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Abstract
We initiate the study of dynamic traffic assignment for electrical vehicles addressing the specific
challenges such as range limitations and the possibility of battery recharge at predefined charging
locations. We pose the dynamic equilibrium problem within the deterministic queueing model of
Vickrey and as our main result, we establish the existence of an energy-feasible dynamic equilibrium.
There are three key modeling-ingredients for obtaining this existence result:
1. We introduce a walk-based definition of dynamic traffic flows which allows for cyclic routing

behavior as a result of recharging events en route.
2. We use abstract convex feasibility sets in an appropriate function space to model the energy-

feasibility of used walks.
3. We introduce the concept of capacitated dynamic equilibrium walk-flows which generalize the

former unrestricted dynamic equilibrium path-flows.
Viewed in this framework, we show the existence of an energy-feasible dynamic equilibrium by
applying an infinite dimensional variational inequality, which in turn requires a careful analysis of
continuity properties of the network loading as a result of injecting flow into walks.

We complement our theoretical results by a computational study in which we design a fixed-point
algorithm computing energy-feasible dynamic equilibria. We apply the algorithm to standard
real-world instances from the traffic assignment community illustrating the complex interplay of
resulting travel times, energy consumption and prices paid at equilibrium.
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1 Introduction

Electric vehicles (EVs) are a great promise for the coming decades in order to allow for
mobility but at the same time take measures against the climate change by reducing the
emissions of classical combustion engines. The wide-spread operation of EVs, however, is by
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6:2 Dynamic Traffic Assignment for Electric Vehicles

far not fully resolved as the battery technology comes with several complications, some of
which are listed below:

The limited battery capacity implies a limited driving range of EVs resulting in complex
resource-constrained routing behavior taking the feasibility of routes w.r.t. the energy
consumption into account (cf. [4, 17]).

Feasible routes may contain cycles if the possibility of recharging at predefined charging
stations is included (see [1, 18, 17]). The necessity of multiple recharging operations is
especially relevant for longer trips such as long-haul trucking or for the use of EVs in
urban logistics [4].

The recharging strategy itself can be quite complex involving mode choices ranging from
low-power supply modes (22 kW) to high-power supply modes (350 kW) (cf. [19]). Different
modes may come with substantially different recharging times and prices (cf. [16]).

For a selected recharge mode, the duration of the recharge determines both, the resulting
battery state (and hence the subsequent reach of the vehicle), and the corresponding
total recharge price and, thus, adds a further strategic dimension.

While some of the above challenges have been partly addressed within the “battery-constrained
routing” community (cf. [1, 4, 6, 18, 15, 17, 13] and references therein), the majority of these
works rely on a static and mostly decoupled view on traffic assignment: Each vehicle is routed
independently (subject to battery related side constraints) and the interaction of vehicles in
terms of congestion effects with increased travel times is not considered. Only a few works
(such as [22, 23]) take congestion effects of routing EVs into account, yet, still relying on a
static routing model.

In a realistic traffic system, vehicles travel dynamically through the network and the
route choices of vehicles are mutually dependent as the propagation of traffic flow leads to
congestion at bottlenecks and in turn determines the route choices to avoid congestion. This
complex and self-referential dependency has been under scrutiny in the traffic assignment
community for a long time and it is usually resolved by dynamic traffic assignments (DTA)
under which – roughly speaking – at any point in time, no driver can opt to a better route.
As a result, the actual equilibrium travel times do depend on the collective route choices
of all vehicles and even more strikingly, the equilibrium routes determine the actual energy
consumption profile of an EV leading to a complex coupled dynamic system. Note that
emergent congestion effects are even relevant for the pure recharging process of an EV, since
with the rapid growth rates of EVs compared to the relatively scarce recharging infrastructure,
significant waiting times at recharging stations are anticipated (cf. [19]).

DTA models have been studied in the transportation science community for more than
50 years with remarkable success in deriving a concise mathematical theory of dynamic
equilibrium distributions, yet there is no such theory for DTA models addressing the specific
characteristics of EVs. Let us quote a recent survey article by Wang, Szeto, Han and Friesz [20]
that mentions the lack of DTA models for the operation of EVs: “To our best knowledge, a
DTA model with path distance constraints for electric vehicles remains undeveloped; so do
the corresponding solution algorithms.” This research gap might have good mathematical
reasons: virtually all known existence results in the DTA literature rely on the assumption
that paths must be acyclic in order to obtain a well defined path-delay operator mapping
the path-inflows to the experienced travel time (cf. [2, 3, 5, 9, 25, 12, 14]). As explained
above, the range-limitation of EVs requires recharging stops and, thus, leads to cyclic routing
behavior with path length restrictions requiring a new approach to establish equilibrium
existence.
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Our Contribution
In this paper, we study a dynamic traffic assignment problem that addresses the operation
of electrical vehicles including their range-limitations caused by limited battery energy and
necessary recharging stops. Our contributions can be summarized as follows:
1. We propose a DTA model tailored to the operation of EVs that combines the Vickrey

deterministic queueing model with graph-based gadgets modeling complex recharging
procedures such as mode choices and recharge durations. A combined routing and
recharging strategy of an EV can be reduced to choosing an energy-feasible walk within
this extended network.

2. A feasible walk may contain cycles and the set of feasible walks that respect the battery-
constraints may be quite complex. After establishing some fundamental properties of
the resulting network loading when flow is injected into walks, we introduce abstract
convex, closed and bounded feasibility sets in an appropriate function space to describe
the resulting feasible dynamic walk-flows. These feasibility sets are used to set up the
formal definition of a capacitated dynamic equilibrium in which also the monetary effect
of prices charged at recharging stations is integrated in the utility function of agents.

3. With the formalism of the network loading and the notion of a capacitated dynamic
equilibrium, we then proceed to the key question of equilibrium existence. We show
that the walk-delay operator that maps the walk-inflows to resulting travel times is
sequentially weak-strong continuous on the convex feasibility space (which corresponds
to weakly-continuous as previously used by Zhu and Marcotte [25] for paths under the
strict FIFO-condition). This allows us to apply a variational inequality formulation by
Lions [11] to establish the existence of dynamic equilibria. While the general variational
inequality approach dates back to Friesz et al. [5], our result generalizes previous works
on side-constraint dynamic equilibria (e.g. Zhong et al. [24]), because we do not assume a
priori compactness of the underlying convex restriction set, nor strict FIFO as in [24, 25].

4. We finally develop a fixed-point algorithm for the computation of energy-feasible dynamic
equilibria and apply the algorithm to several real-world instances from the literature.
To the best of our knowledge, this work is among the first to compute dynamic traffic
equilibria for electric vehicles and it can serve as the basis for evaluating the interplay
between congestion, travel times and used energy in a dynamic traffic equilibrium.

2 The Model

We now introduce our model for electric vehicles in which we combine the Vickrey deterministic
queuing model with graph-based extensions in order to model the key characteristics of the
battery recharging technology for electric vehicles. The complex strategic decision of an EV
involves
1. the route choice – possibly involving necessary recharging stops and cycles,
2. the mode choice of the battery-recharge (e.g., Level 1, 2, 3),
3. the actual duration of each battery-recharge en route, which determines the resulting

battery state and the recharge cost while also adding to the EV’s total travel time.
We model this complex decision space by using several graph-based gadgets inside the Vickrey
network model leading to the battery-extended network. This way, we can reduce the complex
strategy choice of an EV to selecting a feasible walk inside the battery-extended network. We
will now start with the physical Vickrey flow model and then discuss the battery-extended
network.

ATMOS 2022



6:4 Dynamic Traffic Assignment for Electric Vehicles

The Physical Vickrey Network Model. The physical Vickrey network model is based on a
finite directed graph G′ = (V ′, E′) with positive rate capacities νe ∈ R+ and positive transit
times τe ∈ R+ for every edge e ∈ E′. There is a finite set of commodities I = [n] := {1, . . . , n},
each with a commodity-specific source node si ∈ V ′ and a commodity-specific sink node
ti ∈ V ′. The (infinitesimally small) agents of every commodity i ∈ I each represent a vehicle
(electric or combustion engine) and they enter the network according to a bounded and
integrable network inflow rate function ui : R≥0 → R≥0 with bounded support. We denote
by T := sup { θ ∈ R≥0 | ∃i ∈ I : ui(θ) > 0 } the last time a vehicle enters the network. If the
total inflow into an edge e = vw ∈ E′ exceeds the rate capacity νe, a queue builds up and
agents need to wait in the queue before they are forwarded along the edge. The total travel
time along e is thus composed of the waiting time spent in the queue plus the physical transit
time τe.

The Battery-Extended Network. For vehicles corresponding to a commodity i ∈ I, we
assume that they all have an equal initial battery state of level bi > 0, i ∈ I. If an agent of
commodity i travels along an edge e ∈ E, it comes with a (flow-independent) battery cost
of bi,e ∈ R which may be positive (energy consumption) or negative (recuperation). The
maximum battery capacity is denoted by bmax

i . Note that the assumption that battery cost
is independent of congestion is well justified, since the engine of an EV completely turns off
when a vehicle stands still leading to negligible energy consumption while queueing up. Yet,
the chosen route does depend on the perceived travel time, thus, also the realized energy
consumption does (indirectly) depend on congestion.

Recharging may occur using different modes ranging from relatively low power supply (up
to 3.7 kilowatts (kW), Level 1) to medium supply (up to 22 kW, Level 2) up to high supply (25
kW to more than 350 kW, Level 3) or even complete battery swaps. Each mode may result in
different recharging times for a fixed targeted state of charging (SOC), and also the resulting
prices may significantly vary not only among modes but also among recharge locations.1
Besides the recharge location and mode choice, the planned duration for the recharge is an
important decision as it directly affects the journey time, the resulting SOC and the price
paid. Given a tariff for recharging,2 we can model the set of possible combinations of recharge
times, battery states and recharge prices via tuples of the form (τ, bi, pi), i ∈ I, where τ ∈ N
is the time (in minutes) spent for recharging, bi ≡ bi(τ) is the resulting increase of the battery
level and pi ≡ pi(τ) ∈ R+ is the charged price for a vehicle of commodity i ∈ I. Note that
the functions bi(τ), pi(τ) can be directly derived from the SOC function for recharging and
the resulting tariffs, respectively (cf. Xiao et al [21]). Recharging stations are identified
with subsets of nodes of V ′ denoted by Ci ⊆ V ′, i ∈ I, where Ci depends on i ∈ I to allow
for different recharging technologies, that is, some vehicles may only recharge at stations
that have the required technology. By introducing copies of commodities it is again without
loss of generality to assume that every agent of commodity i uses the same technology. For
a recharging location v ∈ Ci, i ∈ I, we introduce a subgraph as depicted in Figure 1. For
v ∈ Ci, the parallel edges leaving v correspond to the different recharging modes available
and the subsequent edges model the different recharging times with corresponding recharge

1 The statistics for 2021 for the recharging prices in Germany show for instance a significant price span for
the “cents per kWh tariff” ranging from 35 Euro cents at public stations to 79 cents at private stations
(cf. [16]).

2 Pricing happens frequently on the basis of a per-minute tariff, other tariffs charge on a per kWh basis
or on a per-session basis, see [16] for an overview on pricing schemes in Germany.
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v ⇒ v

v1
m1(v)

v2
m2(v)

v3
m3(v)

v̄

(τv1v̄, νv1v̄, bi,v1v̄, pi,v1v̄)
...

...

...

Figure 1 Left: Initial vertex v with an EV using a walk (red edges) without recharging. Right:
Expansion of node v using a graph-based gadget modeling the recharging options. There are three
recharging modes, say a low, medium or high power supply (Level 1, Level 2, Level 3) leading to the
first three edges m1(v), m2(v), m3(v). The subsequent parallel edges model the different charging
times and resulting increase of the battery levels. The red edges describe one cycle inside the gadget
and represent a recharge using mode 1 for time τv1v̄ with resulting battery level increase of |bv1v̄| at
price pv1v̄.

states and prices.3 At the end of this series-parallel graph-gadget, a backwards arc towards
v is introduced. We associate with every edge a tuple of the form (τe, νe, bi,e, pi,e), where
τe is the travel time (or recharge duration for a gadget edge), νe the inflow capacity, bi,e

the battery recharge and pi,e the price paid for the used recharge on edge e. Note that we
have pi,e ≡ pi,e(τe) and bi,e ≡ bi,e(τe) for corresponding pricing and recharging functions,
respectively. Any cycle in such a gadget is in one-to-one correspondence to a mode (e),
recharge duration (τe), battery recharge (bi,e) and price decision (pi,e). If a mode is not
compatible with the recharging technology used by EVs of type i ∈ I, we can set bi,e = +∞
to close the corresponding recharge edge for i ∈ I. For every i ∈ N , we denote the newly
constructed vertices and edges, respectively, by V (Ci), E(Ci), i ∈ I.

▶ Definition 1. The battery-extended network is a tuple N = (G, ν, τ, b, p), where
G = (V, E) is the battery-extended graph with V := V ′∪i∈I V (Ci) and E := E′∪i∈I E(Ci)),
νe ∈ R+, e ∈ E denotes the inflow-capacities,
τe ∈ R+, e ∈ E denotes the travel times or recharge durations,
bi,e ∈ R, i ∈ I, e ∈ E denotes the battery-consumption values,
pi,e ∈ R+, i ∈ I, e ∈ E denotes the recharge prices.

An si-ti walk in the battery-extended graph G corresponds to a route choice in the original
graph G′ together with recharging decisions corresponding to cycles inside the gadgets, see
Figure 1 for an example.

Feasible Walks in the Battery-Extended Network. Assume that we are given the battery-
extended network N . Let W = (e1, . . . , ek) be a sequence of edges in the graph G. We call
W a walk if its edges can be traversed in this order i.e. if we have ej = vj−1vj for all j ∈ [k]
for k ∈ N. We assume that all walks considered in this paper are finite and just use the
term walk to denote a finite walk. Note, that a walk is allowed to contain self-loops and/or

3 For the sake of a simple illustration we allow parallel arcs but by introducing further dummy nodes
subdividing an edge, one obtains a simple graph so that an edge can uniquely be represented by a tuple
vw for v, w ∈ V .

ATMOS 2022
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si

v1

v2v3 tiv4v5

1

55

1

1 2
1

0

−4

−2

0

si

v1

v2v3 tiv4v5
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1

0
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0

Figure 2 Example of an instance with start node si and sink node ti, bi = 3, bmax
i = 4. The green

edges represent the recharging gadget. Blue numbers at edges indicate the energy consumption values
bi,e. The shortest energy-feasible walk (assuming positive travel times on edges) is illustrated with red
edges on the right which contains two simple cycles C1 := {v3, v4, v5, v3} and C2 := {v1, v2, v3, v1},
where the first cycle is contained in the recharging gadget and represents a mode and duration
choice.

nontrivial cycles as required for a recharge operation. We denote by kW := k the length
of W and by eW

j the j-th edge of walk W . W is an si-ti walk, if v0 = si and vk = ti. We
denote by Wi the set of all si,ti-walks and assume that this set is always non-empty, i.e. that
every commodity has at least one walk from its source to its sink. Finally, we denote by
W := { (i, W ) | i ∈ I, W ∈ Wi } the set of all commodity-walk pairs. The set Wi represents
the set of strategies for a particle of commodity i ∈ I and, thus, a complete strategy profile is
a family of walk inflow rates for all commodities and all walks such that for every commodity
the sum of its walk inflow rates matches its network inflow rate. We denote the set of all
such strategy profiles by

K :=
{

h ∈
(
L2

≥0([0, T ])
)W

∣∣∣∣∣ ∀i ∈ I :
∑

W ∈Wi

hW
i (θ) = ui(θ) for almost all θ ∈ R≥0

}
,

where L2
≥0([0, T ]) denotes the set of L2-integrable non-negative functions and any h ∈ K is

called a walk-flow. The crucial point when modeling electric vehicles is the energy-feasibility
of a walk, that is, the battery must not fully deplete when traversing a walk. We capture
this property in the following definition.

▶ Definition 2. A walk W = (e1, . . . , ek) ∈ Wi is energy-feasible for commodity i ∈ I,
if bW (vj) ∈ [0, bmax

i ] holds for all j = 1, . . . , k, where bW (vj) is defined inductively as
bW (v1) = bi and bW (vj+1) = min{bW (vj) − bi,ej+1 , bmax

i }.

We assume that for every i ∈ I there is at least one energy-feasible walk and denote their
collection by Wi,b := {W ∈ Wi|W is energy feasible for i}. This set represents the set of
energy-feasible strategies for a particle of commodity i ∈ I. Thus, a complete energy-feasible
strategy profile is a family of walk inflow rates for all commodities and all walks such that for
every commodity the sum of its walk inflow rates matches its network inflow rate. We further
define Wb = {(i, W )|i ∈ I, W ∈ Wi,b} to be the set of commodity and energy-feasible walk
pairs. Note that the set Wb need not be finite. In Figure 2, we give an example illustrating
that walking along cycles might indeed be necessary to reach the sink.

3 Dynamic Equilibria with Convex Constraints

So far, we have reduced the strategy space of every player involving the routing and recharging
decisions to the set of feasible walks inside the battery-extended graph G. What is still
missing to formally introduce the traffic assignment problem, or equivalently, the dynamic
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equilibrium problem, is the precise form of the utility function for an agent. We assume that
agents want to travel from si to ti but have preferences over travel time and recharge prices.
While the recharge prices can be directly derived from the chosen walk W , the resulting travel
time can only be described, if the walk-choices of all agents have been unfolded over time
giving the resulting queueing times of a walk. This dynamic unfolding of the traffic inflow is
usually termed as the network loading which is discussed in the following paragraphs.

Edge-Walk-Based Flows over Time. Given a feasible walk-flow h ∈ K, we develop the
theoretical basis for the resulting network loading. This network loading provides then the
basis for time dependent label functions µW

i : R≥0 → R≥0 which for every time θ provide us
with the travel time for a particle entering walk W at time θ. These label functions will then
be used for our dynamic equilibrium concept which takes energy-feasibility of walks and their
resulting travel time into account. Let R := { (i, W, j) | i ∈ I, W ∈ Wi, j ∈ [kW ] } denote the
set of triplets consisting of the commodity identifier, walk and edge position in the walk,
respectively. A flow over time is then a tuple f = (f+, f−), where f+, f− ∈

(
L2

≥0(R≥0)
)R

are vectors of L2-integrable non-negative functions modeling the inflow rate fW,+
i,j (θ) and

outflow rate fW,−
i,j (θ) of commodity i on the j-th edge of some walk W ∈ Wi at time θ. For

any such flow over time we define the aggregated edge in- and outflow rates of an edge e ∈ E

as

f+
e (θ) :=

∑
(i,W,j)∈R:eW

j =e

fW,+
i,j (θ) and f−

e (θ) :=
∑

(i,W,j)∈R:eW
j =e

fW,−
i,j (θ) (1)

and the cumulative edge in- and outflows by F +
e (θ) :=

∫ θ

0 f+
e (z)dz, F −

e (θ) :=
∫ θ

0 f−
e (z)dz,

F W,+
i,j (θ) :=

∫ θ

0 fW,+
i,j (z)dz and F W,−

i,j (θ) :=
∫ θ

0 fW,−
i,j (z)dz. Note, that F +

e , F −
e , F W,+

i,j and
F W,−

i,j are non-decreasing, absolute continuous functions which satisfy

F +
e (θ) =

∑
(i,W,j)∈R:eW

j =e

F W,+
i,j (θ) and F −

e (θ) =
∑

(i,W,j)∈R:eW
j =e

F W,−
i,j (θ).

Furthermore, we define the queue length of an edge e at time θ by qe(θ) := F +
e (θ)−F −

e (θ+τe).
Then, for any flow particle entering an edge e = vw at time time θ, its travel time on this
edge is ce(θ) := τe + qe(θ)

νe
and its exit time from edge e is given by Te(θ) := θ + ce(θ). Now,

given some feasible walk-flow h ∈ K we call a flow over time f a feasible flow over time
associated with h if it satisfies the following constraints (2)–(6): The walk inflow rates of h

and f match, i.e., for every i ∈ I, W ∈ Wi we have

fW,+
i,1 (θ) = hW

i (θ) for almost all θ ∈ R≥0. (2)

The flow satisfies a balancing constraint at every intermediate node, i.e. for every i ∈ I,
W ∈ Wi and any 1 ≤ j < kW we have

fW,−
i,j (θ) = fW,+

i,j+1(θ) for almost all θ ∈ R≥0. (3)

The aggregated outflow respects the edges capacity, i.e. for every edge e we have

f−
e (θ + τe) ≤ νe for almost all θ ∈ R≥0, (4)

as well as weak flow conservation over edges, i.e. for every edge e we have

F −
e (θ + τe) ≤ F +

e (θ) for all θ ∈ R≥0. (5)

ATMOS 2022



6:8 Dynamic Traffic Assignment for Electric Vehicles

And, finally, the flow has to satisfy the following link transfer equation for every i ∈ I,
W ∈ Wi and any 1 ≤ j ≤ kW :

F W,−
i,j

(
TeW

j
(θ)
)

= F W,+
i,j (θ) for all θ ∈ R≥0. (6)

It turns out that every feasible walk-flow h ∈ K has a unique associated feasible flow over
time which we can obtain by a natural network loading procedure. This has been shown by
Cominetti et al. in [2, Proposition 3] for the case of flows using only simple paths, but the
same proof can also be applied to the case of general walks.

▶ Lemma 3. For any h ∈ K there is a unique (up to changes on a subset of measure zero)
associated flow over time f .

For any fixed network we denote by F the set of all feasible flows over time associated
with some h ∈ K. Lemma 3 then provides us with a one-to-one mapping between K and F .

Capacitated Dynamic Equilibria. For a given walk-flow h with associated feasible flow
over time f , we are in the position to compute for every commodity type (i, W ) with
W = (eW

1 , . . . , eW
kW

) a label function giving at time θ for any node on that walk the arrival
time at ti. Let Ŵ = (v0, . . . , vkW

) denote the representation of W as a sequence of nodes
satisfying eW

j = vj−1vj , j ∈ [kW ] with v0 = si, vkW
= ti. As a node can appear multiple

times in W , we use the subindex j ∈ [kW ] as a unique identifier of the position of that node
in the walk. With this notation we can unambiguously and recursively define the following
label function:

ℓW
i,kW

(θ) := θ, for all θ ≥ 0,

ℓW
i,j(θ) := ℓW

i,j+1(TeW
j+1

(θ)), for j = [kW ] − 1, . . . , 0 and all θ ≥ 0
(7)

where ℓW
i,j is the label function of the (j + 1)-th node when traversing the walk Ŵ beginning

with the starting node at position 0. Since W is a walk with end node ti, the value ℓW
i,0(θ)

measures the arrival time at ti for a particle entering W at time θ (assuming that the particle
follows W ). Note that ℓW

i,j is only defined for nodes contained in W and a node v in Ŵ may
be associated with several label functions whose number is equal to the number of occurrences
of v in Ŵ . We can easily compute the total travel time for a vehicle of commodity i ∈ I

leaving at time θ as µW
i (θ) := ℓW

i,0(θ) − θ. Finally, to determine the total cost of any particle
each commodity i ∈ I has an associated aggregation function ci which can be any continuous,
non-decreasing function ci : R×R → R.4 The total cost of a particle of commodity i starting
at time θ on walk W is then ci(µW

i (θ),
∑

e∈W pi,e).
Now, instead of letting particles choose any walk between their respective source and

sink node, we impose further restrictions to only use walk-flows from some closed, convex
restriction set S ⊆ L2([0, T ])W . Using such S we can, for example, not only model battery
constraints but also temporary road closures or restrictions on the set of feasible flows itself
(as every h corresponds to a unique flow) – though, in the latter case it is in general not
obvious whether the resulting set S satisfies convexity. We now want to express that some
h ∈ S is an equilibrium, if no particle can improve its total cost (i.e. aggregate of travel
time and total price) by deviating from its current path while staying within S. However,
since individual particles are infinitesimally small, the deviation of a single particle does not

4 A simple example of such a function would be a weighted sum of the two arguments.
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influence the feasibility w.r.t. S. Instead, we will consider deviations of arbitrarily small but
positive volumes of flow leading to the notion of saturated and unsaturated walks as used in
the static Wardropian model by Larsson and Patriksson [10]. To do that we first define for
any given walk-inflow h, commodity i, walks W, Q ∈ Wi, time θ̄ ≥ 0 and constants ε, δ > 0
the walk-inflow obtained by shifting flow of commodity i from walk W to walk Q at a rate
of ε during the interval [θ̄, θ̄ + δ] by HW →Q

i (h, θ̄, ε, δ) := (h′
R)R∈W with

h′W
i = [hW

i − ε1[θ̄,θ̄+δ]]+, h′Q
i = hQ

i + hW
i − h′W

i and

h′R
i′ = hR

i′ for all (i′, R) ∈ W \ {(i, Q), (i, W )},

where 1[θ̄,θ̄+δ] : [0, T ] → R is the indicator function of the interval [θ̄, θ̄ + δ] and for any
function g : [0, T ] → R the function [g]+ is the non-negative part of g, i.e. the function
[g]+ : [0, T ] → R, θ 7→ max{g(θ), 0}. Using this notation, we can define the set of unsaturated
alternatives to some fixed walk W of some commodity i with respect to some h ∈ S at time
θ̄ ≥ 0 as

DW
i (h, θ̄) :=

{
Q ∈ Wi

∣∣∣∀δ′ > 0 : ∃δ ∈ (0, δ′], ε > 0 : HW →Q
i (h, θ̄, ε, δ) ∈ S

}
. (8)

With this definition we are now able to formally introduce the concept of a dynamic
equilibrium in our model.

▶ Definition 4. Given a network N = (G, ν, τ, p), a set of commodities I, a restriction set
S and for every commodity an associated source-sink pair (si, ti) ∈ V × V as well as an
aggregation function ci, a feasible walk-flow h ∈ S ∩ K is a capacitated dynamic equilibrium,
if for all (i, W ) ∈ W and almost all θ̄ ≥ 0 it holds that

hW
i (θ̄) > 0 =⇒ ci

(
µW

i (θ̄),
∑
e∈W

pi,e

)
≤ ci

µQ
i (θ̄),

∑
e∈Q

pi,e

 for all Q ∈ DW
i (h, θ̄). (9)

Note that, in the case where all inflows are allowed (i.e. S = L2([0, T ])W) the above
definition is equivalent to the classic definition of dynamic equilibria. For a battery-extended
network we can use S := { h ∈ L2([0, T ])W | hW

i ≡ 0 for all W ∈ W \ Wb } and will call a
capacitated dynamic equilibrium an energy-feasible dynamic equilibrium.

4 Existence of Capacitated Dynamic Equilibria

In this section, we will show the existence of capacitated dynamic equilibria using an infinite
dimensional variational inequality as pioneered by Friesz et al. [5] and also used by Cominetti
et al. [2]. Since we use a more general equilibrium concept and allow for flow to use arbitrary
walks (from an a priori infinite set of possible walks) instead of just simple paths, we have to
adjust several technical steps of the proof. See Figure 2 for a simple instance where travelling
along cycles is already necessary and [18] for an extensive discussion of this topic.

The general structure of the proof will be as follows: First, we introduce the concept
of dominating sets of walks which will allow us to only consider some finite subset W ′ of
the set of all walks. We then define a function A : h 7→ ci

(
µW

i (_),
∑

e∈W pi,e

)
mapping

walk-flows to costs of particles of commodity i using walk W . Using this mapping we can
then formulate a variational inequality for which we can show that any solution to it is a
capacitated dynamic equilibrium. Finally, a result by Lions [11] guarantees the existence of
such solutions given that the mapping A satisfies an appropriate continuity property which
we will show to hold for our model. We start by giving the definition of dominating walks
and sets and then formally state our main theorem:
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▶ Definition 5. A walk (i, Q′) ∈ W is a dominating walk for another walk (i, Q) with respect
to S if for any walk-flow h ∈ K ∩S and all times θ ∈ [0, T ] we have ci

(
µQ′

i (θ̄),
∑

e∈Q′ pi,e

)
≤

ci

(
µQ

i (θ̄),
∑

e∈Q pi,e

)
and, additionally, Q ∈ DW

i (h, θ̄) always implies Q′ ∈ DW
i (h, θ̄) for

any walk (i, W ) ∈ W.
A subset W ′ ⊆ W is a dominating set with respect to S if for any walk (i, Q) ∈ W, there

exists a dominating walk (i, Q′) ∈ W ′.

▶ Theorem 6. Let N = (G, ν, τ, p) be any network and I a finite set of commodities each
associated with an aggregation function ci and a source-sink pair (si, ti). Let S ⊆ L2([0, T ])W

be a restriction set which is closed, convex and has non-empty intersection with K, and there
exists some finite dominating set W ′ ⊆ W with respect to S. Then there exists a capacitated
dynamic equilibrium in N .

In order to prove this theorem we first need some additional definitions and notation: We
will make use of two function spaces, namely the space L2([a, b]) of L2-integrable functions
from an interval [a, b] to R and the space C([a, b]) of continuous functions from [a, b] to
R. The former is a Hilbert space with the natural pairing ⟨., .⟩ : L2([a, b]) × L2([a, b]) →
R, (g, h) 7→ ⟨g, h⟩ :=

∫ b

a
g(x)h(x) dx. The latter is a normed space with the uniform norm

∥f∥∞ := supθ∈[a,b] |f(θ)|. Both, the natural pairing and the norm, can be extended in a
natural way to L2([a, b])d and C([a, b])d, respectively, for any d ∈ N. In particular, all these
spaces are topological vector spaces. We say that a sequence hk of functions in L2([a, b])d

converges weakly to some function h ∈ L2([a, b])d if for any function g ∈ L2([a, b]) we have
limk→∞⟨hk, g⟩ = ⟨h, g⟩. For any topological space X (in the following this will be either
L2([a, b])d or C([a, b])d) and any subset C ⊆ L2([a, b])d a mapping A : C → X is called
sequentially weak-strong continuous if it maps any weakly converging sequence of functions
in C to a (strongly) convergent sequence in X.

With this, we can now describe the kind of variational inequality we will use to show
the existence of capacitated dynamic equilibria. Namely, given an interval [a, b] ⊆ R≥0, a
number d ∈ N, a subset C ⊆ L2([a, b])d and a mapping A : C → L2([a, b])d, the variational
inequality VI(C, A) is the following:

Find h∗ ∈ C such that ⟨A(h∗), h̄ − h∗⟩ ≥ 0 for all h̄ ∈ C. (VI(C, A))

Conditions to guarantee the existence of such an element h∗ are given by Lions in [11,
Chapitre 2, Théorème 8.1] which, following Cominetti et al. [2], can be restated as follows:

▶ Theorem 7. Let C be a non-empty, closed, convex and bounded subset of L2([a, b])d.
Let A : C → L2([a, b])d be sequentially weak-strong continuous. Then, the variational
inequality (VI(C, A)) has a solution h∗ ∈ C.

For our proof we choose C := π(S ∩ K ∩ ι(
(
L2([0, T ])

)W′

)), where ι :
(
L2([0, T ])

)W′

→(
L2([0, T ])

)W is the canonical embedding (i.e. augmenting W ′-dimensional vectors with
zero functions to W-dimensional vectors) and π :

(
L2([0, T ])

)W →
(
L2([0, T ])

)W′

the
canonical projection. For ease of notation we will usually omit these embeddings/pro-
jections from our notation and assume that they are implicitly applied, whenever we
switch between elements of

(
L2([0, T ])

)W′

and
(
L2([0, T ])

)W . Next, we define a map-
ping A : C → L2([0, T ])W′ by defining for every walk-flow h ∈ C, commodity i ∈ I and walk
W ∈ W ′

i := { W ∈ Wi | (i, W ) ∈ W ′ } the continuous function AW
i (h) given by

AW
i (h) : θ 7→ ci

(
µW

i (θ̄),
∑
e∈W

pi,e

)
− min

Q∈W′
i

ci

µQ
i (θ̄),

∑
e∈Q

pi,e

 .
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Clearly, the assumptions on S and the fact that K is bounded, closed and convex
imply that C is a non-empty, closed, convex and bounded subset of L2([0, T ])W′ . Thus,
in order to be able to apply Theorem 7 it only remains to show that A is sequentially
weak-strong continuous. Since taking differences and minima of sequentially weak-strong
continuous mappings results again in such a mapping, it suffices to show that the maps
h 7→ ci

(
µW

i (_),
∑

e∈W pi,e

)
are sequentially weak-strong continuous from C to L2([0, T ]).

▶ Lemma 8. The map C 7→ L2([0, T ]), h 7→
(
[0, T ] → R, θ 7→ ci

(
µW

i (θ),
∑

e∈W pi,e

))
is

sequentially weak-strong continuous for every W ∈ W ′
i, i ∈ I.

The proof of this lemma follows along similar lines as [2, Lemmas 3-7] by Cominetti et al.
but requires some adjustments due to the differences between the models (in particular,
the fact that we allow for walks involving cycles). The main steps of the proof are first to
determine a (flow-independent) bound on the residence time of particles in the network,
then decompose the lemma’s map into several simpler maps and, finally, show appropriate
continuity properties for those. The details of this proof can be found in the full version of
the paper. With this lemma at hand we can now prove our main theorem.

Proof of Theorem 6. By Lemma 8 the map h 7→ ci

(
µW

i (_),
∑

e∈W pi,e

)
is weak-strong

continuous from C to L2([0, T ]) for each W ∈ W ′
i, i ∈ I. Taking the minimum of finitely many

weak-strong continuous mappings results in a weak-strong continuous mapping again and,
finally, the difference of two weak-strong continuous mappings is also weak-strong continuous.
Thus, A is sequentially weak-strong-continuous from C to L2([0, T ])W′ . Applying Theorem 7
provides a solution h∗ for VI(C, A). It remains to show that this is, in fact, a capacitated
dynamic equilibrium. We do this by contradiction, i.e. assume that h∗ is not a capacitated
dynamic equilibrium. Then, by using some technical measure theoretic arguments, we can get
an alternative walk inflow h̄ := HW →Q

i (h∗, θ̄, ε, δ) ∈ S with
∫ θ̄+δ

θ̄
min { h∗W

i (θ), ε } dθ > 0
and ci

(
µW

i (θ),
∑

e∈W pi,e

)
− ci

(
µQ

i (θ),
∑

e∈Q pi,e

)
≥ γ for all θ ∈ [θ̄, θ̄ + δ] and some γ > 0.

Since h̄ only uses walks that are already used in h∗ and additionally walk Q, all walks used
by h̄ are in W ′. Thus, we can conclude that h̄ ∈ C. But at the same time a direct calculation
shows that ⟨A(h∗), h̄ − h∗⟩ =

∫ θ̄+δ

θ̄
(A(h∗)Q(θ) − A(h∗)W (θ)) · min { h∗W

i (θ), ε } dθ < 0,
which is a contradiction to h∗ being a solution to (VI(C, A)). Therefore, h∗ already is a
capacitated dynamic equilibrium. ◀

We conclude by discussing two special cases for which our existence theorem can be applied
by suitable choices of the abstract restriction set S: Dynamic equilibria and energy-feasible
dynamic equilibria.

Dynamic Equilibria. If we choose S = L2([0, T ])W then capacitated dynamic equilibria
are exactly the dynamic equilibria as defined in [2, 5, 9, 25, 12]. To see this, note, that
in this case we always have DW

i (h, θ̄) = Wi. Thus, (9) translates to the constraint that
whenever there is positive inflow into some walk W , this walk has to be a shortest walk at
that time. Since dynamic flows in the Vickrey-model satisfy FIFO, the set of simple paths
is a dominating set for the set of all walks with respect to S = L2([0, T ])W (i.e. removing
a cycle from a walk can never increase its aggregated cost). As the set of simple paths is
clearly finite, one can use Theorem 6 to show existence of dynamic equilibria. Note that the
classical existence proofs for dynamic equilibria (e.g. by Han et al. [8] or Cominetti et al. [2])
usually have the restriction to simple paths as part of the model itself, i.e. they only allow
walk-inflows from L2([0, T ])W′ where W ′ is the set of simple source-sink paths.
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s
bmax = 6

u = 3
u v t

e1

b = 4
τ = 1

e2

b = 2
τ = 2

e3
b = 0
τ = 1

e4

b = 4
τ = 1

e5

b = 2
τ = 2

Figure 3 An instance where overtaking can occur in an energy-feasible dynamic equilibrium. If the
capacities are chosen such that no queues form, the paths P1 = (e1, e3, e5) and P2 = (e2, e3, e4) are
the shortest energy-feasible paths and any flow split between these two paths is an equilibrium. Note,
that in such a flow particles travelling along path P1 will temporally overtake particles travelling on
path P2 even though both paths have the same total travel time. If we add suitable edge capacities,
this may lead to particles travelling on path P2 being delayed on edge e3 by later starting particles
travelling on path P1.

Energy-Feasible Dynamic Equilibria. Now let us turn to the case of energy-feasible dynamic
equilibria, i.e. equilibria of flows in battery-extended networks. We show that Theorem 6
implies the existence of energy-feasible dynamic equilibria.

▶ Theorem 9. Let N be an battery-extended network and S := ι(L2([0, T ])Wb) ⊆ L2([0, T ])W .
Then, there exists an energy-feasible dynamic equilibrium in N , i.e. a capacitated dynamic
equilibrium with respect to S.

Proof. First, it is quite obvious that S is closed, convex and has non-empty intersection with
K (using our assumption that every commodity has at least one energy-feasible source-sink
walk). For the existence of a finite dominating set, we will show that due to the FIFO
condition in the Vickrey model, there exists a constant κi such that for every agent playing
against any walk choices of all other agents there exists an optimal strategy which enters
any (recharging) node at most κi times. We begin by defining the minimum positive energy
increment for i ∈ I along any simple cycle by αi := minE′⊆E

{∑
e∈E′ bi,e|

∑
e∈E′ bi,e > 0

}
and then choosing κi := max

{
bmax

i

αi

}
. Now, suppose there is some node v, which is visited

k ∈ N times by a walk W of commodity i. By renaming indices, we can assume that v appears
in W in the order v1, . . . , vk with vj = v, j ∈ [k]. Clearly, whenever we have bW (vℓ) ≥ bW (vj)
for some ℓ < j, we can delete the cycles between vℓ and vj to obtain another energy-feasible
walk W ′ of the same commodity. Due to FIFO and the fact that the aggregation function
ci is non-decreasing, the new walk W ′ then has at most the same aggregated cost as W .
Thus, commodity i always has an optimal walk where the sequence bW (v1) < · · · < bW (vk)
is monotonically increasing with increments of at least αi > 0. With bW (vk) ≤ bmax

i , we
get k ≤ κi as wanted. Consequently, choosing W ′ as the (finite!) subset of W containing
only walks which visit any particular node at most κi times provides us with the required
dominating walk set. Thus, all conditions of Theorem 6 are satisfied and we obtain the
existence of an energy-feasible dynamic equilibrium. ◀

5 Computational Study and Conclusion

While Theorem 9 guarantees the existence of energy-feasible dynamic equilibria, the non-
constructive nature of our proof (or more precisely the non-constructive existence result for
the variational inequality) means that it is not clear how to actually compute such equilibria.
Moreover, in contrast to dynamic equilibria, even in the single-commodity case it seems
unlikely that energy-feasible dynamic equilibria exhibit a simple phase structure which would
allow for a stepwise construction by repeatedly extending a given partial equilibrium as it is
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Figure 4 Left: The Nguyen-network with three recharging stations (green loops). Right: Conver-
gence of quality measures during the algorithm (change of flow between consecutive iterations ∆h

and regret QoPI; ε denotes the desired quality at which the algorithm terminates).

possible for dynamic equilibria (cf. [9]). Namely, even in simple toy instances (e.g. Figure 3)
simultaneous starting particles may overtake each other at intermediate nodes while still
arriving at the sink at the same time. Consequently, if one were to extend a given equilibrium
flow, particles starting within the new extension period might overtake particles of a previous
phase and then form a queue, hereby increasing the travel time of those earlier particles and
possibly leading to violations of the equilibrium condition in the previously calculated part
of the flow. Consequently, to compute an energy-feasible dynamic equilibrium the whole
time-horizon [0, T ] has to be taken into account at once. This makes it unlikely, that an
exact computation of energy-feasible dynamic equilibria is possible.

Figure 5 Left: Travel times of the four commodities in the Nguyen network without recharging.
Middle: Travel times with recharging. Right: Energy consumption per unit flow with and without
recharging. Note, that allowing recharging can reduce the travel times of some of the commodities
(as more routes become feasible) – for the price of increased total energy consumption.

Thus, we instead compute approximate equilibria by discretizing time and employing
a walk-flow based fixed point algorithm similar to the one used by Han et al. in [7] for
dynamic equilibria. We apply this algorithm to a set of real-world instances and are able
to compute flows which are very close to energy-feasible dynamic equilibria (in the sense
that particles only use walks which are close to shortest energy-feasible walks in hindsight).
We demonstrate this convergence of the flows to approximate dynamic equilibria in terms
of certain quality measures and show the applicability of our algorithm to moderate sized
instances like the Nguyen network with up to 20 commodities (see Figures 4 and 5 for some
of the results for four commodities). On the negative side we observe a sharp increase in
computation time with larger networks and/or more recharging stations as the number of
walks we have to consider increases exponentially. More detailed results of our computational
study can be found in the full version of our paper.
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