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Abstract—The speech quality delivered by hearing aids plays
a crucial role in determining the acceptance and satisfaction of
users. Compared with invasive speech quality evaluation methods
that require pure signals as a reference, this paper proposes a
non-invasive speech quality evaluation algorithm for hearing aids
with multi-head self-attention and audiogram-based features. Ini-
tially, the audiogram of hearing-impaired individuals is extended
along the frequency axis, enabling the speech quality evaluation
model to learn the gain requirements specific to frequency bands
for hearing-impaired individuals. Subsequently, the spectrogram
is extracted from the speech signals to be evaluated. These features
are combined with the transformed audiogram to create input
features. To extract deep frame-level feature, a network employ-
ing multiple two-dimensional convolutional modules is utilized.
Then, the temporal features are modeled using bidirectional long
short-term memory networks (BiLSTM), while a multi-head self-
attention mechanism is employed to integrate contextual informa-
tion. This mechanism enables the model to focus on key frame
information. Experimental results demonstrate that, compared to
currently available advanced algorithms, the proposed network
exhibits a higher correlation with the Hearing Aid Speech Quality
Index (HASQI) and demonstrates robustness under various noise
conditions.

Index Terms—Audiogram, hearing aid, multi-head self-
attention, speech quality evaluation.

I. INTRODUCTION

ACCORDING to the World Health Organization’s Global
Hearing Report 2021, approximately one-fifth of the
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global population experiences varying degrees of hearing
loss [1]. Wearing hearing aids is a common method to improve
the hearing abilities of individuals with hearing impairment.
However, achieving satisfactory results with hearing aids often
requires expert fitting, which can be time-consuming and may
not always yield optimal outcomes, especially for elderly pa-
tients. While the OTC Hearing Aid Act approved by the United
States Congress in 2017 allows for the direct sale of hearing
aids to mild to moderate hearing-impaired consumers without a
prescription, evaluating the quality of speech signal processing
in hearing aids without professional hearing experts remains a
research topic.

The speech quality of hearing aids, which refers to the
quality of speech after being processed by hearing aids, re-
flects the technical level of speech output and considerably
influences people’s acceptance and satisfaction with hearing
aids [2]. Higher speech quality in hearing aids leads to more
natural-sounding speech for users [3]. Similar to the evaluation
of regular speech quality [4] for speech enhancement [5], [6],
[7], the speech quality of hearing aids can also be subjectively
assessed by hearing-impaired individuals. Due to the need to
recruit hearing-impaired patients for evaluation, the speech
quality evalution of hearing aids requires more time and eco-
nomic resources compared to regular speech tests. Therefore,
the research on speech quality evaluation algorithms for normal
individuals has been relatively early, and many scholars have
proposed many evaluation methods [8], [9], [10], [11], [12],
[13], [14], [15], [16], among which the Perceptual Evaluation
of Speech Quality (PESQ) [16] and Short-Time Objective In-
telligibility (STOI) [17] are commonly used. In recent years,
researchers have gradually been exploring objective indicators,
similar to PESQ [16], to evaluate the speech quality of hearing
aids.

Regarding speech evaluation indicators for hearing aids, the
Hearing Aid Speech Quality Index (HASQI) [18] is a typical
indicator that uses a simulated auditory structure related to the
degree of hearing loss to process both the test and reference
signals [19]. The final quality evaluation score is calculated
by extracting short-term fine structure and long-term spectrum
features. Experiments have shown that HASQI has shown good
correlation with perceived hearing aid quality [20], [21]. An-
other speech quality evaluation model specifically designed for
hearing-impaired individuals is the Perception Model-Quality
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Fig. 1. Architecture of the speech quality evaluation network.

Extended for Hearing-Impaired (PEMO-Q-HI) [22]. Based on
PEMO-Q [23], it modifies the auditory model by incorporating
the patient’s listening threshold into the center frequency of
the outer filter group, considering both Inner Hair Cell Loss
(IHC Loss) and Outer Hair Cell Loss (OHC Loss). The model
adjusts the amplitude of the speech signal according to the loss of
inner and outer hair cells. However, these indicators are invasive,
requiring a clean reference speech with a similar frequency shape
and time alignment to the speech being evaluated [24], which is
often challenging to obtain in practical scenarios, limiting their
applicability.

In comparison, non-invasive objective speech quality evalu-
ation methods that do not require reference signals are more
practical and suitable for real-time evaluation of speech quality
in systems and devices [25]. However, there are relatively few
related studies about the speech quality evaluation for hearing
aids. In 2013, Suelzle et al. proposed the Speech to Reverberation
Modulation Energy Ratio-Hearing Aid (SRMR-HA) metric,
which incorporated a calculation model of cochlear hearing
loss to evaluate hearing aid speech quality [24]. In 2015, Falk
et al. examined different objective indicators for predicting
the speech quality of hearing aids [26]. The survey results
showed differences between invasive and non-invasive speech
quality evaluation indicators in several databases, which further
stimulated research on non-invasive speech quality evaluation
indicators for hearing aids. In the same year, Salehi studied
non-invasive speech evaluation indicators for hearing aids based
on low-complexity quality assessment (LCQA-HA) [27]. This
method expanded a large set of speech-specific features ex-
tracted through LCQA using the importance-weighted signal-
to-noise ratio (iSNR) metric [28], and assimilated the most im-
portant features through regression functions to obtain predicted
quality scores. Additionally, non-invasive hearing aid speech
quality indicators based on support vector regression (SVR)
were proposed [29].

The above models are implemented using traditional machine
learning algorithms, deep learning networks are more suitable
for predicting subjective [17], [30] or objective evaluation scores
of speech quality [31], [32] and comprehensibility [32], [33] due
to their ability to effectively model temporal information [34].

However, the application of deep learning networks in evaluating
hearing aid speech quality is not as prevalent as in the telecom-
munications field. An end-to-end, non-invasive speech quality
evaluation model called Quality-Net was proposed by Szu-Wei
Fu et al. in 2018 [31]. This model, based on a Bidirectional Long
Short-Term Memory (BiLSTM) structure, can effectively pre-
dict the PESQ scores for noisy or processed speech signals. The
same research team later updated the model in 2020 for speech
intelligibility evaluation, known as STOI-Net [33]. STOI-Net,
based on a Convolutional Neural Network-Bidirectional Long
Short-Term Memory (CNN-BiLSTM) structure, utilizes a mul-
tiplication attention mechanism to identify and weight important
information. In 2019, Mittag et al. proposed a non-invasive
speech quality assessment model (NISQA) for predicting the
quality of ultra-wideband speech transmissions [35]. The model
employs a CNN to predict frame-level quality and an LSTM
network to aggregate values from each frame for overall speech
quality estimation. In the same year, a quality assessment model
for voice conversion (VC) systems called MOSNet was also
introduced [36]. MOSNet, composed of a CNN-BiLSTM struc-
ture, effectively predicts the average opinion score of trans-
formed speech. To address scoring bias caused by different eval-
uators’ personal preferences, an improved version of MOSNet
called MBNet was proposed, consisting of MeanNet and Bias-
Net, both based on the CNN-BiLSTM structure [37]. Further-
more, Cauchi et al. proposed a network that evaluates the quality
of speech processed by different signal processing algorithms,
combining modulation energy and LSTM units to consider the
time dependence of the target signal, achieving high accuracy in
evaluating speech quality [38]. In 2022, Reddy et al. have devel-
oped a non-intrusive speech quality metric called Deep Noise
Suppression Mean Opinion Score (DNSMOS) based CNN using
the scores from ITU-T Rec. P. 808 subjective evaluation [39].
In 2023, Jaiswal et al. proposed a deep neural network(DNN)
where its input is combined features of the speech signal and
its output is corresponding speech quality score [40]. The used
features included multi-resolution auditory model, mel-
frequency cepstral coefficients and line spectral frequencies. In
addition, multi task learning strategies [32], [41], [42] have also
begun to be applied to speech quality estimation.
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In the field of hearing aids, research on non-invasive quality
evaluation based on deep learning is limited. In 2021, Chiang
et al. proposed HASA-Net [43], which combines BiLSTM and
attention mechanisms to jointly predict HASQI and the Hearing
Aid Speech Intelligibility Index (HASPI). To contribute to the
research on non-invasive quality evaluation based on deep learn-
ing in the field of hearing aids and provide accurate evaluations
of hearing aid speech quality under different degrees of hearing
loss, this paper proposes a non-invasive speech quality evalua-
tion network for hearing aids, called Speech Quality Index Net-
Hearing Loss Level (SQINet-HLlevel). The network takes dis-
torted speech spectrogram and audiograms of hearing-impaired
patients as inputs and predicts the HASQI score as output. The
network first extracts frame-level deep features from the input
features using a CNN. These deep features are then processed by
a BiLSTM to model temporal features, followed by a multi-head
self-attention layer to integrate sequence context information,
allowing the model to discern the importance of different speech
frames. Finally, the weighted features are linearly mapped to
quality scores.

The main contributions of this paper are as follows:
1) Introduction of an extended embedding strategy based

on the audiograms of hearing-impaired patients, enabling
the network to analyze the hearing loss information of
different individuals and improve the accuracy of speech
quality evaluation for hearing aids.

2) Application of a multi-head self-attention mechanism to
enable the network to adaptively select relevant informa-
tion from frame-level features and better utilize global
context information.

II. METHOD

A. Overall Architecture of Speech Quality Evaluation Network

The proposed network comprises two main modules: the
frame level feature extraction module and the score predic-
tion module, as depicted in Fig. 1. The input features of the
network consist of two components. Firstly, speech signals are
transformed by the Short-Time Fourier transform (STFT). Then,
spectrogram is obtained from the magnitude of the STFT, which
is a distribution of energy in the time-frequency plane. Sec-
ondly, the audiogram of hearing-impaired patients is extended
and embedded along the frequency axis. These two features
are concatenated and fed into the feature extraction module.
The feature extraction module, based on CNNs, extracts deep
representations from the input features. The extracted deep
information is then passed to the score prediction module for
determining the quality evaluation score. The score prediction
module consists of a BiLSTM, a multi-head self-attention layer,
and fully connected layers that serve as mapping units. The
module generates a quality evaluation score between 0 and 1
through a sigmoid activation function.

B. Extended Embedding of Audiograms

The patient’s hearing condition is typically represented by an
audiogram, which depicts the hearing loss (or hearing threshold)

TABLE I
CORRESPONDENCE BETWEEN AUDIOGRAMS AND FREQUENCY BANDS

of a patient at specific testing frequencies. Audiograms are
obtained through hearing tests conducted by doctors or audi-
ologists. If the audiogram is only dimensionally transformed
and overlaid with the spectral feature, the embedding method
can only utilize the distribution differences between audiograms.
However, the corresponding relationship between the audiogram
and frequency bands cannot be learned by the network. To
address this, the audiogram is first extended along the frequency
band and then superimposed with the spectral features to achieve
alignment on the frequency axis. Because the audiogram of
hearing-impaired patients in this study includes six frequency
points (250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and
8000 Hz), the entire frequency axis is divided into six frequency
bands. The correspondence between the audiogram and fre-
quency bands is shown in Table I. Within a frequency band, the
patient’s hearing threshold is set to be the same. Here, the frame
length is 512 samples and the frame hopping is 256 samples. So,
a 512-point FFT is used.

C. Feature Extraction Module

The feature extraction module takes the combined extended
embedding of the audiogram and the spectrogram of the input
speech as input. It utilizes two-dimensional convolutional layers
and pooling layers to extract deep representations from the
input features. This module consists of five two-dimensional
convolutional networks, each comprising a batch normalization
layer, a two-dimensional convolutional layer, and a Leaky ReLU
activation function. The Leaky ReLU activation function is
chosen over the ReLU activation function because it assigns
smaller linear components to negative inputs (with a negative
coefficient of 0.1 in this paper), allowing for gradient adjustment
of negative values. Power average pooling layers are inserted
intermittently between multiple convolutional modules. These
pooling layers calculate the p-th root of the p-th power sum of
all data within a moving window:

f(x) =

(∑
x∈X

xp

) 1
p

(1)

Here, the coefficient p is set to 4.

D. Score Prediction Module

The structure of the score prediction module is illustrated in
the dotted box in the lower right corner of Fig. 1. It consists
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of a BiLSTM, a multi-head self-attention mechanism layer, and
a fully connected layer for mapping. The input to this module
is the deep frame-level feature, which is obtained by combining
the channel dimension and feature dimension of the output from
the feature extraction module. The output is the predicted quality
score for distorted speech.

LSTMs dynamically control the flow of information by in-
corporating gate mechanisms, thereby addressing the long-term
dependency problem of traditional Recurrent Neural Networks
(RNNs). They are widely employed for modeling temporal
information. Considering the strong contextual associations in
speech signals, BiLSTM is utilized to model frame-level fea-
tures. BiLSTM consists of a forward LSTM and a backward
LSTM, enabling the learning of bidirectional dependencies in
time series data and leveraging context information. Taking the
forward LSTM as an example, the calculation process is as
follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

it = σ(Wi · [ht−1,xt] + bi)
ft = σ(Wf · [ht−1,xt] + bf)
ct = ft ⊗ ct−1 + it ⊗ tanh(Wc · [ht−1,xt] + bc)
ot = σ(Wo · [ht−1,xt] + bo)
ht = ot ⊗ tanh(ct)

(2)

Here, t is the index number of the frame, σ is the sigmoid
function, i, f and o are the input gate, forgetting gate, and output
gate respectively, c and h are the cell state and hidden output,
W andb are the weight matrix and bias vector, and⊗ represents
element by element multiplication.

Although BiLSTM effectively captures bidirectional seman-
tic dependencies, redundant information may exist between
multiple speech frames. Moreover, it is desirable to consider
the importance of each frame’s information in the input speech
for the target task. For instance, a silence segment should receive
less attention (i.e., lower weight), while frames containing more
effective information in the speech should receive higher atten-
tion. To address this, self-attention mechanisms are employed
to enable the model to learn weighted combinations of different
time frames. Multi-head self-attention mechanisms are utilized
instead of traditional single-head self-attention to obtain infor-
mation from multiple representation subspaces and enhance the
model’s performance, as depicted in Fig. 2. In this case, the
input keys of Q, K, and V are set to all time step outputs of the
BiLSTM.

After being weighted by multi-head self-attention layers, the
model uses an adaptive maximum pooling layer to compress the
time frame dimension, and then is input into the fully connected
layer. The fully connected layer as a mapper has 256 input nodes
and one output node. The output of the full connection layer is
passed through the sigmoid activation function to get the final
quality score.

III. EXPERIMENTAL SETUP

A. Model of the Simulation System

The simulation system, as depicted in Fig. 3, is constructed to
generate simulated speech signals and corresponding HASQI.
The auditory model employed in the system is the simulated
auditory model [19]. During the training process, the clean

Fig. 2. Block diagram of multi-head self-attention layer.

speech is initially processed by adding noise and perform-
ing speech enhancement to obtain the corresponding distorted
speech. Then, under hearing loss conditions, wide dynamic
range compression (WDRC) [44], [45], [46] is applied to per-
form loudness compensation separately for the clean and dis-
torted speech. Subsequently, the HASQI of the compensated
speech samples is calculated [19]. Signal features are then
extracted from the distorted speech samples and input into the
network, with the HASQI as the learning target to train the
network. During the testing process, the distorted speech to
be evaluated is passed through WDRC, and the signal features
are extracted and input into the trained network to obtain the
estimated HASQI.

The WDRC algorithm is a commonly used algorithm for
hearing compensation in digital hearing aids. Its basic principle
involves decomposing the speech signal into frequency bands
and compensating the speech signal in each frequency band
based on the patient’s audiogram and signal intensity through
the hearing aid fitting formulas.

The specific steps are illustrated in Fig. 4. Firstly, the speech
to be compensated is segmented into frames and windowed,
and then transformed using the Fast Fourier Transform (FFT).
Secondly, the frequency domain signal is divided into 16 bands,
and the sound pressure level within each band is calculated.
Based on the audiogram, the gain for each band is calculated
according to the FIG6 formula [47] and applied to the corre-
sponding band. Thirdly, the compensated signal is obtained by
performing the Inverse Fast Fourier Transform (IFFT) and frame
overlap. The gain based on the FIG6 formula is calculated using
the input-output curve of the sound pressure level. This curve
is divided into three regions with 40 dB SPL and 60 dB SPL as
two compression inflection points, and different compensation
rules are applied in each region according to the FIG6 formula.
The signal processing is performed with a frame length of 512,
50% overlap, and a Hanning window.

B. Database

The dataset used in this study is derived from a Chinese speech
dataset containing 13,388 read-out speeches from 25 speakers in
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Fig. 3. Flow chart of the simulation system.

Fig. 4. Flow chart of loudness compensation.

the Interspeech 2021 Deep Noise Suppression Challenge [48].
Among these speeches, 1000 speeches spoken by two speakers
are selected as the test set, while the remaining 12,388 speeches
spoken by other speakers are used to construct the training set.

In the training set, one noise sample is randomly selected from
the NoiseX-92 noise set [49] that contains 15 noise samples with
a uniform distribution for each clean speech. A signal-to-noise
ratio (SNR) between−5 and 15 dB is added to each clean speech
to obtain noisy speech. Then, each noisy speech is processed by
one of three methods: traditional Wiener filtering [50], Wiener
filtering based on a prior SNR [50], and multi-band spectral sub-
traction [51] to obtain enhanced speech. Using different speech
enhancement algorithms to process the speech enriches the types
of distortion, thereby enhancing the network’s robustness to
distortion. The constructed training set consists of 12,388 * 4
samples, including a group of unprocessed noisy speech and
three groups of enhanced speech processed by different speech
enhancement algorithms. In the test set, clean speeches are also
overlapped with noise and processed by one randomly selected
method from the three speech enhancement methods. A total of
1,000 test samples are obtained.

All signals were resampled to 16 kHz. The experimental sam-
ples were evaluated for HASQI under hearing loss conditions. In
this experiment, a total of 114 audiograms were obtained from
57 patients with binaural hearing loss. Among these patients,
100 audiograms from 50 individuals were used to construct the
training set, while 14 audiograms from the remaining 7 patients
were randomly selected to construct the test set. Each test sample
was combined with a randomly selected audiogram for speech
compensation and quality assessment. The average age of the
hearing-impaired patients in this experiment was 68.4 years old,
consisting of 27 males and 30 females. According to the World
Health Organization’s classification of hearing loss levels in
2021 [1], the patients exhibited varying degrees of hearing loss.
Specifically, 2 patients had normal hearing in their left ears, 1
patient had mild hearing loss in both ears, 3 patients had mild
hearing loss in their left ears, 1 patient had mild hearing loss
in their right ear, 2 patients had moderate hearing loss in their

left ears, 3 patients had moderate hearing loss in their right ears,
13 patients had moderate or severe hearing loss in both ears, 6
patients had moderate or severe hearing loss in their left ears, 8
patients had moderate or severe hearing loss in their right ears,
8 patients had severe hearing loss in both ears, 5 patients had
severe hearing loss in their left ears, 7 patients had severe hearing
loss in their right ears, 8 patients had extremely severe hearing
loss in both ears, 9 patients had extremely severe hearing loss in
their left ears, and 8 patients had extremely severe hearing loss
in their right ears.

C. Network Parameters and Optimization

The speech quality evaluation network consists of two mod-
ules: frame-level feature extraction and score prediction. The
specific parameters are shown in Table II.

The loss function of the speech quality evaluation network
is calculated based on the mean squared error (MSE) between
the predicted score and the actual score. The Adam optimizer
is employed to train the network, with a batch size of 16. The
initial learning rate is set to 0.0006, and it decays by a rate of
0.6 every 25 epochs. A total of 300 epochs are trained.

D. Evaluation Indicators

The performance of the model is evaluated using two metrics
that measure the correlation between the predicted HASQI and
the actual HASQI: the Pearson correlation coefficient (PCC)
and the Spearman rank order correlation coefficient (SROCC).
Additionally, the root mean square error (RMSE) is used to
assess the prediction error of the HASQI.

PCC is defined as follows:

ρ =
∑N

i=1 (MOSo(i)−MOSo)(MOSs(i)−MOSs)√∑N
i=1 (MOSo(i)−MOSo)

2 ∑N
i=1 (MOSs(i)−MOSs)

2
(3)

Among them, N is the number of samples, MOSo is the ob-
jective score, MOSs is the subjective score, MOSo and MOSs

are the average of the objective score and the subjective score,
respectively. The PCC ranges between−1 and 1 and is utilized to
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TABLE II
PARAMETER SETTINGS FOR THE PROPOSED NETWORK

describe the linear correlation between two variables. A positive
PCC indicates a positive correlation between the variables, while
a negative PCC suggests a negative correlation. The closer the
PCC is to 1, the stronger the correlation between the predicted
scores and the actual scores.

SROCC represents the correlation coefficient of the strength
of the monotonic relationship between two variables. If a vari-
able is a strict monotonic function of another variable, the coef-
ficient is 1 or −1, indicating complete correlation. The SROCC
between calculated variables is equivalent to the Pearson corre-
lation coefficient between calculated variable data ranks.

SROCC = 1− 6
∑N

i=1 (vi − pi)
2

N(N2 − 1)
(4)

In the formula, N is the number of sample pairs in the predicted
and real values, vi and pi are the sorting positions of the real and
predicted values, respectively.

RMSE quantifies the prediction accuracy of the algorithm and
is defined as follows:

RMSE =

√
1

N

∑N

i=1
[MOSo(i)−MOSs(i)]

2 (5)

E. Explanation of the Comparison Algorithms

To assess the effectiveness of the proposed network,
SVR [29], Quality-Net [31], and HASA-Net [43] were chosen as
the comparative algorithms. In order to evaluate the impact of the
extended embedding strategy on network prediction accuracy,
a comparison algorithm called SQINetNE-HLlevel was used,
which employs fully connected layers for dimension transfor-
mation of the audiograms without extended embedding. Addi-
tionally, SQINetNA-HLlevel, a network that does not utilize an
attention module, was also included as a comparison algorithm.
Based on the structure depicted in Fig. 1, the multi-head self-
attention module was removed in the score prediction module,
and the hidden output of BiLSTM was directly fed into a dense
layer to obtain the predicted score.

TABLE III
PERFORMANCE INDICATORS OF SQINETNE-HLLEVEL AND SQINET-HLLEVEL

SVR [29] is a well-known machine learning algorithm that
has been applied to quality scoring based on FBE features.
Quality-Net [31] is an end-to-end non-invasive speech quality
evaluation model composed of BiLSTM and fully connected
layers. Considering that HASQI ranges from 0 to 1, the un-
bounded output of Quality-Net was constrained during the ex-
periments. HASA-Net [43] is a network that combines BiLSTM
and attention mechanisms to jointly predict HASQI and HASPI.
The network was trained using a joint prediction approach. The
parameter settings of the aforementioned algorithms used in this
experiment are consistent with those in the original papers.

IV. RESULTS AND ANALYSIS

A. Extended Embedding Analysis of Audiograms

To analyze the impact of the introduction of the audio-
grams extended embedding strategy on predictive performance,
the performance of SQINetNE-HLlevel, which directly utilizes
fully connected layers for audiogram dimension transformation,
was compared with that of SQINet-HLlevel. The results are
shown in Table III.

The evaluation results indicate that the introduction of the
extended embedding strategy along the frequency axis improves
the prediction performance of the network. Compared with
SQINetNE-HLlevel, the PCC and SROCC of SQINet-HLlevel
are improved by 0.012 and 0.014, respectively, while the RMSE
is reduced by 0.016. This demonstrates that the proposed strategy
outperforms SQINetNE-HLlevel in all indicators. This improve-
ment is attributed to the fact that hearing-impaired patients
have different listening gain requirements in different frequency
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Fig. 5. Scatter plots of SQINetNE-HLlevel and SQINet-HLlevel.

TABLE IV
PERFORMANCE INDICATORS OF SQINET-HLLEVEL AND SQINETNA-HLLEVEL

ranges. Directly using fully connected layers for audiogram
dimension transformation fails to effectively capture the cor-
respondence between audiograms and frequency ranges. In this
study, specific values are assigned to each frequency range based
on audiograms and then combined with spectrogram features
before being fed into the network. This enables the network
to achieve better prediction results that cater to the needs of
hearing-impaired patients, leveraging the correspondence be-
tween frequency ranges.

Fig. 5 displays the scatter plots of the predicted results of the
two networks on the test set. Overall, the scatter distributions
of both networks align with the trend of the diagonal line
y = x, indicating a high correlation between the predicted scores
and the real scores. The average distance between the predicted
values of SQINet-HLlevel and the diagonal line is 0.025, slightly
smaller than the 0.039 for SQINetNE-HLlevel. This reflects that
the addition of the extended embedding strategy can slightly
improve the prediction performance of the network, which is
consistent with the analysis results of performance indicators.

B. Impact of Attention

To verify the role of the multi-head self-attention mecha-
nism in speech quality prediction networks, the performance of
SQINetNA-HLlevel, which does not utilize an attention mech-
anism, was compared with that of SQINet-HLlevel. The results
are presented in Table IV.

Compared with SQINetNA-HLlevel, SQINet-HLlevel ex-
hibits increments of approximately 0.042 and 0.044 in PCC and
SROCC, respectively, while reducing the prediction error by
approximately 0.043. This indicates that the use of the attention
mechanism effectively improves the correlation between the
predicted scores and the real scores while reducing the prediction
error.

Fig. 6 illustrates the scatter plots of the predicted scores
of SQINetNA-HLlevel and SQINet-HLlevel on the test set.

Fig. 6. Scatter plots of SQINetNA-HLlevel and SQINet-HLlevel.

TABLE V
PERFORMANCE INDICATORS WITH THE DIFFERENT NUMBER OF

ATTENTION HEADS

Although both networks closely align with the trend of the diag-
onal line y = x, the scatter distribution of SQINetNA-HLlevel
is noticeably more dispersed. In contrast, the scatter distribution
of SQINet-HLlevel is evenly distributed on both sides of the
diagonal line and is closer to the diagonal line. Overall, the
average distance between the scatter points of SQINet-HLlevel
and the diagonal line is 0.025, considerably lower than the 0.049
for SQINetNA-HLlevel, representing a 49% reduction. This
indicates that the use of attention modules effectively reduces
the prediction error of the network by assigning greater weights
to speech frames and relatively smaller weights to silent or noisy
frames. Consequently, the final prediction of speech quality is
more heavily influenced by speech frames, which aligns with
the understanding that speech segments have a greater impact
on overall speech quality. Therefore, the attention mechanism
equips SQINet-HLlevel with the ability to distinguish between
speech frames and non-speech frames, enabling the network to
evaluate speech quality based on features extracted from speech
frame segments. This is the main reason why its performance is
considerably better than that of SQINetNA-HLlevel.

C. Impact of the Number of Attention Heads

To analyze the impact of the number of attention heads on
the predictive performance of the proposed network, the effects
of different numbers of attention heads on the prediction per-
formance are investigated. As shown in Table V, the prediction
results for attention head numbers of 2, 4, and 8 are presented.

From the evaluation results, it is observed that increasing
the number of attention head groups from 2 to 4 leads to a
slight increase of 0.001 in both the PCC and SROCC metrics,
while the RMSE decreases by 0.001. This indicates a slight
improvement in all metrics, but when the number of groups
continues to increase to 8, the metrics start to decline. This



2173

Fig. 7. Scatter plots of SQINet-HLlevel wtih the different attention head numbers.

TABLE VI
PERFORMANCE INDICATORS OF FOUR ALGORITHMS

suggests that controlling the number of attention heads in an
appropriate range helps the model learn relevant information in
different representation subspaces, while too many or too few
attention heads can have a negative impact.

Fig. 7 shows the scatter plots of the prediction results for
different numbers of attention heads on the test set. Overall, the
scatter distributions of the three group numbers are closer to
the diagonal line y = x. When the number of attention heads is
4, the average distance between the prediction scatter and the
diagonal line is 0.025, which is smaller than the distances of
0.028 for a group number of 8 and 0.0251 for a group number of
2. This reflects that setting an appropriate number of attention
heads can improve the predictive performance of the network,
consistent with the analysis of the performance metrics.

D. Prediction Accuracy Analysis

The evaluation results of the proposed network and the com-
parative algorithms on the test set are presented in Table VI.

From Table VI, it can be observed that the PCC and SROCC
of SVR exhibit a nearly double gap compared with other algo-
rithms, and the RMSE also differs by approximately 0.1 in com-
parison. This indicates that SVR has limited prediction accuracy
when dealing with large-scale data without effective regression.
It further demonstrates that deep learning algorithms, as com-
pared with traditional machine learning algorithms, are more
effective in processing input features, learning scoring mapping
rules, and achieving more accurate speech quality predictions.
Quality-Net performs worse than SQINet-HLlevel in terms of
both prediction score correlation and error. Although both cor-
relation indicators demonstrate high correlation evaluation, i.e.,
PCC > 0.8, the proposed network still exhibits a correlation
advantage of 0.162 over Quality-Net. This is attributed to the
lack of convolutional layers in Quality-Net for further feature

Fig. 8. Scatter plots of four algorithms.

TABLE VII
PARAMETER SIZE AND TIME COMPLEXITY FOR THREE NETWORKS

extraction, making it challenging to effectively extract deep
information from input features. In comparison to Quality-Net,
HASA-Net demonstrates advantages in all indicators due to
its introduction of a multitask learning strategy, which jointly
predicts speech comprehensibility and quality scores, thereby
enhancing the model’s ability to extract key information through
the attention mechanism. SQINet-HLlevel improves PCC and
SROCC by 0.019 compared with HASA-Net, while reducing
RMSE by 0.023. This indicates that the extended embedding
strategy for audiograms and the introduction of the multi-head
self-attention mechanism can effectively enhance the prediction
ability of quality scores.

Fig. 8 presents a scatter plot of the predicted results of the
aforementioned networks on the test set. To facilitate the obser-
vation of deviations between the predicted values and the real
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TABLE VIII
NETWORK PARAMETER SETTINGS OF DIFFERENT NETWORK CHANNELS (128/64/32)

TABLE IX
COMPUTATION COMPLEXITY OF SQINET-HLLEVEL WITH DIFFERENT NETWORK CHANNELS (128/64/32)

HASQI, the diagonal line y = x is also plotted in the figure.
The scatter plot reveals that the predicted scores of SVR have
a dense distribution around 0.3, indicating that SVR tends to
provide a prediction value of approximately 0.3 regardless of the
real HASQI. In comparison, Quality-Net’s scatter distribution
closely follows the trend of the diagonal line and exhibits fewer
outlier points. HASA-Net’s scatter plot is evenly distributed on
both sides of the diagonal line, indicating a higher correlation
with real HASQI. SQINet-HLlevel’s scatter plot is more consis-
tent with the diagonal line, suggesting more accurate predictions
for various speech quality scores.

E. Discussion on Algorithm Complexity

To assess the performance of the algorithm more comprehen-
sively, we compare the parameter size and time complexity of
three networks. We employ Python’s profile tool to automati-
cally analyze the performance of these networks. The specific
indicators are shown in Table VII.

From the table, it is evident that SQINet-HLlevel has a larger
parameter size and time complexity compared to Quality-Net
and HASA-Net. To further investigate the reasons behind this,
we separately calculate the computational complexity of the
frame level feature extraction module and score prediction
module. Additionally, we modify the number of some network
channels (128, 64 and 32) and accordingly adjust the number
of nodes in BiLSTM. The specific modifications are outlined in
Table VIII.

The computation complexity is summarized in Table IX.
As the number of channels decreases, the parameter size and
time complexity decrease rapidly. Notably, compared to the
128-channel case, the parameter size at 64 channels and 32
channels decreases by 1.78 and 2.5 times, respectively, while the
time complexity decreases by 3.2 and 11 times, respectively. It
is observed that the score prediction module mainly impacts the
parameter size, while the frame level feature extraction module

TABLE X
PERFORMANCE INDICATORS WITH DIFFERENT NETWORK CHANNELS

affects computational complexity. This is because, although
convolutional networks require fewer parameters, they tend to be
time-consuming. In addition, when the number of channels is 32,
the parameter size and time complexity of the SQINet-HLlevel is
still higher than that of HASA-Net. However, the computational
complexities of the two algorithms are essentially on the same
order of magnitude.

However, as shown in Table X, compared to the 128- channel
case, the PLCC, SROCC, and RMSE values at 32 channels
decrease by 0.002, 0.003, and 0.003, respectively. Based on the
above analysis, it is evident that algorithm complexity is not the
primary factor influencing the performance of the proposed al-
gorithm. Instead, the appropriate model can be selected based on
a balance between computational complexity and performance.

V. CONCLUSION

This paper proposed a non-invasive speech quality evaluation
network specifically designed for hearing aids. The network
takes the spectrogram of distorted speech and the audiograms of
the hearing-impaired patient as input, and predicts the HASQI
as the output. The proposed network consists of several key
components. Firstly, frame-level deep features are extracted
from the input features using a CNN. The CNN is responsible
for capturing local patterns and extracting high-level represen-
tations from the input speech signal. Next, the deep features
are fed into a BiLSTM network, which models the temporal
dependencies in the speech signal. The BiLSTM network is able
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to capture the long-term dependencies and context information,
enabling the network to understand the sequential nature of
speech. To further enhance the network’s ability to distinguish
the importance of different speech frames, a multi-head self-
attention layer is employed. This layer integrates the context
information of the entire sequence and assigns different weights
to different frames based on their relevance to the overall speech
quality. This attention mechanism allows the network to focus
on the most informative frames and disregard irrelevant or noisy
frames. Finally, the weighted features are linearly mapped to
a quality score using a fully connected layer. This mapping
process converts the learned representations into a quantitative
measure of speech quality, which can be used to evaluate the
performance of hearing aids. Experimental results demonstrated
that the proposed network achieves higher accuracy in speech
quality evaluation for hearing-impaired individuals and exhibits
good robustness to noise.

However, it is important to acknowledge the limitations of the
proposed network. To address these limitations, future research
directions can be pursued.

Firstly, conducting hearing tests to obtain speech and subjec-
tive rating labels processed by real hearing aids would provide
more realistic and reliable data for training and testing the model.
This would enable the modification of the model structure based
on the results, leading to improved performance.

Secondly, further enriching the model structure and exploring
additional types of auxiliary objectives can help the network
adapt to the speech quality evaluation of hearing aids in com-
plex environments. This would involve incorporating additional
components or objectives that capture specific aspects of speech
quality, such as voice activity or quality level, etc.

Thirdly, in low resource scenarios, the proposed algorithm
is still relatively complex. Therefore, reducing network com-
plexity while maintaining accuracy is also a valuable research
direction.

By addressing these research directions, the proposed network
can be further optimized and enhanced to better serve the speech
quality evaluation needs of hearing aids in real-world scenarios.
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relationships that could have appeared to influence the work
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