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Abstract

In the present work, a model-based approach for personalized diagnostics in patients with diabetes
mellitus is developed, which estimates blood glucose profiles based on a model of the glucose-insulin-
glucagon metabolism.

Diabetes mellitus is a chronic metabolic disease. It results from the body’s inability to produce and/or
use insulin properly. Regardless of the specific type, patients who suffer from the disease require
lifelong insulin therapy. Diabetes therapy aims to support the impaired physiological control loop
of glucose-insulin homeostasis by artificial feedback control. As a sensor, the patient can measure
glucose levels in the body. Insulin administration can be regarded as the actuator. The patient is
responsible for the control regimen for which he or she receives appropriate education.

Just like in technical systems, metabolic processes can be described by mathematical models. It can
therefore be assumed that a model-based approach will also have advantages in diagnosis and therapy.
However, existing approaches take insufficient account of a patient’s individual condition. Medicine is
currently trying to address this by developing “personalized medicine.”

A physiological model approach is chosen that allows the simulation of both healthy and pathophysio-
logical metabolic systems. The unified model is identified using novel quasi-continuously measuring
glucose sensors under everyday-life conditions. First, sensitivity analysis is applied to find those
parameters that induce the most variability in the model output and thus, can be regarded as important.
This is followed by analyses of the controllability and observability of states of the system. Hence,
those variables are found which significantly contribute to the system behavior. Furthermore, the
methods are adapted and extended to the specifics of the model class.

The essential parameter sets are, where technically feasible, adapted to the respective individual
to achieve better predictions than it would be possible using generic model approaches. For this
purpose, measurement data of different probands is recorded over several weeks, analyzed, and the
parameters are subsequently identified solving an optimization problem. Finally, the blood glucose
concentration is estimated in real-time on the basis of the personalized model, continuously collected
glucose measurement data, and a nonlinear state observer. The developed algorithms are integrated
into a web-based platform and a mobile application to support patients in their diagnosis and therapy.
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Kurzfassung

In vorliegender Arbeit wird ein modellbasiertes Verfahren zur personalisierten Diagnostik bei Patienten
mit Diabetes mellitus entwickelt, welches den Blutglukoseverlauf auf Basis eines Modells der Glukose-
Insulin-Glukagon Verstoffwechselung schätzt.

Diabetes mellitus ist eine chronische Stoffwechselerkrankung. Sie resultiert aus der Unfähigkeit
des Körpers Insulin zu produzieren und/oder zu nutzen. Unabhängig des konkreten Typs benötigen
Betroffene eine lebenslange Insulintherapie. Die Diabetestherapie zielt darauf ab, den gestörten
physiologischen Regelkreis der Glukose-Homöostase durch eine künstliche Regelung zu unterstützen.
Als Sensor kann der Patient den Glukosespiegel im Körper messen. Als Aktor kann die Insulinvergabe
angesehen werden. Die Regelung übernimmt der Patient nach erfolgter Schulung selber.

Ebenso wie technische Systeme sind Stoffwechselvorgänge durch mathematische Modelle beschreib-
bar. Daher ist anzunehmen, dass auch hier ein modellbasiertes Vorgehen Vorteile bei Diagnose und
Therapie haben wird. Allerdings berücksichtigen bisherige Ansätze den individuellen Zustand ei-
nes Patienten nur unzureichend. Die Medizin versucht dies aktuell durch die Entwicklung einer
„personalisierten Medizin“ anzugehen.

Es wird ein physiologischer Modellansatz gewählt, mit dem die Simulation von gesunden als auch
von pathophysiologischen Stoffwechselsystemen ermöglicht wird. Das vereinheitlichte Modell wird
mit Hilfe neuartiger quasi-kontinuierlich messenden Sensoren unter Alltagsbedingungen identifiziert.
Dazu werden zunächst mittels Sensitivitätsanalyse diejenigen Parameter gefunden, die die größte
Variabilität im Modellausgang erzeugen und damit als wichtig angesehen werden können. Analysen
zur Steuerbarkeit und Beobachtbarkeit von Zuständen des Systems schließen sich an. Damit sind
diejenigen Größen gefunden, die einen wesentlichen Beitrag für das Systemverhalten liefern. Weiterhin
werden die Methoden an die Spezifika der Modellklasse angepasst und erweitert.

Die für das Modell wesentlichen Parametersätze werden, wo technisch realisierbar, an das jeweilige
Individuum angepasst, um bessere Vorhersagen erzielen zu können, als dies mit generischen Modell-
ansätzen möglich ist. Dazu werden Messdaten verschiedener Probanden über mehrere Wochen hinweg
aufgenommen, analysiert und die Parameter anschließend durch Lösen eines Optimierungsproblems
identifiziert. Abschließend wird die Blutglukosekonzentration in Echtzeit auf Basis des personalisier-
ten Modells, kontinuierlich erfasster Glukosemessdaten und einem nichtlinearen Zustandsbeobachter
geschätzt. Die entwickelten Algorithmen sind in einer Web-Applikation integriert und können Nutzer
bei ihrer Selbstdiagnose und Therapie begleiten.
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1 Introduction

1.1 Glucose-Insulin Homeostasis

Maintaining blood glucose concentration within a physiological range is crucial because glucose is
a major source of energy for cellular respiration and therefore for the energy supply in the human
body. Regulation of blood glucose is achieved by several feedback loops involving the antagonistic
hormones insulin and glucagon, both produced by the pancreas. Each of these two hormones acts via
an endocrine regulatory pathway, which is controlled by negative feedback. If the blood glucose level
rises above a certain target value, released insulin ensures that glucose is absorbed from the blood by
peripheral cells, so that its concentration decreases back to normal. Conversely, if the blood glucose
level falls below the set point, glucagon promotes the release of glucose into the blood, so that its
concentration increases. As insulin and glucagon have opposite effects, these hormones maintain strict
control over blood glucose levels. Here, the pancreas is sensor, actuator, and controller in a single unit
(Fig.  1.1 ).

Diabetes mellitus is a chronic metabolic disease that is caused by an insulin deficiency or by a reduced
reaction to insulin in the target tissue. As a result, high glucose levels exceed the ability of the kidneys
to reabsorb the sugar. Glucose remaining in the filtrate is excreted. Therefore, sugar in the urine is a
typical characteristic of this disease. When glucose accumulates in the urine, more water is excreted,
resulting in excessive volumes of urine. The word diabetes (Greek: diabainein, to pass through)
alludes to this excessive urine production; mellitus (Greek: meli, honey) refers to the sugar contained
in the urine. Regardless of the cause, patients require continuous insulin therapy. If not treated,
the disorder can have serious consequences in long-term and short-term and affects the heart, blood
vessels, eyes, and kidneys. There are two main types of diabetes mellitus. Both are characterized by

Human

Insulin

Pancreas Metabolism
Glucagon

Disturbances, e.g. meal, physical activity

Glucose

Figure 1.1: Physiological closed-loop system: The pancreas acts as a controller to maintain glucose metabolism
in response to disturbances.
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1 Introduction

Human

Insulin

Self-diagnosis

Metabolism
Glucose

SensorTreatment

Disturbances

(e.g. insulin pump) (e.g. CGM)

Figure 1.2: Treatment of diabetes: The patient has to measure glucose and acts as a controller for insulin
treatment based on his or her self-diagnosis.

high blood glucose levels but have different causes. More than 90 % of all patients suffer from type 2.
According to the International Diabetes Federation ( 2019 ), it is estimated that worldwide 463 million
people have been diagnosed with diabetes in 2019. Diabetes therapy aims to replace or support the
disturbed physiological control loop of glucose-insulin homeostasis by an artificial controller. As the
sensor, the patient can determine the glucose concentration from a blood drop using a glucose meter.
For a few years, continuous measuring devices have also been available that measure glucose in the
subcutaneous tissue (continuous glucose monitoring, CGM). Injection of insulin can be seen as the
actuator. The patient himself or herself performs the necessary self-diagnosis and therapy for which
he or she receives appropriate training (Fig.  1.2 ).

1.2 Towards Personalized Medicine

In the design of control systems for technical systems, e. g., in the automotive sector, model-based
design is nowadays a generally accepted and desired approach in engineering. A model of the
dynamic system is the starting point for all further work such as simulation, analysis, controller design,
diagnostics, etc. Even though glucose-insulin metabolism is not an engineering system but physiologic,
it can also be described by mathematical equations. The benefits of a model-based approach to the
analysis and treatment of glucose regulation are conceivable here. The idea is therefore to successfully
transfer this methodology to the (patho-) physiological system of glucose-insulin metabolism in
humans.

Existing approaches to modeling, system identification, or state estimation do not sufficiently take into
account the individual condition of each patient, as there is great variability in the metabolic behavior
from person to person. Even very good standard models can only correctly describe metabolic
processes for averages over collectives. Medical research is currently trying to address this by
the development of “personalized medicine.” Besides models of metabolic processes, this means
developing efficient methods and algorithms for analysis, identification, and estimation, that take into
account the specifics of physiological systems.
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1.3 Contribution and Structure of the Thesis

Due to the complexity of the underlying physiological mechanisms, fine-scale models cannot currently
be used in everyday practice, since only a few variables can be measured directly, making parameter
identification difficult. One possibility, however, is to focus on only major interactions. Nevertheless,
this requires a profound knowledge of the system behavior including analysis of state controllability
and observability, and parameter sensitivity.

Personalization is only possible on the basis of individual measurement data. In addition to established
blood glucose measurements, the focus is on novel continuously measuring sensors. For the first time,
it is technically feasible to capture the dynamics in the signal curves in everyday settings at reasonable
costs. With the help of model knowledge and measurement data, parameter identification of a patient
becomes possible.

With the help of customized models, therapy can be improved. On one hand, this can be achieved by
adjusting insulin amounts and time points based on the patient’s current metabolic state. On the other
hand, the number of blood glucose measurements can be optimized when the current glucose status is
known from model simulations. If disturbances such as meals or physical activities are also considered,
the amount of insulin to be administered can be dosed even more precisely. Short-term prediction of
future blood glucose levels can be particularly helpful in preventing potentially harmful conditions
such as hyperglycemia or hypoglycemia. Applying an individual metabolic model is therefore useful
in advising patients, which can result in relief in everyday use.

Conventional sensors measure the glucose concentration using a blood sample from the patient. With
the help of this information, treatment decisions can be made. Functions for storing and processing
data series or the development of the pathological condition over a longer period are not very common
yet. However, the increasing availability of mobile devices with sufficient computing power or cloud-
based services enables the application of personalized models and related algorithms as a universal,
portable monitoring and diagnostic system.

1.3 Contribution and Structure of the Thesis

The present work focuses on a model-based method for personalized diagnostics in patients with
diabetes mellitus, which estimates blood glucose concentrations on the basis of a model of glucose-
insulin-glucagon metabolism.

This work incorporates available physiological models from literature for healthy and type 2 diabetics,
as well as for type 1 diabetic patients into a single set of ordinary differential equations. The model is
capable of expressing glucose-insulin-glucagon regulation after a mixed-meal, for which it includes
parts for meal ingestion, insulin and glucagon administration, secretion and utilization of major
hormones, and their distribution and diffusion within the body. Furthermore, available parameter sets
from the literature are used as a basis for an algorithm to generate a population of virtual subjects.
These subjects are characterized by their parameter vector which determines individual metabolic

3



1 Introduction

conditions, thus, the model structure is independent of a concrete manifestation of the disease. The
study of a whole population allows to investigate the behavior of individuals and groups and it allows
to draw conclusions about inter-patient and inter-group variability.

The model is identified using novel quasi-continuous glucose sensors, i. e., parameters required for the
model are adapted to the respective individual in order to be able to make better predictions than it
would be possible with generic models. Alterations in the metabolic system, as they occur in diabetes,
can be characterized individually by changing the parameters. Furthermore, continuous monitoring
allows the use of state observers to estimate those states that are difficult or impossible to measure.
For this purpose, an extended Kalman filter is designed that takes into account both the nonlinear
system dynamics and the properties of process and measurement noise. The method is applied to the
estimation of blood glucose concentration. As this quantity is typically measured only a few times a
day, continuous monitoring could improve treatment decisions. Furthermore, a prediction of future
glycemic trends would be also possible.

To identify the variables relevant for parameter identification and state estimation, two methods
are applied and adapted to the model properties. On one hand, sensitivity analysis, a stochastic
approach to identifying those variables that contribute most to the output variability, is used. And
second, controllability and observability of states and parameters are analyzed based on their empirical
Gramians. Adaptations to the model mainly cover the large number of variables and the nonlinearities
in the system dynamics.

As a result, a self-monitoring platform is developed that permanently monitors the patient’s current
health status and provides diagnostic services. The platform uses a mobile app that connects to glucose
sensors and handles data exchange. Presented methods and algorithms are incorporated into a web
service for data storage and processing. Necessary computations are realized online and in real-time.
Thus, patients will be enabled to take a more active part in their treatment process. Through permanent
self-monitoring, potentially severe events of the disease could be mitigated or avoided altogether.

From the contributions shown above the thesis is structured as follows:

Chapter 2. An overview of the medical characteristics of a healthy glucose-insulin metabolism and
its pathological alterations in the diabetic case is given. Furthermore, measurement principles and
technology for glucose monitoring are introduced. To assess glucose metabolism several diagnostic
tests are presented next, followed by common and novel diabetes treatment options.

Chapter 3. A review of the state-of-the-art is presented. The chapter is divided into a medical
part addressing models of the glucose-insulin-glucagon metabolism including minimal and maximal
approaches. This is followed by the technical part, which discusses techniques for analyzing states
and parameters in nonlinear systems. Methods for parameter identification and online state estimation
are followed by recent advancements in (mobile) diabetes monitoring and management.

4



1.3 Contribution and Structure of the Thesis

Chapter 4. A unified model of glucose-insulin-glucagon metabolism is derived, capable of sim-
ulating healthy subjects, as well as type 2 and type 1 diabetics. In combination with the dynamical
model a population of virtual subjects with individual metabolic profiles is generated, which allows
simulation studies of different (patho-) physiologic glucose excursions. The modeling part is closed
with an implementation of models of glucose sensors in order to incorporate measurement noise.

Chapter 5. Systems analysis first focuses on the investigation of sensitive parameters, that means,
parameters whose alterations have a significant influence on the variation of glucose. For this
purpose, methods of global sensitivity analysis are used and adapted to the characteristics of the
model. In particular, this includes the functional model output and the large number of input variables.
Furthermore, the concept of controllability and observability of states is introduced and extended to
parameters and nonlinear systems. With the help of the calculated (empirical) Gramian matrices, those
parameters and states are determined that can be theoretically derived from the observation of glucose
time courses. Both techniques significantly reduce the number of states and parameters that must be
considered in the subsequent steps.

Chapter 6. The recorded experimental database is first presented and evaluated. On the basis of the
derived nominal model of glucose regulation and the model of virtual subjects, complemented by the
investigation of properties of their states and parameters, the models are first adapted to individuals
using continuous glucose measurement data. For this purpose, an optimization algorithm is deployed.
Second, in the individualized model, non-measurable states such as the blood glucose concentration
are estimated in real-time using a nonlinear hybrid observer design.

Chapter 7. The concept and implementation basics for a model-based diabetes monitoring (MoDiM)
platform are shown, which integrates a model of glucose-insulin regulation, devices for continuous
glucose measurement, and methods for continuous glucose estimation into a web service accessible
by any (mobile) device.

Chapter 8. A summary and an outlook on future developments of patient-specific model building,
identification, and estimation in the field of diabetes technology will conclude the present work.
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2 Medical Background

Diabetes mellitus describes a group of disorders of the carbohydrate metabolism that are based on
an absolute or relative lack of insulin which leads to chronic hyperglycemia. The term describes its
main symptom, the excessive excretion of sugar along with the urine. It results from defects of insulin
secretion, insulin action, or both together. Diabetes is a gradually progressing disease that can develop
over several years. Often, symptoms are mild and can persist for a long time. But in the long-term
diabetes is associated with changes in the nervous system and the blood vessel system which can lead
to retinopathy, nephropathy, or neuropathy.

According to estimates from the International Diabetes Federation (  2019 ), the prevalence of diabetes
(i. e., the proportion of patients with diagnosis in relation to the total population) in Germany was
15.3 % in 2019 

1
 . In absolute numbers, this represents more than 9 million people diagnosed with

diabetes. Approximately 5-10 % of patients are suffering from type 1 diabetes and approximately 90 %
from type 2. From a global perspective, 9.3 % of the world’s population suffer from diabetes which
leads to a total health expenditure of $760.3 billion worldwide. If current trends continue, 700 million
adults are going to have diabetes by 2045.

2.1 Normal Physiology

2.1.1 Mechanisms of the Glucose-Insulin-Glucagon Control

Energy ingested from food compensates for energy that is consumed by the metabolism through
activity or that is stored in the organism. Surplus energy is stored in the form of glycogen, mainly in
the liver and muscle cells.

Synthesis and breakdown of glycogen are not only important for maintaining the energy balance but
also for preserving a defined glucose concentration in the blood. Since glucose is the main energy
source for cell respiration and is used as a carbon source for many biosynthesis processes, maintaining
a fixed glucose concentration in the blood is very important.

The regulation of blood glucose levels is the task of the two antagonistic hormones insulin and
glucagon, both produced and secreted by the pancreas. Each of these hormones acts via an endocrine
regulatory pathway that is controlled by negative feedback (Fig.  2.1 ). If the glucose level rises above

1Statistic includes only adults (20-79 years).
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2 Medical Background

Homeostasis:
Blood glucose level
80 − 120 mg dL−1

Liver breaks down
glycogen and
releases glucose
into the blood.

β-cells of
pancreas release

insulin into the
blood.

α-cells of
pancreas release

glucagon into
the blood.

Insulin
Body cells
take up more
glucose.

Liver takes up
glucose and
stores it as
glycogen.

Pancreas

Stimulus:
Blood glucose level

rises (e.g. meal)

Stimulus:
Blood glucose level

falls (e.g. sport)

Liver

Pancreas

Cells

Blood glucose
level rises

Blood glucose
level falls

GlucagonLiver

Figure 2.1: Homeostatic regulation (adapted from N. A. Campbell et al. (  2016 , p. 982)): The opposing effects
of the two hormones insulin and glucagon contribute in keeping the blood glucose level close to the
target range of 80 − 120 mg dL−1.

a certain level, the release of insulin ensures that glucose is absorbed from the blood, so that its
concentration decreases. On the other hand, if the glucose level falls below a certain level, glucagon
promotes the release of glucose into the blood, so that its concentration increases again. Since insulin
and glucagon have opposite effects, the combined action of both hormones exerts strict control over
the blood sugar level.

In total, the hormone-producing cells make up only one to two percent of the pancreas mass. Its
remaining cells produce and secrete digestive enzymes, among other substances. The pancreas thus
fulfills functions for both the hormonal and digestive system (N. A. Campbell et al.  2016 ).

From a systems engineering point of view, glucose metabolism is a closed-loop control system, in
which the blood glucose concentration is the set point that has to be stabilized within a certain range
(Fig.  1.1 ). Endogenous and exogenous influences like food intake or physical activity can be regarded
as disturbances to the control loop which must be compensated for. The pancreas serves as a natural
controller that “senses” the current blood glucose level and releases the hormones insulin and glucagon
which act as control variables to restore glucose homeostasis.
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2.1 Normal Physiology

2.1.2 Characteristics of the Glucose-Insulin-Glucagon Metabolism

Glucose. Glucose is the main energy source for the human body. It is either ingested with food or
produced endogenously in the liver from stored glycogen by a biochemical process (glycogenolysis).
In the fasting state, endogenous glucose production (EGP) equals glucose consumption. Most of
the glucose uptake is insulin-independent and occurs in the brain and erythrocytes to ensure a stable
supply of energy. All other processes need insulin to activate mechanisms of glucose transport into
the cells. The majority of insulin-dependent glucose disposal occurs in the liver and muscles and is
either stored for future use or consumed directly. In humans without diabetes, glucose concentrations
average between 80 − 120 mg dL−1. This is also called equilibrium, glucose-insulin homeostasis, or
steady-state. A phase of glucose levels above 180 mg dL−1 induces hyperglycemia, whereas there is
no clear threshold that defines hypoglycemia (Seaquist et al.  2013 ). In individuals without diabetes,
symptoms of hypoglycemia typically develop at a glucose concentration below 55 mg dL−1 (Holt et al.
 2010 , p. 537). In healthy subjects, glucose-insulin-glucagon regulation quickly restores equilibrium.

Insulin. Insulin is a polypeptide hormone that is produced in the β-cells of the pancreas within the
islets of Langerhans. From there, insulin is secreted into the circulatory system via the portal vein,
where it lowers the blood glucose level by stimulating cells to absorb glucose from the blood. Thus, it
plays a fundamental role in nutrient metabolism.

Insulin secretion is mainly determined by the circulating concentration of glucose and other nutrients.
So, when food is absorbed from the gastrointestinal tract, the β-cells detect these changes and release
insulin to enable glucose uptake in the tissues. In case of a decrease in nutrient concentrations in the
blood, insulin secretion is switched off to prevent hypoglycemia.

The time course of insulin secretion in response to elevated glucose levels can be described by two
phases: a rapidly rising and afterward rapidly falling first phase, followed by a comprehensive second
phase that lasts as long as the high glucose level persists (Fig.  2.2 ), see Holt et al. (  2010 , pp. 92–93).
Oral ingestion of 75 g of glucose will cause plasma insulin to rise from its basal level (20−30 pmol L−1)
to 250 − 300 pmol L−1 in 30 min (Fu et al.  2013 ; Polonsky, Given, and van Cauter  1988 ). From a
control engineering point of view, the pancreas roughly behaves like a classical PID controller (Steil,
Rebrin, and J. J. Mastrototaro  2006 ; Chee and Fernando  2007 ).

Glucagon. Glucagon is a peptide hormone whose main effect is to raise blood glucose levels by
stimulating the production of energy-rich glucose from glycogen in the liver (glycogenolysis). This
hormone is a counterpart of insulin in its effect on glucose, protein, and fatty acid metabolism. It is
produced in the islets of Langerhans in the pancreas (α-cells). When blood glucose concentration
drops (typically below 70 mg dL−1 (Schwartz et al.  1987 )), but also after a protein-rich meal, glucagon
is released by the pancreas into the circulatory system from where it is transported into the liver to
stimulate glycogenolysis. This response is primarily intended to ensure energy supply to the brain.
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Figure 2.2: Pattern of insulin release in response to an increase in the glucose level (adapted from Holt et al.
( 2010 , p. 93)): A highly dynamic first phase lasting a few minutes is followed by the second phase
that persists for the duration of the high-glucose stimulus.

2.2 Diabetes mellitus

In 1999 the World Health Organization (  1999 ) approved a new classification of diabetes mellitus under
etiological aspects. The nomenclature distinguishes type 1 diabetes as immune-mediated diabetes,
which is characterized by autoimmune destruction of the pancreatic β-cells. Absolute insulin deficiency
usually leads to diabetic ketoacidosis in the absence of insulin therapy. Type 2 diabetes is the most
common form of diabetes and is characterized by a variable combination of relative insulin deficiency
and insulin resistance. A third and fourth group includes other types of diabetes and gestational
diabetes, respectively.

2.2.1 Pathogenesis of Diabetes

Type 1 Diabetes mellitus. Type 1 diabetes mellitus (T1DM) is caused by chronic inflammation
of the islets of Langerhans in the pancreas. As a consequence, the insulin-producing β-cells are
destroyed, which leads to a loss of functionality in insulin secretion that is frequently accompanied
by tissue-specific impaired insulin action (Yki-Järvinen and Koivisto  1986 ). The cause of this
inflammation is only partially known. In addition to genetic factors (HLA complex and some other
genes), environmental factors (especially nutrition and infections) appear to trigger autoimmunity.
This process takes place over a long period before the clinical manifestation of type 1 diabetes, which
is mainly observed in children, adolescents, or young adults (Schatz  2006 , p. 49).

T1DM results from an almost complete loss of insulin secretion, which clinically manifests as
hyperglycemia-related symptoms. The lack of endogenous insulin production leads to patients having
to externally administer insulin to maintain their glucose metabolism.

Type 2 Diabetes mellitus. In type 2 diabetes mellitus (T2DM) genetic and acquired factors in
combination affect β-cell function and insulin sensitivity. It is characterized both by a disturbance

10



2.2 Diabetes mellitus
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Figure 2.3: Progression of type 2 diabetes over time (adapted from Fonseca ( 2006 )): Increasing insulin
resistance is firstly compensated by a rise in pancreatic insulin production. With onward β-cell
dysfunction, glucose level increase gradually.

of insulin secretion and by insulin resistance of the essential target tissues such as skeletal muscles,
liver, and adipose tissue. With the aid of the glucose clamp technique, a method that allows the
measurement of insulin sensitivity in the skeletal muscle, it has been shown that insulin resistance
can exist decades before the clinical manifestation of type 2 diabetes. Other important pathogenic
factors for the development of type 2 diabetes are insulin secretion defects and β-cell mass loss, which
are also present long before the clinical manifestation of diabetes. This intermediate phase is already
characterized by altered kinetics of insulin secretion (Fig.  2.3 ). In this phase, there is a slower but
prolonged increase in insulin concentration after a glucose stimulus, resulting in hyperinsulinemia
(Schatz  2006 , p. 100).

When standard treatments such as weight loss or anti-diabetic medication fail, T2DM subjects depend
on external insulin administration to compensate for postprandial glucose increases.

Other Types of Diabetes. Other types include endocrine causes such as an excess of hormones
that are counter-regulatory to insulin or inhibit secretion or action; drug-induced hyperglycemia; or
pancreatic diseases. Hyperglycemia can also occur during pregnancy (gestational diabetes) and affects
about 15.8 % of women worldwide (International Diabetes Federation  2019 ).

2.2.2 Characteristics of the Diabetic Metabolism

Food ingestion does not increase insulin levels or decrease glucagon concentrations, therefore, glucose
uptake by the muscles deteriorates and a high amount of glucose remains in the circulatory system
(Gerich, Lorenzi, et al.  1975 ). People with T2DM have elevated fasting glucose levels and excessive
glycemic excursions following carbohydrate intake (Polonsky, Given, Hirsch, et al.  1988 ). The
first-phase insulin response is often absent and the second-phase is diminished. Insulin secretion is
typically decreased and delayed (Dinneen et al.  1992 ). Abnormalities in glucose sensing, insulin
processing, or intracellular signaling can alter insulin secretion. Insulin resistance leads to an impaired
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suppression of endogenous glucose production in the liver, in the basal state as well as postprandial,
and to a reduced glucose uptake in the peripheral tissues.

Glucagon counter-regulation in the case of low or high blood glucose levels is also diminished. In
normal subjects, glucagon is secreted into the blood at glucose values below 70 mg dL−1. In diabetics,
the increase of glucagon secretion in response to low blood glucose levels may occur at significantly
lower values (Schatz  2006 , p. 87), which induces the risk of severe hypoglycemia. In addition,
glucagon secretion cannot be properly inhibited at high postprandial glucose levels (Seino et al.  1978 ;
Shah et al.  2000 ), which leads to failures in suppressing hepatic glucose production and therefore to
a state of hyperglycemia. Missing glucagon suppression can be attributed to the lack of intra-islet
insulin in T1DM. Administration of exogenous insulin rapidly lowers glucagon concentration in
T1DM (Dagogo-Jack et al.  1994 ).

2.3 Glucose Monitoring: Principles and Technology

The overall goal of diabetes management is to achieve a near as possible normal physiology, with-
out causing significant hypoglycemia. In patients whose natural glucose homeostasis is disturbed,
monitoring the blood glucose levels is essential to determine therapeutic interventions.

The concentration of glucose in the blood and glycated hemoglobin (HbA1c) are the most common
measures of glycemia in practice. Blood glucose concentration provides current information reflecting
the daily level of glycemic control, the variation in control, and the direct response to therapeutic
intervention. Glycated hemoglobin provides information on the overall control of glucose levels over
the last 6-8 weeks. That means, it is a kind of long-term average value, in which the intra-patient
measurement variation is no longer relevant. Both, blood glucose and HbA1c, help to identify poor
glycemic control and facilitate the adjustment of therapeutic measures to achieve optimal glucose
levels (Holt et al.  2010 , p. 399). Besides that, continuous glucose sensors have gained increased
attention due to their ability to measure glucose concentrations continuously in quasi-real-time, which
provides new insights into the dynamics of glucose metabolism.

Measurement of glucose levels is usually carried out on either capillary or venous blood samples. The
concentration is expressed in SI (Systeme International) units as millimoles/liter (mmol L−1) or in
milligrams/deciliter (mg dL−1). A range of analytical techniques is used for the laboratory measure-
ment of blood glucose levels. The enzymatic reference method for glucose is the hexokinase/G6PDH
method. Chemical oxidation/reduction methods are less specific, but still valid and are frequently used
because of their convenience and lower cost. Blood glucose self-monitoring (BGSM, also referred
to as self-monitoring blood glucose, SMBG) is possible using capillary blood glucose meters and
is a standard of care for patients with T1DM and necessary for insulin-treated patients with T2DM.
BGSM should be carried out three or more times per day for patients using multiple insulin injections
or an insulin pump (Holt et al.  2010 , pp. 403–405).
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2.3 Glucose Monitoring: Principles and Technology

In accordance with ISO 15197:2013  

2
 (International Organization for Standardization  2013 ), blood

glucose meters must meet the following minimum criteria for acceptable system accuracy:

(a) 95 % of the measured glucose shall fall within a range of ±15 mg dL−1 for glucose concentrations
less than 100 mg dL−1 and within a range of ±15 % for concentrations greater or equal than
100 mg dL−1, compared to reference records,

(b) 99 % of individual glucose measurements must be within zones A and B of the Consensus Error
Grid (CEG) for T1DM (Parkes et al.  2000 ).

The majority of commercially available devices conform to these international standards.

A variety of blood glucose measurement techniques exist and can be generally categorized into

(a) invasive,
(b) minimal-invasive, and
(c) non-invasive

techniques. It is also possible to distinguish between chemical/enzymatic or physical measurement
principles. The first principle is based on a chemical reaction with glucose which varies depending on
the enzymes used (Ferri et al.  2011 ), the method of sample collection, and the measurement location
(inside the body or extra-corporeal). The second principle mostly relies on measuring optical, acoustic,
or electromagnetic effects. In-depth reviews of techniques, sensors, and devices can be found in,
Thomas et al. (e. g.,  2006 ), Chee and Fernando (  2007 ), and Villena Gonzales et al. (  2019 ); their
findings are summarized in the following paragraphs.

Invasive Measurement Techniques. In clinical settings, measurements of blood glucose are
obtained by direct venous access and analysis of the whole blood 

3
 by laboratory instrumentation. The

devices usually combine glucose oxidase technique with an amperometric detection to determine
glucose concentrations. This procedure cannot be fulfilled by the patients themselves without proper
instructions and raises the risk of infection and thrombosis. Thus, it is not suitable for long-term
monitoring outside a hospital. However, as these systems provide the most accurate results, they can
be used as a reference point to evaluate the performance of less exact sensors, e. g., BGSM.

Minimal-invasive Measurement Techniques. Blood glucose self-monitoring is the standard
of care for in-home glucose monitoring for both T1DM and T2DM patients. Although the glucose
concentration is determined from a blood sample and is therefore somewhat invasive, it is here
classified as minimal-invasive. However, the quantity taken is small and can be carried out by most
patients several times a day making it suitable for long-term glucose monitoring.

2In Germany, ISO 15197:2013 is replaced by DIN EN ISO 15197:2015.
3Whole blood refers to the entirety of blood cells suspended in blood plasma.
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(a) Glucose meter, lancet, and test strips
to measure the concentration of blood
glucose taken from the finger pulp.

(b) Continuous glucose sensor, transmitter,
receiver, and injection aid to measure
subcutaneous glucose concentration.

Figure 2.4: Commercially available glucose measurement systems: Contour Next One (Ascensia Diabetes Care,
Basel, Switzerland), ( 2.4a ), Dexcom G5 Mobile (Dexcom, San Diego, CA, USA), ( 2.4b ).

Typically, BGSM requires pricking the finger pulp with a lancet to acquire a drop of capillary blood
(1 µL is often sufficient) that is then applied onto a test strip. Glucose reacts with a special enzyme
directly on the strip, that produces a certain amount of current proportional to the glucose concentration
in the sample. This current can be measured within the device (Fig.  2.4a ). According to various
studies (e. g., Freckmann, Schmid, et al.  2012 ; Freckmann, Baumstark, et al.  2014 ), most glucometers
fulfill the minimum system accuracy requirements of ISO 15197:2013 (International Organization for
Standardization  2013 ). Despite the simple handling and precise measurement results, long-term tissue
damage in the fingers could occur (Holt et al.  2010 , Ch. 38). In addition, measurements are typically
taken a few discrete times a day only, therefore, no information can be obtained about the time course
of glucose concentration between the measurement points.

In recent years, developments have increasingly focused not only on non-invasive measurements alone
but rather on extending them to provide continuous glucose monitoring (CGM). Minimally invasive
sensors adapt the proven chemical principles of invasive blood glucose measurement to continuous
glucose monitoring. The concentration is not measured in the blood but in the interstitial fluid (ISF) of
the subcutaneous fat tissue. Theoretically, such glucose electrodes could also be used to measure the
concentration in blood. In practice, however, this is not possible due to the mechanical and electrical
stability of the sensor and the probability of infections (Thomas et al.  2006 ).

CGM devices consist of three main parts: a sensor that is applied to the skin, a transmitter directly
attached to the sensor to send the measurement data, and a receiver as a user interface (Fig.  2.4b ).
The sensor is a flexible needle, which is injected into the subcutaneous tissue to measure glucose
levels in the ISF. There, the same chemical reaction takes place as with the invasive techniques. The
transmitter is fixed onto the skin and connected to the sensor by a thin wire. It receives the recordings
from the sensor while the receiver processes and displays the measured data. The accuracy of CGM
systems is typically reported as the mean absolute relative difference (MARD) compared to reference
measurements. Acceptable errors for regulatory approval lie between ±20 % over the complete glucose
range, which is much larger than for blood glucose sensors (compare to ISO 15197:2015 on page  13 ),
(Gifford  2013 ).

14



2.3 Glucose Monitoring: Principles and Technology

Table 2.1: Physical methods for minimal-invasive measurement of glucose.

Technique Description Evaluation

Capillary puncture Drop of blood from the fingertip,
chemical evaluation using
glucose-oxidase on test strips

+ Blood glucose
(BGSM) + Precise

− Interdependence with other sugars
− Single-use sensor

Needle-type sensor Flexible needle inserted into
subcutaneous tissue, measurements
using glucose-oxidase within
interstitial fluid

+ Quasi-continuous
(CGM) − Time lag compared to blood glucose

− Daily calibration
− Short product life

Reverse iontophoresis Electric field on skin, fluid probe
transdermal via electrophoresis,
evaluation using glucose-oxidase

+ Non-invasive
− Skin irritation
− Interfering substance

Microdialysis Subcutaneously implanted sensor is
supplied with glucose in a dialysate

+ No contaminant
− Complex setup by clinician
− Sensor size
− Short product life

The main drawback in the use of CGM as a substitute for blood glucose measurement is the physiologic
time lag in the equilibration of glucose concentrations between blood and surrounding tissues due
to diffusion processes (Rebrin, Steil, et al.  1999 ). At equilibrium, the concentration of subcutaneous
glucose correlates with that in plasma. But during transient behavior glucose in the subcutaneous site
is delayed within a range of 3 − 12 min (Keenan et al.  2009 ). In some cases, delays of 45 min have
been reported (Rebrin, Steil, et al.  1999 ). A second issue is the higher measurement error, possible
drift, and degeneration of the sensor signal over time due to inflammatory responses of the body to
the inserted needle within the interstitial fluid. These effects lower the accuracy of the CGM system
which must be, therefore, calibrated against blood glucose values at certain time points, preferably
when the glucose level is relatively stable, and steady-state equilibrium is reached between glucose
concentrations in blood and ISF (Holt et al.  2010 , p. 443).

However, developments over the last years have made considerable improvements (see e. g., Kovatchev,
Gonder-Frederick, et al.  2004 ; W. L. Clarke, Anderson, Farhy, et al.  2005 ; Kovatchev, Anderson, et al.
 2008 ; Freckmann, Pleus, et al.  2013 ; Damiano et al.  2014 ; Freckmann, Link, et al.  2018 ; Boscari et al.
 2018 ) regarding the accuracy of devices, closed-loop approaches using CGM (Hovorka  2006 ; Russell
 2008 ), or algorithms for modeling, simulation, and sensor calibration (Breton and Kovatchev  2008 ;
Facchinetti et al.  2010 ; Acciaroli et al.  2018 ). Also, several randomized studies have shown benefits in
glycemic control (Deiss et al.  2006 ; Laffel  2016 ; Beck et al.  2017 ).

Besides discrete glucose readings in the finger pulp or continuous measurements with a needle-type in
the subcutaneous tissue, several other minimal-invasive techniques exist. This includes, among others,
techniques such as reverse iontophoresis or microdialysis (Table  2.1 ).
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Table 2.2: Physical methods for non-invasive measurement of glucose.

Technique Excitation of tissue using Determination of glucose level from

Absorption spectroscopy Irradiation of infrared light Spectrum of reflected light
Refractometry Irradiation of light Light scattering
Photoacoustic light
spectroscopy

Irradiation of light Sound waves due to periodic expansion of
the skin

Impedance Electromagnetic field Electrical resistance at different frequencies
Fluorescence Irradiation of light Wavelength shift of a fluorescent substance
Polarization Irradiation of polarized light Change of angle of polarization
Raman scattering Irradiation of monochromatic

light
Frequency shift

Non-invasive Measurement Techniques. For patients under daily glucose monitoring, a non-
invasive technique would not only eliminate painful fingertip measurements but also reduce the risk
of infection and tissue damage caused by skin puncture. Most non-invasive techniques use physical
principles that evaluate the interaction of glucose with supplied energy (radiation, heat, electromagnetic
fields, etc.) for measuring concentration and thus, no material samples need to be taken (Table  2.2 ).
New measurement techniques have to be evaluated against the performance achieved with conventional
blood glucose devices, which have become the standard for diabetes therapy. From a metrological
point of view, new systems must meet the following requirements: chemical or physical quantities that
vary with a change in glucose concentration should be only specific to glucose and not to changes in
other substances; readings should change linearly even with small changes in glucose concentration;
accuracy should be within the range of conventional sensors (Thomas et al.  2006 ).

So far, however, no product has been able to enter the market that can compete with the precision of
blood-based monitoring techniques. Research projects such as the Google Lens or a sensor developed
by the Fraunhofer IMT to determine blood glucose levels from tear fluid have been discontinued for
several reasons (Verily Life Sciences LLC  2018-11-16 ; Fraunhofer IMS  2012-09-03 ).

2.4 Diagnostic Tests and Classification of Diabetes

The following paragraphs briefly describe some common test procedures that are applied for the
diagnosis of diabetes or to assess metabolic sensitivity in the human body. These tests provide specific
functions as inputs to a dynamical system, typically step or impulse-shaped, and are accompanied
by measurements of glucose or insulin concentrations, which can be regarded as the outputs of the
system. Since these procedures are clinically relevant, the input and output signals could also serve as
a benchmark in computational experiments or they could be used in a model identification procedure.
However, they are only feasible in a clinical environment and at a considerable expense but they cannot
be used by the patient himself or herself, making them unsuitable in a daily routine.
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Oral Glucose Tolerance Test. The OGTT is a highly standardized clinical test for diagnosing
hyperglycemia. A 75 g glucose bolus is given orally to the patient in a fasting state 

4
 and the rise in

blood glucose concentration is measured at several points of time afterward. Typically, the 2-hour
value is used for the classification of diabetes  

5
 (see Table  2.3 for thresholds). In the normal-glycemic

subject, glucose levels will fall back to their nominal value after a certain time. In diabetic patients,
however, the glucose level remains at a high level for a considerably long period.

Intravenous Glucose Tolerance Test. The IVGTT is, like the OGTT, also used to evaluate the
pancreatic insulin secretion rate. Typically, a glucose bolus of 0.3 g kg−1 body weight is administered
intravenously (i.v.), which causes a peak in insulin concentration. The test indirectly estimates the
β-cell destruction and predicts T1DM (Holt et al.  2010 , p. 145). Assessment of the IVGTT leads to the
development of the so-called minimal model from which insulin sensitivity was estimated (Bergman,
Ider, et al.  1979 ). Its first computational implementation can be found in Pacini and Bergman (  1986 ),
where glucose and insulin concentrations were frequently sampled (frequently sampled intravenous
glucose tolerance test, FSIGT).

Insulin Modified Frequently Sampled Intravenous Glucose Tolerance Test. An extension of
the FSIGT is the IMFSIGT used to increase the dynamics of plasma glucose and insulin in states of
insufficient or absent endogenous insulin secretion. Therefore, in addition to an i.v. glucose bolus, an
exogenously induced insulin peak by i.v. injection of insulin is introduced 20 min after the glucose
bolus. The test allows for investigating the natural pancreatic response to a glucose impulse while
neglecting the gastrointestinal tract. And second, to analyze pancreatic counter-reaction to a sudden
drop in glucose concentration which should reduce insulin secretion rates. The test is becoming the
recommended protocol to estimate insulin sensitivity within a wide variety of situations.

Insulin Infusion Test. The IIT is undertaken to examine the counter-regulation mechanisms of
insulin-induced hypoglycemia. In contrast to the intravenous insulin tolerance test (IVITT), where a
high insulin bolus is injected one-time, the continuous infusion of physiologic doses of insulin leads
to a sustained, physiologic elevation of insulin concentrations and enables the investigation of changes
in glucose kinetics and secretion of counter-regulatory hormones.

Hyperglycemic Clamp Test. The hyperglycemic clamp test is used to determine the release of
insulin from the β-cells in response to a glucose concentration in plasma that is fixed and maintained
at a hyperglycemic plateau for several hours. Therefore, glucose is given intravenously and its rate
is adapted to compensate for increasing insulin release (DeFronzo et al.  1979 ). Through that, the

4Fasting is defined as no caloric intake for at least 8 h (International Diabetes Federation  2019 , p. 12).
5The 2-hour postprandial glucose test should be performed using a glucose load containing the equivalent of 75 g anhydrous

glucose dissolved in water (International Diabetes Federation  2019 , p. 12).
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Table 2.3: Recommended criteria for the diagnosis of diabetes and intermediate hyperglycemia (International
Diabetes Federation  2019 , p. 12).

Diabetes Impaired glucose tolerance Impaired fasting glucose

Fasting plasma glucose ≥ 126 mg dL−1 < 126 mg dL−1 110 to 125 mg dL−1

or and and if measured
2-hour plasma glucose ≥ 200 mg dL−1 140 to 200 mg dL−1 < 140 mg dL−1

or
HbA1c ≥ 6.5 %

or
Random glucose value > 200 mg dL−1

biphasic insulin release becomes apparent. The first-phase is characterized by an acute increase in
insulin release, followed by a slowly increasing second phase of a more sustainable insulin release
(Holt et al.  2010 , p. 163).

Euglycemic Hyperinsulinemic Glucose Clamp Test. This clamp test is the highest standard
for determining insulin sensitivity. In this procedure an i.v. insulin bolus is administered and glucose
is then infused to maintain euglycemia (Schatz  2006 ). From the glucose infusion rate, the insulin
sensitivity is then calculated. The amount of given i.v. glucose corresponds to the amount of
metabolized glucose by the body. The higher the intake of glucose while keeping the insulin infusion
rate constant, the higher the sensitivity of the cells (DeFronzo et al.  1979 ).

Diagnosis. Diabetes is diagnosed by identifying chronic hyperglycemia. As described in Sec-
tion  2.2.1 , a lack of insulin, or the inability of cells to properly respond to it, leads to a high level of
blood glucose (hyperglycemia), which is a clinical indicator of diabetes. Besides the main classifica-
tion into type 1 and type 2 diabetes (Section  2.2 ), some risk factors such as impaired glucose tolerance
(IGT) 

6
 or impaired fasting glucose (IFG)  

7
 were introduced since they are markers for an increased risk

of developing diabetes. These factors became known as “intermediate hyperglycemia.” Typically, the
glucose concentration is determined when the patient is fasting or two hours after an OGTT (World
Health Organization  2006 ). The threshold levels diagnosing diabetes and its risk factors are shown in
Table  2.3 .

2.5 Treatment of Diabetes

All forms of diabetes have in common that blood glucose levels cannot be lowered like in metabolically
healthy people. Either because the pancreas is no longer able to produce insulin or because the body

6Postprandial glucose level is higher than normal but below the diagnostic cutoff.
7Fasting plasma glucose is above normal but below diagnostic criteria.
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Figure 2.5: Time-action profiles of different insulin formulations (adapted from Holt et al. ( 2010 , p. 430)).

cells have become insensitive to it. Insulin therapy attempts to compensate for this deficiency with
artificially supplied insulin. While this is currently the only treatment option for T1DM, the therapy
for people with type 2 diabetes is typically indicated when the blood glucose concentration does not
reach the desired level despite a change in lifestyle and medication (e. g., oral anti-diabetics).

Insulin therapy aims to mimic physiological insulin secretion as far as possible by using both slow-
acting insulin (basal) supplements to provide background control between meals, and rapid-acting
insulin (bolus) which is given at mealtimes to compensate for postprandial glucose rises. This can be
seen in the time-action profiles for different insulin formulations in Fig.  2.5 . Exogenous insulin can be
given through different routes:

subcutaneous (s.c.)
intravenous (i.v.)
intraperitoneal (i.p.)
intramuscular (i.m.)
non-invasive routes, e. g., oral or nasal.

The preferred administration of insulin by patients is via subcutaneous injection, from where it diffuses
into the circulatory system. This route is different from the way insulin is normally secreted by the
pancreas and causes a time lag between injection and the effect of insulin on metabolic processes.
The mechanisms of the absorption process are still not known exactly and are influenced by many
variables. Besides the known differences in timing between different insulin preparations (rapid-acting,
long-acting, etc.), the size of the dosage, the injected volume, and the insulin concentration are
determinants of absorption speed (Binder et al.  1984 ; Chee and Fernando  2007 , pp. 45–46). Fast and
rapid-acting insulin analogs typically exhibit an onset of action in less than 30 min after s.c. injection
(Schatz  2006 , p. 174). Insulin amounts are typically expressed in “I.U.” (International Unit, in short,
“U”), where 1 U contains 34.7 µg of insulin (Dt. Apotheker-Verl.  2014 , insulin, human).
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(a) Pen with exchangeable cartridge for
manual insulin injection 

a
 .

a
 https://de.wikipedia.org/wiki/
Pen_(Spritze) 

(b) Pump for automatic insulin delivery 

a
 .

a
 https://de.wikipedia.org/wiki/
Insulinpumpe 

Figure 2.6: Commercially available pen NovoPen3 (Novo Nordisk, Bagsværd, Denmark) and pump Paradigm
511 (Medtronic Minimed, Northridge, CA, USA) for exogenous administration of insulin.

T1DM-Treatment. The following insulin treatment regimens are common, depending on the
progress of the disorder and personal needs:

Conventional insulin therapy (CT) is a treatment form easier to apply. Mostly, a combination
of fast-acting and slow-acting insulin is injected a limited number of times a day by a pen
(Fig.  2.6a ). The amount and time of meals are fixed to the patient’s needs. Due to the inflexible
handling, nowadays it is only rarely used and if so only for specific groups. An advantage of this
method, however, is, that a close-meshed blood glucose self-monitoring system is not necessary.
Intensified conventional therapy (ICT, also called “basal-bolus-principle”) is the standard therapy
for type 1 diabetes. The goal of this approach is to keep the metabolic regulation close to normal.
In order to carry out an intensified conventional insulin therapy, the patient must reliably manage
blood glucose levels and insulin application, also using a pen. BGSM is an essential component
of the ICT since only with knowledge of the current glucose value an insulin dose adjustment
can be made. The patient’s basal insulin requirement during fasting is achieved by injection of a
long-acting insulin analog 1 or 2 times a day. At mealtimes, patients inject a suitable amount
of a short-acting insulin analog. This so-called bolus insulin is calculated on the basis of the
current blood glucose level, target range, and planned carbohydrate intake.
Insulin pump therapy (CSII, continuous subcutaneous insulin infusion) is based on a continuous
infusion of rapid-acting insulin into the subcutaneous tissue via a pump (Fig.  2.6b ). Basal
insulin requirements are programmed according to an individual injection profile. Insulin
given at mealtime is manually applied as a bolus (like in the ICT). This therapy form is the
most flexible since patients can adjust their basal rate and bolus according to their needs. It
is technically complex and requires good self-assessment training and frequent blood glucose
records. One extension to overcome the latter is continuous glucose measuring (CGM), where
glucose concentration in the interstitial fluid is measured with a comparably high sampling rate.
A connection between continuous glucose monitoring and continuous insulin delivery could be
a step toward developing an artificial pancreas (Cobelli, Dalla Man, et al.  2009 ).
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2.5 Treatment of Diabetes
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Figure 2.7: Scheme of a closed-loop approach: An artificial pancreas combines glucose sensor, insulin pump,
and an algorithm to control the patient’s metabolism.

T2DM-Treatment. In T2DM patients, the insulin treatment is, in principle, the same, even though
the pancreas may be able to produce some insulin. Additional delivery of exogenous insulin can be
used to control blood glucose levels. Several insulin regimens are available for patients who may
already be treated with non-insulin-based therapies. These include once-daily injections of long-acting
insulin, once-daily injections of long-acting insulin together with an injection of short-acting insulin
with the main meal, twice-daily injections of insulin mixtures, or multiple-dose injections.

Closed-loop Control. The aforementioned glucose monitoring and insulin regimen can be seen as
the open-loop in a control scheme (lower part in Fig.  2.7 ), in which the patient acts as the controller
and makes decisions about when to measure glucose levels and how to interpret and react to that
information. A closed-loop system integrates a continuous glucose monitor and an insulin pump,
together with an algorithm that is capable of automatically adjusting insulin delivery in a physiological
way as a replacement for the pancreas (“artificial pancreas”, AP), see e. g. Hovorka, Chassin, Wilinska,
et al. ( 2004 ), Bequette ( 2005 ), and Hovorka ( 2006 ).

Continuous glucose sensors measure glucose levels in the subcutaneous tissue. In the last years,
considerable improvements have been made (Christiansen, Bailey, et al.  2013 ; Freckmann, Link, et al.
 2018 ), but the main disadvantage remains sensor degeneration over time, so they have to be calibrated
at certain time points (Acciaroli et al.  2018 ). Another drawback is the inherent physiological time lag
between the concentration in blood and the subcutaneous space (Rebrin, Steil, et al.  1999 ).

Insulin pumps consist of an insulin reservoir and a catheter to continuously administer small amounts
of insulin into the subcutaneous tissue. They have been shown to reduce the risk of hypoglycemia and
intensify glycemic control (Pickup et al.  2002 ; Holt et al.  2010 , pp. 440–442).

Control algorithms would remove the patient from the decision loop. The inputs to the controller are
mainly current and target glucose levels. The output is the required amount of insulin. First algorithms
were designed to turn off insulin delivery to prevent hypoglycemia (Marchetti et al.  2008 ; Buckingham
et al.  2009 ). Modern approaches often use mathematical models (Oviedo et al.  2017 ) for controller
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design or to estimate the “metabolic state” of the patient (e. g., Parker et al.  1999 ; Hajizadeh et al.
 2017 ) and apply model predictive control (MPC) to determine insulin amounts (Lynch et al.  2002 ;
Hovorka, Canonico, et al.  2004 ; Chee and Fernando  2007 ; K. Lunze et al.  2013 ; Messori et al.  2018 ).
Control approaches may benefit from personalized blood glucose prediction strategies as investigated
in this work (Chapter  6 ). Additionally, bi-hormonal closed-loop systems deliver both insulin and
glucagon for glucose control (El-Khatib, Jiang, and Damiano  2009 ; El-Khatib, Russell, et al.  2010 ).

Clinical trials are limited in number, have to follow strict ethical guidelines, and must ensure permanent
monitoring of patients (Chee, Fernando, and van Heerden  2003 ; W. L. Clarke, Anderson, Breton, et al.

 2009 ; Elleri et al.  2011 ; Russell et al.  2016 ). To overcome these restrictions, the performance of a
closed-loop system is often evaluated in virtual clinical studies, so-called in-silico trials (L. Magni
et al.  2007 ; Kovatchev, Raimondo, et al.  2008 ; Messori et al.  2018 ). Animal studies are an alternative,
e. g., in diabetic swine (El-Khatib, Jiang, and Damiano  2007 ; K. Lunze  2014 ). For many diabetics,
however, technological developments are not accessible. Slow commercialization, overpricing, or lack
of interoperability are only a few factors that have led to the emergence of do-it-yourself AP solutions
with openly shared algorithms (Asarani et al.  2020 ; Kesavadev et al.  2020 ).

2.6 Glucose Monitoring as an Integral Part of Diabetes

Self-Management

Besides proper patient training, the prognosis of diabetes relies to a large extent on the attitudes and
behavior of the patient’s self-care. Modern treatment concepts are committed to self-management and
empowerment approaches. The aim is to enable patients to cope with the disease-specific requirements
and integrate them into their daily lifestyle. The major interest is adequate glucose control which may
result in the reduction of hypoglycemia and other complications associated with diabetes. Insulin
treatment decisions are mainly made on the basis of the patient’s current blood glucose levels and self-
assessment. Technological advances in continuous glucose monitoring and continuous subcutaneous
insulin infusion may contribute to safer and improved therapy management (Georga et al.  2014 ).

While it was common practice to note down blood glucose values by hand, together with meals and
insulin administrations, to derive recommendations for treatment in consultation with a physician, now,
electronic and mobile solutions are the standard today – especially for younger and technologically
interested patients. Various concepts and (mobile) applications (mHealth) exist to track glucose
measurements, medication, and diet. Especially with the introduction of continuous glucose meters, it
has become possible to effectively record glucose time courses, which enables immediate treatment
decisions. Nevertheless, collecting and processing measurements is only one part of the process.
Another critical part involves delivering the collected data to specialists or caregivers in charge
(Lanzola et al.  2016 ). Finally, it is crucial to support the patient in the decision-making process. This
can be achieved by e. g., a warning system for out-of-range glucose levels or advice on calculating the
proper amount of insulin depending on diet and physical activity.
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3.1 Modeling Glucose Regulation

Over the past four decades, numerous models describing glucose regulation in humans have been
developed. They can be roughly classified into physiological models (or knowledge-based) and
empirical models (also called data-driven).

Physiological approaches try to model and identify the underlying biomedical processes that are
involved in glucose metabolism. They require detailed a priori knowledge about physiology, acquired
in clinical trials. They are mainly used for simulation studies, e. g., to predict blood glucose or the
concentration of other substances in a kind of “virtual experiment.” Typically, these models are
structured into further sub-models, which in turn describe certain aspects of physiology. This can be,
e. g., the digestion of ingested carbohydrates, the distribution of subcutaneously administered insulin,
or parts related to physical activity. The major limitation of this approach is the large number of
physiological parameters that have to be determined by measurements and identification procedures.

Data-driven models rely only on the input-output data without considering any physiological know-
ledge. These approaches have attracted increasing attention since the introduction of subcutaneous
glucose sensors has made continuous measurement data available for the first time. Information con-
tained in CGM measurements, insulin treatment data, or food content are typical inputs to data-driven
models, supported by machine learning techniques like time series models, fuzzy logic, Gaussian
mixture models, support vector machines, or artificial neuronal nets. The output is often the blood
glucose concentration. Models of this type are usually simply structured and can be therefore identified
in a short time with only a few parameters describing the major behavior. However, these approaches
cannot provide any insights into physiology or relate specific outcomes to tissues or organs.

A combination of knowledge-based and data-driven approaches are hybrid models that rely on
physiological descriptions of parts of the whole system as well as on learning input-output relationships
to predict blood glucose values. Typically, models of meal and insulin absorption are physiologically
motivated as they enrich the overall prediction accuracy of the data approach (Oviedo et al.  2017 ).

In the following, only physiological models are further examined. Comprehensive overviews on recent
developments for data-driven modeling approaches can be found in, e. g., Cobelli, Dalla Man, et al.
( 2009 ), Balakrishnan, Rangaiah, et al. ( 2011 ), Marmarelis ( 2014 ), and Oviedo et al. ( 2017 ).
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Figure 3.1: A general compartment, i, its input and output fluxes, and measurement of concentration.

Physiological models are typically described by a set of interconnected compartments. A compartment
is a quantity of material assumed to be well-mixed, i. e., no concentration gradient, and kinetically
homogeneous. Interconnections between compartments represent material fluxes from one location in
the body to another or a chemical transformation (Carson et al.  2014 ). This technique is widely used
in pharmacokinetics to describe the overall processes a drug undergoes in the body. A general repre-
sentation is shown in Fig.  3.1 , where Qi denotes the mass and Vi the volume of the i-th compartment
in an n-compartment model.

Arrows represent fluxes into and out of the compartment, where Pi is the endogenous production and
Ui an exogenous input, Fi j and F ji denote fluxes from or to other compartments, respectively, and Foi

is the flux to the environment and thus, out of the system. In general, the mass balance equation for
each compartment can be written as

Q̇i =

n∑
j=1
i, j

Fi j(t) −
n∑

j=1
i, j

F ji(t) − Foi(t) + Pi(t) + Ui(t), i = 1 . . . n. (3.1)

For linear relationships in Fi j(t) equation ( 3.1 ) can be rewritten to

Q̇i =

n∑
j=1
i, j

ki jQ j(t) −
n∑

j=1
i, j

k jiQi(t) − koiQi(t) + Pi(t) + Ui(t), i = 1 . . . n, (3.2)

where ki j and k ji are constant transfer coefficients expressing a chain of first-order lag elements. The
coefficients can also be functions of any Q, which allows control of the fluxes by other compartments,
e. g., by Michaelis-Menten kinetics.

If a compartment is accessible to measurements, the concentration Ci is expressed by

Ci =
Qi

Vi
. (3.3)

Physiological modeling tries to find the most parsimonious model approach that is able to describe
experimental findings. Therefore, data from clinical trials using standardized tests are fulfilled as
described in Section  2.4 . From that, concentrations of desired substances are measured. The next
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step is to identify successively models and verify whether they can describe the measurement series
well enough, beginning with the most parsimonious approach, e. g., one compartment, linear, and
time-invariant. If the model is not suitable, a different or more complex modeling approach must
be chosen, involving more physiological knowledge. Each of the system models is then tested for
parameter identifiability and is subsequently numerically identified from experimental data. This
concept has been applied in many different studies, e. g., starting with glucose and insulin regulation
after intravenous glucose injection (Bolie  1961 ; Bergman, Phillips, et al.  1981 ; Toffolo and Cobelli
 2003 ), oral glucose tolerance tests (Ackerman et al.  1964 ; Cretti et al.  2001 ; Natalucci et al.  2003 ),
meal intake (Worthington  1997 ; Dalla Man, Caumo, et al.  2002 ), the kinetics of insulin (Sherwin et al.
 1974 ; Toffolo, Bergman, et al.  1980 ) or glucagon (Lv et al.  2013 ; Emami et al.  2017 ), or subcutaneous
administration of insulin (Nucci et al.  2000 ; Wong et al.  2008 ).

The so-called minimal models represent the key physiological components of a system making
suitable assumptions and simplifications about the behavior on a larger scale. A low model order
with only a few parameters to estimate from experimental data allows the quantification of specific
metabolic relationships. In contrast, maximal models are built attempting to represent a comprehensive
description of the metabolic regulation in detail leading to high-order, nonlinear models with often
larger numbers of parameters. These models are, in general, not identifiable from a single experimental
trial, but useful for simulations, also called in silico trials. Large-scale models can serve as a substitute
for clinical studies, as it is often not possible, convenient, or appropriate to perform experiments in

vivo. A good illustration of the application of the models is, for example, the assessment of new insulin
treatment methods or the design and testing of closed-loop control algorithms (e. g., J. T. Sorensen
 1985 ; Andreassen et al.  1994 ; Hovorka, Canonico, et al.  2004 ).

The structure and parameters of minimal models are typically determined by measurement data
obtained in clinical trials following a predefined experimental design. Thus, these models, and also
the conclusions drawn by them, are only valid for this particular kind of investigation. For example, a
minimal model derived from an IVGTT can have another topology and altered parameter values than a
model derived from an OGTT or meal input because the gastrointestinal tract and meal compositions
must be considered. Maximal models, on the other hand, usually represent only averages of the
population. Statements for a single individual are difficult.

Besides that, several studies can be found in the literature, that aim at predicting blood glucose from
which some are extensions of the classic minimal model and some propose other modeling approaches
(Table  3.1 ). Widely used models are the (extended) Bergman’s minimal model (Bergman, Phillips,
et al.  1981 ) and the model from Hovorka, Chassin, Wilinska, et al. ( 2004 ), which is common in model
predictive control (MPC). Furthermore, the UVA/Padova working group offers a meal simulation
model as a toolbox (Dalla Man, Raimondo, et al.  2007 ; Dalla Man, Micheletto, et al.  2014 ), so it is
easy to implement for simulation studies and controller design. J. T. Sorensen ( 1985 ) developed a
full-body model that comprises glucose, insulin, and glucagon regulation. A comprehensive collection
of prediction strategies for type 1 diabetics is given in, e. g., Balakrishnan, Rangaiah, et al. (  2011 ).
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Table 3.1: Selection of physiological-based modeling approaches to predict glucose metabolism.

Reference Model type

Bergman, Ider, et al. ( 1979 ) Classic minimal model
J. T. Sorensen ( 1985 ) Full body physiological model for T1DM
Fisher ( 1991 ) Minimal model for T1DM
Lehmann et al. ( 1992 ) Glucose and insulin regulation in T1DM for education
Caumo and Cobelli ( 1993 ) New minimal model using IVGTT data
Balakrishnan, Samavedham, et al. ( 2014 ) Personalized hybrid model for T1DM
Wilinska et al. ( 2010 ) Simulation environment of closed-loop insulin delivery

systems for T1DM
Hovorka, Canonico, et al. ( 2004 ) Nonlinear model for T1DM used in MPC design
Eberle et al. ( 2012b ) Extended Bergman model
Dalla Man, Rizza, et al. ( 2007 ) Meal simulation model for TNDM and T2DM
Dalla Man, Micheletto, et al. ( 2014 ) UVA/Padova T1DM Simulator
Zavitsanou ( 2014 ) Framework for blood glucose control and optimization

The following paragraphs briefly describe some advancements in model building related to glucose-
insulin-glucagon metabolism.

Insulin Secretion and Kinetics. Insulin is the only glucose-lowering hormone. It stimulates
glucose uptake in the peripheral tissues and inhibits glucose production in the liver. From clinical
trials, insulin secretion in the pancreas is assumed to be biphasic, with a short first phase lasting about
5 min and a following prolonged second phase. In Toffolo, Bergman, et al. (  1980 ), several models
have been identified to quantitatively estimate β-cell sensitivity to glucose in healthy organisms. There,
the superior model describes insulin secretion by a linear function of time and by the difference in
glucose levels relative to a threshold value. This approach has also been used in Bergman’s minimal
model (Bergman, Phillips, et al.  1981 ).

Insulin is secreted into the portal vein and enters the liver, where approx. 50 % of the total amount is
extracted. Thus, modeling insulin secretion must consider this effect. The problem can be assessed by
measuring C-peptide concentrations from which insulin levels can be estimated (Eaton et al.  1980 ).
Modeling pancreatic secretion must take into account C-peptide kinetics and the biphasic pattern
(Ferrannini and Cobelli  1987b ; Toffolo, Grandi, et al.  1995 ) as depicted in Fig.  3.2 . There, the insulin
secretion rate (ISR) is modeled by a combination of a fast insulin release from a pool F, which depends
on the rate of increase of glucose, and a delayed second phase, which depends on the difference
between current glucose levels and a threshold. The model was originally identified using an IVGTT
and modified to match insulin kinetics after an OGTT or meal (Breda et al.  2001 ) since oral glucose
absorption is slower due to digestion processes. The insulin secretion model was further refined using
an up-and-down glucose infusion test (Toffolo, Breda, et al.  2001 ).

Insulin kinetics have been described by a multi-compartment approach, taking into account insulin
concentrations in the liver, plasma, and extra-cellular space. From that, estimates of the hepatic
extraction are possible (Sherwin et al.  1974 ; Ferrannini and Cobelli  1987b ; Piccinini et al.  2016 ).

26



3.1 Modeling Glucose Regulation

k01

ISR
C-peptide 1

k21

β-cell

C-peptide 2
k12

F

1st phase

Delay T
2nd phase

∆Glucose

Rate of increase
of glucose

Figure 3.2: IVGTT C-peptide insulin secretion minimal model (adapted from Toffolo, Grandi, et al. ( 1995 )).

Glucose Kinetics. In diabetic subjects, the ability to properly react to an elevated glucose concen-
tration is impaired due to reduced insulin sensitivity. To quantify this influence, extensive experiments
had to be carried out to observe interactions of glucose and insulin under varying situations using
clamp techniques or tracers (Sherwin et al.  1974 ; Insel et al.  1975 ). These tests are invasive and
not applicable to patients in a clinical routine. Thus, one aim in developing minimal models was to
estimate insulin sensitivity from only a few samples of glucose and insulin after a system perturbation.
Therefore, applying a mathematical model would be less invasive than other methods.

In one of the first works on the balance of glucose and insulin during glucose injection, a linearized
model was used to numerically determine the coefficients of glucose regulation in normal subjects
from experimental data (Bolie  1961 ). The linear relationship between glucose and insulin is given by

Ġ(t) = −p1G(t) − p2I(t) + uiv
G(t), (3.4)

İ(t) = −p3I(t) + p4G(t), (3.5)

where G(t) and I(t) denote deviations of glucose and insulin concentrations from their basal values,
uiv

G(t) is the intravenous glucose injection, and parameters p1, . . . , p4 define rate constants that were
determined experimentally. It can be seen that glucose disappearance is proportional to both G(t) and
I(t) and that insulin secretion is stimulated by glucose and inhibited by insulin levels. The model
covers the main assumptions about glucose-insulin regulation. It was uniquely identifiable but too
simplistic to adequately represent the nonlinear interactions of hepatic glucose production and uptake
by glucose and insulin. Nevertheless, the model has been widely used in conjunction with intravenous
injections (Segre et al.  1973 ) and with oral glucose tests (Ackerman et al.  1964 ) in different metabolic
situations.

Bergman, Ider, et al. (  1979 ) first described a nonlinear mathematical model able to estimate the time
course of glucose and insulin sensitivity from a single glucose injection using system decomposition
(Bergman and Cobelli  1980 ). Model-based system decomposition enables to modeling different
subsystems independently from each other by using measurements of glucose and insulin as input and
output to a subsystem, and vice versa for another subsystem, thus reducing difficulties in modeling.

27



3 State-of-the-Art

I′

k4

k3

k5

k2

GLiver Periphery
k1

k6

I

IVGTT

Figure 3.3: IVGTT minimal model consisting of accessible compartments of glucose and insulin, G respectively
I, and a remote insulin pool I′ (adapted from Bergman, Ider, et al. (  1979 )). Solid and dashed lines
denote fluxes and control signals, respectively.

The model consists of three compartments, one each for glucose and insulin in plasma and one for
remote insulin, i. e., for the first time considering that insulin action on glucose does not occur in
plasma but in a compartment remote from it. That was experimentally proven to be the interstitial
fluid (Bergman  1989 ). From the mass balance (Fig.  3.3 ), the following equations can be derived:

Ġ(t) = −(k1 + k5)G(t) − (k4 + k6)I′(t)G(t) + B0 + uiv
G(t) G(0) = Gb, (3.6)

İ′(t) = −k3I′(t) + k2(I(t) − Ib) I′(0) = 0, (3.7)

where G(t) and I(t) denote the concentrations of glucose and insulin in plasma, respectively, Gb and Ib

are their basal values, and I′(t) is the insulin concentration (deviation from basal) remote from plasma.
Parameters k1, . . . , k6 are constants and B0 is the net hepatic glucose balance at zero glucose. The
rate of change of glucose depends on the net hepatic glucose balance (Bergman and Bucolo  1974 )
and the glucose uptake by peripheral tissues, both directly dependent on the concentration of insulin
in I′(t), that enters the remote compartment from plasma. This model was only identifiable after a
reparametrization with X(t) = (k4 + k6)I′(t), p1 = k1 + k5, p2 = k3, p3 = k2(k4 + k6) leading to the
form given by Eqs. ( 3.8 ) and ( 3.9 ).

Taking into account a minimal model of insulin kinetics leads to the common representation:

Ġ(t) = − (p1 + X) G(t) + p1Gb + uiv
G(t) G(0) = Gb, (3.8)

Ẋ(t) = −p2X(t) + p3(I(t) − Ib) X(0) = 0, (3.9)

İ(t) = −n(I(t) − Ib) +max
[
0, γ(G(t) − h)t

]
, t ≥ t0 I(0) = Ib, (3.10)

(Bergman, Phillips, et al.  1981 ), where G(t), I(t), Gb, and Ib are as defined above. State X(t) is the
insulin action on glucose. The increase of insulin is proportional to the degree of glucose exceeding
the threshold h, and n is the time constant for insulin disappearance.

Fisher (  1991 ) modified Bergman’s model to also handle diabetic subjects by replacing the natural
pancreatic secretion rate with an intravenous insulin infusion.
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All approaches are based on the intravenous injection of glucose or insulin, i. e., the substances are
immediately apparent in the blood. Other physiological modeling approaches depend on the oral
administration of glucose and must therefore take into account its delayed appearance in the blood.
Oral minimal models couple the minimal model from ( 3.8 )-( 3.10 ) with a description of the rate of
appearance of glucose RG (Caumo, Bergman, et al.  2000 ). RG can be determined by either a piecewise
linear function or by measuring labeled glucose (allowing to distinguish between exogenous and
endogenous glucose (R. Basu et al.  2003 )) and estimate RG from that (Dalla Man, Caumo, et al.
 2002 ; Dalla Man  2005b ). Validation of the oral minimal model (OMM) was fulfilled using a tracer
protocol (R. Basu et al.  2003 ) or clamp-technique (DeFronzo et al.  1979 ; Dalla Man  2005a ). From
these insights, a system model of oral glucose absorption could be derived (Dalla Man, Camilleri,
et al.  2006 ; Dalla Man, Rizza, et al.  2006 ). Furthermore, labeled glucose absorption models allow the
assessment of time courses of endogenous glucose production (EGP) in the liver 

1
 (Dalla Man, Toffolo,

et al.  2008 ), which is essential in maintaining blood glucose concentration in the absence of meals.

Glucagon Secretion and Kinetics. Glucagon, also secreted from the pancreas, is the counter-
regulating hormone to insulin and has a major role in maintaining glucose concentration during fasting
by stimulating hepatic glucose production. After an increased focus on glucagon-related clinical
trials (Gerich, Lorenzi, et al.  1975 ; Cherrington et al.  1976 ; Unger and Orci  1976 ), the first models
of glucagon secretion in healthy and diabetic subjects have been proposed, differing in the input
signals (oral glucose administration or insulin infusion). Model simulations suggested that glucagon
is important under conditions when blood glucose levels are lower than 50 mg dL−1 and that it is
responsible for a rapid recovery from hypoglycemia (Celeste et al.  1978 ). J. T. Sorensen ( 1985 )
presented a full-body model also incorporating glucagon kinetics and verification with data from
the literature. Many clinical studies have investigated glucagon in various scenarios like in a fasting
state, under hypoglycemia, or during glucose intake (Saccà et al.  1979 ; Meier, Kjems, et al.  2006 ;
Aronoff et al.  2004 ; Gylfe et al.  2014 ). Dobbins et al. ( 1995 ) proposed a one-compartment linear
model to describe glucagon kinetics in plasma and Farhy et al. (  2010 ) developed a pulsatile model
of glucagon secretion that is consistent with most in vivo experimental data for the insulin-deficient
pancreas. Another point to consider is the glucagon action on hepatic glucose production. Several
mathematical models for type 1 diabetics have been compared that try to predict this effect from
experimental data using multiple subcutaneous glucagon boluses (Emami et al.  2017 ). A model of
glucagon secretion proposed in Dalla Man, Micheletto, et al. ( 2014 ) is also stated in Visentin et al.
( 2018 ) and Breton, Kovatchev, et al. ( 2015 ) using different notations, but no further reference is
given. Their model is based on a similar approach to that of insulin secretion. It describes glucagon
appearance in plasma by one component proportional to the rate of decrease of glucose concentration
in blood and by one component considering the difference of glucose levels to a threshold value.
Regardless, glucagon regulation and its interaction with other hormones is still not well understood
and only a few mathematical models exist.

1Both terms, hepatic and endogenous glucose production are used interchangeably.
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Figure 3.4: Example of a two-compartment model of insulin diffusion within the subcutaneous space.

Subcutaneous Space. Insulin treatment is essential for diabetics to maintain their glucose regula-
tion and thus, to avoid both, long-term hyperglycemia and the risk of hypoglycemia. Since insulin
is mainly administered through the subcutaneous space, understanding how insulin is absorbed and
enters the circulatory system can significantly improve the treatment regimen. The absorption and
distribution processes are subject to many influential factors like different preparations and dose
sizes, blood flow, or the injection site and depth (Binder  1969 ; Lepore et al.  2000 ). The first works
stated that insulin diffusion and absorption can not be described by only a first-order system and that
absorption curves highly depend on the volume and concentration of the given insulin (Mosekilde
et al.  1989 ). Over time, different models have been proposed, from one-compartment models to
distributed-parameter specifications and empirical descriptions (Kobayashi et al.  1983 ; Kraegen et al.

 1984 ; Nucci et al.  2000 ; Wong et al.  2008 ). An example of a two-compartment model describing
insulin injection and the dissolution of nonmonomeric (ISc,1) and monomeric (ISc,2) components into
the blood plasma is shown in Fig.  3.4 , where parameters ka1, ka2, and kd are rate constants.

In recent years, subcutaneous glucagon administration has gained increased attention, due to its feasible
application in a bihormonal closed-loop trial (El-Khatib, Jiang, and Damiano  2007 ; El-Khatib, Jiang,
and Damiano  2009 ). Pharmacodynamics of subcutaneously infused glucagon has been investigated
by, e. g., El-Khatib, Jiang, Gerrity, et al. (  2007 ) and Blauw et al. (  2016 ). Furthermore, different model
structures describing glucagon absorption have been compared (Lv et al.  2013 ), most similar to those
applied for insulin administration.

With the development of CGM devices, it became possible to observe the time course of glucose with
a comparatively high temporal resolution. However, since these measurements are no longer made
in the plasma but in the surrounding subcutaneous interstitial fluid (ISF), detailed knowledge of the
distribution of glucose, from plasma into the periphery, is necessary to interpret the measured data
correctly (Kovatchev, W. L. Clarke, et al.  2005 ). Clinical trials show improved glycemic control using
CGM (Deiss et al.  2006 ; Girardin et al.  2009 ; Beck et al.  2017 ). First depicted by Rebrin, Steil, et al.
( 1999 ) and Rebrin and Steil (  2000 ), CGM takes place in the ISF between the capillary blood system
and glucose-consuming tissues like muscles and fat. Thus, ISF glucose concentration equilibrates
with a time lag due to diffusion processes from one tissue to another. This model approach has been
under discussion but is widely accepted (Kovatchev, King, et al.  2006 ; Keenan et al.  2009 ; Cobelli,
Schiavon, et al.  2016 ). Due to the physiological time lag, continuous measurements are more difficult
to interpret, especially at large glucose gradients. Hence, new statistical tools and analytical methods
must be developed (W. L. Clarke and Kovatchev  2009 ).
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3.2 Sensitivity Analysis

Sensitivity analysis (SA) can be used to systematically investigate a model response to a perturbation
of its input factors, which can be related to the model’s inputs and also its parameters.

While technical systems can be disassembled to a certain extent to investigate components in detail,
this is not easily possible in biology or systems medicine. Measuring in vivo is associated with
high effort and parameter values are estimated from experimental data by model fitting. In addition
to measurement errors, a high number of unknown influential variables also leads to considerable
uncertainty regarding system understanding. For a successful application of models, however, detailed
knowledge about model parameters and their influence on the model output is crucial (Saltelli,
Tarantola, and Campolongo  2000 ). SA provides a possible method to quantify the influence of input
factors on the model behavior. It is widely used in technical applications, but its popularity is also
growing in biology, systems medicine, and environmental sciences.

Depending on the specific objective and application area, the methods vary considerably. One
can distinguish between different types of sensitivity analysis. For example, local and global SA,
quantitative vs. qualitative examination, or how samples of input factors are generated. Local methods
take into account the deflection of one factor at a time around a nominal value set. In contrast, global
methods allow the variation of all input factors at a time over the full input space using a suitable
sampling scheme. A methodological overview is given by Saltelli, K. Chan, et al. ( 2000 ).

For models with complex input-output behavior, sensitivity indices cannot be calculated analytically.
Thus, they are approximated by samples of input factors and the related model outcome. The sampling
strategy determines how concrete values of the input factors are determined from the input space. It
also specifies whether only one parameter or all parameters are varied simultaneously at a time. With
the latter, statements about interacting factors are also possible. However, this typically leads to more
model evaluations that must be carried out and therefore to a higher computational effort.

All methods have in common that the model output must be summarized to a single scalar quantity.
This can be the maximum value of a concentration or the error between simulation and experimental
data. Often, however, it is necessary to explicitly take into account progressions over time. How to
extend existing techniques is explained in more detail in Section  5.1.3 .

There are only limited studies about sensitivity analysis in the field of diabetes or glucose-insulin
metabolism on system level (Radomski et al.  2019 ; Pistikopoulos et al.  2018 ). One of the early
works by Geevan et al. ( 1990 ) used a derivative-based SA for a nonlinear model that incorporated
beta-cell kinetics and a gastrointestinal absorption term into a glucose-insulin feedback system. More
studies are available for models of signaling pathways (Sumner  2010 ). An interesting relation between
steady-state sensitivity analysis and cross Gramians (Section  3.3.1 ) in systems biology as a concept of
state observability has been drawn by Streif et al. (  2006 ). More general reviews on SA and recent
advances can be found in Saltelli, Ratto, et al. ( 2005 ), Borgonovo et al. (  2016 ), and Iooss et al. (  2015 ).
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In the following paragraphs, a short review of broad classes of sensitivity analysis techniques is given
following the classification scheme in Pianosi et al. (  2016 ).

Derivative Methods. Derivative methods are local SA techniques that assess the influence of input
factors around the nominal point of the model, typically by the partial derivatives of the output to the
respective input factors. If an analytical solution is not feasible, e. g., the function is not differentiable
at certain points, a numerical solution must be found. The partial derivatives can be approximated by
the finite differences

S i(X̄) ≈
f
(
X̄1, . . . , X̄i + ∆i, . . . , X̄K

)
− f

(
X̄1, . . . , X̄i, . . . , X̄K

)
∆i

, (3.11)

where K is the number of input factors. The model is evaluated at its nominal point X̄ and at some
perturbed value of each parameter X̄i + ∆i, where ∆i is a suitable variation of the i-th input factor.

For K input factors, this method requires at least K + 1 model evaluations and is therefore computa-
tionally cheap. It is well suited for models that require a lot of computing time or if many input factors
have to be investigated. However, the method has some limitations. First, it only provides information
about local sensitivities, but in biological systems, parameters often vary over a large range (Marino
et al.  2008 ), which cannot be captured by linear approximation. Second, only one parameter at a time
is considered, while all other parameters are fixed at their nominal values. Hence, it is not possible to
investigate interactions between parameters as it is often needed (van Riel  2006 ). These drawbacks
can be addressed through generalized techniques or global sensitivity analysis.

Multiple-starts Methods. The derivative technique described above can be globally extended if
each sensitivity is computed starting from multiple points within the input space. A global sensitivity
measure can then be obtained by aggregating these individual sensitivities. One of the most common
techniques is the so-called Elementary Effects Test (EET) first described by Morris ( 1991 ) and
improved by Campolongo, Cariboni, et al. ( 2007 ). The finite differences in (  3.11 ) are also called
elementary effects (EEs). They are computed at r arbitrary chosen grid points for each factor and
averaged according to µ?i :

µ?i =
1
r

r∑
j=1

∣∣∣∣EE( j)
i

∣∣∣∣
=

1
r

r∑
j=1

∣∣∣∣∣∣∣∣
f
(
X̄( j)

1 , . . . , X̄( j)
i + ∆

( j)
i , . . . , X̄( j)

K

)
− f

(
X̄( j)

1 , . . . , X̄( j)
i , . . . , X̄( j)

K

)
∆

( j)
i

∣∣∣∣∣∣∣∣. (3.12)

Thus, it is a measure of the influence of the i-th input factor on the output, where larger values indicate
a higher contribution. In addition to the mean value, the standard deviation of the EEs can also be
taken into account. It provides information on the degree of interaction of the i-th factor with others.
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Different types of sampling strategies have been proposed to select the points X( j), j = 1, . . . , r. Morris
( 1991 ) originally created r trajectories of K + 1 points, randomly chosen over a uniform grid. This
setup allows rather high perturbation of the input factors with only a limited set of evaluations but
can produce misleading effects if the model f is highly nonlinear and the perturbation ∆i is not well
chosen. The sampling strategy can be improved using Latin Hypercube Sampling (LHS) method first
introduced by McKay et al. (  1979 ). In contrast to simple random sampling, LHS guarantees that the
entire range of each factor is representative of the real variability. Campolongo, Saltelli, and Cariboni
( 2011 ) proposed a radial-based design, where the finite differences ∆i all start from the same randomly
chosen point in the input space.

All techniques have in common the same number of model evaluations, r(K + 1), which is far lower
than for global approaches. Therefore, EET can be used as a screening method to investigate models
with many input factors. This means that inputs declared as non-influential are unlikely to be identified
as influential by another method. It is also suitable to prune the number of factors before applying a
global sensitivity analysis method (Saltelli  2008 ).

Correlation or Sampling-based Analysis Methods. Sampling-based SA relies on the statistical
analysis of the input-output mappings of a model generated by Monte Carlo (MC) simulations. These
simulations are based on a large number of model evaluations using random or pseudo-random input
samples. The deviations in the model outputs depend on the uncertainty in the input factors, and
sensitivity analysis refers to the determination of the contributions of individual uncertain inputs to
the uncertainty in the results. According to Saltelli, K. Chan, et al. (  2000 ) or Helton et al. ( 2006 )
sampling-based approaches involve several main steps:

1. Define the input variability space that characterizes the uncertainties in the input factors. This
includes the range of values as well as their distribution.

2. Generate a set of n samples according to the problem structure and the number of input factors
using a proper sampling strategy.

3. Evaluate the model for each input sample. This returns a set of scalar model outputs y j =

f (X) , j = 1, . . . , n. It also includes checking for proper model behavior to filter out samples
that may lead to unacceptable outputs.

4. Post-processing includes visualization of the results, quantification of the sensitivity indices,
and evaluation of robustness and convergence.

In contrast to local SA where only one factor at a time is perturbed (OAT-sampling), sampling-based
SA can use, in principle, any random or pseudo-random sampling strategy. This usually follows a
factorial design scheme widely called AAT-sampling (All-[factors]-At-a-Time). One main issue is
the large number of model evaluations that must be fulfilled to ensure that the whole input space is
sampled appropriately. Therefore, the most common method is the LHS which was shown to be more
efficient than random sampling (Saltelli  2008 ).
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Typically, the model output is a scalar. Then, the overall uncertainty can be described by its mean
and variance. This can be accomplished by plotting the probability density function (PDF) or the
cumulative distribution function (CDF) of the output (Iman et al.  1988 ; Saltelli and Marivoet  1990 ).
If the model output is not a scalar, one can try to define a set of scalar features, like some aggregate
statistic or the model performance compared to measurements, and investigate the sensitivities from
these derived outputs. If the output is a function of time, sensitivities can be calculated at particular
time points of interest, which results in time-varying sensitivity indices (Zheng et al.  2006 ; Marino
et al.  2008 ). They can be integrated over time to find the most influential input factors.

Variance-based Methods. Variance-based sensitivity analysis (VBSA) is a class of global sensi-
tivity analysis (GSA) techniques where input factors are treated as stochastic variables, and thus, the
model output is stochastic. The variance in the output is determined by variations of the uncertain
input factors, and sensitivity indices are a quantification of the amount of influence.

Depending on the aims of the SA, different tests are possible, e. g., factor prioritization or factor fixing.
Factor prioritization is applied to find factors that account for most of the output variance. In other
words, a factor, when fixed to its true value, leads to the highest reduction of variance in the output. On
the other hand, factor fixing is used to find factors that have no significant contribution to the output
variance. Besides that, many more settings are conceivable, like variance cutting or factor mapping
(Saltelli  2008 ).

VBSA techniques have several benefits: they are model-free, so no assumption about the input-output
relationship must be made; in contrast to local SA, each input factor can be varied over its full range
of variation; also interactions between factors can be taken into account (Saltelli  2008 ).

Beginning in the 1970s, Cukier et al. (  1973 ) developed a method to determine the sensitivity of
coupled reaction systems to uncertainties in rate constants. There, the Fourier coefficients were used
as a measure of sensitivity. This method is known as FAST (Fourier Amplitude Sensitivity Test) and
was later extended for higher-order sensitivities (eFAST), (Saltelli, Tarantola, and K. P.-S. Chan  1999 ).

Sobol’ ( 1993 ) proposed a decomposition of the output function into terms of increasing dimensionality.
The total variance of the output can be decomposed in the same manner. From that, 2K terms can
be derived, from which the linear ones are called first-order indices. This expansion is also referred
to as high-dimensional model representation (HDMR), (Saltelli  2008 , p. 212) and is also linked to
ANOVA (analysis of variance) decomposition (Saltelli, Annoni, et al.  2010 ). First-order indices, also
called main effects, represent the direct contribution to the output from individual input factors. The
total-order indices are a measure for the first-order and all higher-order contributions to the output
which can be directly derived from Sobol’s method, although firstly described in Homma et al. ( 1996 )
and Saltelli ( 2002 ). Model decomposition has been adopted and expanded many times (Hora et al.

 1986 ; Saltelli, T. H. Andres, et al.  1993 ; Homma et al.  1996 ; Saltelli, Annoni, et al.  2010 ).
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Extension to Non-scalar Model Outputs. As mentioned earlier, the transient or dynamic behavior
of a system is a frequent topic of interest. That means, the output of such systems is a function of time,
and therefore typical SA techniques cannot be applied, since they rely on a scalar measure as output.
One possibility to overcome this problem is to calculate sensitivities along the output trajectories,
as shown by Ingalls et al. (  2003 ) for stoichiometric networks. This can be seen as an extension of
metabolic control analysis (MCA), primarily used for steady-state analysis only. Another way is
to derive a scalar feature from the dynamic output that is able to describe the key elements. But
constructing a proper set is highly problem-specific (K. Campbell et al.  2006 ), and, without previous
knowledge about the underlying problem, many features are feasible.

An alternative methodology for global SA is a functional principal component analysis (FPCA) of the
output data and a subsequent application of standard SA techniques. FPCA is a statistical method for
investigating the dominant modes of variation of functional data. K. Campbell et al. (  2006 ) proposed
that any standard sensitivity analysis technique can be fulfilled when the model output is transformed
into an appropriate functional coordinate system, i. e., into a set of basis functions. Consequently,
sensitivity analysis can be performed on the coefficients of this basis.

This concept has also been shown by Yamanishi et al. ( 2005 ) for some numeric examples. In the field
of biology, Sumner et al. (  2012 ) applied FPCA and GSA to a model of the insulin signaling pathway
identifying key parameters of the system. A general introduction to functional data analysis is given
by Ramsay et al. (  2009 ). A review of statistical methods for functional data analysis can be found in
Müller ( 2008 ), who was also involved in an extension to sparse longitudinal data (Yao et al.  2005 ).

3.3 Identification and Estimation

Identification and estimation mean determining a particular uncertain variable of a mathematical
model on the basis of measurement data obtained from a system and specific cost functions. Variables
can be either time-dependent states or constant parameters, which may be treated as time-independent
states (for details see Section  5.2 ). Within this work, the term identification is a deterministic process
to determine uncertain or unknown parameters by solving an optimization problem. These variables
are free, which means, they provide some kind of degree of freedom within the model, while all
remaining variables are kept constant. The optimization problem can be solved by adapting the free
parameters in such a way, that, e. g., the error between experimental and simulated outputs will be
minimized. This typically happens offline, which means, after an experiment and with full knowledge
about all relevant signals. Second, the term estimation will be used for the stochastic approach to
determine the time-dependent states and time-independent parameters of a model, typically online,
i. e., in real-time by an analog or digital filter. Some key properties are listed in Table  3.2 .

To assess whether it is theoretically possible to determine unknown states or parameters from input-
output measurements of a system, controllability and observability respectively identifiability analysis
may be applied.
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Table 3.2: Key properties of identification and estimation procedures.

Identification Estimation

Constant variables, such as parameters Time-dependent variables, such as states
Offline, i. e., after an experiment with full know-
ledge about all signals

Online, i. e., during run-time

Minimization of an optimization problem Digital filter regarding model and sensor variances
Direct (linear case) or iterative solution (nonlinear
case)

Recursive least-squares algorithm that improves
the solution with every new time step

Deterministic approach Stochastic approach

3.3.1 Empirical Controllability, Observability, and Identifiability Analysis

Controllability and observability are basic concepts for analyzing the input-output behavior of linear,
dynamical systems (Fig.  3.5 ). Controllability can be seen as a measure of how well a particular state
x(t) can be driven from an arbitrary initial state into an arbitrary final state by an appropriate choice
of the input u(t). Further, observability defines to which extent the trajectory of a particular state
can be determined by the observation of the outputs y(t). Controllability and observability for linear
systems can be assessed by the common criteria of Kalman, Hautus, or Gilbert (J. Lunze  2014 , Ch. 3)
and are mainly associated with the structure of the system. If e. g., a state is neither directly nor
indirectly connected to an input of the system, the state will not be controllable. The same holds for the
connection of a state with an output. This concept is known as structural controllability respectively
observability. Structural identifiability aims in determine whether it is a priori possible to estimate
a parameter from a given input-output experiment (Cobelli and Romanin-Jacur  1976 ) and can be
tested, e. g., by using differential algebra (Ljung et al.  1994 ). Identifiability is further related to the
observability of parameters when they are considered as constant states (Geffen et al.  2008 ). This is an
accepted concept in biological (Streif et al.  2006 ) or chemical (Sun et al.  2006 ) processes.

Controllability and observability are also associated with their respective controllability and observ-
ability Gramian matrices. They play a role in the solution of the controllability respective observability
problem. For linear systems, they can be computed from a Lyapunov equation, thus, by solving
linear matrix equations. Empirical Gramians extend the concept of Gramian-based controllability
and observability to nonlinear systems. They are computed from process data, i. e., by calculating
trajectory simulations or experimental data following a special design of experiment. It was first
motivated by Moore ( 1981 ) but systematically developed by Lall et al. ( 1999 ). The main idea of this
approach is to compute local Gramians for variations of any desired variables, such as the inputs or
initial states around an operating point, and to average over these local Gramians (Himpe  2018 ).

Besides that, the cross Gramian encodes the information given by the controllability and observability
Gramian in one single matrix which is computationally more efficient. It is only suitable for stable and
symmetric systems (Himpe and Ohlberger  2014 ) but can be approximated for non-symmetric systems
(Himpe and Ohlberger  2016 ).
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Figure 3.5: Concept of controllability, observability, identifiability, and sensitivity of a dynamical system.

One further concept to mention is the sensitivity of parameters regarding the states of a linear system
(here called state sensitivity) which allows a controllability-based parameter analysis (Sun et al.  2006 ).
For systems in state-space notation with additive parameters of the form

ẋ(t) = Ax(t) + Bu(t) + Fp = Ax(t) +
(
B F

) u(t)
p

 , (3.13)

the parameters p are treated as additional inputs, where F is a matrix of suitable dimension. The
contributions of inputs and parameters are superimposed and can be represented by a series of state-
space equations. For each subsystem the controllability Gramian can be computed and from that the
so-called sensitivity Gramian (Himpe and Ohlberger  2013 ). This is in contrast to the techniques of
(output) sensitivity analysis presented in Section  3.2 , where the influence of the parameters on the
outputs of the system is under investigation.

The concept of (empirical) Gramians is also widely used in the field of balancing where the system
is state-transformed in such a way that the energy transfer from the inputs into the states equals the
energy transfer from the states into the outputs. If a system is in a balanced form, its Hankel singular
values provide a measure of the importance of a state regarding the input-output behavior (Hahn
et al.  2002 ). From that, a model order reduction (MOR) can be fulfilled by, e. g., balanced truncation
(Antoulas and D. C. Sorensen  2001 ) of those states with small singular values, as they contribute little
to the input-output behavior (Baur et al.  2014 ; Himpe  2020a ). The applicability to a nonlinear model
of glucose-insulin regulation has been shown in Tolks and Ament ( 2017b ). Hence, empirical Gramians
are a universal, problem-independent concept not only suitable for controllability, observability, and
identifiability analysis but also ideal for a subsequent model order reduction, which may help to design
reduced-order controllers for glucose control in an artificial pancreas or reduced-order state estimators
(Misgeld et al.  2017 ).
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Figure 3.6: Adaptation of a model by varying the parameter vector p̂ in order to minimize Q, the objective
function derived from the output error ey(k, p̂) between measured system outputs y(k) and simulated
model outputs ŷ(k, p̂).

3.3.2 Parameter Identification

Simulated and measured outputs are compared in terms of a cost function Q. It is here defined as the
sum of the squared error between system output y(k) and model output ŷ(k) given by

Q(p) =
n∑

k=1

(y(k) − ŷ (k, p̂))2 , (3.14)

where n is the number of discrete-time measurement points k. The objective function Q is then
minimized by an optimization algorithm that adapts the model parameters. The whole procedure is
shown in Fig.  3.6 , where u(k) is the input to the system, z(k) are unknown disturbances, and ey(k, p̂) is
the output error between experiment and model.

For linear relationships between parameters p and outputs y(k), a direct solution can be given. If this
is not the case iterative search methods must be applied. Besides gradient-based approaches such
as line search, the NelderMead method is a commonly applied numerical method used to find the
minimum or maximum of a nonlinear objective function for which derivatives may not be known
(Nelder et al.  1965 ). For both methods, the solution may not converge to the true minimum but to only
a local minimum, which often depends on the initial values from where the optimization was started.

Often, nonlinear least-squares problems must be solved, which arise in nonlinear curve fitting, which
means, the process of adapting a mathematical function that best fits a series of data points, as it is the
case when, e. g., several blood glucose and insulin values were obtained from a patient. In these cases,
the Levenberg-Marquardt algorithm or Trust-Region approaches are satisfactory, depending on the
presence or absence of bound constraints (Isermann et al.  2011 , Ch. 19).

Building physiologic models always includes a determination of the underlying parameters. Numerous
mathematical models of glucose metabolism exist, beginning with the first minimal models which
describe glucose-insulin regulation after an IVGTT (Insel et al.  1975 ; Cobelli, Toffolo, et al.  1984 ;
Pacini and Bergman  1986 ; Pacini, Tonolo, et al.  1998 ), models of glucose absorption (Dalla Man,
Camilleri, et al.  2006 ), insulin absorption (Hovorka, Canonico, et al.  2004 ), models of critical-ill
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T1DM patients (Hovorka, Canonico, et al.  2004 ), mixed-meal simulation models (Dalla Man, Rizza,
et al.  2006 ), or models derived from animal trials (Eberle et al.  2020 ). In most cases, they are identified
by least-squares fitting or maximum likelihood estimation based on measurement data obtained under
rigorous experimental design in clinical settings. Several aspects should be mentioned:

equal physiological conditions in all participants, typically during fasting,
highly standardized inputs, such as an IVGTT, OGTT, or a well-defined mixed meal,
laboratory equipment with minimal errors, compared to BGSM or CGM sensors,
frequent measurements, up to 30 samples within a four-hour interval (P. Magni et al.  2006 ),
access to physiological signals not available by patients in daily life, such as the insulin
concentration in plasma or the glucose absorption rate after meal ingestion (R. Basu et al.  2003 ).

Parameter identification from measurements other than plasma glucose and insulin, or from outside
a clinical setting is seldom. Particularly, the concentration of glucose within the interstitial fluid,
measured by a CGM device, is of interest here, since it provides frequent measurements of glucose
and thus, enables permanent monitoring in daily life (compare to Fig.  6.3 ). Boiroux et al. (  2016 ) used
simulated CGM data obtained from a virtual patient to compare different identification strategies,
including least-squares and maximum likelihood in combination with Kalman filters. They reached
an RMSE of approx. 10 mg dL−1 for all considered methods. Facchinetti et al. (  2007 ) first identified
parameters of a first-order model from frequent blood glucose and CGM samples in order to describe
glucose diffusion from blood into the interstitium. Second, they reconstructed blood glucose values
from CGM in retrospect using a time-based deconvolution method. They also provided a recalibration
step to take into account CGM sensor degradation over time.

3.3.3 State Estimation

The aim of state estimation is the computation of possibly non-measurable inner states x̃(k) of a
system on the basis of a (nonlinear) discrete-time model and measurements of inputs u(k) and outputs
y(k) of that system (Fig.  3.7 ). In the case of linear systems, the most common state observers are the
Luenberger observer (Luenberger  1964 ), typically derived by pole-placement, and the Kalman filter
(KF), considering stochastic process and measurement noise (Kalman  1960 ). After each measurement,
minimization of the quadratic error is performed in the sense of optimality. However, this procedure
is unsuitable for practical use at run-time since all quantities have to be recalculated after each step
and the dimensions of the required matrices are constantly increasing. With the KF, a recursive state
estimation algorithm has been developed, that provides an optimal state estimation at run-time. The
limitation to linear systems was subsequently overcome with the extended Kalman filter (EKF), which
extends the algorithm by linearizing the model at the current operating point. From 1960 until the
mid-1990s, these methods found their way into many applications in different variants. The restriction
to linear systems or linearization led to the development of the so-called unscented transformation and
the unscented Kalman filter (UKF) on which it is based (Julier et al.  1997 ).
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Figure 3.7: Observer for estimating states x̃ from input and output measurements of a system with disturbances.

In the field of diabetes technology, digital filters were first introduced when a quasi-continuous
measurement of glucose within the interstitial fluid became possible with the availability of CGM
devices. Bequette ( 2004 ) was the first who applied a Kalman filter on simulated noisy CGM data and
a simple linear first-order diffusion model in order to estimate blood glucose levels. The first EKF
was applied by Knobbe et al. (  2005 ) to estimate blood glucose from patient CGM data obtained in a
clinical trial, using a nonlinear model with five states. A dual-rate Kalman filter, taking into account
simulated and experimental data from frequent CGM measurements and infrequent blood glucose
samples, was developed by Kuure-Kinsey et al. ( 2006 ). The filter was derived from a simple two-state
linear model, also able to estimate the sensor degradation over time. Palerm et al. ( 2007 ) applied a KF
on clinical hypoglycemic clamp data to predict hypoglycemia for prediction horizons between 10 and
30 min. As an alternative to model-based estimation or prediction methods, time-series techniques,
such as polynomial or autoregressive (AR) models, can be used to predict glucose concentration ahead
of time (Sparacino et al.  2007 ; Leal et al.  2010 ). An overview of real-time algorithms for sensor
calibration, filtering, and alarms can be found in Bequette (  2010 ). Besides blood glucose estimation,
Kalman filtering was also applied to estimate the concentration of insulin from glucose data obtained
from an IVGTT using a UKF (Eberle et al.  2011 ) or from CGM data using an EKF (Hajizadeh et al.

 2017 ). Moreover, Kalman filtering allows the estimation of both, dynamical states (Eberle et al.  2012b )
and constant but unknown diagnostic parameters of the glucose-insulin regulation, such as the insulin
sensitivity (Eberle et al.  2012a ; Misgeld et al.  2017 ).

3.3.4 Model Evaluation

Several performance measures exist to quantify the error between signals or even a whole model.
The following paragraphs briefly describe some common metrics in the field of diabetes science and
technology.

Mean Absolute Relative Deviation. The mean absolute relative deviation (MARD; or MARE,
mean absolute relative error) is a common performance metric to assess the overall quality of glucose
measurements compared to a reference. It is dimensionless, although it is typically given in percent.
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However, this rather corresponds to the mean absolute percentage error (MAPE). Both are given by

MARD =
1
n

n∑
k=1

∣∣∣∣∣y(k) − ŷ(k)
y(k)

∣∣∣∣∣, (3.15)

MAPD = 100% ·MARD, (3.16)

where y(k) and ŷ(k) are the reference and comparison values, respectively, for discrete samples
k = 1, . . . , n.

Root Mean Squared Error. The root mean squared error (RMSE) is widely used to assess the error
between an experimental output y(k) and a model output ŷ(k). It is calculated by

RMSE =

√√
1
n

n∑
k=1

(y(k) − ŷ(k))2, (3.17)

where k = 1, . . . , n are the samples. By squaring the difference, large errors are weighted more heavily
than smaller ones. Moreover, the RMSE is expressed in the same units as the obtained signals. To
compare errors of different quantities, the RMSE can be normalized.

t-test. The two-sample t-test is a significance test to check whether the mean values of two popula-
tions are equal or different from each other. Let x̄ and ȳ be the means of two independent data samples
from populations X respective Y . The test statistic is

t =
x̄ − ȳ√
s2

x
nx
+

s2
y

ny

, (3.18)

where sx and sy are the sample standard deviations and nx and ny are the sample sizes. For the
significance level α, the null hypothesis H0 : x̄ = ȳ is rejected in favor of the alternative, if

|t| > t
(
1 −

α

2
, nx + ny − 2

)
.

The equation only holds for equal standard deviations in both populations. In the case of inequality,
the solution can be approximated by using the Welch-test (Papula  2016 , Ch. 4.5.3).

F-test. An F-test is a group of statistical tests in which the test statistics follow an F-distribution
under the null hypothesis. In the context of analysis of variance, an F-test is a test that can be used to
determine with a certain degree of confidence whether two samples from different, normally distributed
populations differ significantly in their variance. Among other things, it is thus used for general testing
of differences between two statistical populations.
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Let σ2
x and σ2

y be the variances of two independent and normally distributed populations X respective
Y . Then, the test statistic under the null hypothesis H0 : σ2

x = σ
2
y

F =
s2

x

s2
y

(3.19)

has F-distribution with sx and sy being the sample standard deviations and nx − 1 and ny − 1 the
degrees of freedom, where nx and ny are the number of samples in X and Y , respectively. The null
hypothesis is rejected if F is too large or too small based on the statistical significance level α, which
is typically set to 5 % (Papula  2016 , Ch. 4.5.4).

Error Grid Analysis. The error grid analysis (EGA) is used to evaluate the clinical significance
of inaccuracies of glucose measurements compared to a reference values. Therefore, pairs of sensor
measurements are plotted against each other, where a pair is here defined as two records within a
±5 min interval. The plot is further separated into zones A-E of varying degrees of accuracy, denoting
different clinical impacts when treatment decisions were made from these records (Fig.  3.8 ). Values on
the diagonal are error-free. Values in zones A (within a ±20 % range around the diagonal) and B are
clinically acceptable, whereas values in zone C would result in an overcorrection of acceptable values.
Zones D and E are potentially dangerous and thus, are clinically significant errors (W. L. Clarke, Cox,
et al.  1987 ). The original EGA was extended for use with continuous glucose sensors (CG-EGA) to
take into account the inherent time delay between glucose concentration in blood and interstitial fluid
by introducing a dependency on the rate of change of glucose (W. L. Clarke  2005 ). Moreover, EGA is
also used to compare glucose estimates derived by simulations with experimental data. (K. Lunze

 2014 ). Nevertheless, other analysis tools exist, such as the consensus error grid (Parkes et al.  2000 ).
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Figure 3.8: Empty EGA (error grid analysis) plot for the evaluation of glucose sensor performance.
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3.4 Wearable Systems for Mobile Diabetes Monitoring

Standard diabetes treatment involves frequent measurements of blood glucose levels and insulin
administration, typically via the subcutaneous route in order to maintain tight glycemic control.
Treatment decisions are made by the patient himself or herself, for which he or she has been specially
instructed. Collected data can be evaluated afterward by a physician to optimize insulin therapy.

To record glucose concentration, patients need a glucose meter that measures the amount of glucose
in the blood, usually given on a small test strip (Section  2.3 ). Beginning in the 1950s, the first
blood glucose dry-reagent test strips were developed, which used glucose oxidase reaction. A
semiquantitative blood glucose value could be derived by visual inspection against a color code. The
first blood glucose meters were introduced in the 1970s for in-hospital use. The key principle was
to measure reflected light from the surface of the test strips. From that, quantitative glucose values
could be determined. Over the years, these devices have become smaller, more accurate, and easier to
handle. Furthermore, the amount of blood needed for measurement decreased from 50-100 µL in 1964
to only 0.3-1 µL nowadays. Advancements in electronics and software led to more functionalities like
autocalibration, electronic journals, alarms, and capabilities to connect to other devices to synchronize
the collected data (S. F. Clarke et al.  2012 ).

Subcutaneous glucose sensors have a comparable high temporal resolution, typically between 1-5 min,
and provide real-time information of the current glucose value and trend. That enables patients to have
a more precise and reactive self-assessment. Several randomized control studies showed short- and
long-term improvements in glycemic excursions, a reduced HbA1c value, and a reduction of severe
events in T1DM as well as in T2DM (S. Garg et al.  2006 ; Vigersky et al.  2012 ).

Shichiri, Yamasaki, et al. (  1982 ) were the first to introduce an artificial endocrine pancreas with a
needle-type glucose sensor in 1982. With an added telemetry unit, they created the first essential
components for a wearable CGM system (Shichiri, Asakawa, et al.  1986 ). Beginning at the end 1990s,
the first commercial devices were available on the market. Today, all approved systems are comparable
in the underlying technology, the need for calibration, and lifetime (Gifford  2013 ). An overview of
currently available CGM systems, technological trends, and challenges can be found in Cappon et al.
( 2017 ). One milestone would be to reduce the error to a comparable value as glucose meters, thus,
CGM could be used as a substitute for blood glucose measurements (Kovatchev, Patek, et al.  2015 ).

Recent advancements in medical devices and (mobile) computing power enabled extensive monitoring
of vital signals, not only in the field of diabetes but also in physical activity, blood pressure, electrocar-
diogram (ECG), or electroencephalography (EEG). Devices that act on or close to the body can be
summarized as a body area network (BAN), nowadays typically connected wirelessly via Bluetooth
or near-field communication (NFC) to a smartphone used to collect and process the data. It further
serves as a user interface and acts as a network hub that connects to a cloud service or data repository
(Fig.  3.9 ). These remote services are typically delivered by healthcare professionals who provide
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Figure 3.9: Concept of mobile health devices acting in or on the body. They build a body area network (BAN),
typically connected to a smartphone via Bluetooth or other proprietary protocols. The smartphone
acts as a central communication hub and user interface. It is connected to a web platform or data
repository via a wide area network (WAN) that may provide additional healthcare services.

additional functionalities like data analysis, personalized decision-support information, care planning,
education, or emergency healthcare (Georga et al.  2014 ; Islam et al.  2015 ; Lanzola et al.  2016 ).

According to Lanzola et al. ( 2016 ), three main phases of remote monitoring can be identified. The
early phase from the 1990s to 2000 was characterized by asynchronous communication between a
patient’s personal stationary computer and the medical unit. Users usually had to note their health
records manually and were supported with alarms, treatment plans, and data interpretation. Second,
a switch to a service-oriented architecture from 2000 until 2010 (Hernando et al.  2008 ). This phase
was characterized by a client-server approach, granting (mobile) access to centralized services over
unified interfaces like websites or SMS (Short Message Service). The third phase is still ongoing
and is defined by data processing of multiple sensors attached to the body or even implanted, e. g.,
under the patient’s skin. These devices span a small range BAN and are controlled only locally due to
limitations in size, power consumption, or radio emission (Yuce  2010 ). A BAN is typically managed
by a dedicated body gateway or a hub like a smartphone, which also enables remote monitoring via
web services (Fig.  3.9 ).

That open platforms for remote monitoring are highly appreciated by patients can be demonstrated by
the Nightscout Project, originally developed by some parents of diabetic children, to bring CGM into
the cloud. They developed a platform for real-time access to their CGM devices, which is accessible by
smartphones or the web (The Nightscout Foundation  2018 ). Currently, the application can connect to
the CGM sensors G4 Platinum and G5 Mobile (Dexcom, San Diego, CA, USA) and the Freestyle Libre
(Abbott Diabetes Care, Alameda, CA, USA), and to insulin pumps 640g, 530g, and Veo (Medtronic
Minimed, Northridge, CA, USA). Moreover, the Contour Next series (Ascensia Diabetes Care, Basel,
Switzerland) of blood glucose sensors are supported. As this application is open-source and supports
a variety of medical devices it serves as the basis for the model-based diabetes monitoring (MoDiM)
concept introduced in Chapter  7 .

Various remote managing platforms and care models in diabetes management have been developed
over recent years (Georga et al.  2014 ). One of the most advanced and approved ones is the Diabetes
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Assistant (DiAs) artificial pancreas research system (Keith-Hynes et al.  2014 ). It was developed within
the European Union-funded AP@home project that aimed at bringing the artificial pancreas from
clinical trials to in-home utilization without supervision by a physician for several months (Heinemann
et al.  2016 ). A broader review on glucose monitoring in mHealth scenarios can be found in Lanzola
et al. ( 2016 ).

Besides smartphone apps that connect to manufacturer-specific hardware devices like glucose meters
or insulin pumps, there exists a broad variety of mHealth apps for diabetic patients. Most of them
serve as an electronic health journal, followed by nutritional information and insulin bolus calculators.
Compared to approx. 425 million diabetics worldwide, the percentage of users of diabetes-specific
mHealth applications is still low at approx. 11 % (Eberle et al.  2019 ).
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4 Derivation of the Mathematical Models

4.1 Dynamical Model of the Glucose-Insulin-Glucagon Metabolism

In Section  3.1 some key parts in the mathematical description of glucose, insulin, and glucagon
regulation have been described. On the basis of these physiological relationships, several models
have been developed, taking into account single or multiple components of glucose metabolism.
Most works aim at simulating T1DM subjects (Table  3.1 ), mainly because of their permanent insulin
dependency for which continuous monitoring, glucose prediction strategies, and insulin delivery
systems are eminent for daily life. Despite this, most models are obtained from experiments in
well-defined clinical trials. Thus, their validity is limited in other clinical settings. For instance,
models for predicting blood glucose and insulin concentrations after a meal are usually not able to
give precise results for, e. g., an insulin infusion test since different physiological parts in the body
were under investigation. Moreover, it is also difficult to carry out multiple tests with subsequent
identification of several model parts, as superimposed effects and feedback within the system cannot
be distinguished from each other. These problems make it difficult to compare dynamical states and
related parameters derived from different models and environmental settings with each other. Hence, a
proper model has to be selected depending on the desired test criteria.

Modeling Aims. Taking into account the limitations given above and since the focus of this work is
on the study of daily-life scenarios, which includes meal intakes in combination with subcutaneous
insulin delivery a meal simulation model would meet the requirements.

From a physiological point of view, a model is desirable that is capable of simulating a person’s
metabolism, regardless of a specific disease condition. Thus, the ability to have valid outcomes for
non-diabetics as well as for type 1 and type 2 diabetics. A unified set of equations has the advantage
of defining glucose metabolism at a glance, where it is assumed that healthy people and different
manifestations of diabetes are represented by varying parameter sets within the same model. That
means a single individual should be characterized by a subject-specific set of parameters that determine
the clinical state in a long-term manner. In contrast, the dynamic states of a person determine the
current metabolic status.

Having a unified model structure and parameters, a subsequent system analysis as described in
Chapter  5 can be fulfilled, which includes investigations on controllability and observability, and
sensitivity analysis.
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Overall Model Structure. The mathematical model described in the following sections is based
on the compartment modeling technique. It mainly describes the kinetics of glucose, insulin, and
glucagon in the blood circulation system, endogenous secretion and consumption processes, and
components for external administration as depicted in Fig.  4.1 . It aims to investigate the glucose
regulation system during meals and normal life.
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Figure 4.1: Main structure of the model (adapted from Dalla Man, Raimondo, et al. ( 2007 ) and Dalla Man,
Micheletto, et al. (  2014 )). The model consists of three compartments: glucose (red), insulin (green),
and glucagon (blue), and the gastrointestinal tract (gray). Each system has elements for substance
secretion or external delivery (left panel), kinetics (middle panel), and consumption (right panel).

The dynamics of glucose, insulin, and glucagon are decomposed as follows:

The glucose subsystem (upper panel marked in red) consists of the liver where glucose is
produced from internal storage, the blood circulatory system, and the brain, muscles, and tissues
where glucose is utilized.
The insulin subsystem (middle panel marked in green) consists of the pancreatic β-cells from
where insulin is secreted into the circulatory system and the subcutaneous space from where
externally injected insulin appears in plasma.
The glucagon subsystem (lower panel marked in blue) consists of the pancreatic α-cells from
where glucagon is released into the blood and also a subcutaneous space from where externally
administered glucagon appears in plasma.
In addition, the gastrointestinal tract (top block marked in gray) describes the appearance of
glucose in the blood after food ingestion.
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When the system is in steady-state (homeostasis), all substance concentrations are at their basal
levels. The liver produces as much glucose as the body utilizes to supply all organs with energy.
Moreover, insulin and glucagon secretion rates are as high as their degradation. After meal ingestion
glucose appears in plasma. In a healthy human insulin secretion is increased and glucagon release is
inhibited. A rise in glucose and insulin concentration lowers hepatic glucose production and stimulates
glucose uptake by the muscles and tissues, which in turn, lowers blood glucose concentration back to
steady-state. In T2DM stimulation of glucose utilization is deteriorated, whereas in T1DM patients
pancreatic insulin secretion is impaired or even absent and insulin has to be injected through the
subcutaneous space.

Although the model is designed for simulating meal ingestion and thus, oral glucose administration is
the major input to the system, the following inputs are considered as well:

uoral
G (t): Oral glucose administration (mg min−1),

uiv
G(t): Intravenous glucose infusion (mg kg−1 min−1),

usc
I (t): Subcutaneous insulin infusion (mU min−1),

uiv
I (t): Intravenous insulin infusion (mU kg−1 min−1),

usc
H (t): Subcutaneous glucagon infusion (ng kg−1 min−1),

where oral glucose input acts as a disturbance from homeostasis and insulin s.c. is the major input for
diabetes treatment. Furthermore, the following system outputs are assumed to be measurable:

G(t): Glucose concentration in plasma (mg dL−1),
GI(t): Glucose concentration in subcutaneous space (mg dL−1),
I(t): Insulin concentration in plasma (mU L−1),
H(t): Glucagon concentration in plasma (ng L−1),

where the glucose concentration in plasma is the most common measure for diabetics to control their
current health status. For T1DM with intensified insulin therapy, continuous glucose measurement
from the s.c. space is widely used. Measuring insulin and glucagon is only applicable in a clinical
environment and not in daily routine.

For each of the single components in Fig.  4.1 , the differential equations, their related parameters, and
their origin, are discussed in detail in the following sections, starting with the glucose-related parts
in Sections  4.1.1 to  4.1.6 . Kinetics of insulin, its secretion, and appearance follow in Sections  4.1.7 

to  4.1.9 . Sections  4.1.10 to  4.1.12 are structured in the same way for the glucagon-related parts. A
summary of all equations can be found in Section  A . All states and parameters, their variable names,
and units are listed in Table  A.1 respectively Table  A.2 for each group of subjects.

4.1.1 Glucose Kinetics

The model shown here has its origin in Bergman’s minimal model as given in (  3.8 ) that describes
glucose kinetics after an IVGTT. This model was not able to distinguish between endogenous glucose
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Figure 4.2: Two-compartment model of glucose kinetics (adapted from Dalla Man, Rizza, et al. ( 2007 )).
Glucose concentration G(t) is accessible by measurements of plasma glucose mass GP(t) which is
in exchange with slowly-equilibrating tissue GT(t).

production and glucose utilization from only the measurement of insulin and glucose. Administration
of labeled glucose could overcome this limitation and led to a new single-compartment model for
glucose kinetics (Cobelli, Pacini, et al.  1986 ). However, this model produced a non-physiologic
pattern of estimated hepatic glucose production which made it necessary to propose an extended
model approach (Caumo and Cobelli  1993 ). The new minimal model describes glucose kinetics using
two compartments. The first one is the accessible pool of glucose in plasma and rapidly-equilibrating
tissues, GP(t), the second one accounts for slowly-equilibrating tissues, GT(t), as shown in Fig.  4.2 .
The exchange rates between both compartments are given by parameters k1 and k2. S G(t) is the
endogenous glucose production by the liver (Section  4.1.3 ), RG(t) is the rate of appearance of glucose
in plasma during ingestion of a meal (Section  4.1.2 ). In addition, glucose can be administered
intravenously given by uiv

G(t). It instantaneously appears in plasma, bypassing the gastrointestinal
tract. Glucose uptake from plasma, Uii(t), is assumed to be insulin-independent and constant and
takes into account glucose uptake by the brain, nervous system, and red blood cells (Best et al.  1981 ).
Insulin-dependent utilization, Uid(t), takes place in the slowly exchanging pool and is controlled by
insulin from a remote compartment (Section  4.1.4 ). E(t) denotes the renal excretion above which
glucose is excreted by the kidneys (Section  4.1.6 ). Glucose concentration G(t) is derived from plasma
glucose mass GP(t) within the distribution volume VG. These relationships lead to the two linear
systems of first order given by

ĠP(t) = S G(t) + RG(t) − Uii(t) − E(t) − k1GP(t) + k2GT(t) + uiv
G(t) GP(0) = Gb

P, (4.1)

ĠT(t) = −Uid(t) + k1GP(t) − k2GT(t) GT(0) = Gb
T, (4.2)

G(t) =
GP(t)

VG
, (4.3)

where the basal glucose masses at steady-state are given by Gb
P respectively Gb

T. When setting all
derivatives to zero, Gb

T can be calculated by

Gb
T =

Uii − S b
G + k1Gb

P

k2
, (4.4)

with Gb
P being a free variable. All states, signals, and parameters are summarized in Table  4.1 .
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Table 4.1: Variables of glucose kinetics.

Variables Description Unit

States
GP(t) Glucose mass in plasma mg kg−1

GT(t) Glucose mass in slowly equilibrating tissues mg kg−1

Signals
G(t) Glucose concentration in plasma mg dL−1

S G(t) Hepatic glucose production mg kg−1 min−1

RG(t) Rate of appearance of glucose in plasma mg kg−1 min−1

Uii(t) Insulin-independent glucose utilization mg kg−1 min−1

Uid(t) Insulin-dependent glucose utilization mg kg−1 min−1

E(t) Glucose renal excretion mg kg−1 min−1

uiv
G(t) External i.v. glucose administration mg kg−1 min−1

Parameter
Gb

P Basal plasma glucose mass mg kg−1

Gb
T Basal tissue glucose mass mg kg−1

Gb Basal plasma glucose concentration mg dL−1

VG Glucose distribution volume dL kg−1

k1 Exchange rate constant min−1

k2 Exchange rate constant min−1

4.1.2 Gastrointestinal Tract

One major issue in the proper description of glucose and insulin kinetics is the lack of knowledge
of the appearance of glucose in the systemic circulation after oral ingestion, which is in contrast
to IVGTT-like protocols, where glucose is immediately available in plasma after injection. Thus,
processes of gastrointestinal absorption have been investigated. First models applied a piecewise linear
description (Dalla Man, Caumo, et al.  2002 ) or a one (Lehmann et al.  1992 ) or two-compartment
chain (Hovorka, Canonico, et al.  2004 ) to describe glucose intestinal absorption. With the availability
of tracer data (R. Basu et al.  2003 ), the rate of appearance of glucose in plasma could be determined
and from that, a system model of oral glucose absorption was developed. The model of third-order
describes glucose in the stomach and gut and has a highly nonlinear gastric emptying function (Dalla
Man, Camilleri, et al.  2006 ).

A much simpler but sufficient model proposed by Hovorka, Chassin, Ellmerer, et al. (  2008 ) is linear
and has two compartments (Fig.  4.3 ). The relationship is given by

Q̇Gas,1(t) = −kG1QGas,1(t) + uoral
G (t) QGas,1(0) = 0, (4.5)

Q̇Gas,2(t) = −kG2QGas,2(t) + kG1QGas,1(t) QGas,2(0) = 0, (4.6)

where QGas,i(t), i = 1, 2 represent the amount of glucose in stomach and small intestine, respectively.
Parameters kGi, i = 1, 2 are rate constants and uoral

G (t) = D · δ(t) is the oral glucose ingestion rate, where
D is the total amount of glucose and δ(t) the unit impulse.
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Figure 4.3: Two-compartment model of the gastrointestinal tract representing glucose amount in stomach,
QGas,1, and intestine, QGas,2, respectively. A linear second order system is assumed.

The model was originally developed and fitted to experimental data from critically ill patients with
enteral glucose delivery. Nevertheless, the model can be fitted to match the available data of a mixed
meal study from Dalla Man, Camilleri, et al. ( 2006 ) which is described at the end of Section  4.2 .

Furthermore, the rate of appearance of glucose in plasma, RG(t), is expressed by

RG(t) =
fG · kG2QGas,2(t)

BW
, (4.7)

where BW is the body weight and fG is the fraction of ingested glucose and the amount that reaches
the systemic circulation (Dalla Man, Camilleri, et al.  2006 ). Variables are listed in Table  4.2 .

Table 4.2: Variables of the gastrointestinal tract.

Variables Description Unit

States
QGas,1(t) Glucose mass in stomach (solid phase) mg
QGas,2(t) Glucose mass in intestine (liquid phase) mg

Signals
RG(t) Glucose rate of appearance in plasma mg kg−1 min−1

uoral
G (t) Oral glucose administration mg min−1

Parameter
kG1 Exchange rate constant min−1

kG2 Absorption rate constant min−1

fG Oral bioavailability of glucose in plasma –
BW Body weight kg
D Amount of ingested glucose mg

4.1.3 Hepatic Glucose Production

The liver is responsible for the production (mainly by glycogenolysis and gluconeogenesis) and
storage (by glycogenesis) of glucose to maintain its concentration within the physiological range.
From clinical studies (e. g., Seino et al. (  1978 ), Gerich, Davis, et al. ( 1979 ), Saccà et al. ( 1979 ),
Aronoff et al. (  2004 ), Holt et al. (  2010 ), Hinshaw et al. (  2015 ), and Adeva-Andany et al. ( 2019 )) it is
known that endogenous production is modulated by concentrations of glucose, insulin, and glucagon.

During fasting, hepatic glucose production, S b
G, equals glucose disappearance, which is the total

glucose uptake Ub and renal excretion Eb:

S b
G = Ub + Eb, (4.8)
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where U(t) = Uii(t) + Uid(t) as further described in Section  4.1.4 . Glucagon facilitates endogenous
production and thus, promotes glucose appearance in plasma, especially at low glucose levels (Sec-
tion  4.1.10 ). Whereas insulin is the key hormone regulating glucose uptake Uid(t) in the postprandial
state and thus, lowers glucose levels. To quantify the effect of glucose and the two counter-regulating
hormones on hepatic production during a meal, a tracer protocol is needed (R. Basu et al.  2003 ). From
the measurements given there several models of endogenous glucose production have been proposed
(Dalla Man, Toffolo, et al.  2006 ). From that, a mixed meal model was developed by Dalla Man, Rizza,
et al. ( 2006 ) and Dalla Man, Rizza, et al. (  2007 ) and a model of glucagon action was incorporated by
Micheletto et al. ( 2010 ). Other models have been compared by Emami et al. ( 2017 ).

Hepatic glucose production S G(t) depends on glucose in plasma GP(t), the amount of insulin in the
portal vein IPo(t), a delayed insulin signal XI(t), and a delayed glucagon signal XH(t), all with respect
to their basal values. The functional description is given by

S G(t) = kp1 − kp2GP(t) − kp3XI(t) − kp4IPo(t) + kp5XH(t) S G(0) = S b
G, (4.9)

where kp1 is the extrapolated glucose production at zero glucose, insulin, and glucagon. S b
G is the

basal glucose production and kp2 to kp5 are constants as shown in Table  4.3 . Note that in T1DM, IPo(t)
is zero (see Section  4.1.8 for details). Insulin action on glucose production is realized by a chain of
two compartments

İ1(t) = −kI · (I1(t) − I(t)) I1(0) = Ib, (4.10)

ẊI(t) = −kI · (XI(t) − I1(t)) XI(0) = Ib, (4.11)

with I(t) being the concentration of insulin in plasma, Ib its basal level, and kI the delay between a
change in insulin concentration from basal level and its action on S G(t) (Section  4.1.7 ). S b

G is a free
variable as measured in Dalla Man, Toffolo, et al. ( 2006 ). From basal steady-state, one gets

kp1 = S b
G + kp2Gb

P + kp3Ib + kp4Ib
Po − kp5Xb

H. (4.12)

The delayed glucagon signal XH(t) on glucose production is given by

ẊH(t) = −kH · XH(t) + kH ·max
(
H(t) − Hb, 0

)
XH(0) = Xb

H = 0, (4.13)

where kH is the delay between changes in glucagon concentration H(t), related to its basal level Hb

(Section  4.1.10 ) and action on hepatic glucose production. Moreover, hepatic glucose production is
also constrained to be non-negative.
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Table 4.3: Variables of hepatic glucose production.

Variables Description Unit

States
IPo(t) Insulin mass in portal vein pmol kg−1

XI(t) Insulin action pmol L−1

I1(t) Delayed insulin signal pmol L−1

XH(t) Glucagon action ng L−1

Signals
I(t) Insulin concentration in plasma pmol L−1

S G(t) Hepatic glucose production rate mg kg−1 min−1

Parameter
S b

G Basal hepatic glucose production mg kg−1 min−1

kp1 Extrapolated glucose production mg kg−1 min−1

kp2 Liver glucose effectiveness min−1

kp3 Amplitude modulation of insulin action on liver mg kg−1 min−1 per pmol L−1

kp4 Amplitude modulation of portal insulin action on liver mg kg−1 min−1 per pmol kg−1

kp5 Amplitude modulation of glucagon action on liver mg kg−1 min−1 per ng L−1

kI Delay between insulin concentration and action min−1

kH Delay between glucagon concentration and action min−1

4.1.4 Glucose Utilization

Glucose utilization is the main effect of reducing plasma glucose concentration. After fasting, approx.
80 % of glucose disposal is insulin-independent and takes place in the brain, splanchnic tissues, and
erythrocytes (Ferrannini and Groop  1989 ). Insulin-dependent glucose uptake mainly occurs in muscle
(R. Andres et al.  1956 ). Furthermore, according to findings by Rizza et al. (  1981 ) and Prager et al.
( 1986 ) it is assumed that glucose utilization can be modeled by an insulin-independent component,
Uii(t), that occurs in plasma and an insulin-dependent component, Uid(t), that occurs in the remote
glucose compartment (Dalla Man, Rizza, et al.  2007 ). Insulin-independent utilization maintains
glucose balance during fasting and is assumed to be constant with

Uii(t) = Fii, (4.14)

according to experimental data in Best et al. ( 1981 ).

Glucose uptake Uid(t) in the postprandial state is mediated by insulin in normal subjects (Ferrannini,
Bjorkman, et al.  1985 ) and is deteriorated in diabetics (Ferrannini, Simonson, et al.  1988 ). Clinical
studies found a nonlinear dependence on glucose in the tissue, GT(t), (Yki-Järvinen, Young, et al.

 1987 ; Nielsen et al.  1998 ). It was mathematically expressed by Michaelis-Menten kinetics (Dalla
Man, Rizza, et al.  2007 ) as given by

Uid(t) =
Vm(X(t)) ·GT(t)
Km(X(t)) +GT(t)

, (4.15)
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with the linear functions

Vm(X(t)) = Vm0 + Vmx · X(t), (4.16)

Km(X(t)) = Km0 + Kmx · X(t), (4.17)

and

Ẋ(t) = −kXX(t) + kX
(
I(t) − Ib

)
X(0) = 0, (4.18)

where X(t) is insulin in the interstitial fluid and kX is the delay between deviations in insulin concen-
tration from basal value Ib and action. Note that when the model was fitted to available data, Kmx was
identified to zero and thus, Km does not depend on X(t) anymore which yields to

Uid(t) =
(Vm0 + Vmx · X(t)) GT(t)

Km0 +GT(t)
. (4.19)

Given Eqs. ( 4.14 ) and ( 4.19 ), the total glucose uptake is

U(t) = Uii(t) + Uid(t). (4.20)

When in basal state, insulin action X(t) = 0 and glucose utilization Ub equals hepatic glucose
production S b

G. From ( 4.14 ) and ( 4.19 )-( 4.20 ) follows

Ub = S b
G = Fii +

Vm0 ·Gb
T

Km0 +Gb
T

, (4.21)

from which parameter Vm0 is determined by

Vm0 =

(
S b

G − Fii
)
·
(
Km0 +Gb

T

)
Gb

T

. (4.22)

All signals and parameters are listed in Table  4.4 .

The process of insulin-stimulated glucose uptake by the tissue plays a major role in the self-regulation
of glucose concentration in plasma and alterations in the parameters have a significant influence on
hyperglycemia after a glucose load, especially for diabetic subjects (Section  4.3 ).

4.1.5 Subcutaneous Glucose Kinetics

The shift from blood glucose data to minimal invasive techniques such as CGM includes sensing the
glucose concentration from within the subcutaneous interstitial fluid (ISF). Thus, the dynamics of
glucose diffusion from plasma to ISF have to be investigated.
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Table 4.4: Variables of glucose utilization.

Variables Description Unit

States
X(t) Insulin in the interstitial fluid pmol L−1

Signals
Uii(t) Insulin-independent glucose utilization mg kg−1 min−1

Uid(t) Insulin-dependent glucose utilization mg kg−1 min−1

Parameter
Ub Basal glucose utilization mg kg−1 min−1

Fii Constant glucose uptake by brain and erythrocytes mg kg−1 min−1

Vmx Michaelis-Menten parameter mg kg−1 min−1 per pmol L−1

Vm0 Michaelis-Menten parameter mg kg−1 min−1

Kmx Michaelis-Menten parameter mg kg−1 per pmol L−1

Km0 Michaelis-Menten parameter mg kg−1

kX Delay between insulin concentration and action min−1

Glucose in the ISF is subject to diffusion processes from blood plasma through the capillary wall.
First experiments in diabetic rats showed that glucose in the ISF lags behind plasma glucose when its
concentration in plasma increases, and leads plasma glucose when glucose decreases (Thomé-Duret
et al.  1996 ). However, several studies contradicted this observation and proposed that ISF glucose
always lags the plasma concentration (Rebrin, Steil, et al.  1999 ; Wentholt et al.  2007 ). The dynamical
model proposed by Rebrin, Steil, et al. ( 1999 ) is now a widely accepted explanation for the diffusion
of glucose among plasma, ISF, and muscles and fat tissues. As depicted in Fig.  4.4 , glucose diffusion
between plasma, GP(t), and ISF, GIsf(t), can be described by the rate constants k12 and k21, clearance
from plasma and ISF is given by parameters k01 and k02, respectively:

ĠIsf(t) = −(k02 + k12)GIsf(t) + k21
V1

V2
GP(t), (4.23)

where V1 and V2 are the volumes of plasma and ISF, respectively. The sensor measure GSc(t) is
formulated to be proportional to the ISF glucose concentration with GSc(t) = αGIsf(t) which yields to

ĠSc(t) = −p2GSc(t) + p3GP(t), (4.24)

where p3 = αk21
V1
V2

and p2 = k02 + k12 are identifiable from plasma glucose data and ISF sensor
samples. From that, ISF delay time is τ = 1

p2
and was estimated to be within 5 min to 12 min (Rebrin

and Steil  2000 ). Rewriting ( 4.24 ) in terms of τ yields to

ĠSc(t) = −
1
τ

GSc(t) +
g
τ

GP(t) with kg =
1
τ

GSc(0) = Gb
P, (4.25)

where g = p3τ, which can be regarded as a steady-state gain. That means, in steady-state, g is the ratio
GSc
GP

of the glucose concentrations in ISF and plasma and should be, from physiology, equal to 1 (Steil,
Rebrin, J. Mastrototaro, et al.  2003 ), which was also estimated from measurement data (Facchinetti
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GP

k12
k01

GIsf

k02

k21RG

Figure 4.4: Model of subcutaneous glucose concentration (adapted from Rebrin and Steil (  2000 )). Diffusion of
glucose between plasma and surrounding interstitial fluid is assumed to be linear first-order.

et al.  2007 ). Setting g = 1, the variable is not considered further. Moreover, kg is a rate constant.
Given the relation in ( 4.3 ), the s.c. glucose concentration GI(t) is given as

GI(t) =
GSc(t)

VG
, (4.26)

where VG is the plasma distribution volume listed in Table  4.1 . Signal GI(t) serves as one measurable
output of the system. Other technical characteristics of subcutaneous glucose measuring devices like
sensor induced time lags or noise are discussed in Section  4.5.2 . All variables are reported in Table  4.5 .

Table 4.5: Variables of subcutaneous glucose kinetics.

Variables Description Unit

States
GSc(t) Subcutaneous glucose mass mg kg−1

Signals
GI(t) Subcutaneous glucose concentration mg dL−1

Parameter
kg Subcutaneous glucose rate min−1

4.1.6 Renal Excretion

Renal excretion E(t) occurs if glucose in plasma GP(t) exceeds a certain threshold at which the capacity
of the kidneys to absorb glucose is reached. This limit is around 180 mg dL−1, but varies individually.
The renal threshold hypotheses (RTH) model given by De Gaetano, Panunzi, Eliopoulos, et al. ( 2014 )
assumes linear behavior in urinary glucose loss with filtration rate ke1 and renal threshold ke2:

E(t) =

ke1 · [GP(t) − ke2] if GP(t) > ke2,

0 if GP(t) ≤ ke2 .
(4.27)

The model variables are given in Table  4.6 . In the non-diabetic subject, renal excretion is seldom. In
diabetic patients, this can occur and is detectable by a urine test.
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Table 4.6: Variables of glucose excretion.

Variables Description Unit

Signals
E(t) Glucose renal excretion mg kg−1 min−1

Parameter
ke1 Renal filtration rate min−1

ke2 Renal threshold mg kg−1

4.1.7 Insulin Kinetics

Insulin kinetics can be described by a two-compartment model as shown in Fig.  4.5 , taking into
account insulin mass in plasma and liver (Ferrannini and Cobelli  1987a ). The dynamics are given by

İP(t) = − (m2 + m4) IP(t) + m1IL(t) + RI(t) + uiv
I (t) IP(0) = Ib

P, (4.28)

İL(t) = − (m1 + m3(t)) IL(t) + m2IP(t) + S I(t) IL(0) = Ib
L, (4.29)

I(t) =
IP(t)
VI

I(0) = Ib, (4.30)

where IP(t) and IL(t) are the insulin masses in plasma and liver, respectively. Parameter VI is the
distribution volume of insulin, m1 and m2 are rate constants describing insulin exchange between
the compartments, and m3(t) and m4 describe insulin degradation. Note that m3(t) is time-dependent.
S I(t) is the insulin secretion rate as explained in Section  4.1.8 , RI(t) is the rate of appearance of
subcutaneously injected insulin into plasma (Section  4.1.9 ), and uiv

I (t) is the intravenous insulin
infusion rate. In T2DM patients, S I(t) is elevated, while it is assumed to be not existent in T1DM. To
compensate for this, RI(t) is the source of insulin supply, although it is not needed in healthy people.

By setting the derivative İL(t) in (  4.29 ) to zero, the basal insulin concentration in the liver, Ib
L, can be

derived. In normal and T2DM patients, it is given by

Ib
L =

m2Ib
P + S b

I

m1 + mb
3

, (4.31)

IL

m2
m3

IP

m4

m1S I

IRI uiv
I

Figure 4.5: Two-compartment model of insulin kinetics (adapted from Dalla Man, Rizza, et al. ( 2007 )). Insulin
concentration I(t) is accessible from measurements of plasma insulin mass IP(t) which is in exchange
with the liver IL(t). In healthy and T2DM people, S I(t) is the natural insulin secretion rate, in T1DM
its absence must be compensated by external insulin supply RI(t). Insulin clearance takes place in
both the liver and plasma compartment.
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whereas in T1DM patients, it is

Ib
L =

m2Ib
P

m1 + mb
3

, (4.32)

with mb
3 as defined in (  4.36 ). Degradation takes place in the periphery and is assumed to be linear with

constant m4. From measurements of C-peptides, it is known that the liver extracts a significant amount
of insulin that was secreted by the pancreas through the portal vein. Hepatic extraction HE(t) can then
be defined as the insulin flux that leaves the liver irreversible, m3(t), divided by the total insulin flux
leaving the liver as given by

HE(t) =
m3(t)

m1 + m3(t)
, from which m3(t) =

HE(t) · m1

1 − HE(t)
, (4.33)

the hepatic clearance, can be determined. From measurements of the post-hepatic plasma insulin
concentration, hepatic extraction was found to be linearly correlated with insulin secretion S I(t) as

HE(t) = −m5S I(t) + m6 HE(0) = HEb, (4.34)

with m5 respectively m6 denoting slope and offset (Meier, Veldhuis, et al.  2005 ). In basal state,

m6 = m5S b
I + HEb, (4.35)

mb
3 =

HEb · m1

1 − HEb , (4.36)

S b
I = mb

3 · I
b
L + m4 · Ib

P = Db
I , (4.37)

can be determined, where S b
I and Db

I denote basal insulin secretion and degradation, respectively.
From Eqs. (  4.33 ) and (  4.34 ) follows that hepatic extraction falls with rising insulin secretion and thus,
more insulin passes the liver and enters the systemic circulation, where it stimulates glucose uptake.

In humans, the liver is responsible for 40 % to 80 % insulin clearance, CL, in steady-state (Meier,
Veldhuis, et al.  2005 ). When fixing CL = 60 % (Dalla Man, Rizza, et al.  2007 ), i. e.,

mb
3 · I

b
L

mb
3 · I

b
L + m4 · Ib

P

= 0.6, (4.38)

parameters m4 and m2 yield to

m4 =
2
5
·

S b
I

Ib
P

·
(
1 − HEb

)
, (4.39)

m2 =

S b
I

Ib
P

−
m4

1 − HEb

 · 1 − HEb

HEb . (4.40)
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In T1DM subjects, insulin secretion is absent and thus, HE and m3 are constants given by

m6 = HEb, (4.41)

m3 =
HEb · m1

1 − HEb . (4.42)

Furthermore, to maintain steady-state, a basal insulin infusion rate IIRb = usc
I (t) = const must be

administered through the s.c. site, which is given by

IIRb = Ib
P ·

m2 + m4 −
m1 · m2

m1 + m3

 . (4.43)

That leads to a closed-loop approach with Ib
P being the set point from which the optimal infusion rate

can be determined to maintain steady-state. On the other hand, rearranging ( 4.43 ) for Ib
P can be seen

as open-loop control, where basal insulin depends on the insulin infusion rate. All states, signals, and
parameters are reported in Table  4.7 .

Table 4.7: Variables of insulin kinetics.

Variables Description Unit

States
IP(t) Insulin mass in plasma pmol kg−1

IL(t) Insulin mass in liver pmol kg−1

Signals
I(t) Insulin concentration in plasma pmol L−1

S I(t) Insulin secretion rate pmol kg−1 min−1

RI(t) Insulin rate of appearance in plasma pmol kg−1 min−1

uiv
I (t) External i.v. insulin infusion rate pmol kg−1 min−1

m3(t) Hepatic insulin clearance min−1

HE(t) Hepatic insulin extraction –

Parameter
Ib
P Basal plasma insulin mass pmol kg−1

Ib
L Basal liver insulin mass pmol kg−1

Ib Basal plasma insulin concentration pmol L−1

VI Insulin distribution volume L kg−1

m1 Insulin exchange rate min−1

m2 Insulin exchange rate min−1

m4 Insulin clearance from into periphery min−1

m5 Hepatic extraction slope min kg pmol−1

m6 Hepatic extraction offset –

4.1.8 Insulin Secretion

To control the proper amount of insulin in plasma, pancreatic β-cells have mechanisms to detect
changes in various hormones and nutrients within the circulatory system, with glucose in plasma
being the main determinant. Insulin is secreted into the portal vein, and from there it is extracted
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4.1 Dynamical Model of the Glucose-Insulin-Glucagon Metabolism

to a large extent by the liver (Section  4.1.7 ). Thus, only the post-hepatic insulin concentration is
directly measurable. To overcome this problem insulin secretion rate is usually reconstructed from
C-peptide data, which is a side product of insulin production and does not undergo liver extraction.
Pre-hepatic insulin secretion was first investigated and modeled by Eaton et al. (  1980 ) and assumes a
two-compartment linear model for C-peptide kinetics as

ĊP1(t) = −(k01 + k21)CP1(t) + k12CP2 + S R(t), (4.44)

ĊP2(t) = k21CP1(t) − k12CP2(t), (4.45)

where CP1 and CP2 are the C-peptide concentrations in plasma and periphery above basal level,
respectively, and S R(t) is the above basal secretion rate entering the accessible pool CP1. Parameter
k12 and k21 are transfer rates and k01 is the irreversible loss.

A functional description between glucose concentration and insulin secretion is based on the in-
sulin packet storage theory proposed by Grodsky (  1972 ) and assumes secretion as the sum of two
compartments, mimicking static and dynamic insulin release as

S R(t) = S s
I(t) + S d

I (t). (4.46)

Static insulin control S s
I(t) is assumed to be equal to the provision of new insulin to the β-cells

Y(t) = S s
I(t) which is related to the glucose level above basal by

Ẏ(t) =

−α
[
Y(t) − β

(
G(t) −Gb

)]
if G(t) ≥ Gb

−αY(t) if G(t) < Gb
Y(0) = 0, (4.47)

where 1
α is the time constant with which Y(t) tends to the steady-state value linearly related to static

glucose control parameter β.

Dynamic insulin control S d
I (t) accounts for promptly releasable insulin in the β-cells after an increase

in glucose concentration, which is typically related to the first insulin response. The flux is proportional
to the derivative of the glucose signal G(t) with

S d
I (t) =


κ

dG(t)
dt

if
dG(t)

dt
> 0 and G(t) > Gb,

0 otherwise,
(4.48)

where κ can be seen as a derivative control of increasing glucose concentration on insulin secretion. If
the glucose concentration is falling or below the basal level Gb, dynamic insulin secretion is assumed
to be zero (Toffolo, Breda, et al.  2001 ). Setting the derivatives in (  4.44 )-( 4.45 ) to zero yields to the
basal insulin secretion rate S b

I as

S b
I (t) = k01CPb

1, (4.49)
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where CPb
1 is the basal C-peptide concentration in the accessible compartment. The model of C-peptide

kinetics and insulin secretion have been extended into a model describing the insulin flux S Po(t) into
the portal vein:

S Po(t) = S b
I (t) + S s

I(t) + S d
I (t) =

S b
I + Y(t) + κĠ(t) if Ġ(t) > 0 and G(t) > Gb,

S b
I + Y(t) if Ġ(t) ≤ 0,

(4.50)

with

Ẏ(t) =

−α ·
[
Y(t) − β

(
G(t) −Gb

)]
if β

(
G(t) −Gb

)
≥ −S b

I

−α · Y(t) − αS b
I if β

(
G(t) −Gb

)
< −S b

I

Y(0) = Yb = 0, (4.51)

where S Po(t) contains the terms for basal, static, and dynamic insulin control. Pancreatic insulin
secretion S I(t) is then described by

S I(t) = γ · IPo(t), (4.52)

İPo(t) = −γIPo(t) + S Po(t) IPo(0) = Ib
Po, (4.53)

where IPo(t) is the insulin concentration within the portal vein, Ib
Po its basal value, and γ the transfer rate

between the portal vein and liver (Dalla Man, Rizza, et al.  2007 ). In steady-state, glucose concentration
equals its basal value and thus, Yb = 0, from which S Po(t) = S b

I . Setting the derivative İPo(t) to zero, it
follows that S I(t) = S b

I . All states, signals, and parameters are reported in Table  4.8 .

Equations (  4.50 )-( 4.53 ) describe pancreatic insulin secretion in the healthy, beginning in the β-cells,
secretion into the portal vein, and extraction of insulin by the liver before entering the circulatory
system (Section  4.1.7 ). The secretory process is determined by the deviation of glucose above basal
level (static control) and second, by the rate of increase of glucose (dynamic control). In T2DM or
people with impaired glucose tolerance the equations still hold, but it can be assumed that parameter
values are altered, especially dynamic gain κ and static gain β as it is further shown in Section  4.3 . In
T1DM, a complete lack of insulin secretion is assumed and thus, all parameters are set constant to
zero as there is no action on glucose changes anymore.

4.1.9 Subcutaneous Insulin Kinetics

In healthy subjects, insulin is secreted by the pancreas. In T2DM this mechanism is disturbed, whereas
in T1DM patients it is completely absent. Thus, exogenous insulin treatment is needed to control
glucose metabolism manually. Depending on the diabetes type and treatment regime, rapid-acting and
short-acting insulin analogs have to be injected subcutaneously to compensate for basal or postprandial
lack of insulin. For patients who have to inject insulin, it is therefore important to be able to estimate
the onset and duration of insulin action to avoid under-supply or over-supply. Insulin kinetics in the
s.c. space depends, among other factors, on its type, amount, and injected volume (Binder  1969 ).
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Table 4.8: Variables of insulin secretion.

Variables Description Unit

States
IPo(t) Insulin concentration in portal vein pmol kg−1

Y(t) Provision of new insulin to the β-cells pmol kg−1 min−1

Signals
S Po(t) Insulin flux within the portal vein pmol kg−1 min−1

S I(t) Pancreatic insulin secretion rate pmol kg−1 min−1

Parameter
S b

I Basal insulin secretion rate pmol kg−1 min−1

Ib
Po Basal insulin concentration in portal vein pmol kg−1

α Transfer rate between glucose signal and action min−1

β β-cell responsivity to glucose changes pmol kg−1 min−1 per mg dL−1

γ Transfer rate between portal vein and liver min−1

κ β-cell responsivity to glucose rate of increase pmol kg−1 per mg dL−1

From a modeling point of view, s.c. insulin injection is not instantaneously available in blood plasma
as it would be if secreted by the pancreas, but it is delayed and typically described by a combination
of first-order systems approximating the dissolution of insulin from a nonmonomeric to a monomeric
state (Gradel et al.  2018 ). Several clinical trials (Lepore et al.  2000 ) have been fulfilled and from that,
models have been developed (Mosekilde et al.  1989 ; Steil, Rebrin, Darwin, et al.  2006 ; Wong et al.
 2008 ). Reviews are also available (Nucci et al.  2000 ). Here, a modified version of a two-compartment
model proposed by Kraegen et al. ( 1984 ) is considered, which was also implemented by Dalla Man,
Raimondo, et al. ( 2007 ).

The model structure consists of two compartments as depicted in Fig.  4.6 . It is described by two
first-order differential equations:

İSc,1(t) = −(ki1 + ki2)ISc,1(t) + usc
I (t) ISc,1(0) = Ib

Sc,1, (4.54)

İSc,2(t) = ki1ISc,1(t) − ki3ISc,2(t) ISc,2(0) = Ib
Sc,2, (4.55)

where ISc,i(t), i = 1, 2 are the mass concentrations of insulin in nonmonomeric (slowly dissolving)
and monomeric (rapidly dissolving) state, respectively, ki1 is the rate of insulin dissociation between
them, and usc

I (t) is the insulin infusion rate. Parameters ki2 and ki3 are rates with which the insulin
components are absorbed into the plasma IP(t). From that, the rate of appearance of insulin in plasma
yields to

RI(t) = ki2 · ISc,1(t) + ki3 · ISc,2(t). (4.56)

Insulin clearance from plasma is modulated as described in Section  4.1.7 and all variables are reported
in Table  4.9 . In TNDM and T2DM subjects, basal insulin in the subcutaneous tissue is Ib

Sc,1 = Ib
Sc,2 = 0

since no insulin is injected. For T1DM, insulin must be continuously administered to maintain steady-
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ISc,1
ki1

ki2

Insulin
injection

ISc,2

ki3

IP

Figure 4.6: Exogenous insulin administration follows a two-compartment structure until it reaches plasma
(solid lines), from where its clearance is modulated by different signals (dotted line).

state as already pointed out in Section  4.1.7 . Thus, setting the derivatives in Eqs. (  4.54 ) and (  4.55 ) to
zero and defining usc

I (t) = IIRb, the basal insulin in the subcutaneous compartments yields to

Ib
Sc,1 =

IIRb

ki1 + ki2
, (4.57)

Ib
Sc,2 = Ib

Sc,1 ·
ki1

ki3
. (4.58)

It is worth noting that parameters ki1,...,i3 reflect both the physiological characteristics of the subject
under investigation as well as the pharmacokinetics of the administered substance. That means,
identified parameters are only valid for a specific type of insulin (e. g. rapid-acting).

Table 4.9: Variables of subcutaneous insulin kinetics.

Variables Description Unit

States
ISc,1(t) Slowly dissolving insulin mass pmol kg−1

ISc,2(t) Rapidly dissolving insulin mass pmol kg−1

Signals
RI(t) Insulin rate of appearance in plasma pmol kg−1 min−1

usc
I (t) External s.c. insulin infusion rate pmol kg−1 min−1

Parameter
Ib
Sc,1 Basal insulin mass within injection site pmol kg−1

Ib
Sc,2 Basal insulin mass within intermediate pool pmol kg−1

ki1 Insulin dissolution rate min−1

ki2 Insulin absorption rate min−1

ki3 Insulin absorption rate min−1

4.1.10 Glucagon Kinetics

The physiology and pathophysiology of glucagon in healthy and diabetic subjects have been widely
studied in clinical trials (Unger  1971 ; Gerich, Lorenzi, et al.  1975 ; Unger and Orci  1976 ; Seino et al.

 1978 ; Shah et al.  2000 ; Brehm et al.  2006 ). A linear one-compartment model of glucagon kinetics in
plasma derived from measurements in the conscious dog was first built by Dobbins et al. (  1995 ) and is

64



4.1 Dynamical Model of the Glucose-Insulin-Glucagon Metabolism

HSc,1
kh1

kh2

Glucagon
injection

HSc,2 H

nH

kh3

S H

Figure 4.7: Model of glucagon kinetics and exogenous administration. Injected glucagon follows a two-
compartment structure until it reaches plasma, a one-compartment model.

shown in the right part of Fig.  4.7 . The model equation is given by

Ḣ(t) = −nHH(t) + S H(t) + RH(t) H(0) = Hb, (4.59)

where H(t) is the glucagon concentration in plasma, Hb the basal value, and parameter nH is the
clearance rate. S H(t) is the glucagon secretion rate (Section  4.1.11 ) and RH(t) is the rate of appearance
of glucagon in plasma after a subcutaneous infusion (Section  4.1.12 ). States and parameter descriptions
can be found in Table  4.10 .

Table 4.10: Variables of glucagon kinetics.

Variables Description Unit

States
H(t) Glucagon concentration in plasma ng L−1

Signals
S H(t) Glucagon secretion rate ng L−1 min−1

RH(t) Glucagon rate of appearance in plasma ng L−1 min−1

Parameter
Hb Basal glucagon concentration in plasma ng L−1

nH Glucagon clearance rate min−1

4.1.11 Glucagon Secretion

There is a lack of widely accepted model approaches regarding the secretion and action of glucagon.
According to Micheletto et al. (  2010 ), secretion S H(t) can be described as the sum of two compartments.
Similarly to insulin secretion, one has a static glucose control, S s

H(t), with respect to glucose deviation
from basal and a dynamic glucagon control, S d

H(t), proportional to the glucose rate of decline.

In T1DM patients, state S s
H(t) can be expressed by

Ṡ s
H(t) =


−kρ

[
S s

H(t) − S b
H

]
if G(t) ≥ Gb ,

−kρ

S s
H(t) −max

kσ ·
(
Gb −G(t)

)
I(t) + 1

+ S b
H, 0


 if G(t) < Gb,

(4.60)
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where kσ is the reaction of α-cells to a deviation of glucose concentration from its basal level, 1
kρ

is
the delay between glucose change and action on glucagon secretion, and S b

H the basal secretion rate
(Visentin et al.  2018 ). From ( 4.60 ) it can be seen that no static secretion is assumed when glucose is
above basal, it will only return to its basal secretion rate. That means, after a typical scenario like meal
ingestion, glucagon secretion will not fall and thus, hepatic glucose production is not suppressed after
a meal (compare to Eqs. (  4.9 ) and (  4.13 )). When glucose falls below basal level, glucagon secretion is
stimulated but modulated by insulin.

Unfortunately, secretion models for normal subjects are rare. Therefore (  4.60 ) is adapted as

Ṡ s
H(t) = −kρ

S s
H(t) −max

kσ ·
(
Gb −G(t)

)
I(t) + 1

+ S b
H, 0


 , (4.61)

which allows a decline in glucagon concentration when glucose rises above basal as can be seen in
clinical trials (e. g., Aronoff et al.  2004 ; Knop et al.  2007 ).

Dynamic secretion is

S d
H(t) = kδ ·max

(
−

dG(t)
dt

, 0
)
, (4.62)

where kδ is the α-cell responsivity to falling glucose levels (Micheletto et al.  2010 ). That means, it is
assumed no dynamic glucagon release when glucose levels are rising. Furthermore, no distinction is
made whether glucose or glucagon are above or below their basal concentration.

The complete functional description is given by

S H(t) = S s
H(t) + S d

H(t). (4.63)

In steady-state, glucose concentration equals its basal value and Ġ(t) = 0. From that, S d
H(t) is zero and

S s
H(t) = S b

H. Inserting into ( 4.59 ) yields to

S b
H = nH · Hb, (4.64)

where Hb is the freely settable basal glucagon concentration. Glucagon action on hepatic glucose
production has already been stated in Section  4.1.3 . All variables are summarized in Table  4.11 .

4.1.12 Subcutaneous Glucagon Kinetics

Administration of s.c. glucagon has gained increased attention after its feasibility was shown in a
closed-loop control trial on diabetic swine (El-Khatib, Jiang, and Damiano  2009 ). To further evaluate
the kinetics of glucagon in the s.c. site, new mathematical models had to be developed since a
one-compartment approach could not explain experimental data (Lv et al.  2013 ). More complex

66



4.2 Model of Virtual Subjects

Table 4.11: Variables of glucagon secretion.

Variables Description Unit

States
S s

H(t) Static glucagon secretion rate ng L−1 min−1

Signals
S d

H(t) Dynamic glucagon secretion rate ng L−1 min−1

Parameter
S b

H Basal glucagon secretion rate ng L−1 min−1

kδ α-cell responsivity to glucose rate of decline ng L−1 per mg dL−1

kρ Transfer rate between static glucagon secretion and glucose min−1

kσ α-cell responsivity to glucose changes ng L−1 min−1 (pmol L−1 per mg dL−1)

models include clearance at the injection site or saturation of the transport with respect to the amount
of injected glucagon. According to Lv et al. ( 2013 ), who compared several models of increasing
complexity to clinical data from type 1 diabetics, the linear two-compartment structure shown in the
left part of Fig.  4.7 is proposed. It adequately fits experimental data. It can be expressed by

ḢSc,1(t) = − (kh1 + kh2) HSc,1(t) + usc
H (t) HSc,1(0) = Hb

Sc,1, (4.65)

ḢSc,2(t) = kh1HSc,1(t) − kh3HSc,2(t) HSc,2(0) = Hb
Sc,2, (4.66)

where HSc,i(t), i = 1, 2 are the glucagon masses in the s.c. space. HSc,1(t) represents the injection site
to which exogenous glucagon infusion usc

H (t) is administered. It also incorporates local clearance with
constant kh2. Compartment HSc,2(t) represents an intermediate pool before plasma. Parameters kh1 to
kh3 are rate constants as reported in Table  4.12 .

The rate at which glucagon enters plasma is given as

RH(t) =
1

VH
kh3 · HSc,2(t), (4.67)

where RH(t) denotes the rate of appearance and VH the glucagon distribution volume. Basal levels of
glucagon in the subcutaneous space, Hb

Sc,1 and Hb
Sc,2 are generally set to zero in all subject types.

Summary. In the preceding sections, the general equations of glucose-insulin-glucagon regulation
and model differences between non-diabetics, type 1, and type 2 diabetics have been acquired
successively. Table  A.1 on page  191 summarizes all states and the main signals of the model.

4.2 Model of Virtual Subjects

After the general model equations have been derived in Sections  4.1.1 to  4.1.12 , models of subjects
are now to be generated in order to properly simulate and analyze their behavior. It is assumed that
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Table 4.12: Variables of subcutaneous glucagon kinetics.

Variables Description Unit

States
HSc,1(t) Glucagon mass in injection site ng kg−1

HSc,2(t) Glucagon mass in intermediate pool ng kg−1

Signals
RH(t) Glucagon rate of appearance in plasma ng L−1 min−1

usc
H (t) External s.c. glucagon infusion rate mg kg−1 min−1

Parameter
Hb

Sc,1 Basal glucagon mass in injection site ng kg−1

Hb
Sc,2 Basal glucagon mass in intermediate pool ng kg−1

VH Glucagon distribution volume L kg−1

kh1 Glucagon absorption rate min−1

kh2 Glucagon absorption rate min−1

kh3 Glucagon absorption rate min−1

the metabolic characteristics of a person in a long-term manner can be expressed by a mathematical
description of a vector of basal states and parameters. This means, that for a single person, parameters
are assumed to be time-independent and fixed. The parameter vector will differ within a (patho)-
physiological range, reflecting different metabolic constitutions in each subject. A wide range of
parameter values is therefore desired also to include atypical but quite common metabolic conditions.
Since diabetes, especially type 2, is a gradually progressing disease, this should also become apparent
in the parameter variations and thus, developments from person to person are seamless. Nevertheless,
when comparing groups with each other, mean values and variance of the parameters will differ. To
summarize, the inter-subject variability should be large enough to include a wide variety of metabolic
states, but the inter-group variability should allow a distinction between different diabetes types.

From the patient databases given below three standard subjects have been adopted who reflect the
average behavior of three groups: non-diabetics, type 2, and type 1 diabetics. The modeling process
aims to create a set of virtual subjects in each group that satisfy given statistical properties. This
includes the distribution of each parameter, which is typically log-normal as most variables in biology
and medicine. Further, the covariance between different variables, as it cannot be assumed that
parameters are independent of each other. The modeling involves the following steps:

1. From available virtual subject databases, analyze statistics for all reported parameters.
2. Find reasonable assumptions when little or no information is available.
3. Fulfill a multivariate sampling process to generate TNDM, T2DM, and T1DM virtual subjects,

taking into account the obtained statistical relationships.
a) Chose the same covariance and distribution for parameters available in all groups.
b) Apply the covariance matrix on the mean value given for TNDM and T2DM.
c) Generate a set of multivariate random variables.

4. Proof the validity of the new subjects.
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4.2 Model of Virtual Subjects

4.2.1 Virtual Patient Databases

Here, two sources from available literature are used as a basis for generating virtual subjects. In both
publications, the same experimental protocol presented in R. Basu et al. ( 2003 ) and A. Basu, Dalla
Man, Mariatoffolo, et al. ( 2004 ) was used to determine the model parameters.

Database for TNDM and T2DM. The publication by Dalla Man, Rizza, et al. (  2007 ) presents
experimental data from 204 healthy subjects (age: 56 ± 2 years, body weight: 78 ± 1 kg) and 14 type 2
diabetics (age: 57 ± 3 years, body weight: 91 ± 5 kg) who received a triple tracer and a mixed-meal
containing 1.00±0.02 g per kg body weight of glucose (10 kcal kg−1, 45 % carbohydrate, 15 % protein,
40 % fat). The database includes measurement data for various glucose and insulin fluxes from which
parameters were estimated. From that, a virtual population could be derived by their joint parameter
distribution (Kovatchev, Breton, et al.  2009 ). The functions are not published, but the mean values for
both types, µTNDM and µT2DM, are reported in Cobelli and Carson ( 2008 , p. 284).

Database for T1DM. The type 1 diabetes mellitus simulator (T1DMS), developed by Dalla Man,
Micheletto, et al. ( 2014 ) and The Epsilon Group (  2013 ) is equipped with 30 virtual patients, here
denoted as T1DMS subjects. They have been generated from the joint parameter distribution of the
non-diabetic adult population referred above. The inter-subject variability was assumed to be the
same, which means, that T1DMS and TNDM subjects share the same covariance matrix. Furthermore,
some changes were made to the average parameter vector to reflect clinically relevant alterations of
the glucose metabolism in T1DM. Mean vector and covariance matrix are denoted by µT1DMS and
ΣT1DMS, respectively.

As mentioned in the preceding sections, the model consists of free variables, dependent variables, and
constants. Free factors can be set to arbitrary values, whereas dependent variables can be derived
from steady-state considerations or other constraints. Constants are static values independent of the
subject type and are mostly derived from population data. Table  A.2 lists all parameters, their units,
and statistical information, further described in the following section.

4.2.2 Analysis of the Virtual Patient Databases

The T1DMS comes with predefined virtual subjects, from which 38 variables are freely settable,
23 are dependent on certain restrictions, and 10 are constant (Tables  A.2 and  A.3 on pages  192 

and  193 ). Since there is no insulin secretion in T1DM patients, related parameters have been set to
zero. Furthermore, the simulator comes with another model of the gastrointestinal tract which has
been replaced by the model in Section  4.1.2 . As no information is available for kG1 and kG2 they
are not included in the analysis here but will be identified later (page  76 ). Hence, from a total of 68
variables, 29 parameters have to be chosen for further analysis illustrated in Fig.  4.8 . Investigating
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4 Derivation of the Mathematical Models

the linear relationship of the parameter matrix P results in a rank(P) = 29 and thus, all variables are
linearly independent of each other.

The correlation coefficient of two random variables X and Y is their covariance, Cov {X,Y}, divided by
the product of their standard deviations, which is

ρ =
Cov {X,Y}
σX · σY

,

=
E {(X − E {X}) (Y − E {Y})}√

E
{
(X − E {X})2

}
·

√
E

{
(Y − E {Y})2

} , (4.68)

where E {·} is the expectation value, Cov {·} is the covariance, and σX , σY are the standard deviations
of X and Y , respectively. The correlation coefficient is normalized between ±1, where positive
values indicate a positive correlation, negative values show a negative correlation, and zero means no
correlation between X and Y . When ρ is applied to a limited sample of observations, the expectation
value is substituted by the mean of the sample as

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·

√∑n
i=1(yi − ȳ)2

, (4.69)

where n is the number of observations, xi and yi denote the i-th observation, and x̄, ȳ are the mean
values of X and Y , respectively. Applying (  4.69 ) on each pairwise parameter combination in P for the
30 delivered T1DMS virtual subjects (i. e. n = 30 observations) results in the correlation matrix in
Fig.  4.8 . Each tile indicates the linear relationship of a parameter with all others. Positive correlations
are colored in tones of red, elements with a negative relationship in blue, whereas correlations towards
zero are drawn paler. The white color indicates no linear correlation. The main diagonal shows the
variance of each parameter, which is always one. From P, the matrix Pr ⊂ P of reduced size is
derived, containing 14 parameters with the highest absolute correlation. These are glucagon secretion
parameters kδ, kσ, which are also correlated to the duration of diabetes that explains their relationship,
and ki2, ki3 with coefficients higher 0.9. Furthermore, glucagon clearance nH and transfer rate kρ are
highly negatively correlated. With rising basal glucose production S b

G the ability of insulin action to
suppress glucose production kp3 rises, too. It is also positively related to kI, the rate constant between
a change in insulin concentration and its action on hepatic glucose production. A similar behavior
arises between kH and kp5, the transfer rate between glucagon changes in plasma and action on glucose
production and gain of action. Last, m1, m5, and VI are related to insulin kinetics. All other parameters
having a correlation lower than 0.5 are not shown here. For further information, a combined scatter
and histogram plot of the aforementioned parameters is shown in Fig.  A.1 on page  193 as red dots. A
scatter graph displays values for each pair of variables in one axis and provides suggestions on various
kinds of correlation between the variables. In addition, on the main diagonal, a histogram over each
parameter is drawn to visualize a possible distribution of that parameter.
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Figure 4.8: Correlation matrix of the T1DMS parameters: The values are normalized between ±1, where
positive values indicate a positive correlation (colored in red), negative values denote a negative
correlation (colored in blue), and 0 denotes no linear relationship (colored in white). The correlation
of parameters with themselves is always one as seen on the main diagonal.

71



4 Derivation of the Mathematical Models

After determining the correlation between the parameters of the T1DMS, their distribution has to be
analyzed. Here, the histogram is used as an estimate for the underlying probability density function as
depicted in Fig.  4.9 for all variables. The bars represent the normalized occurrence of each continuous
variable. A visual inspection shows that most parameters seem to follow a log-normal or normal
distribution, except for kσ and kδ where this cannot be assumed from the given samples.

A continuous random variable X that is normally distributed with X ∼ N (µX , σX), where µX is the
mean and σX the standard deviation, has the probability density function (PDF):

fX(x) =
1

√
2πσX

exp

−1
2

(
x − µX

σX

)2, σX > 0. (4.70)

From that, the log-normal distribution can be defined as a distribution whose logarithm has a normal
distribution. Thus, a random variable Y ∼ LN (µY , σY ) with log-normal distribution is Y = eµY+σY X

and its PDF is defined by

fY (y) =
1

√
2πσYy

exp

−1
2

(
ln y − µY

σY

)2, σY > 0, y > 0. (4.71)

If the empirical mean, µ, and variance, σ2, of the non-logarithmized values are known, suitable
parameter values can be obtained by

µY = ln

 µ2√
µ2 + σ2

 , σY =

√
ln

(
1 +

σ2

µ2

)
. (4.72)

The log-normal distribution is thus well suited for non-negative values.

A continuous uniform distribution X ∼ U (a, b) can be defined by its PDF as

fX(x) =


1

b − a
for a ≤ x ≤ b,

0 for x < a or x > b,
(4.73)

where a and b are the lower and upper boundaries, respectively.

With the information given above, a log-normal distribution was fitted for all parameters using a
maximum likelihood estimation, except for the two aforementioned variables for which a uniform
distribution was defined. As can be seen in Fig.  4.9 on top of the histograms, these distributions are a
good choice for most variables.

4.2.3 Generation of Virtual Subjects

The databases and analysis presented above are a starting point for the generation of new virtual
subjects that follow the known statistical representation of the populations. Note that not all databases
cover the total number of variables in the presented metabolic model as not all physiological aspects
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Figure 4.9: Normalized histograms and fitted probability density functions (PDF): Each axis shows a histogram
over one parameter of the T1DMS subjects, the fitted PDF is overlayed on top. The distributions
are assumed to be log-normal, except for kσ and kδ, where they are uniform.
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were investigated in the several clinical studies in which these values were obtained. For TNDM and
T2DM, the glucagon-related part of the model was not investigated in first publications (Cobelli and
Carson  2008 ) but later reported in Carson et al. ( 2014 ). Furthermore, the subcutaneous glucose and
insulin kinetics were not considered. On the other hand, in T1DM the complete insulin secretion part
was assumed to be absent. And last, the parameters of the gastrointestinal absorption model are not
available. For these variables, reasonable assumptions must be made or they have to be estimated from
measurement data.

To take into account covariance information, a multivariate parameter generation process must be
considered. A multivariate distribution is a generalization of the univariate distribution to more than
one variable. Thus, X is a K-dimensional random vector with mean vector µX and covariance matrix
ΣX . From the multivariate normal distribution

fX(x) =
1√

(2π)K |ΣX |
exp

(
−

1
2

(
x − µX

)>
Σ−1

X
(
x − µX

))
, (4.74)

with |ΣX | ≡ det(ΣX), the log-normal multivariate distribution of the random vector Y ∈ RK can be
derived as

fY (y) =
1√

(2π)K |ΣY |
∏K

i=1 y
exp

(
−

1
2

(ln y − µY)> Σ−1
Y

(
ln y − µY

))
, y > 0, (4.75)

where x, y,µX , and µY are K-by-1 vectors and ΣX ,ΣY are K-by-K symmetric, positive definite matrices.

The process of generating new virtual subjects is generally equal for all three groups and shown in
Algorithm  1 .

Algorithm 1 Function gen() to generate new virtual subjects
Require: µT1DMS, ΣT1DMS, µTNDM, µT2DM from available literature

Calculate the statistical properties such as variance and correlation
Calculate the log-normal distribution parameters from ( 4.72 )
Perform multivariate sampling from a normal distribution
Calculate the cumulative distribution function from the standard normal distribution
Calculate the inverse cumulative distribution function
Transform back to a log-normal distribution

Generation of T1DM Virtual Subjects. The generation of new T1DM virtual subjects is the
simplest task, as mean and covariance are already available from the T1DMS database. From that, the
algorithm given above leads directly to new virtual subjects S with

ST1DM := gen
(
µT1DMS,ΣT1DMS

)
, (4.76)
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where gen() is a generator function using the T1DMS mean vector, µT1DMS, and covariance matrix
ΣT1DMS. Only parameters of the gastrointestinal tract are not available in the database and must be
fitted to experimental records as further described at the end of this section.

For the validation of the generator function, 100 new virtual subjects were created. Their histograms
and scatter plots are depicted in Fig.  A.1 on page  193 . A visual inspection shows good accordance
between the T1DMS subjects and the newly created ones.

Generation of TNDM and T2DM Virtual Subjects. To generate TNDM and T2DM virtual
subjects, the available mean vectors µTNDM respectively µT2DM are used. As there is no variance
given in the literature, the fractional standard deviation of the T1DMS subjects is considered for each
parameter, which is

cv =
σT1DMS

µT1DMS
, µT1DMS , 0, (4.77)

where cv is also known as the coefficient of variation. It shows the extent of variability in relation to
the mean of the population. That means, the new variance is multiplicatively connected to the mean
value and thus, allows larger deviations for higher means. Variances are given by

σ2
TNDM = (cv · µTNDM)2 , (4.78)

σ2
T2DM = (cv · µT2DM)2 , (4.79)

for each parameter in the T1DMS group. For variables not present in the T1DM simulator, a fractional
standard deviation of cv = 0.35 and no correlation is assumed for most parameters. The overall
variances are computed as

ΣTNDM =

ΣT1DMS 0
0 σ2

TNDM

 , (4.80)

ΣT2DM =

ΣT1DMS 0
0 σ2

T2DM

 , (4.81)

where ΣTNDM and ΣT2DM are the covariance matrices of the TNDM and T2DM subjects, respectively.
The lower right sub-matrices have diagonal form with variances σ2

TNDM and σ2
T2DM for each parameter

on their main diagonal. From that, new TNDM and T2DM subjects can be generated using

STNDM := gen
(
µTNDM,ΣTNDM

)
, (4.82)

ST2DM := gen
(
µT2DM,ΣT2DM

)
. (4.83)

For testing, 100 new virtual subjects in each group have been generated and the distribution of their
parameters is shown in Fig.  A.2 and also reported in Table  A.2 on page  192 . In general, the means
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and distribution of the individual parameters differ, but their ranges overlap, sometimes significantly,
so that no variable can be considered on its own. For some parameters, at least one group can be
examined separately from the others (e. g., kρ, Km0, Gb). For variables ki1, ki2, and kki3, and also for
kh1, kh2, and kh3 the same mean and variance was assigned for all groups as can be seen in the quite
similar distributions. Parameters kG1, kG2 are related to the gastrointestinal tract, and their means have
been identified from experimental data as described in the following paragraph. Parameters related to
insulin action, both peripheral, Vmx, and hepatic, kp3, are lower in T2DM compared to normal subjects.
Hepatic glucose effectiveness, kp2, is also lower. Next, variables connected to the insulin secretion
part, the dynamic and static β-cell responsivity κ respective β, and also rate constant α are lower in
T2DM. In T1DM, they are, along with γ and m6, not visible in the graph as they are constant. The
different parameter configurations reflect changes in the model behavior and can explain pathological
alterations of the glucose regulation as can be seen in the simulation studies in Section  4.3 .

Furthermore, a log-normal distribution is visible, except for kσ and kδ that are uniformly distributed.
Note the much higher range due to the higher means, compared to the T1DM data. In addition to the
parameters of the system model, also basal values are illustrated here for completeness.

Contrary to parameters, means of the basal values seem to be more meaningful for distinguishing
between the groups. Hence, an increased plasma glucose concentration Gb suggests a pathological
deviation from the norm. Also, basal insulin concentration, Ib, seems to be higher in diabetic people,
which is in accordance with the higher basal insulin secretion rate, S b

I , in T2DM to compensate for a
deteriorated insulin action on glucose changes, visible in lower values for κ, α, and β.

Parameter Estimation of the Gastrointestinal Tract. As explained in Section  4.1.2 , the gas-
trointestinal tract is modeled by two linear compartments representing the amount of glucose in the
stomach and intestine, respectively. The rate constants must be estimated to available measurement
data as no comparable values are present in the literature. The digestion of a meal highly depends
on the composition of macronutrients like glucose, fat, and protein. As this information is seldom,
measurements taken from a mixed meal input describe an average but typical scenario and could be a
good starting point for a model of meal absorption.

To identify parameters of the gastrointestinal tract experimental data from Dalla Man, Rizza, et al.
( 2007 ) was used. In this experiment, the rate of appearance of glucose in blood plasma after a mixed
meal test was determined for a population of 204 non-diabetics. The average input was 78 g glucose,
which corresponds to 1 g kg−1 glucose for the average body weight of 78 kg. The time course is plotted
in Fig.  4.10 on the left side, where the black line is the mean function and the gray area represents the
±1σ range. The same protocol was fulfilled for 14 type 2 diabetics (90 g glucose load). Unfortunately,
no experimental data has been published but an averaged meal prediction graph was plotted in Dalla
Man, Rizza, et al. (  2006 ) as shown in Fig.  4.10 in the middle panel. For T1DM, meal ingestion of 60 g
glucose was simulated using the T1DMS. The mean trajectory, ±1σ standard deviation, and upper
and lower bounds are shown on the right side of the figure. From the reference data, it can be seen that
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Figure 4.10: Identified rate of appearance of glucose in plasma after a meal for TNDM (left), T2DM (middle),
and T1DM (right). References depicted by black solid lines (±1σ range in gray, upper and lower
bounds by dashed lines), identified trajectories drawn in red. Note that for TNDM, reference is
taken from the literature, whereas for T2DM and T1DM, the reference is also simulated.

the absorption rate in T2DM is lower than in the other groups. Whereas the variability for T1DM is
much larger than for the healthy ones but comparable in their dynamic.

These three trajectories were taken as references for parameter identification of the model presented in
Section  4.1.2 . The two-compartment linear model has two rate constants kG1 and kG2 that determine
the dynamics of meal digestion. A nonlinear least-squares estimation was used to identify the two
parameters. As can be seen in Fig.  4.10 , the model fits well the reference trajectories, though a small
underestimation is observable in all three groups. Root mean squared error (RMSE) as given in Eq.
( 3.17 ) was calculated with 0.57, 0.81, and 1.23 mg dL−1 for TNDM, T2DM, and T1DM, respectively.
The identified values, kG1 and kG2, are reported in Table  A.2 . In summary, it can be said that the linear
model can mimic the dynamic behavior of the gastrointestinal tract after a mixed meal input.

4.3 Simulation Studies

After the development of the dynamical model of glucose regulation and the creation of virtual subjects,
the following section presents several simulation scenarios that have been fulfilled to elicit the static
and dynamic model behavior.

Four scenarios are of special interest. This is the steady-state simulation to investigate whether the
behavior for all virtual subjects is stable, the OGTT scenario  

1
 in which all groups receive a meal

but no insulin bolus, and the meal tolerance test (MTT) that reflects typical meal ingestion and
insulin administration in T2DM and T1DM. The last scenario should incorporate a typical daily-life
setting. The first three settings have a simulation duration of 12 h to ensure that most states return to
steady-state within simulation time, the last one is 24 h long. Furthermore, the sample time was fixed
to 1 min. The inputs to the system are summarized in Table  4.13 . In steady-state all state derivatives

1The term OGTT typically refers to an oral glucose load of 75 g which rapidly appears in plasma. Here, it is defined as a
meal without additional insulin bolus since the gastrointestinal tract was identified for meal ingestion.
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Table 4.13: Summary of four simulation scenarios on the three diabetes groups.

Scenario Group Meal intake Bolus insulin Basal insulin

Steady-state
TNDM – – –
T2DM – – –
T1DM – – optimal, acc. to ( 4.43 )

OGTT
TNDM 75 g – –
T2DM 75 g – –
T1DM 75 g – optimal, acc. to ( 4.43 )

MTT
TNDM 75 g – –
T2DM 75 g 1.0 U CU−1 –
T1DM 75 g optimal CR optimal, acc. to ( 4.43 )

Daily-life
TNDM 45 g (8 h), 70 g (12 h), 70 g (20 h) – –
T2DM 45 g (8 h), 70 g (12 h), 70 g (20 h) 1.5 U CU−1 –
T1DM 45 g (8 h), 70 g (12 h), 70 g (20 h) optimal CR optimal, acc. to ( 4.43 )

are zero and the system is at its stable operating point. TNDM and T2DM have no inputs, whereas
T1DM subjects receive a constant subcutaneous insulin infusion to maintain their steady-state. In the
OGTT scenario, all subjects receive a meal of a total of 75 g glucose at simulation start for 15 min, i. e.,
5 g min−1. The meal input signal is thus not an ideal pulse but a single square wave function that is
assumed to be a more realistic excitation in a real-life setting. This scenario does not provide any other
inputs to the system. In contrast, the MTT scenario also exploits meal ingestion, but an insulin bolus
is given to the diabetic groups to investigate the impact of insulin on the organism. T2DM gets a bolus
of 1.0 U per carbohydrate unit (CU), where 1 CU is defined as 10 g of carbohydrates (CHO). T1DM
subjects receive an individual optimal insulin bolus according to their predefined carbohydrate ratio
(CR) in addition to their basal insulin rate. In both cases, the bolus is given at mealtime. The last case
contains multiple MTT scenarios distributed over the whole day to mimic a typical daily life situation.
The simulation starts and ends at midnight and includes meal intakes in the morning, at midday, and
in the evening, which corresponds to simulation time points of 8 h, 12 h, and 20 h, respectively.

In the following paragraphs, the results for all four scenarios are explained in more detail. For each
case a simulation plot is given, showing several characteristic signals: concentrations of glucose,
insulin, and glucagon in the top panel; endogenous production of glucose, insulin secretion, and
glucagon secretion in the middle panel; uptake and rate of appearance of glucose and also insulin rate
of appearance in the last row. Moreover, 100 virtual subjects in each group have been simulated and
the ensemble averages have been plotted against each other as can be seen in Figs.  4.11 to  4.14 .

Steady-state Simulation. In Fig.  4.11 , the results of the steady-state simulation are shown. Gener-
ally, all subjects show stable behavior when not excited from the basal level.

Glucose basal value in TNDM is 89.5 ± 3.9 mg dL−1, whereas it is at 119.9 ± 6.2 mg dL−1 for T2DM
and at 120.9 ± 5.5 mg dL−1 for T1DM, which reflects the typically elevated glucose concentration in
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Figure 4.11: Steady-state simulation, averaged over 100 virtual TNDM (blue), T2DM (red), and T1DM (yellow)
subjects.

diabetics. Basal insulin concentration is lowest in TNDM with 25.4 ± 5.1 pmol L−1 and also increased
with 59.8 ± 11.4 pmol L−1 in T2DM patients, which provides evidence for insulin resistance (Yalow
et al.  1960 ). In T1DM the basal level (106.4 ± 18.2 pmol L−1) is determined by the basal insulin
infusion rate. Glucagon level is at 126.8 ± 25.4 ng L−1 for non-diabetics which is in accordance to
measurements (e. g., Unger and Orci (  1976 ), Saccà et al. (  1979 ), and Shah et al. (  2000 )). In T2DM
it is significantly higher with 210.5 ± 46.9 pmol L−1, which is in accordance to Knop et al. ( 2007 ).
T1DM are assumed to have lower basal glucagon concentrations with 56.0 ± 10.4 ng L−1 as can be
seen in Kramer et al. (  2014 ) and Dalla Man, Micheletto, et al. ( 2014 ). Hepatic glucose production is in
a similar range for TNDM and T2DM with ≈2.0 ± 0.2 mg kg−1 min−1 (DeFronzo  1992 ), and higher in
T1DM with ≈2.6 ± 0.3 mg kg−1 min−1. Insulin secretion does not differ significantly between TNDM
and T2DM with ≈3.5 ± 1.5 pmol kg−1 min−1, whereas a complete lack of insulin secretion is assumed
in T1DM. Although the glucagon concentration is different between TNDM and T2DM, its secretion
rate is similar due to the lower clearance rate, nH, in T2DM. Secretion rate is ≈28.5± 9.0 ng L−1 min−1

in TNDM and T2DM and significantly lower in T1DM with 7.9±2.6 ng L−1 min−1. Glucose utilization
closely matches hepatic production which is slightly higher in T1DM with 2.8 ± 0.4 mg kg−1 min−1

compared to TNDM and T2DM with 1.95 ± 0.20 mg kg−1 min−1. At steady-state, no meal is given
and thus, the rate of appearance of glucose in plasma is zero in all groups. At last, basal insulin is only
given to T1DM to maintain steady-state and is 1.5 ± 0.4 pmol kg−1 min−1.
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Figure 4.12: Simulation of a meal tolerance test without additional insulin bolus at meal time, averaged over
100 virtual TNDM (blue), T2DM (red), and T1DM (yellow) subjects.

Simulation of a Meal Tolerance Test without Insulin Bolus. In this scenario, a mixed meal
containing 75 g glucose without any insulin bolus is simulated and the model outputs are depicted
in Fig.  4.12 . After meal ingestion, macronutrients are digested, absorbed by the intestine and
glucose appears in blood plasma as shown in the middle graph in the last row. Glucose absorption
is faster in TNDM than in diabetics with a maximum of 7.7 mg kg−1 min−1 at 22 min, compared
to 5 mg kg−1 min−1 at 42 min and 10.1 mg kg−1 min−1 at 41 min for T2DM and T1DM, respectively.
Glucose that enters the circulatory system leads to a rise in glucose concentration in all groups.

In healthy subjects, basal glucose is at 98.5 mg dL−1 and reaches its maximum value of 171 mg dL−1

after 76 min and declines steadily back to basal value after ≈4 h. A rise in plasma glucose levels
stimulates insulin secretion and suppresses glucagon secretion. These reciprocal changes suppress
hepatic glucose production and enhance glucose utilization. Insulin concentration is visibly bipha-
sic with a maximum of 265.7 pmol L−1 at 97 min and returns to basal level of 25.4 pmol L−1 after
4 h. Glucagon concentration rapidly decreases from 119.2 ng L−1 to a minimum of 85.1 ng L−1 at
58 min and rises slowly back to basal level. Hepatic glucose production significantly drops from
1.9 mg kg−1 min−1 to 0.6 mg kg−1 min−1 after 92 min. As endogenous glucose production falls, glucose
uptake by muscles is stimulated by the elevated insulin concentration and rises from 1.9 mg kg−1 min−1

to 5.4 mg kg−1 min−1 after 107 min.

In diabetic patients, most signals are delayed and prolonged, compared to TNDM. Basal glucose
concentration is elevated with ≈120 mg dL−1. In T2DM the slew rate is much slower and reaches its
maximum of 238.6 mg dL−1 after 120 min. Also, the time to return to basal state is prolonged with
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Figure 4.13: Simulation of a meal tolerance test in TNDM (blue), including an additional insulin bolus at meal
time in T2DM (red) and T1DM (yellow), each averaged over 100 virtual subjects.

≈8 h. In T1DM this effect is even more distinct as the maximum of 337.2 mg dL−1 is not reached
before 157 min. Within simulation time glucose concentration does not decline back to basal. The
insulin secretion rate in T2DM is not as pronounced as seen in TNDM. Although a biphasic behavior
is visible the signal is prolonged, which leads to a delayed rise in insulin concentration. In T1DM no
change in the insulin levels is observable as no appropriate secretion exists. Furthermore, glucagon
secretion is not suppressed which leads to a delayed and less developed inhibition of endogenous
glucose production. Its minimum is ≈1 mg kg−1 min−1 after 202 min and 152 min for T2DM and
T1DM, respectively. This leads, in combination with the diminished postprandial glucose uptake, to
an expanded period of hyperglycemia. Lastly, in T1DM when glucose level falls below basal value,
glucagon secretion is marginally increased.

Simulation of a Meal Tolerance Test including Insulin Bolus. The results of the MTT scenario
are illustrated in Fig.  4.13 . In contrast to the meal simulation presented above, an additional insulin
bolus is applied to the diabetic subjects at mealtime within the first minute. This is a single 1.0 U
per 10 g carbohydrates injection equal for all T2DM and an optimal bolus for each T1DM subject.
The effects can be seen in the lower right axis depicting the insulin rate of appearance in plasma.
Its occurrence in plasma is delayed due to the s.c. tissue dynamics. For T2DM the appearance rate
reaches its maximum of 5.2 pmol kg−1 min−1 at 39 min and decreases to zero within ≈6 h. In T1DM
the peak of 5 pmol kg−1 min−1 is reached at the same time and declines within ≈4 h back to its basal
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rate. These responses are typical for rapid-acting insulin analogs as they are part of a “basal-bolus”
regimen or in CSII (Section  2.5 ) and (Holt et al.  2010 , p. 431).

Besides that, the outputs for the non-diabetics do not differ from the results shown in Fig.  4.12 and are
again plotted for comparison. Furthermore, as the meal input is the same, the rate of appearance of
glucose is equal to the aforementioned signal curves.

As illustrated in the upper left axis, the most apparent changes can be observed in the time course of
glucose concentration. The signals of T2DM and T1DM are almost equal with a maximum value of
≈210 mg dL−1 between 78 min (T1DM) and 107 min (T2DM). Thus, applying a proper insulin dosage
at mealtime causes T1DM patients to act similarly to non-diabetic persons, neglecting the higher
basal level. In T2DM, this effect is present but not clearly visible. Compared to the OGTT, maximum
glucose is reduced by ≈30 mg dL−1 and is 13 min earlier. That is in accordance with findings that 1 U
insulin reduces glucose concentration by 20-60 mg dL−1 (Schatz  2006 , p. 59).

Insulin secretion rates do not change, as expected. But insulin concentration in plasma is significantly
higher due to the insulin bolus with a peak of 402.7 pmol L−1 at 37 min in T2DM and 356.2 pmol L−1 at
47 min in T1DM. The raised insulin levels do not affect glucagon secretion which is still not suppressed.
Similarly, hepatic glucose production is not inhibited properly. In T1DM glucose utilization increases
significantly compared to the former scenario and is slightly faster and has a higher maximum than
TNDM. In T2DM glucose uptake is comparable with the time course of TNDM.

Since the previous paragraphs only present the ensemble-averaged time responses over all subjects
per group, additional single-line plots for each virtual subject are provided in Figs.  A.3 to  A.5 for the
current scenario. Although results are realistic when looking at the whole population, individual signal
courses are subject to a large variability due to the broad range of parameters in the mathematical
model.

Daily-Life Simulation. The last scenario is a 24 h daily-life simulation of all three groups. Each
subject received a 45 g glucose meal after 8 h, a 70 g glucose meal after 12 h, and a 70 g glucose
meal after 20 h, which mimics a typical scenario with three meals a day of different amounts. To
each meal, diabetic patients received an insulin bolus as reported in Table  4.13 . Note that parameters
are time-independent and do not vary over the day as it would be typical in most people. Thus,
the model predictions do not alter with the time of day. Figure  4.14 shows the model outcomes
over 24 h. Effects of the individual meals are linearly superimposed. As can be seen in the rate of
appearance of glucose, three peaks exist at the associated meal times. This leads to a rise in the
glucose concentration in conjunction with increased insulin levels, forced by higher insulin secretion
rates in TNDM respectively external insulin delivery in diabetics. The signal courses of glucagon
concentration and glucose production and uptake are appropriate in terms of the subject group.
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Figure 4.14: Daily-life simulation over 24 h in TNDM (blue), T2DM (red), and T1DM (yellow) subjects.

4.4 Model Evaluation

This section aims to evaluate the behavior of the derived dynamical model and generated virtual
subjects, as this is the basis for subsequent development steps. For that, several measurements and
approved simulation data sets have been selected from available literature, which are being compared
with the outputs of the mathematical model.

The metabolic tests listed in Table  4.14 have been considered for evaluation and are described in more
detail in the following paragraphs. The tests take into account different system parts and dynamics,
whereas the evaluation focuses on responses to meal ingestion as this is the typical scenario in real
life. Since the presented dynamical model is mainly derived from the mixed-meal simulation model
by Dalla Man, Rizza, et al. (  2007 ) and the T1DMS (Dalla Man, Micheletto, et al.  2014 ; The Epsilon
Group  2013 ), results generated by these simulators should be considered for comparison too.

Table 4.14: Experimental data from literature that is used for model evaluation.

Literature Group Test Measurements

Brehm et al. ( 2006 ) and Caumo, Bergman, et al.
( 2000 )

TNDM IMFSIGT Glucose, insulin

Dalla Man, Rizza, et al. ( 2007 ) TNDM Mixed-meal Various substances and fluxes
Dalla Man, Micheletto, et al. ( 2014 ),
The Epsilon Group ( 2013 )

T1DM Mixed-meal Simulation

A. Basu, Dalla Man, R. Basu, et al. ( 2009 ) TNDM Mixed-meal Glucose, insulin, glucagon
A. Basu, Dalla Man, R. Basu, et al. ( 2009 ) T2DM Mixed-meal Glucose, insulin, glucagon
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Figure 4.15: Comparison of measurement data (gray markers) and simulation output (red line) after an IMFSIGT
in the nominal TNDM subject. Note that measurement errors were omitted for better visibility.

IMFSIGT. Two data sets from publications have been considered: data 1, taken from Brehm et al.
( 2006 ), and data 2, taken from Caumo, Bergman, et al. (  2000 ). Both clinical trials fulfilled the same
protocol (Section  2.4 ) on healthy subjects but varying age and body mass. A 0.3 g kg−1 i.v. glucose
load was given at time zero, followed by an insulin injection of 0.03 U kg−1 after 20 min. Glucose and
insulin concentrations in plasma have been sampled frequently. Although recorded time courses in
both studies differ in maximal amplitude, they are, in overall terms, comparable to each other. Data
values and calculated model outputs are shown in Fig.  4.15 . For simulation, the nominal TNDM
subject with 78 kg body weight was chosen and the input signals were defined as given by the protocol.

On the left side of the plot, glucose trajectories are depicted. Data sets are marked by gray symbols
and the simulation output by a red solid line. As can be seen, glucose concentration rises markedly
to a maximal peak of 255 mg dL−1 in data set 1 and to 350 mg dL−1 in data set 2, shortly after
administration of the glucose bolus. The time course of the two data sets is similar with a visibly
stronger decline after insulin injection at 20 min. Computed glucose output matches the peak value of
data set 1. After approx. 75 min the time courses of experiment and simulation do not differ anymore.

The right side of the plot shows the time course of insulin concentration in plasma. Immediately
after the glucose bolus insulin level increases from approx. 20 mU L−1 to 100 mU L−1 in both data
sets. It declines rapidly until the administration of insulin after 20 min, where the concentration
significantly peaks at approx. 514 mU L−1 and falls back to basal level within the next 50 min. The
model overestimates the first pancreatic insulin secretion by factor 2.7, whereas the dynamic is
comparable. The mismatch between experiment and simulation can be explained by the incretin effect.
The insulin response to oral glucose is higher than to i.v. glucose at matching glucose levels (Lindgren
et al.  2011 ; De Gaetano, Panunzi, Matone, et al.  2013 ). Because the model was identified on the basis
of meal data, the incretin effect is thus implicitly included in the model. Since in daily life glucose
is never given intravenously it makes sense to have the model identified by meal data rather than i.v.
measurements and the modeling error can be neglected. However, the simulation closely matches the
time course of insulin concentration after the bolus.
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Figure 4.16: Comparison of measurement data (gray line denotes mean, gray area the standard deviation range)
and simulation output (red line) after an MTT in the nominal TNDM subject. Note that while
glucose rate of appearance was measured during experiment, it is here used as the model input,
neglecting the gastrointestinal tract, and thus, gray and red curves are equal (lower left panel).

Comparison to Meal Simulator. Figure  4.16 shows the interpolated measurement data as reported
in Dalla Man, Rizza, et al. ( 2007 ). The gray solid line depicts the ensemble mean over 204 healthy
subjects receiving a mixed-meal of 1 g kg−1 body weight of glucose. The gray area represents the
standard deviation. Note that plots for insulin secretion and glucagon concentration are not shown
here as they have not been investigated in this clinical experiment. After meal ingestion glucose
appears in plasma with a mean maximum of 9.7 mg kg−1 min−1 after 30 min and declines back to zero
during the experiment (420 min). Although glucose is still absorbed by the blood over that period, the
disturbance to the system is already compensated after approx. 4 h as shown in the upper left axis.
Glucose concentration peaks at 180 mg dL−1 and is distributed over a range of ±30 mg dL−1. The area
shrinks during the experiment and is at ±10 mg dL−1 at the end of the study period. Insulin basal level
is ≈25 pmol L−1 and reaches its averaged maximum of ≈350 pmol L−1 after 30 min to 85 min. Besides
the average curve, the large standard deviation during transition is noticeable, which lies between
138 pmol L−1 to 565 pmol L−1.

The red lines denote simulation output by the nominal TNDM person, who represents the average
virtual population. While the glucose rate of appearance was measured during the experiment, it is
here used as the input to the model and thus, the influence of the gastrointestinal has been eliminated
within the simulation. That leads to better comparability between experimental and calculated outputs.
Hence, the red curve equals the gray one in the lower-left panel. Simulation results follow the reference
signal accordingly within the standard deviation range. Particularly, the important basal levels are
matched reliably. Larger deviations can be observed for the peak area of glucose utilization and during
the recovery phase of hepatic glucose production.
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Figure 4.17: Comparison of T1DMS reference model output (gray line denotes mean, gray area the standard
deviation range) and simulation output (red line) after an MTT in the nominal T1DM subject.

Comparison to T1DMS. Figure  4.17 shows the time course of several signals created by the
T1DMS (Dalla Man, Micheletto, et al.  2014 ). The gray solid lines represent the average time course
over 30 virtual T1DMS subjects and the gray area is the range of the standard deviation. The input
to the model was a 60 g glucose load at the simulation start, lasting for 15 min. Additionally, each
subject received his optimal basal and bolus insulin injection. In general, the simulation outputs are
comparable to those presented in Fig.  4.13 on page  81 . The strong increase in glucose and insulin rates
of appearance after the respective impulse-shaped input are clearly visible and both appearance rates
lead to an elevated glucose and insulin concentration, respectively. As insulin levels rise, endogenous
glucose production is suppressed and glucose utilization is promoted. The disturbance is compensated
within approx. 6 h. As glucose levels fall temporarily below basal level after 6 h glucagon secretion is
initiated to compensate for possible hypoglycemia.

For comparison, the averaged simulation output of the newly defined 100 virtual T1DM subjects is
denoted by red lines. The same input signals have been applied to the simulation. First of all, the
underestimation of the glucose rate of appearance is noticeable. This is mainly due to the simpler linear
model of the gastrointestinal tract in contrast to the highly nonlinear approach that is incorporated
in the T1DMS. However, the time courses of glucose and insulin concentration as well as the rate
of appearance of insulin in plasma match very closely. Small differences occur in the amplitudes of
glucose production and uptake and the glucagon signals, but the simulation shows an overall good
accordance. At last, pancreatic insulin secretion is assumed to be absent in both simulators and is
depicted here for completeness.
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Figure 4.18: Comparison of measurement data (gray markers) and simulation output (red line) after a mixed-
meal in the nominal TNDM subject.
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Figure 4.19: Comparison of measurement data (gray markers) and simulation output (red line) after a mixed-
meal in the nominal T2DM subject.

Meal Test for TNDM and T2DM. The last test case should take into account the postprandial
glucose metabolism in TNDM and T2DM as presented by A. Basu, Dalla Man, R. Basu, et al. ( 2009 ),
where 11 non-diabetic subjects and 14 type 2 diabetics underwent a mixed-meal test (1.2 g kg−1

body weight of glucose) using triple-tracer technique. The recorded glucose, insulin, and glucagon
concentrations are shown in Fig.  4.18 for TNDM and in Fig.  4.19 for T2DM.
In TNDM fasting plasma glucose levels were at 93.6 ± 1.8 mg dL−1 and increased up to a peak of
194.4±12.6 mg dL−1 after the meal (left panel). Fasting insulin concentrations were at 37±6 pmol L−1

with a postprandial peak of 673 ± 126 pmol L−1 at 62 ± 7 min (middle panel). Plasma glucagon
concentrations did not differ between the two groups before the meal (approx. 136 ng L−1) and
increased slightly within the following hour (right panel).
In T2DM fasting plasma glucose levels were higher (163.8 mg dL−1) than in healthy subjects and
increased to a higher peak of 325.8 mg dL−1 after the meal (left panel). Fasting insulin concentrations
did not differ between diabetic (59 ± 9 pmol L−1) and non-diabetic individuals, but peak postprandial
plasma concentrations were lower (382 ± 54 pmol L−1) and occurred later at 156 ± 16 min (middle
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panel). Plasma glucagon concentrations increased more during the first 2 h (right panel), which is in
contrast to the typically induced suppression of postprandial glucagon secretion (Aronoff et al.  2004 ).

For comparison, the simulation outputs of the nominal TNDM and T2DM virtual subjects are plotted
as red lines within the respective figures. The nominal glucose basal values (90 mg dL−1 in TNDM
and 120 mg dL−1 in T2DM) match the measured ones in TNDM and are presumed too low in T2DM.
Despite that, the time course of glucose is similar to measurements but is slightly delayed in TNDM
(peaked 23 min later). Simulated insulin basal values (26 pmol L−1 in TNDM and 60 pmol L−1 in
T2DM) closely match the recorded values. In TNDM, the biphasic time course of the simulated
insulin response is apparent, whereas measurements show a significantly higher peak of 673 pmol L−1.
This single maximum could be explained by the averaging across all study participants. In T2DM,
an increase in insulin concentration is in good accordance within the first 2 h after the meal, but
the simulated maximum is higher with 442 pmol L−1 at 173 min. Simulated glucagon basal values
(126 pmol L−1 in TNDM and 208 pmol L−1 in T2DM) are in accordance with TNDM and are assumed
too high in T2DM. Glucagon secretion is modeled to be inhibited during glucose ingestion in TNDM,
respectively to be less present in T2DM subjects. However, the model cannot mimic the observed
rises of glucagon levels in the postprandial state.

4.5 Models of Glucose Measurement Devices

In Sections  4.1 and  4.2 mathematical models have been built, that, a) represent the dynamical
behavior of the glucose-insulin-glucagon metabolism and b) characterize a virtual subject. Both
models serve as a substitute for the real world. For the development of the metabolic model, only
the solely physiological relationships have been considered so far. The concentrations of various
substances are measurable outputs – and these measurements are subject to technical limitations of
the measurement instrumentation, sensor dynamics, or errors like random noise. To complete the
process of modeling, first, disturbances and errors in the measurement chain must be identified and
quantified. Then, these characteristics must also be incorporated into a mathematical description,
which allows its computational simulation. This kind of “virtual sensor” can be useful for the
development of subsequent algorithms like data filtering or in silico diabetes treatment strategies in
open- or closed-loop scenarios.

The acquisition of two substances is of interest. The concentration of glucose in plasma, G(t), and
the s.c. tissue, GI(t). These quantities can be measured by the patient himself or herself in a daily
routine. Particularly blood glucose values are the basis for treatment decisions (Sections  2.3 and  2.6 ).
Thus, accurate and reliable glucose values play an important role in maintaining glycemic control in
insulin-treated patients (Bergenstal et al.  2005 ). Measurement of insulin and glucagon concentrations
is only feasible in a clinical setting using precise laboratory equipment. Hence, they do not play a role
in a model-based scenario and are not considered any further.
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Table 4.15: Precision reference according to ISO15197:2013 compared to devices used for measuring glucose
concentration: values describe the percentage of measurements that lie within a certain range (in
parentheses), data taken from the International Organization for Standardization (  2013 ), Ascensia
Diabetes Care Deutschland GmbH ( 2016 ), and Dexcom, Inc. ( 2017 ).

ISO15197:2013 Blood glucose sensor Continuous glucose sensor

Manufacturer Ascensia Diabetes Care Dexcom
Product Contour Next G5 Mobile

Correctness for measurement values:

<100 mg/dL 1 95 % (±15 mg/dL) 100 % (±10 mg/dL)
≥100 mg/dL 1 95 % (±15 %) 97.4 % (±10 %)

< 80 mg/dL 2 93 % (±20 mg/dL)
≥ 80 mg/dL 2 93 % (±20 %)

1 applicable to all devices used for BGSM
2 only applicable to Dexcom G5 Mobile

For BGSM devices, the international norm DIN EN ISO 15197:2013 (International Organization
for Standardization  2013 ) is the standard to assess the accuracy of these systems (see the second
column in Table  4.15 for details). It can be assumed that all devices available on the market meet
the requirements (Freckmann, Baumstark, et al.  2014 ). For the BGSM device used later in this
work, namely the Contour Next (Ascensia Diabetes Care Deutschland GmbH  2016 ), system accuracy
according to the manufacturer is listed in the third column of Table  4.15 . Despite the higher precision
of that device, compared to the norm, modeling will rely on the standard in order to stay independent
of any specific device.

For CGM sensors, no such norm exists yet. However, several studies have assessed the accuracy
of these devices, usually compared to reference blood glucose records. A comparison of different
generations of CGM sensors from a single manufacturer can be found in Christiansen, Bailey, et al.
( 2013 ) and Christiansen, S. K. Garg, et al. (  2017 ); benchmarks comparing different manufacturers in,
e. g., Kovatchev, Anderson, et al. ( 2008 ), Boscari et al. (  2018 ), and Freckmann, Link, et al. (  2018 ). For
the CGM device used later in this work, namely the G5 Mobile (Dexcom, Inc.  2017 ), system accuracy
according to the manufacturer is listed in the last column of Table  4.15 . There, the correctness is based
on the percentage of CGM values that differ by ±20 % for glucose values larger than 80 mg dL−1 or
that differ by less than ±20 mg dL−1 for glucose values equal to or less than 80 mg dL−1, compared to
glucose reference values.

As can be seen for all devices in Table  4.15 , measurement errors are not constant over the full glucose
range. Instead, for values below a certain threshold, sensor errors are assumed to be absolute. For
readings above the threshold, errors are relative in terms of the sensor value. This behavior should
also be incorporated into a model.
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Figure 4.20: Modeling glucose measurement devices: the signals GBG and GCG are distorted and noisy repre-
sentatives of the glucose concentration in plasma, G, and in the s.c. space, GI, respectively (upper
panel). Models of the system (lower panel) must take into account physiology (virtual subject, left
side) as well as possible sensor errors and random measurement noise (virtual sensors, right side).

BGSM and CGM devices are affected by measurement errors which can reduce the treatment efficiency
because an under- or overestimation of the true glucose value can lead to incorrect treatment decisions,
e. g., an insulin administration that is too high or too low for the current situation. Sensor models
must mainly consider these errors for realistic in silico studies. Furthermore, the error distribution or
possible correlation between consecutive measured values has to be considered, if necessary. This
complex of problems is shown in the upper part of Fig.  4.20 . Starting from the metabolic system of a
subject (left side), the concentration of glucose in the plasma, G(t), is measured by the BGSM sensor,
and the concentration of glucose within the subcutaneous tissues, GI(t), by the CGM sensor. Both
measuring devices are subject to various sources of errors and additive random measurement noise,
summarized as the environment (right side). The lower panel of the graphic depicts the single parts of
the virtual system: the model of glucose regulation, in which the kinetics between plasma and the s.c.
space is drawn separately. Simulated glucose levels are denoted by G̃(t), respectively G̃I(t), and can
be assumed to be perfectly known. Only the sensor models add uncertainty to the simulated signals,
leading to virtual sensor readings denoted by G̃BG(t) and G̃CG(t).

4.5.1 Model of Blood Glucose Measurement Devices

Consecutive measurements collected from blood samples can be assumed to be uncorrelated due to
the sparse sampling only a few times a day. Furthermore, the error is assumed to be proportional,
i. e., relative, for glucose values greater or equal 100 mg dL−1, and to be absolute for glucose values
below 100 mg dL−1. The error bound is set in such a way that 95 % of all recordings lie within ±15 %,
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Table 4.16: Empirical distribution parameters of BGSM sensor errors for the daily-life scenario.

Group Fraction of data for Min. Max. Data within zσ for

µ < 100 µ ≥ 100 (mg dL−1) (mg dL−1) µ < 100 µ ≥ 100

TNDM 0.696 0.304 83 168 0.963 0.949
T2DM 0.114 0.886 84 209 0.902 0.954
T1DM 0 1 103 192 – 0.952

respectively ±15 mg dL−1. These assumptions match with the allowed error tolerances according to
the International Organization for Standardization ( 2013 ).

Findings in Vettoretti, Facchinetti, et al. (  2017 ) showed that a single Gaussian distribution over the
entire glucose range is not adequate to describe the sensor errors. They recommended dividing the
range into zones of constant absolute and constant relative error standard deviations. For each zone,
a suitable PDF was fitted from measurement data. They suggested an unimodal, positively biased,
and skewed distribution of the relative sensor errors. To keep the BGSM model simple, two zones
are applied here, matching the specifications of the international norm. In both zones, a log-normal
distribution with zero error mean is used (  4.71 ). Variables of the log-normal distribution are computed
by (  4.72 ), where µ would be the current glucose value and σ2 the assumed variance. From the
assumption that 95 % of all measurements lie within the respective range, the 1σ standard deviation is
calculated by

σ =


15
z

for µ < 100 mg dL−1,

0.15
z
· µ for µ ≥ 100 mg dL−1,

(4.84)

where z = 1.96 is the associated z-score of the 95 % tolerance interval 

2
 . From that, a random

measurement error can be generated as part of the virtual sensor. To evaluate the computational
process the daily-life simulation scenario presented in Section  4.3 is considered. The scenario
contains three meals with a duration of 24 h and 1 min sampling time, thus, contains n = 1441 blood
glucose samples (see the upper left plot in Fig.  4.14 on page  83 ). The absolute errors, εabs

i , and the
relative errors, εrel

i , are computed using sensor values, si, and reference values, ri, for measurements
i = 1, . . . , n by

εabs
i = si − ri , εrel

i =
si − ri

ri
. (4.85)

The noise processes εabs and εrel are plotted as histograms in Fig.  4.21 , showing the absolute frequency
for each group. Some statistical properties are reported in Table  4.16 .

2Refer to  https://de.wikipedia.org/wiki/Normalverteilung (last visit 07.05.2021).

91

https://de.wikipedia.org/wiki/Normalverteilung


4 Derivation of the Mathematical Models

−40 −20 0 20 40 60
0

50

100

150

200

Sensor error

A
bs

ol
ut

e
fr

eq
ue

nc
y

TNDM

−40 −20 0 20 40 60
0

50

100

150

200

Sensor error

T2DM

Relative (dimensionless) Absolute (mg/dL)

−40 −20 0 20 40 60
0

50

100

150

200

Sensor error

T1DM

Figure 4.21: Histograms of simulated relative (blue bars) and absolute (red bars) BGSM sensor errors for the
daily-life scenario in TNDM (left panel), T2DM (middle panel), and T1DM (right panel).

As can be seen in the left panel for TNDM subjects, the occurrence of absolute errors is higher than for
the relative ones, indicating more glucose values below the threshold. Column two in Table  4.16 shows
69.6 % of all readings being below and 30.4 % above the threshold µ. For both zones the number of
records within the respective error bounds were computed, which gives 96.3 % within ±15 mg dL−1

for glucose concentrations below 100 mg dL−1 and 94.9 % within ±15 % for concentrations equal or
greater the threshold. Both empirical error bounds are close to the theoretical value of 95 %. For
T2DM, shown in the middle panel, only 11.4 % of all glucose values are below the threshold, visible
in the far lower amplitude. 90.2 % of these values are within the absolute error bounds, whereas
95.4 % of all relative errors lie within the relative error bound. For T1DM, presented in the right panel,
glucose levels did not fall below the threshold, hence, no absolute error can be computed. Relative
errors are within the associated error bound at 95.2 %. The results given above show good accordance
between the empirical and the theoretical error bounds, both for absolute and for relative errors, as
well as for the three subject groups.

One further restriction to mention for BGSM readings is their sparsity. Samples are only taken at a
few time points a day, typically before a meal or during physical activities. Thus, representative time
courses for a patient are not accessible.

In Fig.  4.22 , a representational time course of plasma glucose concentration in the daily-life scenario
is shown for each group. Simulated glucose levels at each sampling point are depicted in black. From
that, the noisy BGSM measurement signal was generated (gray line). The BGSM sensor reading may
significantly deviate from the nominal glucose value, particularly at high levels (e. g., middle panel at
13.5 h where the measured value differs by 42 mg dL−1). Furthermore, 20 samples, picked at random
time points within the 24 h simulation time, are plotted as red crosses. They stand for possible readings
that can be obtained by a patient. However, from these few records, the dynamics of glucose variation
may not be apparent. For example, in the left panel, the first peak between 8 h and 10 h would not be
visible to a patient when only considering the sparse samples.

92



4.5 Models of Glucose Measurement Devices

0 4 8 12 16 20 24
50

100

150

200

250

Time (hour)

G
lu

co
se

(m
g/

dL
)

TNDM

0 4 8 12 16 20 24
50

100

150

200

250

Time (hour)

T2DM

Glucose reference BGSM sensor noise Sparse BGSM samples

0 4 8 12 16 20 24
50

100

150

200

250

Time (hour)

T1DM

Figure 4.22: Time course of simulated reference glucose values (black lines), BGSM sensor readings (gray
lines), and sparsely sampled noisy signal (red crosses) for the daily-life scenario in TNDM (left
panel), T2DM (middle panel), and T1DM (right panel).

4.5.2 Model of Continuous Glucose Measurement Devices

In contrast to blood glucose sensors, continuous glucose measurement devices detect glucose con-
centration in the interstitial fluid with comparably high sampling times of typically 1 to 5 min, which
allows for the first time to monitor the dynamical behavior of glucose in real-time. However, these
devices have several drawbacks (Breton and Kovatchev  2008 ):

A lower precision compared to BGSM devices, with 75 % of all measurement values being
within the ±15 mg dL−1 respectively ±15 % range (Freckmann, Link, et al.  2018 ).
Possible drifts and calibration errors due to unknown or non-modeled physiological effects.
There exists a physiological time lag between the equilibration of glucose in plasma and the
sensor location. Thus, CGM and blood glucose measurements at the same time points cannot be
directly compared. But since CGM records are being used to assess blood glucose values, this
delay must be incorporated. Furthermore, the delay is neither equal across different subjects nor
constant within a single subject over a longer period.

Breton and Kovatchev ( 2008 ) were the first to publish a decomposition of CGM sensor errors to assess
specific characteristics using linear regression, kernel density estimation, and time series analysis. They
identified three major error components: the distribution of sensor readings, the physiological delay,
and the time dependency of consecutive sensor readings. First, from sensor measurements compared
to references the CGM error mean and standard deviation were determined to be 0.76 mg dL−1 and
11 mg dL−1, respectively. These findings correspond to the manufacturer’s specifications listed in the
last column of Table  4.15 for the (close) twofold standard deviation. The histogram revealed a non-
Gaussian distribution and was fitted using the Johnson family. Second, continuous and blood glucose
data were synchronized using a first-order diffusion model to take into account the physiological
delay and also sensor-induced time lags. From the model of subcutaneous glucose kinetics defined in
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Section  4.1.5 , combining Eqs. ( 4.25 ) and ( 4.26 ) leads to the common term

ĠI(t) = −
1
τ

(GI(t) −G(t)) with kg =
1
τ
, (4.86)

with G(t) and GI(t) denoting the concentrations of glucose in plasma and s.c. space, respectively.
Breton and Kovatchev (  2008 ) estimated τ = 5 min, which corresponds to reported values in the
literature (Rebrin and Steil  2000 ; Keenan et al.  2009 ). Hence, the time delay can be estimated when
both, a sufficient number of blood glucose and continuous glucose measurements are available. The
last issue is related to the time dependency of consecutive CGM data values. For that, Breton and
Kovatchev (  2008 ) applied the autocorrelation function (ACF) to compute the correlation of the sensor
error over consecutive time points. Their results showed a highly correlated sensor noise across several
hours. Using the partial autocorrelation function (PACF), it was apparent that all coefficients for
lags greater than 1 were not significant. From that, they concluded that the sensor noise can be best
predicted by a linear first-order autoregressive (AR) model and an additive random white-noise term.
AR models are linear and discrete-time models for stochastic inputs and are used to approximate more
complex processes.

From the findings above, the following model of CGM sensor error is applied:

Glucose in the interstitial fluid is delayed relative to the blood glucose concentration and is
described by the first-order diffusion model in ( 4.86 ).
CGM data from the Dexcom G5 Mobile is sampled at discrete-time points, k, with a sampling
time of 5 min.
The correlated sensor noise, e(k), is described by a first-order AR model driven by a standard
normally distributed noise term, ν(k), given in ( 4.87 ).
CGM sensor noise, ε(k), is not normally distributed. Instead, a distribution from the Johnson
family is chosen to transform signal e(k) given in ( 4.89 ). Parameters are listed in Table  4.17 .

The general description of a discrete-time AR model of order p with stochastic input ν(k) is given by

e(k) = b0ν(k) +
p∑

i=1

aie(k − i), (4.87)

ν(k) ∼ N (0, 1) .

The output signal e(k) is driven by the noise term ν(k), normally distributed with zero mean and
unit variance, which may be weighted by the factor b0, and p preceding output signals, where
ai, i = 1, . . . , p are the weight factors. This process is also known as an infinite impulse response (IIR)
filter applied to the white-noise process ν(k), which is drawn from the same time-independent standard
normal distribution, independent of previous errors (i.i.d, independent and identically distributed).
Specifying the order p = 1, coefficients b0 = a1 = 0.7 (Breton and Kovatchev  2008 ) and applying the
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Figure 4.23: Averaged partial autocorrelation function of the simulated CGM sensor noise (lag interval of

5 min). 95 % confidence bounds are plotted as red dashed lines.

Johnson transformation to the error e(k) leads to

e(k) = 0.7 (ν(k) + e(k − 1)) , (4.88)

ε(k) = ξ + λ sinh
(
e(k) − γ

δ

)
, (4.89)

where ε(k) is the CGM error noise process.

The model of CGM error was applied to the daily-life scenario on 100 virtual subjects to confirm
the results. Therefore, CGM noise was added to the nominal glucose signal G̃I(t). Note that the
diffusion model ( 4.86 ) has already been incorporated into the model of virtual subjects, also including
representative ranges for τ respectively kg. From the noisy measurements, PACF was computed and
plotted in Fig.  4.23 . The blue bars represent the average partial correlation coefficients for the last 20
samples, where each lag represents a period of 5 min; the error bars show the maximum deviations.
The coefficient for the current sample point (lag 0) is generally one, the averaged empirical PACF
coefficient at lag 1 is 0.68 ± 0.05, which is close to the specified value of 0.7. All coefficients greater
than the first lag are close to the 95 % confidence intervals, depicted as red dashed lines. To determine
if the manufacturer’s confidence bounds are met by the noise process, noisy CGM data was matched
with its noise-free blood glucose values, and the relative error between the pairs was calculated for
each virtual subject. Results show that 93 ± 4 % of all samples (288 for each subject) have a relative
error within ±20 %, which corresponds to the manufacturer’s specifications (Table  4.15 ).

A representational time course of the reference s.c. glucose concentration (black lines), the interpolated
CGM sensor noise (continuously plotted lines in gray), and the frequently sampled data points (blue

Table 4.17: Johnson parameters of the CGM error distribution (taken from Breton and Kovatchev ( 2008 )).

Parameters Family type λ ξ δ γ

Values Hyperbolic sine transfor-
mation (unbounded)

15.96 −5.471 1.6898 −0.5444
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Figure 4.24: Time course of simulated reference s.c. glucose values (black lines), CGM sensor noise signal
(gray lines), and frequent samples (blue dots) for the daily-life scenario in TNDM (left panel),
T2DM (middle panel), and T1DM (right panel).

dots) are shown in Fig.  4.24 for each group. From the CGM signal the dynamical time course of s.c.
glucose concentration is now clearly visible. Hence, compared to sparse blood glucose measurements
only, much more information is presented, but also larger sensor noise is added.

4.6 Summary and Conclusion

Mathematical models of glucose-insulin-glucagon regulation and virtual subjects have been presented.
They are summarized in Section  A . The dynamical model is based on published physiological models
derived from clinical data. It consists of 19 nonlinear differential equations reflecting the physiologic
knowledge about glucose metabolism in the human body. The model is capable of simulating the
time course of glucose, insulin, and glucagon concentrations, as well as various other metabolic fluxes
during a meal test. The existing modeling approaches have been unified, which allows a consistent
description of the metabolic processes independent of a specific type of diabetes.

Three different groups were considered here: TNDM subjects, T2DM patients with altered metabolic
processes, and T1DM subjects in which some control regulations are completely absent. These virtual
population models have been generated from published data, that reflect the statistical relationships
within the groups. These include mean values, variances, the correlation between parameters, and their
underlying distribution. As not all variables have been fully defined in the literature, some of them had
to be identified from measurement data in good accordance. Each virtual subject is characterized by a
state vector that determines the current metabolic state and a parameter vector that characterizes the
health status in a long-term manner. Although the latter is created by a multivariate random process,
each population and each subject within show a feasible performance.

Several simulation studies showed a stable steady-state behavior and a physiologically interpretable
and meaningful response to single meal ingestion, insulin administration, and daily-life scenarios. The
derived dynamical model and the models of virtual subjects were evaluated against measurement data
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from several clinical studies, including standard tests such as IVGTT, IMFSIGT, and the more natural
mixed-meal tolerance test. The performance of the simulated populations essentially reflects measured
data in all test cases. Nevertheless, further enhancements can be expected when suitable parameters of
the virtual subjects are identified from individual measurement data as explained in Section  6.2 .

To obtain more realistic measurement readings from within the simulation environment, also sensor
errors were integrated from standardized norms and available models from the literature. Two sensor
types for glucose measurement were incorporated: one to describe random errors from sparse blood
glucose measurements and one that takes into account the non-white, non-Gaussian, time-dependent,
and dynamical sensor errors that arise from consecutive measurements of subcutaneous glucose
concentration. Rigorous modeling of imperfect sensor data allows the in silico development of
diabetes treatment strategies that may be more robust under realistic conditions. Furthermore, an error
model is a helpful tool for online state estimation and will be discussed in Section  6.3 .
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After derivation of the dynamical model of glucose regulation (Section  4.1 ) and the model of virtual
subjects (Section  4.2 ), the question arises which states and parameters can be theoretically determined
from observations of a particular output. Two different techniques are introduced here: First, the
statistical approach of global sensitivity analysis, which treats parameters of a nonlinear system as
stochastic input variables (Section  5.1 ). Second, the controllability and observability of states, taking
into account the internal structure of a linear system. This method can be extended by the concept
of empirical Gramians that allows their application on nonlinear systems, too (Section  5.2 ). The
identified influence of certain parameters respectively states on the model outputs is then the basis for
subsequent model identification and state estimation procedure (Chapter  6 ).

5.1 Global Sensitivity Analysis

Parameters identified from experimental data are often subject to a high degree of uncertainty. To be
able to deal with these uncertainties, sensitivity analysis (SA) techniques can be used to quantify the
influence of parameters on model quality. SA is widely used in systems biology (Marino et al.  2008 ;
Sumner et al.  2012 ) or environmental modeling (Pianosi et al.  2016 ). One key area is to identify those
input factors that contribute most to the variation in the model output.

When the model equations are too complex to calculate sensitivities analytically by partial derivatives,
some sampling-based methods can be applied in which an appropriate number of samples within the
input space is taken to estimate the sensitivities numerically.

In contrast to local SA where input factors are only excited within a small range around the nominal
value, global SA techniques investigate the effects of simultaneous parameter variations over the entire
feasible ranges. This allows the handling of nonlinearities and interactions between input factors.

When the model output is scalar, e. g., an aggregated statistical information, a set of quantitative
sensitivity indices describes the variance in that output induced by variation of its input factors.
However, in biomedical systems often the dynamic behavior over time is of interest. Thus, the model
outputs are functions of time, and consequently, sensitivity indices are also time-dependent. This
provides information on how influential parameters are at certain time points.

As an alternative, scalar features can be derived from the model output, and the indices can be
calculated thereof. First proposed by K. Campbell et al. ( 2006 ) and applied to biological systems by
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Sumner et al. (  2012 ), functional principal components (FPCs) seem to be a helpful method to convert
vectorial model outputs into an alternative format. It aims to transform functional data into a set of
basis functions that represent the most important features in the output. Afterward, a standard SA
method can be applied to the coefficients of the FPCs to identify the most relevant factors.

In addition to questions such as local or global SA or qualitative and quantitative SA, computational
considerations also play a role. Particularly in biological systems, many parameters are involved
that require efficient algorithms. Since quantitative techniques are computationally expensive, the
approach presented here is a multi-step SA using a screening technique, a parameter reduction, and a
subsequent quantitative SA.

First, some basic considerations are made as described in the next section. Then, Sections  5.1.2 

to  5.1.4 explain the aforementioned methods in detail, whereas Section  5.1.5 describes the multi-step
approach. Section  5.1.6 defines an overall sensitivity index taking into account the importance of an
input factor with regard to its associated FPC. The results obtained by the multi-step approach are
reported in detail in Section  5.1.7 . Last, as sampling-based sensitivities are not computed exactly,
some robustness and convergence deliberations about the estimates are illustrated in Section  5.1.8 .

5.1.1 Experimental Setup

Basic considerations include which variables to be subject to the SA techniques, the values of those
factors that are kept fixed throughout SA, the definition of the model output, and a proper representation
of the input space, regarding the variation within a feasible range, the number of samples, and the
sampling scheme (Section  3.2 ).

Here the input variability space is defined by the physiological range of the parameters in each group.
Means were set to the average subject in each group and the range to ±35 % of the corresponding
nominal value. In Section  4.2.3 the process of generating virtual subjects has been presented and the
same algorithm can be applied here to randomly pick a new set of valid parameters. This has also the
advantage that distribution and covariance between parameters are correctly considered.

As mentioned before, two different SA techniques are considered here. The computational fast
Elementary Effects Test (EET) for screening purposes (Section  5.1.2 ) and variance-based sensitivity
analysis (VBSA) for a quantified sensitivity index (Section  5.1.4 ).

The model must be evaluated against sampled input combinations which can be expressed by

y = f (X), (5.1)

where y is the scalar output and X a matrix of K input factors also referred to as parameters. The
dynamical model consists of several model outputs: glucose concentration in plasma and the subcuta-
neous space, and additionally, concentrations of insulin and glucagon in plasma. The most valuable
measurement quantity is the amount of glucose in the subcutaneous tissue since these values can
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Table 5.1: Experimental setup for the multi-step sensitivity analysis approach.

Properties EET VBSA

Scenarios STS, OGTT, MTT, IBO MTT

#Input factors K = 35 (TNDM, T2DM),
K = 28 (T1DM) K = 10

Sample size r = 100 n = 20 000

#Evaluations per
scenario

r(K + 1) = 3600 (TNDM, T2DM),
r(K + 1) = 2900 (T1DM) n(K + 2) = 240 000

Computational time
per scenario1

18 min (EET) +
10 min (FPCA)

24 h (VBSA) +
150 min (FPCA)

1 4 cores at 3.6 GHz parallel, 32 GB RAM.

be taken by the patients themselves at considerably high sampling rates. Furthermore, this signal is
similar to blood glucose but contains one more model parameter that might be important. Insulin
and glucagon outputs are only measurable in a laboratory and not in a daily routine. Thus, they are
seldom used for treatment decisions and are no longer considered here. Hence, only one model output
is observed in the subsequent steps.

The entire procedure is carried out for the three groups and in various scenarios: for screening, four
settings were chosen to reflect specific aspects of daily life. Likewise, they excite several parts of the
model, so parameters are revealed that are more or less active during the discussed situations. A steady-
state (STS) and a meal ingestion (MTT) scenario with 75 g of carbohydrate intake in combination
with an additional insulin bolus at mealtime in T2DM and T1DM was performed. The first one is
assumed to reveal factors for maintaining basal state, the latter is used to show parameters mainly
connected to the digestive tract and the glucose regulation processes. The third scenario (OGTT)
equals the second one but omits the insulin bolus in order to discriminate insulin effects. The three
settings are equal to the simulation scenarios introduced in Table  4.13 . In the last one, only an insulin
bolus (IBO) is administered, allowing parameters to be separately determined that are only related to
insulin processing. Table  5.1 summarizes some important adjustments. For VBSA, only one scenario
was chosen that reflects the common daily life situation. This is the meal ingestion case for TNDM,
including an additional insulin bolus at mealtime for T2DM and T1DM. Depending on the SA method
used, n parameter sets are sampled and the model is evaluated for each sample.

5.1.2 Factor Screening and Ranking

The Elementary Effects Test or method of Morris is a multiple-start global SA that uses a One-At-a-
Time (OAT) sampling scheme (Morris  1991 ). In this procedure, parameters are sequentially deflected
around their nominal value by finite differences one at a time. This is basically a local technique, but
if executed r-times with different parameter configurations it becomes a multiple-start method, and
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the aggregated individual sensitivities can be taken as a global measure. To determine the r different
samples, the radial-based design presented by Campolongo, Saltelli, and Cariboni ( 2011 ) is used as it
can be shown that it provides several advantages in terms of efficiency and integration with subsequent
SA techniques. For the i-th input factor its sensitivity index µ?i is calculated by

µ?i =
1
r

r∑
j=1

∣∣∣∣EE( j)
i

∣∣∣∣
=

1
r

r∑
j=1

∣∣∣∣∣∣∣∣
f
(
X̄( j)

1 , . . . , X̄( j)
i + ∆

( j)
i , . . . , X̄( j)

K

)
− f

(
X̄( j)

1 , . . . , X̄( j)
i , . . . , X̄( j)

K

)
∆

( j)
i

ci

∣∣∣∣∣∣∣∣, (5.2)

where EE( j)
i is the elementary effect of input factor i at point j, r is the number of grid points, ∆( j)

i is
the perturbation, and ci a scaling factor to deal with different units of measurements (Sin et al.  2009 ).
In the case of a non-monotonic model the absolute values of an elementary effect must be used to
avoid that effects of opposite signs cancel each other out (Campolongo, Cariboni, et al.  2007 ). The
standard deviation for each input factor is given by

σi =

√√√
1

r − 1

r∑
j=1

(
EE( j)

i − µ
?
i

)2
, (5.3)

and describes nonlinear effects and interactions between factors.

The computational cost to derive both sets is r (K + 1), with r = 100 sampling points and K = 35
(TNDM, T2DM) respectively K = 28 (T1DM) factors, which is much lower than for variance-based
methods (Table  5.1 ). The number of samples is consistent with general findings in Pianosi et al.
( 2016 ), where r is typically set between 10 and 100, where a larger number increases the possibility of
stabilizing factor ranking. The results can be found in Section  5.1.7.1 on page  109 .

5.1.3 Transforming the Functional Model Output

The model output is a time series from which the dynamic behavior of the system can be investigated.
From that, any SA technique can be applied at each time point to produce a set of time-dependent
sensitivity indices that provides insights into those factors that are influential at particular times
(Section  5.1.7.2 ). They can also be integrated over time to identify important parameters in terms of
the entire time course of the model output.

An alternative is to define a scalar set of features like the maximum concentration of a substance
or the period of oscillations and apply an SA method to these factors. Identifying a scalar feature
can be difficult as it is not always clear which is suitable to represent the output. Thus, a method
proposed by K. Campbell et al. ( 2006 ) and applied to biological systems by Sumner et al. ( 2012 ) is
adopted. Functional principal component analysis (FPCA) is a popular multivariate analysis technique
to extract information from functional data (Ullah et al.  2013 ). It is used to reduce the dimension
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of a set of observations keeping as much of the variation in the data as possible. The methodology
aims to transform the functional output into an appropriate coordinate system, i. e., in terms of an
appropriate set of basis functions, followed by an SA of the coefficients of the expansion. The new
basis set should be able to capture the most important features of the output. An SA technique of
choice then identifies parameters that are important to generate these features in terms of triggering the
associated model behavior. Transforming the output into a new basis system raises the question of what
coordinate system to choose as this is highly problem-specific. Fixed basis functions such as orthogonal
polynomials, Haar functions, or wavelets have a consistent fundamental shape across problems and
the variability only affects coefficients but may spread the description of simple features across many
terms. Data-adaptive basis functions such as principal components and partial least-squares usually
concentrate information in the first few terms. Data-driven basis functions are problem-independent
and are based on the variation in the data and not on what is believed to be important. A detailed
investigation of functional data analysis methodologies can be found in Müller ( 2008 ).

FPCA extends the concept of principal component analysis (PCA) to functional outputs. Geometrically,
PCA corresponds to a coordinate rotation that maximizes the sample variance, which can be achieved
by finding the eigenvectors of the sample covariance matrix. Roughly spoken, one searches the
empirical orthonormal basis function that “best fits” the functional data. The first principal component
is thus the direction for which the orthogonal projection of the data points has the largest range. The
second PC is then the direction orthogonal to the first PC for which the data points have the second
largest range, and so forth.

Taken the aspects above, the functional model output y j(t), j = 1, . . . , n for a set of n model evaluations
can be expanded by an appropriate set of basis functions Ψ(t) =

[
ψ1(t), . . .

]
such that

y j(t) = ȳ(t) +
∑

l

d jlψl(t), for j = 1, . . . , n, (5.4)

where ȳ(t) is the mean function across all realizations y j(t). Different aspects or features of the model
outputs are represented by the basis functions ψl(t) and the scalar coefficients d jl of the expansion,
which weight the basis function for each model output. Their importance is determined by the fraction
of variance in the original data accounted for by each FPC. Coefficients d jl for each observation j and
each FPC l in ψl(t) determine the optimal fit to the function y j(t) and can be used as a representative
for a subsequent sensitivity analysis. Details can be found in Ramsay et al. ( 2009 , Ch. 9.4.5),
computational considerations in Fan ( 2015 ). The results can be found in Section  5.1.7.1 on page  110 

for the EET and in Section  5.1.7.2 on page  120 for the VBSA.

5.1.4 Variance-based Sensitivity Analysis

Variance-based sensitivity analysis (VBSA) belongs to a class of global sensitivity analysis techniques
that relies on three assumptions: that input factors are stochastic variables, that the induced variance in
the model output can be seen as an approximation of the output uncertainty, and that the influence of
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a particular input factor to the output variance is a measure for sensitivity. VBSA is used in a wide
range of applications. It is independent of a specific model description and quantitatively assesses the
impact of model inputs (Homma et al.  1996 ; Saltelli, Annoni, et al.  2010 ; Iooss et al.  2015 ).

Derivation of Variances from Model Output. Given a general model of the form

Y = f (X1, X2, . . . , XK), (5.5)

with K uncertain input factors summarized in X. The variance in the model output Y related to a
variation of all input factors is VarX {Y}, where subscript X denotes that all Xi were allowed to vary. It
is now investigated to what extent the variance is reduced when the uncertainty in one input factor
is removed by fixing it at a specific value. If the reduction in the output variance is large, it can be
assumed that factor Xi is important in determining the output variation.

The variance after fixing the i-th factor Xi at its true value can be expressed by the conditional variance

VarX∼i

{
Y | Xi = x?i

}
, (5.6)

where subscript X∼i denotes the matrix of all factors but Xi. As the true value x?i is not known, the
expectation value over the conditional variance is built, which gives

EXi

{
VarX∼i {Y | Xi = xi}

}
. (5.7)

That means, the smaller the expected value is for all possible Xi, the greater the influence of this factor
on the model output variance.

From the law of total variance (Schmidt  2011 ), the unexpected variance Var {Y} is given by

Var {Y} = VarXi

{
EX∼i {Y | Xi}

}
+ EXi

{
VarX∼i {Y | Xi}

}
, (5.8)

where Var {E {Y | Xi}} is also known as the variance of conditional expectation.

Sobol’ ( 1993 ) provided a Monte-Carlo variance-based method to efficiently compute the individual
factor importance and also the effects of higher-order, i. e., interactions between parameters. It is based
on the decomposition of the model ( 5.5 ) into a set of functions of increasing dimensionality:

f (X1, . . . , XK) = f0 +
∑

i

fi(Xi) +
∑

i

∑
j>i

fi j(Xi, X j) + · · · + f12...K(X1, . . . XK). (5.9)

This expression has 2K summands. If f is square-integrable over ΩK , the K-dimensional unit hyper-
cube of K input factors,

ΩK = (X | 0 ≤ Xi ≤ 1; i = 1, . . . ,K) , (5.10)
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the expansion is unique if f0 is constant and if each term in the expansion above has zero mean, i. e.,∫
f (Xi) dXi = 0. From that, these terms can be calculated uniquely using the conditional expectations

of the model output Y . In particular,

f0 = E {Y} , (5.11)

fi(Xi) = EX∼i {Y | Xi} − E {Y} , (5.12)

fi j(Xi, X j) = EX∼i j

{
Y | Xi, X j

}
− fi(Xi) − f j(X j) − E {Y} , (5.13)

and similar for higher orders. The total variance of f (X) can be written as

Var {Y} =
∫
ΩK

f 2(X) dt − f 2
0 , (5.14)

which can be decomposed as well:

Var {Y} =
∑

i

Vari {Y} +
∑

i

∑
j>i

Vari j {Y} + · · · + Var12...K {Y} . (5.15)

This equation is also known as the ANOVA-HDMR decomposition (Saltelli  2008 , p. 162). Dividing
both sides of ( 5.15 ) by Var {Y} leads to the so-called Sobol’ indices defined by

1 =
∑

i

S i +
∑

i

∑
j>i

S i j + · · · + S 12...K , (5.16)

where S i are the first-order indices, also called main effects. Thus, the contribution of each single
factor to the output variance. The summands in ( 5.15 ) can be derived by calculating the variance of
the elements in ( 5.12 )-( 5.13 ):

Vari {Y} = Var { fi(Xi)} = VarXi

{
EX∼i {Y | Xi}

}
(5.17)

Vari j {Y} = Var
{
fi j(Xi, X j)

}
= VarXiX j

{
EX∼i j

{
Y | Xi, X j

}}
− VarXi

{
EX∼i {Y | Xi}

}
− VarX j

{
EX∼ j

{
Y | X j

}}
. (5.18)

Dividing ( 5.17 ) by the total variance leads to the first-order indices given by

S i =
VarXi

{
EX∼i {Y | Xi}

}
Var {Y}

. (5.19)

Equation ( 5.16 ) also defines interactions between factors by indices S i j, with i , j, that are not
explained by the sum of the first-order effects of Xi and X j. Although interactions represent important
features of models (Saltelli  2008 , p. 161), the number of indices grows exponentially with dimension K.
For computational reasons, it is often sufficient to compute the first-order indices only, and the total-
order indices which were introduced by Homma et al. ( 1996 ). The total effect index represents the
whole contribution of the input factor Xi to the output variance, i. e. the first-order effect and all
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higher-order effects driven by interactions. Total indices are useful as they contain information on the
non-additive features of a model that is visible in the difference between main and total effects. When
fixing a factor to an arbitrary value within its input space and the output variance is not affected by
this factor then it is non-influential and its total index is zero. The total effects can be calculated by
decomposing the output variance again but respecting all factors but one, denoted by X∼i. One gets:

Var {Y} = VarX∼i

{
EXi {Y | X∼i}

}
+ EX∼i

{
VarXi {Y | X∼i}

}
, (5.20)

where Var {Y} − VarX∼i

{
EXi {Y | X∼i}

}
is the remaining variance of Y that would be left, if X∼i could

be fixed to its true values. The outer expectation is the average over all possible combinations in X∼i,
as the true values are not known. Dividing by the total variance, Var {Y}, the total-order index for Xi is

S Ti =
EX∼i

{
VarXi {Y | X∼i}

}
Var {Y}

= 1 −
VarX∼i

{
EXi {Y | X∼i}

}
Var {Y}

. (5.21)

There are some properties of the Sobol’ indices worth mentioning. From ( 5.16 ) the sum over all
indices of all orders is equal to 1 and the sum of the first-order effects S i ≤ 1. The difference between
S i and S Ti indicates to which extent a variable interacts with any other input factor. Lastly, the sum
over all S Ti will be typically higher than 1 as interactions are counted multiple times. It is equal to 1 if
the model would be perfectly additive.

The results are discussed starting in Section  5.1.7.2 for the time-varying sensitivities on page  117 and
on page  120 for the indices computed for each functional principal component.

Numerical Computation. Computing the first- and total-order indices derived above can be done
numerically using Monte-Carlo simulations. To reduce the computational cost to derive all effects,
Saltelli and Tarantola ( 2002 ) suggested calculating the total-order indices together with the first-order
indices for an additional cost of n model runs. Therefore, they generated two n by K matrices A and
B of random input samples a ji and b ji, respectively, where index j runs from 1 to n, the number of
samples, and i runs from 1 to K, the number of input factors. From that, the matrix A(i)

B is constructed,
where all columns are from A except the i-th column, that is from B. The model is then evaluated
n + n times for matrices A and B, plus K · n for the matrices A(i)

B . Thus, the total computational cost is
n (K + 2). For the simultaneous estimate of the indices, Jansen’s formula is used (Jansen et al.  1994 ;
Jansen  1999 ), which is also proposed as best practice (Saltelli, Annoni, et al.  2010 ). The first-order
indices are computed as

S i = 1 −

1
2n

∑n
j=1

(
f (B) j − f

(
A(i)

B

)
j

)2

1
n
∑n

j=1

(
f (A) j

)2
− f 2

0

, (5.22)
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where

f 2
0 =

1
n

n∑
j=1

f (A) j


2

is the ensemble mean over the outputs in A, and f (·) is the scalar model output with respect to the
various input matrices. Similarly, the total-order effects can be estimated by

S Ti =

1
2n

∑n
j=1

(
f (A) j − f

(
A(i)

B

)
j

)2

1
n
∑n

j=1

(
f (A) j

)2
− f 2

0

. (5.23)

Typical values for n range from a few hundred to thousands or even more (Saltelli  2008 , p. 164).

5.1.5 Concept of the Multi-Step Sensitivity Analysis

The model of glucose regulation has a large number of parameters. Moreover, the model output
is a function of time that cannot be handled by standard methods for sensitivity analysis, which
require scalar outputs. To overcome these issues, the single methodologies introduced so far have
been integrated into a multi-step SA algorithm, presented by Tolks, Ament, and Eberle (  2020 ). This
approach allows a) a computational fast screening of a large parameter space in order to identify
candidates for subsequent analysis, b) offers a solution for dynamical models by using FPCA that
aggregates the functional outputs to a small set of scalars, from which c) quantitative indices can
be computed by a variance-based analysis method, providing an overall sensitivity measure. The
multi-step approach is depicted in Fig.  5.1 and includes the following items:

1. The whole parameter set is sampled using an appropriate sampling technique (1) and the
Elementary Effects Test (2) is carried out for screening (Section  5.1.2 ). As the model output is
not a scalar, FPCA is used to explain the variance in the output with a minimal set of orthonormal
basis functions (3, Section  5.1.3 ). For each of the principal components, the elementary effects
can then be calculated (4).

2. From that, only factors with a high EE are chosen. Thus, only a reduced parameter set is used
for the following steps (5).

3. The main sensitivity analysis is fulfilled using a VBSA technique (Section  5.1.4 ) with an
appropriate representation of the input space (6). Again, the model must be evaluated for all
generated samples (7). Sensitivity indices are calculated at each time step (8) of the functional
output and provide insights into the dynamics of the indices during the entire time course.

4. Moreover, the output variance can be described by a set of basis functions and their associated
coefficients (9). For each component, VBSA is fulfilled (10), resulting in the first-order and
total-order effects (11).

5. From the indices for each PC the overall sensitivities provide an aggregated scalar representation
of the global importance of a factor (12, Section  5.1.6 ).
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Figure 5.1: Proposed workflow illustrating the multi-step SA, which combines screening, parameter reduction,
and quantitative SA to derive time-dependent and overall sensitivity indices.

5.1.6 Overall Sensitivity Indices

Elementary effects and quantitative indices presented in Section  5.1.2 respectively Section  5.1.4 are
scalar representations derived from techniques that are based on a scalar model output. Including
FPCA to reduce the time-dependent model output to a set of scalar scores for each functional principal
component results in a set of indices for each FPC. To obtain an overall importance measure, results
are weighted by their associated fraction of variance explained, FVE, which means, the contribution
of each FPC to the total variability in the output.

The overall mean elementary effect, µ̄?i , is defined by

µ̄?i =

q∑
h=1

µ?(h)
i · FVE(h), (5.24)

where µ?(h)
i is the elementary effect of parameter i, derived from the h-th out of q functional PCs.

The overall main effect S̄ i and the overall total effect S̄ Ti are defined by

S̄ i =

q∑
h=1

S (h)
i · FVE(h), (5.25)

S̄ Ti =

q∑
h=1

S (h)
Ti
· FVE(h), (5.26)

where S (h)
i respectively S (h)

Ti
are the sensitivity indices of the i-th input factor associated with the h-th

FPC. This is a measure for the overall first-order respectively total-order effect of factor i on the
model output, weighted by the relative importance of its FPC. As the variance described by the FPCs
decreases quickly, the first q components already provide a good approximation of the overall indices.
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5.1.7 Results and Discussion

The Elementary Effects Test and the variance-based technique, both in extension with functional
component analysis, were applied to the model of glucose-insulin-glucagon regulation. After the
generation of the sampling matrix, the model was evaluated for each input configuration. The
sensitivities for both techniques were calculated from the scalar scores of the derived functional
principal components.

This procedure was fulfilled for different scenarios listed in Table  5.1 on page  101 . For EET, four
scenarios were considered to get an overall view of the input factors when different model parts are
active. During VBSA, only the meal ingestion scenario was taken into account since this is the most
common in daily life.

5.1.7.1 Screening

Visual Inspection. To get a first overall view of the influence of all parameters the model was
separately evaluated for each single input factor with r = 25, which leads to 2r · K model runs. That
allows a visual inspection of the variability in the output if only one single parameter is perturbed
and any others are fixed at their nominal values. It gives hints on factors that have to be investigated
further. The results for each group are reported in Figs.  B.1 to  B.3 for only the MTT scenario:

An inspection of Fig.  B.1 for TNDM reveals parameters kG2,VG, k1, k2,m5,m6, β,Gb, and Ib to
induce the most variance to the output. From those, Gb seems to shift the whole time course
vertically, whereas m6 determines the shape when glucose decreases back to basal. Parameters
k1 and k2 mainly influence the rise of glucose after the meal. The other factors determine falling
glucose values after the peak to a lesser extent.
For T2DM shown in Fig.  B.2 , the most influential factors are similar to those in TNDM.
Some parameters like Ib, S b

G and m5 seem to add extra variance in steady-state. Furthermore,
parameters related to insulin absorption ki1 . . . ki3 do not have a visible influence on the output.
Results for T1DM are given in Fig.  B.3 . As not all parameters are present in this group the
respective axes were left empty. Besides Gb and VG, both directly related to glucose levels,
parameters ki1 . . . ki3 add variability to the time course, particularly when glucose decreases
after the peak. Furthermore, kp2 and Vmx seem to increase variance over a prolonged time.

A visual inspection of the influence of single factors can only be a starting point for subsequent
analysis using EET and VBSA techniques.

Elementary Effects Test. EET was applied for the whole set of independent parameters. That
is K = 35 for TNDM and T2DM, while in T1DM K = 28 as some parameters are always assumed
to be zero in the insulin secretion parts of the model (Section  4.1.8 ). Suggestions about the number
of repetitions range from r = 10 (Campolongo and Saltelli  1997 ) to 25, which was shown to be
sufficient for screening purposes, but not enough to stabilize factor ranking (Pianosi et al.  2016 ). A

109



5 Systems Analysis

robustness and convergence analysis was carried out and revealed that a discrimination between the
first ten and any other input factors is possible for r ≥ 30 and further stabilization occurs until r = 100
(Section  5.1.8 ). Thus, to be on the safe side, r was fixed at 100 for all investigations, although it raises
the computational cost from ≈5 min to 28 min for each scenario.

Figure  5.2 shows the mean functions including standard deviation for all groups and considered
scenarios. The first row shows the two cases for TNDM, whereas the second and third rows depict the
cases for T2DM and T1DM, respectively. The output signal is always the concentration of glucose in
the subcutaneous space.

In steady-state, there is no input to the system, except for T1DM, where basal insulin is given in
order to guarantee a stable behavior. A deviation of the parameters from their nominal values
leads to a dynamical reaction in which a new balanced state will be reached.
Given a meal of 75 g of glucose plus an additional insulin bolus of 1.5 U CU−1 in the diabetic
subjects leads to the transient behavior as shown in column 2. In TNDM, the variance around
the mean function is smaller than in the other groups. In T2DM, an undershoot below basal
glucose concentration can be seen.
The OGTT is the same as the meal test in case 2, except that no insulin bolus was given. In both
diabetic groups, variance does not differ significantly but mean functions increased slightly in
T2DM and highly in T1DM.
The IBO scenario reveals that the model is stable under mild hypoglycemia. A clear descent
in glucose levels is visible with a higher variance in T2DM which could be an indicator for
mechanism active to better compensate for lowering glucose levels.

In the following, only the most common MTT scenario is further investigated.

Functional Principal Components. To extract more information from variations in the model
output functional principal components were calculated using the PACE toolbox (Fan  2015 ). Compu-
tation in each group and scenario took around 10 min. The resulting FPCs are plotted in the upper
panels of Figs.  5.3 to  5.5 for TNDM, T2DM, and T1DM, respectively. As the interpretation of these
time-courses is not always straightforward it is convenient to plot the average function of the output
sample plus and minus some multiples of the FPCs (Ramsay et al.  2009 ), too. These plots are given in
the lower panels of the same figures.

In TNDM (Fig.  5.3 ), the first three principal components account for 99 % of the variability in the
glucose s.c. signal. It indicates that these components are enough to describe the major variance in the
data. All FPCs start from zero suggesting that there is no variance at the simulation start.
The first PC accounts for 76 % of the variance. It is positive over the whole time course with a peak
after 3 h and a steady-state value different from zero after the transient behavior. That means this FPC
shifts the glucose signal vertically with the greatest increase at peak time. This is better visible in the
bottom panel of the first FPC. At the beginning, no variance is added to the mean function but with
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Figure 5.2: Ensemble mean functions (black lines) and standard deviation (gray area) of s.c. glucose model
output for all considered groups (rows) and scenarios (columns).

ongoing time the concentration is shifted up and down over the entire course. A single model run
with a high related score results in a higher-than-average time course and a higher steady-state value,
whereas runs with negative scores will value smaller.
The second FPC still accounts for 14 % variance and is positive within the first two hours, then it
decreases to a negative steady-state. Positive scores on this FPC mainly induce a faster fall in glucose
concentration after meal ingestion and a lower-than-average glucose level at steady-state. This is also
supported when observing the mean function in the bottom panel of this FPC. Furthermore, as its
values vanish to zero only a little variance is added in steady-state.
The third FPC describes 9 % variance in the data with a positive course within the first hour and
negative values after 2.5 h shrinking back to zero in steady-state. Its main effect appears during glucose
changes after a meal. Thus, higher scores on this FPC generate faster rises and falls in glucose levels
and higher peaks, too.

In T2DM (Fig.  5.4 ), the first three FPCs account for 99 % of the total variance which is portioned to
82 %, 13 %, and 4 % for the first, second, and third FPC, respectively. They can be analyzed as shown
for the TNDM group.
The first FPC starts at zero and is positive but its time course has a delayed peak and the decrease to
steady-state is prolonged. However, after a rise within the first four hours, it declines steadily but does
not reach a stable value within simulation time. Pointing to the mean function below the FPC mainly
adds the same amount of variance after the glucose concentration peaked.
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Figure 5.3: First three functional principal components (FPC) of glucose model output (upper panels) and mean
function plus and minus multiples of each FPC (lower panels) for TNDM.
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Figure 5.4: First three functional principal components (FPC) of glucose model output (upper panels) and mean
function plus and minus multiples of each FPC (lower panels) for T2DM.

0
1
2
3
4
·10−2

FP
C

1. FPC

82%

−0.05

0

0.05

0.1
2. FPC

15%

−5

0

5

·10−2 3. FPC

3%

0 2 4 6 8 10 12
50

100

150

200

250

Time (hour)

M
ea

n
fu

nc
tio

n

0 2 4 6 8 10 12
50

100

150

200

250

Time (hour)

0 2 4 6 8 10 12
50

100

150

200

250

Time (hour)

Figure 5.5: First three functional principal components (FPC) of glucose model output (upper panels) and mean
function plus and minus multiples of each FPC (lower panels) for T1DM.
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The second FPC is positive for the first five hours, i. e., during the majority of the transient behavior.
Thus, inducing variability in the peak glucose concentration. Positive coefficients will force the output
function to change steeper and to peak higher. After that, the FPC course is negative and adds variance
at the end of the simulation.
The third FPC has pronounced positive and negative peaks after one and four hours, respectively, and
mainly adds variance when glucose rises and decreases back to basal. Positive scores generate faster
ascents and descents and induce higher-than-average time courses when the simulation ends.

The first three functional principal components in T1DM (Fig.  5.5 ) account for almost 100 % of the
total variance in the model output. As the time courses of all FPCs and their related variance plots are
similar to those in T2DM it is referred to the interpretation given there.

In this paragraph, FPCA was fulfilled to extract the dominant features of the subcutaneous glucose
model output, derived by Monte-Carlo simulations. The scores associated with each FPC can now
serve as a scalar input to compute the elementary effects (Section  5.1.2 ), as well the overall indices
(Section  5.1.6 ). The effect of each input factor must be taken in relation to the variance explained by
each of the FPCs.

Elementary Effects. As the current method is used for screening purposes, one is interested in
distinguishing between factors that are important to drive the different features in the model output and
those that can be neglected in subsequent steps. Thus, only the mean value µ?i of each input factor is
investigated. Figures  5.6 to  5.8 show the results as a stacked bar plot for each of the three groups. For
all parameters, their mean is plotted on the vertical axis for the first, second, and third functional PC,
colored in blue, red, and yellow, respectively. Thus, the height of the bars in one color is the relative
importance of a factor with respect to their FPCs. Parameters with high values in only one FPC are
important in inducing variability to this particular feature described by the FPC. Parameters with a
high value within all FPCs are important for all features represented by them.

In TNDM (Fig.  5.6 ), particularly one factor stands out. Parameter Gb is the basal glucose level and
thus, variance in Gb directly induces variability in the output. It is the major determinant in the first
and to a lesser extent in the third functional PC and is mainly visible in steady-state. The high variance
can also be seen in Fig.  B.1 . Other major factors are m5,m6, related to hepatic insulin extraction, and
β, related to static insulin secretion. All three are involved in the process of how fast glucose is cleared
from plasma.
The second FPC mainly accounts for variability between the first and fourth hour, thus, in the postpran-
dial fall of glucose concentration. This feature is mainly driven by m5,m6, and β, and to a lesser extent
Vmx and Ib which determine glucose clearance from plasma due to lower hepatic insulin extraction
after a meal, higher insulin secretion, and glucose utilization. This makes sense as the amount and
action of insulin mainly determine glucose disposal. All these factors are involved in the dynamical
behavior of the model.
The third FPC accounts for 9 % variability, mainly when glucose levels change. The most important
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Figure 5.6: Mean µ?, of the elementary effects of each parameter on s.c. glucose output for group TNDM
(K = 35). The sensitivities are separately drawn for the first, second, and third functional principal
component (FPC) in blue, red, and yellow, respectively.
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(K = 35). The sensitivities are separately drawn for the first, second, and third functional principal
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parameters involved in controlling glucose rise are kG2, k1, and k2, all associated with glucose appear-
ing in plasma and glucose kinetics. Less active are m5,m6, and β, as well as kX , kg, κ, and α.
Parameters ki1 to ki3 and kh1 to kh3 are zero as they are not affected by the meal input signal. Further-
more, parameters related to glucagon compartments play only a minor role.

In T2DM (Fig.  5.7 ), the main determinant in inducing variability into the first FPC is Gb, too. Thus,
the same interpretation given for TNDM holds. Also, m5,m6, and β drive the feature explained by the
first FPC. Parameters describing variance by the second FPC are similar to those for the third FPC in
TNDM, whereby most of these factors also drive the third FPC. Thus, most of the variance that occurs
around the glucose peak cannot be assigned to a single principal component. More emphasis is given
to α, a rate constant related to static insulin action on glucose level above basal and thus, important for
the delay of insulin action, as well as to the endogenous glucose production rate S b

G, which mainly
influences the output behavior at simulation end (see Fig.  B.2 too).
Parameters kp3, kp4, and kI, all related to hepatic glucose production, weight higher than others. Their
values lie in similar ranges compared to TNDM but since in T2DM insulin fluxes are significantly
higher, their influence on glucose production is increased.
Furthermore, Vmx,Km0, and kg do not differ significantly between the two groups. Since an insulin
bolus was given in this group, parameters related to insulin absorption in plasma, ki1 to ki3 were active,
but at a low level.

Although T2DM and T1DM both describe diabetic subjects the effects of normal and type 2 are quite
similar to each other. The mean values of T1DM subjects (Fig.  5.8 ) show different behavior. Again,
Gb is the major factor in the first FPC, inducing variance during the transient and, to a lesser extent, in
the steady-state phase of the scenario.
Parameters inducing most variance in the second FPC are comparable to those in T2DM, namely
k1, k2, and kG2. Besides that, insulin absorption rates ki1 to ki3 are more important than in the other
groups, particularly for the third FPC, and are related to the phase of decreasing glucose levels (see
Fig.  B.2 too). As insulin secretion is completely absent in T1DM, external delivery and absorption of
insulin gains much more importance to the variability of the output. Despite higher values of most
parameters for the third FPC, it must be noted that the overall fraction of variance explained is only
3 %, and thus, the absolute importance is low.

Overall Indices. Interpretation of the importance of different input factors related to a functional
component is not a straightforward task. To simplify interpretation, the overall effect defined in
( 5.24 ) can be considered, where the individual effects are weighted by the fraction of variance in the
associated functional component.

The resulting mean effect, µ̄?, for all parameters and groups is given in Fig.  5.9 . The following
parameters have none or minimal effect on glucose output: kh1 to kh3, kσ, kρ, kδ, n, Hb, as well as
kH and kp5, all related to glucagon kinetics, its secretion, or action on hepatic glucose production.
Additionally, insulin action on glucose production, kI, and the delay between changes in insulin
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Figure 5.9: Overall mean, µ̄?, of the elementary effects of each parameter on s.c. glucose output for TNDM
(blue bars), T2DM (red bars), and T1DM (yellow bars) subjects.

concentration and insulin action, kX , can be neglected. Looking at parameters related to insulin
secretion reveals that β is most important since it is involved in the control of static insulin secretion.
In contrast, the assumption that κ, the dynamic glucose control that weights glucose rate of change,
has overall importance does not hold. As insulin secretion is absent in T1DM the related effects
are set to zero. To compensate for the lack of action, however, parameters responsible for insulin
absorption into plasma, ki1 to ki3, become apparent. As mentioned earlier the dominant parameter
in all groups is the basal glucose concentration as variance in this factor directly induces variability
in the output. Furthermore, parameters k1, k2, and kG2 are not dominant but are obviously needed to
describe glucose kinetics, particularly when glucose levels are rising after a meal. Lastly, m5 and m6

are related to hepatic insulin extraction and thus, indirectly control the amount of insulin released into
the circulatory system. They regulate glucose clearance from plasma in combination with the hepatic
glucose production, S b

G, and glucose utilization parameters Vmx and Km0.

The interpretation given above shows that the importance of certain factors during a meal depends on
the group of diabetes and should be considered in a subsequent quantitative sensitivity analysis.

Reducing the Parameter Space. To reduce the computational cost when computing the variance-
based sensitivity indices, only a reduced parameter set is used. Taking into account the findings above,
only those 10 parameters with the highest overall mean effect in each group are considered. They are
reported in Table  5.2 .

5.1.7.2 Variance-based Sensitivity Analysis

The section above has shown that the Elementary Effects Test is a computational cheap technique
for effective screening over a large range of input factors to distinguish between important and non-
influential parameters. It has also been shown how functional principal component analysis can be
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Table 5.2: Reduced parameter set in each group, sorted by descending values of µ̄?.

Group Parameter set

TNDM Gb m6 β m5 Ib Vmx kG2 k1 k2 Km0

T2DM Gb m6 m5 kG2 β Ib kp3 k1 S b
G Vmx

T1DM Gb Vmx ki3 k1 k2 S b
G kG2 kp2 ki1 m1

used to find dominant modes in the variability of the model output and how effects on their scores can
be determined. On that basis, the parameter space could be reduced to only those parameters having a
large influence on the dominant features of the functional model outcome.

Now, variance-based sensitivity analysis is applied to the reduced parameter set of size K = 10 to
compute quantitative sensitivity indices. To generate stable and reliable estimates of the indices a
large number of input samples is needed. Here, n is set to 20 000. The calculation of the main and
total indices can be done based on n(K + 2) model runs, leading to a total of 240 000 evaluations. At a
computational time of 10 000 runs per hour, this requires approximately 24 h plus an additional cost of
150 min to compute the functional PCs (Table  5.1 on page  101 ).

The whole procedure is carried out for all three groups and the MTT scenario. Figure  5.10 shows the
single model outcomes of the subcutaneous glucose concentration for each group. The time courses are
similar to those obtained by the Elementary Effects Test (MTT scenario in Fig.  5.2 ). The time average
standard deviations introduced by the parameter variations are 14.75, 22.77, and 17.92 mg dL−1 for
TNDM, T2DM, and T1DM, respectively.

Time-varying Sensitivity Indices. One possibility to deal with time-dependent model outputs
without computing functional principal components is to calculate sensitivities at each discrete time
step or at specified time points in the output signal. From this kind of plot, one could visually derive
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Figure 5.10: Single s.c. glucose model outputs (colored lines, only 200 realizations shown) and mean function
(black line) for TNDM (left), T2DM (middle), and T1DM (right) subjects.
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the importance of a factor evolving with time when specific events occur that are of interest. The
resulting indices at each time step (1 min) are plotted in Figs.  5.11 to  5.13 for TNDM, T2DM, and
T1DM, respectively, and are sorted in descending order by their overall elementary effect. Note that at
the simulation start, the variance in the output is zero, and thus, indices cannot be computed.

In TNDM the visibly dominant input factor over the whole time course is Gb (Fig.  5.11 ). Its sensitivity
is zero at simulation start and rises steadily to a first maximum after 104 min when the average glucose
signal has its peak. When the glucose level falls back to basal, sensitivity gets weaker but rises again
after three hours. Sensitivity is at its maximum after all dynamics in the system decayed and reached
steady-state. Seemingly, Gb is less sensitive when the system is in a transient phase and most variance
is induced in steady-state.
Parameters k1 and k2 describing glucose kinetics are most sensitive at simulation beginning and decline
rapidly to zero within the first two hours. This is in accordance with the variance course plotted in
Fig.  B.1 , where the rise in glucose is mainly subject to variability.
Another important parameter in the initial phase is kG2, the rate at which ingested glucose is digested
and thus, reaches plasma. It has its first maximum after one hour and a second but far lower peak
after four hours. While the first is a direct contribution of glucose variability due to its appearance in
plasma the latter seems to be indirectly related to the dynamical behavior of other substances.
All other parameters are more or less sensitive when glucose reaches its peak concentration and when
decreasing back to basal level.

A comparable behavior can be seen in T2DM (Fig.  5.12 ). Note that the output does not reach steady-
state within simulation time. It is still in a transient phase. As in TNDM, k1 is the most important
parameter at the start of the simulation and decreases to zero within four hours. Note that factor k2 was
fixed in VBSA, which explains the high value of k1 of nearly one, inducing most of the variance alone.
Although the time course of kG2 is similar to the TNDM group, the second peak is delayed and
prolonged taking into account the overall slower dynamic when glucose turns back to basal.
In contrast to TNDM, m6 induces more variance in the output between glucose peak and simulation
end, which indicates prolonged dynamical action within the system. Additionally, the sensitivity of
the basal hepatic glucose production rate, S b

G, plays a role from 9 h on when glucose rises slightly
after the undershot (see single output courses in the middle panel of Fig.  5.10 ). This is consistent with
findings from the IBO scenario, where it plays, besides m6 and Gb, a major role when glucose levels
regenerate after induced mild hypoglycemia (results not shown here).
Moreover, Gb rises steadily from zero to 0.65 at the end of the simulation, which is similar to TNDM
subjects. All remaining parameters have a sensitivity below 0.1 and a similar time course.

The time courses of sensitivities in T1DM are also similar to those in the other groups (Fig.  5.13 ).
Most of the variance at the simulation start is induced by variations in k1, k2, and kG2, again.
Since factors of insulin secretion are absent in T1DM, Vmx, related to glucose utilization, is most
important during the phase of glucose transition. The whole time course is delayed and prolonged.
Sensitivities for parameters of insulin absorption into plasma, ki1, ki3, have an almost equal time course
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Figure 5.11: Time-varying first-order sensitivities S (t) for TNDM, computed at each time step. Note that the
markers have been added only for a better distinguishability of the lines.
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Figure 5.12: Time-varying first-order sensitivities S (t) for T2DM, computed at each time step.
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Figure 5.13: Time-varying first-order sensitivities S (t) for T1DM, computed at each time step.
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but differ in amplitude. They are active between the first and fifth hour and therefore, during the main
transient behavior.
Furthermore, m1, the rate constant with which insulin is exchanged between liver and plasma has only
a small but constant effect over the entire simulation.

In summary, time-dependent sensitivity indices reveal contributions of factors to the output variability
of a dynamical system at specific time points. This improves the understanding of when particular
parameters are more or less active. One major drawback is that it could lead to false assumptions
about the overall importance of a factor. This could be the case if a parameter has a high sensitivity
at a particular time step but the overall contribution to the output variation is low. The effect can be
seen, e. g., for parameters k1 and k2 at simulation start. Although their importance is high, there is
only minimal variance in the model output and therefore the effect on the overall variability is low.
However, using functional principal component analysis could provide additional information on how
to interpret these measurements correctly.

Functional Principal Components. Section  5.1.3 showed how functional principal components
could be used to describe the main modes of variability in the model output. Section  5.1.7.1 described
the results obtained after applying FPCA on the functional model output for the Elementary Effects
Test. Here, FPCA is fulfilled on the model output generated by the variance-based design. The number
of FPCs was again fixed to q = 3, which is enough to describe nearly all of the variance.

The results are illustrated in Figs.  B.4 to  B.6 for TNDM, T2DM, and T1DM subjects, respectively. The
general time course of functional components is almost equal to the ones derived by the Elementary
Effects Test (compare to Figs.  5.3 to  5.5 ). Hence, the explanation given there still holds. In TNDM,
the first three FPCs account for 78 %, 14 %, and 7 % explained variability. In T2DM, the FPCs explain
86 %, 11 %, and 3 % of variability and in T1DM they give 79 %, 18 %, and 3 %. The dominant modes
in the s.c. glucose signal are described by only 10 parameters, whereas during EET the full parameter
set was used. This confirms that the EET can be used as an effective screening technique to reduce the
number of possible influential factors without losing too much information in the observed signal. This
directly leads to a possible disadvantage of this method. If several model outputs must be considered,
e. g., insulin concentration in plasma, the interpretation effort increases rapidly. Parameters identified
to be important for one output are not necessarily relevant for other outputs. In that case, another
methodology must be found to consider the relative importance of parameters on multiple outputs.

First-order and Total-order Sensitivity Indices. After calculating the functional principal com-
ponents, sensitivity indices can be computed from the coefficients of each functional basis set (Sec-
tion  5.1.4 on page  106 ). The resulting first-order indices, S i, and total-order sensitivities, S Ti, are
reported in Tables  B.1 to  B.3 for TNDM, T2DM, and T1DM, respectively. First, in all groups the total-
order sensitivities are only marginally higher than the first-order, indicating only minimal interaction
between parameters. From that, it is not necessary to compute second-order or higher-order indices as
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it would be needed if one wants to investigate particular interactions between input factors. Second,
some main effects have values slightly lower than zero or the main effect is higher than the total effect
(e. g., Km0 in TNDM, first FPC). Theoretically, these results cannot occur but can be explained by
various approximation errors when building the FPCs, especially when the indices are low within one
component. Besides that, the relative importance of each parameter in each FPC is comparable to the
respective mean elementary effect (Figs.  5.6 to  5.8 ):

In TNDM, the dominant parameter in the first FPC is Gb, whereas all other factors are weakly
represented. This is in accordance with the corresponding elementary effect and also visible when
considering its time course. In the second FPC, parameters m6, β, and m5 are most influential. All
these factors are related to the insulin part of the model. Finally, parameters kG2, k1, and k2 induce
the most variability explained by the third FPC. These findings confirm the results obtained with
the Elementary Effects Test. The sensitivity of Km0 is negligible in all FPCs. Hence, only 9 out of
10 investigated parameters in the variance-based analysis are important. In this group, the different
input factors can be easily associated with a particular functional principal component and thus, to a
dominant feature in the output variance.

In T2DM, most variance is induced by parameters Gb and m6 for the first component. The second
component is mainly driven by parameters k1 and kG2, related to glucose appearance and kinetics in
plasma. This is in contrast to the ones in TNDM, where the second FPC is associated with insulin-
related factors. However, this behavior is understandable since the insulin system has deteriorated in
type 2 diabetics and thus, its importance on the model output is weaker than in normal subjects. The
third FPC is mainly driven by kG2, β, and S b

G, but also Vmx and Gb are involved. The assignment of
individual parameters to a specific component is no longer clear-cut. Furthermore, Ib and kp3 have
only little influence on the basis functions.

Sensitivities in the T1DM group are similar to those for T2DM. Parameter Gb is again the single
important factor to drive variance in the first FPC, whereas the second FPC is dominated by the
glucose-related parameters k1, k2, and kG2. Parameter m1 has only minimal effect. Insulin absorption
rates ki1 and ki3 are both related to a lesser extent to the second and also the third FPC. For the latter,
the most variance is introduced by Vmx, related to glucose utilization, kG2, and S b

G, inducing variance
when glucose level rises and falls, respectively.

Overall Sensitivity Indices. To derive an overall sensitivity measure for each parameter, Eqs. ( 5.25 )-
( 5.26 ) are used. Sensitivity index S (h)

i (S (h)
Ti

) of parameter i belonging to principal component h is
weighted by its fraction of variance explained, FVE(h), and summarized to the overall index S̄ i (S̄ Ti).
Results are shown in Fig.  5.14 for the first-order effects only, as the total-order indices do not differ
significantly. In the figure, 16 parameters are plotted which are common in all three groups.

The overall most important parameter in all groups is Gb. Parameters m5,m6, and β are involved in
how much and how fast insulin is secreted into the system, and thus, it makes sense that they are
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Figure 5.14: Overall first-order sensitivities, S̄ i, for TNDN (blue), T2DM (red), and T1DM (yellow). In total,
16 parameters are shared by the three groups. A bar height of zero indicates that the respective
factor is not active within the group.

important. As insulin secretion is assumed to be absent in T1DM their values are zero in this group.
There, Vmx, related to insulin sensitivity, and kp2, the liver glucose effectiveness, contribute more to
the variance in the system. Parameters ki1 and ki3 come into play when subjects have to inject insulin
subcutaneously as they regulate its absorption into plasma. Without any other insulin-related process
in T1DM, they are important in this group. However, T2DM subjects also have to inject insulin
but since secretory processes are still present, factors do not induce enough variance in the output
to become apparent. Parameters k1 and kG2 are important in all groups as they mainly determine
how fast glucose appears in plasma after a meal and how fast it is distributed within the circulatory
system. Furthermore, kp3 and S b

G are more important in the diabetic groups, mainly when glucose
concentration rises from levels below basal. In relation to other factors, m1 and Km0 are not relevant
and could be neglected.

5.1.8 Robustness and Convergence

Sampling-based sensitivity analysis techniques have been proven to be good alternatives if sensitiv-
ities cannot be computed analytically. As they do not provide exact solutions, the robustness and
convergence of the estimates should be assessed.

Two aspects are of interest here. First, robustness analysis aims to investigate whether the indices
are independent of a particular input-output sample (Pianosi et al.  2016 ). That means, an estimate
is assumed to be robust if its value is similar for different subsets of samples of the same size.
Bootstrapping provides a simple method without involving additional model evaluations (Efron et al.

 1986 ; Yang  2011 ). Second, convergence analysis is used to assess whether an index is stable for
different sizes of the input-output samples. A simple approach would be to re-estimate the sensitivities
for an increasing size of samples drawn from the original sample. If the indices do not stabilize
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Figure 5.15: Results of convergence and robustness analysis exemplarily shown for the T2DM subject and
the MTT scenario. Mean effect, µ̂i, computed for an increasing number of model evaluations
(one solid line per factor). Dashed lines represent robustness obtained at each subset r( j) by
bootstrapping.

additional model runs and a re-computation of the extended sample size might be necessary to improve
convergence (Pianosi et al.  2016 ).

Although it is not common to assess robustness and convergence for the Elementary Effects Test but
variance-based techniques, the analysis is illustrated exemplarily for one case on the overall indices µ̂i.
Therefore, they are not computed using the mean values over all elementary effects as given in (  5.24 ),
but for every single effect by

µ̂
( j)
i =

q∑
h=1

EE( j,h)
i · FVE(h), (5.27)

where EE( j,h)
i is the effect for factor i, the finite difference j computed for principal component h, and

q is the number of FPCs. This returns a matrix of overall effects from which convergence can be
assessed. Repeating for varying randomly selected subsets of elementary effects allows the assessment
of the robustness by building averages and standard deviations.

Results for the type 2 diabetic group and the MTT scenario are shown in Fig.  5.15 . Mean effect µ̂( j)
i

and its confidence interval were calculated for sample sizes r( j) from 10 up to 100 and bootstrapping
with 10 repetitions. At low sample sizes (r < 40), the error is higher for some factors but lower and
upper confidence bounds shrink with increasing sample sizes. All factors but Gb and m6 lie between
zero and one and thus, are near to each other. Although confidence bounds overlap, factor ranking is
possible for those effects with larger means as their values stabilize quickly.

To assess the robustness and convergence of the variance-based analysis, the first-order sensitivity
indices S ( j)

i were computed for j = 1 . . . 10 times with increasing sample sizes from 2000 to 20 000.
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Figure 5.16: Robustness analysis of the variance-based overall first-order sensitivity indices. Each overall
index was computed several times on a randomly chosen subset drawn from the original sample.
The boxplot shows the median, 25th and 75th percentiles, extreme points, and outliers for each
parameter and for TNDM, T2DM, and T1DM in the left, middle, and right panel, respectively.

Each run was repeated 100 times for a randomly chosen subset of that fixed size and statistics were
computed. The overall indices Ŝ ( j)

i are derived from ( 5.25 ) but applied to each j, which results in

Ŝ ( j)
i =

q∑
h=1

S ( j,h)
i · FVE(h). (5.28)

Index S ( j,h)
i is the sensitivity of parameter i, computed on subset j and related to the functional principal

component h. FVE(h) denotes the fraction of variance explained by the h-th FPC.Repeating over all
subsets allows the calculation of the average and standard deviation at each j. The results for j = 10
are shown as a box plot in Fig.  5.16 , where only small errors in all parameters and across all groups
are visible, and thus, the sensitivity estimates can be trusted.

Summary. In the preceding section, a multi-step global sensitivity analysis technique has been
presented that is capable of identifying those parameters that induce the most variance in the model
output. Therefore, multiple statistical information was aggregated into a quantitative overall sensitivity
index (Fig.  5.14 ). Although these indices identify candidates for subsequent model identification, they
do not reveal whether the parameters can be actually determined by observing the output, especially
several at once. However, controllability and observability analysis, which are introduced in the
following chapter, can do this.
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5.2 State and Parameter Analysis

The following section addresses the analysis of dynamic and static states of the glucose regulation
system. A dynamical state defines the behavior of a quantity in the system over time, here by a set
of ordinary differential equations. System parameters can be regarded as static, i. e., time-invariant
states. That is particularly useful for parameter identification or online state estimation (Chapter  6 ).
Controllability and observability are basic properties of dynamical systems and affect the feasibility of
control tasks. System Gramian matrices embody these attributes in a condensed manner. They serve
as the main determinant for the following investigations.

A linear, continuous, time-invariant MIMO (multiple-input multiple-output) system in state-space
form is given by ẋ = Ax + Bu,

y = Cx,
(5.29)

with state vector x(t) ∈ RN , input vector u(t) ∈ RM, and output vector y(t) ∈ RO. Matrix A ∈ RN×N

transforms the states, input matrix B ∈ RN×M maps the inputs to the states and output matrix C ∈ RO×N

maps the states to the outputs. The system is called stable if the eigenvalues in A are strictly negative.

A general nonlinear input-output system in state-space form, Σ, can be defined by

Σ :

ẋ = f (t, x,u, p) ,

y = g (t, x, p) ,
(5.30)

with a set of state equations f(·) and output equations g(·). Both functions depend on time t, state
vector x(t) with initial condition x0 = x(0), input vector u(t), and a constant parameter vector p∈ RP.

The whole model of glucose-insulin-glucagon metabolism in state-space representation can be found
in Eqs. (  A.1 ) and (  A.2 ). All states and their initial values for all groups are reported in Table  A.1 .
The model consists of a set of N = 19 ODEs, M = 5 inputs, and O = 4 outputs. The input-output
definitions can be found in Section  4.1 . The state equations are nonlinearly coupled, but the output
equations are linear. Thus, g (t, x, p) = Cx with C ∈ R4×19. This property will have some implications
for the design of the state observer explained in Chapter  6 .

To give a general overview of the state trajectories, simulation results are shown in Fig.  5.17 for
TNDM, T2DM, and T1DM subjects. The simulation consists of a meal of 75 g glucose at t = 0 for
the first 15 min for all groups. Hence, the oral glucose amplitude is 5000 mg min−1. Inputs uiv

G(t),
usc

I (t), and usc
H (t) are zero. T2DM receive an insulin bolus at t = 0, and T1DM additionally receive

their optimal basal insulin. Hence, insulin s.c. signal usc
I (t) is zero in TNDM, impulse-shaped with

magnitude 11.25 U min−1 at t = 0 in T2DM, and impulse-shaped with 4.69 U min−1 at t = 0 plus a
constant basal insulin dose of 19.73 mU min−1 for −1 ≤ t ≤ 12 h in T1DM (see MTT scenario on
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page  81 ). Hence, the same explanations for plasma glucose, s.c. glucose, plasma insulin, and plasma
glucagon signals hold. The input and output signals and state trajectories are shown in Fig.  5.17 .

The first two states QGas,1(t), QGas,2(t) are linear and describe the amount of glucose in the stomach
and intestine, respectively. The trajectories are impulse-shaped but delayed with a low time constant
in the first and a high value in the second state. States GP(t), GT(t), and GSc(t) determine the amount
of glucose in plasma, slowly-equilibrating tissues, and the subcutaneous space, respectively. From the
first and latter states, glucose concentration can be directly derived as the output signals. The state
trajectories have the typical shape, a rise from the basal value after the glucose load, and a decline
back to basal, which is delayed and prolonged in diabetic groups. The amount of insulin in plasma,
liver, and portal vein are given by the states IP(t), IL(t), and IPo(t), respectively. In TNDM the typical
first and second insulin responses are apparent, which are deteriorated in T2DM. In T1DM insulin
in the portal vein is zero as no insulin is secreted by the pancreas. Insulin in the other two states is
determined by the amount of s.c. administered insulin as seen in states ISc,1(t) and ISc,2(t). An insulin
injection can be regarded as an impulse input and thus, the typical impulse response of two linear
first-order systems is clearly visible. In T2DM the amount of insulin declines back to zero, whereas in
T1DM a basal insulin infusion rate is needed to maintain steady-state. Glucagon amount in plasma
and s.c. space is denoted by states HP(t), HSc,1(t), and HSc,2(t), respectively. Only in TNDM glucagon
secretion rate S s

H(t) falls in reaction to elevated glucose values. Glucagon in the s.c. site is zero in all
groups as no glucagon is given in this setting.

From the state trajectories shown in Fig.  5.17 it is obvious that it is impossible to drive all states by just
a meal input. For example, states HSc,1/2(t) are zero in all groups since no glucagon was administered.
Also, states ISc,1/2(t) are only non-zero in the diabetic groups as they received an insulin bolus. Hence,
different input perturbations will affect the states in a variety of ways. Moreover, it can be assumed
that it is not possible to determine all states from observation of only a few output signals.

To systematically investigate to which extent input signals influence the states respectively state
trajectories can be calculated from output measurements controllability and observability are suitable
methodologies well known from control theory (J. Lunze  2014 , Ch. 3).

5.2.1 Concept of Controllability

Controllability of a system is a basic property that allows determining to which extent states x(t) can
be affected by the input u(t) 

1
 . It is an analytical concept that only depends on the structure of the

state equations, i. e., in linear systems on matrices A and B. But it is independent of time and input
sequence.

An asymptotically stable system is controllable if it is possible to steer it from an arbitrary initial state
x0 into an arbitrary final state xf = x(Tf) by an appropriately chosen control input u[0,Tf](t) within a
finite time horizon 0 ≤ t ≤ Tf.

1The term controllability is used equivalently to the term reachability.
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Figure 5.17: Simulation of a meal of 75 g glucose at t = 0 for TNDM (blue), T2DM (red), and T1DM (yellow).
Left panel shows the input and output signals, right panel state trajectories. Note that variable k is
here used as a substitute for 1 × 103.
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The general solution of ( 5.29 ) is given by

x(t) = Φ(t)x0 +

∫ t

0
Φ(t − τ)Bu(τ) dτ, (5.31)

with Φ(t) = eAt being the transition matrix. It is sufficient to only consider the movement from the
zero state to the final state, thus, without loss of generality x0 = 0. Setting t = Tf and using the power
series of the matrix exponential gives

xf =

∫ Tf

0
Φ(Tf − τ)Bu(τ) dτ,

=

∫ Tf

0

∞∑
l=0

Al (Tf)l

l !
Bu(τ) dτ,

=

∞∑
l=0

AlBûl, (5.32)

with

ûl =

∫ Tf

0

(Tf − τ)l

l !
u(τ) dτ

a constant vector of dimension M. The sum in (  5.32 ) is a linear combination of the columns of B,
A B, A2 B, . . .. In order to be able to reach any arbitrary point xf ∈ R

N these column vectors must
span the N-dimensional space. If the system is controllable there exists a control sequence

u[0,Tf](t) = B> eA>(Tf−t)W−1
C

(
xf − eATf x0

)
, (5.33)

that steers the system from x0 to xf for a given final time Tf, where matrix WC denotes the controlla-
bility Gramian.

Controllability Gramian. In stable linear systems, controllability matrix WC can be found by using
a linear input-to-state map which represents a generalized energy transfer from inputs to states and is
a measure for how well a state can be driven by a perturbation of the inputs. Matrix WC is defined as

WC =

∫ Tf

0
eAt BB> eA>t dτ, (5.34)

which is called the finite controllability Gramian. For an infinite time horizon Tf = ∞ this matrix is
the smallest semi-positive solution to the Lyapunov equation

AWC +WC A> = −BB>, (5.35)

that is symmetric and positive definite if the system is controllable (Moore  1981 ; Lall et al.  1999 ).
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There exists an infinite number of control inputs u[0,Tf](t) to steer the system from x0 to xf. However,
( 5.33 ) is optimal in terms of the energy required to transition the system within the time interval [0, Tf]
as it minimizes the cost functional

J
(
u[0,Tf]

)
=

∫ Tf

0
u(τ)>u(τ) dτ = x>f W−1

C xf. (5.36)

(Antoulas  2005 , p. 71). That means states which have a low degree of controllability require more
energy to be reached. This is related to small eigenvalues in the controllability Gramian and thus,
larger value in its inverse, which also increases amplitudes in the control input u[0,Tf](t) in ( 5.33 ).

If the system is perturbed from x0 = 0 by a series of unit impulses to all inputs u(t) = δ(t), the solution
to the state differential equation is

x(t) =
∫ t

0
eA(t−τ)Bu(τ) dτ = eAt B. (5.37)

The generalized energy transfer, EC, from the inputs into the states can be defined as the sum over the
squared states integrated over an infinite time horizon:

EC =

∫ ∞

0
x>(τ) x(τ) dτ,

= Tr
(∫ ∞

0
x(τ) x>(τ) dτ

)
,

= Tr (WC) , (5.38)

which is the sum over the main diagonal in matrix WC. Each element WCii can be seen as the energy
intake into state xi. The off-diagonal elements define the coupling between states. Analysis of the
eigenvalues and associated eigenvectors shows the directions in which the system can be steered
easily. It is characterized by large eigenvalues. A state with an eigenvalue of zero cannot be reached.
Thus, this state is not controllable. In this case, it could be possible to find a subspace of the original
state-space that is still controllable and for which the controllability Gramian is still regular.

Empirical Controllability Gramian. For nonlinear systems, the empirical controllability Gramian
is a data-driven extension of the linear system Gramian. For that, extensive numerical simulations
can be fulfilled for a given set of input perturbations to excite the system around a nominal trajectory.
The Gramian matrix is then systematically computed and averaged over all runs. Note that the
empirical Gramian is only valid within a limited region around the chosen trajectory and is not a global
approximation. Input perturbations are defined by non-empty sets of directions Eu of standard unit
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vectors, rotations by orthogonal matrices Ru, and positive scalar scale factors Qu:

Eu =
{
ei ∈ R

M; ‖ei‖ = 1; eie j,i = 0; i = 1, . . . , M
}
,

Ru =
{
Si ∈ R

M×M; S>i Si = I; i = 1, . . . , S
}
,

Qu = {ci ∈ R; ci > 0; i = 1, . . . ,Q} ,

(5.39)

where M is the number of inputs, S the number of desired combined input excitation, and Q the
number of scale factors (Himpe and Ohlberger  2013 ). In general, Ru would be a full factorial design
plan as it combines all possible input excitation. To reduce the computational costs it is often sufficient
to simplify the rotations to the positive and negative unit matrix, Ru = {I,−I}, as suggested by Lall et al.
( 1999 ). Hence, only one input is deflected simultaneously. In the case of the glucose-insulin-glucagon
model, the set of rotations is further reduced to only the positive unit matrix I because no negative
control signals can be applied to the system. Moreover, certain input combinations at once could lead
to unphysiological model behavior, e. g., when glucose is given orally combined with an i.v. injection
of glucose or an s.c. administration of glucagon at the same time.

The empirical controllability Gramian ŴC can be computed using the non-empty sets Eu, Ru, and
Qu, input signal u(t) around a nominal input trajectory ū(t), and monitoring the corresponding state
trajectory x̄(ū):

ŴC =
1

Q S

Q∑
h=1

S∑
i=1

M∑
j=1

1
c2

h

∫ Tf

0
Ψ(hi j)(t) dt,

Ψ(hi j)(t) =
(
x(hi j)(t) − x̄

) (
x(hi j)(t) − x̄

)>
∈ RN×N .

(5.40)

Inputs to derive a specific state vector x(hi j)(t) are generated by the configuration

u(hi j)(t) = ū + ch Si e j u(t). (5.41)

Note that the algebraic solution ( 5.35 ) is defined with an infinite time horizon. For computational
purposes, a final time Tf must be chosen that is large enough for all states to reach steady-state.

To assess the empirical controllability Gramian, a suitable nominal trajectory and input excitation
must be chosen in order to perturb the system from steady-state. For that, the MTT scenario is selected
again. The specific input amplitudes can be found in Section  5.2.6 . The resulting empirical Gramians
for the three groups are given in ( B.1 )-( B.3 ) on page  201 . As the matrices are symmetric only the
upper right or lower left triangular matrix must be taken into account. The diagonal elements contain
the energy intake into the i-th state. Off-diagonal elements with arbitrary values are denoted by (∗).
When no connection exists between two states the respective element is denoted by zero.

Obviously, no structural connection exists between the gastrointestinal tract (states x1/2), insulin in the
s.c. space (states x13/14), and glucagon in the s.c. space (states x16/17). Hence, it is impossible to drive

130



5.2 State and Parameter Analysis

these states in common when only a single input is excited. Moreover, there is no link between insulin
concentration in the s.c. space (states x13/14) and its concentration within the portal vein (state x9).
State x9 is driven by static and dynamic insulin secretion which is only active when glucose is above
basal or rising. Hence, as insulin in the s.c. tissue lowers glucose concentration below basal no direct
or indirect effect on insulin in the portal vein exists in the model.
A different picture arises when looking at the controllability in T1DM subjects (  B.3 ). The structural
interconnections between states are the same as in the other groups, but as parameters related to insulin
secretion are assumed to be zero (Table  A.2 ), some connections are virtually broken. This is reflected
by several zero elements in the Gramian matrix. In general, states x8 and x9, related to the provision
of new insulin to the β-cells and the insulin concentration in the portal vein, respectively, are not
controllable. Furthermore, insulin concentrations in plasma, IP(t) (state x6), and in the interstitial fluid,
X(t) (state x10), are not linked to the gastrointestinal tract.

In TNDM and T2DM, controllability matrices ŴCTNDM and ŴCT2DM have both full rank, whereas in
T1DM, rank

(
ŴCT1DM

)
= 17 and thus, the system is not fully controllable.

5.2.2 Concept of Observability

Observability is a second basic property in systems analysis that allows to determine to which extent
the outputs of a system can be driven by the states. In most systems not all state variables are
measurable and thus, the question arises, if it is possible to compute the current state x(t) from the
output vector y(t). Typically, the dimension of the output vector is smaller than the dimension of the
state vector (O < N). From this, there could exist several possible combinations of states that all
produce the same output. However, a state can be determined by observing the motion of the system
not only at a certain time point but over a time interval and reconstructing the current system state from
the trajectory y(t) for 0 ≤ t ≤ Tf using the model. If the system is additionally driven by an external
input u(t), it is necessary to incorporate it into state reconstruction. A system is called observable if
the state can be determined in this way (J. Lunze  2014 , Ch. 3.2). As for the concept of controllability,
observability is a structural property of the underlying system and depends only on matrices A and C
in linear systems.

From the equation of motion,

y(t) = C eAt x0︸  ︷︷  ︸
yfree(t)

+

∫ t

0
CeA(t−τ)Bu(τ) dτ, (5.42)

it can be seen that the initial state x0 only affects the free motion yfree(t). To solve the observability
problem, only the undisturbed system without additional inputs must taken into account. If it is
observable, the disturbed system is also observable.
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Observability Gramian. The observability Gramian WO can be derived by the state-to-output map
which represents the generalized energy transfer from states into outputs and quantifies how well a
change in a state can be measured by the outputs. It is defined as

WO =

∫ Tf

0
eA>τC>C eAτ dτ, (5.43)

for an arbitrary finite time Tf < ∞ (Antoulas  2005 , p. 76). If the system is observable, this matrix is
positive definite and thus, invertible. The initial state can then be derived by

x0 =W−1
O

∫ Tf

0
eA>τC>yfree(τ) dτ. (5.44)

For an infinite horizon Tf = ∞, WO is the smallest semi-positive solution to the Lyapunov equation

A>WO +WO A = −C>C (5.45)

(Lall et al.  1999 ). A system is said to be observable if WO > 0 and ( 5.45 ) has a unique solution.

The generalized energy transfer, EO, from the states into the outputs can be defined by the sum over
the squared outputs integrated over an infinite time horizon Tf → ∞:

EO =

∫ Tf

0
y>(τ) y(τ) dτ,

= x>0

∫ Tf

0
eA>τC>C eAτ dτ x0,

= x>0WO x0, (5.46)

where the main diagonal element WOii is a metric for the energy transfer from state xi into the outputs
when the system freely evolves towards steady-state. Likewise controllability Gramian, elements
with WOii = 0 cannot be observed. Off-diagonal components denote interconnections between states.
Furthermore, if states are not observable one can still find a subspace of the original state-space for
which the observability Gramian is still regular.

Empirical Observability Gramian. The empirical observability Gramian is calculated by system-
atically perturbing the initial states around steady-state and observing the output trajectory y(t) for
each numerical experiment. State perturbations are defined by non-empty sets of directions of standard
unit vectors Ex, rotations by orthogonal matrices Rx, and positive scale factors Qx:

Ex =
{
f i ∈ R

N ; ‖ fi‖ = 1; f i f j,i = 0; i = 1, . . . ,N
}
,

Rx =
{
Ti ∈ R

N×N ; T>i Ti = I; i = 1, . . . , T
}
,

Qx = {di ∈ R; di > 0; i = 1, . . . ,R} ,

(5.47)
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where N is the number of states, T is the number of desired state excitation, and R is the number of
scale factors (Himpe and Ohlberger  2014 ). The Gramian matrix can then be computed and averaged
over all runs. Some initial states are zero and cannot be perturbed in a negative range. Thus, rotation
matrices Ti reduce to the unit matrix I, and only one state is excited at a time.

The empirical observability matrix ŴO can be obtained using the non-empty perturbation sets Ex, Rx,
and Qx around a nominal state x̄ and monitoring the output ȳ(x̄):

ŴO =
1

R T

R∑
u=1

T∑
v=1

1
d2

u
Tv

∫ Tf

0
Ψ(uv)(t) dt T>v ,

Ψ
(uv)
ab (t) =

(
y(uva)(t) − ȳ

)> (
y(uvb)(t) − ȳ

)
,

(5.48)

where y(uva)(t) is the system output for the initial state configuration

x(uva)
0 = x̄ + du Tv f a, (5.49)

and ȳ may be the average or steady-state output. Note that the final time Tf must be chosen large
enough for all states to return to steady-state.

To obtain the empirical observability Gramian, a suitable state configuration has to be found. For that,
the MTT scenario is selected again. Specific input perturbations can be found in Section  5.2.6 . The
resulting empirical Gramians for all three groups are reported in (  B.4 )-( B.6 ) on page  202 . Only the
diagonal elements and states which are not observable are shown. Off-diagonal elements with arbitrary
values are denoted by (∗). In TNDM and T2DM all states are observable, whereas in T1DM states x8

and x9, the insulin action on glucose changes, Y(t), and insulin in the portal vein, IPo(t), respectively,
are not observable. Any induced changes in these states cannot influence the rest of the system as their
related parameters α and γ are zero, and no motion exists in these states. Hence, rank

(
ŴOT1DM

)
= 17.

5.2.3 Controllable and Observable Subspace

From the Gramian matrices given in (  B.1 )-( B.6 ), it can be seen that in T1DM two states are neither
controllable nor observable. In linear systems written in Jordan canonical form, this usually occurs if
the i-th row in the input matrix B or the i-th column in the output matrix C are null vectors. This means
the input u does not drive state xi respectively the state xi is not connected to the output. Hence, the
motion of this affected state cannot be controlled or observed and this part of the system is structurally
neither controllable nor observable.

In the nonlinear model investigated here, this is not the case. Although there exist null vectors in input
and output matrices (Section  A ) the motion of the corresponding states itself is nonexistent as their
related parameters are zero and thus, these states remain zero over time. Hence, controllability and
observability mainly depend on the concrete parameter configuration.

133



5 Systems Analysis

In general, the motion of x(t) can be dissected into a part that is controllable/observable and into a part
that is not controllable/not observable:

x(t) = xcntr(t) + xc̃ntr(t), x(t) = xobsv(t) + xõbsv(t).

It is also possible to decompose the Gramian matrices WC and WO as

WC =

 WCcntr 0
0 0

 , WO =

 WOobsv 0
0 0

 , (5.50)

that means, in an upper left sub-matrix of controllable states, WCcntr , with Rcntr ⊆ RN and the null
space respectively a sub-matrix of observable states, WOobsv , with Robsv ⊆ RN in matrix WO.

5.2.4 Extension to Parameters

In Sections  5.2.1 and  5.2.2 , the concept of controllability and observability of states was introduced. As
a measure for the generalized energy transfer from the inputs into the outputs empirical controllability
and observability Gramians were defined that can be determined based on extensive numerical
computations. The concept of observability can be extended to the parameters of the system. For that,
the identifiability Gramian matrix can be defined for the augmented system Σ̂ given by

Σ̂ :


˙̂x =

ẋ

ṗ

 =
f (t, x,u, p)

0

 , x̂0 =

x0

p

 ,
y = g (t, x, p) ,

(5.51)

with x(t) ∈ RN and p∈ RP. Thus, x̂(t) has the dimension N + P = N̂. In the augmented system,
parameters are treated as constant states that are appended to the prior state vector. Their derivative
ṗ(t) is therefore zero.

Identifiability Gramian. The concept of identifiability can be regarded as an observability-based
parameter investigation. This approach is about observing the system’s parameters of the augmented
system ( 5.51 ) as stated in Geffen et al. ( 2008 ).

The augmented observability Gramian W?
O can be computed following Section  5.2.2 , where the

perturbation of states must be appended by a suitable parameter excitation. The matrix has the
following block structure:

W?
O =

 WO WOP

WPO WP

 ∈ RN̂×N̂ . (5.52)
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The upper left block contains the state observability Gramian matrix WO, the lower right sub-matrix
contains the parameter-space observability information, and WPO =W>OP is a mixed state and param-
eter block. The Gramian identifiability matrix WI can then be extracted via the Schur complement
(Carlson  1986 ) for the lower right block:

WI =WP −WPOW−1
O WOP, (5.53)

allowing to isolate the parameter identifiability information (Geffen et al.  2008 ). The matrix has full
rank if all parameters are identifiable, whereas null elements point to non-observable factors.

5.2.5 A Priori and a Posteriori Observability

The eigenvalues of the Gramian, λ(W), determine the degree of observability of the system, where
lower values quantify a weaker energy transfer into the outputs. Particularly, an eigenvalue of zero
indicates a state that can be considered structurally (a priori) not observable. Structural observability
provides information on if it would be possible at least in principle to observe certain states, which
depends on the system formulation and includes the stimuli, dynamic equations, and the measured
outputs. Often, structural observable states or parameters cannot be practically determined with
precision, e. g., due to a lack of available observations, measurement errors, or interdependencies
among states. If only because of the dimensionality reduction between states and outputs, it will not be
possible to estimate all states from the measurement of a smaller number of outputs. Interdependence
among states and parameters describes that the effects of changes in one component are being
compensated by changes in other components and thus, both parts cannot be identified separately.
Practical (a posteriori) observability tries to take into account at least some of these limitations.

5.2.6 Setup of Numerical Experiments

The experimental setup follows the definitions and considerations given in Section  5.1.1 for the global
sensitivity analysis. Here, only the steady-state scenario (STS) and the meal tolerance test (MTT) are
fulfilled. Moreover, as s.c. glucose concentration is the main measurement quantity, the experimental
setup and results are shown for model output GI. However, the entire procedure can also be carried
out for all other outputs like insulin concentration. Given the model in state-space representation
( A.1 )-( A.2 ), output matrix C becomes the row vector

C =
[
0 0 0 0 1

VG
0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
, y(t) ∈ R1,

with y(t) = 1
VG

x5(t) = GI(t) = 1
VG

GSc(t). The Gramians have been calculated using the emgr framework
presented in Himpe ( 2018 ) and Himpe ( 2020b ).

For controllability analysis, the following settings are defined: The nominal input function for TNDM
and T2DM is ū(t) = 0, i. e., no steady-state input exists. For T1DM, the steady-state input is
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ū(t) =
[
0, 0, 0, usc

I (t), 0
]>

with usc
I (t) = 19.73 mU min−1, that means, a constant subcutaneous insulin

infusion. The perturbation function for each input j is u j(t) = δ(t), which is an impulse at t = 0
with a magnitude of

[
10 g, 0.3 g kg−1 min−1, 5 U min−1, 30 mU kg−1 min−1, 100 ng kg−1 min−1

]>
. The

impulse amplitudes are equally spaced from 25 % to 100 % of the reported values, hence, Q = 4. As
only one input at a time is perturbed, rotations Si reduce to positive unit matrices, hence S = 1. With
M = 5 different inputs, a total of Q · S · M = 20 simulations have to be fulfilled. In the MTT scenario,
a meal bolus of 75 g is given orally, and diabetic subjects receive their suitable insulin boluses. The
computational time for all runs was 2 s in each scenario.

For investigating observability, the following settings are defined: The nominal state x̄ is set to the
typical initial state x0 for each group (Table  A.1 ). Scale factors di around the nominal state are set to
25 %, 50 %, 75 %, and 100 % of half of the nominal values, hence R = 4. For initial states being zero,
the following scales are chosen: x1 = 10 000, x2 = 30 000, x8 = 7.5, x10 = 250, x13 = 700, x14 = 250,
x16 = 1 × 10−3, x17 = 1 × 10−3, x18 = 15 to account for typical physiological excursions in every
individual state. As only one input at a time is perturbed, rotation Ti reduces to a positive unit matrix,
hence T = 1. With N = 19 states, a total of R · T · N = 76 simulations have to be fulfilled. In the
MTT scenario, a meal bolus of 75 g is given orally, and diabetic subjects receive their suitable insulin
boluses. The computational time for all runs was 1.7 s in each scenario.

After derivation of the Gramian matrices, a metric to assess practical observability respectively
identifiability must be defined. Therefore, the observability of dynamical states of system (  5.30 )
respectively the identifiability of constant states of the augmented system ( 5.51 ) are now summarized
under the name observability and the Gramian is denoted by W. Controllability will not be discussed
further as it is not needed for the subsequent identification and estimation procedures. An iterative
state selection algorithm presented in Eberle et al. ( 2012a ) is used. It requires a positive definite
Gramian and thus, all states must be structurally observable. If this is not the case the algorithm can
be applied to the observable sub-matrix of W where the non-observable states are excluded. Practical
observability is hereby defined by the smallest eigenvalue λ of a set of states for which observability
should be determined and characterizes the allowed least amount of energy transfer. To find out
which combinations of states satisfy this condition a set E is defined. Beginning with state xi ∈ E, the
smallest eigenvalue λ is derived from Gramian Wii. That means all rows and columns of W have been
deleted, except for the i-th. A second state or parameter may be added to the set E and the smallest
eigenvalue of the Gramian submatrix WE is determined again. If the result is still satisfactory with
λ > ε, this procedure can be iteratively continued until the condition fails or all relevant states and
parameters are contained in the set (Algorithm  2 ).

Moreover, a full factorial design plan can be passed through in order to derive information on all
possible state and parameter combinations. Thus, the eigenvalues of each corresponding Gramian
sub-matrix have to be calculated, leading to 2N−1 respectively 2N̂−1 eigenvalue decompositions, with
N and N̂ the number of states in the regular respectively in the augmented system. This analysis could
also be helpful to determine the largest set of states and parameters that is practically observable.
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Algorithm 2 Iterative state and parameter selection
Require: Gramian W
Ensure: W > 0

Initialize E = ∅
while not all relevent states in E do

Add next most relevant state to set: xi ∈ E

Determine WE
Calculate smallest eigenvalue λ (WE)
if λ ≤ ε then

Remove current state
end if

end while
Design completed

To make the computation of the eigenvalues numerically more stable the system states can be scaled in
such a way that the diagonal elements of the Gramian are equal to one. This can be done by computing
the matrix twice. In a first run, diagonal elements in W can be used to determine the transformation

xS :=
√

diag (W), V = diag−1 (xS ) , (5.54)

that rotates the states into a new basis x̃ = Vx (Eberle et al.  2012a ), with V being invertible. The
scaled system Σ̃ is then given by

Σ̃ :

 ˙̃x = Vf
(
t,V−1 x̃,u, p

)
,

ỹ = g
(
t,V−1 x̃, p

)
.

(5.55)

The transformation will alter the physical meaning of the states but not the input-output properties.
The second run will then be fulfilled using the scaled system ( 5.55 ) which yields a Gramian with
diagonal elements equal to one. The total energy transfer is then the sum over all diagonal elements
Wii , that is equal to the number of states N respectively N̂. Moreover, since the transformation is
linear it is always possible to switch between both state representations.

5.2.7 Results and Discussion

The following section presents the results of state observability and parameter identifiability for
steady-state and mixed-meal scenarios in TNDM, T2DM, and T1DM subjects.

State Observability. All scenarios and all state excitations generated stable system responses. Each
state was subsequently perturbed one at a time and the output signal GI(t) was recorded. The resulting
76 different trajectories for each group are depicted in Fig.  5.18 for the steady-state scenario and in
Fig.  5.19 for the MTT scenario.
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Figure 5.18: Output trajectories after subsequent single state perturbations from steady-state derived by ob-
servability analysis for TNDM (left panel), T2DM (middle), and T1DM (right). No inputs were
applied to the system, except the steady-state basal insulin infusion in T1DM.

Comparing the time courses between the groups reveals a much faster dynamic in TNDM. The
steady-state glucose concentration is determined by parameter Gb

P and is lower in TNDM. Steady-state
is reached after 8 h in TNDM, whereas in T2DM and T1DM it is not completely reached within
simulation time. Thus, an extended final time needs to be necessary for these groups. A test case with
a simulation time of 24 h did not alter the resulting Gramian matrices significantly, so the original
interval of 12 h is retained. The higher output amplitudes can be explained by: first, larger state
perturbations, as they depend on the initial state which is higher in the diabetic groups; and second,
by the fact that no insulin bolus was given. Particularly, an excitation of states QGas,1/2(t) (x1/2),
the glucose amount in the gastrointestinal tract, can be interpreted as a meal. Without additional
insulin bolus, diabetic groups suffer from a prolonged hyperglycemic excursion. In the MTT scenario
(Fig.  5.19 ), the free movement of the system is superimposed by the forced response due to the given
inputs. Within the first half hour after the start of the simulation, a movement towards the stationary
value is visible. After that, the glucose load takes effect and the system trajectories are located around
the nominal meal response signal. As the input value is the same in all runs deviations from the
nominal trajectory are induced by the different initial state configurations. The major variation in all
groups takes place when glucose concentration reaches its maximum. With ongoing simulation time,
variations are minimized until steady-state is reached.

The associated observability Gramian was computed twice using (  5.54 ) to scale the system properly,
hence, all diagonal elements WOii are equal to one. The resulting scaled eigenvalues for each group
are depicted in Fig.  5.20 and Fig.  B.7 for the STS respectively MTT scenario. As can be seen, the
eigenvalues decrease exponentially from 100 down to O

(
10−8

)
for TNDM, respectively O

(
10−11

)
for

the diabetic groups. Note that in T1DM two states are not observable and hence, observability was
determined for only the observable subspace in R17. The eigenvalues of the remaining non-observable
states are zero. The decline of the eigenvalues in TNDM is slightly flatter, suggesting overall better
state observability as in the diabetic cases. The progression of the eigenvalues in the MTT scenario is
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Figure 5.19: Output trajectories after subsequent single state perturbations from steady-state derived by observ-
ability analysis for TNDM (left panel), T2DM (middle), and T1DM (right). Inputs as defined for
the MTT scenario were applied to the system.
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Figure 5.20: Scaled eigenvalues of observability Gramian WO in the STS scenario for TNDM (blue), T2DM
(red), and T1DM (yellow) subjects.

comparable to the STS setting shown here but indicates overall better observability as their values
are about an order of magnitude higher. Furthermore, eigenvalues for T2DM are closer to TNDM,
suggesting improved observability in this group and for this scenario.

To quantify the joint observability of states, the procedure following Algorithm  2 is executed for
several state combinations for TNDM, T2DM, and T1DM subjects and the two scenarios (Table  5.3 ).
A threshold of λ > ε = 0.1 has been chosen for practical observability, which has turned out to be a
good choice for state observability in glucose-insulin models (Eberle et al.  2012a ).
Since the diagonal elements in W are equal to one, the decomposition of a single state Gramian
sub-matrix will result in an eigenvalue of one in both scenarios (cases (a) and (b) stand exemplarily
for all single state observations). One major aim is to prove if it is possible to observe the substance
concentrations of glucose, insulin, and glucagon in plasma, from the measurement of only GI(t).
Cases (c) and (d) present the observation of plasma glucose, GP(t), in combination with plasma insulin,
IP(t), respectively plasma glucagon concentration, H(t). Case (c) is observable as the corresponding
eigenvalue is larger than the threshold. Case (d) reveals that glucagon cannot be observed as its
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Table 5.3: Observability defined by the smallest eigenvalue λ
(
WOE

)
for a set of states in E computed from

Gramians in steady-state (STS) and the mixed-meal (MTT) scenario for TNDM, T2DM, and T1DM.

STS MTT

Case Set E of states TNDM T2DM T1DM TNDM T2DM T1DM
to be observed λ

(
WOE

)
λ
(
WOE

)
λ
(
WOE

)
λ
(
WOE

)
λ
(
WOE

)
λ
(
WOE

)
(a) [GP] 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(b) [IP] 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000
(c) [GP, IP] 0.1704 0.6780 0.1323 0.2487 0.2385 0.2061
(d) [GP,H] 0.0615 0.0581 0.0450 0.0385 0.0579 0.0687
(e) [GP, IP,H] 0.0286 0.0540 0.0184 0.0351 0.0440 0.0307
(f) [GP,GSc] 0.6160 0.7104 0.7301 0.6502 0.6975 0.6689
(g) [GP,GSc, IP] 0.1169 0.5789 0.0988 0.1892 0.1995 0.1523
(h) [GSc, IP] 0.9118 0.9755 0.9723 0.9509 0.9408 0.9634
(i)

[
GP,QGas,2

]
0.3618 0.2964 0.1806 0.2311 0.2966 0.2700

(j)
[
QGas,1,QGas,2

]
0.0073 0.0144 0.0018 0.0043 0.0203 0.0032

(k)
[
ISc,1, ISc,2

]
0.1272 0.0112 0.0228 0.1004 0.0814 0.0296

(l)
[
HSc,1,HSc,2

]
0.0145 0.0047 0.0030 0.0338 0.5261 0.0051

(m)
[
GP, IP,QGas,2

]
0.2839 0.2516 0.1465 0.1901 0.2513 0.2141

(n) [GP,Y] 0.1967 0.7127 0.0000 0.5503 0.6384 0.0000
(o)

[
GP,GSc, I1,HSc,1

]
0.1514 0.2194 0.0780 0.3561 0.4898 0.1303

eigenvalue is around one order of magnitude lower than necessary. Thus, it will not be possible to
observe all three substances at the same time as shown in case (e).
Cases (f)–(h) show state combinations including observation of s.c. glucose. As GSc(t) is directly
proportional to the measured output GI(t), the smallest eigenvalue does not decrease significantly
(compare, e. g., cases (c) and (g)). Furthermore, a comparison between the scenarios in cases (c) and
(g) shows a slightly higher smallest eigenvalue in TNDM and a lower one in T2DM for the MTT
scenario. Since the eigenvalues in the other test cases do not differ significantly between the two
scenarios, the observability of insulin seems to depend on the test scenario and should be kept in mind
when it comes to state estimation in practice.
Cases (i) and (j) take into account glucose amount in the gastrointestinal tract which could be useful
for a meal recognition system. The smallest eigenvalue shows that a simultaneous observation of GP(t)
and QGas,2(t) would be possible. A combined observation of QGas,1(t) and QGas,2(t) is not applicable,
neither for the steady-state nor the MTT scenario. That makes sense as both states are connected in
series and thus, one is not able to distinguish between the two, when only measuring the output of
this chain. The same behavior can be noticed in cases (k) and (l). The chains of s.c. insulin, ISc,1/2(t),
and s.c. glucagon, HSc,1/2(t) can not be uniquely distinguished (except in case (k), where it is fairly
possible for TNDM). Case (m) is an extension of case (i) that shows observability for glucose and
insulin in plasma, simultaneously with QGas,2(t).
Case (n) reveals that it is also possible to estimate GP(t) and the provision of new insulin, Y(t), in
TNDM and T2DM. As Y(t) can be seen as a kind of control signal for new insulin release, it could have
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a diagnostic value. All other factor combinations are less important or have their smallest eigenvalue
below the defined threshold.

Further analysis of the steady-state scenario in TNDM shows, that there exist 356 state combinations
that satisfy λ > 0.1 with a maximum of four simultaneously observable states, e. g., case (o). In T2DM,
284 (also case (o)) and in T1DM, 138 combinations are valid. In the MTT scenario, particularly for
T2DM, the number of valid observable state combinations rises to 571.

Finally, the major states of interest, plasma glucose, GP(t), and plasma insulin, IP(t), are observable in
all three groups when only GI(t) is measured (case (c)). Case (m) is worth mentioning, too, as good
observability of glucose in the gastrointestinal tract can be a starting point for an (unknown) meal
input estimation. Furthermore, the smallest eigenvalues only differ marginally between the groups.
And last, observability does not seem to highly depend on the examined scenario, except for T2DM,
where IP(t) is better observable under steady-state conditions.

Observability can be enhanced if more than one or other outputs are considered. E. g., when plasma
insulin would be measured in addition to glucose, improved observability of the insulin subsystem
could be expected. In Eberle et al. (  2012a ), it has been shown that, besides glucose measurements,
recording insulin significantly improves the identifiability of diagnostic parameters.

Parameter Identifiability. Now, observability analysis is extended to the problem of identifiability
of parameters. For that, the augmented system Σ̂ given by (  5.51 ) is considered, where parameters are
defined as constant states, and observability analysis can then be performed for the extended state
vector. With N = 19 dynamical states and P = 34 constant parameters, the augmented state vector x̂
has dimension N̂ = 53.

To perturb the augmented states within a suitable range the same configuration as given in Section  5.2.6 

is used. That means the maximum excitation for each state and parameter is 50 % of its nominal value.
One exception must be made to parameter m6 in T2DM subjects, where an initial value of this height
leads to simulation failures. This parameter perturbation is restricted to only 25 % of its nominal value
to avoid such behavior.

Another aspect to mention is the choice of a unit matrix for the rotation in set Rx. That means each
state is individually perturbed. When in joint state and parameter observability this simplified but
fast screening approach could return misleading results. Whenever a parameter is perturbed that
belongs to a state that is stationary, a change in its value is not apparent in the state trajectory. Hence,
this parameter will be considered non-identifiable. To avoid non-identifiability in steady-state, a full
factorial design plan should be carried out to include every possible joined perturbation of states
and parameters. However, this would lead to a considerable number of 2N̂−1 = O

(
1015

)
simulation

runs that cannot be handled properly. As an alternative, a suitable input trajectory must be chosen to
obtain a proper system response, such as the MTT scenario. The approach has the advantage that only
T · R · N̂ = 212 (number of scale factors T = 4, R = 1) simulation runs are necessary to compute the
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Figure 5.21: Output trajectories derived by a single (augmented) state perturbation identifiability analysis in
the STS scenario for TNDM (left panel), T2DM (middle), and T1DM (right).

Gramian for each group. The resulting output trajectories are depicted in Figs.  5.21 and  5.22 for the
STS and MTT scenarios, respectively.

Comparing the time courses of the steady-state scenario with the ones retrieved by state observability
(Fig.  5.18 ) reveals the large influence of the parameters as they can shift the steady-state of the model
output. This behavior is similar to the trajectories produced by global sensitivity analysis (Fig.  5.2 

for EET or Fig.  5.10 for VBSA). Most of the signal sequences that generate an offset to the nominal
s.c. glucose value can be explained by the parameter Gb

P, the basal glucose concentration. Other state
perturbations lead to a rise in the glucose output, and yet others to significant drops. They have in
common that the nominal basal value is reached again. These behavioral patterns are particularly well
visible for TNDM in the left panel of Fig.  5.21 . A slightly different picture arises for T1DM on the
right side, where larger deviations from the nominal steady-state are clearly apparent. This deviant
behavior can be mainly explained by the mismatch of basal insulin administration required to maintain
a nominal steady-state and the new amount of insulin necessary for the altered parameter sets.

For the MTT scenario (Fig.  5.22 ), the meal response is clearly visible, as well as the shifted stationary
points, which become apparent as offsets in the model output. In TNDM mainly the offset and not the
dynamic of the output signal changes for the different state and parameter perturbations. However, in
the diabetic groups, the rate at which glucose is reduced from plasma depends considerably on the
initial state vector.

The associated observability Gramian, W?
O ( 5.52 ), was computed twice using ( 5.54 ) to scale the system

properly. Hence, all diagonal elements W?
Oii

are equal to one. If a state or parameter is not observable
the corresponding rows and columns in the matrix are zero. In this case, only the observable part of
the Gramian is further used. Table  B.4 on page  204 lists the identifiable parameters. Identifiability
depends on the investigated group and the applied scenario for which the Gramian was computed.
In the steady-state scenario, only 12 out of 34 parameters were determined to be identifiable (left
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Figure 5.22: Output trajectories derived by a single (augmented) state perturbation identifiability analysis in
the MTT scenario for TNDM (left panel), T2DM (middle), and T1DM (right).

part of the table). All non-identifiable parameters are associated with states that remain constant
in this setting. Particularly, important parameters associated with the insulin response (e. g., β), the
time delay between glucose in plasma and s.c. space, kg, or the digestion time (e. g., kG2) cannot be
identified within steady-state. In T1DM, three more parameters associated with insulin secretion are
not identifiable, whereas parameters ki,1..3 are identifiable, as their related states are stimulated by the
s.c. insulin infusion, which does not occur in TNDM and T2DM.
For the MTT scenario (right part of Table  B.4 ), the number of identifiable parameters improves.
In TNDM, their number rises to 28 of 34. Only the s.c. insulin, ki,1..3, and s.c. glucagon-related
parameters, kh,1..3, are not identifiable as their related states are neither perturbed nor affected by an
input signal. In T2DM, the three s.c. insulin-related parameters, ki,1..3, have now become identifiable
since an insulin bolus is given in the MTT scenario and thus, a response is induced in the related states.
In T1DM, all parameters linked to insulin secretion (e. g., κ, α, β, γ) and kh,1..3 remain unidentifiable.

To obtain information about the joint state and parameter observability, the eigenvalues of the full
Gramian W?

O are computed. In both scenarios, the eigenvalues decline exponentially from 100 down
to O

(
10−18

)
in the steady-state scenario and down to O

(
10−11

)
in the MTT scenario. Under steady-

state, for TNDM and T2DM, 31 augmented states are observable, i. e., 19 dynamical states and 12
parameters; for T1DM 17 dynamical states and also 12 parameters have non-zero eigenvalues. In the
MTT scenario, TNDM has 47 observable states in total, T2DM 49 states, and T1DM 42. Moreover,
the smallest observable eigenvalue is at least about an order of 11 magnitudes higher. In both cases,
TNDM subjects have slightly better overall observability. The resulting scaled eigenvalues are depicted
in Figs.  B.8 and  B.9 , respectively.

The observability of dynamical states has already been reported in Table  5.3 . Now, to quantify the
joint observability of states and parameters, Algorithm  2 is executed for several augmented state
combinations for TNDM, T2DM, and T1DM subjects and the two scenarios. The setup is the same as
for the state observability analysis in Section  5.2.6 . Also, a threshold of λ > ε = 0.1 has been chosen
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Table 5.4: Joint observability defined by the smallest eigenvalue λ
(
WOE

)
for a set of states in E computed from

Gramians in steady-state (STS) and mixed-meal (MTT) scenario for TNDM, T2DM, and T1DM.

STS MTT

Case Set E of states TNDM T2DM T1DM TNDM T2DM T1DM
to be observed λ

(
W?

OE

)
λ
(
W?

OE

)
λ
(
W?

OE

)
λ
(
W?

OE

)
λ
(
W?

OE

)
λ
(
W?

OE

)
(a)

[
GP, IP,Gb

]
0.1198 0.0799 0.0974 0.2391 0.1046 0.1863

(b)
[
GP, IP, Ib

]
0.1237 0.0193 0.1037 0.2154 0.1134 0.1597

(c)
[
GP, IP,Gb, Ib

]
0.0084 0.0049 0.0062 0.0516 0.0812 0.0192

(d) [GP, IP,m6] 0.1404 0.0643 0.1053 0.2235 0.1066 0.1353
(e)

[
GP, IP, β

]
0.0000 0.0000 0.0000 0.2020 0.1032 0.0000

(f) [GP, IP,m5] 0.1354 0.1211 0.0000 0.1945 0.0996 0.0000
(g) [GP, IP,Vmx] 0.0000 0.0000 0.0000 0.1825 0.1447 0.0547
(h) [GP, IP, kG2] 0.0000 0.0000 0.0000 0.0885 0.1912 0.1952
(i) [GP, IP, k1] 0.1670 0.0560 0.0992 0.0744 0.0513 0.0829
(j)

[
GP, IP, kp3

]
0.1266 0.0750 0.0969 0.2401 0.1436 0.1441

(k) [GP, IP, ki3] 0.0000 0.0000 0.0209 0.0000 0.2223 0.1186
(l) [GP, kG2] 0.0000 0.0000 0.0000 0.1921 0.3284 0.4356
(m) [GP, k1] 0.2680 0.9554 0.3819 0.2625 0.6842 0.4232
(n)

[
GP, IP, kg

]
0.0000 0.0000 0.0000 0.1001 0.1468 0.1113

(o)
[
GP, IP,Gb,m6

]
0.0120 0.0006 0.0011 0.1934 0.0381 0.0358

(p)
[
GP, IP,Gb, β

]
0.0000 0.0000 0.0000 0.2009 0.0697 0.0000

(q)
[
GP, IP,Gb, kG2

]
0.0000 0.0000 0.0000 0.0464 0.0124 0.1851

(r)
[
GP, IP, kp3, Ib, β

]
0.0000 0.0000 0.0000 0.1087 0.0158 0.0000

(s)
[
GP,Y,Gb,m6

]
0.0107 0.0007 0.0000 0.1884 0.0380 0.0000

(t) [GP,m6] 0.9915 0.8524 0.7014 0.7314 0.7382 0.7555
(u)

[
GP, kp3

]
0.7569 0.8843 0.5835 0.9034 0.7441 0.7511

(v)
[
Gb,m6

]
0.9915 0.8524 0.7014 0.7314 0.7382 0.7555

(w)
[
Gb, β

]
0.0000 0.0000 0.0000 0.6746 0.6991 0.0000

(x)
[
Gb,m6, β

]
0.0000 0.0000 0.0000 0.1528 0.1193 0.0000

for practical observability. The main focus is on the estimation of plasma glucose, GP(t), and insulin,
IP(t), in conjunction with several parameters. In total, 13 augmented states were selected, resulting in
213 − 1 = 8191 feasible combinations. From that, 284 in TNDM, 287 in T2DM, and 175 in T1DM
have the smallest singular value larger than the threshold when considering the more meaningful MTT
scenario. A maximum of five augmented states is simultaneously observable. The results are listed in
Table  5.4 .
Cases (a) and (b) show that it is possible to either identify GP(t), IP(t), and the glucose basal value Gb,
or GP(t), IP(t), and the basal insulin concentration Ib, but not both parameters in combination (case
(c)). Furthermore, either can only be estimated during the MTT scenario.
Cases (d)–(k) each contains one parameter in addition to the aforementioned substance concentrations:
m6, β,m5,Vmx, kG2, k1, kp3, and ki3, which are most influential according to their first-order sensitivity
indices (Fig.  5.14 ). Parameters that only take effect during transient behavior of the system can not be
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identified in steady-state, like β or kG2 (cases (e), (h)). Insulin-related parameters, β and m5 (cases (e)
and (f)) can not be estimated in T1DM, due to the absence of insulin secretion. Whereas ki3 (case (k))
generally leads to an eigenvalue of zero in TNDM, and in T2DM only in steady-state, as no insulin is
administered in these cases. Parameter kG2 (case (h)) is not practically identifiable in TNDM, while
this occurs for k1 (case (i)) in all groups; the smallest eigenvalue is lower than the chosen threshold
ε > 0.1.
To assess if identifiability is enhanced when fewer variables have to be estimated in common, cases
(l) and (m) are introduced. There, only eigenvalues of GP(t) besides the named parameters were
computed. In both cases, λ increases, particularly for k1 in case (m). Furthermore, k1 is one of the few
parameters observed well in steady-state.
Case (n) introduces parameter kg, which is involved in the diffusion of glucose from plasma into the s.c.
space. This variable is not sensitive at all, regarding the overall time course of glucose measurements
but has an important role when estimating plasma glucose from s.c. records. Hence, it will also be
included here. The smallest eigenvalues show identifiability just above the threshold value in all three
groups when the system is in a transient state.
Cases (o)–(s) include one or two more parameters to be observed in common, up to a maximum
number of five augmented states. The reported cases exemplify a wider range of possible valid
configurations that can be assumed observable using the selected threshold.
Cases (t) and (u) are further examples to show that a significant improvement in the eigenvalues can
be achieved when only state GP(t) is observed with one additional parameter in common.
Finally, in cases (v)–(x), only the most sensitive parameters (compare with Fig.  5.14 ) are identified
in combination. The cases reveal that two parameters can be observed at once, but identifiability
decreases rapidly for all factors in common (case (x)). Moreover, β can only be determined during
an MTT and not T1DM subjects, which is in accordance with the results obtained by the sensitivity
analysis.

5.3 Summary and Conclusion

The preceding chapter introduced two different techniques for state and parameter analysis and their
applicability to a model of glucose-insulin-glucagon regulation.

The statistical approach treats states and parameters as varying input factors that induce variability
in the system outputs. The computationally cheap Elementary Effects Test (Section  5.1.2 ) allowed
reducing the full parameter vector to a subset of only 10 sensitive variables. Moreover, the subsequent
variance-based sensitivity analysis (Section  5.1.4 ) enabled the quantification of these results into a
total sensitivity index. For this, the transformation from a functional to a set of scalar model outputs
also had to be conducted. The whole procedure was implemented as a multi-step sensitivity analysis.
The findings showed differences between type 1 and type 2 diabetics, as well as non-diabetic subjects
that result from alterations of the underlying glucose-insulin metabolism. Particularly, basal glucose
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concentration and parameters involved in insulin secretion and glucose control have been shown to be
the most important factors.

Controllability, observability, and its extension to identifiability are common methods for analyzing
the input-output behavior of linear, dynamical systems. The concept of Gramians was applied to
determine the generalized energy transfer from the inputs to the states, respectively from the states
into the outputs. Its extension to empirical Gramians allowed for determining the energy transfer for
nonlinear systems within a large working range. By using the smallest eigenvalues of the computed
Gramian matrices, observability and identifiability could be quantified. Results show that not all states
are controllable or observable, particularly the insulin secretion part of the model in T1DM. It was
further quantified that only a small subset of states and parameters can be theoretically identified
from glucose observations in the subcutaneous space, which is the essential measurement variable
(Section  6.1.1 ). However, it has been shown that glucose concentration in plasma and its basal level
can be estimated. Hence, this process should be restricted to those factors that are “important”,
respectively those which have shown to be observable or identifiable. How states and parameters can
be identified from measurement data will be shown in the following chapter.

Global sensitivity analysis considers parameters as stochastic input factors acting on the model outputs,
often used for static models. The concept of controllability and observability is well known for
dynamical systems. As an outlook, both techniques could be linked to each other. First by extending
GSA by declaring initial states as input factors and computing their sensitivities on the output. Hence,
it becomes the stochastic analog to observability. Second, one could also declare states as model
outputs in order to compute the parameter’s sensitivities on the new outputs, which would correspond
with the sensitivity Gramian matrix when the parameters are treated as external inputs (compare with
( 3.13 ) on page  37 for this concept).
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In Section  4.1 a mathematical model of the glucose-insulin-glucagon metabolism has been presented.
Moreover, in Section  4.2 models for virtual subjects have been derived. These consist of a set of
parameters that characterize the health condition of a subject in a long-term manner and a set of
dynamical states that describe the current metabolic condition of a subject. Chapter  5 introduced
techniques to identify those variables that can be theoretically determined from observation of a
particular model output. In the following, two complementary methods address how these variables
can be determined: Model or parameter identification is here defined as adapting model parameters in
such a way that simulated model outputs and experimental data match closely, typically by solving
an optimization problem offline (Section  6.2 ). On the other hand, state estimation is performed
online, i. e., in real-time, and updates of the model states of a subject based on current measurements
(Section  6.3 ). The development of these methods can be carried out based on simulated data for which
the models of virtual sensors are helpful (Section  4.5 ). Additionally, clinical data from the literature,
as well as experimental data recorded under everyday-life conditions is considered (Section  6.1 ).

This two-sided approach aims to personalize the generic model to a particular subject that may support
a physician in diagnosing the progression of diabetes over a longer period. Once the model is adapted,
online estimation could provide real-time information on the current health status.

6.1 Database of Patient Records

A database of personal patient measurement records is the basis for all subsequent experimental
analyses. The database consists of blood glucose samples, continuous glucose samples, the amount
and time point of meal ingestion, and the amount and time points of insulin administration. Six
subjects provided data: a single TNDM person who reflects a healthy condition, two T2DM subjects
under conventional insulin therapy, and three T1DM patients under CSII (Section  2.5 ). TNDM and
T2DM patients gave their written consent for data acquisition and analysis, and T1DM patient data was
kindly provided by The Nightscout Data Commons Committee ( 2018 ) obtained via the Open Humans
platform (Open Humans  2018 ). All data has been recorded between January 2016 and September
2018 under real-life conditions, i. e., all participants underwent their daily life routine and followed
their regular treatment plans. In Table  6.1 the number of BGSM and CGM measurements and some
key statistics related to these intervals are summarized.
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Table 6.1: Statistical information about the recorded experimental data.

Group Subject Days
Number of measurements Basic statistics

BGSM BGSM CGM Mean ± Std. Min. / Max.
per day (mg dL−1) (mg dL−1)

TNDM 814 70 1542 22.0 18 747 93.6 ± 18.9 39 / 251

T2DM 126 12 82 2.3 3339 145.4 ± 40.9 39 / 267
T2DM 385 18 109 6.1 4716 172.4 ± 34.3 62 / 289

T1DM 20330028 94 1096 11.5 25 182 115.9 ± 45.7 26 / 401
T1DM 39561557 60 550 9.2 15 867 130.0 ± 50.0 38 / 331
T1DM 76423578 234 2776 11.9 54 436 133.2 ± 45.6 22 / 447

6.1.1 Input and Output Measurements

Blood glucose was measured using commercially available sensors several times a day according to
the patient’s needs. Subcutaneous glucose concentration was measured using two different sensors
(G4 Platinum or G5 Mobile, Dexcom, San Diego, CA, USA), measurement range 40-400 mg dL−1

(Dexcom, Inc.  2017 ). CGM devices calculate and save the mean s.c. glucose values over a 5 min
interval and require calibration twice a day by corresponding blood glucose pairs. The sensor lifetime
is 7 consecutive days, it must be replaced afterward. T1DM subjects under CSII wore an insulin
pump (640g, 530g, or Veo, Medtronic Minimed, Northridge, CA, USA). All devices were operated as
described by the manufacturer’s handbooks. Daily basal insulin infusion rates for each T1DM subject
are shown in Fig.  C.1 on page  205 .

In contrast to clinical studies that are fulfilled within tight conditions and exact protocols, data obtained
under everyday-life settings may be subject to larger uncertainty like missing values due to, e. g., loss
of sensor connection. Furthermore, permanent or temporary physiological conditions such as strong
physical activity, illness, or medication cannot be excluded. All these factors may influence glucose
metabolism and measurements and must be regarded as unknown disturbances. Last to mention are
uncertainties in acquiring the input signals. The amount of insulin injected by pen or pump can be
precisely adjusted and thus regarded to be exactly known without error. However, the amount and
rate of digestion of ingested glucose highly depend on the meal and the quantities of carbohydrates
and sugars in combination with other macro-nutrients such as fat. This complex is illustrated in
Fig.  C.2 where two completely different responses to meals of a similar amount of CHO/glucose are
highlighted. The rise of glucose in blood and ISF to a high CHO meal (left) is far lower and prolonged,
compared to a meal rich in sugar (right). This behavior is visible in the CGM signal and confirmed
by the frequent BGSM samples. Hence, the same glucose input to the system does not generally
imply the same postprandial glucose excursion (Freckmann, Hagenlocher, et al.  2007 ). In fact, the
assumed meal input is determined by the patient and his or her ability to estimate the correct quantity
of glucose within the meal. As a support for the patient, a food database (myFitnessPal, Under Armour,
Baltimore, MD, USA) can be queried, too, which returns most of the macro-nutrients in a particular
product.
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6.1 Database of Patient Records

From that, two of the five introduced model inputs can be utilized in daily life: oral glucose input,
uoral

G (t), and s.c. insulin infusion input, usc
I (t). Moreover, two out of four model outputs can be

measured in this way: concentration of glucose in the blood, G(t), and in the interstitial fluid, GI(t),
respectively (Section  4.1 ).

In controlled clinical trials, a series of physiological tests can be applied to investigate particular
responses of glucose metabolism. Here, only daily-life measurement data over large periods is
available, which can be regarded as a discrete-time series of mixed-meal tests with or without insulin
administration. To locate suitable intervals from which a parameter identification or state estimation
can be fulfilled, the period of interest is automatically separated into sequences that satisfy the
following properties (Fig.  6.1 ):

A sequence must consist of a meal input in order to induce a proper response to the metabolism.
That is important as some parameters can not be identified in steady-state.
The sequence must be long enough to capture most of the transient behavior. A default duration
of 4 hours was chosen.
A sufficient number of data points must be recorded for identification. For BGSM data, a
sampling rate sBG = 1 h−1 and for the CGM signal sCG = 6 h−1 was chosen. Hence, within one
measurement sequence, at least 4 BGSM and 24 CGM records must exist.
The correlation coefficient between BGSM and CGM signals must be higher than 0.5 to exclude
periods of diverging measurement curves.

However, these specifications are a trade-off between a sufficient amount of data that represents the
true time course of glucose and the fact that patients typically perform BGSM only a few times a day.

Since measurement of insulin is not possible within the daily-life protocol, experimental data from A.
Basu, Dalla Man, R. Basu, et al. (  2009 ) was additionally considered to show the general applicability
of parameter optimization. The protocol was a mixed-meal test in TNDM and T2DM subjects
(Table  4.14 ). Concentrations of glucose and insulin in blood have been plotted in Figs.  4.18 and  4.19 .

Sequence i + 1Sequence i

G
lu

co
se

Time

Steady-state

Figure 6.1: Partition of a continuous-time signal into single sequences of fixed length and predefined properties.
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Figure 6.2: Error grid analysis (EGA) of paired blood glucose (BGSM) and continuous glucose (CGM)
measurements for one subject in each group over 7 consecutive days.

6.1.2 Measurement Analysis

To assess the quality of the measurement records, an error grid analysis (EGA) is performed (Sec-
tion  3.3.4 ) between BGSM and CGM data pairs. The evaluation of the sensor performance is limited
to the observations during the trials. It does not claim to be generally valid. EGA plot is shown in
Fig.  6.2 for a randomly chosen measurement interval of seven consecutive days, i. e., for one sensor
lifetime, for the TNDM (blue), one T2DM (red), and one T1DM (yellow) subject. The number of
measurement pairs, n, and the calculated performance for each zone are reported in Table  6.2 . The
percentage of values within the clinically accurate zones A and B is close to 100 % and almost similar
to reported values in Freckmann, Link, et al. (  2018 ). Other performance evaluations of discontinued
CGM devices report similar results (Damiano et al.  2014 ; Freckmann, Pleus, et al.  2013 ). Note the
higher error in zone D for the T2DM subject which can be attributed to a single measured value.
Since there are only n = 45 data pairs present in this subject, the error has a stronger effect on the
performance metric. EGA plots for all subjects over the whole measurement period are shown in
Fig.  C.4 on page  206 .

Table 6.2: Results of the EGA performance evaluation shown in Fig.  6.2 with a total number of n measurements.

Subject n % of data pairs in zone MARD

A B C D E (%)

814 137 78.8 21.2 0.0 0.0 0.0 11.7
126 45 86.7 11.1 0.0 2.2 0.0 8.6

20330028 74 82.4 16.2 0.0 1.4 0.0 14.3
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Moreover, the mean absolute relative difference (MARD), introduced in Eqs. (  3.15 ) and (  3.16 ), is
calculated as

MARD = 100% ·
1
n

n∑
k=1

∣∣∣∣∣GBG(k) −GCG(k)
GBG(k)

∣∣∣∣∣, (6.1)

where GBG(k) is the k-th measured blood glucose (BG) and GCG(k) the continuous glucose (CG)
concentration. MARD varies between 8.6 % in T2DM and 14.3 % in the T1DM subject (Table  6.2 ),
which is slightly higher than findings in Freckmann, Link, et al. ( 2018 ), where MARD was estimated
with approx. 11 % during a 14-day study.

Last, BGSM and CGM signals, along with discrete-time points of meal ingestion and insulin injection,
are shown in Fig.  6.3 for two consecutive days taken from the measurement period above. CGM
data is frequently sampled every 5 min, whereas BGSM data is sparse. Most BGSM data points
are available in the TNDM participant, from which glucose dynamics are also visible. Moreover,
a time delay between BG and CG records is noticeable (e. g., the glucose rise after 12:00 or 33:00
hours). Particularly in the T2DM patient, BG samples were only taken to calibrate the CGM device.
Hence, the dynamic time course of glucose only becomes apparent by CGM data. Meal inputs clearly
correlate with a rise in glucose levels. In the TNDM subject, periods of elevated postprandial glucose
concentration are comparatively short, followed by a prolonged steady-state phase until the next
meal. In the diabetic patients, s.c. insulin is usually given at mealtimes (meal bolus) or to correct
elevated glucose levels (correction bolus). Furthermore, glucose profiles are characterized by a larger
variability, a prolonged postprandial period, and reach higher maxima, compared to the TNDM subject.
Most of the time, CGM data agrees well with BGSM references.
However, there are also large deviations in the absolute values and the gradients. Even diverging signal
courses occurred quite a few times during the observation period. Moreover, sensor drifts can occur,
which is apparent when the CGM signal is calibrated on new BGSM samples. Typical artifacts are
plotted in Fig.  C.3 on page  205 .

In summary, the acquired CGM data was compared with corresponding BGSM reference values.
The achieved MARD is 8.6-14.3 % for the investigated periods and across all subjects and thus in
the expected range. EGA revealed that almost all data is located within clinically accurate zones A
and B. Hence, it can be assumed that the records are appropriate for the following identification and
estimation procedures.

6.2 Model Personalization

Model personalization means adapting the parameters of a nominal model in such a way that the
simulated model outputs closely match the measured experimental data of an individual, which can
be referred to as the system (Fig.  3.6 ). Here, the model inputs, u(k), are meal ingestions and insulin
administrations that a subject has noted for that particular experiment. The unknown disturbances z(k)
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Figure 6.3: Representative time courses of blood glucose (red markers connected by dashed line) and continuous
glucose measurements (blue), discrete meal times (green), and discrete bolus insulin administrations
(yellow) in TNDM (top), T2DM (middle), and T1DM (bottom) during an 48 h interval. Note that
amounts of ingested glucose and administered insulin have been omitted for better visibility.

may be physical activities or other factors not incorporated into the model. Simulated and measured
outputs are compared in terms of the cost function Q, which is defined by the sum of the squared error
between system output GCG(k) and model output GI(k) given by ( 3.14 ). All optimizations have been
conducted using the Matlab function lsqnonlin that is based on the interior-reflective Newton method
(Coleman et al.  1996 ) and solves a nonlinear but constraint vector-valued data-fitting problem of the
form

min
p
‖Q(p)‖22 = min

p

(
f1(p)2 + f2(p)2 + . . . + fO(p)2

)
, (6.2)

where f1(p), . . . , fO(p) are the considered object functions fi = yi(k) − ŷi(k, p̂), i = 1, . . . ,O, with yi

and ŷi being the model output respectively the measured reference trajectory.

The total parameter vector p is not identifiable. Indeed, the subset of sensitive parameters, as discussed
in Section  5.1.7 , can be considered in order to optimize those variables that contribute most to the
output variability. Hence, an identified subject Ŝ consists of a set of nominal parameters p that are
kept at their default values and a set of adapted parameters p̂ ⊂ p.
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Figure 6.4: Comparison of measurement data (gray markers, data taken from A. Basu, Dalla Man, R. Basu,
et al. ( 2009 )) and outputs of nominal (black line), and identified model (red line) after an MTT in
TNDM subjects.

6.2.1 Parameter Identification from Blood Glucose and Insulin Measurements

To show the general applicability of the parameter identification process, experimental blood glucose
and insulin records taken from A. Basu, Dalla Man, R. Basu, et al. (  2009 ) are considered first. The
data has already been presented in Section  4.4 for the nominal TNDM subject (Fig.  4.18 ) and the
nominal T2DM subject (Fig.  4.19 ). Now, a subset of sensitive parameters should be adapted in order
for the model to adequately represent the time courses of glucose and insulin. The parameters are
listed in Tables  C.1 and  C.2 for TNDM and T2DM subjects, respectively, and are identified according
to (  6.2 ) for O = 2. Note that basal glucose and insulin values, Gb respectively Ib are excluded from
the identification as these values were also reported in the publication. In the same tables mean and
standard deviation derived from the virtual population are reported, together with the optimized values,
obtained by r = 25 repetitions of the optimization process starting from different initial conditions.
The measured courses of blood glucose and insulin, along with the nominal and optimized model
outputs, are shown in Figs.  6.4 and  6.5 for the TNDM and T2DM subjects, respectively.

For TNDM, time courses of the nominal trajectories deviate strongly from the measured signals,
particularly insulin. Hence, it can be assumed that parameters must be varied considerably. The
optimization process always finds the same minimum, indicated by the standard deviation of zero
in each parameter. The two-sample t-test 

1
 for a 95 % confidence bound is calculated according to

( 3.18 ) and also reported in Table  C.1 . The assumed null hypothesis that the means of the nominal
and optimized parameters are equal is clearly rejected by the high t-values, compared to the 95 %
reference. Furthermore, the 95 % F-values for each parameter, calculated using (  3.19 ) are of order
107 and above due to the zero variance in the optimized parameters. A visual inspection of the model
outputs shows good accordance with the data. RMSE (  3.17 ) between measured and simulated outputs
improved from 19.3 mg dL−1 for the nominal model to 5.2 mg dL−1 for the optimized one.

1As the variance of nominal and optimized parameter samples are not equal, the test is also known as Welch-test.

153



6 Model Identification and State Estimation

−60 0 60 120 180 240 300 360
50

100

150

200

250

300

350

400

Time (min)

(m
g/

dL
)

Glucose

−60 0 60 120 180 240 300 360
0

20

40

60

80

100

Time (min)

(m
U
/L

)

Insulin

Mixed-meal data Nominal model Identified model

Figure 6.5: Comparison of measurement data (gray markers, data taken from A. Basu, Dalla Man, R. Basu,
et al. ( 2009 )) and outputs of nominal (black line), and identified model (red line and gray area
denote mean and ± standard deviation range, respectively) after an MTT in T2DM subjects.

For T2DM, the time course of glucose mainly deviates from data due to a mismatch of the basal
glucose concentration, which generates an offset error. Time courses of insulin do not differ much,
particularly the prolonged elevation is already well represented by the nominal model (Fig.  6.5 ).
Optimized parameters significantly differ from the nominal values, indicated by the 95 % t-value
higher than the reference (Table  C.2 ). Compared to the TNDM case, there are deviations in the
optimized parameters after r = 25 repetitions of the optimization process. In 5 out of 9 parameters,
the variance is lower than for the nominal values. Since the 95 % F-value is higher than the reference,
the null hypothesis that the variance in the nominal parameters is lower must be rejected. Hence, it
can be stated that most of the parameters can be identified with precision. Moreover, model adaptation
improved the RMSE between measured and simulated outputs from 39.7 mg dL−1 to 7.9 mg dL−1.

The experiment given above shows that it is generally possible to identify sensitive parameters from
experimental data obtained in a clinical trial under controlled settings. Hence, a physiological model
can be adapted to an individual for a personalized glucose and insulin simulation.

6.2.2 Parameter Identification from Daily-Life CGM Data

During a daily-life scenario, measuring insulin is not feasible for an individual. Moreover, BGSM
records are taken too sparsely for optimization. Thus, only frequent CGM data provides enough
information over a longer observation interval. If not stated otherwise, it will be the only signal
reference on the basis of which the identification procedure is performed. Furthermore, meals and
insulin injections are available as inputs to the system. In contrast to controlled studies which satisfy
equal physiological conditions, several drawbacks arise from data obtained during daily life:

Insulin sensitivity and β-cell responsivity are not constant during the day (Saad et al.  2012 ).
Since these parameters are modeled to be time independent altered responses of a subject to a
meal at different times a day may not be properly incorporated.
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Optimization is applied to certain sequences of data. However the initial metabolic state of
a subject at the beginning of a sequence is unknown, e. g., a meal or insulin dose could have
been taken recently before. Hence, these inputs are unknown to the model and their impact may
not be correctly represented. To overcome this problem only intervals in the morning could be
considered, where a steady-state condition may be assumed.
The model of the gastrointestinal tract was identified from a standardized mixed-meal. In daily
life, meals may have another combination of macro-nutrients which may change the rate of
ingestion and thus the rate of appearance of glucose in the blood.
The mean standard deviation of the s.c. glucose signal, GI(t), induced by parameter variations
as shown for the variance-based sensitivity analysis is 14.75 to 22.77 mg dL−1 (Section  5.1.7.2 ).
The standard deviation introduced by the CGM sensor is approx. 10.5 mg dL−1 (Section  4.5.2 ).
Thus, parameter identification from single measurement intervals will not be with precision as
the variability caused by the parameters is, to a large extent, superimposed by the sensor error.

These factors have a significant impact on the model to adequately follow the measured CGM data.
Due to these limitations, the same quality of results as in the identification from blood glucose and
insulin data (Section  6.2.1 ) can not be expected.

Identification of the Physiological Time Delay. Parameter τ = 1
kg

is the physiological time
delay between glucose in the blood and interstitial fluid (Section  4.1.5 ). According to (  4.25 ), it is
modeled by a first-order delay. It is further independent of other parameters and can be identified from
a sufficient number of both, glucose values in blood, GBG(t), and continuous measurements, GCG(t),
from the s.c. space, where GBG(t) is the input and GCG(t) is the output of the model. Moreover, this
parameter cannot be identified during steady-state, thus, an interval of transient behavior such as
during an MTT must be provided. Optimization is first performed on noisy simulation data to verify
its general applicability. Second, τ is identified from experimental records. As both, simulated and
experimental data are noisy, it will not be possible to determine the parameter consistently from only
one measurement interval. Therefore, τ is identified using a growing number of sequences in order to
investigate averaging effects.

Algorithm  3 is applied for the identification by simulation. For this purpose, L = 10 out of 300 virtual
subjects in all groups are randomly selected, i. e., L different nominal time delays τl, l = 1, . . . , L exist.
For each subject, the time courses of glucose in plasma and ISF are simulated using the MTT scenario
and independent noise processes are added (Sections  4.5.1 and  4.5.2 ). To assess the repeatability
accuracy of the identification, this process is repeated for a growing number of repetitions. For this,
the set R = {1, 10, 25, 50} is defined. Each element in R stands for a certain number of repetitions.
That means, τ is identified from r1 = 1 to r4 = 50 independent glucose sequences, which allows
segregating the noise terms in the signals.
Furthermore, the nominal sampling rate of CGM signals is sCG = 12 h−1. Although BGSM data is
sparse, their sampling rate sBG is also set to this value and both signals are then interpolated with
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Algorithm 3 Identification of time delay τ by simulation
Require: Number of subjects L, set R = {1, 10, 25, 50}

for l = 1, 2, . . . , L do
Randomly pick a virtual subject Sl from within all groups
Simulate the desired scenario
for i = 1, 2, 3, 4 do

Create ri independent noisy processes G̃BG(t) and G̃CG(t) from simulated signals G̃(t) respec-
tively G̃I(t)

end for
Estimate τ̂l,i from ri noisy measurements

end for
Calculate the error between nominal τl and optimized τ̂l,i

a sampling time of 1 min. Parameter τ is then identified on the basis of each of the ri measurement
sequences in R and for each subject Sl. Finally, the differences between the nominal τl and each
optimized τ̂l,i are calculated. The results are shown in Fig.  6.6 . It can be seen that the error (mean
depicted as red dots within the bars) decreases while the number of considered repetitions increases.
For r1 = 1, the median error is 4.4 min but τ cannot be identified with precision, indicated by the large
error bar. For r4 = 50, the estimation error reduces to 0.72 ± 0.69 min (when neglecting the outlier)
while the repeatability accuracy significantly increases, indicated by the shrinking error bars. For
all ri, the mean error is higher than the median due to outliers. Generally, it is possible to identify
the physiological time delay from BGSM and CGM simulation data with noise. Moreover, the
correctness and precision of the estimate improve with a growing number of repetitions included in
the identification procedure.
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Figure 6.6: Error of the identified physiological time delay from noisy simulation data: The columns show the
difference between nominal τl and identified values, τ̂l,i, when a single, 10, 25, and 50 sequences
are considered for the identification process. Bars show the median (red lines within the boxes) and
mean (red circles) of the error.
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Table 6.3: Identified physiological time delay τ̂ (min) for different subjects and a growing number of considered
sequences, up to the total count m. Standard deviations estimated by r = 25 repetitions.

Group Subject
# Sequences

1 10 25 Set (m) m
(min) (min) (min) (min)

TNDM 814 26.2 ± 20.1 30.1 ± 15.7 24.7 ± 6.3 19.5 ± 0.0 138

T1DM 20330028 18.9 ± 20.6 13.8 ± 7.7 13.5 ± 3.8 15.1 ± 0.0 58
T1DM 39561557 11.4 ± 10.7 6.8 ± 2.8 6.4 ± 1.8 6.2 ± 0.0 47
T1DM 76423578 8.2 ± 10.7 6.2 ± 8.2 5.1 ± 3.3 4.7 ± 0.0 321

To identify τ from experimental data, suitable sequences must be found using the design presented in
Fig.  6.1 , where an interval contains a meal input, begins 30 min before and ends 4 h after the meal.
An example set of intervals that consists of five sequences of BGSM and CGM samples after a meal
of 50 ± 2 g CHO for the TNDM subject is shown in Fig.  C.5 on page  207 . A total number of m

sequences are found in the TNDM and T1DM subjects (last column in Table  6.3 ). In both T2DM
subjects, not enough BGSM records are available and thus, the identification could not be performed.
The process itself is fulfilled in the same manner as for the simulation. That means, τ is identified
taking into account 1, 10, 25, and m randomly chosen intervals taken from m available sequences. All
optimizations are repeated r = 25 times to evaluate the repeatability accuracy. Results are reported in
Table  6.3 for each subject. It can be seen that the standard deviations of the identified values decrease
for a growing number of sequences. Considering m = 25, the delay can be estimated within a ±6 min
range. Taking into account all available data, τ̂ is approx. 20 min in the TNDM subject, which is
higher than in the T1DM patients, for which τ̂ is between 4.7 and 15.1 min.

When taking into account that the records were taken under real-life conditions, including measurement
errors and other unknown disturbances, it can be stated that the identified values are within the
physiological range and can be estimated with precision. Note that errors of only a few minutes are
not important here as the sampling time of the CGM sensor is 5 min. However, an identified delay of
up to 20 min may affect a subsequent blood glucose estimation process (Section  6.3 ). Furthermore,
repeatability accuracy improves when considering more and more sequences. Hence, it can be assumed
that τ can be adapted to a particular subject during an observation period of a few days.

Identification of the Basal Glucose Concentration. The basal glucose concentration Gb is the
long-term steady-state glucose level. It is typically determined by clinicians in the morning after an
overnight fast. In a daily-life scenario, periods of fasting are seldom. Hence, Gb is identified on the
one hand from the mean of the overall CGM data and otherwise from CGM data obtained in the
morning hours, between 07:00 and 08:00. Furthermore, it is identified from steady-state sequences
using an optimization algorithm. A steady-state interval is here defined by a duration of at least 2 h, no
meal or insulin input, and a maximum deviation in the CGM signal of 25 mg dL−1. No such sequences
could be found in diabetic patients, hence, the identification is only performed for the TNDM subject.
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Table 6.4: Basal glucose concentration Gb, determined from n overall CGM data, n CGM data points recorded
between 07:00 and 08:00 in the morning, and identified from m steady-state sequences.

Group Subject
Overall 07:00-08:00 Identified

n Mean ± Std. n Mean ± Std. m Mean ± Std.
(mg dL−1) (mg dL−1) (mg dL−1)

TNDM 814 18 747 92.9 ± 18.2 795 87.3 ± 10.5 67 86.8 ± 9.7

T2DM 126 3303 144.8 ± 40.5 135 127.6 ± 22.4 –
T2DM 385 4716 172.4 ± 34.4 203 146.2 ± 23.0 –

T1DM 20330028 25 181 115.9 ± 45.3 1088 113.6 ± 35.4 –
T1DM 39561557 15 776 130.0 ± 49.9 637 127.5 ± 46.5 –
T1DM 76423578 54 415 133.6 ± 44.8 2218 121.6 ± 20.6 –

The results are reported in Table  6.4 for each subject, where n is the number of CGM records and m is
the number of sequences from which means and standard deviations are computed. The mean values
are the lowest in the TNDM subject, also having the smallest standard deviations. Across all test cases,
the values deviate from each other by less than 7 mg dL−1. In the morning and during steady-state,
standard deviations are almost halved, compared to the overall values. In the T2DM diabetics means
are the highest with also higher standard deviations. In the T1DM patients, means during fasting
are within 113.6-127.5 mg dL−1, which conforms to the desired target value of 120 mg dL−1 for most
diabetic patients. Across all subjects, basal glucose during fasting has a lower variability than in the
overall case. However, it cannot be determined with confidence from the obtained CGM records,
particularly in the T1DM patients. Hence, for all subjects, parameter Gb is fixed to the mean CGM
value computed for the morning hours.

Identification of the Sensitive Parameters. The identification of the remaining sensitive pa-
rameters is fulfilled for several types of sequences, including single meal intervals of 4.5 h duration
(Fig.  6.1 ) and 12 h and 24 h sequences in three subjects, one in each group. Optimization not only from
a single measurement sequence but also across several intervals would allow finding a global parameter
estimate that satisfies the individual glucose excursions in a long-term manner. Another opportunity
would be to average over multiple parameter vectors, each identified from a single sequence, in order
to determine a kind of average model of the subject under investigation.

From all sequences mentioned above, meal ingestion, as well as basal and bolus insulin administration,
are extracted. From that, simulation inputs are generated by linear interpolation. The previously
identified variables are set to their new values. In addition to the considered sensitive parameter set,
the basal insulin infusion rate IIRb is adjusted in order to meet the T1DM patient’s needs, too (nominal
IIRb = 1.18 U h−1). For this, (  4.43 ) is rearranged for Ib

P (open-loop design) to allow IIRb to be the
set point. Since the infusion rate is time-dependent, but the model allows only time-independent
parameters, IIRb is set to the daily mean (Fig.  C.1 ). A set of parameters is identified for each out of
r = 10 different sequences for each subject.
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Table 6.5: Mean and standard deviation of MARD (%) between CGM data and simulated model outputs for
r = 10 randomly chosen sequences. Simulation outputs are generated by the nominal, the identified,
and the averaged model, which was further validated on r full 24 h intervals.

Group Subject
Model

ValidationNominal Identified Averaged
(%) (%) (%) (%)

TNDM 814 24.38 ± 10.07 7.81 ± 3.13 13.06 ± 5.11 15.30 ± 9.53
T2DM 385 28.17 ± 7.80 14.93 ± 6.70 18.05 ± 7.50 27.12 ± 11.39
T1DM 76423578 70.95 ± 31.31 16.16 ± 3.52 27.87 ± 10.34 38.43 ± 15.71

For validation, errors ( 6.1 ) between experimental CGM and simulated CG data are computed. EGA
(Fig.  3.8 ) is used to assess the clinical relevance of the results. Moreover, identified parameter sets
are compared to the empirical distribution computed for the 100 generated virtual subjects (Fig.  A.2 ).
Furthermore, the average parameter set for each subject is computed and validated on r further full-day
intervals to assess general applicability.

Errors for the three subjects are reported in Table  6.5 . In diabetics, MARD is higher with a higher
standard deviation, too. In all subjects, the MARD of the averaged model has at least halved, compared
to the nominal model error. Moreover, it is obvious that the averaged model performs weaker than
the identified single models. MARD increases in all subjects and is between 13.1 % and 27.9 %.
The performance further deteriorates for the 24 h validation sequences. However, the average model
remains superior compared to the nominal simulation.

The identified parameter sets compared to the nominal virtual patients are depicted in Fig.  C.6 on
page  209 . From that, it is obvious that parameters cannot be identified with precision as the errors for
most values are larger than the assumed distribution of the nominal parameters.

Exemplarily, the time courses of three 24 h validation sequences are illustrated in Fig.  6.7 , one for each
subject. The plots show the measured BGSM and CGM data, as well as the nominal, and the averaged
identified model outputs for the TNDM (top panel), a T2DM (middle), and a T1DM subject (bottom
panel). Colored markers denote meal and bolus insulin time points, respectively. The best results are
visible for the TNDM subject, as the simulations adequately represent most of the postprandial glucose
excursions. Furthermore, basal glucose concentration matches the CGM signal obtained at night and
early hours. MARD for this sequence is reduced to 9.2 %. For the diabetic subjects, particularly
the T2DM one, simulation follows the glucose signal in a global scope but neither represents faster
glucose changes nor the measured amplitudes. Despite that, For this interval, MARD is calculated as
10.9 %. In the T1DM subject, the large mismatch of the nominal model is noticeable at first, which
is mainly due to a wrong assumption of the basal insulin infusion rate (IIRb = 1.18 U h−1). Subject
P7642357 receives insulin with a rate of 0.2-0.5 U h−1 in the morning (Fig.  C.1 ), which is not enough
to maintain steady-state in simulation, and thus, glucose concentration rises slowly. Adjusting to the
daily mean (IIRb = 0.48 U h−1) leads to acceptable steady-state behavior at night (00:00-07:00). The
MARD could be reduced from 79.1 % to 22.8 %.
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Figure 6.7: Time course of experimental BGSM (red markers) and CGM (blue markers) data versus nominal
model outputs (BG in solid black, CG in dashed black) and identified model outputs (BG in solid
purple, CG in dashed purple). Meals (green triangles) and bolus insulin injections (yellow triangles)
at discrete-time points are inputs to both, experiment and simulation. Data is shown for 24 h
validation sequences in TNDM (top), T2DM (middle), and T1DM (bottom panel). Error between
CGM and CG is given for the nominal (MARD) and for the identified (MARD) model. Note that
the basal insulin rate for P76423578 (Fig.  C.1 ) is not printed here for better visibility.

Finally, EGA is shown in Fig.  C.7 on page  210 . The plots show the reference experimental CGM
data against simulated continuous glucose levels for the nominal model (black dots), the optimized
models for each sequence they were identified from (blue squares), and the mean model for the same
sequences (red triangles), all shown on the left side. The right side depicts the performance of the
nominal (black dots) and the mean identified model (green triangles) for all validation sequences.
For the TNDM subject (top subplots), recorded values are concentrated between 75 and 140 mg dL−1.
The nominal model overestimates the reference measurements (46 % respectively 50 % in zones A
and B), whereas the identified model results lie, for most values, within zone A (95.6 %), close to the

160



6.2 Model Personalization

diagonal. For the averaged model, 98 % are within A and B. For the validation intervals (upper right
subplot), the number of data pairs within zone A improves from 68 % to 77 %, mainly shifting from
zone B (25 % to 17 %) when comparing the nominal and the mean identified model. The number of
values within zone D decreased only slightly (6.5 % to 5.8 %).
In the T2DM subject (middle subplots), almost all of the nominal simulation data is within zones A
and B (30 % respectively 68 %), a few values also reaching zones C and D. The mean identified model
increases the number of values within zone A up to 62 %. The nominal model shows almost the same
behavior for the validation sequences (middle right subplot) (98 % within zones A and B). Although
the number of values in zone A increases from 33 % to 48 %, there are also some outliers in zones C,
D, and E (in sum 6 %).
In the T1DM subject (bottom subplots), the nominal model strongly overestimates glucose measure-
ments, mainly due to the mismatch of the basal insulin infusion rate. Only 66 % of CG data is within
zones A and B, 32 % within zone C. Model adaptation significantly improves simulation results to
55 % and 41 % within zones A and B, respectively, for the averaged model. For the validation intervals
(bottom right subplot) more than half of the data is within zone C (54 %) and only 15 % and 28 % in
zones A and B, respectively. Optimization significantly improved the results, leading to 91 % within
zones A and B.
Comparing the three subjects with each other, the averaged model shows comparable results for the
validation sequences with 94 %, 94 %, and 91 % of simulated CG values within zones A and B, for
TNDM, T2DM, and T1DM, respectively. However, the model performs best in the non-diabetic case
since 77 % of all values lie within zone A. For each subject there exist 6-9 % outliers within zones
C-E, which could not be reduced by the identified models.

In summary, parameters can be determined by identification from single meals of 4.5 h duration.
However, a consistent adaptation with precision is impossible as the postprandial glucose behavior
is mainly determined by the type of the ingested meal. Hence, one gets a kind of meal-dependent
parameter set that is not valid in a global scope. Moreover, an identification by 24 h intervals leads to
parameter sets that allow the simulated CG output to smoothly follow the glucose trajectory over the
whole day, but its capability to adequately represent specific postprandial glucose excursions is limited.
This behavior is apparent in Fig.  6.7 , particularly for the two diabetic subjects. Overall, the MARD
between experimental CGM data and simulated CG pairs could be reduced significantly. Furthermore,
EGA shows that over 90 % of all data points lie within the clinically relevant zones.

The previous analyses referred to the CGM signal only, since it is available as a quasi-continuous
measurement variable. To further improve the model capabilities to correctly determine the current
glucose concentration online state estimation is a suitable approach since it allows updates of the
model states during run-time. It also enables the estimation of other non-measurable variables.
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ỹ = Cx̃

y

x̃

K

ỹ
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Figure 6.8: Structure of the linear Kalman filter for estimating state x̃.

6.3 Online State Estimation

Online state estimation aims to determine the current states of the system during run-time. For this
purpose, an observer must be designed and the desired states must be observable by measurements
(Section  5.2.7 ).

6.3.1 Derivation of the Model-based Observer

Model-based state observation aims to reconstruct the internal state vector x̃ ∈ RN , x̃(0) = x̃0 using a
model of the underlying system. For that, the same input vector u ∈ RM must be applied to the system,
and likewise, the simulated and experimental measurements y ∈ RO<N must be taken. The internal
states can then be corrected by the feedback of the error between measured and simulated outputs
e = y − ỹ using a suitable observer matrix K (Fig.  6.8 ). Taking the linear system ( 5.29 ), one gets the
state-space form of the observer:  ˙̃x = Ax̃ + Bu + K (y − ỹ) ,

ỹ = Cx̃.
(6.3)

The basic concepts and assumptions of the Kalman filter (KF) are introduced in the following
paragraph. Since the model is continuous-time, nonlinear, and has colored measurement noise, some
enhancements succeed. An elaborated derivation of all equations, modifications, and generalizations
can be found in, e. g., Simon (  2006 ) and Grewal et al. ( 2008 ).

The Linear Kalman Filter. The deterministic model ( 5.29 ) is extended by the stochastic distur-
bances w and v, which leads to ẋ = Ax + Bu + w,

y = Cx + v,
(6.4)

where w and v can be interpreted as process and measurement noises, respectively. Since filters are
typically implemented on a digital platform, the system dynamics are often discretized and then a
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discrete-time KF can be applied. Thus, the filter equations are first derived for the discrete-time case,
and then some modifications for continuous-time systems are introduced.

The continuous-time system ( 6.4 ) is discretized as follows:xk = Ad xk−1 + Bduk−1 + wk−1,

yk = Cd xk + vk,
(6.5)

where Ad, Bd, and Cd are the discrete-time state transition, input, and output matrices, respectively.
Further, xk and yk are the state and output vectors at a discrete-time point k ∈ N with xk = x(k) =
x(t = k · ∆T ) and sampling time ∆T .

The stochastic processes can be described by their probability density or distribution function. It is
assumed that these processes are normally distributed (  4.70 ), white, uncorrelated, and have zero mean.
Thus, the following statements hold:

w ∼ N(0, Qk),

v ∼ N(0, Rk),

E
{
wk · w>j

}
= Qk · δk− j,

E
{
vk · v>j

}
= Rk · δk− j,

E
{
vk · w>j

}
= 0,

(6.6)

where Qk and Rk are known covariance matrices of process respectively measurement noise and δk− j

is the Kronecker delta function, i. e., δk− j = 1 if k = j and δk− j = 0 if k , j.

The goal is now to derive an estimate x̃k of the state xk based on the propagation of the dynamical
system and noisy measurements yk. For that, the a priori state vector, i. e., the estimated state at time
k based on k − 1 measurements is introduced with x̃−k , the covariance of the estimation error with P−k .
The a posteriori state vector, i. e., the corrected state after the measurement yk was taken is denoted by
x+k and its covariance matrix with P+k .

The estimate at time k is calculated as

x̃−k = E
{
xk | y1, y2, . . . , yk−1

}
,

= E {Ad xk−1 + Bduk−1 + wk−1} ,

= Ad x̃+k−1 + Bduk−1. (6.7)

That means the a priori estimate is the conditional expectation of xk, based on all measurements
before, but not including time k. From the propagation of the mean of xk over time, given by (  6.5 ), the
term (  6.7 ) can be derived, i. e., the a priori estimate at time k depends on the a posteriori estimate
x+k−1 at the last time step k − 1. Quantity x+k is the conditional expectation of xk up to and including
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measurement yk and is given by

x̃+k = E
{
xk | y1, y2, . . . , yk

}
, (6.8)

x̃+0 = E {x0} , (6.9)

where x̃+0 is the initial estimate at k = 0 when no measurements are available yet. The same holds for
the update equation for P, the covariance of the estimation error. The uncertainty P+0 in the initial
guess is given by

P+0 = E
{(

x0 − x̃+0
) (

x0 − x̃+0
)>}

. (6.10)

From the propagation of the covariance of a state of a discrete-time system (Simon  2006 , Ch. 4.1), the
time update for the covariance P can be derived using Eqs. (  6.5 ) and ( 6.7 ), which leads to:

P−k = E
{(

xk − x̃−k
) (

xk − x̃−k
)>}

,

= Ad · E
{(

xk−1 − x̃+k−1

) (
xk−1 − x̃+k−1

)>}
· A>d + E

{
wk−1 · w>k−1

}
,

= Ad P+k−1 A>d + Qk−1. (6.11)

For each iteration step k := k + 1, the observer gain Kk is determined along with the correction of the
state estimate and its covariance:

Kk = P−k C>d
(
Cd P−k C>d + Rk

)−1
, (6.12)

x̃+k = x̃−k + Kk
[
yk − Cd x̃−k

]
, (6.13)

P+k = (I − KkCd) P−k (I − KkCd)> + KkRkK>k , (6.14)

with I being the unit matrix of appropriate dimension. These are known as the measurement-update
equations of x̃k and Pk. The Kalman gain in ( 6.12 ) is optimal under the conditions given in (  6.6 ). It is
optimal in the sense that the estimation error has not only a zero mean but also a minimum variance.
The Kalman filter is therefore also referred to as an optimal filter.

Incorporating Colored Measurement Noise. To derive the KF process and measurement noise
were both supposed to be white. In the case of colored measurement noise, the system and output
equations are again given by (  6.5 ). However, the discrete noise process vk itself is the output of the
linear system

vk = ψdvk−1 + ηk−1, (6.15)
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with the statistical properties:

wk ∼ N(0, Qk),

ηk ∼ N(0, Qk,η),

E
{
wk · w>j

}
= Qk · δk− j,

E
{
ηk · η

>
j

}
= Rk,η · δk− j,

E
{
wk · η

>
j

}
= 0,

(6.16)

where ψd is the constant system matrix of the noise process driven by the zero-mean, white, and
uncorrelated noise term ηk with covariance matrix Qk,η. To solve this problem, vk can be incorporated
into the system as an augmented state as shown in Bryson et al. (  1965 ) for continuous-time systems.
This leads to system

Σ̂ :


x̂k =

xk

vk

 =
Ad 0

0 ψd


xk−1

vk−1

 +
Bd 0

0 0


uk−1

0

 +
wk−1

ηk−1

 ,
yk =

[
Cd I

] xk

vk

 + 0,

(6.17)

which can be written as x̂k = Âd x̂k−1 + B̂dûk−1 + ŵk−1,

yk = Ĉd x̂k + v̂k.
(6.18)

The augmented system is equivalent to the original system but with modified state x̂, transition matrix
Âd, input matrix B̂d, input û, process noise ŵ, output matrix Ĉd, and measurement noise v̂. Moreover,
the covariance matrices of process and measurement noise are computed by

E
{
ŵk · ŵ>k

}
= E


wk

ηk

 · [w>k η>k

]
=

Qk 0
0 Qk,η

 , (6.19)

E
{
v̂k · v̂>k

}
= 0. (6.20)

Extension to Continuous-time Systems. Since the model of glucose metabolism is continuous-
time but measurements are only available at discrete-time points, a hybrid approach is appropriate
(Simon  2006 , Ch. 13.2.2), which avoids the discretization step in ( 6.5 ). Extending ( 6.4 ) with the
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continuous-time process noise w and discrete-time measurement noise vk, one getsẋ = Ax + Bu + w,

yk = Cxk + vk,
(6.21)

where yk and xk are the output respectively state vectors at time k. Vector xk can be derived by solving
the continuous-time equation with an integration technique such as the Runge-Kutta method. Process
noise w(t) is continuous-time with covariance Q and measurement noise vk is discrete-time with
covariance Rk:

w(t) ∼ N(0, Q),

vk ∼ N(0, Rk),
(6.22)

The filter is initialized using Eqs. ( 6.9 ) and (  6.10 ). For k = 1, 2, . . ., the state estimate x̃ is propagated
from x̃+k−1 to x̃−k by

˙̃x = Ax̃ + Bu + w0, (6.23)

with w0 being the nominal process noise, that is w0(t) = 0. At time k, the measurement noise is
incorporated as given in ( 6.12 )-( 6.14 ).

Extension to Nonlinear Systems. The extended Kalman filter is based on a linearization of a
nonlinear system in each iteration step. For that, a linearization around the last estimate is performed
before prediction and before correction, respectively; and the Kalman filter estimate is based on that
linearized system.

Combining the nonlinear system ( 5.30 ) with the hybrid filter approach in ( 6.21 ) givesẋ = f (t, x,u, p) + w,

yk = g (k, xk, p) + vk,
(6.24)

with the same statistical properties as defined in ( 6.22 ). The propagation of states is continuous-time,
whereas the output equation is discrete-time. Moreover, the same initialization as given in Eqs. (  6.9 )
and ( 6.10 ) can be used. To linearize the system, the partial derivatives of state function f and output
function g are calculated as

F =
∂f
∂x

∣∣∣∣∣
x̃
,

G =
∂g
∂x

∣∣∣∣∣
x̃
,

(6.25)

leading to the linearized system and output matrices F and G. However, these must now be recomputed
at each time step k, resulting in the time-varying matrices Fk and Gk. The remaining filter equations
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Algorithm 4 Hybrid extended Kalman filter

Require: x̃+0 , P+0
for k = 1, 2, . . . do

Integrate ˙̃x from time (k − 1)+ to k− using ˙̃x = f (t, x̃,u, p) resulting in x̃ = x̃−k ( 6.23 )
Estimate P−k = Fk P+k−1F>k + Q using Eqs. ( 6.11 ) and ( 6.25 )
Incorporate measurement yk into state and covariance estimation:

Compute Kalman gain: Kk = P−k G>k
(
Gk P−k G>k + Rk

)−1
using ( 6.12 )

Correct state: x̃+k = x̃−k + Kk
[
yk − g

(
k, x̃−k ,u, p

)]
using ( 6.13 )

Correct covariance: P+k = (I − KkGk) P−k (I − KkGk)> + KkRkK>k using Eqs. ( 6.14 ) and ( 6.25 )
end for

correspond to those of the linear filter as given in (  6.11 ) and (  6.12 )-( 6.14 ), where the constant matrices
Ad and Cd are replaced by Fk and Gk, respectively. Furthermore, the linear model output Cd x̃−k is
substituted by the nonlinear output equation g

(
k, x̃−k ,u, p

)
. The whole procedure is summarized in

Algorithm  4 .

EKF for Blood Glucose Estimation from CGM Data. Now, the goal is to continuously estimate
the current blood glucose concentration based on glucose measurements within the interstitial fluid
using a CGM device. Although blood glucose measurements can and should be performed several
times a day, model-based estimation of this quantity would allow continuous BG monitoring which
enriches the sparse samples.

Sections  5.2.2 and  5.2.4 introduced the concept of observability and identifiability. Results in Sec-
tion  5.2.7 showed that it is practically not possible to estimate all states or parameters with precision
from observations of the glucose concentration in the subcutaneous space, GI. Moreover, the analysis
was based on an ideal system, i. e., without considering any measurement noise, which is indeed
induced by CGM sensors (Section  4.5.2 ). However, an estimation of the blood glucose level G from
CGM data should be possible. Hence, two states are estimated which have shown to be observable
(Table  5.3 ): glucose masses in plasma G̃P and in the interstitial fluid G̃Sc, summarized into vector x̃.
The estimated output vector ỹ consists of the glucose concentrations in the blood, G̃, and the interstitial
fluid, G̃I, respectively.

The nonlinear set of system equations ( A.1 ) and the linear output equation ( A.2 ) are used to design the
observer. Thus, linearization is needed only for calculating the state covariance P−k . To update the
covariance P+k , the linear filter approach ( 6.14 ) is sufficient using the constant output matrix C.
The filter is initialized with a randomly chosen state estimate x̃0 = ν, with ν ∼ N(x0,

√
x0) and

x0 the nominal initial state. Furthermore, appropriate initial state uncertainty P+0 and process noise
covariance matrices Q were both defined for each group (Table  C.3 ).
Meal ingestion uoral

G and insulin administration usc
I are the typical inputs to the system. The scalar

CGM measurement is y = GCG, its covariance is assumed to be constant with R =
(
10 mg dL−1

)2
.

The filter runs with a sampling time of ∆T = 1 min. States are calculated using a Runge-Kutta
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Figure 6.9: Structure of the extended Kalman filter for continuous glucose estimation from CGM data.

integration method, whereas the measurements are sampled discretely at 5 min. Between the samples,
no information is available about the covariance, hence, P+k = ∞I, which can be achieved by arbitrarily
large numbers on the diagonal. Figure  6.9 summarizes the model-based estimation approach. Moreover,
missing CGM data could occur during the experiment due to sensor connection faults. In these cases,
the observer performs a prediction of the current state, which is described in the next paragraph.

Short-term Prediction. The EKF is based on an update of the current state using the model
equations and a correction step using measurement data, fulfilled in each time step. In case of a
missing measurement at time k, the state estimate relies on only the update step ( 6.7 ) as no knowledge
about the data is available and P+k = ∞I. This concept can be extended by predicting the future
state trajectory for times k + 1, . . . , k + th, where th is the prediction horizon, which is typically
between 30 and 60 min, allowing the patient to modify treatment decisions in order to prevent possible
harmful glycemic excursions. In contrast to time series analyses based on ARMA(X) models (auto-
regressive-moving-average with exogenous inputs), which can also be used for short-term predictions,
a model-based approach has the advantage that future values do not inherently depend on only past
measurements but on the internal state dynamics of the model and its response to possible new system
excitation. Hence, providing an adequate model may increase the prediction horizon.

To assess the prediction capabilities, Algorithm  4 is adapted as shown in Fig.  6.10 . Within an arbitrary
data sequence, the EKF estimates the internal model states based on measurement data for a time
horizon tw. Since the initial state estimates are not known exactly, setting tw = 12 h allows the filter
to converge accordingly. After reaching the end of tw, states are predicted on only the model update
equations and system inputs for the prediction horizon of th = 4 h. The process is repeated by shifting
the total filter window, tw + th, by ts = 30 min along the entire measurement sequence. In retrospect,
the predictions made in each window can be compared with the measurements recorded within this
interval.
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Figure 6.10: Process of the short-term prediction of future blood glucose levels: The filter runs within the
nominal window size, tw, where time-update and correction steps are fulfilled at each time step
using measured inputs and outputs. The prediction follows for the time horizon th, based on only
the state updates. The procedure is repeated successively by shifting the complete filter window,
tw + th, by ts along the entire measurement sequence.

6.3.2 Experimental Design, Results, and Discussion

After the derivation and configuration of the observer, its feasibility in estimating blood glucose levels
from experimental CGM data is evaluated. For that, several key properties of the experimental design
must be defined:

One subject in each group (the same as shown in Table  6.5 and Fig.  6.7 ) was chosen.
Since BGSM records are sparse, sequences of a duration of one week were simulated at once,
in order to have a suitable amount of records available for validation.
To test repeatability, the estimation procedure was repeated for different intervals. In subjects
P814 and P385, all sequences were considered (r = 10 respectively r = 3), in P76423578,
r = 10 out of a total of 25 one-week intervals were randomly selected.
The estimation was further processed for the model using the nominal parameters, as well as with
the identified parameter vector, to evaluate possible improvements made by the optimization.
Meal ingestion and basal and bolus insulin administrations were incorporated into the simulation
as described for the parameter identification process.

Online State Estimation. An exemplary time course of 24 h duration is shown in Fig.  6.11 for
each subject. There, experimental BGSM and CGM records, meal intakes, and insulin administrations
are plotted in conjunction with BG and CG estimates, using the identified model.
First, in the diabetic subjects, BGSM and CGM data pairs are close to each other. In subject P814, a
larger deviation can be seen in the stationary regions (e. g., at 18:00–21:00), as well as during dynamic
phases (e. g., at 12:00). This behavior can be explained by the larger time constant in this subject,
which was identified to be almost four-fold higher than in the diabetic subjects (Table  6.3 ). Thus, the
CGM signal is more delayed compared to the glucose concentration in the blood. Second, the CG
estimates adequately follow the CGM signal.
In P814, n = 22 BGSM samples are available for validating the BG signal. At most times BG estimates
are comparable with measurements. Especially the earlier change in blood glucose compared to the
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Figure 6.11: Time course of experimental BGSM (red markers) and CGM (blue markers) data versus estimated
glucose values (BG in solid black, CG in dashed black). Inputs to experiment and simulation were
meals (green triangles) and bolus insulin injections (yellow triangles) at discrete-time points. Data
is shown during a 24 h sequence for a TNDM (top), T2DM (middle), and T1DM (bottom panel)
subject. Error between BGSM and BG is given as MARD. Note that the basal insulin rate for
P76423578 (Fig.  C.1 ) is not printed here for better visibility.

CGM signal is well represented. The MARD for this sequence is calculated with 10.3 %.
In P385, this interval was selected as it contains much more BGSM values than the average for this
subject (n = 11). Moreover, it also contains two periods of missing CGM data, at 01:00 and 11:00,
which allows for investigating the observer performance for short-time predictions. Most times, the
BG estimate closely precedes the CGM signal. Some over- or undershoots are apparent when glucose
dynamics change. In cases of missing measurements, BG estimates rely on state predictions only. At
01:00 a comprehensible state prediction can be seen. Furthermore, the state is updated correctly as
soon as measurement data is available again, which leads to the step in the estimates at 02:00. At the
end of the interval, CGM is missing for at least one hour during a rapid fall of glucose. There, the
model predicts a safe and reliable glucose time course. The MARD for this sequence is 12.5 %.
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Table 6.6: Error (MARD in %) between BGSM measurements and BG estimates for one subject in each group.
MARD is calculated between n data pairs derived by i) simulation of nominal and identified model,
and ii) online estimation of nominal and identified model.

Subject n
Simulation Estimation

Nominal Identified Nominal Identified
(%) (%) (%) (%)

814 1428 19.9 ± 2.9 15.8 ± 1.3 13.0 ± 1.3 11.8 ± 0.8
385 99 31.2 ± 2.4 20.1 ± 4.1 11.4 ± 2.4 10.2 ± 1.6

76423578 930 172.2 ± 35.1 55.0 ± 13.7 19.8 ± 7.7 15.1 ± 6.4

In P76423578, n = 20 BGSM records exist (most times two values directly follow each other). The
time course of estimated blood glucose closely precedes the CGM measurement, the same way as for
the T2DM subject. The MARD for this sequence is calculated with 8.1 %.

To assess the repeatability of the observer and to further investigate how much the model person-
alization improves the estimation results, the procedure is repeated for r different sequences. The
overall MARD (mean and standard deviation) for each subject and n BG pairs is reported in Table  6.6 .
The number of data pairs available ranges from n = 99 for P385 up to n = 1428 for P814, allowing
a valid interpretation of the results. First, the error between BGSM and BG values coming from a
naive simulation of the nominal model is calculated, followed by a simulation of the optimized model.
Second, nominal and identified models are used for the BG estimation.
For all subjects, the simulation of the identified model significantly improves the BG signal. The
error is reduced by 20 % in TNDM up to 62 % in the T1DM subject. Further, the standard deviation
of the error has reduced considerably, which is likely due to the adjustment of the basal insulin
dose. Switching from naive simulation to model-based estimation still reduces the mean and standard
deviation of the error. Here, the T1DM subject benefits the most, and the non-diabetic subject the
least. This suggests that the identified model for the non-diabetic is quite good in itself, whereas for
the T1DM many mechanisms do not yet seem to be adequately represented by the model.
Last, the state observer using the identified parameter set produces the best results, with a MARD
of 10.21 % and 11.83 % for the TNDM and T2DM subject, respectively; and 15.10 ± 6.43 % for
P76423578. Moreover, P814 has the lowest standard deviation which allows a stable BG estimation
over longer periods and under various conditions.

To assess the implications when BG estimates are utilized for treatment decisions, an EGA is performed.
The results for each subject and zones A–E, as well as the total MARD for all considered sequences
are reported in Table  6.7 , the related EGA plots can be found in Fig.  6.12 on page  173 . For all subjects,
over 90 % of all BG data pairs are within zones A and B, indicating an overall accurate estimation
performance.
In P814, records are more compact, most ranging between 80 and 180 mg dL−1. 99.3 % of all data
lie in zones A and B, and only 0.7 % in zone D. Compared to results obtained by the naive model
simulation (black markers in Fig.  6.12 ), where 97.1 % are within zones A and B, the results improved
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Table 6.7: Results of the EGA performance evaluation between BGSM measurements and BG estimates for
one subject in each group with a total number of n values. EGA plots are shown in Fig.  6.12 .

Subject n % of data pairs in zone MARD

A B C D E (%)

814 1428 82.2 17.1 0.0 0.7 0.0 11.8
385 99 90.0 10.0 0.0 0.0 0.0 10.2

76423578 930 79.5 13.7 0.3 6.5 0.0 15.1

by only 2.2 percentage points. However, a significant number of values shifted from zone B (from
32.6 % to 17.1 %) into zone A (from 64.5 % to 82.2 %). The EGA confirmed that the state observer
is able to reduce the BG error, compared to the naive simulation. Anyway, also the nominal and
identified models return computations that are valid most times.
In P385, BG values within zone A improved from 31.2 % over 63.6 % up to 90 % for the nominal and
identified model simulations, respectively state estimation. In total, all estimated BG estimates lie
within the clinically relevant zones A and B. Note that only n = 99 BGSM samples were available,
which is significantly fewer than for the other two subjects.
In P76423578, the naive simulation is not able to generate any reliable output, mainly due to the
mismatch of the basal insulin infusion rate. The nominal EGA results are 4.7, 22.5, 60.6, 2.6, and 9.6 %
for zones A-E, respectively. The observer approach increases the values within zones A and B to
93.1 % which is significantly more than the simulation approach, but lower than in the other groups.
6.5 % of all values fall into zone D, which means, glucose measurements below ≈60 mg dL−1 were
often overestimated. A closer investigation of the time course of BGSM and CGM samples revealed
that the CGM device was not able to properly track the BG excursions. This could be related to
some physiological effects that occur too rapidly to be apparent in the subcutaneous tissue where the
measurement takes place or it is due to errors in the BGSM device itself. Furthermore, BG records
have the highest variability, ranging from 50 mg dL−1 up to 380 mg dL−1. It is noticeable, that also the
very high BGSM values are estimated accordingly, indicated by their low deviation from the diagonal.

Online State Prediction. The observer prediction capabilities are assessed for one subject in each
group and r weeks of measurement data as listed in Section  6.3.2 and further explained in Fig.  6.10 .
Thus, leading to an ensemble of n intervals of measurement data and associated state predictions
derived from the identified models. From that, CGM records, GCG, are taken as reference, which is
then compared with the predictions of continuous glucose G̃I at different prediction horizons th ranging
from 0 min up to 240 min. For each point in the setW = {0, 30, 60, 90, 12, 150, 180, 210, 240}, the
mean absolute error (MAE) across the whole ensemble is computed by

MAEth =
1
n

n∑
i=1

∣∣∣GCG(i) − G̃I(i)
∣∣∣, (6.26)

where n = [2533, 659, and 3026] for subject P814, P385, and P76423578, respectively.
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Figure 6.12: EGA of paired experimental BGSM data and estimated blood glucose (BG) values in three
subjects: P814 (upper), P385 (middle), and P76423578 (lower panel). Experimental BGSM
records are obtained from r = 10 sequences (r = 3 in T2DM) of 1 week duration each. BG data
is calculated from naive simulation of the nominal model (black) and the mean identified model
(blue); estimated BG values (red) are derived from the identified model. EGA results are reported
in Table  6.7 .
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Figure 6.13: Mean absolute prediction error for time horizons increasing from 0 to 240 min for subjects P814
(blue), P385 (red), and P76423578 (yellow).

The prediction error depending on the prediction horizon is depicted in Fig.  6.13 for each participant.
There, it can be seen that the error develops quite differently depending on the subject group and hence,
the ability of the simulation model to adequately represent the subject it was identified from. From
Table  6.5 on page  159 , it is known that the identified model for the non-diabetic subject performs
superior compared to the diabetic cases. This behavior is confirmed by the results in Fig.  6.13 , where
the prediction error for the T2DM and T1DM subjects is at least 2 respectively 3 times higher than for
the TNDM subject.
In P814, after a rise of the MAE from 1.9 mg dL−1 up to 18 mg dL−1 at 90 min, it stabilizes and does
not exceed 20 mg dL−1 over the entire prediction horizon. In contrast, in T2DM and T1DM, the error
rises with increasing window size, although the gradient becomes less steep over time.
The RMSEth=0 at th = 0 min, i. e., the estimation error at run-time, is calculated with 3.1, 3.4,
and 7.8 mg dL−1 for subject P814, P385, and P76423578, respectively. The typical 30 min ahead
RMSEth=30 is 15.6, 17.1, and 27.1 mg dL−1.

The EGA performance analysis for the three subjects and prediction horizons of 0, 30, and 60 min
is shown in Fig.  6.14 . At th = 0 min, almost all predicted values are close to the main diagonal and,
thus, have minimal errors. At th = 30 min, the data pairs of subjects P814, P385, and P76423578
are within the clinically relevant zones A and B with 99.9, 100, and 99.9 %, respectively, and none
in zone E. When setting th = 60 min, the majority of points still fall into zones A and B, but the
number of errors increases. In the TNDM subject, 71, 24.6, 0.27, 4.1, and 0 % of pairs are within
zones A-E, respectively. The best prediction is obtained for the T2DM subject, where 80.9, 18.5, 0.3,
0.3, and 0 % are within zones A-E, respectively. The T1DM subject performs worse, with 47.6, 50,
1.1, 1.1, and 0.2 % of data pairs within zones A-E, respectively. Hence, values indicated in zone C
would lead to an overreaction, whereas glucose predictions within zone D seem to be accurate and
would typically not be corrected. The critical zone E, whose occurrence would lead to a converse
treatment decision, occurs with 0.2 % in P76423578.
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Figure 6.14: EGA of paired experimental CGM data and predicted continuous glucose (CG) values in three
subjects: P814 (upper), P385 (middle), and P76423578 (lower panel). Experimental CGM records
are obtained from r = 10 sequences (r = 3 in T2DM) of 1 week duration each. Predicted CG
values are shown for a horizon of 0 min (blue), 30 min (red), and 60 min (yellow).
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6.4 Summary and Conclusion

This chapter introduced a collection of daily-life measurement data obtained by several diabetic and
non-diabetic persons. The records contain meal intakes and insulin administrations, which are inputs
to a mathematical model of glucose regulation. They further contain blood and continuously measured
glucose values, which are the main outputs of the model.

Section  6.2.1 showed the general applicability of a model identification approach from blood glucose
and insulin measurements if enough and precise records are available, e. g., obtained in a clinical
setting. Moreover, only those parameters were adapted which have shown to be important, which was
quantified by their sensitivity index (Section  5.1.6 ).

Besides that, statistical approaches for sensitivity analysis, observability, and identifiability analysis
(Section  5.2 ) have shown which states and parameters are, theoretically, observable by CGM data. In
practice, consistent parameter identification for several subjects and different measurement sequences
is currently not possible. This can be primarily explained by the high measurement noise in the CGM
signal, which is in a similar order of magnitude as the variability in the model output when parameters
are varied within their physiological range. Hence, variance induced by parameter changes cannot be
distinguished from measurement noise which makes a precise identification of all sensitive parameters
practically impossible. Nevertheless, at least the basal glucose concentration and the physiological
time lag could be determined. However, the ongoing technological improvements in CGM data
acquisition, signal processing, and data integration from other sources may help to overcome these
limitations in the near future (Vettoretti, Cappon, et al.  2018 ).

Although parameter identification was not successful at all for the reasons mentioned above, an online
state estimation of the major clinical factor, the concentration of glucose in the blood, is feasible. For
that purpose, a state observer was designed, taking into account several statistical properties of process
and sensor noise. Blood glucose is not continuously measurable but can be estimated in real-time from
experimental CGM data, providing integrated monitoring. Results show a MARD between measured
and estimated blood glucose values of 10.2 % and 15.1 %, including almost 2500 records obtained
from different diabetic and non-diabetic patients during several months. Furthermore, the observer
design was extended for short-term predictions of future glucose excursions. Error metrics and an
EGA were computed for prediction horizons ranging from 0 min up to 240 min. The RMSE between
CGM data and predicted CG values for a prediction horizon of 30 min includes between 659 and 3026
data pairs and is calculated with 15.6, 17.1, and 27.1 mg dL−1 for the TNDM, the T2DM, and the
T1DM subject, respectively. EGA performance shows that almost all predictions in all subjects fall
within the clinically relevant zones A and B. Hence, allowing a patient to properly correct treatment
decisions for a time horizon up to 60 min.
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MoDiM (Model-based Diabetes Monitoring) is an extensible web-based service for real-time glucose
monitoring, acquisition of insulin delivery and meal ingestion, and model-based state estimation.
It connects to an open-source mobile application that implements interfaces to several sensors and
a repository for data storage. The main feature is a simulation environment that makes use of a
mathematical model of glucose-insulin-glucagon regulation and the available measurement data.
Hence, it provides real-time information of the patient’s current metabolic status to gain new insights
into the personal health progression and can help to achieve better therapeutic decisions to support
patients in their daily diabetes management (Fig.  7.1 ).

Use Cases. For patients, the use of a model-based system in daily life has several benefits:

Diabetics have to measure their blood glucose values several times a day. A reliable estimate of
the current concentration may reduce the number of painful finger pricks.
A continuous estimate of glucose levels would allow a patient to react earlier to deviations from
euglycemia and could reduce times of severe metabolic conditions.
A simulation model not only allows estimating the current state of a patient but also enables
short-time predictions of future glucose levels. Compared to the sole evaluation of the past time
course of glucose measurements, a model-based prediction has the advantage of generating
considerably more precise predictions. It also allows taking into account possible future events
if provided by patients.

Tablet

WAN

Data repository/data analytics

Meals

Insulin

BGSM

CGM

Measurements

Real-time information

Figure 7.1: MoDiM concept: Mobile glucose measurement devices and insulin pumps are wirelessly connected
to a tablet via Bluetooth. The tablet serves as a user interface and is connected to a web service. This
online service consists of a web server, a database for data storage, and a data analytics platform.
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Moreover, this would allow a kind of management game mode in which a patient could simulate
different scenarios of meal ingestion, insulin injection, or physical activity and their influence
on future metabolic states.

Components and General Structure. MoDiM consists of a series of hardware and software
components (Table  7.1 ). It implements interfaces to the blood glucose sensor Contour Next One, the
continuous glucose sensor G5 Mobile, and several insulin pumps via the open-source Android app
xDrip+. Meal ingestion must be provided manually within this application. These records define
the major inputs and outputs of a patient in a daily-life diabetes setting which are needed for the
model-based diabetes monitoring. All recordings are converted into JSON (JavaScript Object Notation)
format, a collection of name/value pairs that is human-readable and easy for machines to parse and
generate. Moreover, measurement values are automatically transmitted to a non-relational database
(MongoDB) in real-time. The database is free, easy to install and maintain, and can be run on various
platforms. There also exist several APIs (Application Programming Interface) with which the database
can be accessed from other services. It is running on a Raspberry Pi, a low-cost, low-energy embedded
device, that could also serve as a server for at-home-usage. For online and offline data analysis and
algorithm development, the database can be accessed from Matlab via a Java-API (MongoDB Java
driver). Since Java is natively supported by Matlab only some wrapper classes had to be designed to
encapsulate the database API. The whole toolchain is shown in the lower part of Fig.  7.2 .

MoDiM service is the main component that reacts to user requests and new database entries and calls
subsequent methods for data processing. It is written in JavaScript and is executed within a JavaScript

Table 7.1: Hard- and software components used to build up the MoDiM service and application.

Components Device/Version Reference

Hardware

Blood glucose sensor Contour Next One Ascensia Diabetes Care Deutschland
GmbH ( 2016 )

Continuous glucose sensor G5 Mobile Dexcom, Inc. (  2017 )
Tablet Android 8.1  https://www.android.com 

Embedded device Raspberry Pi 3B  https://www.raspberrypi.org/ 

Software

Development Matlab 2019b
Matlab Coder 2019b

The MathWorks, Inc. ( 2019 ),
McVittie ( 2020 )

Database MongoDB 4.2.8  https://www.mongodb.com 

Database driver MongoDB Java driver 3.9.1  https://mongodb.github.io/mongo-java-
driver/ 

BAN hardware driver xDrip+ d8e7079-2018.01.22 The Nightscout Foundation ( 2018 )
LLVM-to-JavaScript Compiler Emscripten 1.39.18 Zakai (  2011 ),  https://emscripten.org/ 

Web server Nginx  https://www.nginx.com 

JavaScript Runtime Node.js 12.18.2  https://nodejs.org 
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Figure 7.2: MoDiM structure: Glucose sensors and insulin pumps communicate with the open-source Android
app xDrip+ (gray box). Meals must be manually entered within the app. Records are saved in JSON
format in a database accessible by Matlab via a Java-API. Algorithms developed in Matlab can be
compiled into C++ code and from there into JavaScript. An embedded device runs the database
and a JavaScript runtime environment which provides the core web services by an HTML and a
RESTful-API. This interface can be accessed from any (mobile) device.

runtime environment (Node.js) also running on the embedded device (upper part of Fig.  7.2 ). Algo-
rithms for model-based monitoring and data analysis can be developed in Matlab/Simulink. Matlab
Coder provides functionalities for converting these procedures into generic C++ code. From this point,
an LLVM-to-JavaScript Compiler (Emscripten) compiles the code into byte-code as a WebAssembly,
which can be called from the MoDiM main component. Finally, a user can access the service by the
MoDiM Android application or any web browser. For that, a web server (Nginx) provides an HTML
(HyperText Markup Language) and RESTful (Representational State Transfer) interface that allows
graphical outputs and data readings in a standardized and convenient manner.

From a development view, new algorithms can be tested against real-time data delivered by the MoDiM
service. Therefore, it is irrelevant whether the data was obtained by a real patient or generated from
a virtual subject by simulation. In both cases, the data repository will be written with records in a
standardized way. The system architecture with all interfaces remains the same.

The current hardware setup is depicted in Fig.  7.3 , where the MoDiM application can be seen in
the background showing a set of patient data. CGM sensor and receiver, blood glucose device, and
embedded computer are visible in the foreground.

Figure 7.3: MoDiM hardware consists of a tablet device (back), Dexcom G5 Mobile CGM sensor and receiver
(front right), Contour Next One blood glucose sensor (front center), and Raspberry Pi (front left).
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Thesis Summary

Diabetes technology is towards a fully automated “artificial pancreas” (AP). These systems currently
consist of a pump for insulin delivery (the actor in a closed-loop system), continuous glucose mea-
surements (the sensor), and a control algorithm that determines the required insulin dose based on
the current glucose measurements and personal needs (Fig.  1.2 ). Control algorithms such as model
predictive control (MPC) greatly benefit from a personalized model of glucose-insulin-glucagon
metabolism as the patient’s individual characteristics and current metabolic states can be taken into
account.

To create these personalized models and gather more insights into internal metabolic states, three tasks
were fulfilled within this work: derivation of a unified model of glucose-insulin-glucagon metabolism,
analysis of important variables in the system, and a model adaptation utilizing parameter identification
and state estimation.

The physiological-based compartment model of glucose regulation was derived from available ap-
proaches in the literature. It takes into consideration the plasma concentrations of glucose and the
two antagonistic hormones insulin and glucagon (Chapter  4 ). The model is divided into parts for
substance secretion or external delivery, their distribution within the body including the subcutaneous
space, and their utilization and disposal. The model is unified in terms of its capability to describe the
normal physiological case, as well as the pathophysiological conditions in type 1 and type 2 diabetic
patients (T1DM respective T2DM). For healthy subjects (TNDM), glycemic control is reached by an
increase in insulin secretion which raises glucose uptake in the cells. Simultaneously, an increased
glucagon release suppresses endogenous glucose production in the liver. In T2DM, the feedback loops
are still intact but deteriorated, leading to prolonged elevated postprandial glucose levels. Insulin ad-
ministration through the subcutaneous route causes a normalization of metabolism. In T1DM, insulin
secretion is absent and the steady-state is maintained by basal insulin administration. Postprandial
glucose excursion is near normal by additional bolus insulin at mealtimes. The different behavior
patterns are dictated by differences in the subject’s parameters. Therefore, a database of virtual subjects
was generated which allows the investigation of various metabolic conditions. Several comparative
simulation studies followed, to evaluate the ability of the model to predict substance excursions in
steady-state and after a meal with and without insulin bolus. Moreover, the model was evaluated
against measurement data taken from the literature to assess the limits of the design. Furthermore, to
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be able to correctly simulate the inherent measurement noise of glucose devices, published sensor
models were integrated into the simulation environment. Hence, a dynamical, nonlinear model of
ordinary differential equations with 19 states and over 40 parameters, a population of 100 virtual
subjects in each of the three groups, and virtual BGSM (blood glucose self-management) and CGM
(continuous glucose measurements) devices are available for now.

For systems analysis (Chapter  5 ), two different techniques were applied to the model. Global
sensitivity analysis (GSA) was performed to determine which parameters induce a high variability in
the outputs, thus, which may be identifiable in a subsequent optimization procedure. Second, empirical
controllability, observability, and identifiability Gramians were computed to determine (augmented)
states that are controllable or observable from measurements of the s.c. glucose output. Both methods
serve as a basis for the subsequent model adaptation and state estimation.
As the model has many input factors and GSA is computationally expensive since the whole input
space must be sampled appropriately, a multi-step approach was introduced. The procedure includes
the Elementary Effects Test used as a screening technique in order to identify 10 out of 37 independent
parameters with the highest mean elementary effect. For the reduced parameter set, a variance-based
sensitivity analysis followed. Both techniques can only be applied to scalar model outputs. In order to
allow the time-dependent s.c. glucose output to be investigated, they were extended by the concept of
functional principal component analysis, which led to overall sensitivity indices. GSA was fulfilled
for several scenarios and all three groups, allowing the investigation of group-dependent differences.
The analysis showed superior importance of basal glucose concentration, Gb, in all groups. In TNDM
and T2DM, m5 and m6, related to insulin secretion, and β, related to glucose control, play a major role.
Moreover, kG2, which determines the rate of digestion has a higher index. In T1DM, parameters k1,
Vmx, and ki3 became apparent.
Section  5.2 introduced the concept of controllability and observability of dynamical states in linear
systems. Gramian matrices were used to quantify these properties. As the model is nonlinear,
the methods were extended using empirical Gramians, hence, allowing investigation of the system
behavior around a particular nominal trajectory. The mixed-meal ingestion scenario including insulin
bolus for diabetic patients was chosen as this is most common in daily life. Moreover, the concept
of observability was extended to the identifiability of parameters, allowing an observability-based
parameter identification. Results show, especially for the T1DM subjects, that not all states are
controllable respectively observable due to missing insulin secretion. Furthermore, when only the s.c.
glucose signal is measured, just a small subset of states and parameters can be observed in practice.
This was determined by the smallest eigenvalue of the empirical Gramian of the given subset. However,
glucose concentration is observable in all groups, in steady-state as well as in the postprandial phase.

Chapter  6 has two objectives. First, to adapt sensitive parameters to individual measurement data, thus,
personalize the model. And second, to estimate the current blood glucose concentration on the basis
of experimental CGM data in real-time.
Therefore, measurements of several diabetic patients and healthy subjects were collected. The
database includes six people who provided BGSM and CGM records, as well as their meals and
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insulin injections over several months. Three of them were T1DM patients who wore an insulin pump
for automatic basal insulin delivery. Two other individuals were long-time T2DM patients under
conventional therapy. The last participant was healthy. Input and output records were statistically
evaluated and EGA (error grid analysis) between CGM and BGSM was performed. The number of
considered days varied between 12 and 234, leading to 3303 respectively up to 54 427 CGM records.
MARD (mean absolute relative difference) was calculated to be between 8.4 and 14.3 %.
Parameter identification was fulfilled using an optimization-based method, for which the error between
measured CGM and model output was minimized. The methodology was first shown using frequent
blood glucose and insulin data from the literature. Output RMSE (root mean squared error) was
reduced from 19.3 down to 5.2 mg dL−1 in TNDM and from 39.7 to 7.9 mg dL−1 in T2DM subjects.
Sensitive parameters were identified with precision indicated by results from the t-test and F-test.
The main focus was to identify parameters from frequent CGM records as these data are available
for all patients in daily-life. First, basal glucose concentration and the time delay between glucose
in the blood and interstitial fluid were determined. Second, all remaining sensitive parameters were
identified from various measurement sequences. In general, a precise adaptation to individuals was
not possible at all. This is mainly because measurement noise is in the same order as the variability in
the model output during sensitivity analysis. Hence, from only observing the s.c. glucose signal it is
not possible to distinguish between parameter alterations and sensor noise using the current generation
of CGM devices. Nevertheless, an adaptation to single sequences like a meal is quite feasible, but the
obtained parameter values are not valid for other intervals. To still be able to use the advantages of
model adaptation, an average identified model for one subject in each group was built. MARD and
EGA, built from validation data revealed a significant model improvement in TNDM and T1DM, but
not in the T2DM subject.
Based on the personalized models, a nonlinear state observer was designed. The extended Kalman filter
is suitable for nonlinear systems, was further adapted for continuous-discrete state and measurement
updates, and also colored measurement noise was incorporated as an additional state. Blood glucose
(BG) concentration was successfully estimated from CGM data in real-time for interval lengths up
to several weeks. MARD was calculated between estimated BG and measured BGSM values for
validation, where the number of considered pairs varied between 99 and 1428. In the TNDM, T2DM,
and T1DM subject, MARD is 11.8 %, 10.2 %, and 15.1 %, respectively. Hence, BG can be estimated
with a similar uncertainty as for the CGM signal itself. Moreover, EGA was performed with 99.3 %,
100 %, and 93.2 % of all BG data pairs within the clinically relevant zones A and B. Finally, a short-
term prediction of continuous glucose values for a time horizon up to 240 min was evaluated. The
mean absolute prediction error 30 min ahead was 10.6 mg dL−1, 12.4 mg dL−1, and 20.7 mg dL−1 for
the TNDM, T2DM, and T1DM subject, respectively.

The methods obtained in this work were incorporated into a web-based platform for continuous model-
based glucose monitoring. The application makes use of an existing open-source app for smartphones
to communicate with several glucose sensors available on the market. Model-based algorithms
developed in Matlab can be automatically compiled into C++ and from there to WebAssembly
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components. The web service runs in a JavaScript environment, has access to measurement records
that were uploaded into a database, and processes the data. Results are provided by a web server that
is accessible via an HTML and RESTful API by any (mobile) web browser. Hence, allowing a user to
continuously monitor the current health status and to access other personalized diagnostics.

On-going and Future Directions

Besides technological improvements in sensing and signal processing of possible future CGM devices
(Vettoretti, Cappon, et al.  2018 ), a rich spectrum of further advances arises:

Model Extensions. Extending the model means mathematical description and implementation of
further physiological effects, substances, or interactions between different components. Conditions
such as stress, illness, medication, or physical activity have a significant influence on everyday
hormone levels and their metabolism, which makes tight glucose control with exogenous insulin
administration challenging. Most of those environmental effects cannot be measured easily and must
be regarded as model uncertainty. However, physical activity has a major impact on energy exchange
and can be determined using heart rate or skin resistance. Several clinical trials on activity tracking and
CGM monitoring exist (Kapitza et al.  2010 ; Zecchin et al.  2013 ), which resulted in model approaches
also incorporated into a glucose-insulin model (Dalla Man, Breton, et al.  2009 ).

Estimation of Additional States and Time-varying Parameters. In this work, blood glucose
concentration was estimated from CGM data. One further step would incorporate additional internal
states such as the insulin concentration, which would allow the design of more sophisticated control
strategies. Moreover, current models rely on the announcement of a meal to correctly predict post-
prandial glucose excursions. In a closed-loop system, the controller could initiate an insulin bolus
on a meal announcement. Using CGM data, meals could be detected using the rate of change of BG
(Dassau et al.  2008 ). In a model-based approach, the observer could be extended by the meal input as
an additional state to be estimated in order to handle unannounced meals. Last, some parameters (e. g.,
insulin sensitivity, and glucose utilization) are assumed to be time-dependent (Visentin et al.  2018 ).
Their daily pattern could be integrated as additional states too. In all cases, practical observability or
identifiability must be proven to estimate these states with precision.

Model Order Reduction. The system presented here has already 19 states and over 40 parameters
in total. Incorporating more and more physiological effects further increases the complexity of the
model and not all of them are measurable or otherwise known a priori. Besides model simplification
approaches such as linearization or Padé approximation, model order reduction (MOR) is a model-
driven technique to reduce the number of (augmented) states in linear as well as nonlinear systems. It
is a method of choice as it simplifies the design of state observers (Misgeld et al.  2017 ) or controllers
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for closed-loop insulin control. In a model of reduced order, only a subspace of the state-space system
is considered, which contains only those states that contribute most to the input-output behavior. The
subset can be found when the system is balanced, i. e., the generalized energy transfer from inputs
into states and from states into outputs are weighted equally and the states are decoupled. Then, the
order can be reduced by truncation of those states with the lowest energy transfer (Tolks and Ament
 2017b ). The balancing information can be obtained by using the concept of (empirical) Gramians for
controllability and observability shown in this thesis. Hence, this procedure allows for a continuous
model-based design.

Individualized Closed-loop Control Strategies. Using CGM data, a personalized model, and
state estimation allows continuous monitoring of individual blood glucose excursions and maybe a step
further towards an “artificial pancreas.” Beginning with simple PID (proportional-integral-derivative)
control, the current state-of-the-art technique is model predictive control. MPC relies on a model of the
underlying process to predict the future system behavior depending on the input signals. This allows
the calculation of an optimal input signal by minimizing a cost function s.t. various constraints in
order to produce optimal outputs. The performance of an MPC is related to the prediction capabilities
of the model. Thus, the achievable glucose control performance would benefit from a personalized
model without increasing the computational costs of the algorithm (Messori et al.  2018 ). Moreover,
the model of glucose-insulin-glucagon regulation, in combination with a virtual population of diabetic
patients, enables model-driven controller design and in silico testing and performance evaluation, even
before clinical trials. Finally, a portable AP system with limited computational power and battery life
would also benefit from a reduced-order design of the simulation model and controller.
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A Mathematical Models

Input vector u(t):

u(t) =
[
uoral

G (t) uiv
G(t) usc

I (t) usc
I (t) usc

H (t)
]>

Output vector y(t):

y(t) =
[
G(t) GI(t) I(t) H(t)

]>
Nonlinear state equations x(t):

ẋ1(t) = −kG1x1(t) + uoral
G (t)

ẋ2(t) = −kG2x2(t) + kG1x1(t)

ẋ3(t) = S G(t) + RG(t) − Uii(t) − E(t) − k1x3(t) + k2x4(t) + uiv
G(t)

ẋ4(t) = −Uid(t) + k1x3(t) − k2x4(t)

ẋ5(t) = −kgx5(t) + kgx3(t)

ẋ6(t) = − (m2 + m4) x6(t) + m1x7(t) + RI(t) + usc
I (t)

ẋ7(t) = − (m1 + m3(t)) x7(t) + m2x6(t) + S I(t)

ẋ8(t) =

−α
(
x8 − β

(
G(t) −Gb

))
if β

(
G(t) −Gb

)
≥ −S b

I

−αx8 − αS b
I if β

(
G(t) −Gb

)
< −S b

I

ẋ9(t) = −γx9(t) + S po(t)

ẋ10(t) = −kX x10(t) + kX
(
I(t) − Ib

)
ẋ11(t) = −kI · (x11(t) − I(t))

ẋ12(t) = −kI · (x12(t) − x11(t))

ẋ13(t) = −(ki1 + ki2)x13(t) + usc
I (t)

ẋ14(t) = ki1x13(t) − ki3x14(t)

ẋ15(t) = −nHx15(t) + S H(t) + RH(t)

ẋ16(t) = − (kh1 + kh2) x16(t) + usc
H (t)

ẋ17(t) = kh1x16(t) − kh3x17(t)

ẋ18(t) = −kH · x18(t) + kH ·max
(
x15(t) − Hb, 0

)
ẋ19(t) =


−kρ

[
x19(t) − S b

H

]
if G(t) ≥ Gb

−kρ

x19(t) −max

kσ ·
(
Gb −G(t)

)
I(t) + 1

+ S b
H, 0


 if G(t) < Gb

(A.1)
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Input matrix B:

B> =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Linear output equation y(t):

y(t) = Cx(t) (A.2)

Output matrix C:

C =


0 0 1

VG
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
VG

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
6VI

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Table A.1: States, basal and initial values, and essential signals of the unified model.

Description Symbol State Basal
Initial states x0

Unit
TNDM T2DM T1DM

Glucose amount in stomach QGas,1(t) x1 0 0 0 0 mg
Glucose amount in intestine QGas,2(t) x2 0 0 0 0 mg

Glucose rate of appearance RG(t) mg kg−1 min−1

Glucose production rate S G(t) S b
G mg kg−1 min−1

Glucose utilization U(t) Ub mg kg−1 min−1

Glucose plasma GP(t) x3 Gb
P 169.2 178.8 221.0 mg kg−1

Glucose tissue GT(t) x4 Gb
T 127.9 91.2 134.7 mg kg−1

Glucose subcutaneous GSc(t) x5 Gb
P 169.2 178.8 221.0 mg kg−1

Glucose concentration plasma G(t) Gb mg dL−1

Insulin plasma IP(t) x6 Ib
P 1.3 2.4 5.4 pmol kg−1

Insulin liver IL(t) x7 Ib
L 4.6 5.9 3.7 pmol kg−1

Insulin concentration plasma I(t) Ib pmol L−1

Insulin rate of appearance RI(t) pmol kg−1 min−1

Insulin secretion rate S I(t) pmol kg−1 min−1

Static insulin secretion rate Y(t) x8 0 0 0 0 pmol kg−1 min−1

Insulin portal vein IPo(t) x9 Ib
Po 3.1 8.0 0 pmol kg−1

Insulin interstitial fluid X(t) x10 0 0 0 0 pmol L−1

Delayed insulin action on EGP I1(t) x11 Ib 25.9 59.8 106.0 pmol L−1

Insulin action on EGP XI(t) x12 Ib 25.9 59.8 106.0 pmol L−1

Insulin subcutaneous ISc,1(t) x13 Ib
Sc,1 0 0 84.8 pmol kg−1

Insulin subcutaneous ISc,2(t) x14 Ib
Sc,2 0 0 77.6 pmol kg−1

Glucagon plasma H(t) x15 Hb 126.0 208.0 57.0 ng L−1

Glucagon rate of appearance RH(t) ng L−1 min−1

Glucagon secretion rate S H(t) ng L−1 min−1

Glucagon subcutaneous HSc,1(t) x16 Hb
Sc,1 0 0 0 mg kg−1

Glucagon subcutaneous HSc,2(t) x17 Hb
Sc,2 0 0 0 mg kg−1

Glucagon action on EGP XH(t) x18 0 0 0 0 ng L−1

Static glucagon secretion rate S s
H(t) x19 S b

H 27.7 27.9 7.7 ng L−1 min−1
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Table A.2: Statistical values of parameters of TNDM, T2DM, and T1DM subjects. Distribution (Dist) is either
log-normal (LN) showing mean and standard deviation (Std.) or uniform (U) with minimum and
maximum. If a variable is constant or dependent, no distribution is noted.

Sign Dist
TNDM T2DM T1DM

Unit
Mean/Min. Std./Max. Mean/Min. Std./Max. Mean/Min. Std./Max.

VG LN 1.8800 0.1328 1.4900 0.1033 1.8480 0.1413 dL kg−1

k1 LN 0.0650 0.0128 0.0420 0.0110 0.0731 0.0160 min−1

k2 LN 0.0790 0.0295 0.0710 0.0277 0.1077 0.0456 min−1

kG1 LN 0.3649 0.1164 0.0717 0.0214 0.1145 0.0207 min−1

kG2 LN 0.0102 0.0041 0.0097 0.0034 0.0116 0.0043 min−1

fG 0.9000 0.0000 0.9000 0.0000 0.9000 0.0000 –
BW LN 78.0000 8.4995 90.0000 7.2349 69.7098 20.4504 kg

kp1 2.6596 0.5043 3.0900 0.5278 4.9866 1.1117 mg
kg min

kp2 LN 0.0021 0.0009 0.0007 0.0003 0.0055 0.0022 min−1

kp3 LN 0.0090 0.0043 0.0050 0.0027 0.0105 0.0055 mg
kg min /

pmol
L

kp4 LN 0.0550 0.0197 0.0786 0.0250 0.0000 0.0000 mg
kg min /

pmol
kg

kp5 LN 0.0500 0.0228 0.0087 0.0060 0.0087 0.0047 mg
kg min /

ng
L

kI LN 0.0079 0.0027 0.0066 0.0031 0.0109 0.0056 min−1

kH LN 0.0930 0.0182 0.0991 0.0183 0.0991 0.0185 min−1

Fii 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 mg
kg min

Vm0 2.4884 0.9892 6.3097 4.4589 4.4740 1.6032 mg
kg min

Vmx LN 0.0470 0.0232 0.0340 0.0173 0.0715 0.0318 mg
kg min /

pmol
L

Km0 LN 225.5900 16.8902 466.2100 38.6765 226.6101 17.8879 mg kg−1

kX LN 0.0331 0.0108 0.0840 0.0299 0.0470 0.0156 min−1

kg LN 0.1053 0.0335 0.1053 0.0380 0.1053 0.0352 min−1

ke1 0.0005 0.0000 0.0007 0.0000 0.0005 0.0000 min−1

ke2 339.0000 0.0000 269.0000 0.0000 339.0000 0.0000 mg kg−1

VI LN 0.0500 0.0131 0.0400 0.0132 0.0511 0.0169 L kg−1

m1 LN 0.1900 0.0924 0.3790 0.1817 0.1850 0.0619 min−1

m2 0.4771 0.8241 0.6728 0.3967 0.3130 0.0944 min−1

m4 0.1908 0.3296 0.2691 0.1587 0.1252 0.0378 min−1

m5 LN 0.0304 0.0034 0.0526 0.0052 0.0263 0.0105 min kg
pmol

m6 LN 0.6471 0.0504 0.8118 0.0583 0.6000 0.0000 –
HEb 0.6000 0.0000 0.6000 0.0000 0.6000 0.0000 –

κ LN 2.3000 0.7021 0.9900 0.3419 0.0000 0.0000 pmol
kg /

mg
dL

α LN 0.0500 0.0168 0.0140 0.0052 0.0000 0.0000 min−1

β LN 0.1100 0.0476 0.0500 0.0167 0.0000 0.0000 pmol
kg min /

mg
dL

γ LN 0.5000 0.1755 0.5000 0.1680 0.0000 0.0000 min−1

ki1 LN 0.0162 0.0017 0.0162 0.0019 0.0162 0.0018 min−1

ki2 LN 0.0038 0.0010 0.0038 0.0009 0.0038 0.0009 min−1

ki3 LN 0.0177 0.0060 0.0177 0.0051 0.0177 0.0044 min−1

nH LN 0.2200 0.0491 0.1344 0.0279 0.1344 0.0318 min−1

kρ LN 0.8600 0.0472 0.4955 0.0322 0.4955 0.0288 min−1

kσ U 20.5000 7.7510 0.6463 0.2357 0.6463 0.2615 ng
L min

pmol
L /

mg
dL

kδ U 3.5000 1.6962 0.4000 0.1888 0.4000 0.1706 ng
L /

mg
dL

kh1 LN 0.0102 0.0054 0.0102 0.0059 0.0102 0.0057 min−1

kh2 LN 0.1192 0.0664 0.1192 0.0584 0.1192 0.0737 min−1

kh3 LN 0.0257 0.0146 0.0257 0.0142 0.0257 0.0129 min−1

VH 38.5000 0.0000 38.5000 0.0000 38.5000 0.0000 mL kg−1
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Table A.3: Distribution, mean, and standard deviation of basal values in TNDM, T2DM, and T1DM subjects.

Compartment Sign TNDM T2DM T1DM Unit

Glucose kinetics Gb LN(89.47, 3.87) LN(119.91, 6.21) LN(120.88, 5.47) mg dL−1

Hepatic glucose
production

S b
G LN(1.91, 0.23) LN(2.04, 0.28) LN(2.84, 0.39) mg kg−1 min−1

Insulin kinetics Ib LN(25.43, 5.10) LN(59.81, 11.43) LN(106.41, 18.22) pmol L−1

Glucagon kinetics Hb LN(126.79, 25.39) LN(210.47, 46.91) LN(56.01, 10.38) ng L−1

kδ

k H

kσ ki2 ki3 nH kρ kp3 S b
G

Reference T1DMS Generated T1DM

kp5 VI m5 kI m1 kH

m
1

k I
m

5
V

I
k p

5
S

b G
k p

3
k ρ

n H
k i

3
k i

2
k σ

k δ

Figure A.1: Combined scatter and histogram plot of the 14 parameters with the highest pairwise correlation
coefficients (|ρ| ≥ 0.5). The main diagonal shows the histogram (normalized to the probability
density function) of each parameter. All other axes are scatter plots between every parameter pair.
Reference sets from T1DMS subjects (n = 30, red dots) are compared to generated T1DM virtual
subjects (n = 100, blue dots). Note that tick labels have been omitted here for better readability.
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Figure A.2: Histogram (normalized to probability) of all model parameters grouped by TNDM (blue), T2DM
(red), and T1DM (yellow) virtual subjects.
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Figure A.3: MTT simulation outputs for 100 virtual TNDM subjects. Ensemble means drawn in black.
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Figure A.4: MTT simulation outputs for 100 virtual T2DM subjects. Ensemble means drawn in black. Note
the significant low glucose levels for several subjects which is not physiologic. However, as the
patients are randomly picked, the default insulin bolus may be too high for these subjects. However,
when the whole population is considered, individual time courses are not of importance.
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Figure A.5: MTT simulation outputs for 100 virtual T1DM subjects. Ensemble means drawn in black.
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Figure B.1: Variability induced in glucose model output after deflection of each single parameter in TNDM.

196



B Systems Analysis

kG1 kG2 k1 k2 m1

m5 m6 kp2 kp3 kp4

kI kH kp5 Vmx Km0

kX kg ki1 ki2 ki3

nH kρ kσ kδ kh1

kh2 kh3 κ α β

γ Gb S b
G Ib Hb

Figure B.2: Variability induced in glucose model output after deflection of each single parameter in T2DM.
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Figure B.3: Variability induced in glucose model output after deflection of each single parameter in T1DM.
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Figure B.4: First three functional principal components (FPC) for glucose model output (upper panel) and
mean function plus and minus multiples of each FPC (lower panel) for TNDM.
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Figure B.5: First three functional principal components (FPC) for glucose model output (upper panel) and
mean function plus and minus multiples of each FPC (lower panel) for T2DM.
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Figure B.6: First three functional principal components (FPC) for glucose model output (upper panel) and
mean function plus and minus multiples of each FPC (lower panel) for T1DM.
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Table B.1: First-order indices, S i, and total-order indices, S Ti , for TNDM.

FPCs Parameter

Gb m6 β m5 Ib Vmx kG2 k1 k2 Km0

S i

1. 0.79 0.07 0.04 0.03 0.01 0.00 −0.01 −0.01 −0.01 −0.01
2. 0.18 0.28 0.22 0.16 0.06 0.06 0.03 0.00 0.01 0.02
3. 0.00 0.00 −0.01 −0.01 −0.01 −0.01 0.44 0.27 0.15 −0.01

S Ti

1. 0.80 0.08 0.05 0.04 0.02 0.01 0.00 0.00 0.00 0.00
2. 0.19 0.29 0.22 0.17 0.05 0.06 0.03 0.00 0.00 0.01
3. 0.02 0.06 0.03 0.03 0.01 0.02 0.47 0.28 0.17 0.00

Table B.2: First-order indices, S i, and total-order indices, S Ti , for T2DM.

FPCs Parameter

Gb m6 m5 kG2 β Ib kp3 k1 S b
G Vmx

S i

1. 0.52 0.28 0.05 0.02 0.04 0.02 0.01 −0.01 −0.01 0.00
2. 0.03 0.17 0.02 0.30 0.01 0.01 0.03 0.30 0.08 0.07
3. 0.07 0.01 0.01 0.29 0.12 −0.01 0.02 0.03 0.23 0.05

S Ti

1. 0.54 0.30 0.06 0.03 0.05 0.03 0.02 0.00 0.01 0.00
2. 0.03 0.18 0.02 0.30 0.01 0.01 0.03 0.30 0.09 0.08
3. 0.09 0.06 0.03 0.30 0.15 0.02 0.04 0.05 0.25 0.08

Table B.3: First-order indices, S i, and total-order indices, S Ti , for T1DM.

FPCs Parameter

Gb Vmx ki3 k1 k2 S b
G kG2 kp2 ki1 m1

S i

1. 0.82 0.05 0.01 0.02 0.01 0.02 0.00 0.02 0.00 0.00
2. 0.08 0.08 0.10 0.29 0.19 0.02 0.32 0.02 0.04 0.02
3. 0.06 0.29 0.06 0.00 −0.01 0.10 0.30 0.07 0.04 −0.01

S Ti

1. 0.84 0.06 0.02 0.03 0.02 0.03 0.00 0.02 0.01 0.00
2. 0.06 0.06 0.09 0.28 0.18 0.01 0.31 0.01 0.03 0.00
3. 0.08 0.30 0.07 0.03 0.02 0.13 0.32 0.08 0.05 0.00
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ŴCTNDM =



1.3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗

∗ 48 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗

∗ ∗ 33 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 67 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 28 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.4 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1000 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 270 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 140 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ 0.15 ∗ ∗ 0 0 ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ 0.058 ∗ 0 0 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 76 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 3.9 ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ 0.1 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 69 ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.4



(B.1)

ŴCT2DM =



7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗

∗ 45 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 ∗ ∗

∗ ∗ 160 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 48 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 150 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ 21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 7.7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 5.9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.44 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1800 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 170 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 90 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ 0.11 ∗ ∗ 0 0 ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ 0.044 ∗ 0 0 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2.7 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 3.9 ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ 0.1 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2.5 ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.007



(B.2)

ŴCT1DM =



4.4 ∗ ∗ ∗ ∗ 0 ∗ 0 0 0 ∗ ∗ 0 0 ∗ 0 0 ∗ 0
∗ 39 ∗ ∗ ∗ 0 ∗ 0 0 0 ∗ ∗ 0 0 ∗ 0 0 ∗ 0
∗ ∗ 2300 ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 1200 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 2300 ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ 48 ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 13 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ 0 0 2700 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 730 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ 380 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0.18 ∗ ∗ 0 0 ∗ ∗

0 0 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ 0.073 ∗ 0 0 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ 4.8 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 ∗ ∗ 0 0 ∗ 3.9 ∗ ∗ 0
0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0.1 ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4.4 ∗

0 0 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0.024



(B.3)
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ŴOTNDM =



0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 28 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 15 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 1.5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ 20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 1.1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 450 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.97 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.5 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.9 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.8 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.53 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 110 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 9.1 ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.8



(B.4)

ŴOT2DM =



0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 0.001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 31 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 18 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 2.4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ 27 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 1.3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 000 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 7.8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.15 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2.9 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3.4 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4.3 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2.6 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 450 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.18 ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12



(B.5)

ŴOT1DM =



0.002 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 0.002 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 18 ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 15 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 1.5 ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ 76 ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 10 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 3.3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 7.9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ 9.7 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 19 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ 33 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ 4.3 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 2.5 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 440 ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.13 ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12
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Figure B.7: Scaled eigenvalues of the observability Gramian WO in the MTT scenario for TNDM (blue), T2DM
(red), and T1DM (yellow) subjects. In comparison to the steady-state scenario in Fig.  5.20 the
eigenvalue progression is similar. In total, their magnitudes are higher in all groups and the values
in T2DM are closer to those in TNDM.
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Figure B.8: Scaled eigenvalues of the observability Gramian W?
O in the STS scenario for TNDM (blue), T2DM

(red), and T1DM (yellow) subjects. Eigenvalues from order 32 until 53 are zero and not shown in
the graphic.
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Figure B.9: Scaled eigenvalues of the observability Gramian W?
O in the MTT scenario for TNDM (blue), T2DM

(red), and T1DM (yellow) subjects. All eigenvalue are zero beginning from order 50 and therefore
cropped from the graphic. In TNDM and T2DM eigenvalues are almost equal.
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Table B.4: Overview on identifiable parameters depending on the group (TNDM, T2DM, T1DM) and the
scenario (steady-state (STS), meal tolerance test (MTT)). Identifiable variables are labeled with a
checkmark (X), non-identifiable elements have no entry.

Parameter STS MTT

TNDM T2DM T1DM TNDM T2DM T1DM

k1 X X X X X X
k2 X X X X X X
m1 X X X X X X
m5 X X X X
m6 X X X X X X
kp2 X X X X X X
kp3 X X X X X X
kp4 X X X X
kI X X X
kp5 X X X
kH X X X
Vmx X X X
Km0 X X X X X X
kX X X X
κ X X
α X X
β X X
γ X X X X

kG1 X X X
kG2 X X X
kg X X X
ki1 X X X
ki2 X X X
ki3 X X X
nH X X X
kρ X X X
kσ X X X
kδ X X X
kh1

kh2

kh3

Gb X X X X X X
Ib X X X X X X
Hb X X X
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Figure C.1: Basal insulin infusion rates for T1DM subjects (daily mean given in parenthesis).

00:00 12:00 24:00 36:00 48:00 60:00
0

50

100

150

200

140 g 150 g

Time (hour)

G
lu

co
se

(m
g/

dL
)

BGSM Meal CGM
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of CHO. Left (red highlight): glucose values in response to a pizza of 140 g CHO. Right (red
highlight): glucose values in response to “Mother’s Christmas Stollen” of 150 g CHO.
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signals and CGM correction after calibration with a BGSM measurement. Middle panel: CGM
dropout for 1 h. Right panel: BGSM and CGM signals drifting apart.
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Figure C.4: EGA of n paired blood glucose (BGSM) and continuous glucose (CGM) measurements for one
TNDM subject (upper left), 2 T2DM subjects (upper right and middle left), and 3 T1DM (middle
right and bottom panel). The whole measurement interval is considered here as reported in
Table  6.1 . Note that the number of paired values is lower that the total number of BGSM samples
as not every BGSM value can be assigned to a CGM value or vice versa.
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a meal of 50 ± 2 g CHO in a TNDM subject, synchronized at 00:00.
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Table C.1: Comparison of nominal and identified parameters for the TNDM case in Section  6.2.1 . Mean and
standard deviation for the nominal parameters derived from 100 virtual TNDM subjects, mean and
standard deviation for the identified parameters derived from r = 25 repetitions of the optimization.
RMSE is the root mean squared error between measured and simulated output.

Parameter Nominal Identified 95 % t-value1 95 % F-value2

Gb 89.4704 ± 3.8749 93 (fixed) – –
Ib 25.4260 ± 5.0998 37 (fixed) – –
k1 0.0621 ± 0.0128 0.0488 ± 0.0000 10.4141 3 × 109

m5 0.0305 ± 0.0034 0.2096 ± 0.0000 174.1118 2 × 1012

Vmx 0.0469 ± 0.0232 0.0373 ± 0.0000 3.0154 3 × 1010

β 0.1193 ± 0.0476 0.0135 ± 0.0000 55.1905 2 × 1013

κ 2.2172 ± 0.7021 0.5886 ± 0.0000 39.5949 1 × 1010

kp3 0.0090 ± 0.0043 0.0021 ± 0.0000 29.6309 4 × 109

α 0.0501 ± 0.0168 0.0774 ± 0.0000 15.5296 2 × 107

kX 0.0326 ± 0.0108 0.0823 ± 0.0000 29.4363 2 × 107

RMSE 19.2934 5.2176
1Reference two-sided t-value (95 %): t(0.975, 26 . . . 100) = 2.056 . . . 1.984.
2Reference F-value (95 %): F(99, 24) = 1.84.

Table C.2: Comparison of nominal and identified parameters for the T2DM case in Section  6.2.1 . Mean and
standard deviation for the nominal parameters derived from 100 virtual T2DM subjects, mean and
standard deviation for the identified parameters derived from r = 25 repetitions of the optimization.
RMSE is the root mean squared error between measured and simulated output.

Parameter Nominal Identified 95 % t-value1 95 % F-value2

Gb 119.9087 ± 6.2109 163.8 (fixed) – –
Ib 59.8123±11.4268 59 (fixed) – –
k1 0.0438 ± 0.0110 0.0272 ± 0.0050 9.7182 4.7623

Vmx 0.0331 ± 0.0173 0.0407 ± 0.0095 4.1496 3.2906
β 0.0499 ± 0.0167 0.0255 ± 0.0004 17.8246 1907.8683
κ 0.9632 ± 0.3419 0.7114 ± 0.0181 7.0457 357.1145

kp3 0.0052 ± 0.0027 0.0002 ± 0.0159 11.6494 0.0290
kp2 0.0007 ± 0.0003 0.0076 ± 0.0005 57.3438 0.3467
α 0.0137 ± 0.0052 0.0156 ± 0.0051 4.3889 1.0667
γ 0.4845 ± 0.1680 2.4414 ± 0.1187 48.5553 2.0045

m5 0.0525 ± 0.0052 0.0999 ± 0.0042 46.5536 1.5679

RMSE 39.6662 7.9173
1Reference two-sided t-value (95 %): t(0.975, 26 . . . 100) = 2.056 . . . 1.984.
2Reference F-value (95 %): F(99, 24) = 1.84.
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Figure C.6: Distribution of identified parameters from experimental CGM data in three subjects. Left hand
side (blue) of each bar pair shows the distribution of the parameter obtained from the nominal 100
virtual subjects. Right hand side of each pair (red) represents the identified parameters.

Table C.3: Configuration parameters of the EKF: initial state covariance P+0 and process noise covariance Q.

State TNDM T2DM T1DM

diag
(√

P+0
)

diag
( √

Q
)

diag
(√

P+0
)

diag
( √

Q
)

diag
(√

P+0
)

diag
( √

Q
)

x1 10 000 10 000 10 000 10 000 10 000 10 000
x2 10 000 10 000 10 000 10 000 10 000 10 000
x3 163.56 100 217.54 10 224.72 100
x4 231.53 100 116.84 10 135.21 100
x5 163.56 100 217.54 10 224.72 100
x6 2.27 0.23 3.73 0.37 2.21 0.22
x7 2.62 0.26 17.60 1.76 1.50 0.15
x8 7.5 1×10−5 7.5 1×10−5 0 1×10−5

x9 1.78 0.18 23.82 2.38 0 1×10−5

x10 250 1×10−5 250 1×10−5 0 1×10−5

x11 45.44 4.54 93.37 9.34 43.25 4.32
x12 45.44 4.54 93.37 9.34 43.25 4.32
x13 0 1×10−5 700 1×10−5 34.58 3.46
x14 0 1×10−5 250 1×10−5 21.82 2.18
x15 126 12.6 208 20.8 56.98 5.70
x16 0 1×10−5 0 1×10−5 0 1×10−5

x17 0 1×10−5 0 1×10−5 0 1×10−5

x18 3 1×10−5 3 1×10−5 3 1×10−5

x19 27.72 2.77 27.96 2.80 7.66 0.77
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Figure C.7: EGA of paired experimental CGM data and simulated CG signals for three subjects: P814 (upper),
P385 (middle), and P76423578 (lower panel). CGM records obtained from r = 10 measurement
sequences, simulation data generated by the models: nominal (black), identified (blue), and mean
identified (red) on the left side each, further validated on r additional full-day intervals (green) on
the right side each.
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