PhysRevA.96.062505
https://doi.org/10.1103/PhysRevB.91.235115
https://doi.org/10.1103/PhysRevD.108.016009
https://doi.org/10.1103/PhysRevD.108.016009
https://doi.org/10.1103/PhysRevB.89.045430
https://doi.org/10.1088/1367-2630/aaaa44
https://doi.org/10.1088/1367-2630/aaaa44
https://doi.org/10.1364/OL.405696
https://doi.org/10.1103/PhysRevE.97.022611
https://doi.org/10.1088/1402-4896/aae34e
https://doi.org/10.1088/1402-4896/aae34e
https://doi.org/10.1088/2515-7647/acb57b
https://doi.org/10.1088/2515-7647/acb57b
https://doi.org/10.1364/OL.11.000288
https://doi.org/10.1038/s43586-021-00021-6
https://doi.org/10.1063/5.0013276
https://doi.org/10.1117/1.AP.3.3.034001
https://doi.org/10.1103/PhysRevLett.90.133901
https://doi.org/10.1103/PhysRevLett.90.133901


Bibliography

67. Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-Orbital Angular
Momentum Conversion in a Strongly Focused Optical Beam. Phys. Rev. Lett. 99, 073901.
doi:10.1103/PhysRevLett.99.073901 (2007).

68. Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and
orbital angular momentum of light - an optical spanner. Opt. Lett. 22, 52–54. doi:10.1364/O
L.22.000052 (1997).

69. Padgett, M. & Leach, J. in Structured Light and Its Applications (ed ANDREWS, D. L.)
237–248 (Academic Press, Burlington, 2008). isbn: 978-0-12-374027-4. doi:10.1016/B978
-0-12-374027-4.00009-8.

70. Silva, P. D. S., Casana, R. & Ferreira, M. M. Symmetric and antisymmetric constitutive tensors
for bi-isotropic and bi-anisotropic media. Phys. Rev. A 106, 042205. doi:10.1103/PhysRevA
.106.042205 (2022).

71. Jackson, J. D. Classical electrodynamics Third edition. isbn: 9781119770763 (Wiley, Singa-
pore, 2021).

72. Glauber, R. J. & Lewenstein, M. Quantum optics of dielectric media. Phys. Rev. A 43, 467–491.
doi:10.1103/PhysRevA.43.467 (1991).

73. Philbin, T. G. Canonical quantization of macroscopic electromagnetism. New J. Phys. 12,
123008. doi:10.1088/1367-2630/12/12/123008 (2010).

74. Tellegen, B. D. H. The gyrator, a new electric network element. Philips Res. Rep. 3, 81–101
(1948).

75. Kong, J. A. Theorems of bianisotropic media. Proc. IEEE 60, 1036–1046. doi:10.1109/PRO
C.1972.8851 (1972).

76. Buhmann, S. Y., Butcher, D. T. & Scheel, S. Macroscopic quantum electrodynamics in nonlocal
and nonreciprocal media. New J. Phys. 14, 083034. doi:10.1088/1367-2630/14/8/083034
(2012).

77. Caloz, C. et al. Electromagnetic Nonreciprocity. Phys. Rev. Appl. 10, 047001. doi:10.1103
/PhysRevApplied.10.047001 (2018).

78. Lindell, I. V. & Sihvola, A. H. Perfect Electromagnetic Conductor. J. Electromagn. Waves
Appl. 19, 861–869. doi:10.1163/156939305775468741 (2005).

79. Bohren, C. F. Light scattering by an optically active sphere. Chem. Phys. Lett. 29, 458–462.
doi:10.1016/0009-2614(74)85144-4 (1974).

80. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles Chap.
4. isbn: 978-0-471-29340-8. doi:10.1002/9783527618156 (Wiley-VCH, Weinheim, 2004).

81. Intravaia, F. How Modes Shape Casimir Physics. International Journal of Modern Physics A
37, 2241014. doi:10.1142/S0217751X22410147 (2022).

82. Krüger, M., Bimonte, G., Emig, T. & Kardar, M. Trace formulas for nonequilibrium Casimir
interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B 86, 115423.
doi:10.1103/PhysRevB.86.115423 (2012).

181

https://doi.org/10.1103/PhysRevLett.99.073901
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1016/B978-0-12-374027-4.00009-8
https://doi.org/10.1016/B978-0-12-374027-4.00009-8
https://doi.org/10.1103/PhysRevA.106.042205
https://doi.org/10.1103/PhysRevA.106.042205
https://doi.org/10.1103/PhysRevA.43.467
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1109/PROC.1972.8851
https://doi.org/10.1109/PROC.1972.8851
https://doi.org/10.1088/1367-2630/14/8/083034
https://doi.org/10.1103/PhysRevApplied.10.047001
https://doi.org/10.1103/PhysRevApplied.10.047001
https://doi.org/10.1163/156939305775468741
https://doi.org/10.1016/0009-2614(74)85144-4
https://doi.org/10.1002/9783527618156
https://doi.org/10.1142/S0217751X22410147
https://doi.org/10.1103/PhysRevB.86.115423


Bibliography

83. Reid, M. T. H., White, J. & Johnson, S. G. Fluctuating surface currents: An algorithm for
efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries.
Phys. Rev. A 88, 022514. doi:10.1103/PhysRevA.88.022514 (2013).

84. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media isbn: 0-08-030276-9
(Pergamon Press, Qxford, 1984).

85. Guérout, R., Ingold, G.-L., Lambrecht, A. & Reynaud, S. Accounting for Dissipation in the
Scattering Approach to the Casimir Energy. Symmetry 10, 37. doi:10.3390/sym10020037
(2018).

86. Bimonte, G., Emig, T., Kardar, M. & Krüger, M. Nonequilibrium Fluctuational Quantum
Electrodynamics: Heat Radiation, Heat Transfer, and Force. Annu. Rev. Condens. Matter
Phys. 8, 119–143. doi:10.1146/annurev-conmatphys-031016-025203 (2017).

87. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon Press,
Oxford, 1963).

88. Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. I.
Electromagnetic-field response functions and black-body fluctuations in finite geometries.
Phys. Rev. A 11, 230–242. doi:10.1103/PhysRevA.11.230 (1975).

89. Venkataram, P. S., Hermann, J., Tkatchenko, A. & Rodriguez, A. W. Fluctuational electro-
dynamics in atomic and macroscopic systems: van der Waals interactions and radiative heat
transfer. Phys. Rev. B 102, 085403. doi:10.1103/PhysRevB.102.085403 (2020).

90. Lippmann, B. A. & Schwinger, J. Variational Principles for Scattering Processes. I. Phys. Rev.
79, 469–480. doi:10.1103/PhysRev.79.469 (1950).

91. Guérout, R., Lambrecht, A., Milton, K. A. & Reynaud, S. Derivation of the Lifshitz-Matsubara
sum formula for the Casimir pressure between metallic plane mirrors. Phys. Rev. E 90, 042125.
doi:10.1103/PhysRevE.90.042125 (2014).

92. Minkowski, H. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten
Körpern. Math. Ann. 68, 472–525 (1910).

93. Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-
momentum tensor. Phys. Rep. 52, 133–201. doi:10.1016/0370-1573(79)90074-7 (1979).

94. Nieto-Vesperinas, M. & Xu, X. The complex Maxwell stress tensor theorem: The imaginary
stress tensor and the reactive strength of orbital momentum. A novel scenery underlying
electromagnetic optical forces. Light Sci. Appl. 11, 297. doi:10.1038/s41377-022-00979-
2 (2022).

95. Nieto-Vesperinas, M. Scattering and Diffraction in Physical Optics 2nd. doi:10.1142/5833
(World Scientific, 2006).

96. Santos, F. C., Passos Sobrinho, J. J. & Tort, A. C. Electromagnetic field correlators, Maxwell
stress tensor, and the Casimir effect for parallel walls. Braz. J. Phys. 35, 657–666. doi:10.15
90/S0103-97332005000400013 (2005).

97. Canaguier-Durand, A. Multipolar scattering expansion for the Casimir effect in the sphere-
plane geometry PhD thesis (Pierre and Marie Curie University, 2011).

182

https://doi.org/10.1103/PhysRevA.88.022514
https://doi.org/10.3390/sym10020037
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevB.102.085403
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRevE.90.042125
https://doi.org/10.1016/0370-1573(79)90074-7
https://doi.org/10.1038/s41377-022-00979-2
https://doi.org/10.1038/s41377-022-00979-2
https://doi.org/10.1142/5833
https://doi.org/10.1590/S0103-97332005000400013
https://doi.org/10.1590/S0103-97332005000400013


Bibliography

98. Varshalovich, D., Moskalev, A. & Khersonskii, V. Quantum Theory of Angular Momentum
(World Scientific, 1988).

99. Afonin, A. A., Godlevskaya, A. N., Kapshai, V. N. & Serdyukov, A. N. Spherical electromag-
netic waves and quantization of an electro-magnetic field in a naturally gyrotropic medium. J.
Appl. Spectrosc. 45, 877–881. doi:10.1007/BF00657478 (1986).

100. Ji, J.-Y., Lee, C.-W., Noh, J. & Jhe, W. Quantum electromagnetic fields in the presence of a
dielectric microsphere. J. Phys. B: At. Mol. Opt. Phys. 33, 4821. doi:10.1088/0953-4075
/33/21/324 (2000).

101. Schoger, T., Spreng, B., Ingold, G.-L. & Maia Neto, P. A. Casimir effect between spherical
objects: Proximity-force approximation and beyond using plane waves. Int. J. Mod. Phys. A
37, 2241009. doi:10.1142/S0217751X22410093 (2022).

102. Shanker, B. & Lakhtakia, A. Scattering of Beltrami fields by anisotropic impedance spheres.
Electromagnetics 12, 217–229. doi:10.1080/02726349208908312 (1992).

103. Athanasiadis, C., Costakis, G. & Stratis, I. On some properties of Beltrami fields in chiral
media. Rep. Math. Phys. 45, 257–271. doi:10.1016/S0034-4877(00)89036-9 (2000).

104. Nussenzveig, H. M. Diffraction Effects in Semiclassical Scattering isbn: 0-521-38318-8 (Cam-
bridge University Press, Cambridge, 1992).

105. Lentz, W. J. Generating Bessel functions in Mie scattering calculations using continued frac-
tions. Appl. Opt. 15, 668–671. doi:10.1364/AO.15.000668 (1976).

106. Canaguier-Durand, A., Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Thermal Casimir effect
for Drude metals in the plane-sphere geometry. Phys. Rev. A 82, 012511. doi:10.1103/Phys
RevA.82.012511 (2010).

107. Messina, R., Maia Neto, P. A., Guizal, B. & Antezza, M. Casimir interaction between a sphere
and a grating. Phys. Rev. A 92, 062504. doi:10.1103/PhysRevA.92.062504 (2015).

108. Van de Hulst, H. C. Light Scattering by Small Particles Chap. 12. isbn: 978-0-486-64228-4
(Dover Publications, New York, 1981).

109. Spreng, B. Plane-wave approach to the Casimir interaction between colloid particles PhD
thesis (Universität Augsburg, 2021).

110. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv
f. mikrosk. Anatomie 9, 413–468 (1873).

111. Barton, J. P., Alexander, D. R. & Schaub, S. A. Theoretical determination of net radiation
force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys.
66, 4594–4602. doi:10.1063/1.343813 (1989).

112. Lax, M., Louisell, W. H. & McKnight, W. B. From Maxwell to paraxial wave optics. Phys.
Rev. A 11, 1365–1370. doi:10.1103/PhysRevA.11.1365 (1975).

113. Quabis, S., Dorn, R., Eberler, M., Glöckl, O. & Leuchs, G. Focusing light to a tighter spot.
Opt. Commun. 179, 1–7. doi:10.1016/S0030-4018(99)00729-4 (2000).

114. Stratton, J. A. & Chu, L. J. Diffraction Theory of Electromagnetic Waves. Phys. Rev. 56,
99–107. doi:10.1103/PhysRev.56.99 (1939).

183

https://doi.org/10.1007/BF00657478
https://doi.org/10.1088/0953-4075/33/21/324
https://doi.org/10.1088/0953-4075/33/21/324
https://doi.org/10.1142/S0217751X22410093
https://doi.org/10.1080/02726349208908312
https://doi.org/10.1016/S0034-4877(00)89036-9
https://doi.org/10.1364/AO.15.000668
https://doi.org/10.1103/PhysRevA.82.012511
https://doi.org/10.1103/PhysRevA.82.012511
https://doi.org/10.1103/PhysRevA.92.062504
https://doi.org/10.1063/1.343813
https://doi.org/10.1103/PhysRevA.11.1365
https://doi.org/10.1016/S0030-4018(99)00729-4
https://doi.org/10.1103/PhysRev.56.99


Bibliography

115. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the
image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A 253, 358–379. doi:10.1098/r
spa.1959.0200 (1959).

116. Viana, N. B. et al. Towards absolute calibration of optical tweezers. Phys. Rev. E 75, 021914.
doi:10.1103/PhysRevE.75.021914 (2007).

117. Dutra, R. S., Viana, N. B., Maia Neto, P. A. & Nussenzveig, H. M. Absolute calibration of
forces in optical tweezers. Phys. Rev. A 90, 013825. doi:10.1103/PhysRevA.90.013825
(2014).

118. Monteiro, P. B., Maia Neto, P. A. & Nussenzveig, H. M. Angular momentum of focused beams:
Beyond the paraxial approximation. Phys. Rev. A 79, 033830. doi:10.1103/PhysRevA.79.0
33830 (2009).

119. Goubau, G. & Schwering, F. On the guided propagation of electromagnetic wave beams. IRE
Trans. Antennas Propag. 9, 248–256. doi:10.1109/TAP.1961.1144999 (1961).

120. Seghilani, M. S. et al. Vortex Laser based on III-V semiconductor metasurface: direct gener-
ation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum. Sci.
Rep. 6, 38156. doi:10.1038/srep38156 (2016).

121. Wolf, E. Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the
Image Field. Proc. R. Soc. Lond. A. Math. Phys. Sci. 253, 349–357 (1959).

122. Wolf, E. & Li, Y. Conditions for the validity of the Debye integral representation of focused
fields. Opt. Commun. 39, 205–210. doi:10.1016/0030-4018(81)90107-3 (1981).

123. Neves, A. A. R. & Cesar, C. L. Analytical calculation of optical forces on spherical particles in
optical tweezers: tutorial. J. Opt. Soc. Am. B 36, 1525–1537. doi:10.1364/JOSAB.36.001525
(2019).

124. Collins, S. A. Lens-System Diffraction Integral Written in Terms of Matrix Optics. J. Opt.
Soc. Am. 60, 1168–1177. doi:10.1364/JOSA.60.001168 (1970).

125. Zhi-Ming, Z., Ji-Xiong, P. & Xi-Qing, W. Tight Focusing of Radially and Azimuthally Polar-
ized Vortex Beams through a Dielectric Interface. Chin. Phys. Lett. 25, 1664. doi:10.1088/0
256-307X/25/5/039 (2008).

126. Kim, J., Wang, Y. & Zhang, X. Calculation of vectorial diffraction in optical systems. J. Opt.
Soc. Am. A 35, 526–535. doi:10.1364/JOSAA.35.000526 (2018).

127. Ranasinghesagara, J. C., Potma, E. O. & Venugopalan, V. Modeling nonlinear optical mi-
croscopy in scattering media, part I. Propagation from lens to focal volume: tutorial. J. Opt.
Soc. Am. A 40, 867–882. doi:10.1364/JOSAA.478712 (2023).

128. Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd ed. (Cambridge University Press,
2012).

129. Dutra, R. S., Viana, N. B., Maia Neto, P. A. & Nussenzveig, H. M. Absolute calibration of
optical tweezers including aberrations. Appl. Phys. Lett. 100, 131115. doi:10.1063/1.3699
273 (2012).

130. Neves, A. A. R. et al. Axial optical trapping efficiency through a dielectric interface. Phys.
Rev. E 76, 061917. doi:10.1103/PhysRevE.76.061917 (2007).

184

https://doi.org/10.1098/rspa.1959.0200
https://doi.org/10.1098/rspa.1959.0200
https://doi.org/10.1103/PhysRevE.75.021914
https://doi.org/10.1103/PhysRevA.90.013825
https://doi.org/10.1103/PhysRevA.79.033830
https://doi.org/10.1103/PhysRevA.79.033830
https://doi.org/10.1109/TAP.1961.1144999
https://doi.org/10.1038/srep38156
https://doi.org/10.1016/0030-4018(81)90107-3
https://doi.org/10.1364/JOSAB.36.001525
https://doi.org/10.1364/JOSA.60.001168
https://doi.org/10.1088/0256-307X/25/5/039
https://doi.org/10.1088/0256-307X/25/5/039
https://doi.org/10.1364/JOSAA.35.000526
https://doi.org/10.1364/JOSAA.478712
https://doi.org/10.1063/1.3699273
https://doi.org/10.1063/1.3699273
https://doi.org/10.1103/PhysRevE.76.061917


Bibliography

131. Török, P., Varga, P., Laczik, Z. & Booker, G. R. Electromagnetic diffraction of light focused
through a planar interface between materials of mismatched refractive indices: an integral
representation. J. Opt. Soc. Am. A 12, 325–332. doi:10.1364/JOSAA.12.000325 (1995).

132. Abbe Hon., E. VII.—On the Estimation of Aperture in the Microscope. J. R. Microsc. Soc. 1,
388–423. doi:10.1111/j.1365-2818.1881.tb05909.x (1881).

133. Mazolli, A., Maia Neto, P. A. & Nussenzveig, H. M. Theory of Trapping Forces in Optical
Tweezers. Proc. R. Soc. London Ser. A 459, 3021–3041 (2003).

134. Maheu, B., Gouesbet, G. & Grehan, G. A concise presentation of the generalized Lorenz-Mie
theory for arbitrary location of the scatterer in an arbitrary incident profile. J. Opt. 19, 59.
doi:10.1088/0150-536X/19/2/002 (1988).

135. Neves, A. A. R. & Cesar, C. L. Analytical calculation of optical forces on spherical particles in
optical tweezers: tutorial. J. Opt. Soc. Am. B 36, 1525–1537. doi:10.1364/JOSAB.36.001525
(2019).

136. Schoger, T. Influence of light reverberation on optical tweezers mastersthesis (Universität
Augsburg, 2019).

137. De Sousa Dutra, R. Parametrizando uma Pinça Otica: Efeitos de Aberraçoes e Absorçao
PhD thesis (UFRJ, 2011).

138. Harada, Y. & Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering
regime. Opt. Commun. 124, 529–541. doi:10.1016/0030-4018(95)00753-9 (1996).

139. Gussgard, R., Lindmo, T. & Brevik, I. Calculation of the trapping force in a strongly focused
laser beam. J. Opt. Soc. Am. B 9, 1922–1930. doi:10.1364/JOSAB.9.001922 (1992).

140. Lakhtakia, A., Varadan, V. K. & Varadan, V. V. Scattering and absorption characteristics of
lossy dielectric, chiral, nonspherical objects. Appl. Opt. 24, 4146–4154. doi:10.1364/AO.24
.004146 (1985).

141. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics
regime. Biophys. J. 61, 569–582. doi:10.1016/S0006-3495(92)81860-X (1992).

142. Diniz, K. et al. Negative optical torque on a microsphere in optical tweezers. Opt. Express 27,
5905–5917. doi:10.1364/OE.27.005905 (2019).

143. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362. doi:10.1038/s4
1586-020-2649-2 (2020).

144. Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods 17, 261–272. doi:10.1038/s41592-019-0686-2 (2020).

145. Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT compiler in Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC (Association for
Computing Machinery, Austin, Texas, 2015). isbn: 9781450340052. doi:10.1145/2833157
.2833162.

146. Nieminen, T. A., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Angular mo-
mentum of a strongly focused Gaussian beam. J. Opt. A: Pure Appl. Opt. 10, 115005. doi:10
.1088/1464-4258/10/11/115005 (2008).

185

https://doi.org/10.1364/JOSAA.12.000325
https://doi.org/10.1111/j.1365-2818.1881.tb05909.x
https://doi.org/10.1088/0150-536X/19/2/002
https://doi.org/10.1364/JOSAB.36.001525
https://doi.org/10.1016/0030-4018(95)00753-9
https://doi.org/10.1364/JOSAB.9.001922
https://doi.org/10.1364/AO.24.004146
https://doi.org/10.1364/AO.24.004146
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1364/OE.27.005905
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1088/1464-4258/10/11/115005
https://doi.org/10.1088/1464-4258/10/11/115005


Bibliography

147. Yu, H. & She, W. Radiation torques exerted on a sphere by focused Laguerre-Gaussian beams.
Phys. Rev. A 92, 023844. doi:10.1103/PhysRevA.92.023844 (2015).

148. Ganic, D., Gan, X. & Gu, M. Focusing of doughnut laser beams by a high numerical-aperture
objective in free space. Opt. Express 11, 2747–2752. doi:10.1364/OE.11.002747 (2003).

149. Zhou, L.-M., Xiao, K.-W., Chen, J. & Zhao, N. Optical levitation of nanodiamonds by doughnut
beams in vacuum. Laser Photon. Rev. 11, 1600284. doi:10.1002/lpor.201600284 (2017).

150. Zhang, X., Qiu, J., Li, X., Zhao, J. & Liu, L. Complex refractive indices measurements of
polymers in visible and near-infrared bands. Appl. Opt. 59, 2337–2344. doi:10.1364/AO.38
3831 (2020).

151. Daimon, M. & Masumura, A. Measurement of the refractive index of distilled water from the
near-infrared region to the ultraviolet region. Appl. Opt. 46, 3811–3820. doi:10.1364/AO.46
.003811 (2007).

152. Fonseca, A. L. et al. Tailoring bistability in optical tweezers with vortex beams and spherical
aberration. arXiv:2311.04737 (2023).

153. Diniz, K. et al. Precise in situ radius measurement of individual optically trapped microspheres
using negative optical torque exerted by focused vortex beams. arXiv:2312.17332 (2023).

154. Maia Neto, P. A. & Nussenzveig, H. M. Theory of optical tweezers. Europhys. Lett. 50, 702.
doi:10.1209/epl/i2000-00327-4 (2000).

155. Zhang, J., Albelda, M. T., Liu, Y. & Canary, J. W. Chiral nanotechnology. Chirality 17, 404–
420. doi:10.1002/chir.20178 (2005).

156. Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phe-
nomena. Light Sci. Appl. 9, 139. doi:10.1038/s41377-020-00367-8 (2020).

157. Genet, C. Chiral Light–Chiral Matter Interactions: an Optical Force Perspective. ACS Photonics
9, 319–332. doi:10.1021/acsphotonics.1c01130 (2022).

158. Ali, R., Pinheiro, F. A., Dutra, R. S., Rosa, F. S. S. & Maia Neto, P. A. Enantioselective
manipulation of single chiral nanoparticles using optical tweezers. Nanoscale 12, 5031–5037.
doi:10.1039/C9NR09736H (2020).

159. Ali, R., Pinheiro, F. A., Dutra, R. S., Rosa, F. S. S. & Maia Neto, P. A. Probing the optical
chiral response of single nanoparticles with optical tweezers. J. Opt. Soc. Am. B 37, 2796–
2803. doi:10.1364/JOSAB.398934 (2020).

160. Li, M., Yan, S., Zhang, Y., Chen, X. & Yao, B. Optical separation and discrimination of chiral
particles by vector beams with orbital angular momentum. Nanoscale Adv. 3, 6897–6902.
doi:10.1039/D1NA00530H (2021).

161. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt.
Photon. 1, 1–57. doi:10.1364/AOP.1.000001 (2009).

162. Pecora, R. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids. J.
Nanoparticle Res. 2, 123–131. doi:10.1023/A:1010067107182 (2000).

163. Yevick, A., Hannel, M. & Grier, D. G. Machine-learning approach to holographic particle
characterization. Opt. Express 22, 26884–26890. doi:10.1364/OE.22.026884 (2014).

186

https://doi.org/10.1103/PhysRevA.92.023844
https://doi.org/10.1364/OE.11.002747
https://doi.org/10.1002/lpor.201600284
https://doi.org/10.1364/AO.383831
https://doi.org/10.1364/AO.383831
https://doi.org/10.1364/AO.46.003811
https://doi.org/10.1364/AO.46.003811
https://doi.org/10.1209/epl/i2000-00327-4
https://doi.org/10.1002/chir.20178
https://doi.org/10.1038/s41377-020-00367-8
https://doi.org/10.1021/acsphotonics.1c01130
https://doi.org/10.1039/C9NR09736H
https://doi.org/10.1364/JOSAB.398934
https://doi.org/10.1039/D1NA00530H
https://doi.org/10.1364/AOP.1.000001
https://doi.org/10.1023/A:1010067107182
https://doi.org/10.1364/OE.22.026884


Bibliography

164. Midtvedt, B. et al. Fast and Accurate Nanoparticle Characterization Using Deep-Learning-
Enhanced Off-Axis Holography. ACS Nano 15, 2240–2250. doi:10.1021/acsnano.0c06902
(2021).

165. Altman, L. E. & Grier, D. G. Machine learning enables precise holographic characterization
of colloidal materials in real time. Soft Matter 19, 3002–3014. doi:10.1039/D2SM01283A
(2023).

166. Malagnino, N., Pesce, G., Sasso, A. & Arimondo, E. Measurements of trapping efficiency and
stiffness in optical tweezers. Opt. Commun. 214, 15–24. doi:10.1016/S0030-4018(02)021
19-3 (2002).

167. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–
2830 (2011).

168. Dembinski, H. & et al., P. O. scikit-hep/iminuit 2020. doi:10.5281/zenodo.3949207.

169. Hartmann, M., Ingold, G.-L. & Maia Neto, P. A. Plasma versus Drude Modeling of the
Casimir Force: Beyond the Proximity Force Approximation. Phys. Rev. Lett. 119, 043901.
doi:10.1103/PhysRevLett.119.043901 (2017).

170. Bimonte, G. Classical Casimir interaction of a perfectly conducting sphere and plate. Phys.
Rev. D 95, 065004. doi:10.1103/PhysRevD.95.065004 (2017).

171. Spreng, B., Maia Neto, P. A. & Ingold, G.-L. Plane-wave approach to the exact van der Waals
interaction between colloid particles. J. Chem. Phys. 153, 024115. doi:10.1063/5.0011368
(2020).

172. Klich, I. & Kenneth, O. Casimir effect: The TGTG formula. J. Phys.: Conf. Ser. 161, 012020.
doi:10.1088/1742-6596/161/1/012020 (2009).

173. Maghrebi, M. F. Diagrammatic expansion of the Casimir energy in multiple reflections: Theory
and applications. Phys. Rev. D 83, 045004. doi:10.1103/PhysRevD.83.045004 (2011).

174. Zandi, R., Emig, T. & Mohideen, U. Quantum and thermal Casimir interaction between a
sphere and a plate: Comparison of Drude and plasma models. Phys. Rev. B 81, 195423.
doi:10.1103/PhysRevB.81.195423 (2010).

175. Umrath, S., Hartmann, M., Ingold, G.-L. & Maia Neto, P. A. Disentangling geometric and
dissipative origins of negative Casimir entropies. Phys. Rev. E 92, 042125. doi:10.1103/Phy
sRevE.92.042125 (2015).

176. Stein, S. Addition theorems for spherical wave functions. Q. Appl. Math. 19, 15–24 (1961).

177. Schoger, T. & Ingold, G.-L. Classical Casimir free energy for two Drude spheres of arbitrary
radii: A plane-wave approach. SciPost Phys. Core 4, 011. doi:10.21468/SciPostPhysCore
.4.2.011 (2021).

178. Schoger, T. et al. Universal Casimir interactions in the sphere–sphere geometry. Int. J. Mod.
Phys. A 37, 2241005. doi:10.1142/S0217751X22410056 (2022).

179. Schoger, T., Spreng, B., Ingold, G.-L., Maia Neto, P. A. & Reynaud, S. Universal Casimir
Interaction between Two Dielectric Spheres in Salted Water. Phys. Rev. Lett. 128, 230602.
doi:10.1103/PhysRevLett.128.230602 (2022).

187

https://doi.org/10.1021/acsnano.0c06902
https://doi.org/10.1039/D2SM01283A
https://doi.org/10.1016/S0030-4018(02)02119-3
https://doi.org/10.1016/S0030-4018(02)02119-3
https://doi.org/10.5281/zenodo.3949207
https://doi.org/10.1103/PhysRevLett.119.043901
https://doi.org/10.1103/PhysRevD.95.065004
https://doi.org/10.1063/5.0011368
https://doi.org/10.1088/1742-6596/161/1/012020
https://doi.org/10.1103/PhysRevD.83.045004
https://doi.org/10.1103/PhysRevB.81.195423
https://doi.org/10.1103/PhysRevE.92.042125
https://doi.org/10.1103/PhysRevE.92.042125
https://doi.org/10.21468/SciPostPhysCore.4.2.011
https://doi.org/10.21468/SciPostPhysCore.4.2.011
https://doi.org/10.1142/S0217751X22410056
https://doi.org/10.1103/PhysRevLett.128.230602


Bibliography

180. Sauer, F. Die Temperaturabhängigkeit von Dispersionskräften German. PhD thesis (Universität
Göttingen, 1962).

181. Mehra, J. Temperature correction to the Casimir effect. Physica 37, 145–152. doi:10.1016/0
031-8914(67)90115-2 (1967).

182. Bimonte, G. Beyond-proximity-force-approximation Casimir force between two spheres at
finite temperature. Phys. Rev. D 97, 085011. doi:10.1103/PhysRevD.97.085011 (2018).

183. Molinari, L. Transfer matrices and tridiagonal-block Hamiltonians with periodic and scattering
boundary conditions. J. Phys. A: Math. Gen. 30, 983–997. doi:10.1088/0305-4470/30/3
/021 (1997).

184. Molinari, L. G. Determinants of block tridiagonal matrices. Linear Algebra Appl. 429, 2221–
2226. doi:10.1016/j.laa.2008.06.015 (2008).

185. NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/, Release 1.0.28 of 2020-
09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W.
Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

186. Bromwich, T. J. I. Conformal Space Transformations. Proc. London Math. Soc. s1-33, 185–
192. doi:10.1112/plms/s1-33.1.185 (1900).

187. Burkhardt, T. W. & Eisenriegler, E. Casimir Interaction of Spheres in a Fluid at the Critical
Point. Phys. Rev. Lett. 74, 3189–3192. doi:10.1103/PhysRevLett.74.3189 (1995).

188. Eisenriegler, E. & Ritschel, U. Casimir forces between spherical particles in a critical fluid and
conformal invariance. Phys. Rev. B 51, 13717–13734. doi:10.1103/PhysRevB.51.13717
(1995).

189. Garvin, M. C. A Generalized Lambert Series. Am. J. Math. 58, 507–513. doi:10.2307/2370
967 (1936).

190. Banerjee, S. & Wilkerson, B. Asymptotic expansions of Lambert series and related q-series.
Int. J. Number Theory 13, 2097–2113. doi:10.1142/S1793042117501135 (2017).

191. Gover, M. J. C. & Barnett, S. Inversion of Toeplitz Matrices which are not Strongly Non-
singular. IMA J. Numer. Anal. 5, 101–110. doi:10.1093/imanum/5.1.101 (1985).

192. Gover, M. J. C. The eigenproblem of a tridiagonal 2-Toeplitz matrix. Linear Algebr. Appl.
197-198, 63–78. doi:10.1016/0024-3795(94)90481-2 (1994).

193. Kilic, E. & Arikan, T. Evaluation of Hessenberg Determinants via Generating Function Ap-
proach. Filomat 31, 4945–4962. doi:10.2298/FIL1715945K (2017).

194. Comtet, L. Advanced combinatorics isbn: 90-277-0380-9 (D. Reidel, Dordrecht, 1974).

195. Port, D. Polynomial maps with applications to combinatorics and probability theory PhD
thesis (Massachusetts Institute of Technology, 1994).

196. Fosco, C. D., Lombardo, F. C. & Mazzitelli, F. D. Casimir free energy at high temperatures:
Grounded versus isolated conductors. Phys. Rev. D 93, 125015. doi:10.1103/PhysRevD.93
.125015 (2016).

197. Maxwell, J. C. A Treatise on Electricity and Magnetism §173 (Clarendon Press., Oxford,
1873).

188

https://doi.org/10.1016/0031-8914(67)90115-2
https://doi.org/10.1016/0031-8914(67)90115-2
https://doi.org/10.1103/PhysRevD.97.085011
https://doi.org/10.1088/0305-4470/30/3/021
https://doi.org/10.1088/0305-4470/30/3/021
https://doi.org/10.1016/j.laa.2008.06.015
https://doi.org/10.1112/plms/s1-33.1.185
https://doi.org/10.1103/PhysRevLett.74.3189
https://doi.org/10.1103/PhysRevB.51.13717
https://doi.org/10.2307/2370967
https://doi.org/10.2307/2370967
https://doi.org/10.1142/S1793042117501135
https://doi.org/10.1093/imanum/5.1.101
https://doi.org/10.1016/0024-3795(94)90481-2
https://doi.org/10.2298/FIL1715945K
https://doi.org/10.1103/PhysRevD.93.125015
https://doi.org/10.1103/PhysRevD.93.125015


Bibliography

198. Smythe, W. C. Static and Dynamic Electricity Chap. 5. isbn: 978-0891169178 (McGraw-Hill,
New York, 1950).

199. Balian, R. & Duplantier, B. Electromagnetic waves near perfect conductors. II. Casimir effect.
Ann. Phys. (N.Y.) 112, 165–208. doi:10.1016/0003-4916(78)90083-0 (1978).

200. Wirzba, A. The Casimir effect as a scattering problem. J. Phys. A: Math. Theor. 41, 164003.
doi:10.1088/1751-8113/41/16/164003 (2008).

201. Bitbol, A.-F., Berthoumieux, H., Spreng, B., Maia Neto, P. A. & Reynaud, S. A universal
attractive interaction between filaments at the cell scale. arXiv:2304.06006 (2023).

202. Derjaguin, B. Untersuchungen fiber die Reibung und Adh ision, IV. Theorie des Anhaftens
kleiner Teilchen. Kolloid-Z. 69, 155–164. doi:10.1007/BF01433225 (1934).

203. Schaden, M. & Spruch, L. Infinity-free semiclassical evaluation of Casimir effects. Phys. Rev.
A 58, 935–953. doi:10.1103/PhysRevA.58.935 (1998).

204. Jaffe, R. L. & Scardicchio, A. Casimir Effect and Geometric Optics. Phys. Rev. Lett. 92,
070402. doi:10.1103/PhysRevLett.92.070402 (2004).

205. Hansen, E. R. A table of series and products isbn: 0138819386 (Prentice-Hall, Englewood
Cliffs, NJ, 1975).

206. Ingold, G.-L. et al. Geometric origin of negative Casimir entropies: A scattering-channel
analysis. Phys. Rev. E 91, 033203. doi:10.1103/PhysRevE.91.033203 (2015).

207. Feinberg, G. & Sucher, J. General Form of the Retarded van der Waals Potential. J. Chem.
Phys. 48, 3333–3334. doi:10.1063/1.1669611 (1968).

208. Schoger, T. & Ingold, G.-L. Switching the sign of the Casimir force between two PEMC
spheres. arXiv:2401.14738 (2024).

209. Asorey, M. & Muñoz-Castañeda, J. Attractive and repulsive Casimir vacuum energy with
general boundary conditions. Nucl. Phys. B 874, 852–876. doi:10.1016/j.nuclphysb.201
3.06.014 (2013).

210. Teo, L. P. Casimir effect between two spheres at small separations. Phys. Rev. D 85, 045027.
doi:10.1103/PhysRevD.85.045027 (2012).

211. Muñoz-Castañeda, J. M., Santamaría-Sanz, L., Donaire, M. & Tello-Fraile, M. Thermal
Casimir effect with general boundary conditions. Eur. Phys. J. C 80, 793. doi:10.1140
/epjc/s10052-020-8348-1 (2020).

212. Bimonte, G., Emig, T., Jaffe, R. L. & Kardar, M. Casimir forces beyond the proximity approx-
imation. Europhys. Lett. 97, 50001. doi:10.1209/0295-5075/97/50001 (2012).

213. Teo, L. P. Material dependence of Casimir interaction between a sphere and a plate: First
analytic correction beyond proximity force approximation. Phys. Rev. D 88, 045019. doi:10.1
103/PhysRevD.88.045019 (2013).

214. Rodriguez-Lopez, P. Casimir energy and entropy in the sphere-sphere geometry. Phys. Rev. B
84, 075431. doi:10.1103/PhysRevB.84.075431 (2011).

215. Pirozhenko, I. G. & Bordag, M. Casimir repulsion in sphere-plate geometry. Phys. Rev. D 87,
085031. doi:10.1103/PhysRevD.87.085031 (2013).

189

https://doi.org/10.1016/0003-4916(78)90083-0
https://doi.org/10.1088/1751-8113/41/16/164003
https://doi.org/10.1007/BF01433225
https://doi.org/10.1103/PhysRevA.58.935
https://doi.org/10.1103/PhysRevLett.92.070402
https://doi.org/10.1103/PhysRevE.91.033203
https://doi.org/10.1063/1.1669611
https://doi.org/10.1016/j.nuclphysb.2013.06.014
https://doi.org/10.1016/j.nuclphysb.2013.06.014
https://doi.org/10.1103/PhysRevD.85.045027
https://doi.org/10.1140/epjc/s10052-020-8348-1
https://doi.org/10.1140/epjc/s10052-020-8348-1
https://doi.org/10.1209/0295-5075/97/50001
https://doi.org/10.1103/PhysRevD.88.045019
https://doi.org/10.1103/PhysRevD.88.045019
https://doi.org/10.1103/PhysRevB.84.075431
https://doi.org/10.1103/PhysRevD.87.085031


Bibliography

216. Oosthuyse, T. & Dudal, D. Interplay between chiral media and perfect electromagnetic con-
ductor plates: Repulsive vs. attractive Casimir force transitions. SciPost Phys. 15, 213. doi:10
.21468/SciPostPhys.15.5.213 (2023).

217. Bimonte, G. et al. Measurement of the Casimir Force between 0.2 and 8µm: Experimental
Procedures and Comparison with Theory. Universe 7, 93. doi:10.3390/universe7040093
(2021).

218. Meurer, A. et al. SymPy: symbolic computing in Python. PeerJ Computer Science 3, e103.
doi:10.7717/peerj-cs.103 (2017).

219. Schafer, R. & Kouyoumjian, R. Higher order terms in the saddle point approximation. Proc.
IEEE 55, 1496–1497. doi:10.1109/PROC.1967.5863 (1967).

220. Wick, G. C. The Evaluation of the Collision Matrix. Phys. Rev. 80, 268–272. doi:10.1103/P
hysRev.80.268 (1950).

221. Lindell, I., Sihvola, A. & Viitanen, A. Reflection and transmission of plane waves at a planar
interface between isotropic and bi-isotropic media. NASA STI/Recon Technical Report N 92,
21280 (1991).

190

https://doi.org/10.21468/SciPostPhys.15.5.213
https://doi.org/10.21468/SciPostPhys.15.5.213
https://doi.org/10.3390/universe7040093
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/PROC.1967.5863
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.80.268


List of Abbreviations

PEMC perfect electromagnetic conductor, see p. 2
PMC perfect magnetic conductor, see p. 3
PEC perfect electric conductor, see p. 3
PFA proximity force approximation, see p. x
PWS pairwise summation, see p. x
M magnetic, see p. 12
E electric, see p. 12
TE transversal electric, see p. 11
TM transversal magnetic, see p. 11
inc incident, see p. 14
out outgoing, see p. 13
reg regular, see p. 13
scat scattered, see p. 14
sp saddle point, see p. 22
LG Laguerre-Gaussian, see p. 30
MD Mie-Debye, see p. 39
MDSA Mie-Debye Spherical Aberration, see p. 39
MDSA+ Mie-Debye Spherical Aberration + Astigmatism, see p. 39
L left, see p. 3
R right, see p. 3
rs reference surface, see p. 31
eff effective, see p. 61
dip dipole, see p. 109
ext extinction, see p. 35
e even, see p. 77
o odd, see p. 77
F Fresnel plane, see p. 11
S scattering plane, see p. 18
NTLO next-to-leading-order, see p. 104
LO leading-order, see p. 95
rm rational model, see p. 89
pp plane-plane, see p. 93
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