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Multiomic profiling of medulloblastoma
reveals subtype-specific targetable
alterations at the proteome and
N-glycan level

A list of authors and their affiliations appears at the end of the paper

Medulloblastomas (MBs) are malignant pediatric brain tumors that are mole-
cularly and clinically heterogenous. The application of omics technologies—
mainly studying nucleic acids—has significantly improved MB classification
and stratification, but treatment options are still unsatisfactory. The proteome
and their N-glycans hold the potential to discover clinically relevant pheno-
types and targetable pathways.We compile a harmonized proteomedataset of
167 MBs and integrate findings with DNA methylome, transcriptome and
N-glycome data. We show six proteome MB subtypes, that can be assigned to
two main molecular programs: transcription/translation (pSHHt, pWNT and
pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4).
Multiomic analysis reveals different conservation levels of proteome features
acrossMB subtypes at theDNAmethylome level. Aggressive pGroup3mycMBs
and favorable pWNT MBs are most similar in cluster hierarchies concerning
overall proteome patterns but show different protein abundances of the vin-
cristine resistance-associatedmultiprotein complex TriC/CCT and of N-glycan
turnover-associated factors. The N-glycome reflects proteome subtypes and
complex-bisecting N-glycans characterize pGroup3myc tumors. Our results
shed light on targetable alterations in MB and set a foundation for potential
immunotherapies targeting glycan structures.

Medulloblastomas (MBs) are aggressive pediatric brain tumors that
are histomorphologically, molecularly and clinically heterogenous1.
Four main consensus subgroups have been described: WNT pathway
activated MB (WNT MB), Sonic hedgehog pathway activated MB
(SHH MB), Group 3 (G3) and Group 4 (G4) MB2. Molecular analyses,
mainly using gene expression profiling, next generation sequencing
and DNA methylation analysis predict further subdivisions with dis-
tinct clinical features3–6. Exemplarymarkers for poor survival comprise
anaplastic histology, MYC amplification status, methylation subtype
II/III, or TP53 mutations in WNT and SHH MB7–12. Conversely, methy-
lation subtype VII, extensive nodularity (MBEN histology), a distinct

whole chromosomal alteration signature in non-WNT/non-SHH MB
and WNT activation (e.g., nuclear accumulation of β-CATENIN or
CTNNB1 mutations) were associated with a favorable prognosis in MB
patients12–14. The clinical association between certain methylation
subtypes and chromosomal aberrations has been clearly described,
however, the underlyingmolecularmechanisms remain to be resolved
and targeted treatment options are lacking. In contrast to nucleic
acids, the proteome reflects a tumor’s phenotype in a more direct
way and holds the potential to precisely dissect clinically relevant
phenotypes and targetable alterations. Studies on small MB cohorts,
using fresh-frozen (FF) tumor material, have shown that MBs display
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heterogeneity at the proteome level15–17. Formalin-fixed-paraffine-
embedded (FFPE) material, enables the generation of larger datasets
which is essential to deal with the heterogeneity but provides chal-
lenges to proteome analysis18. In addition to protein abundance, post-
translational modifications (PTM) of proteins are important to
understand cell physiology and disease-related signaling15–17. Themost
complex and common PTM, N-glycosylation, has not been targeted in
MB yet. Changes in the N-glycome are considered potential hallmarks
of cancer and N-glycan structures hold strong potential as biomarkers
and immunotherapy targets19–23.

In this work, we integrateMBproteomedatasets15–17 with data from
62 FFPE MB cases and establish a joint MB proteome dataset (n = 176)
that is comprehensively compared to DNA methylome data—a current
gold standard formolecular brain tumor classification24. Further, global
N-glycosylation patterns of MB are assessed and correlated with iden-
tifiedproteome subtypes. Taken together, wepresent a large integrated
study of the MB proteome, DNA-methylome and N-glycome, revealing
further insights into MB phenotypes, potential biomarkers and ther-
apeutic targets.

Results
Integration of in-house proteome data and publicly available
datasets enables large-scale proteome analysis of MB
Proteome analysis was performed for 62 FFPEMB tumors (53 primaries,
9 recurrent cases). Additionally, 53 cases were analyzed using DNA
methylation profiling. Principal component analysis (PCA) and hier-
archical clustering (HCL) distinguished the four main molecular sub-
groups of MB (SHH, WNT, G3, G4)2 similarly to published FF based MB
proteomedatasets (Fig. 1A, Supplementary Fig. 1A, Supplementary Fig. 3,
Supplementary data 1c)15–17. Proteome data of FF and FFPE tissue from
matched MB cases further showed a high correlation (Supplementary
Fig. 2A). The age of used paraffine material did not impact sample
clustering, detected protein numbers or abundance levels of house-
keeping proteins25 (Fig. 1B, Supplementary Fig. 4, Supplementary
Fig. 17D). Proteins detected in WNT and SHH MB, showed similar ten-
dencies in FFPE- and FF-MB datasets16,17 (Supplementary Fig. 1B). We
concluded that FFPE tissue is suitable to study proteome patterns inMB.
To increase cohort size, we next integrated and harmonized FF-MB
proteomedatasets frompublic repositories15–17 (Fig. 1D). Technicalbiases
were reduced with HarmonizR26, and harmonized samples of the joint
cohort (main cohort) clustered according to the main MB subgroups
(Fig. 1 E-G, Supplementary Fig. 5, Supplementary data 1a). Established
protein biomarkers for molecular MB subtypes27, showed expected
subgroup-specific abundance patterns in individual studies and in the
combined and harmonized data (Fig. 1H). 16,279 proteins were quanti-
fied across 167 samples (19xWNT; 57xSHH; 53xG4; 36xG3; 2xno initial
main subgroupstated), including 156primary tumorsand11 recurrences.

Six proteomic MB subtypes can be assigned to two main,
potentially druggable molecular profiles
To define proteome subtypes of MB, consensus clustering was
applied (Supplementary Data 1b). 6 stable clusters were identified
(Fig. 2 A–D). Clusterswere also reflected inRNAdata ofmatched cases
(n = 60, Supplementary Fig. 3D–F). The assignment reliability of a
sample to a respective proteome subtype was indicated as cluster
certainty (Fig. 2D, Supplementary data 1c). At the proteome level,
non-WNT/non-SHHMBs divided into three groups (pG4, pG3myc and
pG3, p = proteome group), while SHHMBs separated into two groups
(pSHHs, pSHHt, s = synaptic profile, t = transcriptional profile). WNT
MB formed a homogenous cluster (pWNT, Fig. 2D). In general, a high
cluster stability was given for all proteome subtypes (median 6/6),
except for pG3 samples, that showed high similarity to pG4 and
pG3myc respectively (median pG3 5/6, Fig. 2D). Except for one case,
corresponding recurrent and primary tumors were assigned to the
same proteome subtype (Fig. 2D). The case that switched subtype in

the recurrence situation (from pSHHs to pSHHt) had a low cluster
certainty in the primary sample (3/6, Fig. 2D).

ProteomeMB subtypes were associated with previously described
DNA methylation subtypes3,5,6 (https://www.molecularneuropathology.
org/mnp/24, Supplementary data 1c, Supplementary Fig. 6B, Fig. 2D).
pG3myc patients showed reduced overall survival (Fig. 2E). pWNT
patients showed the best overall survival rate (Fig. 2E). Out of 3996
proteins found in at least 30% of samples for each proteome subtype,
529 showed a characteristic abundance in at least one subtype. The top
5 proteins with the lowest p value and highest mean difference were
selected as biomarker candidates (Fig. 2F, Supplementary data 2a). For
high-risk non-WNT/non-SHH MBs (pG3myc) PALMD, DIEXF, MCN1,
TPD52 and PYCR1were identified. Of note, hedgehog-signaling-induced
proteins (MICAL1, GAB1, PDLIM3)28 showed a higher abundance in both,
pSHHt andpSHHs. Protein biomarkerswere confirmed in case-matched
MB cases (FF versus FFPE tissue, n = 10, Supplementary Fig. 2B) and on
the RNA level (Supplementary Fig. 3H). Subtype assignments were
confirmed in an additional published MB dataset29 and a technical
validation dataset (Supplementary data 5j,k, Supplementary Fig. 17).

The sixproteomesubtypes couldbe assigned to twosuperordinate
clusters at the first hierarchy level in the joint (as well as all individual)
datasets (Fig. 3, Supplementary Fig. 3). Comparing these two clusters
revealed twomainmolecular profiles: profile 1, comprising of pG3, pG4
andpSHHs andprofile 2, comprising of pWNT, pG3myc andpSHHtMBs
(Fig. 3A). The two clusters were confirmed in a technical validation
dataset (Supplementary Fig. 17). Matched RNA expression profiles also
confirmed a clustering of cases according to these defined profiles
(n = 60, Supplementary Fig. 3F). We next used gene set enrichment
analysis (GSEA) to reveal potential underlying mechanisms and signal-
ing pathways. Synaptic/immunological processes and phospholipid
signaling were observed for profile 1 and a replicative/transcriptional
signature was observed for profile 2 (Fig. 3A, B, q value <0.05, Supple-
mentary data 3a, b,h, Supplementary data 10e,f). In order to find drug
targets and predict downstream effects we used the Ingenuity Pathway
Analyses (IPA) tool and focused on the top two upregulated genesets
based on differentially abundant proteins in profile 1 (opioid signaling
and SNARE complex) and profile 2 (EIF2 signaling and cell cycle control
of chromosomal replication, Fig. 3 B, C, Supplementary data 3c–g)30.
Tumors of profile 1 could potentially be targeted by several
drugs, including the NMDA receptor antagonist memantine. Profile 2
tumors (replicative/transcriptional signature) could—besides others—
be targeted by CDK4 or DNA polymerase inhibitors (Fig. 3B–E, Sup-
plementary Fig. 7, Supplementary data 3c–g).

Group-specific correlation of the DNA methylome and the pro-
teome reveals different conservation levels of molecular char-
acteristics across proteomic MB subtypes
Since DNA methylome data is routinely used in brain tumor
diagnostics1, we decided to integrate our proteome data with DNA
methylome data to investigate 1) the general correlation between the
two data types and 2) if protein biomarkers are reflected at DNA
methylome level. To integrate the data modalities, multiblock data
integration using sparse partial least squares discriminant analysis
(sPLS-DA)wasperformedbetweenDNAmethylation data (115 samples,
10,000 differentially methylated CpG sites between the MNP v12.5
defined subtypes) and proteome data (115 samples, 3990 quantified
proteins present in 30% of samples, Supplementary Fig. 8A–C, Sup-
plementary data 1b,d)31. Only a fraction of features out of the 381,717
probes and 3990 proteins showed correlation upon data integration
usingDIABLO frommixOmics, discriminatingmainly theWNT subtype
(Fig. 4A, arrows, correlation cut-off >0.7, Supplementary data 4h,
Supplementary Fig. 9A–E). To refrain from any data bias, we next
performed an MB subtype-specific correlation between complete
DNA methylome data (115 samples and 381,717 CpG sites) and pro-
teome data (115 samples, 3990 proteins, Fig. 4B, C). A significantly
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Fig. 1 | Harmonization and integration of proteome Medulloblastoma (MB)
datasets. NIPALS principal component analyses (PCA) of measured FFPE samples
(n = 62) with assignment to (A) the four main molecular MB subgroups2, (B) age of
measured samples, (C)measuredTMTbatch.DOverviewof analyzed datasets. PCA
of data before (E) and after (F, G) data harmonization using ComBat in the Har-
monizR framework annotated for the source of the samples (F) and for main
molecular MB subgroups (n = 167, source data file has been provided). H Protein
abundance of the the WNT and SHH MB marker FILAMIN A (nSHH_Archer = 15,
nWNT_Archer = 3, nOthers_Archer = 27, nSHH_Forget = 10, nWNT_Forget = 5, nOthers_Forget = 23,
nSHH_Petralia = 7, nWNT_Petralia = 1, nOthers_Petralia = 14, nSHH_FFPE = 25, nWNT_FFPE = 10,

nOthers_FFPE = 27,nSHH_combined = 57,nWNT_combined = 19,nOthers_combined = 91, two-tailed,
unpaired t test, pshhArchervsOtherArcher = n.s., pWNTArchervsOtherArcher = n.s.,
pshhForgetvsOtherForget < 0.0001, pWNTForgetvsOtherForget < 0.0001,
pshhPetraliavsOtherPetralia = 0.02, pwntPetraliavsOtherPetralia = n.s.,
pshhFFPEvsOtherFFPE < 0.0001, pwntFFPEvsOtherFFPE < 0.0001,

pshhcombinedvsOthercombined < 0.0001, pshhcombinedvsOthercombined < 0.0001) SHH MB
marker GAB1 (nSHH_Archer = 15, nOthers_Archer = 30, nSHH_Forget = 10, nOthers_Forget = 28,
nSHH_Petralia = 7, nOthers_Petralia = 15, nSHH_FFPE = 25, nOthers_FFPE = 37, nSHH_combined = 57,
nOthers_combined = 110, two-tailed,unpaired t test, pshhArchervsOtherArcher = n.s.,
pshhPetraliavsOtherPetralia = 0.008, pshhFFPEOtherFFPE < 0.0001,
pshhcombinedOthercombined < 0.0001)., and the WNT MB marker CTNNB1
(nWNT_Archer = 3, nOthers_Archer = 42, nWNT_Forget = 5, nOthers_Forget = 33, nWNT_Petralia = 1,
nOthers_Petralia = 21, nWNT_FFPE = 10, nOthers_FFPE = 52, nWNT_combined = 19,
nOthers_combined = 148, two-tailed, unpaired t test, pwntArchervsOtherArcher = n.s.,
pwntForgetvsOtherForget < 0.0001, pwntPetraliavsOtherPetralia = n.s.,
pwntFFPEOtherFFPE < 0.0001, pwntcombinedOthercombined < 0.0001). Data are presented as
mean values ± SD in each dataset individually and in the joint dataset after har-
monization PCAs are based on ≥70% valid values, *: p <0.05, **p <0.01, ***p <0.001,
****p <0.0001, n.d. = not detected, NS= not significant, n represents biologically
independent human samples.
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higher number of proteins of the pWNT (38.14%, 1552 proteins) and
pG3 subtype (45.41%, 1812 proteins) correlated with at least one
CpG site of their own gene, when compared to the other subtypes
(range 1.52–6.49 %, Fig. 4B, Supplementary data 4b-g). Only 12.2–18%
of protein correlating CpG sites were located at the transcriptional
start site (TSS200, TSS1500, Exon1, Fig. 4B). Integrating the proteome
data with DNA methylome data based on differentially methylated
regions (DMR) confirmed a high correlation of features in pWNT MB
(Supplementary Fig. 10 A, B). Focusing on the 31 previously selected
biomarker candidates (Fig. 2F), we found 10 proteins correlating with
CpG sites of their owngene across subtypes (Fig. 4C,D, Supplementary
data 4a). In summary, DNA-methylation changes were only partly

reflected at the protein level, with different feature conservation levels
for different proteome subtypes.

SHHMBcomprise twoproteome subtypes showing a synaptic or
DNA transcription/translation signature
SHHMBsplit into two proteome subtypes (pSHHt and pSHHs, Fig. 5A).
All pSHHs cases with high cluster certainty (6/6) occurred in patients
below 3 years of age. The DNAmethylation subtypes SHH3 (8/29) and
SHH4 (9/29) were exclusively found in pSHHt MBs (Fig. 5A). Methyla-
tion subtypes SHH1 and SHH2 were seen in both pSHHs and pSHHt
(SHH1: p = 0.43, SHH2: p =0.10, Χ2—test). We then analyzed the dis-
tribution of SHH pathway alterations, which are driver events in SHH

Fig. 2 | MB segregate into six proteome subtypes. A Proportion of ambiguous
clustering (PAC) scores for k = 2–12 in consensus clustering of the main cohort,
using different cluster algorithms (nMB= 167, based on ≥30% valid values).
B Optimal clustering of proteome data. Consensus scores are shown in color scale
from white (samples never cluster together) to blue (samples always cluster toge-
ther). Six proteome subtypes, pWNT, pSHHt, pSHHs, pG3myc, pG3 and pG4, were

defined. C Visualization of the first three principal components. D Clinical sample
information. E Log-rank (Mantel-Cox) test comparing the survival curves of pro-
teome subtypes (p value < 0.001, overall χ2-square test). FGroup specificmean log
2 protein intensity of protein subtype marker candidate proteins. n represents
biologically independent human samples.
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MBs32. PTCH1mutations were found exclusively but not mandatory in
pSHHt tumors. SUFU, SMO,MYCNorGLI2 alterations did not distribute
differentially (Fig. 5A). Proteome subtypes of SHHMBwere not clearly
separated at the transcriptome level, which is in line with previous
results16 (matched samples n = 21, Supplementary Fig. 11 A-B).

In order to analyze how copy number alterations might be
reflected at the proteome level, the proteome abundance for each

gene was mapped to chromosomal arms, which will be referred to as
“proteome copy number variation (CNV)” henceforth. Both pSHHt and
pSHHs groups showed a low overall correlation between calculated
CNVs using matched DNA methylation data and proteome data
(rpSHHs =0.01, rpSHHt = 0.20, Fig. 5D, G, Supplementary data 5g, h).

To get insights into changed pathways in pSHH subtypes, a net-
work clustering based on gene set enrichment using pSHHs or pSHHt-
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specific proteins was performed (Fig. 5 B, C, E, F, H, Supplementary
data 5a–f, q value < 0.05). Differential proteins in pSHHs revealed dif-
ferences in synaptic, mitochondrial, and immunological processes,
whereas proteins in pSHHt MB were involved in post-translational
protein modification, transcription/translation, DNA repair and cell
cycle. In accordance with the latter profile, pSHHt showed a sig-
nificantly enhanced proliferation (assessed via ki67 staining, Supple-
mentary Fig. 11 E, F, Supplementary data 5n). ALDH1A31 was highly
abundant in both pSHH groups (Fig. 2F, Fig. 5E), which could be con-
firmed via immunohistochemistry (Supplementary Fig. 11C, D).

Analyses of hallmark gene sets additionally revealed a distinct
upregulation of proteins involved in the TCA cycle in pSHHs, indicat-
ing metabolic differences between the subtypes (Fig. 5H). Subsequent
analyses of metabolites and aminoacids confirmed distinct metabolic
patterns in pSHHt and pSHHs (Supplementary Fig. 12). Of note pSHHs
showed a lower abundancy of Isocitrate dehydrogenases, together
with a decrease of Isocitrate, alpha-Ketoglutarate and Glutamine,
indicating a higher consumption of the latter three (Supplementary
Fig. 12C, Supplementary data 5l-m). Alpha-Ketoglutarate and Gluta-
mine can be further processed to Glutamate and then GABA, which are
both involved in synaptic signaling. In line with these findings, we
detected a significant increase of GABA target proteins in pSHHs
(Supplementary Fig. 12C).

We did not detect a significant difference in survival between
pSHHs and pSHHt (Fig. 5I). However, TP53 mutations, used for strati-
fication of high-risk SHH MB33, mainly occurred in the pSHHt subtype
(9/10, but differential distribution was not significant (p = 0.43, Χ2—

test)). As expected, TP53 mutations within the pSHHt group sig-
nificantly correlated with bad prognosis (Fig. 5I). TP53 mutated MBs
did not form a distinct proteome cluster. However, 134 differentially
abundant proteins were detected between pSHHt-TP53 wildtype and
pSHHs-TP53 mutated MBs (Fig. 5J, Supplementary data 5i).

High-risk pG3myc MBs are characterized by a MYC profile and
high abundance of Palmdelphin
We found three different non-WNT/non-SHH MB proteome subtypes:
pG3, pG3myc and pG4 (Fig. 6A). pG4 exclusively included the main
molecular subgroup G4, whereas pG3myc was dominated by G3
patients. pG3 included both molecular subgroups (Fig. 2D). pG3myc
was dominated by large cell anaplastic histology (LCA). LCA histology
and MYC amplification are used for high-risk tumor stratification in
non-WNT/non-SHH MBs34. Accordingly, MYC amplifications were pre-
dominantly detected in pG3myc tumors. However, not all pG3myc
classified cases were MYC amplified. In concordance with these high-
risk characteristics, a broad fraction of pG3myc cases were assigned to
themethylation subtype II (16/20 cases, 80%)24,35 or group G3 δ5 (13/20
cases, 65 %, Fig. 6A). Clinically, most pG3myc tumors were classified as
M3 and tumors showed the worst overall survival compared to all
other MB subtypes (Fig. 6A, Fig. 2E). Distinct protein abundance pat-
terns and pathway enrichments were seen for pG3, pG4 and pG3myc
each and all showed a low overall correlation between calculated
proteome and DNA methylation CNV data (Fig. 6 B-J, Supplementary
data 6a-l). Specifically, pG3mycMB showed a significant enrichment of
MYC target proteins (FDR <0.25;p value < 0.0001, Fig. 6K). In linewith
this, pG3myc MB showed a high fraction of tumor cell nuclei with
accumulation of MYC (Supplementary Fig. 13). Moreover, pG3mycMB

differed from pG3 and pG4 showing enhanced signaling by ROBO
receptors and an underrepresentation of proteins involved in MHCII
class antigen presentation (Fig. 6P, Supplementary data 6m). To
establish a diagnostically useful biomarker for histological identifica-
tion of high-risk pG3myc tumors, we focused on the high differentially
abundant protein Palmdelphin (PALMD, Fig. 6 H). Digitally supported
quantification of PALMD immunostainings confirmed a specific
increase of the candidate in pG3myc tumors (Fig. 6L, M). We addi-
tionally analyzed how this biomarker is reflected at other omic levels.
Indeed, a significantly higher PALMDmRNA expression and lower CpG
site methylation was detected in pG3myc MBs compared to all other
MB subtypes (Fig. 6N)16. High PALMD mRNA expression was also
associated with poor survival in MB (Fig. 6O, Supplementary
Fig. 14A–D). Finally, all groups displayed a low overall correlation
between calculated proteome CNV and DNA methylation CNV data
(Fig. 6D, G, J, Supplementary data 6j–l).

pWNT MB show low abundance of the multiprotein complex
TriC/CCT
WNT MB did not divide into further subtypes based on proteome
profiles (Fig. 7A). Among differentially abundant proteins in compar-
ison to other MB subtypes TNC showed the highest abundance (14.7
foldchange, Fig. 7B, Supplementary data 7a). A significantly high
intensity of TNC in pWNTMBwas confirmed using digitally supported
immunostainingquantification (Fig. 7C, D, E). Using apublicly available
dataset5, a higher mRNA expression of TNC in WNTMBwas confirmed
(Fig. 7F). In contrast, CpG sites of the TNC gene, showed no significant
difference of methylation (pWNT versus other subtypes (Fig. 7G,
Supplementary Fig. 14A–C). GSEA revealed an enrichment of extra-
cellular matrix proteins and N-glycan biogenesis and transport
(FDR <0.25; p value < 0.0001, Fig. 7H, I, Supplementary data 7b, c).
A high overall correlation between copy number plots extracted from
proteome and DNA methylome data was observed for pWNT com-
pared to all other subtypes (Fig. 7J, Supplementary data 7d), being in
line with a general increased overall correlation of proteome and DNA
methylome data (Fig. 4A, B).

The highest similarity of proteome profiles was observed for the
pG3myc subtype, associated with high-risk features and the
pWNT subtype-associated with relatively good overall survival
(Fig. 3A). Both subtypes showed a “transcriptional/translational”
profile (Fig. 3A, B) and a high abundance of MYC target proteins
along with a high fraction of MYC-positive tumor cell nuclei (Fig. 6K,
Supplementary Fig. 13). We therefore asked, what molecular changes
could impact such diverse clinical behavior. Differentially abundant
proteins between pG3myc and pWNT MBs included TriC/CCT pro-
teins and the established WNT MB marker β-CATENIN36 (Fig. 8A,
Supplementary data 8a). Among the top discriminating gene sets was
the association with TriC/CCT target proteins and asparagine-linked
N-glycosylation (FDR < 0.25; p value < 0.0001, Fig. 8B, Supplemen-
tary data 8b-c).

As the TriC/CCT complex has previously been reported to be
associated with vincristine resistance and typical chemotherapy regi-
mens for MB contain vincristine in the treatment combination36, we
further focused on this chaperonin containing multiprotein complex
(Fig. 8C, E, Supplementary Fig. 15A). Among MB subtypes, pWNT MBs
showed the lowest abundance of TriC/CCT proteins, whereas pG3myc

Fig. 4 | CorrelationbetweenDNAmethylome andproteome features. ACircular
plot from mixOmics analyses based on selected features of the first five compo-
nents from proteome and methylome data. The plot illustrates features with cor-
relation r >0.7 represented on side quadrants. Proteome group-specific feature
levels are shown in the outer circle. B Proteome subtype-specific Pearson correla-
tion calculated betweenmatched proteins and CpGmethylation sites. The number
of proteins correlating with CpG site methylation of their own gene (r >0.7) is
shown in color. The pie chart shows the distribution of correlating CpG sites

concerning the position in a gene. C Subtype independent Pearson correlation
between 3990 proteins and 381,717 methylation probes focusing on subtype-
specific biomarkers. Pearson Correlations >0.7 are shown, CpG sites correlating
with the corresponding gene are highlighted in blue. Some biomarkers correlated
withmore thanoneCpGsite of their own gene (GAB1: 7,GNB3: 2, IGSF21: 3,MICAL1:
3, and PALMD: 2). D Scatterplot of the 10 biomarker proteins correlating with the
CpG site(s) of their own gene (Pearson correlation > 0.7, p <0.001). The linear
regression line was aligned for all correlating CpG site(s), SE = 0.95.
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MBs displayed the highest amount. High abundance of TriC/CCt pro-
teins in pG3myc was confirmed at mRNA level. Matched cases, as well
as publicly available transcriptome data5 did not show a statistically
significant downregulation of all component mRNAs in pWNT MB
when compared to other subtypes (Fig. 8C, Supplementary Fig. 15).
Further, no difference of TriC/CCT gene methylation was detected
among subgroups (Fig. 8C, Supplementary data 8d). Focusing on each

TriC/CCT component individually, we saw a mainly negative associa-
tion between DNA methylation and RNA expression and a mainly
positive one between transcriptome and proteome data—as expected
(Fig. 8D). However, correlation of DNAmethylome and proteome data
did not point in such a clear direction (Fig. 8D). Consequently, only
CCT2 showed a high association among all omic levels with a corre-
lation score ≥0.7 (Fig. 8E, Supplementary data 8d). We therefore,
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identified the TriC/CCT complex as a feature discriminating pWNT and
pG3myc MB.

MB subtypes show distinct N-glycan profiles
One of the major altered genesets between pWNT and pG3myc MB
was N-glycosylation (Fig. 8B), referring to a post-translational mod-
ification which is unknown in the context of MB. As glycosylation
plays a major role in immune system response and might therefore
enable therapeutic options37,38, we focused on this aspect in more
detail. Of note, proteins involved in all aspects of N-glycosylation
(synthesis, processing, transport, and antigen presentation via MHC
class II) were overrepresented inpWNT (Fig. 9C). Quantitative analysis
of N-glycans revealed differential N-glycosylation patterns across
proteomic MB subtypes (Fig. 9D–I). In total 302 N-Glycan species
were identified (Fig. 9 E–I; Supplementary data 9a). For non-WNT/
non-SHH MB a higher number of N-glycans were identified in com-
parison to pWNT, pSHHs and pSHHt (Fig. 9F, Supplementary data 9a).
At the quantitative level, proteomeMB subtypes were reflected based
on their N-glycan profiles (Fig. 9G, Supplementary Fig. 16A). 92
N-glycans were differentially abundant between the proteome MB
types (Supplementary Fig. 15B, Supplementary data 9b). We identified
the highest number of exclusive (complex) N-glycans in the subtypes
pG3myc and pG4 (npG3myc = 22, npG4 = 12, Fig. 9H, I, where n repre-
sents (complex) N-glycans). Frequently described key factors in
tumors are the upregulation of cancer-associated sialynated
N-glycans as well as aberrant fucosylation39. A higher proportion of
sialynated N-glycans was found in non-WNT/non-SHH tumors (non-
WNT/non-SHH MB: 59.7–62.0% versus pWNT/pSHH: 49.5–51.9%). A
significantly lower proportion of fucosylated N-glycans was detected
in pSHHt, compared to all other subtypes (66.7 % (n = 74)) versus
72.1–80% (n = 101-174, range of the other MB subtypes, where n
represents number of fucosylated N-glycans).

Taken together, integrated proteome analyses shed light on
unique characteristics in MB subtypes revealing potentially druggable
targets. To show the validity of results, we recapitulated the six pro-
teome subtypes and two superordinate profiles found in the inte-
grated cohort in a technical and biological validation dataset of FFPE
samples (ntechnical cohort = 57, nbiological validation cohort = 31, Fig. 10A-G,
Supplementary Fig. 17, Supplementary data 1c, Supplementary
data 10a–c,g, Supplementary data 11). We further verified the differ-
ential feature conservation between DNA methylation and protein
patterns in the biological validation cohort und underlined the TriC/
CCT complex as a discriminator of pWNT and pG3mycMB (Fig. 10H, I,
Supplementary data 10b,h).

Discussion
Technical variability and missing values are a general challenge of
mass spectrometry-based proteome analyses implying a need
for large integrated datasets with reduction of technical biases.
Using the HarmonizR integration strategy26, we could successfully
identify clinically relevant proteome subtypes of MB in a large,
integrated cohort of 167 MBs. Herein, we show that FFPE material,

which maintains chemical rigidity under cheap storage conditions40,
enabled the identification and differentiation of molecular subtypes,
as previously described for smaller cohorts of FF tissue16,17. Respec-
tive results could moreover be confirmed in technical and biological
FFPE validation datasets. In line with previous results41, sample age
did not impact data quality, making FFPE tissue highly suitable for
large-scale analysis of rare diseases18.

Two overriding molecular patterns were observed across MB
subtypes, indicating that MB either follow a transcriptional/replicative
(pWNT, pSHHt, pG3myc) or synaptic/immunological (pG4, pSHHs,
pG3) profile. These profiles tempt to speculate, that MBs with a
synaptic/immunological pattern (in contrast to MBs with a transcrip-
tional/replicative pattern) may depend more on external stimuli, such
as e.g., (potential) synaptic input. Further studies are therefore needed
to comprehend the underlying functional background resulting in the
observed patterns. To evaluate the therapeutic potential of these
patterns, we used IPA30 and identified, besides others, CDK4 inhibitors
as potential drugs for targeting the groups belonging to the tran-
scriptional profile. Various CDK inhibitors are already FDA-approved
for treatment of different types of metastatic cancers and CDK4/6
inhibition has been shown to inhibit tumor growth of medullo-
blastoma cells in vivo42,43. In contrast, proteome subtypes belonging to
the synaptic profile may be—besides others—targeted with the NMDA
receptor antagonist memantine. Of note, memantine has neuropro-
tective properties and was shown to decrease cognitive dysfunction in
patients receiving radiotherapy44,45. As radiotherapy is also applied to
MB patients the drug may be of specific interest, however, further
studies are needed to investigate the clinical potential of the men-
tioned drugs for MB patients.

We found that DNA-methylation subgroups of MB—which are
used for classificationof brain tumors in the clinic1—are associatedwith
proteome subtypes. This underlines, that the proteome harbors a
great potential for identifying subtype-specific therapy targets3–6,24.
However, only 30%ofmarker proteins showed a significant correlation
with their respective gene’s CpG sites. In general, a low correlation
between proteome and methylome data was found in MB, in line with
the results of previous studies on other tumor entities46,47. Poor cor-
relations might be attributed to the 850K array design since it mostly
assesses promoter methylation sites whereas CpG sites correlating
well with gene expression may be located further away from tran-
scriptional start sites48. Of note, correlation levels of data modalities
were not evenly distributed among subtypes. Especially in pWNT
tumors, proteins showed a relatively high correlation with their
respective gene’s CpG sites (38.9% of proteins). In addition, the com-
monly detected loss of chromosome 649 was also reflected in pro-
teome data whenmapping protein abundances to chromosomal arms.
Molecular alterations may hence be more conserved for WNT MBs,
whereas DNA-basedmethylation differences do not always result in an
effective change in protein abundance, probably due to post-
transcriptional and post-translational mechanisms (Supplementary
Fig. 18). These findings highlight the importance of proteome analysis
to detect targetable alterations.

Fig. 5 | SHHMBcomprise two proteomeMBsubtypes. AHistological, molecular,
and clinical characteristics of the MB subtypes pSHHt (n = 43) and pSHHs (n = 14).
B Volcano plot showing differentially abundant proteins comparing pSHHs tumors
to all other proteome subtypes (two-tailed, unpaired t test, p value < 0.05;
log2FC> 1.5). C MCL clustering of enriched gene sets in pSHHs MBs. D Copy
number variations (CNV) plots ofmatchedpSHHsMB (n = 6) calculated from either
DNA methylation or proteome data with pearson correlation between both omic
types (r =0.01). E Differentially abundant proteins when comparing pSHHt tumors
to all other proteome subtypes (two-tailed, unpaired t-test, p value < 0.05;
log2FC> 1.5). F MCL clustering of enriched gene sets in pSHHt. G CNV plots for
matched pSHHtMBs (n = 29) calculated from either DNAmethylation or proteome
data with Pearson correlation between both omic types (r =0.2) H Heatmaps

showing mean MB subtype protein abundance hallmark genesets homology
directed repair (GSEAdifferential expression analysis normalized enrichment score
(NES), NESpSHHt = 2.2, p = <0.0001, FDR <0.25), replication (NESpSHHt = 2.2,
p =0.01), TCA cycle and respiratory electron transport (NESpSHHs = 3.9,
p = <0.0001, FDR<0.25) and transmission across chemical synapses
(NESpSHHs = 3.2,p = <0.0001, FDR<0.25) basedon differentially abundant proteins.
IOverall survival of pSHHtMB (n = 23) and pSHHsMB (n= 5) and overall survival of
pSHHt MB depended on TP53 mutation status. TP53 mutated cases displayed a
significantlyworse survival (Mantel cox testp value = 0.04). JVolcanoplot, showing
differentially abundant proteins when comparing TP53 mutated cases to wildtype
cases in pSHHt tumors (two-tailed, unpaired t test, p value < 0.05; log2FC> 1.5). n
represents biologically independent human samples.
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We detected two proteome SHHMB subtypes, namely pSHHs and
pSHHt. While we cannot fully exclude the possibility that differences in
proteomepatterns couldbedue to variations in tissue composition, our
results confirmed previously reported proteome patterns in SHHMB16.
pSHHs tumors reflect the SHHb subgroup defined by Archer et al. 16.
showing enrichment of synaptic pathways16. We found that pSHHsMBs
are characterized by a high representation of the citric acid (TCA) cycle

and respiratory electron transport, pointing at distinct metabolic pro-
files of SHH proteome subtypes. Metabolic analysis confirmed sig-
nificant differences with isocitrate (ISO) and α-ketoglutarate (αKET)
being significantly downregulated in pSHHs MBs. As pSHHs MBs also
showed a high protein abundance of isocitrate dehydrogenases, this
may indicate a higher consumption of thesemetabolites. As both αKET
as well as the amino acid glutamine were significantly downregulated in
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pSHHs, we hypothesize that these factorsmight be further transformed
to glutamate and further y-Aminobutyric Acid (GABA), the latter both
being linked to synaptic signaling50. In line with this, pSHHs fell into the
“synaptic” profile and GABA targets were significantly upregulated in
these tumors. We further speculate that pSHHs tumors might be
dependent on synaptic input, a principle that has been shown for other
primary brain tumors, but still has to be shown formedulloblastoma51,52.
pSHHt MBs showed a high abundance of proteins involved in tran-
scription/translation, DNA repair and cell cycle. In line with this,
respective MB showed an increased proliferation compared to pSHHs.

TP53-mutated SHH cases, stratified as high-risk SHHMB33, did not
formadistinguishable cluster. However, amongothers, CHD6,DNAJB2
and NNMT, known to be associatedwith aberrant TP53 expression and
high tumor progression53–55, showed a differential abundance com-
paring TP53-mutated to TP53-wildtype cases. Further, CHD6 is sug-
gested as a potential anti-cancer target for tumors with DNA-damage
repair-associated processes55. Mutations within the largest subunit of
the elongator complex (ELP1) have lately been described in SHHMB29.
These mutations were found mutually exclusive with TP53 mutations
and ELP1 mutated SHH MBs were characterized by translational
deregulationwith upregulation of factors involved in transcription and
translation29. Reanalysis of published proteome data from ELP1 muta-
ted SHHMB cases indeed revealed that all cases were attributed to the
pSHHtMB subtype (Supplementary data 5k)29. As a limitation, the ELP1
status of the SHH MB cases in our cohort was only known for n = 3
pSHHs and n = 10 pSHHt tumors (all wildtype). However, all SHH MBs
with methylation subtype 3—associated with ELP1 mutations—fell into
pSHHt24,29. The clinical significance of the two proteome subtypes of
SHH MB needs further validation in the future.

Current standard treatment approaches forMB (surgical removal,
craniospinal irradiation and combinational chemotherapy) cause
severe neuro-cognitive and neuroendocrine late effects. Due to their
high responsiveness to therapy, WNT-type MBs are evaluated for
therapy de-escalation56. The identification of CTNNB1 mutations, or
chromosome 6 deletion (monosomy 6) are common markers for the
identification of WNT-type MB. Immunohistochemistry is used to
detect nuclear ß-CATENIN staining in tumor cells that can be weak and
foundonly a subset of cell nuclei57,58. Here, TenascinC (TNC)was found
elevated in pWNT MBs, in line with results of previous mRNA-based
analyses59. TNC is a highly glycosylated extracellular matrix (ECM)
protein, promoting or inhibiting proliferation andmigration in cancer,
depending on the present splice variant60, which will be a field of fur-
ther study. Besides TNC, a general enrichment of ECM proteins was
detected in pWNT MBs. While the ECM has not been investigated in-
depth in WNT MB, ECM components have been described to predict
outcomes in MB61. ECM degradation was found as a hallmark of tumor

invasion, metastasis development and overall bad prognosis62. WNT
pathway activation dependent disruption of the blood-brain barrier
(BBB)62, was described to permit accumulation of high levels of intra-
tumoral chemotherapy in WNT tumors, resulting in a robust ther-
apeutic response. TNC could be another contributor to this pheno-
type, ashighTNC levels contribute toBBBdisruption62,63. Furthermore,
other BBB contributors, such as EPLIN1, DSP and S100A4 were found
differential abundant in pWNT.

In linewithprevious results, we found threeproteome subtypesof
non-WNT/non-SHH MBs16. pG4 (predominantly comprising G4
tumors), followed the synaptic program. These findings go in line with
the literature, as synaptic signatures for G4 tumors, have been
described5,16. In pG4 MBs, we detected a higher abundance of VEGF
signalling-related proteins, previously described in the context of
tumor angiogenesis. VEGF signaling can be targeted in MB using Bev-
acicumab or Mebendazole64,65 and hence might be beneficial for pG4
patients. pG3 MBs (composed of both G3 and G4 tumors) showed the
lowest cluster certainty and inherited the characteristics of both
pG3myc andpG4. pG3myc tumors, showed a reduced survival rate and
high-risk features, such as LCA histology and solidmetastasis. Group 3
MB with MYC amplification are highly aggressive and exhibit a bad
prognosis66,67. In our cohort, more than half of the patients showed a
CMYC amplification, while all samples showed an upregulation of
CMYC target genes, supporting the hypothesis that besides CMYC
amplification, changes in its phosphorylation status result in a CMYC-
driven high-risk proteome G3 subtype16. Therefore, proteome sig-
naturesmaybe additionally important for stratification ofMBpatients,
as the current stratification scheme for high-riskMBbasedon (genetic)
MYC amplification may miss these non-amplified high-risk pG3myc
patients. As potential protein biomarkers for pG3myc MB, DIEXF,
MDN1, POSTN, TPD52 and PALMD were selected. TPD52 has recently
been suggested as an immunohistochemistry (IHC) marker for high-
risk non-WNT/non-SHH patients8. PALMD showed the highest eleva-
tion in our cohort and was established as a suitable IHCmarker for the
identification of pG3myc MB. Further prospective trials need to eval-
uate its significance for stratification of high-risk non-WNT/non-SHH
patients. Further proposedmarkers for proteomicMB subtypes in this
study have to be tested in prospective studies to verify their potential
for classification and potential therapy prediction in the future.

High-risk pG3myc MBs showed a high resemblance to pWNT
tumorswith favorable outcome. Comparing both groups, revealed the
components of the TriC/CCT complex to be significantly different. A
high abundance of CCT complex proteins has been linked to worse
prognosis in cancer and was identified as a predominate driver of
Vincaalcaloid resistance, including Vincristine, which is among the
most frequently used drugs for MB68. The general low abundance of

Fig. 6 | pG3myc tumors display anenhancedMYC target proteinprofile and can
be identified by Palmdelphin (PALMD) staining. A Histological, molecular, and
clinical characteristics of the MB subtypes pG3myc (n = 26), pG3 (n = 15) and pG4
(n = 40). B Volcano plot showing differentially abundant proteins when comparing
pG4 tumors to all other proteome subtypes (two-tailed, unpaired t-test, p value <
0.05; log2FC> 1.5). CMCL clustering of enriched gene sets in pG4MB.DCNV plots
of pG4 MBs (n = 40) were calculated from either DNA methylation or proteome
data with Pearson correlation between both omic types (r =0.12). E Differentially
abundant proteins when comparing pG3 tumors to all other proteome subtypes
(two-tailed, unpaired t test, p value < 0.05; log2FC> 1.5). F MCL clustering of enri-
ched gene sets in pG3 MB. G DNA methylation or proteome CNV plots of pG3 MB
(n = 11) with Pearson correlation between both omic types (r =0.11).HDifferentially
abundant proteins in pG3myc MB. Palmdelphin (PALMD) was highly abundant in
pG3myc tumors (two-tailed, unpaired t test, p value < 0.05; log2FC> 1.5). I MCL
clustering of enriched gene sets, in pG3myc MB. J DNA methylation or proteome
CNV plots of pG3myc MB (n = 20) with pearson correlation between both omic
types (r =0.06). KMean protein abundance in MB subtypes for hallmark gene sets
MYC Targets V1 and MYC Targets V2. L Scheme and representative images of

digitally supported immunostaining intensity quantification of PALMD immunos-
tainings in MB. Quantified pixels of different staining intensities were used to cal-
culate adigitalHisto-score (DHS, sourcedatafilehasbeenprovided)MSignificantly
enhanced digital histoscore for PALMD inpG3mycMB (npG3myc = 7) compared to all
other MB subtypes (nOthers = 22, p <0.0001, data are presented as mean values ±
SD).N Protein abundance for PALMD in pG3mycMB (npG3myc = 21) compared to all
other MB subtypes (nOthers = 84, unpaired t test, p <0.0001, data are presented as
mean values ± SD). O PALMD gene expression in pG3myc MBs (npG3myc = 6) com-
pared to all otherMB subtypes (nOthers = 30, two-tailed, unpaired t-test, p <0.0001,
data extracted from Archer et al. 2018, data are presented as mean values ± SD).
P Average DNA methylation at CpG sites of the PALMD gene (Mean M values of
npG3myc = 6 CpG sites shown, two-tailed, unpaired t test, p value < 0.001, data are
presented as mean values ± SD). pG3myc MBs show significant lower levels of
methylation (two-tailed, unpaired t test, p <0.0001).QGSEA showing the top 10 up
or downregulated pathways comparing pG3myc MB to pG3/4 MB (GSEA differ-
ential expressionanalysisnormalized enrichment score (NES),p <0.01, FDR <0.25).
n represents biologically independent human samples. For immunostaining, each
sample was stained once.
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TriC/CCT proteins in pWNT MB could therefore be a BBB-phenotype-
independent explanation for the relatively high response to
chemotherapy69. The usage of CT20p, an amphipathic CCT inhibitor
peptide, was described as a promising strategy for the treatment of
high-risk tumors with high CCT abundance70,71. Based on our data, the
approach should be further investigated as a potential strategy to
enhance Vincristine-mediated cytotoxicity in high-risk pG3myc MBs,

which were characterized by a particularly high abundance of CCT/
TriC proteins.

We further identified increased Asparagine-linked-N-glycosylation
as a hallmark of WNT Medulloblastoma. Glycosylation patterns can
be used as biomarkers for disease progression19 and aberrant
N-glycosylation patterns have been described for brain cancer72.
Of note, aberrant N-glycan structures in cancer could be targeted by
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immunotherapy and thus provide therapeutic strategies, especially for
high-risk tumors that are not sensitive to classical treatment37,73. As an
example, chimeric-antigen-rceptor (CAR)-modified T cells, that can be
specifically directed against tumor-associated carbohydrate antigens
are rapidly evolving74. Differential, quantitative N-glycan analysis
reflected proteome MB subtypes with high similarity for pSHHt and
pSHHs MBs. The latter could be related to dominant SHH activation in
these groups, knowingly having an impact on N-glycosylation75.
12 structures were identified only in high-risk pG3myc patients. Most of
these structures are complex bisecting N-glycans, known to be asso-
ciated with cell growth control and tumor progression19,75 andmight be
related to the unfavorable outcome for pG3myc patients. pG3myc-
specific N-glycans do not appear in healthy brain cells, whose
N-glycome is characterized by dismissed N-glycan complexity, lack of
complex N-glycans and truncated structures76 and might serve as sui-
table immunotherapy targets for high-risk patients.

For pG4 patients, highest amounts of salivated N-Glycans were
found, further supporting the immunological profile of pG4 MBs,
observed at the proteome level77.

Taken together, the integration of MB proteome, DNA-methylome
and N-glycome data revealed (1) unique insights into MB phenotypes,
(2) potential biomarkers for rapid histological subtyping and for stra-
tification, and (3) therapeutic targets for MB. Specifically, TriC/CCT
inhibitors or chimeric-antigen-receptor-modified T-cells to target
tumor-specific carbohydrates may be applied for high-risk MBs.
Superordinate transcription/translational or synaptic proteomeprofiles
across subtypes further revealed targetable vulnerabilities, which may
be addressed by e.g., CDK4 inhibitors or memantine.

Methods
Subject details
This research complies with all relevant ethical regulations. Investiga-
tions were performed in accordance with local and national ethical
rules of patient’s material and have, therefore, been performed in
accordance with the ethical standards laid down in an appropriate
version of the 1964 Declaration of Helsinki. The study protocol was
approved by the Ethics Committee of the Hamburg Chamber of Phy-
sicians. All patients and parents or legal adult representatives provided
informed consent in written format permitting scientific use of the
data. There was no compensation provided for participation. All
samples underwent anonymization.

In house patient samples for main cohort and biological
validation cohort
FFPE Medulloblastoma samples of tumors within the years 1976–2022
were obtained from tissue archives from neuropathology units in
Munich (Ludwig-Maximilians-University), Heidelberg (University Hos-
pital Heidelberg), Hannover (Hannover Medical School (MHH)),
Aachen (RWTH Aachen University Hospital), Augsburg (University of
Augsburg) and Hamburg (University Medical Center Hamburg-
Eppendorf). Some of these samples were collected as part of the HIT-
MED study, which is a registry for developing treatments in children

and adolescents with aggressive pediatric brain tumors such as
Medulloblastoma and Ependymoma. The validation samples (both
technical and biological validation) were a subset from all the samples
collected from all the different institutions and HIT-MED. Some sam-
ples (Supplementary Data 1c, Supplementary Data 11) were part of
SIOP-PNET5. SIOP-PNET5 is a clinical trial (NCT02066220) within HIT-
MED, in which the primary outcomes are identification of long-term
damage to disease and therapy, therapy deacceleration in low-risk
patients to name a few. The PNET5 study protocol planned “compre-
hensive genome-wide investigations of medulloblastoma” as explora-
tory analyses without pre-defined methods. The present analysis was
not a planned SIOP-PNET5-MB study question, but was done from
archival material of PNET5-participants from the author’s own insti-
tution and informed consent of the trial participants. To avoid
potential interference with the analysis of SIOP-PNET5-MB trial ana-
lyses, the inclusion of these patients was discussed with the PNET5
principal investigator (Stefan Rutkowski) and the analyses were clas-
sified not to interfere with predefined SIOP-PNET5-MB study hypoth-
eses. Included PNET5 samples were used for all the analyses in this
study, but excluded from survival analysis, since this clinical trial is still
not yet published. Details of the samples used in this study can be
found in Supplementary Data 1c (n = 6, in the main cohort) and Sup-
plementary Data 11 (n = 2, in the biological validation cohort).

Tumor samples were fixed in 4% paraformaldehyde, dehydrated,
embedded in paraffin, and sectioned at 10 µm formicrodissection using
standard laboratoryprotocols. For further informationonclinical details
of samples, please refer to Supplementary data 1c and Supplementary
Data 11 (ncurrent study main cohort with successful proteome subtype assignment = 62,
nForget et al. (PMID: 302050439) with successful proteome subtype assignment = 38,
nArcher et al. (PMID: 30205044) with successful proteome subtype assignment = 45,
nPetralia et al. (PMID: 33242424) = 22,ntechnical validation cohort = 57, nbiological validation
cohort = 30). Anoverviewof allmeasuredprotein samples canbe found in
Supplementary Table 3.

Medulloblastoma cell lines
The human Medulloblastoma cell lines DAOY (Ca#HTB-186) and
D283med (Ca#HTB-185) were obtained from ATCC, Manassas, VA,
USA. DAOY and D283med were authenticated using Eurofins using
STR-profiling analysis. UW473 was kindly provided by Michael Bobola.
All lines were used as Standards for TMT batches. Cells were cultivated
in DMEM (Dulbecco’s Modified Eagle Medium, PAN-Biontech) sup-
plemented with 10 % FCS at 37 °C, 5% CO2.

Publicly available datasets
For the data integration and harmonization of in-house and publicly
available DNA Methylation data the following datasets were used:
Archer et al.16: 42 FF MB samples, accessible as a subset of European
Genome-phenomeArchive ID: EGAS00001001953. Forget et al.17: 38 FF
MB samples, accessible via Gene Expression Omnibus (GSE104728).
For the analysis of RNA Expression data, processed and normalized
data from the following datasets were used: Cavalli et al. (2017)5: 763
MB samples, accessible viaGene ExpressionOmnibus (GPL22286)5. For

Fig. 7 | pWNT MB show high feature conservation and can be identified by
TenascinC (TNC) staining.AHistological,molecular, and clinical characteristics of
the pWNTMB subtype (n = 19).BDifferentially abundant proteins when comparing
pWNT tumors to all other proteome subtypes (two-tailed, unpaired t test, p
value < 0.05; log2FC> 1.5). C Scheme and representative images of digital quanti-
fication of TNC immunostainings in MB (source data file has been provided).
D Significantly enhanced DHS for TNC in pWNT MB (npWNT=9) compared to all
other MB subtypes (nothers=28, two-tailed, unpaired t test, p <0.0001, data are
presented as mean values ± SD). E Protein abundance for TNC in pWNT MBs
(npWNT= 19) compared to all other MB subtypes (nothers=148, two-tailed, unpaired t
test, p <0.0001, data are presented asmean values ± SD). F TNC gene expression in
WNT MBs and other MB subtypes in a published dataset of MB (nWNT = 70,

nnonWNT = 693, two-tailed, unpaired t test, p <0.001, data are presented as mean
values ± SD)5.GAverageDNAmethylation at CpG sites of the TNCgene (mean value
fornpWNT = 8CpGsites shown, two-tailed, unpaired t test, p = n.s., data presented as
mean values ± SD). H MCL clustering of eEnriched gene sets, comparing pWNT to
all other subtypes in GSEA. I Heatmaps showing mean protein abundance in MB
subtypes for hallmark genesets specifically enriched inpWNTMB (GSEAdifferential
expression analysis normalized enrichment score (NES), NESGlycan = 2.2,
pGlycan = <0.001; NESEMP = 1.7, pEMP = 0.02). J CNV plots of pWNT MBs (n = 8) were
calculated from either DNAmethylationor proteomedatawith Pearson correlation
between both omic types (r =0.37). n represents biologically independent human
samples. For immunostaining, each sample was stained once. NS = not significant.
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the data integration and harmonization of in-house and publicly
available proteome data, the following datasets were included: Archer
et al.16: 45 FF MB samples, available via the MassIVE online repository
(MSV000082644, Tandem Mass Tag- (TMT) label-based protein
quantification); Forget et al.17: 39 FF MB samples, available via the
PRIDE archive (PXD006607, stable isotope labeling by amino acids in
cell culture- (SILAC) label-based protein quantification); Petralia et al.15,

23 FF MB samples, available through the Clinical Proteomic Tumor
Analysis Consortium Data Portal (https://cptac-data-portal.
georgetown.edu/cptacPublic/) and the Proteomics Data Commons
(https://pdc.cancer.gov/pdc/, Tandem Mass Tag- (TMT) label-based
protein quantification). For validation of determined proteome sub-
types, as well as the investigation of the proteome profile of ELP1
mutated SHHMB, a dataset published byWaszak et al. 29. was used (23

M
ea

n
pr

ot
ei

n
ab

un
da

nc
e

fo
re

ac
h 

C
C

T
co

m
po

ne
nt

pW
N

T

pS
H

H
t

pS
H

H
s

pG
4

pG
3

pG
3m

yc

Proteome subtype

D

Proteome data

DNA methylome data

RNA data

Data type

Negative

Correlation cut-off >= 0.7

Positive

−
2

−
1

0 1 2 10-1

Mean scaled values
CCT8TCP1

CCT-complex components

C

CCT7

PPrr
oott

eeoo
mm

ee
ddaa

ttaa
TTrraannssccrriippttoommmmmmmmee ddddddaaaaaattttttaaaa

DDNNNNNAAAAAMMeetthhyylloommmmmmmeeeddaattaa

ataD
e

moetorP

pS
H

H
t

pS
H

H
s

pG
4

pG
3

pG
3m

yc

pW
N

T

pS
H

H
t

pS
H

H
s

pG
4

pG
3

pG
3m

yc

-0.8-

-0.4-

0.2-

Proteome
Subtype

TCP1

CCT2

CCT3

CCT4

CCT5

CCT6

CCT7

CCT8

X

atad
e

motpircsnarT

Proteome
Subtype

TCP1

CCT2

CCT3

CCT4

CCT5

CCT6

CCT7

CCT8 pS
H

H
t

pS
H

H
s

pG
4

pG
3

pG
3m

yc

pW
N

T

pS
H

H
t

pS
H

H
s

pG
4

pG
3

pG
3m

yc

-0.8-

0-

0.6- X X X

X

X

p-value

0.001 0.05

X - NS

atad
e

molyhte
M

AND

Proteome
subtype

TCP1

CCT2

CCT3

CCT4

CCT5

CCT6

CCT7

CCT8 pS
H

H
t

pS
H

H
s

pG
4

pG
3

pW
N

T

pS
H

H
t

pS
H

H
s

pG
4

pG
3

pG
3m

yc

-1 -

0-

3-

pG
3m

yc

X X X X X

X X X X

X X X

X

X

− − − −

-1 0 1

E

M
ea

n
ge

ne
ex

pr
es

si
on

fo
re

ac
h 

C
C

T
co

m
po

ne
nt

M
ea

n
ge

ne
ex

pr
es

si
on

fo
re

ac
h 

C
C

T
co

m
po

ne
nt

-5 0 5

Protein folding
Complex I biosynthesis

Mitochondrial protein import
tRNA Aminoacetylation

Association of TriC/CCT with target proteins
Formation of tubulin folding intermediates by TriC/CCT

Respiratory Electron Transport
Citric Acid Cycle and respiratory electron transport

Translation
Mitochondrial translation

Collagen formation
Regulation of IGF transport and uptake by IGFBPs

IREalpha activates chaperones
Unfolded protein response
Cargo concentration in ER

N-Glycan trimming in ER and calreticulin cycle
COPI mediated antiretorad transport

Loading of MHC class II with antigens
Transport to golgi and subsequent modification

Asparagine Linked N-glycosilation

Normalized Enrichment Score (NES)Log2 Difference

-
p(

01goL
-v

al
ue

)

A B

-4 -2 0 2 4

5

10

15

20

PALMD

VARS

PTBP3

CTNNB1

CCT3
TP1

CCT4
CCT5
CCT6

HMGA1

CNTN1
AARS2

APP
MANF

MYL6B
NRCAM

TNC
PYGL

PLIM4

P4HA2

Proteome subtype
pG3myc pWNT

Article https://doi.org/10.1038/s41467-024-50554-z

Nature Communications |         (2024) 15:6237 14

https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://pdc.cancer.gov/pdc/


FF MB samples, available via the PRIDE archive (PXD016832, Data
independent acquisition label free protein quantification).

Sample preparation and data acquisition
DNA methylation profiling. DNA methylation data was generated
fromFFPE tissue samples.DNAwas isolated using the ReliaPrepTM FFPE
gDNA Miniprep system (Promega) following the manufacturer’s
instructions. 100–500ng DNA was used for bisulfite conversation
using the EZ DNA Methylation Kit (Zymo Research). Then the DNA
Clean & Concentrator-5 (Zymo Research) and the Infinium HD FFPE
DNA Restore Kit (Illumina) were applied. Infinium BeadChip array
(EPIC) usingmanufacturer’s instructions was then used to quantify the
methylation status of CpG sites on an iScan (Illumina, San Diego, USA).
Data has been deposited using accession numbers GSE222478 and
GSE243768 (linked to Series GSE243796). Additionally, previously
published data measured on Infinium Human Methylation 450 Bead-
Chip array (450K) were included from EGAS0000100195316 from
GSE10472817, and GSE13005178.

Proteome profiling (main cohort, FFPE samples). FFPE MB tissue
sections were deparaffinized with N-heptane for 10min and cen-
trifuged for 10min at 14,000 g. The supernatant was discarded. Pro-
teins were extracted in 0.1M triethyl ammonium bicarbonate buffer
(TEAB) with 1% sodium deoxycholate (SDC) at 99 °C for 1 h. Sonifica-
tion was performed for ten pulses at 30% power, to degrade DNA,
using a PowerPac™ HC High-Current power supply (Biorad Labora-
tories, Hercules, USA)) probe sonicator. For cell lines, proteins were
extracted in 0.1M TEAB with 1% SDC at 99 °C for 5min. Sonification
was performed for six pulses.

The protein concentration of denatured proteins was determined
by the PierceBCAProtein assay kit (ThermoFischer Scientific,Waltham,
USA), following the manufacturer’s instructions. 60μg of protein for
each tissue lysate and 30μg protein for each cell lysate were used for
tryptic digestion. Disulfide bonds were reduced, using 10mM dithio-
threitol (DTT) for 30min at 60 °C. Alkylation was achieved with 20mM
iodoacetamide (IAA) for 30min at 37 °C in the dark. Tryptic digestion
was performed at a trypsin:protein ratio of 1:100 overnight at 37 °C
and stopped by adding 1% formic acid (FA). Centrifugation was per-
formed for 10min at 14,000 g to pellet precipitated SDC. The super-
natant was dried in a vacuum concentrator (SpeedVac SC110 Savant,
(Thermo Fisher Scientific, Bremen, Germany)) and stored at −80 °C
until further analysis.

For the main cohort, 50μg sample per patient and internal
reference, TMT-10 plex labeling (Thermo Fischer Scientific, Waltham,
USA), was performed, following the manufacturer’s instruction. All 70
patients were run in 8 total TMT 10-plexes. Sample assignment to
batches was performed in a semi-randomized manner, according to
the fourmainmolecular subtypes. In eachbatch, 1–2 internal reference
samples were included, composed of equal amounts of peptide
material from all 70 samples and cell lines. Isobarically labeled pep-
tides were combined and fractionated, using high pH reversed-phase
chromatography (ProSwiftTM RP-4H, Thermo Fischer Scientific
Bremen, Germany) on an HPLC system (Agilent 12000 series, Agilent

Technologies, Santa Crara, USA). Separation was performed using
buffer A (10mM ammonium hydrogen carbonate (NH4HCO3) inH2O)
and buffer B (10mM NH4HCO3 in ACN) within a 25-min gradient, lin-
early increasing from 3 to 35% buffer B at a flow rate of 200nl/min.
In total, 13 fractions were collected for each batch, dried in a
vacuum concentrator, resuspended in 0.1% FA to a final concentration
of 1mg/ml and subjected to high pH liquid chromatography coupled
mass spectrometry (LC-MS). All LC-MSmeasurementswere performed
on a UPLC system (Dionex Ultimate 3000, Thermo Fisher Scientific,
Bremen, Germany, trapping column: Acclaim PepMap 100 C18 trap
((100 μm×2 cm, 100Å pore size,5 μm particle size); Thermo Fisher
Scientific, Bremen, Germany), analytical column: Acclaim PepMap 100
C18 analytical column ((75μm×50cm, 100Å pore size, 2 μm particle
size); Thermo Fisher Scientific, Bremen, Germany)), coupled to an
quadrupole-orbitrap-iontrap mass spectrometer (Orbitrap Fusion,
Thermo Fisher Scientific, Bremen, Germany). Separation was per-
formed using buffer A (0.1% FA in H20) and buffer B (0.1% FA in H20)
within a 60-min gradient, linearly increasing from 2-30% buffer B at a
flow rate of 300 nl/min. Eluting peptides were analyzed, using a DDA-
based MS3 method with synchronous precursor selection (SPS), as
described by McAlister et al. 79. For MS—raw data please refer to the
PRIDE archive (PXD039319).

Proteome profiling for biological and technical validation cohort.
The deparaffinization and quantificationwere conducted as previously
described.

20 µg of the provided samples were dissolved to a concentration
of 70% ACN. 2 µL carboxylate modified magnetic beads (GE Health-
care Sera-Mag™, Chicago, USA) at 1:1 (hydrophilic/hydrophobic)
in methanol were added following the SP3-protocol workflow80.
Samples were shaken at 1400 rpm for 18min RT and the supernatant
was removed. Beads were washed two times with 100% ACN and two
times with 70% EtOH. After resuspension in 50mM ammonium
bicarbonate, disulfide bonds were reduced in 10mMDTT for 30min,
alkylated in the presence of 20mM IAA for 30min in the dark
and digested with trypsin (sequencing grade, Promega) at 1:100
(enzyme:protein) at 37 °C overnight while shaking at 1400 rpm.
Peptides were bound in 95% ACN and shaken at 1400 rpm for 10min
RT. The supernatant was and the beads were again two times with
100%ACN. Elution of peptides was performedwith 20 µL 2%DMSO in
1% formic acid (FA). Samples were dried in a vacuum centrifuge and
stored at −20 °C until further use.

For the measurement samples were resuspended in 0.1% FA to a
final concentration of 1mg/ml and measured on either a Quadrupole
Orbitrap hybrid mass spectrometer (QExactive, Thermo Fisher Scien-
tific) or on a quadrupole-ion-trap-orbitrap MS (Orbitrap Fusion,
Thermo Fisher) in orbitrap-orbitrap configuration. For MS—raw data
please refer to the PRIDE archive (PXD048767.).

Quadrupole Orbitrap hybrid mass spectrometer set-up. Chroma-
tographic separation of peptides was achieved by nano UPLC
(nanoAcquity system, Waters) with a two-buffer system (buffer A:
0.1% FA in water, buffer B: 0.1% FA in ACN). Attached to the UPLCwas

Fig. 8 | Differential proteomics reveal low abundance of all multiprotein
complex TriC/CCT components as a hallmark of pWNT MB. A Differentially
abundant proteins when comparing pWNT (n = 19) to pG3myc (n = 26) MB (two-
tailed, unpaired t test,p value < 0.05; log2FC> 1.5).BGSEA showing the top 10upor
downregulated pathways comparing pG3myc MB to pWNT (GSEA differential
expression analysis normalized enrichment score (NES), p <0.05, FDR <0.25).
CMean protein abundancies, gene expression values and methylation at CpG sites
for all components of the tailless complex polypeptide 1 ring complex/Chaperonin
containing tailless complex polypeptide 1 (TriC/CCT) per proteome subtype in
matched cases (npWNT= 4,npSHHt = 14,npSHHs = 4,npG3 = 6,npG4 = 17,np3Myc = 11, data
are presented as mean values ± SD. Left: Heatmaps. Middle: Quantification (two-

tailed, unpaired t test). Right: p values when comparing subtypes
(ppWNTvspSHHt < 0.0001, ppWNTvspSHHs < 0.0001, ppWNTvspG3 < 0.0001,
ppWNTvspG3myc < 0.0001, ppWNTvspG4 < 0.0001, ppSHHtvspSHHs < 0.001,
ppSHHttvspG3 < 0.0001, ppSHHtvspG3myc < 0.0001, ppSHHtvspG4 < 0.01,ppSHHsvspG3 < 0.01,
ppSHHsvspG3myc < 0.0001, ppSHHsvspG4 < 0.05, ppG3vsG4 = n.s., ppG3vspG3myc < 0.0001,
ppG4vspG3myc < 0.0001). D Correlation plot displaying mean correlation for each
component in all three omic types. E Circus plot displaying correlations ≥0.7 for
each component’s protein, gene and CpG site. Only CCT2 significantly correlated
on all three levels. n represents biologically independent human samples. NS = not
significant.
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Fig. 9 | N-glycan analysis reveals significant differences across N-glycanprofiles
of proteomicMB subtypes. A STRING network analyses of differentially abundant
proteins involved in N-linked glycosylation. B Scheme of N-glycan analyses.
C Schematic visualization of N-glycan types. D Venn diagrams showing overlap of
identified glycans per MB proteome subtype (npWNT= 3, npSHHt = 3, npSHHs = 3,
npG3 = 3, npG3myc = 3, npG4 = 3). E PCA, based on N-glycan abundances, illustrating

the separation of proteome MB subtypes at the N-glycan level. F 2D Structure
visualization for pG3myc-specific N-glycans. GlcNAc N-Acetylglucosamine, Gal
Galactose, Fuc Fucose, ManNAc N-Acetylmannosamine; Neu5AC
N-Acetylneuraminic acid. G Venn Diagram, comparing the identified hybrid-type
and complex N-glycans between proteome subtypes. n represents biologically
independent human samples.
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a peptide trap (100 µm× 20mm, 100Å pore size, 5 µm particle size,
Acclaim PepMap 100 C18 trap, Thermo Fisher Scientific) for online
desalting and purification followed by a 25-cm C18 reversed-phase
column (75 µm× 200mm, 130 Å pore size, 1.7 µm particle size, Pep-
tide BEH C18, Waters). Peptides were separated using an 80-min
gradient with linearly increasing ACN concentration from 2% to 30%
ACN in 65min. The eluting peptides were analyzed on a Quadrupole

Orbitrap hybrid mass spectrometer (QExactive, Thermo Fisher Sci-
entific). Here, the ions being responsible for the 15 highest signal
intensities per precursor scan (1 × 106 ions, 70,000 Resolution,
240ms fill time) were analyzed by MS/MS (HCD at 25 normalized
collision energy, 1 × 105 ions, 17,500 Resolution, 50ms fill time) in a
range of 400–1200m/z. A dynamic precursor exclusion of 20 s
was used.
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Quadrupole-ion-trap-orbitrap mass spectrometer set-up. Chroma-
tographic separation of peptides was achieved with a two-buffer sys-
tem (buffer A: 0.1 % FA in water, buffer B: 0.1% FA in ACN). Attached to
the UPLC was a peptide trap (100μm×200mm, 100 Å pore size, 5μm
particle size, Acclaim PepMap 100 C18 trap, Thermo Fisher Scientific)
for online desalting and purification followed by a 25 cmC18 reversed-
phase column (75μm× 250mm, 130 Å pore size, 1.7μm particle size,
Peptide BEH C18, Waters). Peptides were separated using an 80-min
gradient with linearly increasing ACN concentration from 2% to
30% ACN in 65min. Eluting peptides were ionized using a nano-
electrospray ionization source (nano-ESI) with a spray voltage of
1800, transferred into the MS, and analyzed in data-dependent
acquisition (DDA) mode. For each MS1 scan, ions were accumulated
for a maximum of 240ms or until a charge density of 1 × 106 ions
(AGC Target) was reached. Fourier-transformation-based mass ana-
lysis of the data from the orbitrap mass analyzer was performed,
covering a mass range of 400–1200m/z with a resolution 60,000.
Peptides with charge states between 2+ and 5+ above an intensity
threshold of 1 × 105 were isolated within a 2m/z isolation window
from each precursor scan and fragmented with a normalized colli-
sion energy of 25% using higher energy collisional dissociation
(HCD). MS2 scanning was performed at a resolution of 17,500 on the
quadrupole-ion-trap-orbitrap MS in orbitrap-orbitrap configuration,
covering amass range from 100m/z and accumulated for 50ms or to
an AGC target of 1 × 105. Already fragmented peptides were excluded
for 15 s.

Histology and Immunohistochemistry
FFPE tissue samples were sectioned into 2 µm thick slices, according to
standard laboratory protocols. Immunohistochemical stainings were
performed on an automated staining machine (Ventana BenchMark
XT, Roche Diagnostics, Mannheim, Germany). The following primary
antibodies were used: ALDH1A3 (NBP2-15339, Novus Biologicals,
1:1000), c-myc (Z2734RL, Zeta Corporation, 1:25), TENASCIN C
(SAB4200782, Sigma-Aldrich, 1:1000), PALMD (NBP2-55156, Novus
Biologicals, 1:750). Further information on the antibodies and staining
program can be found in Supplementary Table 1.

Transcriptome profiling
Maxwell RSC RNA FFPE Kit was used to isolate RNA from 10 × 10 µm
sections of FFPE tissue (PROMEGA Maxwell RSC RNA FFPE kit). RNA
6000 Nano Chip on an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies) was used to analyse RNA integrity. From 400ng total per sample,
ribosomal RNA was depleted with the help of the RiboCop rRNA
Depletion Kit (Lexogen) followed by RNA sequencing library genera-
tion using the CORALL Total RNA-Seq Library Prep Kit (Lexogen),

followed by the Lexogen CORALL total RNA-Seq V2 Library Prep Kit
with UDIs (according to manufacture protocol, short insert size ver-
sion). Illumina NextSeq2000machine using the P3 Reagents/100 cycle
kit as paired-end sequencing 2 × 57bp (+2× index read 12 bp). Data
have been deposited under accession number GSE243795.

Metabolic and amino acid profiling
13C-Labeled Metabolite Yeast Extract (Catalog No. ISO-1, ISOtopic
solutions e.U.) LOT: 20211007 and Canonical Amino AcidMix (Catalog
No. MSK-CAA-1, Cambridge Isotope Laboratories, Inc. (CIL)) were
prepared according to instructions. Tissue sections of sSHH and tSHH
medulloblastoma samples were deparaffinized by two 5min washes in
xylene. 20 µL of 13C-Labeled Metabolite Yeast Extract and 1 µL of
diluted0.1MCanonical AminoAcidMixwereadded, and sampleswere
then homogenized in 180 µL water using the TissueLyser (Qiagen N.V.,
Netherlands) at 20Hz for 2min. Afterwards, protein precipitation and
metabolite extraction were achieved by adding ice-cold methanol
twice (800 µL and 400 µL) and 80% methanol (200 µL). The super-
natant was combined and dried in a vacuum concentrator centrifuge,
and stored at −20 °C until further use.

Polar and polar ionic metabolites were analyzed by single ion
monitoring (SIM) mass spectrometry coupled to ion chromatography
and IC-SIM-MSrawdata processingwasperformed as describedby van
Pijkeren and Egger et al. 81. using a quadrupole orbitrap mass spec-
trometer (Exploris 480, Thermo Fisher Scientific) and an ICS-6000
(Thermo Fisher Scientific).

Amino acids were analyzed by multiple reaction monitoring
(MRM) mass spectrometry using a triple quadrupole mass spectro-
meter coupled to ultra-high performance liquid chromatog-raphy
(UPLC). Amino acids were separated using an Acquity Premier UPLC
system (Waters) equippedwith anAtlantis Premier BEHC18AXcolumn
(1.7μm, 2.1 × 150mm, Waters) heated to 45 °C. A gradient of mobile
phaseA (water, 0.1% formic acid (FA)) andmobile phase B (acetonitrile,
0.1% FA) was applied as followed: 1% B at 0.350mL/min for 1min, to
20% B in 1min at 0.350mL/min, to 40% B in 0.5min at 0.350mL/min,
to 95% B in 1.5min at 0.450mL/min, hold for 0.5min, for re-equili-
bration, switch to 1% B in 0.1min at 0.450mL/min, hold for 0.1min at
0.450mL/min and hold for 1.3min at 0.350mL/min. Samples were
measuredon aXevo-TQXSMass spectrometer (Waters) equippedwith
an electrospray ionization source operated in positive ion mode. The
mass spectrometer was operated in multiple reac-tion monitoring
(MRM) mode using individual cone and collision voltages for each
amino acid and its internal standard (Supplementary data 1). Raw files
were analyzed by MS Quan in Waters Connect (Waters, V1.7.0.7).
Details on MRM settings per metabolite and internal standard can be
found in Supplementary Table 2.

Fig. 10 | Confirmation of proteome subtypes and differential feature con-
servation in an independent biological FFPE dataset. A Clinical sample infor-
mation with proteome subtype assignments using ACF based classification94 (B)
PCA, based on proteins found in ≥70% samples, illustrating the separation of pro-
teome MB subtypes (source data file has been provided). C Protein abundances of
established biomarkers WNT and SHH biomarker FLNA (nWNT = 3, nSHH = 9,
nOthers = 18, two-tailed, unpaired t-test, ppWNTvsothers = NS, ppSHHvsothers < 0.001),
WNT biomarker CTNNB1 (nWNT = 3, nOthers = 27, two-tailed, unpaired t-test,
ppWNTvsothers = NS.) and SHH biomarker GAB1 (nSHH = 9, nOthers = 21, two-tailed,
unpaired t test, ppSHHvsothers < 0.001, data are represented as mean values ± SD).
D Significant higher abundance of TNC (npWNT = 3,nOthers = 27, two-tailed, unpaired
t-test, ppWNTvsothers < 0.0001) and PALMD (npG3myc = 3, npOthers = 27, two-tailed,
unpaired t test, ppG3mycvsothers < 0.01) in pWNT and the pG3myc subtype, respec-
tively. Data are represented as mean values ± SD. E Correlation plot displaying
mean Pearson correlation per subtype between the integrated cohort and the
biological validation cohort. F Hierarchical clustering of biological validation
cohort samples with samples from the main cohort (Pearson correlation and
ward.D2 linkage). G Heatmaps showing mean protein abundance for the top hit

gene sets enriched in the transcriptional (top) and synaptic profile (bottom).H Bar
plot displaying proteome subtype-specific Pearson correlation calculated for
matched samples between proteins and CpG sites (r >0.7, n = 29, total number of
samples having both DNA methylome and proteome data, 5880 proteins and
549,089 CpG sites). The number of proteins correlating with CpG site of their own
gene are shown in color.I Left: Heatmaps for Mean protein abundancies, gene
expression values and methylation at CpG sites for all components of the tailless
complex polypeptide 1 ring complex/Chaperonin containing tailless complex
polypeptide 1 (TriC/CCT) per proteome subtype in matched cases (n = 29,
npWNT = 3, npSHHt = 8,npSHHs = 2, npG3 = 3, npG3myc = 3, npG4 = 11) samples having both
DNAmethylomeandproteomedata).Middle:Quantification (two-tailed, unpaired t
test, data are presented as mean values ± SD) Right: p values when comparing
subtypes (ppWNTvspSHHt <0.0001, ppWNTvspSHHs = NS, ppWNTvspG3 < 0.0001,
ppWNTvspG3myc < 0.0001, ppWNTvspG4 < 0.001, ppSHHtvspSHHs < 0.001,
ppSHHttvspG3 < 0.001,ppSHHtvspG3myc < 0.0001, ppSHHtvspG4 < 0.01, ppSHHsvspG3 < 0.001,
ppSHHsvspG3myc < 0.0001, ppSHHsvspG4 < 0.05, ppG3vsG4 < 0.01, ppG3vspG3myc < 0.0001,
ppG4vspG3myc < 0.0001). n represents biologically independent human samples.
NS = not significant.
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ForMSrawdata of themetabolites and amino acids please refer to
MetaboLights repository82 MTBLS9830 and MTBLS9836, respectively.

N-Glycan profiling
100 µgofprotein for 18 sampleswas denatured, reduced, and alkylated
as described above. Sampleswere concentrated by 3 kDaAmiconUltra
centrifugal filters (Merck Millipore, R0NB30416) with 100mM
NH4HCO3 to exchange the buffer and retain globular particles above
3 kDa. Thirty units of PNGase F were added to each sample and incu-
bated in a 37 °C Thermomixer for 24 h. After PNGase F digestion,
purified N-glycans were eluted by Sep-Pak C18 cartridges (Water,
WAT023590) with 5% acetic acid and dried in a speed vacuum. The
purified N-glycans were then permethylated using an optimized solid-
phase permethylation method and analyzed via LC-MS measurement
as mentioned here83. Glycan data has been deposited at GlycoPOST84

with the identifier GPST000414.

Raw data processing
Processing of DNAmethylation array data. Idat files generated using
the above protocol were processed in R (Version 4.0.5). The files were
read using the minfi package (Version 1.36.0)85. Differentially methy-
lated probes/CpG sites were found using the limma package (Version
3.46.0)86, corrected for multiple testing using Benjamini Hochberg
(cut-off 5% FDR). M-values of 10,000 differentially methylated CpG
sites which could cluster subtypes based on biological differences
were selected for further analysis. Similarly, DMR analysis was per-
formed using DMRcate package (V4.30.0). For DMR analysis, we set a
min of 10 CpGs per DMR (<1000 nt from each other) tominimize gene
overlap, which resulted in ~9000 DMRs with each DMR having
10–200CpGs.

Processing of Proteome raw data for main cohort
Processing of Proteome raw data for the integrated cohort.
Obtained raw data from in-house generated and publicly available
(Archer et al. 16, TMT 10-Plex; Petralia et al. 15, TMT 11-Plex). TMT-based
LC-MSmeasurements were processed with the Andromeda algorithm,
implemented in the MaxQuant software (Max Plank Institute for Bio-
chemistry, Version 1.6.2.10)87 and searched against a reviewed human
database (downloaded from Uniprot February 2019, 26,659 entries).).
The Carboxymethylation of cysteine residues was set as a fixed mod-
ification. Methionine oxidation, N-terminal protein acetylation and the
conversion of glutamine to pyroglutamate were set as variable mod-
ifications. Peptides with a minimum length of 6 amino acids and a
maximummass of 6000Da were considered. The mass tolerance was
set to 10 ppm. The maximum number of allowed missed cleavages in
tryptic digestion was two. A false discovery rate (FDR) value threshold
<0.01, using a reverted decoy peptide databases approach, was set for
peptide identification. Quantification was performed, based on TMT
reporter intensities at MS3 level for LC-MS3 in-house data and at MS2
level for LC-MS2 data, acquired by Archer et al. 16 and Petralia et al. 15.
All studies were searched separately. Fractions for each TMT batch
were searched jointly.

For stable isotope labeling by amino acids in cell culture (super-
SILAC) data, acquired by Forget et al. 17, log2 transformed SILAC
ratios were directly obtained from the MassIVE online repository
(MSV000082644).

For the external validation the dataset published by Waszak et al.
29. was used. The DIA raw data spectra were downloaded from PRIDE
and processed using Data Independent Acquisition with Neural Net-
works (DIA-NN, version 1.8.1)88. The spectra were searched against a
peer-reviewed human FASTA database (downloaded from UniProt
April 2020, 20,365 entries). A spectral librarywas generated in silicoby
DIA-NN using the same FASTA database. Smart profiling was enabled
for library generation. Methionine oxidation, carboxymethylation of
cysteine residues as well as N-terminal methionine excision were set as

variable modifications. The maximum number of variable modifica-
tions was set to three, the maximum number of missed cleavages was
two. The peptide length range was set from 7 to 30. Mass accuracy,
MS1 accuracy, and the scan window were optimized by DIA-NN. An
FDR <0.01 was applied at the precursor level—decoys were generated
by mutating target precursors’ amino acids adjacent to the peptide
termini. Interference removal from fragment elution curves as well as
normalization were disabled. Neural network classifier was set to
single-pass mode and the fixed-width center of each elution peak was
used for quantification.

Processing of the biological and technical validation cohorts. The
spectra were searched with the Sequest algorithm integrated in the
Proteome Discoverer software (v 3.0.0.757), Thermo Fisher Scientific)
against a reviewed humandatabase (downloaded fromUniprot in June
2021, Containing 20,683 entries)). Carbamidomethylation was set as
fixed modification for cysteine residues and the oxidation of methio-
nine, and pyro-glutamate formation at glutamine residues at the
peptide N-terminus, as well as acetylation of the protein N-terminus
were allowed as variable modifications. A maximum number of 2
missing tryptic cleavages was set. Peptides between 6 and 144 amino
acids where considered. A strict cutoff (FDR <0.01) was set for peptide
and protein identification. Quantification was performed using the
Minora Algorithm, implemented in Proteome discoverer.

Processing of N-Glycan raw data
N-Glycan raw data were opened with Xcalibur Qual Browser
(Version No 4.2.28.14). MaxQuant were used for extracting all the
detected masses and m/z from MS raw data of permethylated redu-
cing N-glycans. An in-house Python-script was used to extract and
calculate monosaccharide compositions based on the molecular
weight of each derivatized N-glycan89. The N-glycan structures
were identified, matched to N-glycan compositions and quantified
using the Xcalibur, Glycoworkbench 2.1 and Skyline software
(Version No 21.1.0.278)83. Further statistical analysis was performed
with the Perseus software.

Processing of raw transcriptome data
Raw fastq files of human samples were processed in usegalaxy.eu90.
Low quality reads were detected using FastQC (Galaxy Version
0.73+galaxy0), and Trimmomatic (Galaxy Version 0.38.1) was used for
trimming poor quality reads (reads with average quality <20). Reads
were aligned to the GRh38 human reference genome using STAR
aligner (Galaxy Version 2.7.8a+galaxy1). Gene expression was quanti-
fied with featureCounts (Galaxy Version 2.0.1+galaxy2) and VST-
normalized files were generated by DEseq2 (Galaxy Version
2.11.40.7+galaxy2). Further processing of data was performed with R
(v4.2.1). Transcriptome data was combined with publicly available
transcriptome data16. Batch corrected with HarmonizR26.

Processing of DNA methylation array data
Raw signal intensities for EPIC and 450K files were read individually.
Since ~93%of the loci of 450Karray are alsopresent on EPIC array, they
can be combined using minfi’s combineArrays(). After combining the
two arrays they can be output as a virtual array. In this study, 450 K
array was the output virtual array since a greater number of samples
were measured on 450K.

The detection P value was used to identify sample quality and
filter out bad quality samples (none were excluded, n = 0). Further,
probes having bad quality (n = 49,091), probes with single nucleotide
polymorphism (n = 12,868) and probes present on X and Y chromo-
somes (n = 8777) were filtered out. After normalization and probe
filtering, the m-values log2(M/U) where methylation intensity is
denoted by M and unmethylation intensity denoted by U were used
for further analysis.
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Data normalization and integration
Normalization and integration of DNA methylation array data.
Single-sample noob normalization (ssNoob) was performed since we
combined samples fromdifferent arrays (EPIC and450K). Thedetailed
method development has been mentioned91,92.

Normalization and integration of Proteome data. Prior to data inte-
gration, protein abundances were handled separately for each dataset.
TMT reporter intensities were log2 transformed and median normal-
ized across columns. Technical variances between TMT batches were
corrected, using HarmonizR framework (Version 0.0.0.9). As descri-
bed here26, mean subtraction across rows was applied to batch-effect
corrected TMT reporter intensities tomimic SILAC ratios, prior to data
integration. Log2 transformed super SILAC ratios were median nor-
malized across columns prior to data integration.

Processed data from individual studies was combined based on
theUniProt identifier, data harmonizationwas performed asdescribed
above. Combined, harmonized protein abundances were mean-scaled
across rows. Out of 176 analyzed cases, 9 patients were excluded
from further analysis, as high blood protein yields, suppressing tumor-
specific signals, were detected from LC-MS/MS measurements (Sup-
plementary data 1a).

For the external validation cohort protein abundances were log2
transformed and median normalized across columns. Samples were
assigned to proteome subtypes individually. Protein abundances were
reduced to the 3998 proteins, considered in the main cohort. Har-
monized protein abundances from the main cohort were integrated
with each individual sample. Mean row normalization was performed
to adjust values from validation samples to the main cohort. Pearson
correlation-based hierarchical clustering, with average linkage was
applied using the Perseus software (Max Plank Institute for Biochem-
istry, Version 1.5.8.5)93.

For biological and technical validation cohort the data was pro-
cessed and harmonized as described above. For the biological valida-
tion, one sample had to be excluded due to high blood protein yields
as described above. The proteome subtypes for the biological valida-
tion were assigned via the ACF classifier94. The proteome subtypes for
the technical validation were taken from the main cohort. Protein
abundances were treated as above.

Normalization of N-Glycan data. N-Glycan intensities were log2
transformed and median normalized across columns to compensate
for injection amount variations.

Quantification and statistical analysis
Dimensionality reduction and hierarchical clustering. Nonlinear
Iterative vertical Least Squares (NIPALS) PCA and hierarchical clus-
tering were performed in the R software environment (version 4.1.3).
For Principal component calculation and visualization, the mixOmics
package (Version 6.19.4.)31 was used in Bioconductor (version 3.14).
Hierarchical clustering was performed based on pheatmap package
(version 1.0.12) and ComplexHeatmap (Version 2.6.2)95. Pearson cor-
relation was applied as a distance metric. Ward.D linkage was used.
Pairwise complete correlationwas used, to enable the consideration of
missing values.

Consensus clustering. To determine the ideal number of clusters
from proteome and DNA-methylation data, Consensus Clustering
was applied on normalized and integrated datasets, using the
ConsensusClusterPlus package (Version 1.6)96, in the R software
environment (version 4.1.3). In correspondence with the current
maximumnumber of suspectedMB subtypes, the number of clusters
was varied from 2 to 12 and calculated with 1000 subsamples for all
combinations of two clustering methods (Hierarchical clustering
(HC) and partition around medoids (PAM)) and three distance

metrics (Euclidean, Spearman, Pearson). The Ward’s method was
applied for linkage. Missing value tolerant pairwise complete corre-
lation was used, to enable the consideration of missing values.
For each sample, the cluster certainty was calculated by how many
times under the application of different distance metrics (Euclidean,
Spearman, Pearson) and clustering approaches (k-medoids, hier-
archical clustering) a sample was associated with a certain cluster,
while allowing a total number of six clusters.

Differential analysis and visualization
Statistical testingwas carried out, using the Perseus software93. ANOVA
testing was performed for the comparison across multiple subgroups/
subtypes. Factors, identified with p value < 0.05 were considered sta-
tistically significant differential abundant across groups. For the
identification of subtype-specific biomarkers, Students t-testing was
applied (p value < 0.05, Foldchange difference > 1.5). Visualization of
t-test results and abundance distributions across groups was per-
formed in PRISM (GraphPad, Version 5) and Microsoft excel (Ver-
sion 16.5.).

Functional annotation of data sets
REACTOME- based97 Gene Set Enrichment Analysis was performed by
using the GSEA software (version 4.1, Broad Institute, San Diego, CA,
USA)98. 1000 permutations were used. Permutation was performed
based on gene sets. A weighted enrichment statistic was applied,
using the signal-to-noise ratio as a metric for ranking genes. No
additional normalization was applied within GSEA. As in default
mode, gene sets smaller than 15 and bigger than 500 genes were
excluded from analysis. For visualization of GSEA results, the
EnrichmentMap (version 3.3)99 application within the Cytoscape
environment (version 3.8.2)100 was used. Gene sets were considered if
they were identified at an FDR < 0.25 and a p value < 0.1. For gene-set-
similarity filtering, data set edges were set automatically. A combined
Jaccard and Overlap metric was used, applying a cutoff of 0.375. For
gene set clustering, AutoAnnotate (version 1.3)99 was used, using the
Markov cluster algorithm (MCL). The gene-set-similarity coefficient
was utilized for edge weighting.

Survival curves
Kaplan-Meier curves were generated for the overall survival of 121
patients. All Kaplan-Meier curves and log-rank test p values were
generated with PRISM (GraphPad, Version 5). A conservative log-rank
test (Mantel-Cox) was used for the comparison of survival curves. A
significant difference between curves was assumed at a p value <0.05.

Copy number frequency plots of Proteome and DNA
Methylome data
Copy number analysis was performed on samples having both
methylation and proteomic data (N = 115). Samples from 450K and
EPIC array were read in separately as mentioned above. Data were
read using read.metharray.sheet() and read.metharray.exp() using
the minfiData package (Version 0.36.0)85. For normalization, pre-
processIllumina normalization using MsetEx data containing
control samples for normalization of 450 K array data, while for EPIC
array data minfidataEPIC (Version1.16.0)85 was used. IlluminaHu-
manMethylation450kanno.ilmn12.hg19 and IlluminaHumanMethyla-
tionEPICanno.ilm10b4.hg19 were used to generate the annotation
files of 450 K and EPIC array data respectively.

Individual sample CNV plots were generated as mentioned in the
Conumee package (Version 1.24.0) vignette, and the segmentation
information fromeach samplewas saved and used later for generation
of cumulative CNV plot using CNAppWeb tool101(cut-off> = |0.2|) for
gain or loss). The segmentation information for all samples belonging
to one subtype were combined into a single file in subgroup specific
manner and then read into CNAppWeb tool.
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Combining the segmentation information from proteome data
andmethylomedata in subgroup specificmanner, Pearson correlation-
based distance plot was generated.

To map the protein abundancies to each of the chromosomes,
protein names were converted to their respective gene names and a
column containing mapping information for these genes was added.
Copynumber (Version 1.30.0) package in R was used to generate seg-
mentation information for these proteins. CNAppWeb tool using the
cut-off mentioned above was used to map the protein abundancies to
respective chromosomes.

Integration of proteome and DNA methylome data
DIABLO from mixOmics (Version 6.19.4)31 was used for integration of
proteome and methylome data to correlate the two data types. Pro-
teome data (3990 proteins,115 samples) and methylome data (10,000
differentially methylated CpG sites, 115 proteins) were pre-processed
as mentioned above. Steps followed were same as explained in the
mixOmics vignette. Briefly, datasets were integrated, an output vari-
able containing information about which subgroup the samples
belong to was also supplied. Each data set is broken down into com-
ponents (5 components for this study) or latent variables which are
associated with the data. Components were selected using fivefold
cross validation repeated 50 times and since the groups were imbal-
anced lowest overall error rate and centroid distance was used. For
each dataset and for each component sparse DIABLO was applied
which will select variables contributing maximally to the selected
component. sPLS-DA was applied to the selected variables to generate
the correlation circus plot (cut-off 0.7) which gives the variables that
are either positively or negatively correlating with each other. DMRs
between each methylome subtype was found in a pairwise manner,
corrected for multiple testing using Benjamini Hochberg (cut-off 5%
FDR) and integrated with proteome data in mixOmics.

Global correlation of proteome and DNA methylation data
To check for overall correlation between the two datasets, subgroup-
specific (pWNT= 13, pSHHt = 29, pSHHs = 6, pG4 = 36, pG3= 11,
pG3Myc= 20) pearson correlation (cut-off 0.7) was performed
between the proteome (3990 proteins and 115 samples) and methy-
lome (381,717 probes and 115 samples) in R (Version4.0.5. The datawas
subsetted for correlation value ≥0.7 and matches of proteins to their
respective probes using Python script in anaconda JupyterLab (Version
3.0.14). Non-subgroup specific pearson correlation between the pro-
teome and methylome data was similarly performed with focus on
potential biomarkers for each subgroup and their correlation with
methylation probes. Scatterplots of biomarker’s protein abundance
and the M-values of CpG sites of its own gene (crossing the pearson
correlation cut-off of 0.7) were plotted to confirm the correlations. For
correlatingDMRs andproteins,meanof all CpG sites belonging to each
DMR was taken to find correlation between all DMRs and proteins

For correlation of CCT complex components, all samples for
which we had all three datasets were considered (n = 60) and Pearson
correlation ≥0.7was plotted using circlize(Version 0.4.15) and corrplot
(Version 0.92) package in R (Version 4.3.0).

Quantification of immunohistochemical stainings
Immunostained tissue sections were digitalized using a Hamamatsu
NanoZoomer 2.0-HT C9600 whole slide scanner (Hamamatsu Photo-
nics, Tokyo, Japan). Slide images were exported using NDP view
v2.7.43 software. Digital image analysis was performed using ImageJ/
Fiji software102 after white balance correction in Adobe Photoshop
2022 (Adobe Inc., San Jose, USA). Tumor areas were labeled via
manually drawn regions of interest (ROIs). Tissue areas not eligible for
quantification (e.g., non-tumorous tissue, technical or digital artifacts)
were excluded from the analysis. Total tumor tissue areas were mea-
sured in grayscale-converted images via consistent global thresholding

(0, 241) and subsequent pixel quantification within the ROIs. DAB-
positive pixels (i.e., brown immunostaining) were quantified on a
three-tiered intensity scale after application of the color deconvolu-
tion plugin. In detail, pixels were successively quantified within three
distinct thresholds [0, 134 (strong/3+); 135, 182 (medium/2+); and 183,
203 (weak/1+)]. Based on the conventionalHisto-score, pixel quantities
of strong, medium and weak intensity were multiplied by three, two
and one, respectively, and then summed up. The hereby generated
score is referred to as a digital Histoscore (DH-score).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw proteome data have been deposited under PXD039319 (TMT
data), and PXD048767 (validation cohorts). RawDNAMethylation and
RNA Seq data can be accessed via GSE243796 containing subsets
GSE222478 (450K array DNA methylation data), GSE243768 (EPIC
array DNA methylation data) and GSE243795 (RNA seq data). Raw
metabolomics and amino acid data have been deposited to the EMBL-
EBI MetaboLights database82 with the identifier MTBLS9830 and
MTBLS9836 respectively. Raw glycan data has been deposited at
GlycoPOST84 with the identifier GPST000414. Previously published
data were included from EGAS0000100195316, from GSE10472817,
GSE13005178, GPL222865, MSV000082644 (MassIVE online repository)
and PXD00660716,17, PXD01683229, or through the Clinical Proteomic
Tumor Analysis Consortium Data Portal [https://cptac-data-portal.
georgetown.edu/cptacPublic/] and the Proteomics Data Commons15

[https://pdc.cancer.gov/pdc/]. Source data are provided in this paper.
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