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Our prototype system designed for clinical data acquisition and recording of studies is a novel 
electronic data capture (EDC) software for simple and lightweight data capture in clinical research. 
Existing software tools are either costly or suffer from very limited features. To overcome these 
shortcomings, we designed an EDC software together with a mobile client. We aimed at making it 
easy to set-up, modifiable, scalable and thereby facilitating research. We wrote the software in R using 
a modular approach and implemented existing data standards along with a meta data driven interface 
and database structure. The prototype is an adaptable open-source software, which can be installed 
locally or in the cloud without advanced IT-knowledge. A mobile web interface and progressive 
web app for mobile use and desktop computers is added. We show the software’s capability, by 
demonstrating four clinical studies with over 1600 participants and 679 variables per participant. 
We delineate a simple deployment approach for a server-installation and indicate further use-cases. 
The software is available under the MIT open-source license. Conclusively the software is versatile, 
easily deployable, highly modifiable, and extremely scalable for clinical studies. As an open-source 
R-software it is accessible, open to community-driven development and improvement in the future.

Keywords  Clinical trial, Electronic data capture, Open-source, Progressive web app, Clinical data 
management

Biomedical studies rely on methodical data acquisition and processing. EDC software is essential to biomedi-
cal research since it greatly facilitates systematic data acquisition and processing enabling meaningful analysis 
and relevant insights1. Furthermore, high-quality data acquisition and handling is the key to reliable research 
results. Modern EDC software must serve vastly diverse needs of biomedical studies while protecting data integ-
rity and promoting transparent, reproducible, and reliable research. The process of data recording, using the 
electronic Case Report Form (eCRF) integrated into the EDC software needs to be as easy as possible, facilitat-
ing data acquisition both by study personal and by patients when filling out patient related outcome forms. In 
general, use of an EDC software in contrast to spread sheet solutions improves data quality whilst reducing time 
consumption2,3. The quality and comprehensiveness of data is ensured by detection of missing fields or inability 
to complete the submission form, a central aspect of the eCRF. An important feature of EDC software, especially 
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with interventional studies, is the possibility of real data analysis and review, whilst monitoring the study out-
come thus being able to interfere whenever a group of patients might be harmed by the intervention studied4,5.

Most current EDC programs are published under proprietary licenses. These include some of the most widely 
used EDC software in academic research, such as REDCap6,7. Their usage and distribution are subject to fees or 
specific conditions and their source code is not publicly available. Customizations and deployment of proprietary 
software is costly and/or bound to strict limitations. When customizations are not easily available to third par-
ties, scientific reproducibility is impaired. Especially, data exchange and compatibility are of major importance 
in medical research but are often impaired by vendor-specific data architecture.

Many research groups have published innumerous studies using the REDCap software, but a head-to-head 
analysis against other proprietary software is not available. The most frequent burdens in the application espe-
cially involve the setup of the system since advanced computing skills are needed to run in on the local computer 
which often includes extra local setup fees8–10. Yet another popular eCRF software published under a proprietary 
license is soscisurvey11, which is mostly used for simple online surveys. It is difficult to use when more than one 
time point is assessed.

Important and frequent limitations of many available EDC systems are restrictions in creating versions of the 
database in an active study. Modifying the meta data (e.g. adding variables or visits) to a study protocol after an 
amendment requires archiving the existing database and a complete reset of the database.

Other commonly issues include the lack of auditability and security-concerns of the EDC software owing to 
many solutions being programmed rather long ago with constantly changing standards.

An important alternative to proprietary programs is open-source software. Its source code is available to the 
public domain under a variety of open-source licenses. Generally, open-source licenses allow the use, study, 
adaptation, and distribution of the source code and the software itself to everybody and for any use12. Some of 
the most widely used programming languages, software packages and operating systems such as C#, R, Ubuntu 
or Android are published under open-source licenses13–17. In the scientific context, open source-software has 
important advantages: publicly available source code makes open-source software transparent. Adaption and 
scientific analyses of open-source software are viable and not limited to license constraints. Publicly funded soft-
ware development stays available to the public. Developer communities can maintain and improve the software 
as needed18,19. Unfortunately, open-source EDC programs like OpenClinica often suffer from limited features 
in the open-source branch20. Customizations and deployment of these programs require advanced software 
engineering skills, due to advanced programming languages and complex software architectures. Furthermore, 
more recent advances such as federated learning or artificial intelligence can’t be deployed.

Getting started with a clinical study might require substantial resources and time for customizing and setting 
up current proprietary and open-source EDC systems. For many small research projects, these resources are not 
affordable. In consequence, such projects do not use EDC software but rather rely on spreadsheet-programs and 
paper-based forms for patient questionnaires. This jeopardizes data quality and impairs collaborative multicenter 
research for small projects or in low-budget settings1,21.

To address these problems, we designed a new prototype for an open-source EDC software and an accom-
panying mobile client.

Results
We created a metadata driven EDC software for clinical studies. We developed the software with the goal of 
creating a lightweight and scalable software, which can capture data from mobile devices and is easy to set up, 
manage and maintain without profound knowledge in software engineering or other significant resources. The 
complete source code is written in R. It is available on GitHub (https://​github.​com/​hcstu​bbe/​lcarsc).

Deployment
The software can be installed as R package from CRAN or directly from GitHub using the R software package 
devtools (see supplementary material for detailed instructions)22. These methods are sufficient for installing and 
running the software on a local machine (e.g. a laptop or desktop computer) within a few minutes and do not 
require advanced IT knowledge. From here, the software can be used for a specific study on the local machine. 
We used this deployment strategy for the retrospective YEARS study, where we recorded the clinical data set from 
patient records via a single desktop computer. Alternatively, the software can be obtained as Docker image from 
our Docker repository and launched in a Docker container. Similarly, a local deployment on several independ-
ent machines can be created using identical configuration templates. Such deployment strategy would enable 
asynchronous offline data acquisition on several devices without relying on the internet or any network at all (see 
supplementary materiel, Fig. S1). After completion of data acquisition, the datasets of each machine are merged.

To deploy the software on a server, additional steps are necessary depending on the study requirements. For 
worldwide and Transport Layer Security (TLS) encrypted access with multiple users and secure user authentica-
tion, we use ShinyProxy: ShinyProxy is an open-source Spring boot-based web application, which deploys R/
Shiny applications in docker containers23. This approach isolates each Shiny application in a user-specific docker 
container and creates an additional layer of security by separating the application management by ShinyProxy 
from the R/Shiny app in each container. For user authentication, we use Keycloak, which is an open-source soft-
ware for identity and access management24. For managing web traffic and TSL certificates, we use traefik, which 
is a HTTP reverse proxy25. This setup requires a Linux (e.g. Ubuntu Server 22.04 LTS) server with at least 4 GB 
ram, 4 CPU cores and 50 GB disk space (preferably SSD). In addition, a DNS domain, a sub-domain for Keycloak 
and an e-mail address are necessary, all of which can easily be obtained from a research institution and/or a DNS 
domain- and e-mail-provider at no or very low cost. About one hour is needed to set up the system. This approach 
is summarized in Fig. 1. A detailed step-by-step description of this setup is given in the supplementary materials.

https://github.com/hcstubbe/lcarsc
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With the above deployment strategy, we are hosting a server running several studies in parallel: currently, the 
Post-COVID-Care Study and the URGENT-GI-Database are hosted on this server. Recently, we completed the 
PREDICT-COVID Study, which was hosted in parallel. Since 12/2020 until today, this server deployment was 
stable and we did not observe any downtime, errors, or other software-related problems.

Designing a study
Once the study protocol of a new clinical trial is finalized and approved by all required instances, the software 
can be configured according to the study requirements.

At first start, the editor mode is launched. Here, the meta data defining visits and input variables are created. 
After completing the process of developing and testing the meta data, is moved into deployment mode. Only in 
the deployment mode, clinical data is recorded permanently (Fig. 2).

When first starting the meta data development, the user must define which study visits need to be recorded. 
For instance, the URGENT-GI-Database records a baseline visit (i.e. the hospitalization) and follow-up visits 
(i.e. each treatment-intervention for gastrointestinal bleeding during the hospital stay). The visits and variables 
are defined in the editor tab (Fig. 3). Each new visit and variable are added and edited through an input form. 
This form guides the process of creating new variables by allowing only correct user input and by supplying 
information regarding the respective input fields. If previous studies published their variable sets, these sets can 
be uploaded into the library. From here, required variables can be added to the respective visits. Alternatively, 
the complete meta data of a previous study (i.e. visit and variable definitions) can be uploaded directly into the 
editor creating an exact copy of the previous study or uploading previously developed definitions.

Once the required visits and variables are defined, the interface can be built in the editor tab and thereafter 
tested in the preview tab. If the user chooses to add a mobile visit, the mobile preview tab will show the mobile 
interface. If the testing meets the desired results, the application is moved into the deployment mode. Activating 
the deployment mode should be done with great care. In the current version, a reversal into the editor mode can 
only be done by the administrator. Existing visits cannot be changed anymore to protect the database integrity.

Collecting clinical data
Only after activating the deployment mode, clinical data can be stored permanently. Study participants are 
included in the database (i.e. pseudonymized) using the inclusion tab. After inclusion, clinical data can be 
recorded for each participant using the documentation tab. The documentation tab provides an overview of the 
status of documentation for each participant (Fig. 4). The clinical data is entered and edited through an input 
form, which renders the required input fields for each study visit based on the respective metadata. The system 
supports all common data inputs: (text, integers, floats, checkboxes, time, date, radio buttons, drop-down choice 
menus and drop-down choice menus with search function for larger lists or vocabularies such as ICD-10 or 
ICHI). The input types can be extended easily if needed.

Figure 1.   Examples for the deployment of LCARS-C and LCARS-M. The upper panel depicts a simple local 
deployment. The lower panel depicts a cloud-deployment using Docker swarm serving a multicenter, multiuser 
setting.
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Mobile data capture
If mobile data capture is included into the study protocol (e.g. for recording patient reported outcomes), the 
LCARS-M app must be deployed together with LCARS-C. LCARS-M is provided as a separate R package, to 
allow separate development cycles. LCARS-M must access the same databank as LCARS-C. It pulls the meta-
data from the databank, which was defined by LCARS-C, to render its input interface. If LCARS-M is used by 
the study center to collect patient information using a mobile device (e.g. a tablet), the study personnel enters 
the participants pseudonymized/anonymized ID (PID) into the tablet. LCARS-M then checks, if the respective 
PID exists and opens the input form. If LCARS-M is configured to collect data from the same participant (e.g. 
from the participant’s smartphone), the participant has to login to LCARS-M using his smart phone, tablet or 
computer with login data provided by the study site.

Exporting data
Once a study is completed, the complete study dataset can be downloaded as a zip file. This file contains the 
clinical dataset, as well as all metadata and an automatically generated codebook. In addition, the administrator 

Figure 2.   Workflow. The diagram shows the workflow for creating a new electronic case report form.

Figure 3.   Editor user interface. interface of the widget editor. Here, widgets and visits are defined.
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can download an aggregated dataset from all visits as comma separated values (CSV) file, excel (XLSX) file, or 
as R Data Format (RDS) file.

Use in clinical studies
As of today, we completed four clinical studies using the software: the prospective multicenter PREDICT-COVID-
Study investigated the predictive power of the artificial intelligence (AI)-based SACOV-19 predictor and score. 
The retrospective YEARS-Study investigated the risk of pulmonary embolisms in patients hospitalized with acute 
COVID-19. The prospective Post-COVID-Care (PCC) Study investigated long-lasting signs and symptoms of 
COVID-19. The retrospective URGENT-GI-Database examined a large cohort of patients with gastrointestinal 
bleeding. For PREDICT-COVID and the YEARS-Study, two visits were recorded: one baseline and one follow-
up visit. We included 124 patients in the PREDICT-COVID-Study. In total, 64 variables were collected for each 
study participant. In the YEARS-Study, we included 413 participants. Here, we collected a total of 101 variables. 
During the data capturing, we did not encounter any technical problems. Missing values in both studies were 
due to a lack of information in the clinical records or implausible clinical records, but never because of techni-
cal problems. Their results were published recently26,27. In the PCC Study, we collected up to 679 variables per 
participant in baseline visits and several follow-up visits encompassing medical history, current signs and symp-
toms, laboratory data, several questionnaires, diagnostic procedures, imaging results, specialist consultations, 
clinical management decisions and smart-watch data. To acquire patient reported scores and outcomes, we used 
the software on tablets. In total, 353 participants were included. First results of the PCC-study were published 
recently or are under review28–30. For the URGENT-GI-Study, we recorded two different study visits (one baseline 
and one follow-up visit). Here, we collect 173 variables per patient and included 779 participants. At the time 
of writing, first publications are being prepared. During all studies, no significant technical problems occurred, 
and no technical problems were reported by users. For all clinical studies, data was checked for consistency and 
completeness. Here, missing data and minor inconsistencies were due to missing or inconsistent clinical records, 
but never to technical issues of the software.

The ethics committee of the Medical Faculty of the LMU Munich reviewed and approved the Post-COVID-
Care Study, the PREDICT-COVID-Study, the URGENT-GI-Study, and the YEARS-Study.

Several other studies are currently ongoing or in the planning stage.

Discussion
We built an open-source software with the goal of providing an EDC system, that is easy to use, modifiable, 
scalable, able to capture data from mobile devices, and does not require advanced IT or software-engineering 
skills to get started. Since EDC software plays an essential role in biomedical research, our software facilitates 
transparent and reproducible research without requiring significant resources.

For scenarios, where a local computer with a single user-account is sufficient for data capture, no additional 
setup steps are necessary. If a more complex scenario needs to be covered, a server installation can be carried 
out following the deployment instructions detailed in the supplementary material. The setup does not require 
advanced IT or software engineering skills. The open-source software OpenClinica, for instance, requires complex 
setup-steps to get started with the simplest deployment method, whereas our software can be installed and is 
ready to go with only one R command for local deployments20. REDCap, a widely used EDC software, requires 
joining the REDCap consortium or interaction with the local REDCap informatics team, before gaining cost-free 

Figure 4.   Production user interface. (Left screenshot) Interface of the eCRF in production mode. Note that the 
bar on top is now showing the study’s name and is colored in blue. Patient IDs and usernames are hidden; (right 
screenshot) an entry form showing different types of data input, such as time, text or radio buttons.
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access to the software. For industry users and researchers unable or not willing to join the REDCap consortium, 
using the REDCap involves fees. Setting up REDCap is complex and advanced IT knowledge is recommended if 
REDCap is not yet available on the local research institution. Commercial offers of EDC software usually involve 
substantial cost for establishing these systems. Therefore, getting started with our prototype is straightforward 
and does not involve significant costs or other resources. A server setup can be achieved with minimal resource 
requirements.

The MIT license permits its use for any use case and allows studying, changing, distributing the software by 
anyone. Users are invited to contribute their innovations to our GitHub repository, where code changes will be 
reviewed and implemented based on their quality and utility. The underlying R/Shiny framework with R being 
an accessible and broadly used programming language among biomedical scientists, together with the modular 
design, set a low barrier for user contributions and code-review. Given the powerful capabilities of R in data 
handling, analysis, and visualization, implementing additional powerful data management and analysis pipelines 
seamlessly into the software can be achieved by simply adding new R/Shiny modules. In contrast, proprietary 
software usually does not publish or permit distributing, studying, or changing its source code. For instance, 
the REDCap source code is not available to the public. Modifications of REDCap, which are inspired and tested 
by REDCap consortium members, become property of the Vanderbilt University6,7. While the REDCap source 
code is available to consortium members, users of other proprietary software usually do not have any access to 
the respective source code. Compared to other EDC software, our prototype is accessible and friendly to changes 
by software users and other stakeholders.

Security is often brought forward to support the usage of proprietary over open-source software7,31. Com-
munity development and availability of source-code render open-source software more vulnerable to security 
issues. On the other hand, the availability of source code allows for code reviews, supporting the identification 
of security hazards. In addition, many open-source projects are supported by software companies. These com-
panies implement open-source software into their own products or sell services around open-source software. 
Many of these products are widely and commercially used. Examples are the Linux operating system Ubuntu, 
which is maintained by Canonical and an open-source community and is considered extremely secure or the 
Docker framework, which is virtually ubiquitously used in modern web deployment. In our server deployment 
approach, we use enterprise-grade open-source software and a highly compartmentalized deployment strategy, 
isolating each user session in a single container.

The metadata driven interface and database structure along with the editor and library modules enable an 
uncomplicated setup for new studies. Recycling variable sets from previously published studies and importing 
published FHIR-conform variable sets such as the German Corona Consensus Dataset (GECCO) can greatly 
accelerate setting up a new clinical study reducing the required resources32. In addition, clinical data can be 
imported from FHIR-compatible servers. The usage of data standards is pivotal to guarantee data exchange and 
interoperability of software systems. Implementing FHIR-compatibility is a first step towards widely accepted 
data standards. To increase accessibility for external developers and improve integration into third-party systems, 
we aim to incorporate an API documentation such as the Open API standard in future releases.

In the future we aim at marking the software available for a wider use and easier deployment, where after 
the first setup-steps which are guided by an administrator, the conduction of the whole data input, analysis, and 
provision of the first figures is autonomically conducted by the software. Currently, the eCRF can be setup by 
the user step-by-step. We aim at implementing an automated system for data import and the import of already 
established questionaries. For future development we plan to implement the JSON data standard32 for scientific 
data and metadata export and import. This allows for straightforward exchange and validation of the data across 
systems. Furthermore, the implementation of more advanced applications, such as federated learning will be 
implemented.

We work to establish a community of users and contributors, allowing for long-term development and sup-
port of this open-source project. Currently, the project is being used in multiple research projects of the LMU 
university hospital with a growing community of users nationally and internationally.

In conclusion, we designed a new open-source EDC software, which is a versatile, easily deployable, highly 
modifiable, and extremely scalable EDC solution for clinical studies. We described four use cases in retrospec-
tive and prospective observational clinical studies. In these studies, we successfully tested and used the software. 
Several additional studies using our software are ongoing or being planned. User feedback was very positive, 
and no significant technical problems occurred. For the use in interventional trials, further development and 
certification will be required to meet FDA and EMA regulations (e.g. HIPAA or GDPR), as well as established 
security standards and data practices (e.g. ISO and SOC)33. As an open-source software and with R at its heart, 
LCARS-C/M is accessible and open to community-driven development, adaption, and improvement in the future.

The software is freely available under the permissive MIT open-source license.

Methods
We aimed at making the software easy to set-up, modifiable, scalable, able to capture data from mobile devices 
through a mobile client and facilitate transparent, reproducible research without requiring significant resources.

Software design
We chose the R programming language for writing the software. R is an accessible, data and statistics focused 
high-level programming language17. Unlike other popular programming languages like C++, PHP, or Java/
JavaScript, it is widely used by statisticians, data scientists, in biomedical sciences and among a growing number 
of physician-scientist. Its capabilities in data management and analysis, as well as its wide usage among clinical 
scientist make it an ideal choice for LCARS-C/M: users from clinical sciences will be able to get involved in 
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investigation, customization, and development of this software. R’s powerful data management tools provide a 
robust and time-tested framework to handle clinical study data.

As backbone for developing we used Shiny, an R software package for building web-based R apps34. It is well 
suited for building highly interactive web interfaces that focus on data. Developing Shiny apps is easy to learn 
and relies on R code not requiring classical web development languages and tools such as HTML, PHP, CSS, or 
JavaScript. Simple Shiny apps and modules (i.e. the building blocks of more complex shiny apps) can be coded 
within minutes and hours.

To enforce best practice software-design and to facilitate customization, we used the R software package 
golem. Golem provides a framework for building robust, production-ready Shiny apps35. It promotes a modular 
software design: specific software-tasks, such as manipulating the database or summarizing datasets are broken 
down into modules. Modules can be added changed, removed, and tested individually, without breaking the 
entire system.

Each module file entails a logic for the frontend, where the HTML output including corresponding JavaScript 
is defined using R code. This inhibits individual and specific frontend designs, but greatly accelerates the genera-
tion of the frontend HTML and JavaScript code. The backend logic is defined in a separate section within the 
module file. It contains all logic which are run on the server, such as database transactions or handling server 
requests and responses.

The central functionality of the software is to capture data through a web/PWA interface by study personnel 
and/or study participants. We made the interface metadata driven to enable adaptions to different studies as well 
as systematic recording and sharing of the metadata. Metadata defines for each variable, which input widgets 
are displayed, how they are labeled, when and under which conditions they are shown, and what data types can 
be entered through them. The input forms can be organized visit-centered or participant-centered: participant 
information can be captured as assessed on a specific visit (e.g. a baseline visit). Alternatively, information that 
arises independent of study visits can be entered participant-centered (e.g. medications or diagnoses, which 
might change independently of programmed study visits and therefore should be independently). Metadata are 
managed, imported, and exported using the editor and library modules (Fig. 5), which facilitates the re-use in 
further project.

Mobile data capture
To enable data capture on mobile devices, we used the R software package ShinyMobile. ShinyMobile creates a 
mobile focused web interface with PWA-capabilities36. Choosing a PWA for data input had several advantages 

Figure 5.   Overview. At the core of LCARS-C/M, widgets (e.g. text fields, date picker, checkboxes, etc.) are used 
to collect clinical data at the user interface. LCARS-C and -M generate the widgets for the user interface (both 
web- and PWA-interfaces) based on the widget definitions. These definitions are stored in the metadata. The 
metadata is created and modified by the user through the LCARS-C editor or imported from existing definitions 
using the LCARS-C widget library. The metadata and the clinical data collected through the user interface is 
stored in the clinical dataset and can be exported into different file formats.
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over conventional Android iOS apps: PWAs are installable on Android devices, iOS devices and desktop com-
puters. Installing a PWA does not require access to an app store, but simply the URL of the server hosting the 
PWA. We separated the mobile web interface from the core software package to allow separate development and 
deployment of the two components.

Database
SQL or MySQL databases are used for storage of metadata and clinical/scientific datasets. The databases are 
auditable since rows are not deleted, replaced, or changed by the user. Old rows are simply marked as deleted 
but stay in the database. In consequence, the state of the database can be examined for any given time point. An 
additional module allows importing of clinical data from Fast Healthcare Interoperability Resources (FHIR) serv-
ers (e.g. clinical databases). Similarly, metadata can be imported using FIHR data formats. To allow for exchange 
of data with FHIR resources, we implemented a database connector for FHIR-based servers. This allows for a 
streamlined integration of our software alongside FHIR-based resources. We designed the database and soft-
ware, so that ontologies such as ICD-10 (International Statistical Classification of Diseases and Related Health 
Problems, Version 1037), ICHI (International Classification of Health Interventions38) or SNOMED (widely used 
systematically organized computer-processable collection of medical terms39) can be implemented: the system 
supports look-up tables, where the respective dictionaries can be uploaded. Each system can then be added to 
the eCRF using drop-down menus with search functionality.

Deployment strategies
To make the software scalable, we designed the software as R packages. They can be installed on a local computer 
running on Linux (e.g. Debian, or Ubuntu), Windows or MacOS with an installation of R. For a deployment on 
a server serving multiple users and locations, we tested a deployment approach with ShinyProxy, which is an 
open-source server software for deploying shiny apps in an enterprise grade environment23.

Software verification and validation
The requirements were defined in dialogue with prospective users. The software was tested by manually examin-
ing the software’s functionality and thorough code review along with an automated unit testing strategy using the 
R software package testthat40 for automated unit testing. Frontend tests were implemented using the Selenium 
IDE and the Selenium WebDriver41.

Finally, we investigated the software’s use in four clinical studies. Data quality of these studies was assessed, 
and requirements of the studies were examined for their fulfillment.

Ethical approval
All patients recruited for the studies mentioned were included in accordance with the relevant guidelines and 
regulations and informed consent was obtained from all subjects and/or their legal guardian(s) if necessary.

The ethics committee of the Medical Faculty of the Ludwig Maximilian University of Munich reviewed and 
approved the study protocols of each of the clinical studies conducted with LCARS-C.

Role of the funding sources
The funding sources had no role in designing, data collection, analysis, interpretation, or writing.

Data availability
The source code is written in R and freely available under the MIT open-source license at GitHub https://​github.​
com/​hcstu​bbe/​lcarsc. The datasets generated in the studies described are available from the corresponding author 
on reasonable request.
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