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Abstract
Instantaneous dynamic equilibrium (IDE) is a standard game-theoretic concept in
dynamic traffic assignment in which individual flow particles myopically select en
route currently shortest paths towards their destination. We analyze IDE within the
Vickrey bottleneck model, where current travel times along a path consist of the
physical travel times plus the sum of waiting times in all the queues along a path.
Although IDE have been studied for decades, several fundamental questions regarding
equilibrium computation and complexity are not well understood. In particular, all
existence results and computational methods are based on fixed-point theorems and
numerical discretization schemes and no exact finite time algorithm for equilibrium
computation is known to date. As our main result we show that a natural extension
algorithm needs only finitely many phases to converge leading to the first finite time
combinatorial algorithm computing an IDE. We complement this result by several
hardness results showing that computing IDE with natural properties is NP-hard.

Mathematics Subject Classification 05C21 (flows in graphs) · 90C35 (Programming
involving graphs or networks) · 68Q25 (Analysis of algorithms and problem
complexity)

Lukas Graf and Tobias Harks: The research of the authors was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - HA 8041/1-1 and HA 8041/4-1.
Parts of the results of this paper will appear in less detailed form in the Proceedings of the 22nd
Conference on Integer Programming and Combinatorial Optimization, 2021.

B Lukas Graf
lukas.graf@math.uni-augsburg.de

Tobias Harks
tobias.harks@math.uni-augsburg.de

1 Institute of Mathematics, Augsburg University, Augsburg 86135, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01772-0&domain=pdf
http://orcid.org/0000-0001-9212-0277


762 L. Graf, T. Harks

1 Introduction

Flows over time or dynamic flows are an important mathematical concept in network
flow problems with many real world applications such as dynamic traffic assignment,
production systems and communication networks (e.g., the Internet). In such appli-
cations, flow particles that are sent over an edge require a certain amount of time to
travel through each edge andwhen routing decisions are beingmade, the dynamic flow
propagation leads to later effects in other parts of the network. A key characteristic
of such applications, especially in traffic assignment, is that the network edges have a
limited flow capacity which, when exceeded, leads to congestion. This phenomenon
can be captured by the fluid queueing model due to Vickrey [25]. The model is based
on a directed graphG = (V , E), where every edge e has an associated physical transit
time τe ∈ R+ and a maximal rate capacity νe ∈ R+. If flow enters an edge with higher
rate than its capacity the excess particles start to form a queue at the edge’s tail, where
they wait until they can be forwarded onto the edge (cf. Fig. 1). Thus, the total travel
time experienced by a single particle traversing an edge e is the sum of the time spent
waiting in the queue of e and the physical transit time τe.

This physical flow model then needs to be enhanced with a behavioral model
prescribing the actions of flow particles. There are two main standard behavioral
models in the traffic assignment literature known as dynamic equilibrium (DE) (cf. Ran
and Boyce [20, § V-VI]) and instantaneous dynamic equilibrium (IDE) ([20, § VII-
IX]). Under DE, flow particles have complete information on the state of the network
for all points in time (including the future evolution of all flow particles) and based
on this information travel along a shortest path. The full information assumption is
usually justified by assuming that the game is played repeatedly and a DE is then an
attractor of a learning process. The behavioral model of IDE is based on the idea that
drivers are informed in real-time about the current traffic situation and, if beneficial,
reroute instantaneously no matter how good or bad that route will be in hindsight.
Thus, at every point in time and at every decision node, flow only enters those edges
that lie on a currently shortest path towards the respective sink. This concept assumes
far less information (only the network-wide queue lengths which are continuously
measured) and leads to a distributed dynamic using only present information that is
readily available via real-time information. IDE has been proposed already in the late
80’s (cf. Boyce, Ran and LeBlanc [1,21] and Friesz et al. [8]).

A line of fairly recent works starting with Koch and Skutella [17] and Cominetti,
Correa and Larré [3] derived very elegant combinatorial characterizations of DE for
the fluid queueing model of Vickrey. They derived a complementarity description of
DE flows via so-called thin flows with resettingwhich leads to an α-extension property

Fig. 1 An edge e = vw. As the
inflow rate at node v exceeds the
edge’s capacity, a queue forms at
its tail
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A finite time combinatorial algorithm for instantaneous... 763

stating that for any equilibrium up to time θ , there exists α > 0 so that the equilibrium
can be extended to time θ +α. An extension that is maximal with respect to α is called
a phase in the construction of an equilibrium and the existence of equilibria on the
whole R+ then follows by a limit argument over the phases. In the same spirit, Graf,
Harks and Sering [10] established a similar characterization for IDE flows and also
derived an α-extension property.

For bothmodels (DEor IDE), it is an open questionwhether for constant inflow rates
and a finite time horizon, a finite number of phases suffices to construct an equilibrium,
see [3,10,17]. This problem remains even unresolved for single-source single-sink
series-parallel graphs as explicitly mentioned by Kaiser [16]. Proving finiteness of the
number of phases would imply an exact finite time algorithm. Such an algorithm is
not known to date neither for DE nor for IDE.1 More generally, the computational
complexity of equilibrium computation is widely open.

1.1 Our contribution and proof techniques

In this paper,we study IDEflows and derive algorithmic and computational complexity
results. As our main result we settle the key question regarding finiteness of the α-
extension algorithm.

Theorem 3.7: For single-sink networks with piecewise constant inflow rates for
a finite time horizon, there is an α-extension algorithm computing an IDE after
finitely many extension phases. This implies the first finite time combinatorial
exact algorithm computing IDE within the Vickrey model.

The proof of our result is based on the following ideas. We first consider the case
of acyclic networks and use a topological order of vertices in order to schedule the
extension phases in the algorithm. The key argument for the finiteness of the number
of extension phases is that for a single node v and any interval with linearly changing
distance labels of nodes closer to the sink and constant inflow rate into v this flow
can be redistributed to the outgoing edges in a finite number of phases of constant
outflow rates from v. We show this using the properties (derivatives) of suitable edge
label functions for the outgoing edges (see the graph in Fig. 3). The overall finiteness
of the algorithm follows by induction over the nodes and time. We then generalize
to arbitrary single-sink networks by considering dynamically changing topological
orders depending on the current set of active edges. Finally, a closer inspection of the
proofs also enables us to give an explicit upper bound on the number of extension
steps in the order of

O
(
P

(
2(� + 1)4

�+1
)2L·|E |·|V |·T /τ 2min

)
,

1 Algorithms for DE or IDE computation used in the transportation science literature are numerical, that
is, only approximate equilibrium flows are computed given a certain numerical precision, see the related
work for a more detailed comparison.
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764 L. Graf, T. Harks

where P is the number of constant phases of the network inflow rates,� the maximum
out degree in the network, T the termination time, L an upper bound on the absolute
value of the derivatives of the distance labels depending on the network inflow rates
and the edge capacities of the given network and τmin the shortest physical transit time
of all edges of the given network.

We then turn to the computational complexity of IDE flows. Our first result here is
a lower bound on the output complexity of any algorithm. We construct an instance
in which the unique IDE flow oscillates with a changing periodicity (see Fig. 4).

Theorem 4.1: There are instances for which the output complexity of an IDE flow
is not polynomial in the encoding size of the instance, even if we are allowed to
use periodicity to reduce the encoding size of the flow.

We also show that several natural decision problems about the existence of IDE
flows with certain properties are NP-hard.

Theorem 4.9: The following decision problems are all NP-hard:

• Given a specific edge: Is there an IDE using/not using this edge?
• Given some time horizon T : Is there an IDE that terminates before T ?
• Given some k ∈ N: Is there an IDE with at most k phases?

The proof is a reduction from 3SAT, wherein for any given 3SAT-formula we
construct a network (see Fig. 10) with the following properties: If the 3SAT-formula
is satisfiable there exists a quite simple IDE flow, where all flow particles travel on
direct paths towards the sink. If, on the other hand, the 3SAT-formula is unsatisfiable
all IDE flows in the corresponding network lead to congestions diverting a certain
amount of flow into a separate part of the network. Placing different gadgets in this
part of networks then allows for the reduction to various decision problems involving
IDE flows.

1.2 Related work

The concept of flows over time was studied by Ford and Fulkerson [6]. Shortly
after, Vickrey [25] introduced a game-theoretic variant using a deterministic queueing
model. Since then, dynamic equilibria have been studied extensively in the transporta-
tion science literature, see Friesz et al. [8]. New interest in this model was raised
after Koch and Skutella [17] gave a novel characterization of dynamic equilibria in
terms of a family of static flows (thin flows) which was further refined by Cominetti,
Correa and Larré in [3]. Using this new approach Sering and Skutella [23] considered
dynamic equlibria in networks with multiple sources or multiple sinks, Correa, Cristi,
and Oosterwijk [5] derived a bound on the price of anarchy for dynamic equilibria
and Sering and Vargas-Koch [24] incorporated spillbacks in the fluid queuing model.
In a very recent work, Kaiser [16] showed that the thin flows needed for the exten-
sion step in computing dynamic equilibria can be determined in polynomial time for
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series-parallel networks. Several of these papers [3,5,16,23] also explicitly mention
the problem of possible non-finiteness of the extension steps.

In the traffic assignment literature, the concept of IDEwas studied by several papers
such as Ran and Boyce [20, § VII-IX], Boyce, Ran and LeBlanc [1,21], Friesz et al.
[8]. These works develop an optimal control-theoretic formulation and characterize
instantaneous user equilibria by Pontryagin’s optimality conditions. For solving the
control problem, Boyce, Ran and LeBlanc [1] proposed to discretize the model result-
ing in finite dimensional NLP whose optimal solutions correspond to approximative
IDE. While this approach only gives an approximative equilibrium, there are fur-
ther difficulties. The control-theoretic formulation is actually not compatible with the
deterministic queueing model of Vickrey. In Boyce, Ran and LeBlanc [1], a differ-
ential equation per edge governing the cumulative edge flow (state variable) is used.
The right-hand side of the differential equation depends on the exit flow function
which is assumed to be differentiable and strictly positive for any positive inflow.
Both assumptions (positivity and differentiability) are not satisfied for the Vickrey
model. For example, flow entering an empty edge needs a strictly positive time after
which it leaves the edge again, thus, violating the strict positiveness of the exit flow
function. More importantly, differentiability of the exit flow function is not guaranteed
for the Vickrey queueing model. Non-differentiability (or equivalently discontinuity
w.r.t. the state variable) is a well-known obstacle in the convergence analysis of a dis-
cretization of the Vickrey model, see for instance Han et al. [11]. It is a priori not clear
how to obtain convergence of a discretization scheme for an arbitrary flow over time
(disregading equilibrium properties) within the Vickrey model. And while a recent
computational study by Ziemke et al. [26] shows some positive results with regards
to convergence for DE, Otsubo and Rapoport [19] report “significant discrepancies”
between the continuous and a discretized solution for the Vickrey model. To overcome
the discontinuity issue, Han et al. [11] reformulated the model using a PDE formu-
lation. They obtained a discretized model whose limit points correspond to dynamic
equilibria of the continuous model. The algorithm itself, however, is numerical in the
sense that a precision is specified andwithin that precision an approximate equilibrium
is computed. The overall discretization approach mentioned above stands in line with
a class of numerical algorithms based on fixed point iterations computing approximate
equilibrium flows within a certain numerical precision, see Friesz and Han [7] for a
recent survey.

The long term behavior of dynamic equilibria with infinitely lasting constant inflow
rate at a single sourcewas studied byCominetti, Correa andOlver [4]. They introduced
the concept of a steady state and showed that dynamic equilibria always reach a stable
state provided that the inflow rate is at most the capacity of a minimal s-t cut.

Ismaili [14,15] considered a discrete version of DE and IDE, respectively. He inves-
tigated the computational complexity of computing best responses for DE showing
that the best-response optimization problem is not approximable, and that deciding
the existence of a Nash equilibrium is complete for the second level of the polyno-
mial hierarchy. In [15] a sequential version of a discrete routing game is studied and
PSPACE hardness results for computing an optimal routing strategy are derived. For
further results regarding a discrete packet routing model, we refer to Cao et al. [2],
Scarsini et al. [22], Harks et al. [12] and Hoefer et al. [13].
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766 L. Graf, T. Harks

2 Model and the extension-algorithm

Throughout this paper we always consider networks N = (G, (νe)e∈E , (τe)e∈E ,

(uv)v∈V \{t}, t) given by a directed graph G = (V , E), edge capacities νe ∈ Q>0,
edge travel times τe ∈ Q>0, and a single sink node t ∈ V which is reachable from
anywhere in the graph. Every other node v ∈ V \ {t} has a corresponding (network)
inflow rate uv : R≥0 → Q≥0 indicating for every time θ ∈ R≥0 the rate uv(θ) at
which the infinitesimal small agents enter the network at node v and start traveling
through the graph until they leave the network at the common sink node t . We will
assume that these network inflow rates are right-constant step functions with bounded
support and finitely many, rational jump points and denote by P ∈ N

∗ the total number
of jump points for all network inflow rates.

A flow over time inN is a tuple f = ( f +, f −) where f +, f − : E ×R≥0 → R≥0
are integrable functions. For any edge e ∈ E and time θ ∈ R≥0 the value f +

e (θ)

describes the (edge) inflow rate into e at time θ and f −
e (θ) is the (edge) outflow rate

from e at time θ . For any such flow over time f we define the cumulative (edge) in-
and outflow rates F+ and F− by

F+
e (θ):=

∫ θ

0
f +
e (ζ )dζ and F−

e (θ):=
∫ θ

0
f −
e (ζ )dζ,

respectively. The queue length of edge e at time θ is then defined as

qe(θ):=F+
e (θ) − F−

e (θ + τe). (1)

Such a flow f is called a feasible flow for the given set of inflow rates uv : R≥0 →
Q≥0, if it satisfies the following constraints (2) to (5). Theflowconservation constraints
are modeled for all nodes v �= t as

∑
e∈δ+

v

f +
e (θ) −

∑
e∈δ−

v

f −
e (θ) = uv(θ) for all θ ∈ R≥0, (2)

where δ+
v := {vu ∈ E} and δ−

v := {uv ∈ E} are the sets of outgoing edges from v

and incoming edges into v, respectively. For the sink node t we require

∑
e∈δ+

t

f +
e (θ) −

∑
e∈δ−

t

f −
e (θ) ≤ 0 (3)

and for all edges e ∈ E we always assume

f −
e (θ) = 0 for all θ < τe. (4)

Finally we assume that the queues operate at capacity which can be modeled by

f −
e (θ + τe) =

{
νe, if qe(θ) > 0

min{ f +
e (θ), νe}, if qe(θ) ≤ 0

for all e ∈ E, θ ∈ R≥0. (5)
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Following the definition in [10] we call a feasible flow an IDE flow if whenever a
particle arrives at a node v �= t , it can only ever enter an edge that is the first edge on
a currently shortest v-t path. In order to formally describe this property we first define
the current or instantaneous travel time of an edge e at θ by

ce(θ):=τe + qe(θ)

νe
. (6)

We then define time dependent node labels 	v(θ) corresponding to current shortest
path distances from v to the sink t . For v ∈ V and θ ∈ R≥0, define

	v(θ):=
{
0, for v = t

min
e=vw∈E{	w(θ) + ce(θ)}, else.

(7)

We say that an edge e = vw is active at time θ , if 	v(θ) = 	w(θ) + ce(θ), denote the
set of active edges by Eθ ⊆ E and call the subgraph G[Eθ ] induced by these edges
the active subgraph.

Definition 2.1 A feasible flow over time f is an instantaneous dynamic equilibrium
(IDE), if for all θ ∈ R≥0 and e ∈ E it satisfies

f +
e (θ) > 0 ⇒ e ∈ Eθ . (8)

During the computation of an IDE we also need the concept of partial flows/IDE
that are only defined up to a certain point in time. First, a partial flow over time
is a tupel ( f +, f −) such that for every edge e we have two integrable functions
f +
e : [0, ae) → R≥0 and f −

e : [0, ae + τe) → R≥0 for some non-negative number
ae, satisfying constraints (5) and (4) for all θ < ae. Such a flow is a feasible (partial)
flow up to θ̂ at node v if

• The edge outflow rates for all edges leading towards v are defined at least up to
time θ̂ , i.e. ae + τe ≥ θ̂ for all e ∈ δ−

v ,
• The edge inflow rates for all edges leaving v are defined up to time θ̂ , i.e. ae = θ̂

for all e ∈ δ+
v and

• Constraint (2) or constraint (3), respectively, holds at v for all θ < θ̂ .

A partial flow is a feasible (partial) flow up to time θ̂ , if it is a feasible partial flow up
to time θ̂ at every node. We call such a flow a partial IDE up to time θ̂ , if additionally
(8) holds for all edges and all times before θ̂ . If the given network is acyclic, we can
even speak of a partial IDE up time θ̂ at some node v, denoting a feasible flow up to
time θ̂ at v, at least up to time θ̂ for all nodes lying on some path from v to the sink t
and satisfying (8) for all e ∈ δ+

v and θ < θ̂ .
Note that, while the edge inflow rates of a feasible partial flow up to θ̂ are defined

only on [0, θ̂ ), this already determines the queue length functions and, therefore, the
instantaneous edge travel times on [0, θ̂ ]. In particular, for such a flow we can speak
about active edges at time θ̂ even though the flow itself is not yet defined at that time.
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768 L. Graf, T. Harks

In [10, Section 3] the existence of IDE flows in single-sink networks is proven
by the following almost constructive argument: A partial IDE up to some time θ̂ can
always be extended for some additional proper2 time interval on a node by node basis
(starting with the nodes closest to the sink t). The existence of IDE for the whole R≥0
then follows by a limit argument. This leads to a natural algorithm for computing IDE
flows in single-sink networks, which we make explicit here as Algorithm 1, wherein
b−
v denotes the gross node inflow rate at node v defined by setting

b−
v (θ):=

∑
e∈δ−

v

f −
e (θ) + uv(θ)

for all v ∈ V \ {t} and θ ∈ [θ̂ , θ̂ + τmin), where τmin:=min{τe|e ∈ E} > 0.

Algorithm 1: IDE-Construction Algorithm from [10]
Input: A single-sink network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Let f be the zero flow and θ ← 0
2 while not all flow particles have reached the sink t do

/* f is a partial IDE up to time θ */
3 Let t = v1 < v2 < · · · < vn be a topological order w.r.t. G[Eθ ]
4 for i = 2, . . . , n do
5 Compute b−

vi
(θ) and determine a constant distribution of this inflow to edges in δ+

vi
such that

the used edges remain active for some proper interval

6 end for
7 Determine the largest α ≥ 0 such that all b−

v are constant on (θ, θ + α) and the set of active
edges does not change

8 Extend f up to time θ + α with constant edge inflow rates and set θ ← θ + α

9 end while

For the extension at a single node v in line 5 we can use a solution to the following
convex optimization problem, which can be determined in polynomial time using a
simple water filling procedure (see appendix for more details):

min
∑

e=vw∈δ+
v ∩Eθ

∫ xe

0

ge(z)

νe
+ ∂+	w(θ)dz (OPT-b−

v (θ))

s.t.
∑

e∈δ+
v ∩Eθ

xe = b−
v (θ), xe ≥ 0 for all e ∈ δ+

v ∩ Eθ ,

where ge denotes the right side derivative of the queue length function qe depending
on the inflow rate into e, i.e. ge(z) := z−νe, if qe(θ) > 0 and ge(z):=max{z − νe, 0},
otherwise. The right side derivatives ∂+	w(θ) exist because we only need them for
nodes w closer to the sink with respect to the current topological order. And for
those we already determined (constant) edge inflow rates for all outgoing edges for

2 We call an interval [a, b) proper if a < b.
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some additional proper time interval beginning with θ . The integrand of the objective
function is, thus, the right derivative of the shortest instantaneous travel time towards
the sink when entering edge vw at time θ and assuming a constant inflow rate of z into
this edge starting at time θ . Using this observation one can show (cf. [10, Lemma 3.1])
that any solution to (OPT-b−

v (θ)) corresponds to a flow distribution to active edges so
that for every edge e = vw ∈ δ+

v ∩ Eθ the following condition is satisfied

f +
e (θ) > 0 �⇒ ∂+	v(θ) = ∂+ce(θ) + ∂+	w(θ)

f +
e (θ) = 0 �⇒ ∂+	v(θ) ≤ ∂+ce(θ) + ∂+	w(θ).

(9)

Because the network inflow rates aswell as all already constructed edge inflow rates are
piecewise constant and the node label functions as well as the queue length functions
are continuous, (9) ensures that the used edges will remain active for some proper time
interval.

It is, however, not obvious whether a finite number of such extension phases suffices
to construct an IDEflow for all ofR≥0. Since IDEflows always have afinite termination
time in single-sink networks ([10, Theorem 4.6]) it is at least enough to extend the
flow for some finite time horizon (in [9] we even provide a way to explicitly compute
such a time horizon). This leaves the possibility of continuously decreasing lengths of
the extension phases as possible reason for Algorithm 1 not to terminate within finite
time, e.g. some sequence of extension phases of lengths α1, α2, . . . such that

∑∞
i=1 αi

converges to some point strictly before the IDE’s termination time (see Remark 4.7 for
an example where we can in fact achieve arbitrarily small extension phases). Thus, the
question of whether IDE flows can actually be computed was left as an open question
in [10]. A first partial answer was found in [18], where finite termination was shown
for graphs obtained by series composition of parallel edges. In the following section
we give a full answer by showing that the α-extension algorithm terminates for all
single-sink networks.

3 Finite IDE-construction algorithm

In this chapterwewill show that IDEflows can be constructed in finite time usingAlgo-
rithm 1 or slight variations thereof. We will first show this only for acyclic networks
since there we can use a single constant order of the nodes for the whole construction.
Building on that, we will then prove the general case by showing that we can always
compute IDE flows while changing the node order only finitely many times.

3.1 Acyclic networks

For each extension step, Algorithm 1 takes a partial IDE and determines a network-
wide constant extension of all edge in- and outflow rates. This flow distribution then
continues until an event (change of gross node inflow rate or change of the set of active
edges) anywhere in the network requires a new flow split. In [10] such a maximal
extension is called a phase of the constructed IDE. After each phase, one then has to
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determine a new topological order with respect to the active subgraph at the beginning
of the next phase.

For an acyclic network, we can instead use a single static topological order of the
nodes with respect to the whole graph, which is then in particular a topological order
with respect to any possible active subgraph. This allows us to rearrange the order of
the extension steps: Considering the nodes according to the fixed topological order,
at each node, we then already know the gross node inflow rate for the whole interval
[θ, θ + τmin) as well as the flow distribution for all nodes closer to the sink over the
same time interval. Thus,wehave enough information to determine a (possibly infinite)
sequence of extensions covering the whole interval [θ, θ +τmin), where each extension
is defined through constant flow distributions at this node. Within this sequence, each
extension lasts until an event at the current node happens, which forces us to compute
a new flow distribution. We call such a maximal extension using one constant flow
distribution at a single node a local phase. The restructured version of the extension
algorithm is formalized in Algorithm 2.

Algorithm 2: IDE-Construction Algorithm for acyclic networks
Input: An acyclic single-sink network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Choose T ∈ Q large enough such that all IDE flows in N terminate before T
2 Let f be the zero flow, θ ← 0 and t = v1 < · · · < vn a topological order
3 for k = 0, . . . , �T /τmin� do

/* f is a partial IDE up to time θ = kτmin */
4 for i = 2, . . . , n do
5 Compute the piecewise constant gross node inflow function b−

vi
for the interval [θ, θ + τmin)

6 Distribute this inflow for the whole interval to active edges in δ+
vi

using maximal local phases
of constant flow distribution

7 end for
8 θ ← θ + τmin

9 end for

Observation 3.1 For acyclic networks both variants of the general algorithm (Algo-
rithms 1 and 2) construct the same IDE provided that they use the same tie-breaking
rules. Thus, showing that one of them terminates in finite time, also proves the same
for the other variant.

Using the water filling procedure (Algorithm 4) we can compute an IDE compliant
flow distribution with constant edge-inflow rates at a node vi for any interval wherein
the inflow into node vi is constant, the labels on all the nodes w with viw ∈ δ+

vi
change linearly and the set of active edges leaving vi remains constant (see Fig. 2 for
an example of such a situation). Thus, it suffices to show that in line 6 we can always
cover the extension interval [θ, θ + τmin)with a finite number of local phases. We will
show this by induction over k ∈ N0 and i ∈ [n] using the following key lemma:

Lemma 3.2 Let N be a single-sink network on an acyclic graph with some fixed
topological order on the nodes, v some node inN and θ1 < θ2 ≤ θ1 + τmin two points
in time. If f is a partial flow over time in N such that
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Fig. 2 The situation in Lemma 3.2: We have an acyclic graph with some topological order on the nodes
(here from left to right) and a partial IDE up to some time θ2 for all nodes closer to the sink t than v and
up to some earlier time θ1 for v and all nodes further away than v from t . Additionally, over the interval
[θ1, θ2) the edges leading into v have a constant outflow rate and the nodeswi all have affine label functions
	wi . The edges vwi start with some current queue lengths qvwi (θ1) ≥ 0

• f is a partial IDE up to time θ2 for all nodes closer to the sink t than v with respect
to the fixed topological order,

• f is a partial IDE up to time θ1 for all other nodes,
• b−

v is constant during [θ1, θ2) and
• The labels at the nodes reachable via direct edges from v are affine functions on

[θ1, θ2),

then we can extend f to a partial IDE up to time θ2 at v using a finite number of local
phases.

Proof We want to show that a finite number of maximal constant extensions of the
flow at node v using the water filling algorithm is enough to extend the given flow for
the whole interval [θ1, θ2) at node v. So, let f be the flow after an, a priori, infinite
number of extension steps getting us to a partial IDE up to some θ̂ ∈ (θ1, θ2] at node
v.

Let δ+
v = {vw1, . . . , vwp} be the set of outgoing edges from v. Then, by the

lemma’s assumption, the label functions 	wi : [θ1, θ2) → R≥0 are affine functions
and, since we extended f at node v up to θ̂ , the queue length functions qvwi are well
defined on the interval [θ1, θ̂ ). Thus, for all i ∈ [p] we can define functions

hi : [θ1, θ̂ ) → R≥0, θ �→ τvwi + qvwi (θ)

νvwi

+ 	wi (θ)
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772 L. Graf, T. Harks

Fig. 3 A possible flow distribution from the node v in five local phases for the situation depicted in Fig. 2.
The first six pictures show the flow split for these five local phases. The graph at the bottom shows the
corresponding functions hi . The bold gray linemarks the graph of the function 	v . The second, third and fifth
local phase all start because an edge becomes newly active (edges vw3, vw1 and vw3 again, respectively).
The fourth local phase starts because the queue on the active edge vw1 runs empty. By observation (ii)
these are the only two possible events which can trigger the beginning of a new local phase. Edge vw2 is
inactive for the whole time interval and – as stated in Claim 1 – has a convex graph. Also, note the slope
changes of the functions hi and 	v in accordance with Claim 2

such that hi (θ) is the shortest current travel time to the sink t for a particle entering
edge vwi at time θ . Then, for any edge vwi ∈ δ+

v and any time θ ∈ [θ1, θ̂ ) we have

vwi ∈ Eθ ⇐⇒ hi (θ) = min{h j (θ)| j ∈ [p]} = 	v(θ). (10)
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We start by stating two important observations and then proceed by showing two
key-properties of the functions hi and 	v , which are also visualized in Fig. 3:

(i) The functions hi are continuous and piece-wise linear. In particular they are dif-
ferentiable almost everywhere and their left and right side derivatives ∂−hi and
∂+hi , respectively, exist everywhere. The same holds for the function 	v .

(ii) A new local phase begins at a time θ ∈ [θ1, θ̂ ) if and only if at least one of the
following two events occurs at time θ : An edge vwi becomes newly active or the
queue of an active edge vwi runs empty.

Claim 1 If an edge vwi is inactive during some interval (a, b) ⊆ [θ1, θ̂ ] the graph of
hi is convex on this interval.

Claim 2 For any time θ define I (θ):={i ∈ [p]|hi (θ) = 	v(θ)}. Then, we have

min{∂−hi (θ)|i ∈ I (θ)} ≤ ∂+	v(θ). (11)

If, additionally, no edge becomes newly active at time θ , we also have

∂−	v(θ) ≤ ∂+	v(θ). (12)

Proof of Claim 1 By the lemma’s assumption 	wi is linear on the whole interval. For
an inactive edge vwi its queue length function consists of at most two linear sections:
One where the queue depletes at a constant rate of −νe and one where it remains
constant 0. Thus, hi is convex as sum of two convex functions for any interval, where
vwi is inactive. ��
Proof of Claim 2 To show (11), let I ′ be the set of indices of edges active immediately
after θ , i.e.

I ′:={i ∈ I (θ)|∂+hi (θ) = ∂+	v(θ)}.

Since the total outflow from node v is constant during [θ1, θ̂ ) and flow may only enter
edges vwi with i ∈ I ′ after θ , there exists some j ∈ I ′, where the inflow rate into vw j

after θ is the same or larger than before. But then we have ∂+h j (θ) ≥ ∂−h j (θ) and,
thus,

min{∂−hi (θ)|i ∈ I (θ)} ≤ min{∂−hi (θ)|i ∈ I ′} ≤ ∂−h j (θ) ≤ ∂+h j (θ) = ∂+	v(θ).

If, additionally, no edge becomes newly active at time θ , all edges vwi with i ∈ I ′
have been active directly before θ as well implying

∂−	v(θ) = min{∂−hi (θ)|i ∈ I (θ)} (11)≤ ∂+	v(θ).

��
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We also need the following observation which is an immediate consequence of
the way the water filling algorithm determines the flow distribution (see Observation
6.1) combined with the lemma’s assumption that all label functions 	wi have constant
derivative during the interval [θ1, θ2).
Claim 3 There are uniquely defined numbers 	I ,J for all subsets J ⊆ I ⊆ [p] such
that 	′

v(θ) = 	I ,J within all local phases, where {vwi |i ∈ I } is the set of active edges
in δ+

v and {vwi |i ∈ J } is the subset of such active edges that also have a non-zero
queue during this local phase. ��

Using these properties we can nowfirst show a claimwhich implies that the smallest
	I ,J can only be the derivative of 	v for a finite number of intervals. Inductively the
same then holds for all of the finitely many 	I ,J . The proof of the lemma finally
concludes by observing that an interval with constant derivative of 	v can contain only
finitely many local phases.

Claim 4 Let (a1, b1), (a2, b2) ⊆ [θ1, θ̂ ) be two disjoint maximal non-empty intervals
with constant 	′

v(θ)=:c. If b1 < a2 and 	′
v(θ) ≥ c for all θ ∈ (b1, a2) where the

derivative exists, then there exists an edge vwi such that

1. The first local phase of (a2, b2) begins because vwi becomes newly active and
2. This edge is not active for any time in the interval [a1, a2).
In particular, the first local phase of (a1, b2) is not triggered by vwi becoming active.

Proof of Claim 4 Since we have ∂+	v(a2) = c, Claim 2 implies that there exists some
edge vwi with hi (a2) = 	v(a2) and ∂−hi (a2) ≤ c. As (a2, b2)was chosen to be maxi-
mal and 	′

v(θ) ≥ c holds almost everywhere between b1 anda2,we have ∂−	v(a2) > c.
Thus, vwi was inactive before a2.

Now let θ̃ < a2 be the last time before a2, where vwi was active. By Claim 1
we know then that h′

i (θ) ≤ c holds almost everywhere on [θ̃ , a2]. At the same time
we have 	′

v(θ) ≥ c almost everywhere on [a1, a2] and 	′
v(θ) > c for at least some

proper subinterval of [b1, a2], since the intervals (a1, b1) and (a2, b2) were chosen to
be maximal. Combining these two facts with 	v(a2) = hi (a2) implies 	v(θ) < hi (θ)

for all θ ∈ [θ̃ , a2) ∩ [a1, a2). As both functions are continuous we must have θ̃ < a1.
Thus, vwi is inactive for all of [a1, a2). ��

This claim directly implies that the lowest derivative of 	v during [θ1, θ̂ ] only
appears in a finite number of intervals, as each of these intervals has to start with a
different edge becoming newly active. But then, iteratively applying this claim for the
intervals between these intervals shows that any derivative of 	v can only appear in
a finite number of intervals. Since, by Claim 3, 	′

v can only attain a finite number of
values, this implies that [θ1, θ̂ ) consists of a finite number of intervals with constant
derivative of 	v .

Claim 5 Let (a, b) ⊆ [θ1, θ̂ ) be an interval during which 	′
v is constant. Then (a, b)

contains at most 2p local phases, where p denotes the out-degree of v.
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Proof of Claim 5 By Claim 1 an edge that changes from active to inactive during the
interval (a, b) will remain inactive for the rest of this interval. Thus, at most p local
phases can start because an edge becomes newly active. By Claim 4 if a local phase
begins because the queue on an active edge vwi runs empty at time θ , we have
∂+hi (θ) > ∂−hi (θ) = ∂−	v(θ) = ∂+	v(θ) meaning that this edge will become
inactive. Thus, at most p local phases start because the queue of an active edge runs
empty. Since by observation (ii) these are the only ways to start a new local phase, we
conclude that there can be no more than 2p local phases during (a, b). ��

Combining Claims 4 and 5 we see that [θ1, θ̂ ) only contains a finite number of local
phases and, thus, we achieve θ̂ = θ2 with finitely many extensions. ��

With this lemma the proof of the following theorem is straightforward.

Theorem 3.3 For any acyclic single-sink network with piecewise constant network-
inflow rates an IDE can be constructed in finite time using Algorithm 2.

Proof First, note that by [9, Theorem 1] for any given single-sink network N there
exists an (easily computable) time T such that all IDE inN terminate before T . This
makes the first line of Algorithm 2 possible. Thus, it remains to show that in line 6 a
finite number of local phases always suffices. We show this by induction over θ and
i ∈ [n], i.e. we can assume that the currently constructed flow f is a partial IDE up
to time θ for all nodes v j , j ≥ i and up to time θ + τmin for all nodes v j , j < i with
only a finite number of (local) phases. In particular, this means that we can partition
the interval [θ, θ + τmin) into a finite number of proper subintervals such that within
each such subinterval there is a constant gross node inflow rate into node vi and the
labels at all the vertices w with viw ∈ δ+

vi
change linearly. Then, by Lemma 3.2, we

can distribute the flow at node vi to the outgoing edges using a finite number of local
phases for each of these subintervals. Note that, aside from the queue lengths on the
edges leaving vi , the so distributed flow has no influence on the flow distribution in
later subintervals and, in particular, does not influence the partition into subintervals
or the flow distribution at nodes closer to t than vi . Thus, we can distribute the out-
flow from vi for the whole interval [θ, θ + τmin) using only a finite number of local
phases. ��

Closer inspection of the proofs above also allows us to derive a rough but explicit
bound on the number of phases the constructed IDE flow can have.

Proposition 3.4 For any acyclic single-sink network with piecewise constant network-
inflow rates the number of phases of any IDE flow constructed by Algorithm 2 is
bounded by

O
(
P

(
2(� + 1)4

�+1
)|V |T /τmin

)
,

where �:=max{∣∣δ+
v

∣∣ |v ∈ V } the maximum out-degree in the given network and P is
the number of intervals with constant network inflow rates.
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Proof First, we look at an interval [θ1, θ2) and a single node v as in Lemma 3.2. Here
we can use Claim 4 to bound the number of intervals of constant derivative of 	v by

(∣∣δ+
v

∣∣ + 1
)|{(I ,J )|J⊆I⊆[|δ+

v |]}| ≤ (∣∣δ+
v

∣∣ + 1
)4|δ+v |

,

each of them containing at most 2
∣∣δ+

v

∣∣ local phases by Claim 5. Together this shows

that any such interval will be subdivided into at most 2(�+1)4
�+1 local phases. Thus,

whenever we execute line 6 of Algorithm 2 every currently existing (local) phase may
be subdivided further into atmost 2(|�|+1)4

�+1 local phases. Consequently, for every
pass of the outer for-loop the number of local phases can be multiplied by at most∏

v∈V
(
2(|�| + 1)4

�+1
)
in total during the extension over the interval [θ, θ + τmin).

Combining this with the at most P phases triggered by changing network inflow rates
results in the bound of

O
(
P

(
2(� + 1)4

�+1
)|V |T /τmin

)
.

��

3.2 General single-sink networks

We now want to extend this result to general single-sink networks, i.e. we want to
show that Algorithm 1 terminates within finite time not only for acyclic graphs, but
for all graphs. We first note that the requirement for input-graphs of Algorithm 2 to
be acyclic is somewhat too strong. It is actually enough to have some (static) order on
the nodes such that it is always a topological order with respect to the active subgraph.
That is, for a general single-sink network we can still apply Algorithm 2 to determine
an IDE-extension with finitely many phases for any interval during which we have
such a static node ordering. Thus, Algorithm 1 will also use finitely many extension
phases for each interval with such a static ordering. This observation gives rise to
Algorithm 3, another slight variant of Algorithm 1.

We will prove that this algorithm does indeed construct an IDE for arbitrary single-
sink networks within finite time by first showing that this algorithm is a special case
of the original algorithm. Thus, it is correct and uses only a finite number of phases
for any interval in which the topological order does not change. We then conclude
the proof by showing that it is indeed enough to change the topological order a finite
number of times for any given time horizon.

Lemma 3.5 Algorithm 3 is a special case of Algorithm 1. In particular it is correct.

Proof As in Algorithm 2 the existence of an upper bound T on the termination time of
all IDE flows for a given single-sink network is guaranteed by [9, Theorem 1]. Next,
note that Ẽ is clearly always acyclic (except in lines 11 and 13) which guarantees that
we can always find a topological order with respect to Ẽ . We now only need to show
that such an ordering is also a topological order with respect to the active edges, i.e.
that for any time θ we have Eθ ⊆ Ẽ . For this we will use the following observation
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Algorithm 3: IDE-Construction Algorithm for general single-sink networks
Input: A single-sink network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Choose T large enough such that all IDE flows in N terminate before T

2 Let f be the zero flow, θ ← 0 and Ẽ ← E0
3 Determine a topological order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ
4 while θ < T do

/* f is a partial IDE up to time θ */
5 for i = 2, . . . , n do
6 Compute b−

vi
(θ) and determine a constant distribution of this inflow to edges in δ+

vi
such that

the used edges remain active for some proper interval

7 end for
8 Determine the largest α ≥ 0 such that all b−

v are constant on (θ, θ + α) and the set of active
edges does not change

9 Extend f up to time θ + α with constant edge inflow rates and set θ ← θ + α

10 if Eθ \ Ẽ �= ∅ then
11 Define Ẽ ← Ẽ ∪ Eθ .

12 while there exists a cycle C in Ẽ do
13 Remove an edge e = xy with the largest value 	y(θ) − 	x (θ) of all edges in C

14 end while
15 Determine a topological order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ

16 end if

17 end while

Claim 6 Any edge xy removed from Ẽ in line 13 ofAlgorithm3 satisfies 	x (θ) < 	y(θ).

Proof Let C ⊆ Ẽ be a cycle containing the removed edge xy. Since Ẽ was acyclic
before we added the newly active edges in line 11, this cycle also has to contain some
currently active edge vw. This gives us

∑
e=uz∈C\{vw}

(	z(θ) − 	u(θ)) =
∑

e=uz∈C
(	z(θ) − 	u(θ)) − (	w(θ) − 	v(θ))

= 0 − 	w(θ) +
(
	w(θ) + τvw + qvw(θ)

νvw

)

= τvw + qvw(θ)

νvw

≥ τmin.

Thus, C contains at least one edge uz with 	z(θ) − 	u(θ) > 0 and, by the way it was
chosen, this then holds in particular for edge xy. ��

This claim immediately implies that in line 13 we only remove inactive edges and
that, afterwards, we still have Eθ ⊆ Ẽ . ��
Lemma 3.6 For any single-sink network there exists some constant C > 0 such that
for any time interval of length C the set Ẽ changes at most |E | times during this
interval in Algorithm 3.
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Proof The proof of this lemma mainly rest on the following claim stating that for any
fixed network we can bound the slope of the node labels of any feasible flow in this
network by some constant.

Claim 7 For any given network there exists some constant L > 0 such that for all
feasible flows, all nodes v and all times θ we have

∣∣	′
v(θ)

∣∣ ≤ L.

Proof First note that for any node v we can bound the maximal inflow rate into this
node by some constant Lv as follows:

∑
e∈δ−

v

f −
e (θ) + uv(θ)

(5)≤
∑
e∈δ−

v

νe + max{uv(θ)|θ ∈ R≥0}=:Lv.

Using flow conservation (2) this, in turn, allows us to bound the inflow rates into all
edges e ∈ δ+

v and, thus, the rate at which the queue length and the current travel time
on these edges can change:

−1 ≤ c′
e(θ)

(1),(6)≤ f +
e (θ)

νe
≤ Lv

νe
=:Le.

Since this rate of change is also lower bounded by −1 setting L:= ∑
e∈E max{1, Le}

proves the claim, as for all nodes v and times θ we then have

∣∣	′
v(θ)

∣∣ ≤
∑
e∈E

∣∣c′
e(θ)

∣∣ ≤
∑
e∈E

Le = L.

��
Now, from Claim 6 we know that, whenever we remove an edge xy from Ẽ at time

θ we must have 	x (θ) < 	y(θ). But at the time where we last added this edge to Ẽ ,
say at time θ ′ < θ , it must have been active (since we only ever add active edges to Ẽ)
and, thus, we had 	x (θ

′) = 	y(θ
′)+cxy(θ ′) ≥ 	y(θ

′)+τmin. Therefore, the difference
between the labels at x and y has changed by at least by τmin between θ ′ and θ . Claim 7
then directly implies θ − θ ′ ≥ τmin

2L . So, for any time interval of length at most τmin
2L

each edge can be added at most once to Ẽ . Since Ẽ only ever changes when we add
at least one new edge to it, setting C := τmin

2L proves the lemma. ��
Theorem 3.7 For any single-sink network with piecewise constant network-inflow
rates an IDE can be constructed in finite time using Algorithm 3.

Proof By Lemma 3.5 Algorithm 3 is a special case of Algorithm 1. Thus, for any inter-
val with static Ẽ it produces the same flow as Algorithm 2. In particular, by Theorem
3.3, for any such interval the constructed flow consists of finitely many phases. Finally,
Lemma 3.6 shows that the whole relevant interval [0, T ] can be partitioned into a finite
number of intervals with static set Ẽ . Consequently, Algorithm 3 constructs an IDE
with finitely many phases and, thus, terminates within finite time. ��
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As in the acyclic case we can again also extract an explicit upper bound on the
number of phases.

Proposition 3.8 For any single-sink network with piecewise constant network inflow
rates the number of phases of any IDE flow constructed by Algorithm 3 is bounded
by

O
(
P

(
2(� + 1)4

�+1
)2L·|E |·|V |·T /τ 2min

)
,

where, again,�:=max{∣∣δ+
v

∣∣ |v ∈ V } is the maximum out-degree in the given network,
P is the number of intervals with constant network inflow rates and L the bound on
the slopes of the label functions from Claim 7.

Proof For any time interval with fixed node order Algorithm 3 is equivalent to Algo-
rithm2and, thus, the bound fromProposition 3.4 applies.Also note, that inAlgorithm2
we could change the node order after every time step of length τmin without any impact
on correctness or the bound on the number of phases (as long as we always choose an
order which is a topological order with respect to the active edges). As, by Lemma 3.6,
the node order in Algorithm 3 changes at most 2L · |E | /τmin times during any unit
time interval, replacing T by 2L · |E | · T /τmin in the bound for Algorithm 2 yields a
valid bound for the number of phases of Algorithm 3. ��
Remark 3.9 If presented with rational input data (i.e. rational capacities, node inflow
rate, current queue lengths, current distance labels and slopes of distance labels of
neighbouring nodes) the water filling procedure Algorithm 4 again produces a rational
solution to (OPT-b−

v (θ)) (i.e. rational edge inflow rates) which then, in turn, results in
a rational maximal extension length α. Thus, Algorithm 3 can be implemented as an
exact combinatorial algorithm.

Since DE and IDE coincide for parallel link networks and for DE paths can always
be replaced by single edges, the above theorem also implies the following result for
DE. Note, however, that, while to the best of our knowledge this result has never
explicitly been stated elsewhere, it seems very likely that it could also be shown in a
more direct way for this very simple graph class.

Corollary 3.10 On parallel paths networks Dynamic Equilibria can be constructed in
finite time using the natural extension algorithm.

4 Computational complexity of IDE-flows

While Theorem 3.7 shows that IDE flows can be constructed in finite time, the bound
provided in Proposition 3.8 is clearly superpolynomial. We now want to show that
in some sense this is to be expected. Namely, we first look at the output complexity
of any such algorithm, i.e. how complex the structure of IDE flows can be. Then we
show that many natural decision problems involving IDE are actually NP-hard.
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Fig. 4 A network (top left picture) where constant inflow rate of 2 over [0,U ] leads to an IDE with �(U )

different phases. The following pictures show the first states of the network, which are described in general
in Table 1

4.1 Output complexity and steady state

In this section we call an open interval (a, b) ⊆ R≥0 a phase of a feasible flow f , if it
is a maximal interval with constant in- and outflow rates for all edges. Then it seems
reasonable to expect of any algorithm computing feasible flows that its output has to
contain in some way a list of the flow’s phases and corresponding in- and outflow
rates. In particular, the number of phases of a flow is a lower bound for the runtime of
any algorithm determining that flow. This observation allows us to give an exponential
lower bound for the output complexity and therefore also for the worst case runtime
of any algorithm determining IDE flows. This remains true even if we only look at
acyclic graphs and allow for our algorithm to recognize simple periodic behaviour and
abbreviate the output accordingly.

Theorem 4.1 The worst case output complexity of calculating IDE flows is not poly-
nomial in the encoding size of the instance, even if we are allowed to use periodicity
to reduce the encoding size of the determined flow. This is true even for series parallel
graphs.

Proof For any given U ∈ N
∗ consider the network pictured in Fig. 4 with a constant

inflow rate of 2 at s over the interval [0,U ]. This network can clearly be encoded in
O(logU ) space. The unique (up to changes on a set of measure zero) IDE is displayed
up to time θ = 6.5 in Fig. 4 and described for all times in Table 1. As this pattern is
clearly non-periodic and continues up to time θ = U , it exhibits�(U ) distinct phases.
This proves the theorem. ��

Remark 4.2 In [4, Section 5.2] Cominetti et al. sketch a family of instances of size
O(d2) where a dynamic equilibrium flow exhibits an exponential number of phases
(of order �(2d)) before it reaches a stable state.

123



A finite time combinatorial algorithm for instantaneous... 781

Table 1 Phases of the (unique) IDE in the instance of Fig. 4

θ = f +
vt (θ) f +

wx (θ) qvt (θ) qwx (θ) f +
sv(θ) f +

sw(θ)

4k + 2−k − 1 0 2 2 − 2−k ↘ 1 − 2−k ↗ 2 0

4k + 2−k 2 0 1 − 2−k ↗ 2 − 2−k ↘ 2 0

4k + 2−k + 1 2 0 2 − 2−k ↗ 1 − 2−k ↘ 0 2

4k + 2 2 0 2 − 2−k ↗ 0 → 0 2

4k + 2−k + 2 0 2 3 − 2−k ↘ 0 ↗ 0 2

For all k ∈ N0 the table includes the (constant) inflow rates into edges on the intervals (4k + 2−k − 1, 4k +
2−k ), (4k + 2−k , 4k + 2−k + 1),(4k + 2−k + 1, 4k + 2), (4k + 2, 4k + 2−k + 2) and (4k + 2−k + 2, 4k +
2−(k+1) + 3) as well as the queue lengths on the edges vt and wx at the beginning of these intervals and
the rate of change for the queue lengths over the following interval (↗ stands for an increase at rate 1, ↘
for a decrease at rate −1 and → for no change)

The network constructed in the above proof can also be used to gain some insights
into the long term behavior of IDE flows, i.e. how such flows behave if the inflow rates
continue forever. In order to analyze this long term behavior of dynamic equilibrium
flows Cominetti et al. define in [4, Section 3] the concept of a steady state:

Definition 4.3 A feasible flow f with forever lasting constant inflow rate reaches a
steady state if there exists a time θ̃ such that after this time all queue lengths stay the
same forever i.e.

qe(θ) = qe(θ̃) f.a. e ∈ E, θ ≥ θ̃ .

For dynamic equilibriumflowsCominetti et al. then show that the obvious necessary
condition that the inflow rate is at most the minimal total capacity of any s-t cut is also
a sufficient condition for any dynamic equilibrium in such a network to eventually
reach a steady state ([4, Theorem 3]). We will show that this is not true for IDE flows
- even if we consider a weaker variant of steady states:

Definition 4.4 A feasible flow f reaches a periodic state if there exists a time θ̃ and
a periodicity p ∈ R≥0 such that after time θ̃ all queue lengths change in a periodic
manner, i.e.

qe(θ + kp) = qe(θ) f.a. e ∈ E, θ ≥ θ̃ , k ∈ N
∗.

Note that, in particular, every flow reaching a stable state also reaches a periodic
state (with arbitrary periodicity).

Theorem 4.5 There exists a series parallel network with a forever lasting constant
inflow rate u at a single node s, satisfying u ≤ ∑

e∈δ+
X

νe for all s-t cuts X, where no
IDE ever reaches a periodic state.

Proof Consider the network constructed in the proof of Theorem 4.1, i.e. the one
pictured in Fig. 4, but with a constant inflow rate of 2 at s for all of R≥0. A minimal
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Fig. 5 The dynamic equilibrium flow for the network constructed in the proof of Theorem 4.5

cut is X = {s, v, w}with∑
e∈δ+

X
νe = 2. The unique IDE flow is still the one described

in Table 1 and, thus, never reaches a periodic state. ��
Remark 4.6 In contrast the (again unique) dynamic equilibrium for the network from
Fig. 4 is displayed in Fig. 5 and does indeed reach a steady state at time θ = 4.

Remark 4.7 The network considered in the proof of Theorem 4.5 also shows that we
can in fact achieve arbitrarily short extensionphases evenwithin quite simple networks.
Namely, the gross node inflow rate at node x is of the following form

b−
x (θ) =

{
0, if θ ∈ [4k + 3, 4k + 3 + 2−k] for some k ∈ N0

1, else.

Thus, the flow distribution at node x requires phases of lengths 2−k for any k ∈ N0.
Note however, that these ever smaller getting phases are far enough apart so as to still
allow us to reach any finite time horizon within a finite number of extension phases
(as it is guaranteed by Theorem 3.3).

4.2 NP-hardness

We will now show that the decision problem whether in a given network there exists
an IDE with certain properties is often NP-hard – even if we restrict ourselves to only
single-source single-sink networks on acyclic graphs. Note, however, that due to the
non-uniqueness of IDE flows this does not automatically imply that computing any
IDE must be hard.

We first observe that the restriction to a single source can be made without loss of
generality.

Lemma 4.8 For any multi-source single-sink network N with piecewise constant
inflow rates with finitely many jump points there exists a (larger) single-source single-
sink network N ′ with constant inflow rate such that

(a) The encoding size of N ′ is linearly bounded in that of N ,
(b) If N is acyclic, so is N ′,
(c) N is a subnetwork of N ′ (except for the sources),
(d) The restriction map composed with some constant translation is a one-to-one

correspondence between the IDE-flows in N ′ and those in N :

{ IDE in N ′} → { IDE in N }, f �→ f |N (_ − c).
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Proof This can be accomplished by using the construction from the proof of [10,
Theorem 6.3], which clearly satisfies all four properties. ��
Theorem 4.9 The following decision problems are NP-hard:

(i) Given a network and a specific edge: Is there an IDE not using this edge?
(ii) Given a network and a specific edge: Is there an IDE using this edge?
(iii) Given a network and a time horizon T : Is there an IDE that terminates before

T ?
(iv) Given a network and some k ∈ N: Is there an IDE consisting of at most k phases?

All these decision problems remain NP-hard even if we restrict them to single-source
instances with constant inflow rate on acyclic graphs. Problem (iv) becomes NP-
complete if we restrict k by some polynomial in the encoding size of the whole instance.

Proof We will show this theorem by reducing the NP-complete problem 3SAT to the
above problems. The main idea of the reduction is as follows: For any given instance
of 3SAT we construct a network which contains a source node for each clause with
three outgoing edges corresponding to the three literals of the clause. Any satisfying
interpretation of the 3SAT-formula translates to a distribution of the network inflow
to the literal edges, which leads to an IDE flow that passes through the whole network
in a straightforward manner. If, on the other hand, the formula is unsatisfiable every
IDE flowwill cause a specific type of congestion which will divert a certain amount of
flow into a different part of the graph. This part of the graph may contain an otherwise
unused edge or a gadget which produces many phases (e.g. the graph constructed for
the proof of Theorem 4.1) or a long travel time (e.g. an edge with very small capacity).

We start by providing two types of gadgets: One for the clauses and one for the
variables of a 3SAT-formula. The clause gadget C (see Fig. 6) consists of a source
node c with a constant network inflow rate of 12 over some interval of length 1 and
three edges with capacity 12 and travel time 1 connecting c to the nodes 	1, 	2 and
	3, respectively. This gadget will later be embedded into a larger network in such a
way that the shortest paths from the nodes 	1, 	2 and 	3 to the sink t all have the same
length. Thus, the flow entering the gadget at the source node c can be distributed in
any way over the three outgoing edges. We will have a copy of this gadget for any
clause of the given 3SAT-formula with the three nodes 	1, 	2 and 	3 corresponding to
the three literals of the respective clause. Setting a literal to true will than correspond
to sending a flow volume of at least 4 towards the respective node.

The variable gadget V (see Fig. 7) has two nodes x and ¬x over which flow can
enter the gadget. From both of these nodes there is a path consisting of two edges of
length 1 leading towards a common node z, from where another edge of length and
capacity 1 leads to node z′. From there the gadget will be connected to the sink node
t somewhere outside the gadget. The path from ¬x to z has infinite capacity3, while
the path from x to z consists of one edge with capacity 1 followed by one edge of

3 Throughout this construction whenever we say that an edge has “infinite capacity” by that we mean some
arbitrary capacity high enough such that no queues will ever form on this edge. Since the network we
construct will be acyclic such capacities can be constructed inductively similarly to the constant Le in the
proof of Claim 7
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Fig. 6 The clause gadget C
consists of a source node and
three edges leaving it, each with
capacity 12 and travel time 1. If
embedded in a larger network in
such a way that the shortest
paths from 	1,	2 and 	3 to t all
have the same length (and no
queues during the interval
[0, 1]), the inflow at node s can
be distributed in any way among
the three edges. In particular, it
is possible to send all flow over
only one of the three edges. In
any distribution there has to be
at least one edge which carries a
flow volume of at least 4

Fig. 7 The variable gadget V .
The edges xy and zz′ have
capacity 1, all other edges have
infinite capacity. The travel
times on all (solid) edges are 1
while the dashed lines represent
paths with a length such that the
travel time from s2 to t is the
same as from y over z and z′ to
t . If flow enters this gadget at
any rate over a time interval of
length one at either x or ¬x all
flow will travel over the edge zz′
to the sink t . If, on the other
hand, at both x and ¬x a flow of
volume at least 4 enters the
gadget over an interval of length
1 a flow volume of more than 1
will be diverted towards s2

123



A finite time combinatorial algorithm for instantaneous... 785

infinite capacity with a node y between the two edges. The first edge can be bypassed
by a path of length 3 and infinite capacity. From the middle node y there is also a path
leaving the gadget towards t via some node s2 outside the gadget. This path has a total
length of one more than the path via z and z′ to t .

We will have a copy of this gadget for every variable of the given 3SAT-formula.
Similarly to the clause gadget we will interpret the variable x to be set to true if a flow
of volume at least 4 traverses node x and the variable to be set to false if a flow volume
of at least 4 passes through node ¬x . If both happens at once, i.e. both x and ¬x each
are traversed by a flow of volume at least 4 over the span of a time interval of length
1, we interpret this as an inconsistent setting of the variables. In this case a flow of
volume more than 1 will leave the gadget via the edge ys2 during the unit length time
interval three time steps later. To verify this, assume that the flow enters at nodes x
and ¬x during [0, 1]. Then the flow entering through ¬x will start to form a queue
on edge zz′ two time steps later. This queue will have reached a length of at least 2
at time 3 and, thus, still has a length of at least 1 at time 4. The flow entering through
x at first only uses edge xy until a queue of length 2 has build up there. After that,
flow will only enter this edge at a rate of 1 to keep the queue length constant, while
the rest of the flow travels through the longer path towards y. This flow (of volume
at least 1) as well as some non-zero amount of flow from the queue on edge xy will
arrive at node y during the interval [3, 4]. Because of the queue on edge zz′ all of this
flow (of volume more than 1) will be diverted towards s2. If, on the other hand, flow
travels through only one of these two nodes over the course of an interval of length 1
than all this flow will be forced to travel to t via z. The third option, i.e. flow entering
the gadget through both nodes but with a volume of less than 4 at at least one of them,
will not be relevant for the further proof.

We can now transform a 3SAT-formula into a network as follows: Take one copy
of the clause gadget C for every clause of the formula (each with an inflow rate of 12
during the interval [0, 1] at its respective node c), one copy of the variable gadget V
for every variable and connect them in the obvious way with edges of infinite capacity
and unit travel time (e.g. if the first literal of some clause is ¬x1 connect the node 	1
of this clause’s copy of C with the node ¬x of the variable x1’s copy of V and so on).
Then add a sink node t and connect the nodes z′ of all variable gadgets to t via edges
of travel time 1 and infinite capacity. Finally, connect the node s2 (which is the same
for all variable gadgets) to t by first an edge s2v of travel time 1 and then another edge
vt of travel time 2 and infinite capacity. The resulting network (see Fig. 8) has an IDE
flow not using edge s2v if and only if the 3SAT-formula is satisfiable: Namely, if the
formula is satisfiable, take one satisfying interpretation and define a flow as follows: In
every clause gadget choose one literal satisfied by the chosen interpretation and send
all flow from this gadget over this literal’s corresponding edge. This ensures that in the
variable gadgets all flow will enter through only one of the two possible entry nodes
x and ¬x and, as noted before, will then leave the gadget exclusively over node z′. If,
on the other hand, the 3SAT-formula is unsatisfiable every IDE flow will sent a flow
volume of more than 1 over edge s2v during the interval [4, 5] since in this case any
flow has to have at least one variable gadget where flow volumes of at least four enter
at node x as well as node ¬x (otherwise such a flow would correspond to a satisfying
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Fig. 8 Schematic representation of the whole network corresponding to a 3SAT-formula with clauses
C1, . . . ,Ck in variables x1, . . . , xn . The triangles are clause gadgets (cf. Fig. 6), the rectangles are variable
gadgets (cf. Fig. 7)

interpretation of the given 3SAT-formula). This shows that the first problem stated in
Theorem 4.9 is NP-hard.

In order to show that the other problems are NP-hard as well, we will introduce
a third type of gadget: The indicator gadget I (see Fig. 9). We can construct such a
gadget for any given single-source single-sink network N with constant inflow rate
over the interval [0, θ0] at its source node. It consists of a new source node s1 with the
same inflow rate asN ’s source node shifted by 5 time steps. The node s1 is connected
to the sink node t (outside the gadget) by two paths: One through the network N
(entering it at its original source node sN and leaving it from its sink node tN ) and
one through two additional nodes s2 and v and an edge of capacity and travel time
1 between them. All other edges outside N have infinite capacity. The two outgoing
edge from s1 both have a length of θ0. The path through the gadget has length one
more than the path via s2 and v. The node s2 has a constant network inflow rate of 1
starting at time 4 and ending at time 5+ θ0. When embedding this gadget into a larger
network (with sink t) the gadget is connected to the larger network by one or more
incoming edges into s2.
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Fig. 9 The indicator gadget I for
a single-source single-sink
network N with network inflow
rate uN1[0,θ0]. All bold edges
have infinite capacity, the edge
s2v has capacity 1. The edges
s1sN and s1s2 both have travel
time θ0, edge s2v has a travel
time of 1 and the edges tN t and
vt can have any travel time such
that the shortest s1-t path
throughN has a length of
exactly one more than the s1-t
path using edge s2v. If within
the interval [4, 5] a flow of
volume more than 1 arrives at s2
over the dashed edge, all flow
entering the network at s1 will
travel troughN (it will arrive at
that sub-networks source node
sN at a rate of uN during the
interval [5+ θ0, 5+ 2θ0]). If, on
the other hand, a flow volume of
at most 1 reaches s2 via the
dashed edge up to time 5 + θ0
all flow originating at s2 will
bypassN using edge s2v andN
will forever remain empty

If no flow ever enters the gadget via this edge, all flow generated at s1 will travel
through the path containing s2v. If, on the other hand, a flow of volume more than 1
comes through this edge before the inflow at node s1 starts, all the flow generated there
will travel through the subnetworkN . Adding this gadget to the network constructed
from the 3SAT-formula as described above results in a network with the following
properties (see Fig. 10 for an example):

• If the 3SAT-formula is satisfiable there exists an IDE flow where the subnetwork
N inside gadget I is never used but edge s1s2 is used.

• If the 3SAT-formula is unsatisfiable every IDE flowwill be such that its restriction
to the subnetwork N inside I is a (time shifted) IDE flow in the original stand
alone network N and the edge s1s2 is never used.

Accordingly, if for example we use the network from Fig. 4 as sub-network we have a
reduction from 3SAT to the fourth problem from Theorem 4.9. Any networkN gives
us a reduction to the second problem (with edge s1s2 as the special edge). And just an
edge with a very small capacity allows a reduction to the third problem. Alternatively,
one could also use a network wherein flow gets caught in cycles for a long time before
it reaches the sink as, for example, the network constructed to prove the lower bound
on the termination time of IDE in [9]. ��
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Fig. 10 The whole network for the 3SAT-formula (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x4).
The bold edges have infinite capacity, while all other edges have capacity 1. The solid edges have a travel
time of 1, the dashdotted edges may have variable travel time (depending on the subnetworkN )

Remark 4.10 Combining a construction similar to the one abovewith the single-source
multi-sink network constructed in the proof of [10, Theorem 6.3] to show that multi-
commodity IDE flows may cycle forever, shows that the problem to decide whether a
given multi-sink network has an IDE terminating in finite time is NP-hard as well.

Remark 4.11 The above construction also shows the following aspect of IDE flows:
While a network may trivially contain edges that are never used in any IDE, edges
that are only used in some IDE flows and edges that are used in every IDE, there can
also be edges that are either not used at all or used for some flow volume of at least c,
but never with any flow volume strictly between 0 and c.

5 Conclusions and open questions

We showed that Instantaneous Dynamic Equilibria can be computed in finite time
for single-sink networks by applying the natural α-extension algorithm. The obtained
explicit bounds on the required number of extension steps are quite large and we do
not think that they are tight.

We then turned to the computational complexity of IDE flows. We gave an example
of a small instance which only allows for IDE flows with rather complex structure,
thus, implying that the worst case output complexity of any algorithm computing IDE
flows has to be exponential in the encoding size of the input instances. Furthermore,
we showed that several natural decision problems involving IDE flows are NP-hard
by describing a reduction from 3SAT.

One common observation that can be drawn from many proofs involving IDE
flows (in this paper as well as in [10] and [9]) is that they often allow for some kind of
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local analysis of their structure – something which seems out of reach for Dynamic
Equilibrium flows. This local argumentation allowed us to analyse the behavior of IDE
flows in the rather complex instance from Sect. 4.2 by looking at the local behavior
inside the much simpler gadgets from which the larger instance is constructed. At the
same time, this was also a key aspect of the positive result in Sect. 3 where it allowed
us to use inductive reasoning over the single nodes of the given network. We think that
this local approach to the analysis of IDE flows might also help to answer further open
questions about IDEflows in the future. One such topicmight be a further investigation
of the computational complexity of IDE flows. While both our upper bound on the
number of extension steps as well as our lower bound for the worst case computational
complexity are superpolynomial bounds, the latter is at least still polynomial in the
termination time of the constructed flow, which is not the case for the former. Thus,
there might still be room for improvement on either bound.
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Appendix: The waterfilling algorithm

In order to find a possible extension of a given partial IDE at a single node we have to
determine a solution to (OPT-b−

v (θ)), i.e. find a distribution of the flow coming into
this node to outgoing active edges in such a way that all used edges remain active
for some proper time interval. As shown in [10] this can be done by a simple water
filling procedure ([10, Algorithm 1 (electronic supplementary material)]), which we
will restate here for the convenience of the reader. The basic idea of this procedure is
to first determine for every outgoing active edge vw and all possible future constant
edge inflow rates z the right side derivative of the resulting shortest instantaneous
travel time towards the sink for particles starting with this edge, i.e.

ge(z)

νe
+ ∂+	w(θ),

where ge(z):=z − νe, if qe(θ) > 0 and ge(z):=max{z − νe, 0}, otherwise. Seen as
functions in z these are continuous monotonic increasing functions starting with a
constant part (if the edge has no queue to begin with) followed by an affine linear part.
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Thus, they can always be written in the form

k(z) =
{

β, z ≤ γ

β + 1
α
(z − γ ), z ≥ γ

for appropriately chosen constants α, β, γ . The goal is now to distribute the current
gross node inflow rate to the outgoing edges such that for all edges getting a non-zero
part of this flow rate their respective functions k evaluated at these rates coincide,
while the k functions of all other edges are at least as high when evaluated at a flow
rate of 0. This can be accomplished by ordering the edges with increasing value of
k for inflow rate 0 and then simultaneously filling the available node inflow into the
edges with currently lowest value of k until all flow is distributed. This is exactly what
is accomplished by Algorithm 4.

Algorithm 4:Water filling procedure for flow distribution

Input : A number b−
v (θ) ≥ 0 and functions ki : R≥0 → R≥0 with αi > 0 for

i = 1, . . . , p:= ∣∣δ+
v ∩ Eθ

∣∣ and β1 ≤ β2 ≤ · · · ≤ βp.
Output: Values zi ≥ 0 such that

∑p
i=1 zi = b−

v (θ) and for some r ′ ≤ p
satisfying k0(z0) = · · · = kr ′(zr ′) ≤ βr ′+1, zi > 0 for i ≤ r ′ and zi = 0
for i > r ′.

1 Find the maximal r ∈ {0, 1, . . . , p} with ∑r
i=1 max{z|ki (z) ≤ βr } ≤ b−

v (θ)

2 if r < p and
∑r

i=1 max{z|ki (z) ≤ βr+1} ≤ b−
v (θ) then

3 Set zi ←

⎧⎪⎨
⎪⎩
max{z|ki (z) ≤ βr+1}, i ≤ r

b−
v (θ) − ∑

i<r zi , i = r + 1

0 i > r + 1
4 else

5 Set zi ←
{
max{z|ki (z) ≤ βr }, i ≤ r

0 i > r
and b′ ← b−

v (θ) − ∑p
i=1 zi

6 Set zi ← zi + αi∑r−1
j=1 α j

b′ for all i ≤ r .

7 end if
8 return z1, . . . , z p

The correctness of this approach has been proven in [10, electronic supplementary
material, Lemma 1].

Observation 6.1 The flow distribution obtained by using Algorithm 4 at a given node
only depends on the set of active edges, which subset of those currently has a non-zero
queue, the gross node inflow rate and the label functions 	wi .

Observation 6.2 If all input data for Algorithm 4 (i.e. b−
v (θ) as well as all αi , βi and

γi ) is rational, so is the output (i.e. the zi ).
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