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Quantifying the tangling of trajectories using the topological entropy
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We present a simple method to efficiently compute a lower limit of the topological entropy and its

spatial distribution for two-dimensional mappings. These mappings could represent either

two-dimensional time-periodic fluid flows or three-dimensional magnetic fields, which are periodic

in one direction. This method is based on measuring the length of a material line in the flow.

Depending on the nature of the flow, the fluid can be mixed very efficiently which causes the line

to stretch. Here, we study a method that adaptively increases the resolution at locations along the

line where folds lead to a high curvature. This reduces the computational cost greatly which allows

us to study unprecedented parameter regimes. We demonstrate how this efficient implementation

allows the computation of the variation of the finite-time topological entropy in the mapping. This

measure quantifies spatial variations of the braiding efficiency, important in many practical applica-

tions. VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.5000812]

Mixing of fluid flows occurs in oceanic flows and indus-

trial production (e.g., concrete mixing and chocolate mix-

ing). For two-dimensional flows, we can quantify the

degree of mixing using quantities like the Lyapunov

exponent or the topological entropy. Here we use a lower

bound for the topological entropy and present an efficient

and numerically accurate implementation which can not

only be used to study flows, but also tangling of magnetic

field lines in e.g., tokamaks. We show that our approach

eliminates a large amount of unnecessary calculations

while still maintaining a high level of precision. This

approach is then used to compute a spatially dependent

lower bound of the topological entropy to identify regions

of high mixing and contrast them with areas of no

mixing.

I. INTRODUCTION

We discuss the concept of the topological entropy1 as a

measure of mixing of fluid particles in a two-dimensional

flow, or field line tangling in a three-dimensional vector

field. The notion of topological entropy was developed in the

context of dynamical systems, and has been used in the field

of fluid dynamics to understand fluid mixing.2–4 Such fluid

mixing can be the stirring of a substance (solid or liquid)

with applications in engineering and production. However,

the need to quantify the mixing or tangling of trajectories

appears also in other fields. For example, in plasma physics,

particularly for magnetic fields in tokamaks and sphero-

maks,5 the tangling of magnetic field lines is crucial for

transport processes in the plasma, however, the concept of

topological entropy has rarely been used in this context

(notable exceptions are e.g., Refs. 6 and 7). In this case, the

magnetic field lines in a tokamak can be interpreted as world

lines of a two-dimensional dynamical system. To make that

interpretation complete, we need to assume that the field is

static and periodic in the direction of the field.

In Sec. II we will describe three different methods for

measuring the topological entropy of a two-dimensional flow

(or three-dimensional periodic magnetic field). Each of these

is based on the interpretation of the entropy as the exponen-

tial stretching rate of a material line in the flow. In order to

apply the first two methods, one requires knowledge of the

mapping at every point in the domain, while the final method

deals with the case in which only a finite number of trajecto-

ries of the flow or field is known (i.e., the mapping is known

only as discrete points).

After discussing the methods for estimating the topolog-

ical entropy, we use our new method to explore the proper-

ties of two mappings that appear in the study of magnetic

field dynamics in plasmas. Many laboratory and astrophysi-

cal plasmas are characterized by high magnetic and fluid

Reynolds numbers, and as a result exhibit turbulent dynam-

ics. This dynamics typically leads to a situation in which the

magnetic field is highly disordered, with field lines being

tangled or braided in a non-trivial manner. We are motivated

to study the topological entropy in the context of these fields

because it is now apparent that the nature of the field line

tangling—i.e., the detailed magnetic field topology - is cru-

cial in determining the field and plasma dynamics, in particu-

lar their relaxed state (e.g., Refs. 8–12). This is due to the

conservation of various topological quantities. If magnetic

reconnection is allowed, such fields relax into a state of

potentially different field line topology (this topology being

preserved in the absence of reconnection). Reconnection

changes the field line mapping, which therefore changes the

stretching behavior of the above mentioned material line.

Typically the field undergoes some simplification which

leads to a reduction of the stretching rate. In laboratory plas-

mas experimentalists are interested in the length of magnetic

field lines until they hit the device’s divertor plates which
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helps in estimating the safety factor.13 Although the methods

described here do not measure such lengths, they can be

used to distinguish chaotic regions generated by the mag-

netic field.

At the end of this paper, we propose a new measure that

allows quantification of the local (in time) tangling of trajec-

tories, important in many applications—the finite-time topo-
logical entropy (FTTE). Finally, we consider the distribution

of a passive scalar to demonstrate the efficiency of the mix-

ing which will decrease the length scales exponentially, pro-

vided the topological entropy is positive.

II. TOPOLOGICAL ENTROPY: METHODS OF
ESTIMATION

A. Interpretation in terms of material line stretching

An exact value for the topological entropy of a field or

flow can be obtained only in special cases, for instance for

some analytically prescribed shearing motions,2 due to its

complicated definition which involves taking the limits of

refinements of coverings of a topological space.1 Thus, for

most practical purposes the entropy must be estimated, and

there exist different methods by which this estimation may

be performed. One such method makes use of symbolic

dynamics14 which computes a lower bound for the topolog-

ical entropy. In this paper, we focus on methods that

determine the topological entropy h(f) of a mapping

(homeomorphism)

f : M ! M; (1)

where M is a compact subset of R2. This mapping f can be

induced, for example, either by a two-dimensional time-peri-

odic flow or by the mapping of points between two planes

connected by a static periodic magnetic field.

The topological entropy h(f) is approximated by the

exponent hðf ; cÞ of the rate of stretching of a material line

c � M under the flow15

hðf Þ � hðf ; cÞ: (2)

Estimations of this stretching rate must be carried out by

some computational method. In particular, for chaotic flows

this is a numerically demanding task. In general, the quality

of the approximation of h(f) by hðf ; cÞ depends on the choice

of c, and only a supremum over the set of all possible curves

c would yield the exact value of h(f).15 However, for the

examples of chaotic flows considered below, the approxima-

tion, hðf Þ � hðf ; cÞ, is very accurate since under a few itera-

tions of the mapping c comes close to every point of the

chaotic domain.

In our approximation of the topological entropy, we

measure the length of the line c after each application of the

mapping f. For a continuous, but time-periodic map f(t),
f ðtþ TÞ ¼ f ðtÞ, we identify the number n with the number

of periods T. The quantity we wish to measure is

hðf ; cÞ ¼ lim
n!1

1

n
lnþjf nðcÞj; (3)

where jf nðcÞj denotes the length of the curve c under n itera-

tions of the mapping and lnþðxÞ ¼ maxðln x; 0Þ. For a

numerical evaluation of this expression, we discretize the

initial curve c using a high number of points xi; i 2 ½1;N�,
along the curve and measure the distances di

0; i 2 ½1;N � 1�
between those. The corresponding distances under n itera-

tions are called di
n. For the limit of di

0 ! 0, the numerical

approximation becomes exact

hðf ; cÞ ¼ lim
n!1

1

n
lim
di

0!0
lnþ

X
i

di
nX

i

di
0

0
BB@

1
CCA

0
BB@

1
CCA: (4)

Here, the total length of the line after n iterations is
P

id
i
n

and its initial length is
P

id
i
0. Note that the denominator in

the logarithm is bounded and hence does not contribute to

the value of the expression in the limit n!1.

Before going on below to describe algorithms for esti-

mating the stretching rate, we first note connections with the

calculation of the Lyapunov exponent. While in our calcula-

tions we compute a lower limit for the topological entropy

by measuring the lengthening of a mapped line, the

Lyapunov exponent measures the exponential separation of

two neighbouring points x0 and x1 ¼ x0 þ lm under the

mapping f, with the real positive parameter l and normalized

directional vector m. The point separation after the applica-

tion of the mapping n times is

dnðx0; l;mÞ ¼ jjf nðx0 þ lmÞ � f nðx0Þjj: (5)

The maximum Lyapunov exponent can then be written as

kðx0Þ ¼ max
m

lim
n!1

lim
l!0

1

n
ln

dnðx0; l;mÞ
d0ðx0; l;mÞ

� �� �
: (6)

Note that in the standard definition a continuous time t is

used instead of a discrete n.

A relation between the so called metric entropy and the

Lyapunov exponent was derived by Pesin.16,17 Using argu-

ments from the measure theory, it was shown that the metric

entropy is, in general, smaller or equal than the sum of the

positive Lyapunov exponents (Ruelle’s inequality18). For

Riemannian measure on the manifold M, the equality

between the two quantities could be shown.16 For a detailed

discussion of the relations between the topological entropy,

metric entropy, and Lyapunov exponents, the reader is

referred to the discussion of Young.17

In practice, we can only take the limit limn!1 for spe-

cial cases. In all other cases we therefore compute hðf ; cÞ for

a finite number of iterations n, finite line length, and finite

initial point separations di
0. Since the mappings that we con-

sider herein are dense within the attractor, the particular

choice of initial line c is not critical because for chaotic map-

pings the mapped curve c gets arbitrarily close to every point

in the domain for sufficiently large iteration n, as long as the

initial line intersects the attractor. Since we can identify the

iterations n of our mapping with a discrete time of a two-

dimensional fluid flow, we call this quantity the finite time

topological entropy (FTTE) and write it as
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hðf ; c; niterÞ ¼
1

niter

ln

X
i

di
niterX

i

di
0

0
BB@

1
CCA; (7)

with the integer niter.

B. Direct method: Adaptive algorithm

Here we introduce an efficient algorithm for estimating

the stretching rate of a material line under a given mapping.

For positive values of the topological entropy, the length of

the material line c scales exponentially with the number of

iterations.15 Hence, the challenge is to compute the exponen-

tial growth rate h of the length l of c under iterations of f,
which is a lower limit for the exact topological entropy.15 It

is worth noting that h will in general depend on the choice of

curve c—to find the tightest lower bound on the topological

entropy of the flow we must find the maximal stretching rate

for all possible curves c.

During our computational implementation of the above

procedure, an equal resolution everywhere along the curve at

all iterations requires an exponentially increasing number of

points. Moreover, one requires to analyze the mapping for a

significant number of iterations (typically 10–20 for the map-

pings considered herein, as described below) in order to

obtain an accurate estimate of the stretching exponent.

To combat this difficulty we introduce here an adaptive

method that directly measures the exponential line stretching

rate using a reduced number of points for each iteration of

the mapping similar to Refs. 19 and 20. To understand how

this optimization of the resolution of the line works, note first

that each iteration typically stretches and folds the material

line—see, e.g., Figs. 2 and 3. At any iteration, the curve will

be composed primarily of long sections with a relatively low

curvature, between which are line sections with a very high

curvature which need to be resolved in order to determine

the total length of the curve accurately. For a fixed and ini-

tially equidistant distribution of points, one requires a very

large number of points (trajectories) to resolve the thin folds.

In order to reduce the total computational cost, we apply

an adaptive method which adds points where the curvature

causes the angle between two consecutive line segments to

be less than cos ðaÞ ¼ 0:99, where a is the angle. Those two

line segments are spanned by three points. If the condition is

fulfilled, we add one point between the first and second

points and another between the second and the third points

on the initial line and apply the mapping on those new

points. This refinement is repeated as long as there are two

consecutive line segments for which cos ðaÞ < 0:99 or until

the refinement results only in a relative change of 10�3 of

the line length, which we call the relative length tolerance

ltol parameter in our method. We do not add points if the

length of the mapped line segment is less than 10�5 in order

to avoid issues related to the machine precision. That cut off

number for the is the absolute tolerance lmin. While refine-

ment in high curvature segments was already used by

Ref. 19, the cut off criteria for not adding points do not seem

to appear in the literature. Without them, the number of

points can quickly rise well beyond what can be stored in a

computer. This is somewhat mitigated by the “contour sur-

gery” in Ref. 19, which effectively creates short cuts in folds

that are sufficiently close together. However, such folds are

an essential part of the advected material line and cannot be

discarded for the computation of the topological entropy. In

Ref. 19 the authors used a cubic spline interpolation that is

able to counter such potential inaccuracies.

C. Stretching rate methods

An alternative to the direct method discussed above for

estimating the line stretching rate is the set of algorithms

proposed by Newhouse and Pignataro.15 These methods esti-

mate the stretching rate without explicitly fully resolving the

mapped line. Conceptually, the idea is to estimate the growth

of the line by measuring the stretching of tangent vectors to

the curve under the mapping. After each iteration, these tan-

gent vectors are re-scaled before being mapped forward

again, and the overall expansion factor is given by the prod-

ucts of the expansions during each iteration. In this process,

any mapped vectors that contract (as could occur for exam-

ple across regions of high curvature) are neglected. The algo-

rithm follows the same conceptual procedure as a common

method of calculating Lyapunov exponents.21

D. Braid entropy estimations

A further method of estimating the topological entropy is

described by Thiffeault.22 This method differs from the two

previously presented in that it is based on the assumption that

one knows only a fixed number of trajectories (field lines) orig-

inating at discrete starting points rather than having access to

the full flow information (as is required if one wishes, for

example, to add additional points in regions of high curvature).

The approach involves constructing a (mathematical) braid

from these trajectories, and then finding the minimum length

of a material loop that is constrained to wrap around the trajec-

tories. Using the method of Moussafir,23 one can encode such

a loop as a set of coordinates, which can then be used to evalu-

ate the minimum possible length of the material loop. As such,

the addition of more trajectories in the calculation will in gen-

eral lead to a longer loop and so the topological entropy of the

braid calculated in this way provides a lower bound to the

topological entropy of the full flow (corresponding to the limit

of infinitely many known trajectories, supposing that the opti-

mal choice of c has been made). For details of the algorithm

and underlying theory, the reader is referred to Thiffeault.22 It

is worth noting that in order to obtain an accurate estimation of

the entropy with a small number of trajectories using this

method one requires either to integrate the trajectories for a

very long time or to average over ensembles of trajectories,3,22

both of which are computationally expensive. The method is

implemented in the freely-available braidlab package.24

E. Passive scalar/density

If we consider mappings, like the ones discussed here,

to be world lines in a 2þ 1 dimensional space (two spatial

and one temporal dimension), then we can consider the
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braiding as mixing of fluid particles. The degree of mixing is

then reflected in the power spectrum of a passive scalar cðxÞ.
This scalar is constructed such that it initially has a constant

gradient profile in R2. Its Fourier transform is then simply

FfcðxÞgðkÞ ¼
ð

V

cðxÞeik�x d2x; (8)

where the volume V spans the two-dimensional plane. From

that we can compute the power spectrum by integrating over

k-shells of width dk

ĉðkÞ ¼
ðkþdk=2

k�dk=2

FfcðxÞgðkÞ d2k: (9)

The power spectrum is easily calculated for every appli-

cation of the braiding once we know the transformed passive

scalar distribution cðFðxÞÞ, where FðxÞ is the mapping. Since

we know FðxÞ analytically we can also compute cðFðxÞÞ
analytically.

To test the mixing of this passive scalar under the map-

ping FðxÞ we impose an initial profile cðxÞ ¼ xþ y. This cor-

responds to a simple gradient in both the x- and y-direction.

III. TEST CASES

A. H�enon map

We describe in this section some maps that we use to

verify our new algorithm for estimating the topological

entropy. We then go on to implement our algorithm to

explore the properties of these maps. We first consider the

well studied H�enon map,25 given by

xiþ1 ¼ yi þ 1� ax2
i

yiþ1 ¼ bxi;
(10)

with the parameters a and b and the iteration i. Here we will

use a¼ 1.4 and b¼ 0.3 for which this map exhibits chaotic

behavior. (Note that the mapping is not area-preserving and

therefore could not be generated by an incompressible flow,

except for b ¼ 61.) Newhouse and Pignataro15 used this

mapping to study their estimates for the topological entropy

for different parameters a and b. For a¼ 1.4, b¼ 0.3 they

estimated the topological entropy to have a value of 0.4640.

B. Blinking vortex

Building on previous work10,26 on topology of magnetic

braids we use two very similar maps, which are generated by

blinking vortices. The first we call E1, which is defined by

/1 ¼ 2
ffiffiffiffiffiffi
2p
p

j expð�ððxi � 1Þ2 þ y2
i Þ=2Þ

~x ¼ �yi sinð/1Þ þ ðxi � 1Þ cosð/1Þ þ 1

~y ¼ ðxi � 1Þ sinð/1Þ þ yi cosð/1Þ

/2 ¼ �2
ffiffiffiffiffiffi
2p
p

j expð�ðð~x þ 1Þ2 þ ~y2Þ=2Þ
xiþ1 ¼ �~y sinð/2Þ þ ð~x þ 1Þ cosð/2Þ � 1

yiþ1 ¼ ð~x þ 1Þ sin ð/2Þ þ ~y cosð/2Þ;

(11)

where xi and yi are the coordinates, j is the twist parameter,

/1 and /2 the twisting angles from the left and right twist,

respectively, ~x and ~y the mapped coordinates after the left

twist only and xiþ1 and yiþ1 the mapped coordinates after the

second twist. This formalism is chosen such that there is a

twist around the point ð�1; 0Þ with angle /1 and then around

(1, 0) with angle /2.

The second such blinking vortex mapping we call S1

and differs only by the sign of the second angle, i.e.

/2 ¼ 2
ffiffiffiffiffiffi
2p
p

j expð�ðð~x þ 1Þ2 þ ~y2Þ=2Þ: (12)

C. Standard map

The standard map27,28 (also called the Chirikov–Taylor

map) is a mapping that can be derived from a magnetic field

on a toroidal surface. It is defined as

hiþ1 ¼ ðhi � j sin ð2p/iÞ=ð2pÞÞ mod 1

/iþ1 ¼ ð/i þ hiþ1Þ mod 1
(13)

with hi;/i 2 ½0; 1�. By taking mod 1, we make sure that the

mapping is periodic. A Poincar�e map for the standard map is

shown in Fig. 1 where we can clearly see the locations of peri-

odic orbits. There are also regions of the map (particularly

around h ¼ 0:5;/ ¼ 0) where the Poincar�e map appears

highly disordered, and indeed Greene27 demonstrated that for

the parameter value chosen these regions are stochastic.

IV. RESULTS

A. Benchmark of the direct method: H�enon map

Since the H�enon map was studied using previous algo-

rithms for estimating the topological entropy, we use it as a

starting point to benchmark the new adaptive algorithm (of

Sec. II B). We start with the initial line close to the fixed

FIG. 1. A Poincar�e plot of the standard map (13) for j ¼ 0:97, 500 initial

points and 1000 iterations.
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point at ð0:883; 0:883Þ extending from ð0:882; 0:883Þ to

ð0:884; 0:883Þ (this choice being directed by the consider-

ations discussed in Newhouse and Pignataro15). Applying

our direct method, we obtain an exponential increase in

line length (see Fig. 2). This is connected to the chaotic

nature of the map, which leads to an exponential increase

of distance between neighboring points. With increasing

iteration step the number of points necessary to resolve

the entire mapped interval increases exponentially, and so

does the computational cost. Here we are able to reach

25 iterations with limited computation time. Similar to

Newhouse and Pignataro15 we fit the logarithm of the

mapped line length using linear fit and find a slope of ca.

0.46275 (see Fig. 2, lower panel) which is close to the

slope of 0.4640 found by Newhouse and Pignataro.15 This

provides a confirmation of the accuracy of the new adap-

tive algorithm.

B. Direct method: Blinking vortex

Moving now to consider the blinking vortex mapping in

Eq. (11), we apply the direct method to an initial straight line

c of length 4, starting at point ð�2; 0Þ and ending at (2, 0). In

order to gain insights into the stability of our calculations we

also perform simulations with not just one initially horizontal

line, but with 10 different straight lines of length 2 rotated

about the origin. The final length has a minor dependence on

the initial line’s orientation. For each iteration, we compute

FIG. 2. H�enon map for a¼ 1.4 and b¼ 0.3 after 25 iterations (left panel) using the direct adaptive method. Length of the line after n iteration steps for the

H�enon map (right panel) with a linear fit for lnðlÞ with slope 0.46275.

FIG. 3. Blinking vortex E1 mapping of the initially horizontal line (thick red) after 10 iterations and j ¼ 0:5 (thin cyan) (left panel). The square denotes the

zoom region for the right panel where we also show the distribution of points from the adaptive method. It can be clearly seen that in segments where the cur-

vature is high, the density of points is increased.
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the mean line length of these 10 initial conditions and the

corresponding standard deviation.

Depending on the parameter j, the line gets highly tan-

gled and shows thin folds (Fig. 3, upper panel). Those folds

are very frequent and need to be properly resolved in order

to measure the length of the line accurately. With the adap-

tive method, we achieve exactly this goal by increasing the

number of points at those segments (Fig. 3, lower panel). In

order to achieve the same degree of accuracy with a fixed

point distribution, the number of points would need to be

prohibitively large.

We plot the logarithm of the line length for different

parameters j against the number of iterations niter (Fig. 4).

The length clearly follows an exponential law of type

l ¼ aehniter ; (14)

where the values of a and h depend on j. While the length of

the stretched line is weakly sensitive on the orientation of

the initial line (by a few percent), this has little impact on the

estimate of the entropy. For the fits in Fig. 4 we use the stan-

dard deviation together with the mean values and obtain fits

with tight confidence intervals between 7:2903� 10�4 for

h¼ 1.8585 (j ¼ 2:0) and 4:4729� 10�3 for h¼ 2.3255

(j ¼ 2:5). To compare with an equivalent non-adaptive

implementation, we compute l for j ¼ 2:5 with the number

of initially equally distributed points corresponding to the

final value of the adaptive method at each iteration. While

the adaptive method gives a clean exponential increase of

l with niter, the non-adaptive method starts flattening off at

larger values of niter (Fig. 4, triangles) which is due to the

presence of under-resolved line segments.

From the gradients in lnðlÞ (Fig. 4) we can determine the

lower limit, h, for the entropy for each value of j, where h is

the slope. For the E1 mapping we obtain an almost linear

increase of h with j (Fig. 5) with absolute fitting standard

deviations between 3:908� 10�3 and 3:157� 10�2. For

j¼ 1 our results are consistently above the predicted lower

bound of 0.9624 by Boyland et al.2 For the S1 braid [see

Eqs. (11) and (12)] we see a similar increase with a similar

slope, however we observe that the values are consistently

below E1, consistent with the theoretical considerations of

Boyland.2

To compare with the results of our algorithm we also

perform calculations of the finite-time braiding exponent

(FTBE) for the same test cases using the braidlab pack-

age. The results are very similar, as shown in Fig. 5 (with a

standard deviation of 2� 10�3 at h¼ 1.0419 for j ¼ 1). For

these calculations, we stack 60 copies of the unit braid (E1

or S1), and use 10 samples of N trajectories (from a set of

1200) from this braid. N is increased from 500 to 1000 in

steps of 50, and the entropy estimated by an exponential fit

to the plot of mean FTBE versus N. Even the step for the S1

case at j¼ 1 matches with the results from the direct

method. Although the results are very similar, the computa-

tion times are very different. To compare the computational

efficiency of the two methods we measure the computation

time it takes to converge to a value for h for the E1 braid

with j¼ 1. For the direct method we use the computed

lengths in Fig. 4 starting from niter ¼ 3 to compute h and the

linear fit. By varying the total number of points used we

obtain values of h that approach an asymptotic limit. We

then use the computation time for each niter and perform a fit

of the form hðtÞ ¼ hð1� exp ð�t=t0ÞÞ, with the computation

time t and convergence time t0. Similarly, we vary the num-

ber of trajectories used in the braidlab calculations from

200 to 1000, compute the value for the FTBE and measure

the computation time. We then use the same fitting function

as for the direct method. We run both methods for the E1

case with j ¼ 1 on 4 cores and observe a convergence time

of 380 s of computing for the braidlab package and 0.83 s

for the adaptive direct method.

In addition to the computation time, a further important

consideration for measuring an exponentially growing curve

FIG. 4. Mean logarithm of the mapped line length versus the number of iter-

ations for the E1 blinking vortex map for straight starting lines crossing the

origin and different values of j with the standard deviation. We compare the

results from the adaptive method with the fixed case (triangles). The lines

are least square fits for l ¼ aehniter , with fit parameters a and h.

FIG. 5. Estimate of the topological entropy for the E1 (solid blue line and

asterisks) and S1 mapping (dashed green line and circles) in dependence of

the parameter j compared to the bradilab results for E1 (dash dotted red line

and crosses) and S1 (dotted cyan line and diamonds). As a yellow hexagon,

we also plot the exact result for the lower bound for the E3 case for j¼ 1.
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is the memory efficiency. With increasing line length, the

number of points is expected to increase as well. To test if

that is the case for our adaptive method, we plot the number

of final points, after applying the mapping n many times,

with the line length for values of j between 0.1 and 2.5

and niter between 6 (for higher j) and 150 (for lower j) (see

Fig. 6, blue circles). For comparison, we also perform calcu-

lations with a fixed number of points that are equidistant. We

vary that number between 102 and 108 and measure the

length of the stretched line for this range of points. As

expected, as the number of points is increased, the length of

the line increases (as we obtain a higher resolution and avoid

“short cuts”). We fit the logarithm of the line length in

dependence of the number of (fixed and equidistant) points

using a function of the form lð1� exp ð�knp
fixedÞÞ, where

np
fixed is the number of points. From this, we compute the

number of necessary points (Fig. 6, red crosses) to reach a

value of l 3% away from its asymptotic value. We clearly

see that we obtain a different power law than linear which

speaks against the efficiency of such a fixed line approach.

Note that the value of 3% can be easily changed. However,

the behaviour is the same (the power law becoming steeper

for increasing desired accuracy). The fact that with a fixed

grid the number of points required grows faster than linearly

with the length of the line can be understood from the fact

that, as the line length grows exponentially, so the number of

folds grows exponentially, and these folds become (on aver-

age) tighter. For the adaptive method, the number of final

points is clearly proportional to the line length which means

that the adaptive algorithm is efficient. A further improve-

ment would be to remove points where they are not needed,

i.e., along very straight line segments. However, that would

add computational complexity and we have not implemented

it here.

V. LOCAL MEASURES OF MIXING EFFICIENCY

So far we dealt solely with estimating the topological

entropy, the notion of which implicitly assumes a set of infinite

trajectories (possibly within a periodic domain). However, in

many applications of interest this condition does not hold—that

is in practice we can only follow trajectories for a finite period

of time. Indeed, even when trajectories can be followed indefi-

nitely, the finite-time behavior may be more physically rele-

vant. In any fluid mixing process, one would like to determine

the effectiveness of the mixing over finite time. If one considers

the case of a magnetic field threading a plasma, that magnetic

field might not be embedded in a periodic domain. Even if it

exists in a periodic domain (for example a tokamak or sphero-

mak) the cases of interest are not stationary. Therefore, any

given magnetic field structure exists only for a finite period of

time, say t 	 s, and within this time period plasma particles

can travel some given finite number of times around the device.

As such, for a particle located at time t¼ t0 on a given trajec-

tory, one might like to know how entangled that trajectory is

with neighboring trajectories for t0 
 t 
 t0 þ s.

The analysis of trajectories over finite time periods to

determine their complexity is typically done by calculating,

for example, Finite-Time Lyapunov Exponents (FTLEs),29 a

technique that has been used extensively in characterizing

unsteady fluid flows (e.g., Ref. 30). Such FTLEs measure

only local deformation about a single trajectory. Other

examples of measures of local stretching or deformation

in the mapping include the finite time rotation number

(FTRN),31,32 the Mean Exponential Growth factor of Nearby

Orbits (MEGNO)33 and the Generalized Alignment Index

(GALI).34

One approach that takes into account global (in space

and time) changes is the computation of the boundaries of

Lagrangian coherent structures,35 an approach that can be

extended to arbitrary dimensions.36 However, it involves the

calculation of spatial derivatives of the flow which makes it

computationally less practical.

In additional to the local measures of stretching men-

tioned above, a topological equivalent (measuring complex-

ity on finite scales), the so-called Finite-Time Braiding

Exponent (FTBE), was recently introduced by Budi�sić and

Thiffeault3 (see also Ref. 22). A similar notion of finite-time

entropy was introduced37 in the context of the differential
entropy, to measure finite-time stretching. Unlike the FTLE

this measures (finite-time) non-linear stretching over a finite

�-neighbourhood of phase space—though it reduces to the

FTLE in the limit �! 0. While this is similar in spirit to the

FTTE that we discuss here, there are fundamental mathemat-

ical differences between the two quantities; the finite-time

entropy of Froyland and Padberg-Gehle,37 being based on the

differential entropy, is more directly analogous to the metric

entropy rather than the topological entropy. For discussion on

how the differential entropy relates to the metric entropy and

topological entropy see the review by Lesne.38

A. FTTE distribution

The topological entropy characterizes the tangling of

chaotic trajectories by a single number. If we wish to under-

stand finite-time behavior of trajectories (or indeed if we

only have finite-time trajectory information), then we would

naturally like to characterize the trajectories locally in space

FIG. 6. Number of final points for the adaptive method against the total

length of the line for a horizontal starting line and different parameters j
from 0.1 to 2.5 and iterations niter from 6 to 150 (blue circles) together with

similar calculations using a fixed number of points (red crosses) and a linear

fit (green dashed line).
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as well as time (since we no longer have infinite trajectories

that fill (a portion of) the phase plane). In this case, we pro-

pose that one may obtain useful information about the behav-

ior of the system at hand by analyzing the distribution of

tangling within the domain. One would like, for example, to

take a grid of initial trajectories and evaluate the local (in

space and time) tangling per trajectory. Within the frame-

work presented in Sec. II, this can be achieved by evaluating

the FTTE over different curves c that cover M. In particular,

this distribution can tell us whether the domain is covered by

multiple chaotic regions, and whether these are separated or

mixed with regions of non-chaotic trajectories. This informa-

tion is not given by the quantity h which measures the

maximum value of the topological entropy on a given curve

c � M. In order to gain additional information about the

structure of the mapping we need to measure h for curves c
which are embedded in distinct chaotic regions.

We first consider the blinking vortex mapping, in which

the central portion of the xy-plane is chaotic (for sufficiently

large j), but we know that at large distances from the origin

trajectories are not chaotic. From Fig. 3 we see that the initial

straight line is stretched out over a significant portion of the

central part of the plane, although there are also clearly

defined “empty” regions that the mapping does not reach. If

those areas are invariant for each iteration we should be able

to measure a different value of the FTTE in them from the

surrounding regions where the stretched and folded line

densely fills the space. In fact, we might measure vanishing

entropy for some parts of the domain. In order to measure

the dependence of the FTTE on the coordinates x and y we

select an array of initial curves c given by small circles

located on a rectangular grid. These are then mapped for-

ward as usual, and we monitor the growth of the length of

the corresponding curves with the methods described above.

For our experiment we seed 111� 111 circles within

x ¼ ½�4; 4� and y ¼ ½�4; 4�. Their radius is chosen such that

neighboring circles are sufficiently far apart with radius

r ¼ 0:8� 8=ð2� 110Þ, where 8 is the size of the domain. In

order to increase the resolution we also perform computa-

tions with circles at x ¼ ½�4; 4� and y¼ 0 with 1001 circles

with radius r ¼ 0:8� 8=ð2� 1000Þ. We perform 20 itera-

tions of the blinking vortex map (11) with j ¼ 0:5 and esti-

mate the FTTE using the fitting function for the line length

as given in Eq. (14). Since the data is rather fluctuating

below n¼ 6, we discard points below this value when we

perform the fit.

We find a clear distribution for h with areas of h � 0:6
and areas with h � 0 (Fig. 7). It appears that the domain for

which h¼ 0.6 has a fractal like structure and resembles

something similar to a Cantor set (compare the middle and

lower frames in Fig. 7). The same is true for the domain for

which h¼ 0. Increasing the number of iterations improves

the fit, and hence the calculation of the entropy. This also

leads to a sharper divide with the range at 0 < h < 0:6
decreasingly populated. Similarly with fractals, or the Cantor

set, we also observe self-similarity when we shrink the

domain boundaries.

We also estimate the entropy distribution for the standard

map (13) using the method of the initial circle distribution.

Intuitively we expect vanishing entropy at the periodic orbits,

and non-zero at chaotic regions. It is not immediately clear,

however, if there is any characteristic value for the entropy.

From the FTTE distribution we can confirm our intuition, and

find vanishing entropy at periodic orbits (Fig. 8).

From the Lemma by Adler et al.1 we know that for

limniter!1 the topological entropy of the mapping is given as

FIG. 7. FTTE distribution for the blinking vortex mapping E1 with j ¼ 0:5
and with an initial distribution of 111� 111 circles (upper panel), 1001

circles at y¼ 0 (central panel), and a zoom in of the region �3:2 
 x

 �2:2 (lower panel).
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the maximum in the distribution. This is exactly what we see

when we compare Fig. 5 (for j ¼ 0:5) with Fig. 7. Intuitively,

this is easily understood as the dominance of the largest growth

rate.

For a magnetic field in a toroidal plasma the existence

of distinct chaotic regions has far reaching implications.

Their boundaries determine regions which are not crossed by

charged particles. It also implies that, given the connection

of h and the finite time Lyapunov exponent, magnetic field

line separation behaves differently for different regions.

Such distinct regions were already computed in the past

using the finite time rotation number.31,32 They showed that

it can be used to clearly distinguish disconnected regions

that, in general, have different values of the FTTE.

B. Passive scalar/density

To further probe the structure of the blinking vortex

map we consider the evolution of a passive scalar under suc-

cessive iterations of the mapping as discussed in Sec. II E.

We first show that for the blinking vortex motion, the passive

scalar evolves identical to the fluid density. If we replaced

the passive scalar cðxÞ by a density qðxÞ, the result in Eq. (8)

would be the same, because our mapping FðxÞ is volume

preserving. This can be easily shown by using the pull-back

on the volume 2-form dx � dy:

F�ðdx � dyÞ ¼ @F1

@x

@F2

@y
� @F1

@y

@F2

@x

 !
dx � dy

¼ dx � dy;

(15)

where x and y are the coordinates of the initial points. Hence,

the mapping FðxÞ for the blinking vortex motion describes

an incompressible flow.

Successive iterations strongly mix the initial distribution

for the passive scalar cðxÞ (Fig. 9, upper panel). The mixing

is, however, not homogeneous. We can identify regions with

weak mixing and regions with strong mixing. This is

reflected in the power spectrum (Fig. 9, bottom panel) where

we clearly see a noisy, but flat spectrum arising, which

FIG. 8. FTTE distribution for the standard map (13) and j ¼ 0:97 of 101� 101 circles (left panel). On the right panel, we show a zoom of the region 0:25 

h 
 0:35 and 0:52 
 / 
 0:62.

FIG. 9. Passive scalar distribution after applying 7 iterations for the blinking vortex mapping (11) with j ¼ 0:5 (left panel). The power spectrum for the pas-

sive scalar independent of the number of iterations (right panel) together with an exponential curve (black line).
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implies the non-existence of a characteristic length scale.

The presence of a characteristic length scale would have

shown up in the power spectra. Such a scale should have

then decreased with successive applications of the mapping.

Its absence shows that the stirring happens on all scales. This

is consistent with the identification of a fractal-like structure

to the FTTE distribution in Sec. V A.

It is remarkable that the shortest length scale with some

measurable power changes rapidly with the number of itera-

tions. In fact, we can see an exponential decrease in the

smallest length scale, as illustrated by the exponential func-

tion (Fig. 9, lower panel). For a mapping with positive topo-

logical entropy, as in this case, we expected such a behavior,

since any initial line is being stretched exponentially with

the consequence that points on the line move exponentially

close to other points on the same line leading to thin

structures.

VI. CONCLUSIONS

Here we introduced a direct method to reliably and effi-

ciently calculate the lower limit of the topological entropy for

a mapping F : R2 ! R2. Such mappings can arise from

either two-dimensional time-periodic fluid flows or three-

dimensional magnetic fields, which are periodic in one direc-

tion. The new method simply measures the stretching of a

material curve and the topological entropy is estimated as the

exponential growth rate of the line length. By employing an

adaptive approach we are able to study larger numbers of iter-

ations without loss of precision. However, the direct methods

should not be applied without restrictions. For highly tangled

fields (highly mixed flows) and for very long iterations the

computation time increases exponentially. This is not the

case for the braidlab package. However, the braidlab
performs significantly worse for the examples tested here for

which our method is faster. In case of the E1 configuration

with j ¼ 1, we find a speed up of a factor of ca. 450 in favor

of the direct adaptive method on a 2.4 GHz quad-code Intel

Xeon with 32 GB RAM.

The stretching of the initial curve, and hence the topo-

logical entropy, is not homogeneous in the domain. By mea-

suring the lengthening of a distribution of circles, we show

that the finite time topological entropy can exhibit a complex

spatial distribution. For one of the maps used here, it shows a

Cantor set like distribution, with alternating zero and finite

entropy.

This is confirmed by the mapping of a passive scalar for

which we compute its spatial distribution using a Fourier

transform. There we observe an exponential decrease in

length scale for the passive scalar. This was expected, since

the mapping used exponentially increases any line length.
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