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A B S T R A C T

Purpose: To investigate the diagnostic performance of an automatic pipeline for detection of hydronephrosis on
kidney’s parenchyma on unenhanced low-dose CT of the abdomen.
Methods: This retrospective study included 95 patients with confirmed unilateral hydronephrosis in an unen-
hanced low-dose CT of the abdomen. Data were split into training (n = 67) and test (n = 28) cohorts. Both
kidneys for each case were included in further analyses, whereas the kidney without hydronephrosis was used as
control. Using the training cohort, we developed a pipeline consisting of a deep-learning model for automatic
segmentation (a Convolutional Neural Network based on nnU-Net architecture) of the kidney’s parenchyma and
a radiomics classifier to detect hydronephrosis. The models were assessed using standard classification metrics,
such as area under the ROC curve (AUC), sensitivity and specificity, as well as semantic segmentation metrics,
including Dice coefficient and Jaccard index.
Results: Using manual segmentation of the kidney’s parenchyma, hydronephrosis can be detected with an AUC of
0.84, a sensitivity of 75% and a specificity of 82%, a PPV of 81% and a NPV of 77%. Automatic kidney seg-
mentation achieved a mean Dice score of 0.87 and 0.91 for the right and left kidney, respectively. Additionally,
automatic segmentation achieved an AUC of 0.83, a sensitivity of 86%, specificity of 64%, PPV of 71%, and NPV
of 82%.
Conclusion: Our proposed radiomics signature using automatic kidney’s parenchyma segmentation allows for
accurate hydronephrosis detection on unenhanced low-dose CT scans of the abdomen independently of widened
renal pelvis. This method could be used in clinical routine to highlight hydronephrosis to radiologists as well as
clinicians, especially in patients with concurrent parapelvic cysts and might reduce time and costs associated
with diagnosing hydronephrosis.

1. Introduction

The number of hydronephrosis due to renal calculi is worldwide
increasing [1–3]. Patients with urolithiasis usually present with flank
pain and probably urinary abnormalities such as hematuria in the
emergency departments [4]. Due to the increasing occurrence of this

disease, the number of further investigations and treatment methods is
rising, burdening the medical system [5]. The imaging method of choice
in a patient suspicious to have urolithiasis is an ultrasound examination
[6]. If the patient has signs of urinary retention in an ultrasound ex-
amination, this is highly suggestive for urolithiasis [7,8]. In most cases,
an additional low-dose unenhanced CT scan is performed to evaluate the
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reason for urinary retention and the presence of renal calculi [6,9].
Urinary retention caused by urolithiasis might have an immediate
treatment consequence for the patient. Therefore, it is important to
answer this question sufficiently and with a short turnaround time on
imaging methods, such as CT. In the past years, the computer-based
recognition of texture patterns in medical image data sets (“radio-
mics”) has become more important in radiology [10]. Radiomics can
extract various quantitative values from the segmented tissue of interest,
e.g. based on computed tomography data sets, which can be used for
further evaluation [11]. Quantitative image analysis allows for voxel-
wise extraction of data which are invisible to the human eye [10].
However, their use is not yet widespread in clinical routine due to
complex and often time-consuming image postprocessing and the lack of
generalizability and reproducibility. Recent studies, mainly in oncology,
already indicate the potential of radiomics for tumor diagnosis, tumor
prognosis and decision support [10,12–14]. Due to the rising prevalence
of renal calculi, an automatic detection of hydronephrosis and calculi
could fasten the report to clinicians and therefore accelerate individual
patient’s therapy [3,15]. Recently, algorithms for automatic kidney
segmentation have been established [16]. With regard to urinary
retention, radiomics might be able to detect changes in kidney texture
including an increased fluid content in cases with hydronephrosis. Most
radiomics studies for urolithiasis detection focused on the detection of
calculi and prediction of stone composition [17–22].

Previous studies showed that radiomics can be used to differentiate
phleboliths from ureteral calculi with a high degree of accuracy and to
detect hydronephrosis and stone burden [17–19]. Homayounieh et al.
performed automatic segmentation of the whole kidney, including renal
parenchyma, renal pelvis and – if present – renal calculi. Segmentation
of the entire kidney including the renal pelvis has limitations for auto-
matic hydronephrosis detection and radiomics analysis: feature selec-
tion might mainly use the widened renal pelvis for detection of
hydronephrosis as this is the most obvious discrimination to cases
without hydronephrosis. However, might the algorithm be able to differ
parapelvic cysts from hydronephrosis? This might almost be impossible
in unenhanced low-dose CT [23].

Deep learning is based on artificial neural networks. In contrast to
“traditional” machine learning where pre-defined image features are
extracted, deep learning receives the whole image as input and com-
bines feature extraction and decision-making [24]. In radiology, deep
learning is mainly used in image segmentation, but also in abnormality
detection and image reconstruction / enhancement [24].

A combined deep-learning based segmentation and radiomics-
approach excluding the renal pelvis might exclude this potential bias
and only focus on changes of the renal parenchyma in hydronephrosis.

To our current knowledge, automatic detection of hydronephrosis
from the kidney parenchyma itself (without including renal pelvis), has
not yet been investigated. Aim of this study was to determine whether
automatic segmentation and radiomics feature extraction of kidney
parenchyma itself can be used to detect hydronephrosis in a low-dose
unenhanced CT scan.

2. Material and methods

2.1. Study design

This retrospective study was performed in accordance with the
Declaration of Helsinki. The ethics committee of the Ludwig-
Maximilians-University Munich approved this study (Protocol-Num-
ber: 20–1153) and waived the necessity of a written consent form for
this study due to its retrospective and anonymized character.

2.2. Patients’ population

This study included consecutive patients, who received an unen-
hanced low-dose CT of the abdomen at the University Hospital Augsburg

between January 2019 and September 2019. Inclusion criteria
comprised legal age, the evidence of urinary retention and urolithiasis.
Patients with other causes of urinary retention (e.g. tumor-related
obstruction), external material or poor imaging quality were excluded
from this study. As reference standard for urinary retention (including
grade and side of urinary retention), we used the radiological report
(written by a board-certified radiologist).

2.3. Imaging protocol

Unenhanced low-dose CT of the abdomen was performed on a 128
slice dual-source Definition Flash CT scanner (Siemens Healthcare,
Forchheim, Germany). Further settings were helical scan type with a
tube voltage of 100 kV, automatic tube current modulation (CareDose
4D), a rotation time of 0.5 s, a pitch of 0.6 and a collimation of 128 x 0.6
mm. All scans were reconstructed in axial detection with a slice thick-
ness and increment of 1mmusing iterative algorithm (I31f, Admire level
3, Siemens Healthineers) with a soft-tissue kernel.

2.4. Manual segmentation

CT scans were anonymized and exported from the picture archiving
and communicating system (PACS). Both kidneys, the obstructed and
the non-obstructed, in each patient were segmented. This allows for an
individual comparison of the obstructed kidney with the non-obstructed
one.

Sixty-seven patients (134 kidneys) were segmented manually by a
board-certified radiologist using the open-source program 3D Slicer (v.
4.11) (https://www.slicer.org/). Segmentation was performed on axial
reconstructions every few slices using automatic interpolation between
them. Final manual segmentation was reviewed by the radiologist in all
planes (axial, sagittal, coronal) to ensure correct segmentation. The
renal pelvic system was excluded to avoid interfering factors such as
parapelvic renal cysts. Fig. 1 shows an example of the manual segmen-
tation of the kidney’s parenchyma.

2.5. Automatic segmentation

A Convolutional Neural Network based on nnU-Net architecture was
trained on the 67 manually segmented patients to automatically
segment the kidneys in unenhanced CT images. NnU-Net is a deep
learning-based segmentation method that automatically configures it-
self, including preprocessing, network architecture, training and post-
processing and it was specifically developed for the biomedical imag-
ing domain [25]. The training used manual segmentation masks as a
ground truth to predict three classes: left kidney, right kidney, and
background. CT images underwent resampling, z-score normalization,
and various affine transformations to augment the dataset, including
rotation, scaling, and mirroring. Training used the Nesterov momentum
optimizer with a learning rate of 0.01, weight decay of 3*10–5, batch
size of 2, and patch size of 128x128x128 pixels. It ran for 1000 epochs.

2.6. Radiomics feature extraction and analysis

This study complied with the guidelines of the CLEAR-checklist
(Supplemental Table 1) [26]. For each kidney, 1256 radiomics fea-
tures were extracted using the standard, IBSI-compliant python based
library pyRadiomics [27]. Extraction parameters, including information
on preprocessing, normalization, resampling and discretization are
provided in Supplementary Table 2. Then, feature selection was per-
formed with the least absolute shrinkage and selection operator (LASSO)
regression, which limited the large number of features in the final model
to ten key features [28]. Feature selection enhances the model’s inter-
pretability and performance by focusing on the most relevant data [29].
A logistic regression model was trained to detect hydronephrosis in the
region of a single kidney. The model was developed and optimized in 5-
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fold cross-validation on the training dataset, and then evaluated on the
test set. Separate models were trained for manual and automatic kidney
segmentation masks. For model development, the AutoRadiomics
framework was used [30]. The framework handles image preprocessing,
feature extraction, feature selection, modeling, and evaluation. We uti-
lized Bayesian optimization to select the optimal hyperparameters. All
other parameters remained as a default configuration. Fig. 2 shows a
visual representation of the study workflow.

2.7. Statistical analysis

Patients were randomly split into training (0.7) and test cohorts (0.3)
in a stratified way. Training cohort was further split into 5 folds for
cross-validation. The model was internally tested. Receiver operating
characteristic (ROC) curves were generated for each independent vari-
able and the area under the curve (AUC) was calculated. Diagnostic
efficacy was compared using sensitivity and specificity at the optimal
threshold selected with the Youden index and was reported with 95 %
confidence intervals obtained with the bootstrap technique. Automatic
segmentations were evaluated using voxel-based metrics: Dice coeffi-
cient, Jaccard index, precision, and recall. Holm-Bonferroni correction
was applied to correct for multiple comparisons. A p-value < 0.05 was
indicative of statistical significance. All statistical analyses were imple-
mented in the programming language Python (version 3.8).

3. Results

3.1. Patient population

A total of 272 patients with suspicion for hydronephrosis on unen-
hanced low-dose CT of the abdomen between 3rd of January 2019 and
13th of September 2019 were identified. 177 of the unenhanced low-
dose CT of the abdomen were excluded because of missing evidence of
an urolithiasis, hydronephrosis, external material or poor imaging
quality (Fig. 3). 95 patients (training cohort: mean age 49 years (range
21–83), male 53/67 [79 %]; test cohort: mean age 50 years (range
27–79), male 21/28 [75 %]) were included in this study. Demographic
as well as clinical characteristics of training and test cohorts are pre-
sented in Table 1. Hydronephrosis grade 1 and 2 were the most common
among patients in this study, whereas grade 3 was rare and grade 4 was
absent.

3.2. Automatic segmentation

The results of automatic kidney segmentation are shown in Table 2.
In general, the automatic segmentation masks were highly precise, with
mean Dice coefficient of 0.87 for the right kidney and 0.91 for the left
kidney, when compared with manual segmentations. Fig. 4 shows ex-
amples of manual and automatic segmentation of the kidneys’
parenchyma.

3.3. Hydronephrosis detection

The ROC curves for radiomics models using manual segmentations
and automated segmentations are presented in Fig. 5. Confusion
matrices for manual and automatic segmentations are shown in Table 3.
We also performed a further analysis, showing the number of falsely
predicted cases according to the grade of hydronephrosis (Table 3).

The numerical results of manual and automatic segmentations are
summed up in Table 4. Detection of hydronephrosis using manual kid-
ney segmentations achieved an AUC of 0.84, a sensitivity of 75 % (95 %
CI 72–93), specificity of 82 % (95 % CI 66–96), PPV of 81 % (95 % CI
62–96) and a NPV of 77 % (95% CI 60–90). Detection of hydronephrosis
using automatic kidney segmentations achieved an AUC of 0.83, a
sensitivity of 86 % (95 % CI 72–97), specificity of 64 % (95 % CI 46–82),
a PPV of 71 % (95 % CI 55–86) and a NPV of 82 % (95 % CI 64–96).

We further analyzed the radiomics features used to detect hydro-
nephrosis in the final model with automated segmentation. Table 5
provides details on the features of highest importance to the model,
including their class, applied filter and the coefficient in the final model.
Fig. 6 shows the differences in distribution of the most important fea-
tures between kidneys with and without hydronephrosis. Additionally,
we included waterfall plots showing the distribution of true and false
predictions relative to the classification boundary as Supplementary
Figure S1.

4. Discussion

Main goal of our study was to investigate whether automatic seg-
mentation and radiomics feature extraction of the kidney parenchyma
can be used to detect urinary retention with reliable results compared to
the radiologists as gold standard.

A deep-learning-based automated segmentation and analysis of
radiomics features of the kidney’s parenchyma (excluding renal pelvis)
can detect hydronephrosis with high accuracy and might be useful

Fig. 1. Shows an example of the manual segmentation of the parenchyma of the right kidney in an unenhanced low-dose ct of the abdomen, performed by a board-
certified radiologist. the renal pelvis was excluded from the segmentation.
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especially in patients with present parapelvic cysts. The study suggests
that textural changes of the renal parenchyma might be present in pa-
tients with hydronephrosis that can be detected using radiomics.

In patients presenting in the emergency department with acute flank
pain and suspected diagnosis of urolithiasis after clinical examination
and ultrasound, unenhanced low-dose CT of the abdomen is the gold
standard to detect renal hydronephrosis and − if present − renal calculi
[6,31].

A recent study also showed automated hydronephrosis detection on
ultrasound images using a deep-learning-based algorithm [32]. Main
advantages of ultrasound are the fast and wide availability as well as the
lack of radiation exposure. However, detection of calculi is often limited
using ultrasound.

The advantage of a CT scan in comparison to an ultrasound exami-
nation is the high sensitivity (94–100 %) and specificity (92–100 %) in
detection of ureteral calculi and their location [9,33–36]. Nevertheless,
the radiation exposure should always be considered especially in young
patients and pregnant women.

In our study more men suffer from urolithiasis (training dataset 79 %
and test dataset 73 %) compared to women. This gender difference has
been published in several studies before, keeping in mind that the
amount of women suffering from urolithiasis is recently increasing
[2,37–39].

Using manual segmentation, hydronephrosis can be detected with an
AUC of 0.83 [95 % CI: 0.72–0.93]. Although the present results may be
promising, the possible inter-variability and very time-consuming
workflow of manual segmentation must be addressed. Therefore, it is
not possible to integrate the manual segmentation of the kidneys into
everyday clinical practice. Some studies already indicated that manual
segmentation is prone to failure, has a high variability and is too time-
consuming [40–42]. Therefore, an automatic segmentation of the kid-
ney’s parenchyma is on the one hand investigator-independent and on
the other hand less time-consuming. With the help of radiomics, more
data can be extracted from one image than is ever possible for the human
eye [10]. In our study, we created a deep-learning based algorithm for
automatic segmentation after final manual segmentation of the kidneys.

Fig. 2. Detailed description of the approach combining manual and automatic, deep-learning-based segmentation and radiomics extraction for detection of
hydronephrosis.
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The automatic segmentation of the kidney showed good results
compared to the manual segmentation. Our deep-learning model was
able to automatically segment the parenchyma of the kidneys with a
good concordance to manual segmentation (Dice score right: 0.87 and
left 0.91, Jaccard right: 0.8 and left: 0.85). The high accuracy of auto-
matic segmentation of the kidneys was shown in other previous studies
with comparable and partially even better results [43,44]. For example
Da Cruz et al. showed that automatic segmentation of the kidneys
(including the pelvis) using artificial intelligence and a deep learning
algorithm is possible with a high sensitivity (97.42 %) and high speci-
ficity (99.94 %) [45]. Due to the fact that there are now several possible
automatic segmentation programs for the kidneys, it will be important
to evaluate more precisely which is the most reliable method.

Homayounieh et al. proved that with an automated segmentation

Fig. 3. Study flowchart for inclusion and exclusion criteria.

Table 1
Demographic and clinical characteristics of training and test cohorts.

Training cohort (n ¼ 67) Test cohort (n ¼ 28)

Men 53 (79 %) 21 (75 %)
Women 14 (21 %) 7 (25 %)
Mean age 49 ± 15 50 ± 16
Stone location:
- renal 3 (4 %) 0
- ureter 61 (91 %) 25 (89 %)
- bladder 3 (4 %) 3 (11 %)
Stone size:
- <4mm 27 (40 %) 11 (39 %)
- 4–9,9mm 38 (57 %) 16 (57 %)
- >¼10 mm 2 (3 %) 1 (4 %)
Hydronephrosis grade:
- 1 27 (40 %) 13 (46 %)
- 2 30 (45 %) 14 (50 %)
- 3 10 (15 %) 1 (4 %)
- 4 0 0
Side:
- left 33 (49 %) 10 (36 %)
- right 34 (51 %) 18 (64 %)

Table 2
Results of automatic kidney segmentation in the test set.

Dice Jaccard Precision Recall

Right kidney 0.87 ± 0.18 0.80 ± 0.20 0.86 ± 0.17 0.93 ± 0.14
Left kidney 0.91 ± 0.06 0.85 ± 0.10 0.88 ± 0.08 0.95 ± 0.07

Metrics for comparison between automatic and manual kidney segmentations.
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program hydronephrosis can be detected with a high AUC (0.99) [23]. In
comparison to the present study, they included the kidney and the renal
pelvis in the automatic segmentation while patients with large renal
cysts (>3 cm) were excluded. Additionally, they only included patients
who had a calculus in the renal pelvis [23]. To avoid the possibility that
inclusion of the renal pelvis itself, calculus in the renal pelvis, congenital
ampullary pelvis systems or peripelvic/parapelvic renal cysts may in-
fluence the parameters determined by radiomics, we decided to only
segmentate the kidney’s parenchyma itself. Our aim was to reduce the
susceptibility of parameters to interference with renal cysts, especially
parapelvic and peripelvic renal cysts, or ampullary renal pelvis systems
because these features can be falsely attributed with urinary retention.
Since the present study shows that the automated segmentation of the
renal parenchyma in comparison with the manual segmentation is
possible with a good concordance (Dice score right 0.87 and left 0.91)
we assume a better informative value and a higher accuracy with regard
to urinary retention by excluding the pelvic system. After using the
automated segmentation of the kidney’s parenchyma, the automated
detection of hydronephrosis was possible with a sensitivity and speci-
ficity of 86 % and 64 %, respectively. We therefore assume that the use
of radiomics can highlight low-dose unenhanced CT scans with

Fig. 4. Examples of automatic segmentation (blue contour) compared with the reference manual volumetry (red contour) in two patients with hydronephrosis. Panel
A (top) presents a case with hydronephrosis on the left side, panel B (bottom) with hydronephrosis on the right side. This figure highlights the high concordance
between manual and automatic segmentation.

Fig. 5. ROC curves for radiomics models using manual segmentations (panel A, AUC=0.84) and automated segmentations (panel B, AUC=0.83) for detection of
hydronephrosis using segmentations and radiomics features.

Table 3
Confusion matrices for automatic and manual segmentation.

Manual segmentations

True

Positive Negative

Predicted Positive 22 6
Negative 5

2/5 HN grade I
3/5 HN grade II

23

Automatic segmentations
True
Positive Negative

Predicted Positive 25 3
Negative 10

6/10 HN grade I
4/10 HN grade II

18

HN: hydronephrosis.
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suspicion of hydronephrosis to the radiologists and can be prioritized in
reporting. The high sensitivity of the automated segmentation is of great
value in a screening method, while the radiologists can add more
specificity (82 %). This may lead to a faster treatment of the patient.
Automated segmentation, which achieved good concordance with
manual results (Dice scores: 0.87 right, 0.91 left), eliminates inter-
operator variability. Despite lower specificity, it presents a viable
alternative, offering high sensitivity and consistent results, making it
particularly useful in high-throughput screening environments where
rapid and reliable detection of hydronephrosis is critical in clinical
routine. Additionally, it significantly reduces the time required for
analysis.

Our radiomics model detected hydronephrosis in renal parenchyma
only, excluding the renal pelvis. These results suggest that there might
be changes in the parenchyma itself that can be detected by textural
analyses. Especially in patients with parapelvic cysts, the segmentation
of both, the renal pelvis and parenchyma, might introduce a bias mis-
interpreting cysts as hydronephrosis. This developed algorithm detects
hydronephrosis independently of widened renal pelvis / cysts and might
therefore be applied also in patients with concurrent parapelvic cysts.

This automatic segmentation approach, combined with radiomics
analysis, might support radiologists in clinical routine, especially in
times of high throughput, and might also act as a second reader. In the
rapidly growing era of AI-based image analysis, this might be another
tool in daily routine in the future. As this algorithm does not depend on
widening of the renal pelvis, it can be used also in patients with para-
pelvic cysts. With an AUC of 0.83 and 0.84 respectively, this algorithm

Table 4
Comparison of diagnostic performance using ROC analysis and binary classification metrics (95% confidence intervals provided in brackets).

AUC Sensitivity Specificity PPV NPV

Radiomics
(manual masks)

0.84 [0.72–0.93] 0.75 [0.59–0.90] 0.82 [0.66–0.96] 0.81 [0.62–0.96] 0.77 [0.60–0.90]

Radiomics
(automatic masks)

0.83 [0.72–0.93] 0.86 [0.72–0.97] 0.64 [0.46–0.82] 0.71 [0.55–0.86] 0.82 [0.64–0.96]

AUC: area under the ROC curve, PPV: positive predictive value, NPV: negative predictive value.

Table 5
Ten most important radiomics features in the radiomics signature using auto-
mated segmentations.

No. Feature
class

Feature Filter
applied

coefficient1

1 First order 90Percentile wavelet-LLL −1.90
2 GLCM Imc2 − −1.64
3 GLDM Dependence Variance LoG (σ = 5

mm)
−1.14

4 GLSZM Low Gray Level Zone
Emphasis

wavelet-
LLH

1.11

5 GLDM Small Dependence Low Gray
Level Emphasis

wavelet-
HHH

−1.07

6 shape Sphericity − −1.0
7 GLSZM Large Area Low Gray Level

Emphasis
wavelet-
HHL

0.98

8 First order Median wavelet-
HHH

0.96

9 GLSZM Zone Entropy wavelet-
HHH

0.96

10 First order Skewness LoG (σ = 5
mm)

−0.96

Ten features selected after least absolute shrinkage and selection operator
(LASSO) regression. GLCM: Gray Level Co-occurrence Matrix, GLDM: Gray Level
Dependence Matrix, GLSZM: Gray Level Size Zone Matrix, wavelet filters:
L=low, H=high, LoG: Laplacian of Gaussian.

1 coefficient in the logistic regression model.

Fig. 6. Boxplots of 10 most important radiomics features selected in the radiomics model using automated segmentations in the test set. Data are shown for cases
with hydronephrosis (HN – hydronephrosis) and cases without hydronephrosis (=normal). Different radiomics features are shown in different colors.
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might support diagnosis or highlight findings prior to the radiological
report. However, it can not be used as a stand-alone option and critical
review by a radiologist is crucial. Regarding also the limitations that are
discussed below, further studies are necessary to critically address the
potential clinical application of AI-based algorithms for hydronephrosis
detection in clinical routine.

The main limitation of this study is its retrospective character. The
used radiomics python-based radiology is an open-source product and
therefore easy to implement. However, the application of this algorithm
requires prior image extraction and image analysis combined with
technical know-how and standardization of the analysis which limits the
use in clinical routine at the moment and might be addressed by further
technical advances and staff training. Main limitations of radiomics are
further the lack of generalizability and the high susceptibility to image
artifacts which might be addressed in external validation studies.

Another limitation is that the patient collective was comparatively
low, and the developed deep learning algorithm has to be investigated in
a larger patient collective. Since artificial intelligence and deep learning
algorithms are increasing especially in the field of radiology it is
important to focus on one algorithm after developing and testing
different algorithms, which artificial intelligence has achieved the best
results and can be applied in clinical routine.

These limitations might restrict the findings of the study for clinical
application at the moment. However, this approach combining deep
learning-based segmentation and radiomics for hydronephrosis detec-
tion adds a further piece to the rapidly growing AI-based algorithms in
medical image analysis which becomes more andmore important also in
clinical routine. Further (multi-center) studies addressing the applica-
bility and implementation of automatic segmentation and radiomics
extraction, including also external validation of the algorithm, in clinical
practice are necessary.

5. Conclusion

An approach combining deep-learning based automated segmenta-
tion of the kidney’s parenchyma and radiomics analysis allows an ac-
curate and fast automatic detection of hydronephrosis in unenhanced
low-dose CT scans of the abdomen and is comparable to manual seg-
mentation of board-certified radiologists. This algorithm is not depen-
dent on changes in the renal pelvis and the presence of calculi and might
therefore also be applied in patients with concurrent parapelvic cysts. In
the rapidly growing era of AI-based analysis of medical images, inclu-
sion of this algorithm might help radiologists in clinical routine espe-
cially in times of high throughput, might act as a second reader and
increase time efficiency. Further studies, including external validation,
are necessary to further adapt this method for use in clinical routine.
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