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Abstract— Wearable intelligent phonocardiogram (PCG)
sensors provide a noninvasive method for long-term monitoring
of cardiac status, which is crucial for the early detection of
cardiovascular diseases (CVDs). As one of the key technologies
for intelligent PCG sensors, PCG classification techniques based
on computer audition (CA) have been widely leveraged in recent
years, such as convolutional neural networks (CNNs), generative
adversarial nets, and long short-term memory (LSTM). However,
the limitation of these methods is that the models have a sizeable
computational complexity, which is not suitable for wearable
devices. To this end, we propose an end-to-end neural network
for PCG classification with low-computational complexity
[52.67k parameters and 1.59M floating point operations per
second (FLOPs)]. We utilize two public datasets to test the model,
and experimental results demonstrate that the proposed model
achieves an accuracy of 93.1% in the 2016 PhysioNet/CinC
Challenge 2016 dataset with considerable complexity reduction
compared with the state-of-the-art works. Moreover, we design
an energy-efficient wearable PCG sensor and deploy the
proposed algorithms on it. The experimental results show
that our proposed model consumes only 245.1 mW for PCG
classification with an accuracy of 89.8% on test datasets. This
means that the proposed model obtains excellent performance
compared with previous work while consuming lower power,
which is significant in practical application scenarios.
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I. INTRODUCTION

S ONE of the leading killers, cardiovascular diseases

(CVDs) have made a large number of deaths [1]. The
early detection of CVDs is essential to reduce mortality. Heart
sound, a reflection of cardiac activity, is often utilized to detect
CVDs. In most cases, clinicians diagnose CVDs through a
stethoscope in a few minutes. However, clinician performance
and access to service vary widely, especially in low-income
countries and areas with poor medical equipment [2]. The
patient’s treatment will be delayed if clinicians cannot quickly
locate the abnormal heart activity. What is worse, it is difficult
for patients to monitor their daily heart activities to the extent
they have to go to the hospital for diagnosis. Unfortunately,
abnormal heart sounds are difficult to detect in the short
term, especially in the early stages of heart disease when the
symptoms are not obvious. This is because the randomness and
variability of CVDs symptoms cause complexity and diversity
of heart sound signals [3]. Therefore, long-term monitoring
and identification of heart sounds are desirable.

The phonocardiogram (PCG) is a visual waveform of heart
sounds, which makes it easy to extract features for heart
sound classification. With the development of computer audi-
tion (CA), PCG-based classification methods have been widely
introduced [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].
For these methods, most research efforts have focused on
feature-based classification methods. A multitude of feature
extraction techniques has been applied to algorithms based
on machine learning (ML) and deep learning (DL) [2], [15],
[16], [17], [18], [19], such as wavelet coefficients [17],
statistical features [10], mel-frequency cepstral coefficients
(MFCCs) [13], short-time Fourier transform (STFT) [15],
spectrograms [19], and others. Although feature engineering
partially achieves higher classification accuracy, its limitations
are also evident. First, feature engineering usually requires the
extraction of time—frequency features, which greatly increases
the computational complexity and power consumption of the
model. Second, the type of features affects the classification
results of the model, which is highly dependent on human
knowledge and experience. In addition, to achieve higher
accuracy, researchers usually employ two types of methods,
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Fig. 1. Proposed PCG sensor with an integrated lightweight AI model.

one adopting a multifeature fusion strategy and the other
using a larger or deeper network structure. Nevertheless, these
approaches, both of which require highly capable computers,
are difficult to deploy on wearable devices, so that monitoring
CVDs in real time is not possible. Intelligent PCG sensors
embedded with a lightweight model can address this issue.

In addition, a series of wearable PCG devices have been
proposed in the previous studies [20], [21], [22], [23], [24].
Although these devices can capture heart sound signals, they
do not feature integrated intelligent PCG classification algo-
rithms to perform abnormal heart sound detection. There are
typically two strategies to deploy these algorithms. One is to
implement them through the graphics processing unit (GPU),
the field-programmable gate array (FPGA), or an application
specific integrated circuit (ASIC) [25], [26], [27], [28], [29].
These devices can effectively accelerate neural networks.
However, the power consumption is high, and they are not
suitable for integration into wearable devices. Another strategy
is to use the microcontroller unit (MCU) to design an elec-
tronic stethoscope that would then wirelessly transmit data to
a computer or smart mobile device for analysis [30]. However,
this would consume more time and would not be suitable for
low-income countries and regions.

Consequently, as illustrated in Fig. 1, we propose a new
method in this study to address these disadvantages of state-
of-the-art works. The specific framework is shown in Fig. 2.
First, to deploy the PCG classification algorithm, we design
and implement a digital stethoscope with extremely low-power
consumption while operating. Second, a lightweight end-to-
end neural network model for PCG classification is proposed
to reduce computational power and complexity while main-
taining high accuracy in hardware deployment.

The rest of the work is organized as follows. Previous stud-
ies related to PCG classification implemented and deployed
using different methods are reviewed in Section II. Section III
describes the proposed lightweight neural network model.
Section IV shows the implementation hardware details of
PCG sensors. The performance of the proposed model is
demonstrated in Section V. In Section VI, we discuss the
results by comparing the proposed method with state-of-the-art
works. Finally, we conclude in Section VII.

II. RELATED WORK

Numerous research efforts on PCG classification uti-
lizing ML and DL have been reported in the previous
works over the years. To materialize PCG classification,
researchers have applied several ML algorithms, such as

support vector machines (SVMs) [31], [32], k-nearest neigh-
bors (k-NNs) [33], random forest [34], or hidden Markov
models [35]. These methods conjoin signal processing and
feature extraction techniques, including time-domain fea-
tures, frequency-domain features, and time—frequency features,
to achieve the anomaly classification of PCG. However, they
are not well generalizable, as most methods rely on manually
engineered features. As DL develops, convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and
their multiple derived and related versions are widely utilized
for PCG classification to solve both the accuracy concern
and generalization problems [36]. With sophisticated net-
work frameworks and powerful self-learning, DL algorithms
achieve higher accuracy, yet they simultaneously require con-
siderable computation and power consumption, which makes
them unfit to be deployed in wearable devices or mobile
platforms. Recently, lightweight classification methods have
been proposed, and one of these strategies is to change
the architecture of the network based on feature engineering
to reduce model complexity. For instance, Munia et al. [10]
segmented the PCG raw signal into slices with 1.5-s length and
then extracted STFT features and fed them into a lightweight
CNN to improve accuracy. Another strategy is to design an
end-to-end classification method, where the PCG signal can
be directly fed into the DL network after simple processing
and segmentation to learn features instead of extracting them
manually. Shuvo et al. [4] proposed a novel lightweight end-
to-end convolutional RNN (CRNN) architecture for heart
disease, which has three representation learning modules to
learn the features of the signal. Tian et al. [37] performed
two-stage training using the original PCG signal to alleviate
the limitations of imbalance in datasets, which significantly
reduced the computational load compared with ResNet [38].
Xiao et al. [39] employed a sliding window to segment the
PCG signal and then fed it into a deep CNN architecture
with an attention mechanism, which reduced the number of
parameters compared with state-of-the-art methods.

Of these methods, most studies have focused on anomaly
classification rather than on predicting heart disease directly
from heart sounds. Only a few works have centered on
multiclass classification (normal, artifact, murmurs, and
extrasystole) [4], [40], [41]. One reason for this is the paucity
of available multiclass datasets, and another is the severe
imbalance of available datasets, such as the PhysioNet/CinC
Challenge 2016 dataset [42].

Another important aspect of wearable intelligent PCG sen-
sors is PCG classification artificial intelligence (Al) algorithm
deployment in hardware. In the past decade, FPGA, GPU, and
ASIC have been widely used for the acceleration of neural
networks in edge computing [25]. For PCG classification,
however, researchers mainly leveraged FPGA to implement
Al algorithms. Jhong et al. [28] proposed a PCG multiclass
classification method with a DL hardware/software codesign
(Zynq platform), the processing system (PS) for training and
feature extraction, and programmable logic (PL) for model
deployment. Li et al. [29] proposed an acceleration scheme
for heart sound classification based on a system on a chip-
field programmable gate array (SOC-FPGA), such that the
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Fig. 2. System architecture of the proposed wearable intelligent PCG monitoring. After several generic preprocessing steps, the heart sound signals are fed
into the proposed lightweight model to carry out a two-dataset classification of CVDs: 1) abnormal classification and 2) pathological (normal (N), MR, MS,

MVP, and AS) classification.
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Fig. 3. Detailed architecture of the proposed lightweight model.

speed of classification is 3.13 times faster than the central pro-
cessing unit (CPU). Clifford et al. [43] implemented a discrete
wavelet transform (DWT) algorithm with Shannon energy on
an FPGA for real-time PCG diagnosis. In addition, Son and
Kwon [40] designed a cardiac auscultation monitoring system
based on wireless sensing, such that the mobile phone and
cloud platform are used to deploy the classification model.
Although the computation efficiency has been significantly
improved by using an FPGA or the GPU [26], [27], the
power consumption is not negligible, making it a challenge
for wearable intelligent PCG devices. From a practically
applicable point of view, an MCU is a better choice and
has been widely utilized in commercial digital stethoscopes.
Nevertheless, how to make the MCU run the neural networks
is a challenge, and these products generally use the MCU to
acquire heart sounds for further analysis by transmitting them
to the PC or mobile phone.

III. PROPOSED LIGHTWEIGHT END-TO-END PCG
CLASSIFICATION MODEL

A. Proposed Lightweight Neural Network

To be suitable for low-power embedded devices, we propose
a lightweight end-to-end neural network model with the archi-
tecture shown in Fig. 3. The first layer is a 32 convolutional
layer with a 3 x 3 kernel followed by a 2 x 2 max-pooling
layer. The group convolutional layers are stacked over the
first layer, as described in Section III-B. After the group con-
volutional layer, the effective attention module (EcaNet) [44],
a channel attention mechanism proven effective in improving
the efficiency of convolutional networks, is applied to capture

Group Conv

cross-channel information. EcaNet provides a novel way of
increasing channel correlation and reducing dimensionality
without losing information, as described in [45]. Considering
the importance of temporal features in the PCG as well,
long short-term memory (LSTM) is embedded in the neural
network to capture more time-domain features. Finally, the
outputs of all these layers are flattened to connect a fully con-
nected (FC) layer to predict each probability with a SoftMax
layer. In addition, a rectified linear unit (ReLU) activation layer
is applied to the first convolutional and FC layers to increase
nonlinearities in the computation and reduce convergence
times. Max pooling is embedded in the group convolution to
reduce the dimensionality of the feature map. Max pooling,
global average pooling (GAP), and group convolution work
together to achieve lightweight goals. To overcome the prob-
lem of imbalanced data, a dropout layer follows each convolu-
tional module, and the FC layer connects the batch normaliza-
tion (BN) layer. Also, L2 regularization is applied to the Soft-
Max layer to prevent overfitting and improve the robustness
of the model. The adaptive learning rate optimizer (Adam) is
used to compile the model with a learning rate of 0.0008.

B. Proposed GCT

One of the challenges of deploying CNN-based PCG clas-
sification algorithms on low-power mobile devices is related
to their enormous computing operations, such as additions
and multiplications, mainly attributed to the traditional con-
volutional layer. Inspired by Ma et al. [46], we propose a
group convolution technique (GCT) based on depthwise sep-
arable convolution instead of traditional convolutional layers
to reduce the operations.
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Fig. 4. Proposed GCT (“a@b*c”: the number of input channels is “a,” and the input size is “b*c”).

As shown in Fig. 4, there are four components comprising
group convolution, namely, depthwise convolutional layer,
max-pooling layer, pointwise convolutional layer, and concate-
nate layer. The depthwise convolutional layer and pointwise
convolution layer conjointly form depthwise separable convo-
lution, which was first used by Howard et al. [47] for image
classification and proved to be able to reduce the number
of operations dramatically. Likewise, the max-pooling layer
reduces the computation by eliminating nonmaximal values.
The concatenate layer is used to merge the data from the two
groups of depthwise separable convolution data as an output
feature map.

The max-pooling layer, which commonly follows after
the convolutional layer, reduces the dimensionality of the
feature map while increasing the robustness of the model.
Furthermore, the pointwise convolution is a special form of
conventional convolution at a kernel size of 1 x 1. It means
that pointwise convolution also bears redundant information
requiring compression. In light of this, we modify the position
of max pooling by moving it between the depthwise convo-
lution layer and the pointwise convolution layer. As shown
in Fig. 4, the group convolution obviously reduces the param-
eters and operations compared with traditional convolution.

As shown in Table I, for the GCT, the number of param-
eters and computation of the model are compressed, and its
compression ratios are the following equations relative to the
traditional convolution:

RPp= & 4 4] (1)
P= % T ak, " ab
Rp, = 2= 1, 1 2)
E= kb T 2b

where RPp and RPfy are denoted as the compression ratios of
the parameters and operations in the model, respectively. a is
the number of input channels for depthwise convolution, and b
is the number of output channels for pointwise convolution.
In addition, k corresponds to the kernel length of the depthwise
convolution, & represents the output feature maps length of

TABLE I
COMPARISON OF COMPUTATIONS BETWEEN CONVENTIONAL AND GCTSs

Parameters FLOPs
Conventional ki x1xaxb ki X1xXxaxbxhxw
b k h
GCT ax (bxky+hy) OX((F1+a)xhixun

+(k2 + a) X ha X w2)

Note: GCT has two depthwise-and-pointwise convolutions, and k1, hq,
w1 denote the first depthwise-and-pointwise convolution parameters, k2,
ha, wa denote the second depthwise-and-pointwise convolution parame-
ters, respectively. We assume that one of the GCT convolutions has the
same size as the conventional convolution in terms of kernel and the output
feature map.

the pointwise convolution, and w denotes the output feature
maps width of the pointwise convolution. The above equations
are based on the conditions k2 = 1, hl = h2 = 1/2h,
and wl = w2 = 1/2w. As an example, for k1 = 3, b = 64,
and a = 16, the parameters and floating point operations
per second (FLOPs) of group convolution are only 38.1%
and 11.7% of those of conventional convolution, respectively.

C. BCE Loss

As aforementioned, there is an imbalance in the number
of abnormal patients and normal subjects in dataset 1, which
affects the classification accuracy of the model. A new loss
function, named balanced cross entropy (BCE), is, therefore,
introduced to address the shortcoming of an imbalanced
dataset. We modify the loss function based on the stan-
dard cross-entropy loss, with the standard cross-entropy loss
Li(p, q) formula as in (3) and the BCE loss L,(p, ¢) function
formula as in (4)

C
Li(p.q) == pilogg; 3)

i=1

C
La(pog) = =125 3 piloga @

i=1
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Fig. 5. Details of the wearable PCG sensor. (a) Appearance of the sensor.
(b) Internal structure of the wearable PCG sensor.

TABLE 1T
SPECIFICATION OF THE HEART SOUND SENSOR

PCG Senor
Voltage VCC 37V
Standby Current 35mA
Sample Rate 1Hz-3000 Hz
Sensitive 94dB SPL @ 1kHz
Output Amplitude 0~2.5V
Battery 300 mAh

where p; is the probability distribution of the true sam-
ple, g; is the predicted sample probability distribution as
qgi = (exp(z),))/(z]f,:lexp(zy)), zy denotes the predicted
output of class y in the model, and C is the total number
of classes.

For binary classification, 1 and —1, the BCE weighting
factor § € [0, 1) corresponding to class 1, and 1 — 8 cor-

responding to class —1. 8 is given by the following equation:
n

B=— ®)

m

where n is the number of samples for class 1 and m is the
number of total training samples. In this work, we set the 8
to 0.25 to overcome the dataset imbalance issue.

IV. WEARABLE INTELLIGENT SENSORS

In this work, we propose a lightweight neural network for
heart sound classification that can be deployed on low-power
embedded devices. It reduces development costs and enables
flexible updating of the model compared with implementation
on the ASIC or FPGA. We also design an intelligent PCG
sensor (as shown in Fig. 5) to test and optimize the proposed
model. It plays a fundamental role in the intelligent monitoring
of CVDs. Table II shows some implementation details of
the PCG sensors. The component of microelectromechanical
systems (MEMSs), which is a digital microphone for heart
sounds acquisition, provides the input to the PCG sensor.
The PCG sensor contains an MCU named STM32F405RGT6,
which performs preprocessing for PCG data and runs the
neural network model. The core of the MCU is an ARM 32-bit
Cortex-M4 CPU with a floating-point unit (FPU), which is
used for data processing. The MCU also contains 1-MB
flash and 192-kB SRAM, where the flash stores code and
SRAM stores variables, such as the feature map of the model.
Moreover, a lithium battery with a 300-mAh capacity powers
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TABLE III
DETAILS OF DATASET 1

Subset Total Abnormal Recordings Normal Recordings
Traning-a 409 292 117
Traning-b 490 104 386
Traning-c 31 24 7
Traning-d 55 28 27
Traning-e 2141 183 1958
Traning-f 114 34 80

Total 3240 665 2575

the sensor, and the low dropout (LDO) regulates the battery
output to a stable 2.5 V for the microphone and the MCU.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed model is trained on a GTX3080 GPU using
PyTorch and Keras. The model training parameters are set to
an adaptive learning rate optimizer (Adam) with a learning rate
of 0.0008. Also, a batch size of 32 is used for training and
validation. Furthermore, both datasets 1 and 2 are trained using
the tenfold cross-validation method, and the experimental
results are given in the form of mean and standard deviation.

B. Dataset and Preprocessing

In this work, we choose two public datasets to evaluate
the performance of the proposed model. The first is the
PhysioNet/CinC Challenge 2016 dataset, which consists of
six subdatasets with 3240 heart sound recordings (training-
a, training-b, training-c, training-d, training-e, and training-f,
collected by six different research groups and details, are
shown in Table III). The recording environment for this dataset
includes clinical and nonclinical and, hence, inevitably varying
levels of noise. All data are in a uniform “.wav” format, with
a sampling rate of 2 kHz and lengths ranging from 5 to 150 s.
The dataset is comprised of heart sound data from healthy
subjects and pathological patients, yet is only annotated
with a binary class (normal and abnormal), and not with
pathological cases, such as mitral regurgitation (MR), aortic
stenosis (AS), valvular stenosis (VS), and so on. To validate
the robustness of the proposed model, the dataset in [40] is
also utilized as a secondary dataset. The dataset contains a total
of 1000 PCG recordings with five classes, i.e., 200 normal (N),
and 800 abnormal containing 200 MR, 200 AS, 200 mitral
stenosis (MS), and 200 mitral valve prolapse (MVP). Each
PCG recording is approximately 3 s in length with an 8-kHz
sampling rate and contains three heart sound cycles [40].
Fig. 6 shows a waveform for each class.

Considering the diversity of conditions to collect datasets,
it will inevitably make the data contain various noises.
A preprocessing stage is, therefore, essential. In this work,
all the data are resampled to 1000 Hz and filtered by a
third-order Butterworth bandpass filter with a cutoff frequency
of 20-400 Hz to filter out noise. The PCG recordings are
segmented into 1.5-s lengths by Springer et al. [53] for further
analysis.
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Fig. 6. Waveform of the existing five CVD classes in dataset 2. (a) Normal.
(b) MR. (c) MS. (d) MVP. (e) AS.

C. Comparison With Other Works

1) MobileNetV3-Small: MobileNetV3 [54] is a classic
and increasingly utilized lightweight deep neural network.
Its bottleneck inherits the depth separable convolution of
MobileNetV1 and the inverted residual of MobileNetV2.
MobileNetV3-Small is a special form of MobileNetV3 with
11 blocks and four convolutional layers. To demonstrate
the excellence of the proposed model, we keep the original
network structure unchanged and only adjust the convolutional
kernel from 2-D to 1-D.

2) ShuffleNetV2: The goal of ShuffleNetV2 [46] is to speed
up the run time of the network while lowering the number
of parameters. It has an efficient network structure based
on ShuffleNetV1 with the addition of a channel split. Only
the convolutional kernel size is modified to match the input
features in this work.

3) ResNet: ResNet is one of the most popular DL frame-
works and has been widely featured in various baselines.
It aims to solve the problem of gradient disappearance as the
depth of a neural network increases. For a fair comparison,
we modify the kernel size of the convolutional layers.

4) Xception: Xception is an improved form of inception
that is entirely decoupled from cross-channel correlations
and spatial correlations in neural network feature maps [55].
We only modify the kernel size of the convolutional layers.

D. Evaluation Metrics

In our experiments, we utilize two datasets to perform the
proposed model, and the details of these results are explained
and discussed in Sections V-D, V-E, and VI.

We first go through the calculation of the experimental met-
rics. As shown in Table IV, TP means true positive, TN is true
negative, FP is false positive, and FN denotes false negative.
Furthermore, TP and TN represent the correct identification
of the PCG, respectively. FP and FN indicate an incorrect
classification of PCG, respectively. To determine results for
the classification of PCG, we use four evaluation metrics,
which are accuracy (Acc), sensitivity (Sen), specificity (Spec),
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Fig. 7. Normalized confusion matrix (in [%]) for dataset 1. The positive and

negative sample sizes are 2817 and 749, respectively.

TABLE IV
DEFINITION OF METRICS CALCULATION

Predicted

True Positive  Negative
Positive TP FN
Negative FP TN

and positive precision (Pre). Their formulas are as follows,
respectively:

TP + TN
Acc = (6)
TP + TN 4+ FP + FN
TP
Sen = ——— 7
TP + FN
S TN ®)
ec = ———
P = IN T FP
TP
Pre = ———. 9)
TP + FP

Note that sen increases with pre and vice versa. Thus, we also
calculate the F'1 score to evaluate the model performance; it
is calculated by the following equation:

2 x pre X sen

F1 score = (10)

pre + sen

1) Performance on Dataset 1: Table V shows the experi-
mental results of our proposed model for PCG classification
and comparison with previous work. For fair comparisons,
we utilized the same dataset as the state-of-the-art work.
It can be observed that the proposed model achieves superior
classification performance in terms of accuracy, sensitivity,
precision, and F1 score (as shown in Fig. 7).

2) Performance Dataset 2: To demonstrate the performance
of the proposed model, pathological classification is performed
on the secondary dataset. Table VI shows the experimental
results for five-class pathological classification. Clearly, the
proposed model yields near perfect results, with an accuracy
and an F1 score of 99.4% and 99.0%, respectively. Also,
the proposed model achieves better performance, as is evident
in Fig. 8 (confusion matrix).



TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM AND PREVIOUS WORKS IN DATASET 1 [%]

251

1111

91 [48] [71 [49] [4] Baseline This Work
Method ID-CNN 2D-CNN IDCNN+2DCNN IDCNN 2DCNN + LSTM - IDCNN+LSTM
Acc 82.2 86.2 89.2 - 86.6 90.2 93.1+1.1
Sen 90.6 - 89.9 90.9 89.8% 91.9 88.9+1.9
Spec 71.2 - 86.4 83.3 84.4% 87.4 90.4+1.5
Macce 80.9# 85.1 88.1 87.1 87.1% 89.1 89.7+1.6
F1-score 81.9 84.1 88.1# 86.9 87.1*% 89.1 89.4+1.6
*: calculated from the confusion matrix.
#: calculated from equations (7), (8), (9), and (10).
Note: Macc = (Spec + Sen) / 2. The metrics for [9], [48], [7], [49] and [4] are all derived from the original literature.
TABLE VI
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM AND PREVIOUS WORKS IN DATASET 2 [%]
[40] [41] [25] [50] [51] [52] This Work
Method DNN Random Forest MCC Deep Wavenet CNN CNN-BiLSTM IDCNN+LSTM
Acc 97.9 95.1 98.3 97.0 98.6 99.3 99.4+0.5
Sen - - - 92.5 98.3* 98.3 99.1+0.7
Spec - - - 98.1 - 99.6 98.9+0.4
F1-score 99.7 - - 95.2 98.5%* 98.3 99.0+0.5
*: Calculated from the average of the experimental results in [51]
Note: The metrics for [40], [41], [25], [50], [51] and [52] are all derived from the original literature.
TABLE VII
COMPARISON OF COMPUTATIONAL COMPLEXITY WITH THE STATE-OF-THE-ART METHODS
[9] [48] [7] [49] [13] [56] Baseline Proposed
FLOPs 999622* 138.85M* 3824000* 6614272 * 4476728* 521214393* 899659 1598971
Parameters 200122* 785904* 570440% 199376* 4.8M* 19408911* 179438 52677
Method 1D-CNN 2D-CNN ID-CNN+2D-CNN 1D-CNN 2D-CNN+RNN 2D-CNN - 1D-CNN+LSTM
Input Size 1 x 2500 - 1 x 1000 1 x 2500 499 x 39 129 x 129 - 1 x 1500
Conv Layers - 5 6 9 3 2 - 4
FC layers - 1 1 1 1 3 - 1
Macce(%) 81.5 85.1 88.2 87.1 97.3# - 88.8 89.7
*: The values are estimated based on the method structure provided in [9] [48] [7] [49] [13] [56].
#: Calculated from the equation: macc = (spec + sen) / 2.
—T 100 - Parameters
ASH 0.0 0.5 0.5 0.0 [ FLOPs
—Ww— Accuracy
r 80
3,500 5 3040.00 - 100
0.5 0.0 0.5 0.0 2490.00 93.1
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Fig. 8. Normalized confusion matrix (in [%]) for dataset 2. The sample 0.05
sizes for the five classes (AS, MR, MS, MVP, and N) are 187, 196, 173, 163, 0.032 - . -
. . ResNet-18 ShuffleNetV2 MobileNetV3-Small  Xception Proposed
and 180, respectively.
Fig. 9. Performance comparison between the proposed model and classic
DL models.

3) Computational Performance as a Lightweight Neural
Network: Fig. 9 provides a clear comparison of our proposed
lightweight model and other state-of-the-art lightweight mod-
els, such as MobileNetV3-Small, ShuffleNetV2, ResNet-18,

and Xception. In terms of accuracy, our proposed model
outperforms the popular methods, including ResNet-18, Shuf-
fleNetV2, MobileNetV3-Small, and Xception relatively by
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TABLE VIII

EXPERIMENTAL RESULTS OF THE PROPOSED
MODEL IN HARDWARE DEPLOYMENT

Time(ms) Power(mW) Accuracy(%)
PC PCG Standby ~ Dynamic  Original PCG
sensor sensor
Datasetl 10.1  360161.0 129.7 244.6 92.9 89.8
Dataset2 2.0 90589.0 130.2 245.7 99.4 95.6

Note: The dataset 1 has 200 test samples and dataset 2 has 50 test samples.

TABLE IX

MINIMUM RESOURCES REQUIRED FOR DIFFERENT
MODELS IN THE PCG SENSOR

ResNet  ShuffleNet MobileNet Xception Proposed
ROM(MB) 42.62 10.35 7.58 79.25 120.00
RAM(KB) 942.00 474.44 289.69 4.35 59.04
MACCM) 2375.93 258.71 63.43 2896.23 1.60

3.5%,9.1%, 6.9%, and 4.4%, respectively, while the number of
parameters and amount of operations are significantly reduced,
thereby further accelerating the running time of the model
and reducing power consumption. This makes our proposed
lightweight model better applicable to low-resource wearable
devices for real-time CVDs’ monitoring.

Table VII compares the complexity of the proposed method
with the baseline and several state-of-the-art works. Consider-
ing these methods, we design the baseline metrics, as shown
in Tables V and VI, which are designed with the rule that
the maximum value of each row in the table plus 1% is used
as the baseline metrics, with the purpose of illustrating the
excellent performance of the model proposed in this article.
Also, the setting rule for the baseline in Table VII is to
calculate the average of the metrics corresponding to the other
works in Table VII. We design the lightweight network with
this as our goal. Obviously, the proposed model, with the
exception of sensitivity, has a remarkable improvement in all
of the metrics, indicating that the proposed method is feasible,
as the details will be shown in the discussion section.

E. Real-Time Execution

Smart wearable devices have a smaller size and lower power
consumption compared with traditional computers. As a result,
wearable devices need to meet continuous operation and be
designed with classification models that have low-computing
intensity. As can be seen from Table VIII, the method proposed
in this work, which is obviously less computationally inten-
sive, is deployed on the PCG sensor to further demonstrate
the practicality of the approach.

Table IX shows the internal flash, running memory SRAM,
and complexity of translating the classical network model into
code executable by embedded devices for MCU execution. It is
clear that Xception requires the most resources and also has
the highest model complexity relative to the other models.
In contrast, the model proposed in this article requires 120 kB
of ROM, 59.04 kB of SRAM, and 1.6M of Macc, respectively.
Owing to the limited size of the SRAM in the embedded
device, we make minor changes to the proposed model.

TABLE X
DETAILS OF THE MODEL STRUCTURE FOR HARDWARE DEPLOYMENT

Layer Output Size
Input 1 x 1500
Convld 16 x 750
Max-Pooling 16 x 375
Group-Convl 32 x 188
Group-Conv2 64 x 94
ECA 64 x 94
BN 64 x 94
LSTM 64 x 32
GAP 64 x 1
FC 64 x 1
SoftMax 2x1

Table X shows the changes in a network structure, where one
group convolutional layer is removed and the layers of the
LSTM are adjusted relative to the original network structure.
Table VIII shows the test results, and it is worth noting that
the number of samples is 200 for dataset 1 and 50 for dataset
2. It is clear that running the model on the PC is much faster
than the PCG sensor, and yet, the average run time of the
sensor per sample is only 1.58 s, which is acceptable for
practical applications. In terms of power consumption, the
sensor has around 129.9 mW for data acquisition and an
average of 245.1 mW for performing the classification task.
Meanwhile, the classification accuracy of the sensor achieves
89.8% and 95.6% on the two datasets, a decrease of 3.3%
and 3.8%, respectively, relative to the best result of the original
model.

VI. DISCUSSION

In this work, we propose a lightweight DL network model
for the classification of abnormal heart sounds and design a
PCG sensor device for deploying the model. We have carried
out experiments in three aspects.

First, to ensure the robustness of the model, data from
different groups of people (healthy and patients) are mixed
together for training and testing. Two public datasets are
utilized to evaluate the performance of the proposed method.
We first discuss the binary classification issues. From Table V,
we can see that the proposed model achieves the best results,
with a 2.9%, 3.0%, and 0.3% improvement compared with the
baseline in accuracy, specificity, and F'1 score, respectively,
but the sensitivity is lower than the baseline. The reason
for this is that the training dataset is very imbalanced, and
the test samples have a high proportion of negative samples
(as obtained from Fig. 7), leading to an obvious difference in
their classification accuracies of the positive samples. In addi-
tion, for the pathological performances, the baseline values
are not designed due to the small samples of dataset 2 and
the already high metrics of the existing algorithms. However,
our proposed model remains achieving better results than in
previous work, especially in terms of accuracy, sensitivity,
and F1 score. In summary, the performance of the proposed
model is more balanced in the classification of heart sound
diseases. This comes, as the model automatically extracts data
features from multiple channels and multiple dimensions and
does not rely on manual features. Thus, the proposed model



can be applied to the classification of heart sounds in terms
of abnormal and pathological classification.

Second, we propose a GCT to design lightweight end-to-
end models. In general, most of the previous work has been
based on feature engineering, with models of high complexity
and computational power. This makes it difficult to deploy
the models in some low-power, low-computing embedded
devices. As can be seen from Fig. 9, the proposed model
achieves better results in terms of accuracy, the number of
parameters, and the number of operations compared with
classical lightweight models such as MobileNet. Furthermore,
Table VII shows that the proposed model achieves a more
balanced performance compared with the previous state-of-
the-art work, with Macc improving by 1.7% compared with
the baseline, while the number of parameters and operations
is only 29.36% and 45.34% of the baseline. It is worth noting
that the Macc indicator remains 7% lower than in [13], because
its input is 2-D features, and the model may have a better
learning ability. The proposed model, however, has a great
improvement in terms of the number of parameters and the
number of operations. Considering the practical deployment
of the algorithm, the proposed model shows excellent over-
all performance and is more suitable for implementation in
embedded devices with low-computational power.

Third, we design the PCG sensor to deploy the proposed
method, which captures the heart sound signal precisely. In the
experiments, we first compare the run time of the algorithm,
which has a longer running time than the PC, as shown
in Table VIII. However, we consider this time acceptable
in practical applications, because it achieves nearly real-time
classification. Moreover, in terms of power consumption, the
device consumes an average of just 66.2 mA when performing
classification tasks; thus, it can work continuously for around
4.5 h when the device carries a battery capacity of 300 mA.
Furthermore, it can work continuously for around 8.5 h in
the single data collection scenario, a result that is extremely
important in the long-term monitoring environment. While we
try to reduce the complexity of the model, we have had to
simplify the proposed model, since it has a large LSTM layer
and convolutional layers, which cannot be deployed directly
on hardware devices. Fortunately, the modified model still
achieves a good performance, which shows the validity of
our work. Wearable devices are prone to power consumption
and complexity issues, making low-power consumption and
computational power crucial for long-term usability. Further-
more, reducing the number of FLOPs translates to lower power
consumption on the same hardware. Although we have not
directly deployed the models from other work in the sensors
designed in this article, Table VII clearly demonstrates that our
proposed model has significantly lower FLOPs than previous
works. This means that our proposed model achieves excellent
performance while consuming lower power. Also, the fact that
the model proposed in this article can run smoothly in the
designed sensor also shows that the work in this article is
meaningful.

Despite the promising results achieved by our proposed
algorithm and its successful deployment on embedded devices,
there remain some limitations to improve. The training dataset
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is derived from a publicly available dataset rather than col-
lected with the sensor by our design, which can degrade the
performance of the model in practice. Future work requires the
creation of specialized datasets. In addition, the interpretability
of the models needs to be improved. Even though comparable
Al devices play an auxiliary diagnostic role for doctors, the
basic principles involved are also important.

VII. CONCLUSION

In this work, we design low-power PCG sensors that can
run the DL model. Furthermore, we design a lightweight
end-to-end model that achieves excellent performance while
significantly reducing its complexity. Compared with previous
work, our proposed model offers the advantage of direct
deployment on PCG sensors with limited processing power,
which holds significant importance for future practical applica-
tion scenarios. Subsequent work will concentrate on enhancing
the performance of the PCG sensor.
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