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Abstract
We advertise rare-earth intermetallics with high-symmetry crystal structures and competing
interactions as a possible materials platform hosting spin structures with non-trivial topological
properties. Focusing on the series of cubic RCu compounds, where R = Ho, Er, Tm, the bulk
properties of these systems display exceptionally rich magnetic phase diagrams hosting an
abundance of different phase pockets characteristic of antiferromagnetic order in the presence of
delicately balanced interactions. The electrical transport properties exhibit large anomalous
contributions suggestive of topologically non-trivial winding in the electronic and magnetic
structures. Neutron diffraction identifies spontaneous long-range magnetic order in terms of
commensurate and incommensurate variations of (ππ0) antiferromagnetism with the possibility
for various multi-k configurations. Motivated by general trends in these materials, we discuss
the possible existence of topologically non-trivial winding in real and reciprocal space in the
class of RCu compounds including antiferromagnetic skyrmion lattices. Putatively bringing
together different limits of non-trivial topological winding in the same material, the
combination of properties in RCu systems promises access to advanced functionalities.
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1. Introduction

In recent years, great interest developed in the use of
complex magnetic and the associated electronic properties
for spintronics and nano-electronics devices, as well as neur-
omorphic computing, and related applications [1–7]. Complex
magnetic modulations with multiple wave vectors, identified
in a rapidly growing number of materials, are at the center of
these developments. Suchmagnetic structures are also referred
to as magnetic multi-k states—a notion that dates back at least
to the 1970s, when it was used to describe the magnetic mod-
ulations in materials such as Nd [8] or CeAl2 [9]. In large
parts, recent discoveries withmulti-k states at their center were
motivated by the search for topologically nontrivial electronic
or magnetic states.

To date, the perhaps most intensively studied class of
bulk compounds exhibiting topologically nontrivial order are
the cubic chiral magnets crystallizing in space group P213,
namely MnSi, FexCo1−xSi, FeGe, Cu2OSeO3, and related
compounds [10]. As illustrated in figure 1, a trigonal lattice
of skyrmions is observed in a phase pocket in finite magnetic
field, associated with a characteristic sixfold-symmetric pat-
tern in small-angle neutron scattering [11]. At low temperat-
ures, the skyrmion lattice may prevail as a metastable state
[10], its arrangement may change, and an additional skyrmion
state may form independently [17–19]. In recent years, similar
magnetic structures have been reported to exist in a wide range
of bulk materials. As shown in figures 1(a2)–(d), examples
include skyrmion lattice order in GaV4S8 [20], Gd2PdSi3
[21], Gd3Ru4Al12 [22], and GdRu2Si2 [12], meron–antimeron
lattices in Co8Zn9Mn3 [13] and CeAlGe [14], monopole–
antimonopole lattices in MnGe [15], or fractionalized anti-
ferromagnetic skyrmion lattice in MnSc2S4 [16]. In addi-
tion to these bulk materials, topologically nontrivial mag-
netic textures have also been reported in thin-film systems
in which interfacial Dzyaloshinskii–Moriya interactions are
important [10].

A simple tool to search for topologically nontrivial proper-
ties in the electronic and magnetic structure are non-vanishing
Berry phase contributions in the transport properties [23],
with the topological Hall effect in the skyrmion lattice of
chiral magnets as an early example [24]. In chiral mag-
nets, these phenomena are extremely well understood on the
level of mean-field theory. However, emergent transport phe-
nomena are also used as an indicator for topological mag-
netic order in rare-earth compounds [21, 22], requiring care-
ful consideration of the coupling between conduction elec-
trons and rare-earth moments [25]. On a similar note, micro-
scopic studies of the electronic and magnetic order require
great care. For instance, when using scattering techniques
one of the key experimental tasks concerns discrimination
of single-domain multi-k states from multi-domain single-k
states.

Rare-earth intermetallics with high-symmetric crystal
structures represent a class of compounds that was found
to exhibit multi-k antiferromagnetic order long ago [26–
30]. Despite this long history, these systems so far have

not been considered in the search for phenomena associated
with nontrivial topological winding. In these compounds,
partially filled rare-earth 4f orbitals typically possess a
small overlap resulting in vanishingly small direct exchange
[31]. Interactions between the 4f moments are instead
mediated indirectly via conduction bands and spin–orbit
coupling [32–34]. In competition with magnetocrystalline
anisotropies and quadrupolar degrees of freedom, rich mag-
netic phase diagrams emerge supporting various antifer-
romagnetic forms of order [35–42]. However, these stud-
ies predated recent research on the topological proper-
ties of magnetic materials motivating to revisit this these
systems.

In this paper, we consider selected properties of the class of
cubic rare-earth copper compounds,RCu (R=Gd, Tb, Dy, Ho,
Er, Tm) that suggest the putative existence of non-trivial topo-
logical properties in this class of materials. Table 1 summar-
izes some of early results on the magnetic structures observed
in these systems. Shown in figure 2(a) is the centrosymmetric
cubic CsCl crystal structure with space group Pm3̄m. Below
the Néel temperature TN, antiferromagnetic order of the rare-
earth moments stabilizes. When increasing the atomic number
Z from 64 in gadolinium to 69 in thulium, the Néel temperat-
ure decreases by a factor of 20, while the lattice constant a
decreases by about 3%, as shown in figure 2(b).

Within the parameter range studied, all RCu compounds
have been found to exhibit (ππ0) antiferromagnetic order,
comprising long-wavelength commensurate and incommen-
surate superstructures around k≈ ( 12 ,

1
2 ,0), i.e. the M point

of the Brillouin zone. The ground state at low temperat-
ures and zero magnetic field is reported to be commensur-
ate with k= (1/2,1/2,0), with single-k, double-k, or triple-k
magnetic structures being allowed in the high-symmetry crys-
tal structure. A triple-k structure was identified for instance
in DyCu [39, 40, 51, 52], while additional incommen-
surate log-wavelength superstructures, such as those repor-
ted in TmCu and ErCu, were exclusively considered to be
single-k.

The focus of our paper concerns the possible topological
character of such single-k andmulti-k antiferromagnetic struc-
tures. We motivate these considerations in terms of a few
selected experimental observations, noting that the full exper-
imental studies of different materials are well beyond the
scope of our paper. We begin in section 2.1 with the mag-
netic phase diagrams of HoCu, ErCu, and TmCu for field
along ⟨111⟩ as inferred from the magnetic AC susceptibil-
ity. Typical for this class of materials and all field directions
is an abundance of field-induced transitions with an excep-
tionally rich and complex sequence of phase pockets. This
underscores the presence of a fragile balance of interactions
comprising exchange, spin–orbit coupling, crystal fields, and
f-electron itinerancy. As illustrated for the case of TmCu in
section 2.2, measurements of the electrical transport proper-
ties in all of these materials exhibit an anomalous field depend-
ence that does not scale with the magnetization, suggestive of
non-vanishing Berry phase contributions in real and reciprocal
space. Finally, as illustrated in section 2.3 for HoCu at zero
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Figure 1. Survey of materials for which magnetic multi-k states with nontrivial topology have been reported. (a1) Trigonal skyrmion lattice
in the cubic chiral magnet MnSi. Left: visualization of the magnetic texture in the plane perpendicular to the magnetic field. Right: typical
small-angle neutron scattering pattern [11]. (a2) Nanometric square skyrmion lattice in the centrosymmetric tetragonal magnet GdRu2Si2.
Left: crystal structure. Right: arrangement of the magnetic moments in the basal plane [12]. (b1) Meron–antimeron lattice in chiral magnet
Co8Zn9Mn3 [13]. (b2) Meron–antimeron lattice in the polar tetragonal magnet CeAlGe. Left: arrangement of the magnetic moments in the
basal plane. Right: typical small-angle neutron scattering pattern [14]. (c) Three-dimensional monopole–antimonopole in cubic MnGe [15].
(d) Fractionalized antiferromagnetic skyrmion lattice in layered MnSc2S4 [16].

Table 1. Overview of simple cubic rare-earth intermetallics that were reported to host variations of (ππ0)-type magnetic order with
propagation vectors associated with the Q-positions (1/2,1/2,0) or (1/2− δ,1/2,0).

Structure type Commensurate, k ∈ ⟨1/2,1/2,0⟩ Incommensurate, k ∈
{
(1/2− δ,1/2,0)

}
CsCl PrAg [43, 44], NdAg [45], TbAg [46], DyAg [47], ErAg

[48], GdCu [49], TbCu [46], HoCu [50], TmCu [50], ErCu
[50], DyCu [39, 40, 51, 52]

HoAg [53], ErAg [48], TmAg [53], ErCu [50], TmCu [50]

AuCu3 NdIn3 [41], DyIn3 [42], TmGa3 [54], TbIn3 [55], HoIn3
[55]

ErGa3 [56]

magnetic field, single-crystal neutron diffraction data reveal
the existence of antiferromagnetic structures that combine
short-wavelength commensurate order with incommensurate
superstructures.

Taken together, these experimental appetizers motivate a
dedicated study of the topological character of such magnetic
structures. This analysis forms the main part of our paper,
presented in section 3. We begin with a detailed discussion
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Figure 2. Overview of the magnetic properties of cubic rare-earth
copper compounds RCu. (a) CsCl crystal structure, space group
Pm3̄m. (b) Néel temperature TN (top) and room-temperature lattice
constant a (bottom) as a function of the atomic number Z of the
rare-earth element. Note that GdCu and TbCu undergo martensitic
transitions to orthorombic phases at low temperatures [57].
(c) Illustration of potential (ππ0) antiferromagnetic order composed
of one, two, or three commensurate wave vectors k, suggested as
possible ground states of HoCu. Reprinted from [50], Copyright
(1980), with permission from Elsevier.

of the commensurate multi-k states in section 3.1, which may
be viewed in terms of a topological band structure comprising
monopoles and antimonopoles in reciprocal space. In compar-
ison, the incommensurate multi-k superstructure, addressed
in section 3.2, may be interpreted in terms of topologically
non-trivial, long-wavelength magnetic textures in real space,
such as an antiferromagnetic skyrmion lattice. Our paper con-
cludes in section 4 with a summary and a brief outline of the
work program our considerations motivate, which is needed
to develop a comprehensive understanding of cubic rare-earth
intermetallics.

2. Typical experimental signatures

2.1. Magnetic phase diagrams

Shown in figure 3 are the phase diagrams of HoCu, ErCu,
and TmCu under magnetic fields applied parallel to ⟨111⟩.
The phase diagrams were derived from the AC susceptibility
[58–61] measured on large single crystals grown by means
of the optical floating-zone technique [62, 63]. Marked in

red are extrema and points of inflection as recorded at an
excitation frequency of 911 Hz and excitation amplitude of
1mT. Characteristic of a complex antiferromagnetic ground
state, the phase diagrams on a purely phenomenological level
suggest the formation of a large number of phase transitions
and cross-over phenomena before the field-polarized regime
is reached. As a function of increasing Z, i.e. decreasing lat-
tice spacing and single-ion moment when going from Ho to
Er to Tm, the onset of the field-polarized state and the order-
ing temperature TN decrease. Similarly, the number of mag-
netic phase pockets decreases across the series. Nonetheless,
the mere complexity of the phase diagrams raises the ques-
tion for the nature of the microscopic magnetic and electronic
structure and its possible topological character.

2.2. Electrical transport properties

The electrical transport properties of the series of RCu com-
pounds, quite generically, display a complex magnetic field
dependence [58, 61]. Typical behavior may be illustrated
for TmCu, where the comparatively small number of field-
induced transitions and the low critical field of the field-
polarized state allows direct comparison of the transport prop-
erties with the magnetization deep into the field-polarized
state. As shown in figure 4(a) for H ∥ ⟨111⟩, corresponding to
the phase diagram shown in figure 3(c), the magnetization of
TmCu at a low temperature of 2 K is dominated by two step-
like transitions at H1 = 4.0T and H2 = 6.7T, before entering
the field-polarized state slightly aboveHc = 9.0T. Further sig-
natures denoted in the phase diagram may only be seen in the
AC susceptibility.

In the field-polarized state for H> Hc, the resistivity
ρxx, shown in figure 4(b), increases monotonically with
M(H) which is reminiscent of the transverse magnetoresist-
ance observed in conventional ferromagnets. In comparison,
between the transition at H1 and below the onset of the field-
polarized state at Hc, the resistivity ρxx(H) displays an addi-
tional contribution highlighted in blue shading. As this addi-
tional contribution may reflect any combination of scattering
by the magnetic structure and magnetic textures, as well as
changes of the electronic structure, its unambiguous identific-
ation is beyond the scope of our paper.

Similar to the resistivity ρxx(H), the Hall resistivity ρxy(H)
shown in figure 4(c), displays essentially a linear dependence
in the field-polarized state aboveHc. BelowHc, a strongly non-
monotonic field dependence is observed, including a change
of sign. Notably, the exceptional magnitude of these contri-
butions (purple shading) is remarkable in its own right. It is
instructive to assess the Hall resistivity in the conventional
way, considering three main contributions, namely

ρxy (H) = R0µ0H + SAµ0 ρ
2
xxM(H)+∆ρxy (H) . (1)

Here, the first term describes the normal Hall effect which is
linear under applied magnetic field, while the second term rep-
resents the intrinsic anomalous Hall effect that is linear in the
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Figure 3. Magnetic phase diagrams of HoCu, ErCu, and TmCu for magnetic field H ∥ ⟨111⟩. Marked in red are maxima and points of
inflection observed in the AC susceptibility. Lines are guides to the eye.

Figure 4. Magnetization and electrical transport properties of
TmCu at T= 2K for magnetic field along ⟨111⟩. (a) Magnetization
as a function of magnetic field, where two dominant step-like
transitions at H1 = 4.0T and H2 = 6.7T are followed by the onset
of the field-polarized state slightly above Hc = 9.0T. (b) Electrical
resistivity ρxx, featuring a non-monotonic contribution between H1

and Hc. (c) Hall resistivity ρxy of TmCu. Dashed lines represent
normal and anomalous Hall contributions denoted NHE and AHE,
respectively, as matched to the field-polarized state above Hc. An
exceptionally large non-monotonic contribution to ρxy is highlighted
by purple shading. This contribution provides putative evidence of
non-trivial topology.

magnetization and the resistivity squared. The third term van-
ishes in the spin-polarized state and is usually attributed to the
emergence of additional Berry phase contributions in the pres-
ence of magnetic order.

Assuming that the parameter SA does not change across the
complexmagnetic phase diagram, theHall resistivity ρxy(H) in
the field-polarized state is dominated by a normal Hall contri-
bution (NHE) and a small anomalous Hall contribution (AHE)
as denoted in figure 4(c). In turn, the anomalous contribution
in the resistivity ρxx between H1 and the onset of the field-
polarized state at Hc is barely noticeable as compared to the
non-monotonic part of the Hall resistivity ρxy(H). This obser-
vation underscores the potential presence of a combination
of different topological contributions in the transport proper-
ties and motivates closer inspection of the magnetic structure
presented in the next section.

2.3. Neutron scattering

Typical key characteristics of the magnetic structures in the
class of RCu systems may be illustrated by means of HoCu
at zero field, featuring commensurate short-wavelength anti-
ferromagnetism as well as incommensurate superstructures.
Data were recorded at the single-crystal diffractometer HEiDi
at FRM-II [64] in rocking scans with respect to the reciprocal
lattice position Q= ( 32 ,

3
2 ,1)+∆Q. As shown in figure 5, the

scattering intensity in HoCo at zero magnetic field exhib-
its three different momentum dependencies with increasing
temperature denoted I, II, and III, consistent with the three
antiferromagnetic phases observed in the bulk properties.
At 2.3 K, the lowest temperatures studied, HoCu displays
short-wavelength commensurate (ππ0) antiferromagnetism
with wave-vectors forming a star {(1/2,1/2,0)}, frequently
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Figure 5. Magnetic neutron diffraction intensity as a function of
temperature in HoCu at zero magnetic field. Three phases denoted I,
II and III may be distinguished, reflecting commensurate
antiferromagnetism in phase I, with an additional incommensurate
superstructure in phases II and III.

also denoted ⟨1/2,1/2,0⟩. Further, at intermediate temperat-
ures when entering phases II and III the scattering intensity
is characteristic of incommensurate ordering vectors {(1/2−
δ,1/2,0)} with δ ≈ 0.02r.l.u. These scattering intensities cor-
respond to a long-wavelength superstructure of the short-
wavelength commensurate antiferromagnetic order observed
in phase I.

The incommensurate propagation vectors observed in
phases II and III are reminiscent of the antiferromagnetic
order reported in the large class of cubic rare-earth intermetal-
lics summarized in table 1. While some of the commensur-
ate states have been considered as candidates of short-wave-
length multi-k order, it is interesting to note that the com-
ponents defining the incommensurate superstructures, {(1/2−
δ,1/2,0)}, may represent long-wavelength multi-k modulated
states in their own right. We limit the discussion of the mag-
netic structures in HoCu, presented in the following, to phases
I and II, since they permit to address the topological charac-
ter in two opposing limits. Although in both phases magnetic
structure refinements and polarized neutron diffraction may be
accounted for by relatively simple collinear forms of antiferro-
magnetic order, a large set of antiferromagnetic multi-k states
with non-trivial topological properties exists, some of which
may ultimately turn out to be the magnetic ground states.

Comprehensive neutron diffraction experiments in HoCu,
ErCu, and TmCu under zero and applied magnetic fields at
various beam-lines [61, 64–72], which we will report else-
where, highlight that the characteristics observed in HoCu at
zero field are generic for all materials and their magnetic phase
diagrams. The combination of various state-of-the-art neutron
scattering methods including spherical polarimetry permits us
to distinguish between arrangements of magnetic moments
with equivalent structure factors [73, 74], as well as between
multi-domain single-k and single-domain multi-k forms of

order, tracking higher-order magnetic Bragg components
(see also [75–77]). These results motivate the theoretical
considerations of the topological properties reported in the
next section.

3. Theoretical considerations of the topological
properties

For the considerations presented in the following, we assume
certain plausible choices of the irreducible representation of
the magnetic structures. Establishing these irreducible rep-
resentation for a given material requires magnetic structure
refinements by means of high-resolution as well as polarized
single-crystal neutron diffraction. In addition, experimental
studies are required that permit to distinguish single-domain
multi-k from multi-domain single-k behavior. This may be
achieved, for instance, by means of uniaxial stress or magnetic
fields applied in carefully selected orientations breaking cer-
tain symmetries. The complexity of the required experimental
work places it beyond the scope of the present study. Instead,
we focus on the discussion of possible forms of multi-k mag-
netic order and their potential for non-trivial topology.

3.1. Phase I of HoCu: commensurate order

For the purpose of the discussion presented in the following,
we note that the magnetic structure in phase I of HoCu is con-
sistent with the irreducible representation Γ9 of theM point in
space group Pm3̄m [78]. In particular, the magnetic Fourier
components propagated by a vector of the star ⟨1/2,1/2,0⟩
are restricted to lie within the plane that is perpendicular to
the ferromagnetically coupled ⟨100⟩ bond of the respective
propagation. The orientation of the corresponding arms kc,1 =
( 12 ,

1
2 ,0), kc,2 = (0, 12 ,

1
2 ), and kc,3 = ( 12 ,0,

1
2 ) is illustrated in

figure 6(a), where the magnetic ground state may involve any
number of these components.

Presented in figures 6(b)–(d) are examples of single-
k, double-k, and triple-k types of order consistent with
the information available about the magnetic structure [79].
Without further constraints, an infinite number of such Γ9

structures exists, which cannot be distinguished using unpolar-
ized single-crystal neutron diffraction at zero magnetic field.
Careful analysis of neutron diffraction recorded under applied
magnetic field may then establish that structure t1 shown in
figure 6(d) may be the correct solution of phase I.

It is therefore instructive to discuss the properties of t1
in further detail. Namely, the topological properties of the
triple-k state t1 cannot emerge from structures with fewer
wave vectors. Unlike the single-k state representing a collin-
ear structure, and the double-k state representing a noncol-
linear coplanar structure, the triple-k state corresponds to a
noncoplanar texture of magnetic moments with finite scalar
spin chiralities∼Mi · (Mj×Ml) [80]. As a possible account of
electrical transport properties such as those observed in TmCu,
such spin chiralities may result in real-space Berry phases and
anomalous Hall contributions that are not proportional to the
net magnetization M(H) [23].
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Figure 6. Magnetic structure consistent with phase I in HoCu. The
magnetic ground state represents a commensurate (ππ0)
antiferromagnet that corresponds to the irreducible representation
Γ9. (a) Reciprocal space illustration in the Brillouin zone of the
three arms of the star of propagation vectors ⟨1/2,1/2,0)⟩. In
principle, the wave vectors may form single-k, double-k, or triple-k
structures. (b)–(d) Real space examples of the star of propagation.
For the purpose of the discussion we assume that measurements
under magnetic field establish the structure shown in panel (d) as the
solution for phase I of HoCu. Also shown in panel (d) is an
extrapolation of the triple-k structure to inter-atomic positions in
terms small arrows illustrating the director field. One unit cell may
be viewed as a monopole–antimonopole pair denoted by a red and a
blue sphere at a(3/4,3/4,3/4) and a(1/4,1/4,1/4), respectively.
Colors encode the flux of each arrow with respect to the nearest
singularity. (e) Band structure calculated for the triple-k structure
in terms of the minimal tight-binding model described in the text.

The Fourier description of a triple-k (ππ0) state such as t1
is given by

M(R) =M0 ·
3∑

i=1

m̂i · cos(ki ·R) , (2)

where R denotes the positions of the magnetic rare-earth ions.
Decomposing t1 in terms of Fourier components given by
m̂1 = (0,1,0), m̂2 = (0,0,1), and m̂3 = (1,0,0), it may be seen
that t1 resembles the monopole–antimonopole lattice repor-
ted in MnGe [15]. Extending the magnetization M(r) analyt-
ically to locations between rare-earth lattice sites, singular-
ities are located at the positions r= 1

4 (a,a,a) and 3
4 (a,a,a)

where themagnetization vanishes and the Berry curvature bl =
1
2ϵ

ijln · [∂in× ∂jn] derived from the director field n=M/|M|
is topologically non-trivial with effective magnetic charges
given byQM = 1

4π

´
S dSl · bl =±1, see [15]. In fact, around the

same positions the directorfield forms a hedgehog and an anti-
hedgehog, respectively. While a real-space interpretation of
phase I based on a continuous magnetization field suggesting
microscopic monopoles and anti-monopoles is intriguing, it
must also be emphasized that it is inconsistent with a baremag-
netic structure, M(R), composed of local moments, in which
mirror and rotational symmetries must be broken to generate
the interpolationM(r).

Shedding a different light on the topological properties
of the triple-k structure t1, it is also instructive to consider
the associated band structure on the level of a minimal tight-
binding model given by [23]

H=
∑
⟨i,j⟩

tijc
†
i cj+ JH

∑
i

σ ·Si c†i ci , (3)

where c†i and ci represent the two-component creation and
annihilation operators of an electron at site i. The first term
describes hopping between low-order nearest neighbors and
the second term describes the coupling between conduction
electrons and the magnetic structure treated as local exchange
field Si. In the limit of fully polarized localized moments, i.e.,
JH →∞, a spinless tight-binding model is obtained with hop-
ping parameters teffij = tij · ⟨χi|χj⟩, where

|χi⟩ := [cos(θi/2) , sin(θi/2) · exp(i ·Φi)]
T (4)

represents a spinor describing a classical spin Si in terms of
spherical angles θi and Φi [23]. Solving this model in the
absence of spin–orbit coupling for a typical set of parameters
given by t⟨100⟩ = t⟨110⟩ = t, the band structure displays Berry
curvature with a rich distribution of positive and negative mag-
netic charges in reciprocal space [81]. Figure 6(e) shows the
resulting band structure at momentum kz = π

2a , where four sin-
gularities of quantized charges emerge.
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Figure 7. Considerations motivated by the magnetic structure observed in phase II of HoCu. (a) The magnetic ground state is a
superposition of wave vectors from the stars

{
( 1
2 − δ, 1

2 ,0)
}
and

{
( 1
2 ,

1
2 ,0)

}
. The latter yields six arms that are here illustrated by the

positions in the Brillouin zone. (b) Bare modulation of a single incommensurate wave vector representing an amplitude modulation. (c)
Exemplary phase-shifted superposition of two such amplitude modulations resulting in a non-chiral helix. (d) Collinear double-k structure
resulting from one commensurate and one incommensurate propagation vector. (e) Four-sublattice non-chiral cone structure resulting from a
superposition of two incommensurate and one commensurate propagation vectors and identified by us as the magnetic structure in phase II.
(f) Four-sublattice antiferromagnetic skyrmion lattice resulting from a superposition of four incommensurate and one commensurate
propagation vectors.

The minimal tight-binding model and the resulting
assembly of charges creating Berry curvatures permit to dis-
cuss the properties of the triple-k structure t1 further. For
instance, in the presence of an anisotropic distortion of the
lattice with respect to the [111] direction, a displacement of

the charges causing the Berry curvatures are expected res-
ulting in two-dimensional Chern numbers, a finite intrinsic
anomalous Hall effect [23], and orbital magnetization (a sim-
ilar phenomenon was studied in [82]). The latter may be
calculated by means of the expression [83]
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Morb =− ie
2h̄

∑
n,α

ˆ
En<EF

d3k
(2π)3

[⟨∂kun,α| × (H−En) |∂kun,α⟩

+2(En−EF)⟨∂kun,α| × |∂kun,α⟩] , (5)

where H is a tight-binding Hamiltonian in momentum space,
|un,α⟩ are Bloch waves with components α attributed to the
antiferromagnetic sublattices, En denotes the energy of band
n, and EF denotes the Fermi energy. The distortion of the lat-
tice is taken into account in terms of a slight change of hop-
ping parameters for next-nearest neighbor bonds perpendicu-
lar to [111]. Finally, for the two domains of the triple-k struc-
ture, the orbital magnetization exhibits opposing direction and
hence different Zeeman energies under an applied magnetic
field. Accordingly, already on the level of this minimal model
an anomalous response to an applied magnetic field may be
expected.

3.2. Phase II of HoCu: incommensurate order

In the following, we assume that the magnetic state asso-
ciated with phase II of HoCu comprises a combination of
commensurate and incommensurate modulations that corres-
pond to the irreducible representations Γ3 and Γ4 of the wave-
vector stars ⟨1/2,1/2,0⟩ and {(1/2− δ,1/2,0)}, respectively.
This assumption implies that magnetic moments associated
with each wave-vector are directed along the ferromagnetic-
ally coupled ⟨100⟩ bond of the respective propagation. The star
of incommensurate propagation vectors has six wave-vector
arms as illustrated in figure 7(a). Since the three arms of com-
mensurate wave-vectors must also be taken into account, the
magnetic structure in phase II may be a multi-k structure with
up to nine magnetic propagation vectors.

The bare modulation associated with a single incommen-
surate k vector of the associated irreducible representation cor-
responds to an amplitude modulation, as shown in figure 7(b).
Such a magnetic state has been reported in HoAg and TmAg
[53]. The superposition of such incommensurate wave vec-
tors with a specific, well-defined phase relation may res-
ult in highly non-trivial magnetic textures, such as the four-
sublattice non-chiral helix presented in figure 7(c). The lat-
ter arises from the π/2-shifted superposition of two amp-
litude modulations that are incommensurate along the same
⟨100⟩ direction. The simplest possible structure arising from
the superposition of commensurate and incommensurate wave
vectors and, according solely to irreducible representations, a
candidate structure for phase II of HoCu is the collinear struc-
ture shown in figure 7(d), which was previously proposed to
exist in ErCu and TmCu [50].

Structures with topologically non-trivial properties may
emerge when more than one incommensurate modulation are
involved. Presented in figure 7(e) is the triple-k structure that
we identified as the most plausible magnetic solution of phase
II. It represents a four-sublattice antiferromagnetic non-chiral
cone. Notably, the latter displays a constant modulus of mag-
netic moments, which in general is favorable for f -electron
moments. The modulation of the real-space texture changes

from coplanar to noncoplanar arrangements and the rotation
associated with the superstructure follows the parametrization
of a staggered parameter making a full winding in the real pro-
jective space RP1 over a real-space distance of ∼ 1

2 · a/δ = 9
nm, which is half of the periodicity of the cones on each
sublattice.

Shown in figure 7(f) is a quintuple-k structure, which arises
from a superposition of one commensurate and four incom-
mensurate propagation vectors and represents another pos-
sible solution consistent with the irreducible representations
we assumed for phase II. Illustrated on the left-hand side of
figure 7(f) is the expected diffraction intensity distribution of
a single domain. The associated real-space texture represents
a four-sublattice antiferromagnetic skyrmion lattice, in which
half of the sublattices display positive winding numbers and
the other half negative winding numbers. Starting from this
configuration, the superposition of a sufficiently large uniform
magnetization as induced by an applied magnetic field may
stabilize a four-sublattice skyrmion state with equal winding
numbers on each sublattice. The latter may give rise to com-
plex transport properties, such as net Berry phases resulting in
transverse resistivity emerging from intra-sublattice conduc-
tion processes.

4. Conclusions

In summary, we presented a short review of antiferromag-
netic multi-k states in the cubic rare-earth copper compounds
with special emphasis on their putative topological charac-
ter. To illustrate the possible existence of topological tex-
tures in this materials system, we reported selected results
in HoCu, ErCu, and TmCu, representing promising materials
that may host topological antiferromagnetic order. In all com-
pounds measurements of the magnetic susceptibility establish
multi-pocketed magnetic phase diagrams characteristic of del-
icately balanced competing interactions. The electrical trans-
port properties exhibit exceptionally large anomalous contri-
butions in the resistivity and Hall effect that are strongly sug-
gestive of non-trivial topological winding of the electronic
and magnetic structure. Neutron scattering reveals variations
of (ππ0) antiferromagnetic order throughout the magnetic
phase diagrams, where some of the phases support multi-k
states.

Assuming commensurate (ππ0) order consistent with
experiment in HoCu, this structure represents a platform for
topological band structures comprising monopoles and anti-
monopoles. On a related note, incommensurate superstruc-
tures of the (ππ0) antiferromagnetism consistent with phase
II of HoCu may provide an example of an antiferromagnetic
skyrmion lattice with non-vanishing topological winding in
real space. This combination of properties reflecting oppos-
ing limits connects emerging topological properties in real
and reciprocal space in a unprecedented way, extending the
platform of materials properties currently studied in the con-
text of spintronics, nano-electronics, as well as neuromorphic
applications.
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