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Abstract— Cardiovascular diseases (CVDs) have been ranked
as the leading cause for deaths. The early diagnosis of CVDs
is a crucial task in the medical practice. A plethora of efforts
were given to the automated auscultation of heart sound, which
leverages the power of computer audition to develop a cheap,
non-invasive method that can be used at any time and anywhere
for measuring the status of the heart. Nevertheless, previous
works ignore an important factor, namely, the privacy of the
user data. On the one hand, learnt models are always hungry
for bigger data. On the other hand, it can be difficult to protect
personal private information when collecting such large amount
of data. In this dilemma, we propose a federated learning (FL)
framework for the heart sound classification task. To the best
of our knowledge, this is the first time to introduce FL to
this field. We conducted multiple experiments, analysed the
impact of data distribution across collaborative institutions on
model quality and learning patterns, and verified the feasibility
and effectiveness of FL based on real data. Non- independent
identically distributed (Non-IID) data and model quality can be
effectively improved by adding a strategy of globally sharing
data.

I. INTRODUCTION

In the U.S. alone, more than 30 % (equal to $ 9 billion)
of preventable hospitalisations are due to cardiovascular
diseases (CVDs) [1]. AI auscultation-assisted diagnosis (non-
invasive) needs to be developed to provide fast and effective
pre-screen diagnosis and abnormal warning for patients. Ex-
isting healthcare data sits in data silos and machine learning
(ML) cannot fully function. To address this issue, federated
learning (FL) is expected to realise its potential and transition
from research to clinical practice.
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Healthcare data cannot be shared, considering patient
privacy and related laws and regulations. As a result, data
resides in various institutions forming data silos, such as
hospitals, home devices, and smartphones. FL retains the
ownership of data among institutions and conducts collab-
orative modelling, which can effectively solve data silos and
protect privacy. Healthcare data such as medical records and
disease symptoms are highly sensitive and tightly managed,
and the centralised collection of clinical data from isolated
medical centres and hospitals is a challenge. FL can solve
this problem [2]–[4]. We apply FL to an island system in
which each data island (e. g., a medical institution) commu-
nicates with a central server, but does not share anything
between them.

Healthcare data is usually typical non- independent iden-
tically distributed (Non-IID) data and distributed in various
institutions collected by heterogeneous devices, which is in
line with the FL scenario. Furthermore, in a large number of
clinical studies [5]–[10], the focus is not on prediction, but
on correlation analysis and hypothesis testing to understand
the associations between different factors. The advantages
of FL have recently been demonstrated in several practical
applications, including medical image diagnosis [7], [9],
prediction of disease risk factors [1], [10], and personalised
medicine [8], which are particularly important in medical
data applications. Therefore, the application of FL in health-
care is an urgent research area. FL-based assisted diagnostic
classification tasks allow data maintainers to collaborate
on modelling without sharing any private data. Our study
builds on the work of FederatedAveraging (FedAvg) [2]
using real heart sound data to build FedAvg-MLP (multi-
layer perceptron) and FedAvg-CNN (convolutional neural
network) models.

The main contributions of this work can be summarised
as follows:

1) The feasibility of a multi-institutional heart sound
database for FL is implemented and evaluated; 2) aspects
of the algorithmic models under centralised training and FL
are compared; 3) the effectiveness of FL with Non-IID heart
sound data is verified.

II. FL FOR HEART SOUND

In this section, we introduce the architecture of FL applied
to heart sound analysis, and then describe the database
and data preparation. Finally, the FL model and evaluation
metrics are presented.
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A. Architecture

Medical institutions are currently facing two important
clinical realities: On the one hand, studies have shown that
patients with CVDs, especially those with heart failure, are
chronically accompanied by mental health such as anxiety
and depression. On the other hand, issues such as data
decentralisation and privacy protection urgently need to be
resolved. These problems motivate us to explore the potential
and value of FL in heart sound analysis.

As opposed to ECG (Electrocardiograph), which describes
only the physiological fluctuations of the heart, PCG (Phono-
cardiogram) can distinguish between different pathological
cases [11]. As shown in Fig. 1, several medical institutions
collaborate in modelling through horizontal FL without shar-
ing any private data. Due to the limitation of the database,
this study focuses on the analysis of heart sound abnormality
detection under FL, which contains three main parts: 1) The
PCG signal was segmented into basic heart sound segments;
2) the one-dimensional waveform is transformed into a two-
dimensional spectrogram using continuous wavelet transform
(cwt); 3) the performance of FL is validated and evaluated
on real heart sound data.

Pretreatment
Horizontal

Federated Learning

HospitalPatients

Data

Data

Data

Model Heart Sound Diagnosis

Fig. 1. A horizontal federated learning paradigm for heart sound analysis.

B. Materials and Methods

1) Database: The heart sound data from the Phys-
ioNet/CinC Challenge 2016 [12]. The data consists of six
independent databases that are non-independent identically
distributed (Non-IID).

Data Heterogeneity: The data consisted of six indepen-
dent heart sound databases (DA-DF ), collected by different
research teams in seven countries [12]. And these records
were collected using heterogeneous equipment both clini-
cally and non-clinically (e. g, home visits). The length of the
records ranges from a few seconds to a few minutes.

System Heterogeneity: System heterogeneity in FL en-
vironment is mainly manifested in the difference of com-
munication and computing capability of the devices at each
institution.

As shown in Table I, Non-IID heart sound data is mainly
reflected in label distribution skew and quantity skew. The
datasets (DA-DF ) contains 3 240 records from 764 sub-
jects/patients, all records are divided into two categories
according to expert labels: Normal and Abnormal. Normal
records are from healthy subjects, and abnormal records are
from patients with typical heart valve defects and coronary
heart disease.

TABLE I
DESCRIPTION OF PHYSIONET HEART SOUND DATABASE.

Database Recordings Proportion of recordings(%) Durations(s)

Abnormal Normal Minimum

DA (MIT) 409 (12.62) 28.61 71.39 9.27
DB (AAD) 490 (15.12) 21.22 78.77 5.31
DC (AUTH) 31 (0.95) 77.74 22.58 9.65
DD (UHA) 55 (1.69) 50.91 49.09 6.61
DE (DLUT) 2 141 (66.08) 5.51 91.45 8.06
DF (SUA) 114 (3.52) 29.82 70.17 29.38
Total 3 240 20.52 79.47

MIT: The Massachusetts Institute of Technology heart sounds database;
AAD: Aalborg University heart sounds database; AUTH: The Aristotle
University of Thessaloniki heart sounds database; UHA: The University
of Haute Alsace heart sounds database; DLUT: The Dalian University
of Technology heart sounds database; SUA: The Shiraz University adult
heart sounds database.

2) Image Representations: Basic heart sounds (S1, sys-
tolic, S2, diastolic) were analysed according to PCG signals.
Referring to the work of [13], instead of using all the
information of a record for experimental analysis, we chose
to process and analyse 5-second heart sound segments. The
reasons are as follows: 1) The heart sound segment contains
the complete basic heart sound; 2) abnormal heart sounds
can be fully judged within 5 seconds; 3) overfitting can be
reduced.

According to previous work [14], wavelet analysis bears
great potential to present the differences in the time-
frequency characteristics of normal and abnormal heart
sounds. In this work, we implement the continuous wavelet
transform (cwt) sound-image transformation in Matlab. The
sampling frequency is 2 kHz. The wavelet base function is
cga8, the image generation function is imagesc, and the
wavelet coefficient value of the heart sound is obtained by
the cwt function. The axis and edge markers are removed by
the imwrite function. Fig. 2 shows the cwt spectrograms of
an abnormal heart sound sample (f0027.wav) and a normal
heart sound sample (f0072.wav) from the DF database.

(a) Abnormal (f0027.wav) (b) Normal (f0072.wav)

Fig. 2. The scalogram images are extracted from the abnormal / normal
heart sounds using cwt.

3) FL Algorithm Model: FL can be divided into two
types: Cross-device and Cross-silo. Cross-device is mainly
oriented towards IoT devices, (e. g., cell phones). In contrast,
the horizontal FL in this paper consists of a server and
several clients (e. g., medical institutions), which belong to
the Cross-silo category. Therefore, it can be assumed that
there is no communication problem, and only the differences
in data distribution among institutions need to be addressed.
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Based on the algorithm of FedAvg [2], we adopt the work
of [15] to reproduce the FedAvg-MLP, FedAvg-CNN1, and
FedAvg-CNN2 algorithm models for heart sound data. The
MLP contains one hidden layer and one dropout optimisation
term. CNN1 performs a dropout term after two convolutional
layers, and finally adds two fully connected layers. CNN2
adds a pooling layer between two convolutional layers, and
finally adds three fully connected layers. The specific process
of FedAvg in this work is shown in Fig. 3.
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Fig. 3. Architecture diagram of the FedAvg algorithm for heart sounds.

Server-side Initialisation: The server-side distribution
initialisation model uses global shared data and distributes
randomised portions of the shared data.

Local Model Update: Local institutions combine private
data and partial global shared data for model update.

Global Model Aggregation: The server receives model
updates from each institution and then updates the global
model using a weighted average.

Iteration: The above two processes are iterated for the
maximum round.

4) Evaluation Metrics: The evaluation method was orig-
inally proposed by a challenge in the field [12] and was
defined as the average of sensitivity (Se) and specificity (Sp).

Score =
Se+Sp

2
(1)

Sensitivity,Se =
T P

T P+FN
(2)

Speci f icity,Sp =
T N

T N +FP
, (3)

where TP represents the sample volume of true positive
abnormal heart sounds, FN represents the sample volume
of false negative abnormal heart sounds, TN represents the
sample volume of true negative normal heart sounds, and FP
represents the sample volume of false negative normal heart
sounds.

C. Experiments and Results

1) Experimental Design: The ultimate goal of FL is to
obtain a robust global model on the server side, so validation
and testing are performed on the server side. Centralised
Environment: Considers the skewed label distribution and
quantity for each of the Non-IID heart sound databases, and
helps avoid a small sample size for the validation and test

sets. We divide the training set as a merged set (DC, DD,
DE , DF ), the validation set as DA, and the test set as DB.
Then, the MLP and two CNN models are trained separately.
Federated Environment: To examine the difference in
model performance between IID and Non-IID data, we set
up a control group experiment (1-3).

Experiment 1. For the IID data setup in FL, we merge
the datasets (DC, DD, DE , DF ) into the same distribution
and evenly distribute the samples to four institutions. Each
institution owned 563 training samples: the validation set as
DA, and the test set as DB.

Experiment 2. To compare the differences in FL perfor-
mance between IID data and Non-IID data for the same
number of institutions. We set up 4 collaborative training
institutions (i. e., 4 medical institutions DC, DD, DE , DF ).
The validation set is given as DA and the test set as DB.

Experiment 3. As ownership of the data remains in the
institutions, we improve the strategy on the server side.
Following the work of [16], we centralise a globally shared
dataset D(DD) that satisfies the uniform distribution of
classes on the server side. As shown in Fig. 3, the warm-
up model trained by D and the random part Di of D are
distributed to each institution during the initialisation phase
of FedAvg. The division of the data is measured by two
parameters: α = ||Di||

||D|| x100%, and β = ||D||
||D̃||

x100%, where D̃
represents the amount of data from the institution.

2) Hyperparameters: For comparison with FL, the best
performing CNN2 model in centralised training was chosen
as the benchmark. FedAvg performed 100 rounds of training
with MLP, CNN1, and CNN2. We modified the relevant
hyperparameters of the learning algorithm to consider the
Non-IID data model. Key parameters of the training are: We
set the hidden dimension of the MLP (dim hidden = 200),
the input image size as 28x28x3 for CNN1, 32x32x3 for
CNN2, and the dropout optimisation term (P = 0.5). We
further set the number of local epochs (E = 5) and batch size
(B = 64) while using the activation function ReLU , learning
rate (L = 0.01), and SGD momentum (m = 0.5). In addition,
the number of filters (num f ilters = 32) and the kernel size
(5x5) of the convolutional network are set.

3) Results: Federated vs data-centralised training
Due to the limitation of database sample volume, simple

neural networks are used for FL. Although the accuracy
of each model is poor under centralised training, the FL
environment is effective for models to avoid overfitting
and keep performance. Despite the large variation in the
Non-IID heart sound database across institutions, FedAvg
still achieved acceptable classification accuracy, as shown
in Table II. This indicates that the unbalanced number of
iterations across institutions can be efficiently handled by the
FedAvg algorithm. In addition, although FedAvg is robust to
unbalanced and Non-IID data, the accuracy of Experiment 2
is considerably lower than that of Experiment 1. We found as
reason in the work of [16] that such precision reduction can
be explained by weight divergence, which can be quantified
by the earth movers distance (EMD) between the distribution
over classes and the quantity distribution on each institution.
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(a) Fed-CNN1.
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(b) Fed-CNN2.

Fig. 4. Training error variation for Fed-CNN1 and Fed-CNN2.

TABLE II
TEST ACCURACY OF FEDAVG FOR IID DATA AND NON-IID DATA UNDER

CENTRALISED TRAINING AND FEDERATED LEARNING (%).

Model Avg-loss. of IID Acc. of IID Acc. of Non-IID

Non-shared Shared

MLP 0.0117 57.9 - -
CNN1 0.0114 68.1 - -
CNN2 0.1180 76.2 - -
Fed-MLP 0.2753 52.6 45.3 47.6
Fed-CNN1 0.1629 66.9 57.8 62.1
Fed-CNN2 0.1215 72.1 62.0 65.4

Globally shared data
In experiment 3, we followed the scheme of [16] and

selected the parameters β = 10 % and α = 50 %. The exper-
imental results show that FedAvg-CNN2 can reach 65.4 %
accuracy in testing, while the accuracy is only about 62.0 %
without a data sharing strategy. In contrast, FedAvg-CNN2
has a higher sensitivity (59.2 %) and specificity (65.9 %),
and the model performance is better as shown in Table
III. This process is executed only once during server-side
initialisation, hence, there is no communication overhead.
In addition, instead of random weights during the FedAvg
initialisation, the global sharing strategy reduces the EMD
of the institution and therefore improves the test accuracy,
while D is a separate database with no privacy implications.

III. DISCUSSION

FL has obvious privacy advantages over centralised train-
ing. Global computing involves the participation of multiple
institutions, the ownership of data is retained in each insti-
tution and local computing is performed, and only updated
model parameters are allowed to be shared with the server.
The principle of data minimisation is embodied in the model
update part, and the updates provided by each institution only
need to be temporarily saved by the receiving server until
the aggregation can be performed. In addition, it is crucial
to optimise the hyperparameters of FedAvg, – especially
the number of local epochs plays an important role in the
convergence of the model.

IV. CONCLUSION AND FUTURE WORK

We applied FL to real-world healthcare data and evaluated
the first FL system for a multi-institutional heart sound
database. We validated the potential of FL in terms of perfor-
mance and data protection for a real heart sound database,
which is essential for processing sensitive healthcare data.
Note that privacy is not a default guarantee in any FL setting,

TABLE III
SENSITIVITY (Se), SPECIFICITY (Sp), AND FINAL SCORE (Score) ARE

USED AS QUANTITATIVE METRICS FOR THE MODEL.

Model Se Sp Score

Fed-MLP 47.1 56.2 51.6
Fed-CNN1 55.9 62.2 59.1
Fed-CNN2 59.2 65.9 62.5

and secure aggregation of communication parameters be-
tween servers and institutions is our work plan. Importantly,
the limited number of participating institutions and the lack
of data volumes are currently the biggest contributing factors.
We are working on the establishment of a more powerful
heart sound database based on the cooperation of several
medical institutions, such as the HSS-The Heart Sounds
Shenzhen Corpus [17] which is part of our current work.
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