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Abstract— This paper introduces the control architecture
of a platform aimed at promoting good mental health for
workers interacting with collaborative robots (cobots). The
platform aim is to render industrial production cells capable of
automatically adapting their behavior in order to improve the
operator’s quality of experience and level of engagement and to
minimize his/her psychological strain. In order to achieve such
a goal, an extremely rich and complex framework is required.
Starting from the identification of the parameters that could
influence the collaboration experience, the envisioned human-
driven control structure is presented together with a detailed
description of the components required to implement such an
automated system. Future works will include proper tuning
of control parameters with dedicated experimental sessions,
together with the definition of organizational and technical
guidelines for the design of a mental-health-friendly cobot-
based manufacturing workplace.

I. INTRODUCTION

The constantly growing concept of Industry 4.0 is leading
to completely new workspaces where automation machines
cooperate with humans. However, the quality of experience
and level of engagement of workers interacting with robots
have become an active research topic only recently and still
represent a largely unexplored domain. So far, industrial
cobots have been primarily studied and designed addressing
aspects related to the physical safety of the worker, targeting
optimal productivity performance by reducing uncertainty
and instability in their cooperation with humans. While these
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topics still remain of great interest, new research branches
must arise in order to explore the role that cobots could have
in reducing the workers’ psychological strain. The challenge
lies in the fact that, differently from applications such as
social robotics, the interaction between a human worker and
a robot collaborator in an industrial scenario is bound to the
specific task and production requirements. However, cobots
have evolved to a point where many operations could be
performed both by the manipulator and the worker, meaning
that a certain degree of freedom in the assignment of subtasks
between the two collaborators is possible. Moreover, a series
of parameters characterizing human-robot collaboration, also
identified in previous works, can be tailored with the aim of
optimizing the worker’s experience. It is clear that, in order
to achieve such a goal, a multidisciplinary approach and a
wide partnership contributing with several different fields
of expertise are of utmost importance. In this regard, the
MindBot project, funded by Horizon2020, has been launched
with the aim of defining organizational and technical guide-
lines for the design of a ”mental-health-friendly” cobot-based
manufacturing workplace. The first step in this direction is
the definition of a setup that enables constant monitoring
of the worker’s psychological strain and adaption of the
behavior of the production cell. This study represents the
starting point for this complex automation process, since
it aims at defining a suitable architecture able to realize a
human-driven control logic promoting good mental health
for workers interacting with cobots.

II. STATE OF THE ART

Very little material is available when attempting to define
cobots’ design guidelines and control methods aimed at
optimizing the psychological aspects of human-robot col-
laboration. Nevertheless, some works can be taken into
consideration to define the parameters that can influence the
operator’s experience when interacting with a cobot. In [1]
distance from the operator and approaching speed are the
main parameters considered for their effect on psychological
strain. Results show that as distance increases and speed
decreases, the measured level of stress is reduced. Moreover,
in [2] and [3], different robot trajectories are tested in
terms of how they are perceived by the operator, with
promising results regarding the employment of trajectories
inspired by human-human interactions. The influence of
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robot appearance and accuracy on the collaborative task was
also investigated in [4] and [5]. In general, appearance does
not seem to affect the level of trust while a faulty robot is
always perceived as less trustworthy.

In [6] and [7], it is shown that information supplied to
the operator during the execution of the task can yield
higher performances, but the amount of data and the form of
communication may have a negative effect on mental health
and must be properly selected. From a conceptual point of
view, a virtual avatar could act as mediator between the
human and the cobot and, as found by [8], the subjective
impression could be tailored on the basis of two orthogonal
traits: dominance and trustworthiness.

An additional feature of human-cobot collaboration that
requires deeper investigation is the experience reported by
workers during interactive tasks. In particular, it is important
to assess repeatedly and in real time the participants’ percep-
tion of both the challenges characterising collaborative tasks
with the cobot and their own abilities and skills in facing
them. As highlighted by research on stress, the balance or
imbalance between these two dimensions represents a key
factor influencing individuals’ quality of experience [9]. In
this regard, a vast literature highlighted that the combined
perception of high environmental challenges and personal
skills adequate to face them fosters the onset of optimal ex-
perience, or flow [10], a positive and rewarding state of con-
sciousness characterised by deep concentration, absorption,
enjoyment, control of the situation, clear-cut feedback on
the ongoing performance, clear goals, and intrinsic reward.
Optimal experience can be associated with most daily activi-
ties, including work [11] [12], provided that the ongoing task
is challenging enough to require concentration, engagement,
and mobilization of personal skills and resources. Instead,
when perceived challenges are too low, individuals report
experiences of boredom or apathy while, when they are too
high, an experience of anxiety arises [13].
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Human-in-the-loop MindBot control structure

Starting from these considerations, the aim of this paper is
to present a human-driven control architecture able to adapt
the human-robot collaboration in a productive workcell to
the operator’s ongoing quality of experience.

III. CONTROL ARCHITECTURE

The envisioned human-driven control architecture is re-
ported in Fig. 1. As depicted, a series of fundamental blocks
are interconnected by solid arrows, representing either the
stream of measurable/controllable parameters or a specific
type of interaction. The collection of these elements allows
for the definition of a closed control loop, running along with
the execution of the task.

The first goal is to offer the Worker an experience
characterized by social and empathic aspects, even in an
industrial scenario. To achieve this goal, the robotic platform
includes both a collaborative robot arm, and an interactive
virtual Avatar. This additional feature allows to enrich the
interaction between the Worker and Cobot, adding gaze,
gestures, and talk capabilities to the platform, with physical,
visual and voice interaction modes. The system is aimed
at achieving high-levels of integration between the Cobot
and the Avatar, so that the latter can be considered the
representation of the robot in humanoid form. In these terms,
the Worker can be said to interact with a unique entity, called
MindBot Coworker, represented by the merge of the Cobot
and the Avatar.

For this purpose, the behaviors of the Cobot and of the
Avatar are coordinated by the Orchestrator module. This
module has knowledge of the task to be carried out and
of the organization of subtasks between the Worker and
the MindBot Coworker. It is also in charge of dispatching
information to control the Cobot and the Avatar coherently
and consistently. In doing that, the resulting behavior of the
MindBot Coworker is tailored on the Worker’s mental state
in order to minimize negative experiences, such as psycho-



logical strain or boredom. The main parameters available
for adaption are the ones identified on the basis of previous
experimental results, highlighted in Section II: amount of
information provided, trustworthiness and dominance for
the Avatar and movement speed and acceleration, average
distance kept from the operator and more for the Cobot.

The current Worker’s mental state is inferred by the
User Model block. This second component allows cognitive
modeling about affective states of the Worker and regulation
strategies, by processing stressors connected to mental focus
or stress data. In order to do that, a wide set of heterogeneous
information is required, spanning from physical and mental
energy to psychological and social data. For this purpose,
raw data is collected by sensors and questionnaires and
then processed and elaborated by the Interpreter module.
In particular, four fundamental signals, aiming to provide
a comprehensive representation of the Worker, are used:

o biomechanical signals, to evaluate the physical stress

and fatigue of the operator;

o physiological signals, to estimate the mental energy

used to perform a task;

« social signals, to estimate the affective state of the user

while performing a task;

« psychological information, to infer the quality of expe-

rience perceived by the operator.
After the interpretation phase, the list of information fed
to the User Model block includes but is not limited to:
joint power, physical energy expenditure and fatigue, mental
energy use and recovery, level of focus, level of stress, level
of boredom, quality of experience and level of engagement
of the operator.

Referring to Fig. 1, a second outer loop is represented
using dashed arrows. This feature is only briefly introduced
here since it represents a core goal of the MindBot project,
but is outside the scope of this study. As stated in Section I,
a certain degree of freedom in the assignment of subtasks
between the cobot and the worker is possible and may
represent a great opportunity to further improve the adapta-
tion of the manufacturing cell. The mentioned outer loop is
envisioned to serve exactly this purpose. The Organizer block
is representative of the role of the researcher that, analyzing
all the data logged during the collaboration, proposes a
reorganization of the task based on the balance between
production requirements and Worker’s experience. Moreover,
as represented in the diagram, the Organizer is in charge
of defining possible changes in the workspace environment.
This aspect is particularly important when considering oper-
ators diagnosed with autism spectrum disorder (ASD), which
will represent a central research topic for the MindBot project
in the long-term.

IV. COMPONENTS DESCRIPTION

After introducing the general structure of the control
architecture, a detailed description of the hardware and
software components needed and identified to achieve the
desired functionalities is presented hereafter. Note that, in
order to simplify the communication among some of the
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modules, the authors chose to exploit the functionalities of
ROS Noetic Ninjemys [14], a state-of-the-art platform for
robotic research.

A. Interpreter

Mental Energy Interpreter - While the worker is in-
teracting with the MindBot Coworker, his/her physiological
responses (heart rate, bpm) and movement (steps/min) are
monitored by means of wearables, specifically FitBit activity
trackers with heart rate capabilities (FitBit Inspire HR, FitBit
Inc.). Using these physiological variables as input for the
BioRICS’ Mindstretch application [15], shown in Fig. 2, it
is possible to determine the metabolic energy use and/or
recovery for mental tasks exhibited by the workers in real-
time while working in the production cell.

(c)

Distresned
Facused

Dintracted

Fig. 2. The FitBit tracker (a), the mental energy use and recovery
throughout the day (b) and the real-time stress level against the focus zone
to determine deviations from optimal status/performance (c).

Mental energy use and recovery is a metric, expressed
in the Mindstretch app as a percentage, which relates the
mental energy wielded while performing a cognitive task to
the mental energy baseline level defined for that individual..
If the cognitive task is demanding, Mindstretch monitors the
mental energy used by the individual to perform it. When
there is no mental effort required to perform such task,
Mindstretch monitors the mental energy recovery induced by
that task [16] [17]. The worker needs to wear continuously
(day and night) the FitBit, on average, for 3 days prior to
ensure that the Mindstretch algorithm is fully adapted to the
individual worker. Combining the mental energy monitored
by Mindstretch, together with a performance metric, defined
according to the specific task, allows defining the focus
or Eustress zone of the worker while performing such a
task [18]. This mental focus zone is defined as the zone of
mental energy use exhibited by the worker when performing
most efficiently the task [19]. This focus zone is individually



different per worker and will vary within the same day for
the same worker. Deviations of the mental energy exhibited
by the worker from this estimated focus zone might be used
as an indication of distress or distraction, making the worker
go out of focus from the task and, thus, inducing a drop in
attention and performance [20].

Fig. 3. Two RGB images captured from two synchronized Azure Kinect
cameras looking at the same workspace. Here, two users are detected and
tracked to obtain the corresponding skeletons.

Physical Energy Interpreter - In the proposed architec-
ture, visual data is acquired using a set of RGB-D cameras
looking at the workspace shared between the Worker and
the MindBot Coworker from different points of view to
contrast possible occlusions. In particular, the Microsoft
Azure Kinect DK [21] cameras have been selected, since
they can provide high image resolution, up to 2560 x 1440
pixels at 30 I z. Moreover, the Microsoft Azure Kinect Body
Tracking Library is leveraged to track users and estimate
the 3D position of their skeletal joints with high accuracy
and reliability, and low uncertainty [22]. For each camera,
four topics are published to the ROS network delivering
the compressed RGB image, the depth map, the depth map
rectified in the color space geometry, and the skeletal data.
Fig. 3 shows an example of two synchronized cameras
looking at the same workspace and tracking the skeletons
of two users. Note that recorded videos are encrypted via a
256-bit Advanced Encryption Standard (AES) to ensure the
mandatory data security due to privacy reasons.

The obtained information is then exploited to perform an
online computation of the kinematics and the dynamics of
the upper-limb [23] following the inverse dynamic approach
[24]. Articular angles, velocities, accelerations and torques
are used to provide an estimation of the exerted joint power
and energy expenditure. This data represents the basis of the
estimation of measures and parameters of effort and fatigue
during the use of the MindBot platform, including time-
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to-peak [25], range of motion alteration and effort related
to energy expenditure. Furthermore, exploiting the NASA
Anthropometric Tables [26] and tracked data, this module
estimates the volumes occupied in space by the operator and
sends them through ROS to the cobot controller for collision
avoidance purposes, as represented in the right side of Fig. 4.

Social and Affective Interpreter - To support a pleasant
working atmosphere, the MindBot platform has to adjust
the interaction in the case of suboptimal mental states,
such as fatigue, stress or boredom. To recognize such
states from the the worker’s social and affective signals,
the mobile Android framework SSJ [27] is used, a Java-
native solution for social signal processing fully compatible
with modern mobile devices. The framework enables the
recording, analysis, and recognition of human behavior based
on social and affective signals such as gestures, postures,
facial expressions, body movements, and emotional speech.
To this end, SSJ allows to interface with and extract data
from device internal and external sensors. It provides support
for most standard Android sensors (camera, microphone,
IMU, GPS etc.) as well as various external sensors (heart rate
chest strap, fitness armband with pulse monitor, smartwatch
etc.). Due to its modular architecture, the data processing
in SSJ is performed through pipelines, which consist of a
sequence of autonomous components that allow the parallel
and synchronized signal processing. Additionally, SSJ sup-
ports machine learning pipelines for the execution of pre-
trained models as well as on-device training of simple online
learning classifiers, such as Naive Bayes. This is especially
useful for creating machine learning models that can be
adapted to the individual worker behavior over time. Previous
work [28] has shown that tuning a pre-trained model is
feasible on the current generation of mobile devices. The
cobot makes use of SSJ’s on-device training capabilities to
protect the workers’ privacy while adjusting to their specific
needs.

Psychological Interpreter - In order to assess the expe-
rience associated with human-cobot collaborative activities,
participants will be administered the Experience Sampling
Method (ESM), a procedure developed to study behaviour
and the associated experience during their unfolding in real
life, thus avoiding memory distortions [29] [30]. Partici-
pants will receive a tablet sending repeated random acoustic
signals. In the experimental setting of cobot development,
signals will be sent during the collaborative task with the
cobot; in the workplace implementation of the system, 6-
7 signals will be randomly sent to the worker during the
waking hours. At each signal participants are expected to
fill a short online questionnaire including (a) open-ended
questions, aimed at collecting descriptions of the ongoing
activity and related stake, location and social context; (b)
a set of scales assessing the individual quality of experi-
ence associated to the ongoing task, by rating the level of
cognitive, affective and motivational dimensions, including
perceived activity related challenges and personal skills in
facing them.
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Fig. 4. Simulated example of the Orchestrator functionality. On the left, the logical organization of the task as programmed in VSM. On the right, the

commanded Cobot and the volumes occupied by the Worker.

B. User Model

Emotions are not universally unique patterns (internally
and externally) and are always connected to individual
experiences. For instance, a smile could represent actual
satisfaction in our work, but also a mechanism used to
hide shame and insecurity. MindBot’s Affective User Model
(MAUM) allows cognitive modeling about estimated possi-
ble affective states and regulation strategies, such as avoid-
ance, attack self, attack other, or withdrawal. MAUM is based
on the MARSSI model [31], which comes with Dynamic
Bayesian Networks (DBNs) to fuse multiple social signals.
One of their main advantages is that they allow theory-
based modeling of the structure and relevant features of
a higher-level concept, such as regulation of shame with
the regulation strategy withdrawal. Since DBNs support
temporal representation, sequences for the interpretation of
social signals can be learned. MAUM employs this DBN
concept for real-time computation of a confidence value of
possible modeled user affect, updating the possibilities of
each modeled appraisal and regulation information. Note that
MARSSI can be extended by different regulation strategies
for persons diagnosed with autism spectrum disorders [32].
Moreover, for a computational representation of possible
affective appraisal of the worker’s context, environment, and
task (e.g, deadline pressure, workplace noise, and monotony
of work steps), the ALMA appraisal rules [33] are used.
MAUM collects all stressors connected to mental focus or
stress data measured by the subject’s physiological responses
and generates additional representations of affective states
that denote the outcome of emotion regulation strategies.
These representations can be seen as a basis for the real-time
interpretation of social signals and environmental signals
related to different regulation strategies for different types
of people.

C. Orchestrator

The Orchestrator is a software framework for authoring,
orchestrating, and executing scenario content with task spec-
ifications. In particular, relying on the content of the User
Model, it is responsible for tailoring the actions of both the
Cobot and the the Avatar coherently and consistently in order
to obtain a resulting behavior for the MindBot Coworker
adapted to the Worker’s interaction experience. This com-
ponent will be implemented using the Visual SceneMaker
(VSM) tool [34], which comes with an authoring tool for
creating interactive presentations aimed at non-programming
experts. It supports modeling verbal and non-verbal behavior
of interactive agents and robots through a graphical interface
and a simple scripting language that allows domain experts
to create rich and compelling content. VSM is open-source
and implemented in Java 11 [35]. To achieve real-time
communication with the Cobot, VSM is extended by a
dedicated plugin that maps high-level commands on robot
control commands using ROS communication protocols. A
second VSM extension is a dedicated plugin that allows
controlling the Avatar.

D. MindBot Coworker

The MindBot Coworker represents the integration of a
Cobot, for the physical collaboration with the operator, and
its corresponding Avatar, with social interaction purposes.

The Cobot is the physical executor of the commands
generated by the Orchestrator. In particular, these commands
are originated from the combination of two main drivers: the
task to be carried out in the scenario under analysis and the
high-level adaptation of the robot’s motion to minimize the
operator’s stress level. Starting from raw trajectories, defined
on the basis of the on-going task exploiting Movelt! func-
tionalities [36], actual trajectories will be refined depending
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on the psychological strain of the operator. The adaptation
will occur in terms of parameters such as speed, acceleration,
human-robot distance and robot configuration and com-
manded to the cobot within the ros_control framework [37].
For instance, starting from the information collected from
the state of the art, here is the proposed adaptation for the
robot’s distance from the operator and movement duration:

Ch

d — ?dmzn (dmzn < d < dmar) (1)
Cs

t= ?tmzn (tmzn <t< tmaw) (2)

denoting by:

d the minimum distance from the worker while per-
forming a trajectory;

t the time taken to perform a specific movement;

K an index representative of the mental state of the
operator, according to the User Model, with 0 < K <
1 supposing that K = 0 and K = 1 correspond to
the operator’s worst and best possible mental conditions
respectively;

C1 and C5 the operator’s sensitivity to the variation of
minimum distance and time, respectively;

dmin @ minimum value for the distance from the oper-
ator, set for safety reasons;

dmae a maximum value for the distance from the
operator, depending on workspace limitations;

tmin @ minimum time duration, set for safety and
acceptability reasons;

tmaz @ maximum trajectory duration derived from the
productivity requirements of the cell.

It is important to underline that parameters as C and Cj
will require a proper tuning and calibration of the adaptation
logic through a proper experimental campaign. Moreover, the
influence and regulation of the additional parameters listed
before will be evaluated.

To implement this control logic, the knowledge of the
operator’s position inside the workspace is required. After
a calibration phase, the simplified volumes occupied by the
operator are integrated in the virtual planning scene, as
represented in the right side of Fig. 4. This solution allows to
actuate collision avoidance strategies with a limited impact
on the system in terms of computational burden.

The Avatar is visualized through a real-time 3D inter-
active application running on the tablet (cf. Fig. 5). The
Orchestrator provides the Avatar’s behavior model to perform
several actions: direct the gaze, perform gestures, pointing
at entities in space, and talk. Role-wise, the Avatar acts as a
mediator between the human and the cobot, filling the need
for a humanoid shape to make robots more emphatic and
acceptable. Conceptually, the Avatar can be considered as a
virtual representation of the robot in humanoid form. Among
its tasks, the Avatar will be responsible for proposing to
the worker to complete ESM forms. For interactive sessions
with the worker behaviors modeled to query users about
his/her concerns and conditions when abnormal stress and
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fatigue levels are detected. A starting point is the supporting
behavior model described in [38]. The Avatar visualizer is
developed using the YALLAH framework [39], [40] that
allows customization with the Blender 3D [41] editor and
to deploy it on the tablet as a stand-alone Unity application.

Fig. 5. Example of virtual avatar running on tablet

V. CONCLUSIONS AND FUTURE WORKS

In the context of automated work, the risk of perceiving
low challenges is extremely high for repetitive tasks; to the
contrary, experiences of inadequacy may arise in workers
exposed to tasks requiring unusually intense or sustained
focus of attention and manual precision. Therefore, the
possibility to identify cobot features that promote work-
ers’ engagement and flow experiences may open important
research and application avenues. By virtue of their high
level of adaptability to both context and human behavior,
cobots can be exploited not just for their efficiency or
human-like features, but also for their role in reducing the
psychological strain or boredom workers may perceive in
task performance. For these reasons, this paper presents
a series of relevant parameters and software components
exploited for the implementation of a human-driven control
architecture.

This approach represents the starting point for the long-
term goals of the MindBot project. Both lab-based and
in-company experiments are currently being run to define
the baseline parameters and the adaption logics required to
complete the implementation of the system. Also, failure
recovery strategies are being deployed to render the system as
robust as possible. Future works will include the continuous
improvement of the presented human-driven control structure
together with the definition of additional behavior adaption
algorithms aimed at minimizing the psychological strain
experienced by the operator. Moreover, empathic movements
of the Cobot arm will be integrated with the actions of the
Avatar in a coherent and consistent fashion, and executed
during non-productive phases of the interaction. Within that
context, several studies (e.g., general acceptance of the
Avatar, possible distractions, stress or boredom reduction,
efficiency and flow increase) are planned. Organizational and
technical guidelines will also be outlined for the design of



a mental-health-friendly cobot-based manufacturing work-
place. Regarding this topic, the role of the Organizer block in
the control architecture is only mentioned within the paper,
but could play an important role in deeply tailoring the task
to the actual mental state of the operator.
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