
Journal Pre-proofs

Machine Learning based Algorithm Selection and Genetic Algorithms for se‐
rial-batch scheduling

Aykut Uzunoglu, Christian Gahm, Axel Tuma

PII: S0305-0548(24)00299-5
DOI: https://doi.org/10.1016/j.cor.2024.106827
Reference: CAOR 106827

To appear in: Computers and Operations Research

Received Date: 29 December 2023
Revised Date: 11 June 2024
Accepted Date: 27 August 2024

Please cite this article as: A. Uzunoglu, C. Gahm, A. Tuma, Machine Learning based Algorithm Selection and
Genetic Algorithms for serial-batch scheduling, Computers and Operations Research (2024), doi: https://doi.org/
10.1016/j.cor.2024.106827

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Author(s). Published by Elsevier Ltd.

https://doi.org/10.1016/j.cor.2024.106827
https://doi.org/10.1016/j.cor.2024.106827
https://doi.org/10.1016/j.cor.2024.106827

Machine Learning based Algorithm Selection and
Genetic Algorithms for serial-batch scheduling

Aykut Uzunoglua*, Christian Gahma, Axel Tumaa

a Chair of Business Administration, Production & Supply Chain Management, Augsburg University, D-
86135 Augsburg, Germany

* Corresponding author:
E-mail: aykut.uzunoglu@wiwi.uni-augsburg.de; Phone: +49-821-598-4041

Abstract:

Whenever combinatorial optimization problems cannot be solved by exact solution methods in
reasonable time, tailor-made algorithms (heuristics, meta-heuristics) are developed. Often, these
heuristics exploit structural properties and perform well on selected subsets of the problem space.
For example, this is how the two best-known construction heuristics solve the scheduling
problem investigated in this study (i.e., the scheduling of parallel serial-batch processing
machines with incompatible job families, restricted batch capacities, arbitrary batch capacity
demands, and sequence-dependent setup times). However, when the properties change, the
performance of one algorithm might decrease, and another algorithm might have been the better
choice. To resolve this issue, we propose using Machine Learning to exploit the strengths of
different algorithms and to select the probably best-performing algorithm for each problem
instance individually. To that, we investigate a variety of methods from the “learning-to-rank”
literature and propose several adaptations. Furthermore, because there is no algorithm for the
considered scheduling problem that is capable to explore the entire solution space, we developed
two Genetic Algorithms for the improvement of initial solutions computed by the selected
algorithms. Here, we put special emphasis on ensuring that the solution representation
(encoding) reflects the entire solution space and that the operators (e.g., for recombination and
mutation) are appropriate to explore and exploit this space completely. Our computational
experiments show an average increase of 39.19% in solution quality.

Keywords: serial batching, total weighted tardiness, algorithm selection, genetic algorithm,
machine learning

1

1 Introduction

Whenever combinatorial optimization problems of industrial scale have to be solved, exact
solution methods (algorithms in the narrower sense) need prohibitively long computation times
due to the “combinatorial explosion” of the solution space (i.e., the set of all feasible solutions).
Therefore, experts design heuristics or meta-heuristics (algorithms in a broader sense)
incorporating knowledge about the specific problem to leverage prior information about
structures or properties of good solutions. These algorithms return good results for the subset of
problem instances they were designed for but fail to find good results for other subsets of the
problem space comprising “all” problem instances of a specific problem. This is why, for most
combinatorial problems, a variety of algorithms can be found in the literature. This situation also
holds for the application case studied in this paper, a serial-batch scheduling problem often found
in the metal processing industry (cf., e.g., Helo et al., 2019). It involves the decisions to group
metal pieces into batches and to schedule the resulting batches, and can be summarized as the
scheduling of parallel serial-batch processing machines with incompatible job families, restricted
batch capacities, arbitrary batch capacity demands, and sequence-dependent setup times
(abbreviated PSBIJF and classified as “P | if, crJ, sFS, sb | wT, F, Lex”-problem according to
Wahl et al., 2023). To solve the PSBIJF, several (learning-augmented) construction heuristics
(LACH) can be found in literature (most recent ones in Uzunoglu et al., 2023a and Uzunoglu et
al., 2023b), for which none of them clearly dominates the other.

The dominance of algorithms on a narrow subset of problem instances is more than a
mere empirical observation but rather an underlying property of combinatorial optimization
problems and their algorithms. In some sense, researchers refer to this phenomenon as the “No
Free Lunch theorem in optimization and search” (NFL; see Wolpert & Macready, 1997). Like
other “negative” theoretical results, such as Gödel’s incompleteness theorem in mathematics or
Arrow’s impossibility theorem in social choice theory, NFL shows the theoretical boundaries of
optimization, namely that no general algorithm can dominate other algorithms on the whole
problem space or even all combinatorial optimization problems. Since NFL is not the focus of
our paper, we refer the reader to Droste et al. (2002) for a more practical reframing of NFL, Ho
& Pepyne (2002) for a version of finite and discrete input and output spaces, and Adam et al.
(2019) for a review. Apart from the theoretical discussion, the NFL points towards an essential
question for optimization problems: which algorithm to use when there is no clear winner?

Long before the formalization of NFL, Rice (1976) presented a framework that deals
with the fact that algorithms dominate (in terms of performance) for certain problem subsets and
get dominated by other algorithms for other problem subsets. In the presence of a variety of
algorithms for a problem, the so-called “algorithm selection problem” (ASP) aims to find a
selector that, depending on a given problem instance, chooses an algorithm performing best
according to a performance metric. In its basic form, the ASP comprises a problem space P
containing problem instances i PÎ , an algorithm space A (finite or infinite), and a performance
measure indicating the quality of an algorithm to solve a problem instance (e.g., objective value
or computation time). Given that, the goal of the ASP is to find a selection function :S P A®
mapping every problem instance to the algorithm that achieves the best value according to the
performance measure. Rice proposes using a feature extraction step that converts a problem
instance i PÎ to a feature representation ()f i FÎ , in the feature space F, which is often mR .
The framework introduced by Rice (1976) is very versatile and applicable to a broad range of
problems and applications. Since then, many approaches have been published in Operations
Research and other fields like “meta-learning” (a subfield of Machine Learning) that have
successfully applied the idea of ASP (see Soares et al., 2004 or Feurer & Hutter, 2019). Some of
them incorporate Machine Learning (ML) models in their selection procedure that predict an
algorithm's performance metric (e.g., objective value or computation time) on a specific problem

2

instance. Others even aim to design more sophisticated methods that create an “algorithm
schedule” for a specific problem instance (e.g., Streeter et al., 2007 or Kadioglu et al., 2011). In
such approaches, computational resources are not allocated to a single algorithm but are
distributed among several algorithms according to their expected performance. Information from
preceding algorithm runs, or even a pre-solving phase, can be used to make more intelligent
decisions. Overall, the contributions to ASPs have evolved massively, helping to improve
solution quality by combining algorithms and adding their strengths. However, as Smith-Miles
(2009) argues in her review on ASP and “meta-learning”, both research areas could benefit from
each other, but those connection have been missed in the past. Algorithm selection could use
meta-learning methods and ML models if the following requirements are fulfilled (Smith-Miles,
2009):

i. A large collection of problem instances with various complexity is available.

ii. Many diverse algorithms to solve the problem exist.

iii. Performance metrics to evaluate the algorithm’s performance are known.

iv. Suitable features to describe the properties of problem instances can be computed.

With those requirements, the ASP can be stated as a learning problem: given the feature
vector representation of the problem instances and objective values computed by the algorithms
as training data, learn an ML model that predicts the best-performing algorithm. In this
representation, the ML model corresponds to the function S in Rice’s framework. In his review
on algorithm selection applied to combinatorial optimization problems, Kotthoff (2016)
emphasized the role of ML for performance prediction models. The ongoing progress suggests
that “free lunches” are getting closer. With their growing prediction performance, ML models
already play a significant role in the current literature and will gain importance in developing
ASP solutions. They are capable of recognizing patterns between algorithms, problem instances,
and their performance. Nevertheless, to achieve the most benefit from ML models, the question
to be asked (i.e., what should be predicted) and the application of the model must be carefully
designed.

In this paper, we propose using an ASP method to select the most appropriate algorithm
for a single problem instance offline (i.e., before the solution process starts) and to use this
algorithm to compute initial solutions to be improved by two Genetic Algorithms (GA)s.

We make two major contributions to the literature:

 First, we thoroughly discuss and analyze ML models (from different research areas) and
present several adaptations (e.g., an adapted loss function) for the ASP task at hand. In this
context, we put special emphasis on the “question to ask” the ML model and on finding
suitable models to answer it. As we show, “learning-to-rank” models are better suited for
our ASP than pure performance predictions.

 Second, as no meta-heuristic has been developed so far for the PSBIJF, we present two
GAs as improvement procedures. The two GAs mainly differ in their solution
representation: the first one uses a single integer chromosome newly designed for the
PSBIJF (but not restricted to it) and the second one, an adaptation from literature,
combines an integer chromosome with a random key chromosome and is enhanced by new
recombination and mutation operators.

The structure of the paper is as follows. In section 2, the PSBIJF is formally described
and existing algorithms for solving are described. In section 3, we discuss literature related to

3

learning-to-rank models and GAs developed to solve problems similar to the PSBIF. Section 4
presents the methods applied to solve the ASP and section 5 presents the two GAs. The basic
experimental setup and the (hyper-)parameter tuning are described in section 6 and 7,
respectively. The final experimental results are presented in section 8. In the closing section 9,
we summarize the findings and give an outlook on future research topics.

2 Problem description (PSBIJF) and existing algorithms

To provide a common understanding of the investigated scheduling problem, the analyzed serial-
batch scheduling problem, called PSBIJF (Parallel Serial-Batch scheduling with Incompatible
Job Families), is described in the next section. In the subsequent section, we describe existing
algorithms for solving the PSBIJF. These algorithms make up the finite algorithm space A of the
ASP under consideration.

2.1 The PSBIJF

Basic task of the PSBIJF considered in this paper is the grouping of n jobs (
{ 1, ..., }jJ J j n >= = Î¢) into o batches ({ 1, ..., }bB B b o >= = Î¢) and the scheduling

(machine allocation and sequencing) of those batches on a set of m identical parallel machines (
{ 1, ..., }lM M l m >= = Î¢). The maximum batch capacity bc is identical for all machines and

the sum of the individual (arbitrary) batch capacity requirement jcr of each job assigned to a

batch must be lower. Generally, jcr bc£ must hold. Furthermore, each job has individual

weights jw , processing times jp , due dates jd , and each job belongs to a job family f

({ 1, ..., }fF F f q >= = Î¢), whereby job families are “incompatible” (that means jobs of
different families cannot be processed together in one batch, e.g., due to technical or material
restrictions). Because setups between the processing of two batches (jobs) are required, the
batching of jobs of the same family is done to reduce setup efforts. Hereby, the setup times are
family- and sequence-dependent: ,f gs defined the setup time for a setup from a family f batch

to a family g batch. Note that 0, fs depicts initial setup times for family f at the beginning of a
schedule. Other assumptions include that each machine can process no more than one batch at a
time, that a batch can only be processed by one machine at a time, that all jobs are available for
processing at the start (i.e. no release dates), that batch processing cannot be interrupted (i.e. no
preemption), that jobs cannot be added or removed once processing of a batch has started (i.e.
batch availability), and that the completion time of a job is the completion time of the batch to
which a job is assigned.

The primary objective is the minimization of the total weighted tardiness. Additionally,
we aim to minimize the total flow time whenever all jobs can be delivered in time (i.e., tardiness
is equal to zero). This objective function is writes as follows:

max 10j jj J
TFov w T

C nÎ
= × +

× ×å % .
(1)

with tardiness of job jT and total flow time TF. The ordering of the objectives is achieved by
defining the (constant) denominator to be greater than the nominator (i.e., the total flow time) in
the second part. To assure that the denominator is greater than the TF, the upper bound of the

4

maximum flow time of one job is estimated by the approximated makespan maxC% and multiplied
by the number of jobs. Because the makespan is approximated, we use a “safety” factor of 10.

2.2 Existing algorithms

The first time, the previously defined PSBIJF was considered in Gahm et al. (2022). The authors
developed a mixed-integer linear program (MILP), multi-start construction heuristics based on
existing, adapted, and new priority rules, and a local search mechanism. Multi-starts are used to
perform a grid-search with different heuristic parameter configuration. Their results show that
the BATCS-b heuristic (originally abbreviated ATCS-BATCS(β)) with a “controlled batch
utilization” outperforms all other approaches.

Based on these results Uzunoglu et al. (2023b) developed a similar multi-start heuristic
with “controlled batch urgency” (called BATCS-d) and use the same MILP and local search for
improving initial solutions. Furthermore, to improve solution efficiency, the authors proposed
learning-augmented heuristics using ML methods (i.e., neural networks, NNs) to minimize the
number of starts by predicting most suitable parameters for the heuristics. To that, not only the
single predicted parameter configuration is used but a reduced parameter grid is computed, and
a parameter is introduced to control the size of the reduced grid (and thus, can be used to balance
between solution quality and computation time). Their results show that the best variants with
ML-reduced grids (BATCS-b-ML(PC8, GS3) and BATCS-b-ML(PC6, GS3)) are very
competitive regarding solution quality and clearly outperform BATCS-b and BATCS-d in terms
of computation time. The results also show that the “d”-variants generally outperform the “b”-
variants but that for some problem instances, only a “b”-variant is capable to compute the best
solution.

A similar approach to increase solution efficiency was proposed in Uzunoglu et al.
(2023a). The authors also used ML to reduce the parameter grid searched by the multi-start
heuristic BATCS-b but do not predict parameters. Instead, they used NNs to predict the
performance of a certain parameter configuration and compute a ranking based on the
predictions. After computing this ranking, which can be done efficiently due to the very low
response time of NNs, several ranking application strategies are available to create a reduced
parameter grid. Also, a parameter controls the size of the reduced grid. Their results show that
their BATCS-b-MLGS variants are competitive regarding solution quality and clearly
outperform BATCS-b in terms of computation time. Similar to the findings in Uzunoglu et al.
(2023b), also Uzunoglu et al. (2023a) observe that not one specific BATCS-b-MLGS variant
performs best for all problem instances but that different ones achieve best results in relation to
some problem instance characteristics. Therefore, we conclude that selecting the most promising
algorithm among the best available for the PSBIJF before starting the solution process has the
potential to improve the solution quality without increasing the computation time.

Table 1 lists the 13 most efficient algorithms from the literature. Note that we do not
consider the algorithms presented in Uzunoglu et al. (2023b), which use improvement
procedures, since the ASP task considered here is to select the algorithm that efficiently
computes initial solutions.

Table 1: Algorithms from the literature

Algorithm based on parameter predictions
(see tables 21 and 22 in Uzunoglu et al., 2023b)

Algorithm based on ranking predictions
(see table 6 in Uzunoglu et al., 2023a)

5

BATCS-b-MLPP(PC4, GS3)
BATCS-b-MLRP ([0,5,5]-AF, Bx)

BATCS-b-MLPP(PC8, GS3)
BATCS-b-MLRP ([0,5,5]-AF, B(9)-G)

BATCS-b-MLPP(PC10, GS3)
BATCS-b-MLRP ([1,2,7]-AF, Bx)

BATCS-d-MLPP(PC1, GS3)
BATCS-b-MLRP ([1,2,7]-AF, B(9)-G)

BATCS-d-MLPP(PC4, GS3)
BATCS-b-MLRP ([1,0,9]-AF, Bx)

BATCS-d-MLPP(PC6, GS3)
BATCS-b-MLRP ([1,0,9]-AF, B(9)-G)

BATCS-d-MLPP(PC10, GS3)

Because Uzunoglu et al. (2023a) did not consider “d”-variants in their analysis, we
performed a preliminary study to close this gap (see Table 12 in Appendix A-1). Based on the
results of this study, we added the four most robust algorithms (BATCS-d-MLRP ([1,2,7]-AF,
B(5)-G), BATCS-d-MLRP ([1,2,7]-AF, B(9)-G), BATCS-d-MLRP ([1,4,5]-CF, B(5)-G),
BATCS-d-MLRP ([1,4,5]-CF, B(9)-G)) to the algorithm space A (with 17 : AA n= =). Note that
the MLRP-variants in their original version use larger grids (compared to the MLPP-variants),
resulting in higher computation times. To align both variants, we adjust the grid sizes for the
MLRP-variants in a way that all 17 considered algorithms perform similar grid searches. The
following grid sizes are used (cf. Uzunoglu et al., 2023b): 228 if n < 100, 76 if nÎ[100, 1000),
and 20 if n ³ 1,000. Note that for the “d”-variants, the grid sizes are 1 less because the set of
considered “d”-values only contains 10 elements (the set of “b” values contains 11 values).

3 Related literature

Since the literature on the PSBIJF and its solution methods has already been presented in the
previous section (more details can be found in the referenced literature), and the basic literature
on ASP has been presented in the introduction, we will focus on the learning-to-rank related
literature in the next section (along with some notes and references on basic ML methods). The
second part of the literature review is dedicated to existing GAs that have been developed to
solve problems similar to PSBIJF.

3.1 Learning-to-rank literature

Concerning the problem at hand, we know that the four requirements i. to iv. (see section 1) for
using meta-learning methods are met. Therefore, we conclude that an offline trained ML model
is suitable to fulfill the ASP task. For using ML models, one should carefully consider what level
of information is necessary for algorithm selection, i.e., what the model’s response should be.
For example, is it necessary to predict the objective value of an algorithm, or is an ordering of
algorithms (i.e., ranking) sufficient to select an algorithm? The latter question might be easier to
answer when the objective values differ immensely between problem instances (like it is the case
for given PSBIJF). Note that a ranking suffices to select an algorithm with a fixed set of
algorithms but is not applicable in other cases. Because such a ranking better reflects its
application for the algorithm selection, it could also be seen as the “more natural” question to be
asked. However, we will analyze both approaches in this paper.

6

For predicting objective values of algorithms, ML models and methods capable to
perform regressions are required. As such ML models are widespread in literature, we are not
going to discuss detail here but refer the reader to some standard literature (e.g., Murphy, 2013
or Goodfellow et al., 2016). In contrast, ML techniques that return a ranking are less common
and thus will be discussed in detail in the following.

As pointed out, a ranking of algorithms better reflects the application of the ML model
output than a mere objective value prediction. ML models returning a ranking of objects are
known as “learning-to-rank” models and are most often found in the field of recommender
systems (e.g., recommending products to customers based on purchase history). Also, the
terminologies “collaborative filtering” and “information retrieval” are used in the literature. For
such problems, the ranking problem is stated as follows: given a query

iq (e.g., a user’s purchase
history) and objects

1 , . . . , nx x (e.g., documents or products), find a machine learning model f
that returns a ranking of

ax according to their relevance to the query. This assumes a numerical
representation of the query

iq and the objects
ax . In the literature, the mode of operation of

learning-to-rank models are defined according to these three options:

 Pointwise ranking: every object gets a relevance score independent of other objects and is
sorted according to the relevance score.

 Pairwise ranking: the model predicts which one to prefer for each pair of objects (the final
ranking results from multiple preference relations predicted by the model).

 Listwise ranking: given a set of objects, the model outputs a permutation of the objects,
considering the dependency in between.

Pointwise ranking computes a relevance score for each object and sorts accordingly. In this
setting, standard loss functions, such as mean squared error (MSE) (if different levels of
relevance exist) or binary cross entropy (if only levels “relevant” and “not relevant” exist), can
be used directly. However, they fail to capture the interdependency between objects related to a
query (Freund et al., 2003), which is better incorporated in the last two options – pairwise and
listwise approaches. Regarding pairwise ranking approaches, a common drawback is that the
learning objective minimizes the error in classifying preferences on pairs of objects rather than
the error in ranking the objects (Cao et al., 2007). In consequence, we concluded that listwise
ranking approaches are more suitable for solving the ASP as it accounts for the interdependencies
between objects and loss function compare complete rankings instead of pairs of objects.
Listwise ranking calculates the loss function on the predicted ranked list of objects and compares
it to the ranked list given as ground truth. However, a major challenge in this approach is to find
an appropriate loss function that can be used in common learning mechanisms (e.g., the loss
function must be differentiable for using gradient descent). Note that we refer to the lowest index
in the ranking as highest position (indicating the probably best algorithm in the ASP) and the
highest index in the ranking as lowest position (indicating the probably worst algorithm in the
ASP).

Järvelin & Kekäläinen (2000) proposed the metric normalized discounted cumulative
gain (NDCG), taking into account that objects with high relevance in a higher position in the
predicted ranking return a higher value (gain) for the user but objects in lower positions in the
predicted ranking are less likely to be used. So, for example, misplacing the highest two objects
in the ranking results in a higher loss than misplacing the lowest two objects. To define the
NDCG metric, we first need a function :g X ® ¡ returning the gain (relevance or value) of
objects for a query and the cumulative gain function :cg ®¥ ¡ ,

1
(())p

k
p g ks

=åa that sums
up the gains obtained by the ranking s up to position p. Then, the cumulative gain is discounted

7

according to the ranking position, for example, by dividing each gain in the sum by
2lo g ()× of

its rank: dcg:
1 2

(())
log (())

p

k
g kp k

s
s=åa . Also other monotonically increasing

transformations can be used for the discounting. Lastly, the achieved discounted cumulative gain
(DCG) is normalized by the highest DCG achievable by the optimal ranking (i.e., NDCG) to
allow comparing predicted rankings between queries with different resulting rankings (Järvelin
& Kekäläinen, 2002). The summation can also be truncated to a specific position k such that
NDCG only considers the k highest ranked positions of the prediction (called NDCG(k)). As
NDCG depends on the ranking s , which returns the position of object

ax and hence is non-
differentiable, the NDCG metric itself is non-differentiable and thus cannot be used in machine
learning mechanisms relying on the loss function’s gradient.

Burges et al. (2006) circumvent the non-differentiability of the NDCG metric in their
algorithm “LambdaRank” by defining a smooth approximative loss function. During training, it
is known which properties the gradient should have to achieve a better ranking outcome. To
derive an appropriate loss function, the goal is to choose the gradient of the desired loss function
l that fulfils this property. In their evaluation, they analyzed different l functions and
compared them against RankNet using the NDCG metric. Their analysis revealed that neural
nets trained with LambdaRank clearly outperform a competitive pairwise approach (RankNet;
see Burges et al., 2005) regarding accuracy (NDCG) and training time. Its boosted decision tree
equivalent was named “LambdaMART” and published in Burges (2010).

Also, with a focus on treating the ranking problem in a listwise manner, Cao et al. (2007)
present “ListNet”. ListNet is a neural network operating on probability distributions over
permutations or the probability of objects being ranked on the top k positions (called top k
probability). The computational experiments show the superiority of ListNet over other pairwise
competitive algorithms on almost every test data set, concluding the advantage of listwise
approaches over pairwise approaches.

Another line of research takes a more direct approach to find functions that are easier to
optimize and behave like the previous metrics (e.g., NDCG). Some of the works try to optimize
functions that are (upper) bounds to a ranking metric (see Chapelle et al., 2007 for a ‘structured
output’ based approach and Xu et al., 2008 for a framework on upper bounds and applications).
Another approach by Taylor et al. (2008) (called “SoftRank”) tries to smooth the metric by
assuming randomness and using a Gaussian distribution as ranking score. Qin et al. (2010)
proposed an approximation framework that reformulates the metrics needing a sorting, and
therefore, positions as indices (i.e., indexed by positions), to metrics that derive indices from
their objects. In addition, they approximate the position function with a logistic function based
on the object’s ranking score and apply their approximation in an optimization technique called
“ApproxNDCG” (and “ApproxAP” for average precision), which also needs a hyperparameter
to be determined. They compared the accuracy of ApproxNDCG to SoftRank, ListNet, and
others (but without including LambdaRank and LambdaMART in their analysis). They showed
that ApproxNDCG outperforms all other methods on a variety of data sets.

The literature on learning-to-rank presents a rich body that differs in how they treat the
dependency between objects: pointwise approaches neglect dependencies between objects,
pairwise approaches consider preferences between pairs of objects, and listwise approaches work
on the complete list of objects. Listwise approaches best reflect how the prediction is applied for
solving the ASP, but loss functions of interest are not differentiable and prevents their direct
usage in gradient-based methods. Plenty of works attempt to overcome this issue and the more

8

recent approaches, such as LambdaRank/LambdaMART or ApproxNDCG, have shown to be
superior in computational studies.

In consequence, these approaches are of special interest regarding the ASP task at hand
and their application, adaption (if necessary), and enhancements is elaborated in detail in section
4.

3.2 Genetic algorithm related literature

The following part of the literature review analyses publications using GAs for solving batch
scheduling problems that are closely related to the problem at hand, i.e., batch scheduling
problems with bounded batch capacities, batch availability, and incompatible job families. Using
the knowledge base provided by Wahl et al. (2023), we identified 13 relevant articles using GAs
(note that we also use their notation scheme to specify batch scheduling problems in the
following). Since our goal is to design a GA for the PSBIJF, we put special emphasis in the
analysis on the used evolutionary mechanisms (e.g., mutation or recombination). Another
important aspect for each GA is whether the chromosome decoding procedure (or any other
batching procedure) follows a ”full-batch-policy” (i.e., batch are always filled with jobs until
batch capacity does not exceed) or not. As discussed in Gahm et al. (2022) and Uzunoglu et al.
(2023b), forced full batches may lead to suboptimal decisions for the PSBIJF (but, of course,
might have been appropriate for the originally addressed problem). Furthermore, our GAs are
designed to improve the quality of pre-computed solutions. To represent these pre-computed
solutions and to not miss regions that could further improve them, we require our GA to operate
on the entire solution space. Two aspects that are contrary to this goal (even if they have other
benefits) are: decomposition approaches (instead of solving all subproblems jointly) and
exclusion of certain parts of the solution space. Therefore, we report if the GA solves the
complete problem or a decomposition approach is used, and if the solution methods cover the
entire solution space of the problem. In Table 2, the developed GAs of the relevant literature are
summarized according to the discussed aspects, if a full-batch-policy was used (F) or not (L), if
the entire problem was solved by the GA (C) or a decomposition approach was used (D), the
type of representation/chromosomes (bin := binary, int := integer; rk := random key, and obj :=
objects), and the information represented by the chromosomes.

Since GAs using a full-batch-policy are not suitable for the PSBIJF, we concentrate on
the other approaches in the following detailed analysis.

Table 2: Overview of related GA developments

Reference
Problem

specification

(F
) o

r
(L

)

(C
) o

r(
D

)

C
hr

om
os

om
e

ty
pe

(s
)

Chromosome information
(chromosome size)

Balasubramanian
et al. (2004)

P | pF, if, cr1, pb |
wT’

F
F

D
D

int
int

Job to batch assignment (n)
Batch to machine assignment (n)

9

Koh et al. (2004)
P | pF, if, crJ, pb |
C, wC, Cmax’

F

F

C

D

rk + rk

rk

Job to batch assignment + batch
to machine assignment with batch
sequence (2n)
Job to batch assignment (n)

Koh et al. (2005)
S | pF, if, crJ, pb |
C, wC, Cmax’ F D rk Job to batch assignment (n)

Mönch et al.
(2005)

P | pF, rJ, if, cr1, pb
| wT’

L
L

D
D

int
int

Job to batch assignment (n)
Batch to machine assignment (n)

Malve & Uzsoy
(2007)

P | rJ, if, cr1, pb |
Lmax F C rk Job sequence (n)

Mönch et al.
(2007)

P | rJ, net, if, cr1,
sFS, elig, pb | wT L D int Batch to machine assignment (n)

Dauzère-Pérès &
Mönch (2013)

S | pF, dJ, if, cr1, pb
| wU F C rk Job sequence (n)

Jia et al. (2013)
P | pF, rJ, re, if, cr1,
maxL, pb, bLb, on |
wT, TP, cIh

F D int Batch to machine assignment (n)

Castillo &
Gazmuri (2015)

HJ | if, crJ, sFMS,
cb, sb, bF, bLb |
Cmax

L C objects
Batch sequence, size, machine
assignment, family (n)

Huynh & Chien
(2018)

P | pF, dlJ, if, crJ,
sFS, pb | Cmax L C int + rk

Job to batch assignment + batch
to machine assignment with batch
sequence (2n)

Huang et al.
(2020)

S, aFlex | rJ, if, cr1,
pb | Cmax’ F D rk +

binary
Job sequence + preventive
maintenance (2n)

Kim et al. (2021)
S, aFlex | pF, pDet,
if, crJ, pb | Cmax

F
F
F

D
D
D

rk
rk

rk + rk

Job to batch assignment (n)
Batch sequence (up to n)
Job to batch assignment +
Batch sequence (up to 2n)

Wu et al. (2022)
HJ, aFlex | pF, rO,
dlO, re, if, cr1, elig,
pb, bFM | TP’

L C objects
Job to batch assignment, batch to
machine assignment, and batch
sequence (up to n)

Mönch et al. (2005) proposed using GAs to solve the “P | pF, rJ, if, cr1, pb | wT”-problem.
They used the same two decomposition approaches first presented in Balasubramanian et al.
(2004) but combined the GAs with other heuristics for batching and sequencing. Their modified
ATC dispatching rule considered multiple batch combinations, and thus, also batches with “free”
capacity are considered (no full-batch-policy). In their GAs’ implementations, the roulette wheel
selection mechanisms and operators (one-point crossover and a flip mutation) were the same as
in Balasubramanian et al. (2004). However, due to their decomposition approach and the applied

10

dispatching rules for batching and sequencing, not the entire solution space is covered. We
therefore do not consider their approach to be an appropriate solution method to the PSBIJF.

To solve a complex job shop scheduling problem, Mönch et al. (2007) proposed a
decomposition approach, which needs to solve the batch-scheduling sub-problem “P | rJ, net, if,
cr1, sFS, elig, pb | wT”. For solving this sub-problem, a GA allocated and sequenced already
formed batches to and on machines. To that, the integer chromosome represents a batch’s
machine allocation, and the sequence of genes (representing batches) in the chromosome is equal
to the sequence of batches on the allocated machine. The GA used a one-point crossover, flip
mutation, and overlapping populations as evolutionary mechanisms. Computations terminated
after reaching a given number of generations. The batching procedure considered multiple batch
combinations and thus did not aim at full batches, but due to the decomposition approach, not
the entire solution space is covered. As this GA has the same characteristics as that of Mönch et
al. (2005), we do not consider it appropriate either.

Castillo & Gazmuri (2015) proposed three GAs with different types of crossovers for
solving the “HJ | if, crJ, sFMS, cb, sb, bF, bLb | Cmax”-problem. For solution representation,
the authors used an ordered set of batches with additional information such as batch size and
assigned machine. Three crossover mechanisms were developed: “edge recombination-based
crossover”, “batch position-based crossover” (similar to a one-point crossover), and “guided
mutation crossover” (a local search around the clone parent, towards the guide parent). For
mutation, the authors proposed four mechanisms that partially use some kind of local search to
keep all chromosomes feasible: “mutate amount of batches”, “mutate batch sizes”, “mutate
machine assignments”, and “mutate batch sequence” (i.e., batch swapping). The experiments
showed that the guided mutation crossover (with the integrated local search) had the fastest
convergence of all three crossovers. The applied chromosome representation allows any batch
size, the complete problem is solved, and the entire solution space is covered. However, solution
representation, recombination and mutation operators are highly problem specific and thus, we
do not directly follow their approach. Nevertheless, their developed mutation mechanisms
influenced our mutation operator development.

For the “P | pF, dlJ, if, crJ, sFS, pb | Cmax”-problem, Huynh & Chien (2018) proposed a
multi-subpopulation GA combined with heuristics. Because our second GA uses the same
solution representation and similar operators, we are not going into detail here but in section 5.2.
The multi-subpopulation GA used three parallel subpopulations that evolved independently and
were coordinated at certain points to prevent any single subpopulation from converging too
quickly or slowly. To coordinate the three subpopulations, new subpopulations containing new
chromosomes were created after a certain number of generations by interchanging a given
number of best solutions. The results showed that the multi-subpopulation GA outperformed the
conventional GAs by about 5% in terms of solution quality, while the CPU time was about the
same. Unfortunately, the authors did not report results without the integration of the two local
search heuristics. Therefore, it is not possible to isolate their multi-subpopulation-strategy’s
contribution to the result. However, since the representation by two chromosomes allows
arbitrary batch sizes and the complete problem is solved, the entire solution space for the problem
at hand is covered and makes their approach interesting for solving the PSBIJF. As already
mentioned, this GA directly inspired the development of our second GA, but we did not integrate
their local search heuristics as those are dedicated to problem specific characteristics (e.g., the
makespan objective) and therefore not appropriate for the PSBIJF. Furthermore, we made several
adaptations regarding recombination and mutation operators.

To solve the “HJ, aFlex | pF, rO, dlO, re, if, cr1, elig, pb, bFM | TP”-problem, Wu et al.
(2022) developed a GA where each chromosome represented a sequence of “batch objects”

11

defining the machine (assigned tool), the job family (recipe), the set of assigned operations, and
the start time of the batch. The authors developed several problem-specific properties to reduce
the solution space for the GA. These properties were also used by the procedure to randomly
generate the initial population. Based on a fitness-proportional parent selection, the offspring
were generated through representation-specific crossover and mutation operations. The authors
explicitly stated that they did not follow a full-batch-policy because smaller batches may lead to
better schedules. The proposed GA covers the entire solution space of the problem considered
here. However, due to the large difference regarding the basic problem settings compared to the
PSBIJF and the GA’s high problem specificity, particularly because of the used properties, we
do not consider its application to be expedient.

Summarizing this analysis of GAs, we come to the conclusion that the GA developed by
Huynh & Chien (2018) provides the most suitable aspects for developing GAs for the PSBIJF
which we integrated in our second GA. Both GAs are elaborated in detail in section 5.

4 Algorithm selection by learning-to-rank

As the more recent literature in algorithm selection suggests, ML models can be powerful tools
to select good algorithms for a problem instance to solve. Empirical hardness models or models
to predict the performance of an algorithm solving a problem instance are popular choices.
However, predicting the actual performance value is unnecessary but a mere ordering of
algorithms is sufficient for algorithm selection. Furthermore, evaluating the performance of an
ML model for algorithm selection based on the error (e.g., the MSE) between the actual and
predicted algorithm performance does not coincide with its later use. Loosely speaking,
predicting an algorithm's (continuous) objective values is more challenging than predicting the
algorithm performance on an ordinal scale (e.g., ”good” or ”mediocre” performance) or a listing
according to the performance (which implies the latter two cases). This becomes particularly
important when objective values can vary by several orders of magnitude from problem instance
to problem instance, as is the case for the PSBIJF with the total weighted tardiness objective. In
consequence, learning-to-rank methods seem the better choice. Nevertheless, one should be
aware that many learning-to-rank algorithms were developed with use cases very different from
algorithm selection. They stem from applications like recommender systems or search engines
with vast sets of objects explained by numerical feature vectors and deal with problems like bias
in human-generated data. Therefore, thoroughly analyzing the applicability of different learning-
to-rank methods is essential to find the most suitable technique for our ASP.

To perform the ASP task by learning-to-rank ML models, three components must be
determined, considering their interdependencies: the basic ML model type, the labeling strategy,
and the loss function used during training, validation, and testing. These components and
combinations are discussed in the following paragraphs,

Because NNs are commonly used by recent ranking methods (and regression tasks in
general) and gradient-boosting decision trees (GBDT) have shown their superior performance as
learning-to-rank methods, we use them as basic ML model types in our ASP methods.

In the context of ranking ML tasks like the ASP, the way of labeling the training data
plays an important role. Therefore, we investigate five new or adapted “labeling strategies” in
our analysis: In the first strategy called “BIN”, all algorithms from A that have computed the best
solution for a problem instance are indicated by 1 and otherwise by 0. That means, each sample
has

An binary labels indicating the best algorithm. In strategy “OV”,
An real-value labels depict

the objective values computed by each algorithm (
ao v) and in “OV-N”, the objective values

12

have been normalized on the interval [0,1] with max

max min

a
a

ov ovov
ov ov

-
=

-
 (regarding a single problem

instance). Furthermore, we use the labeling strategy “RANK”, which has
An labels with integer

from the interval {1, , }AnK . Here
An marks the best algorithm and 1 the worst. If two algorithms

achieved the best objective values, both are labeled with 17 and the next is labeled with 15. We
also use a version of RANK with scaled labels from {1 , 2 , , 1}A An n K called RANK-SC, to
analyze the impact of scaling on the training strategies. Here, 1 marks the best algorithm and
1 An the worst.

In addition to the labelling strategy, the loss function used during training, validation,
and testing is essential. Therefore, we investigate different loss functions that are coupled to the
labeling strategy and model type (i.e., not all loss functions are applicable to all labeling
strategies or model types). For the labeling strategy BIN, the loss function binary cross entropy
(BCE) and for the labeling strategies OV, OV-N, and RANK-SC the MSE is used as
recommended in the literature. A newly developed loss function first proposed in this paper is
the “importance weighted MSE” (iwMSE(α)). The idea of this loss function is to emphasize
better (higher) ranked algorithms, so in a sense, the ML model also must understand which
algorithms should be ranked higher. It is basically the MSE with a weight depending on the

“true” ranking of algorithm a: ˆ(,)iwMSE y y =
2

1
ˆ1 1An

A a a ai
n y y ya

=
- +å (with

ay
representing the label and ˆ ay the predicted ranking score). We use the parameter 0a >Î ¡ to
control the effect of the weighting. Of course, this biases a model to predict higher ranking scores
ˆ ay since missing higher-ranked algorithms is punished stronger than missing lower-ranked

algorithms. Therefore, the control parameter should not be exaggerated and be tuned with
caution. Theoretically, an “optimal” model would not mind this effect, but approximation and
estimation errors (and the fact that gradient descent could converge in a local optimum) hinder
us from finding such models in practice. In our experiments, we analyze the impacts for aÎ{1,
2, 3}. The following “loss functions” also affect the learning process (algorithm) and are
therefore not applicable to both ML model types (see section 3.1 for further details):
ApproxNDCG is a loss function particularly developed for NNs (Qin et al., 2010),
LambdaRankNDCG is the learning method published in Burges et al. (2006) for the NDCG loss,
and LambdaRankNDCG(1) is its truncated version to rank 1 only. For GBDTs and the labeling
strategy BIN, the LambdaBinary trains according to the mean average precision (Donmez et al.,
2009). RankPairwise uses an GBDT-adaptation of the pairwise loss function RankNet developed
by Burges et al. (2005) and LambdaMART is the GBDT-equivalent to LambdaRankNDCG
presented in Burges (2010).

All appropriate ML model types, labeling strategy, and loss function combinations
forming “ASP-models” are summarized in Table 3 in section 7.1. Note that all the presented ML
model types, labeling strategy, and loss function combinations can be considered as listwise
ranking approaches as we have a finite and fixed object space (algorithm space).

For the training, validation, and testing of the ASP-models, we use a large instance set
from the literature (see section 6.1) and solve each of the 71,040 instances with the 17 available
algorithms. This leads to a set of 1,207,680 data points when each problem instance and
algorithm combination is processed individually.

To convert a problem instance i PÎ into a feature representation, we use the AF-vector
(aggregated feature-vector) proposed in Uzunoglu et al. (2023b), as it has shown to be suitable
for adequately representing the properties of PSBIJF problem instances.

13

Since with the objective function in eq. (1) also a metric to evaluate an algorithm’s
performance exists, all four requirements to use ML models (see i. to iv. in section 1) for solving
the ASP Algorithm are fulfilled.

5 The Genetic Algorithms

To solve the present serial-batch scheduling problem, we propose to improve the solutions
computed by the LACH with two GAs that mainly differ in their problem representation. The
first one uses an integer representation where each job is assigned a batch-position (representing
a specific position on one of the machines). We abbreviate this approach as GA-J2P (job-to-
position assignment). In the language of genetics, this means that a phenotype (schedule) is
encoded by a genotype (individual) consisting of a single chromosome of n genes (one for each
job), and the allele is an integer value representing one of the given batch-positions (for
definitions and details of GA-related terms used in this paper see Eiben & Smith, 2015). The
second GA uses a genotype consisting of two chromosomes: The first chromosome consists of
n integer genes representing the job-to-batch assignment, and the second chromosome consists
of n real-valued chromosomes representing the batch-to-machine assignment and the sequence
of batches on a machine. This one is called GA-J2BRK (job-to-batch assignment with random
keys). Note that both GAs are capable to represent all feasible solutions of interest because we
do not integrate any heuristics for batching or scheduling and both representations and their
decoding (genotype-phenotype mapping) produce non-delay schedules (no idle time is inserted)
and the objective function (1) is regular (cf., Pinedo, 2016). This means that both mappings are
complete (cf., Eiben & Smith, 2015).

For both GAs (individual aspects are described in sections 5.1 and 5.2, respectively), we
implemented the following basic GA scheme (cf. Eiben & Smith, 2015) with the parameters
“population size” (m), “initial population composition” (ipc), “elitism rate” (esr; fraction of best
individuals that are certain to be transferred to the next generation), “survival rate” (svr; fraction
of individuals that survive, i.e., that are transferred unaltered to the next generation), “survivor
selection mechanism” (svs; how individuals are selected for survival), “parent selection
mechanism” (pas; how individuals are selected to compute offspring individuals),
“recombination probability” (Prec; probability that two parents are recombined into two offspring
individuals), “mutation probability” (Pmut; probability that a gene of an offspring individual is
mutated), and the “termination condition setting” (tcs).

General GA scheme

pop(0){} := getInitialPopulation(m , ipc)
evaluate(pop(0){}) // calculate fitness of all initial individuals
Do

g := g+1 // increment generation
s{} := selectSurvivor(pop(g-1){}, esr, svr, svs)

// survivors are directly transferred to the next generation
p{} := selectParents(pop(g-1){}, 1 - svr, pas)

// for recombination
o{} := recombine(p{}, Pr) // recombination of two parents
m{} := mutate(o{}, Pm) // mutation of the offspring
evaluate(m{}) // calculate fitness of all offspring individuals
pop(g) := s{} + m{}

Until (tcs is satisfied)

14

The corresponding GA-specific components are described in the following sections.
However, we use the same termination criterion “maximum execution times in seconds” (maxS)
for both GAs. This value is defined in relation to the number of jobs of an instance, as this is the
major characteristic influencing the computation time. During different stages of the
development and final testing of our GAs, we would like to use different settings to keep
computation times manageable. Therefore, two settings are defined:

 TS1: maxS=30 if n ≤ 600, maxS=60 if (600, 1, 200]n Î , maxS=90 if (1, 200, 2, 400]n Î ,
and maxS=120 if n > 2,400.

 TS2: maxS=45 if n ≤ 100, maxS=90 if (100, 200]n Î , maxS=180 if (200, 400]n Î ,
maxS=360 if (400, 800]n Î , maxS=720 if (800, 1, 600]n Î , and maxS=1,440 if n > 1,600.

5.1 GA-J2P

The basic idea of GA-J2P is the new genotype representation of a schedule by a single
chromosome containing the complete information. The proposed representation can model the
complete solution space, which is particularly important with respect to the problem
characteristics combination of serial batching, arbitrary batch capacity requirements, and
weighted tardiness. At the same time, we wanted to avoid an overly specific representation by
complex genes (see. e.g., Castillo & Gazmuri, 2015 and Wu et al., 2022) to make the proposed
GA applicable to a wider range of batch scheduling problems. Another benefit of this genotype
representation lies in its close relation to the phenotype schedule as such “natural”
representations combined with applicable genetic operators are “quite useful in the
approximation of solutions of many problems” (Michalewicz, 1996, p. 4).

5.1.1 Genotype representation and decoding

The genotype consists of a single integer chromosome with one gene for each of the n jobs (gene
indices are therefore simultaneously job indices j), and the allele values represent batch-
positions. Hereby, batch-positions simultaneously encode the machine and the sequence of
batches on a machine, and therefore, each batch-position simultaneously represents one batch.

This representation idea is very similar to the main decision variable (X) used in the mixed-
integer linear program presented in Gahm et al. (2022). In general, the number of batch-positions
on each machine must not be less than n. However, since we observed that the number of batches
created in the initial solutions is much smaller than this value and Gahm et al., 2022 also report
a similar observation (see their table 14), we introduce the parameter “batch-positions per
machine” (bpm) to control the total number of batch-positions. Here, we assume that smaller
bpm values are beneficial for the solution process, but it is important to use values that do not
restrict the solution space in a way that prevents good or optimum solutions. The effectiveness
and increase in efficiency of different bpm values will be analyzed in detail in the experimental
section. Batch-positions are numbered as follows: bp=1 for the first batch on machine i=1, bp=2
for the second batch on machine i=1, bp =bpm for the last batch on machine i=1, bp=(i-1)bpm+1
for the first batch on machine i=2, bp=(i-1)bpm+2 for the second batch on machine i=2, bp=(i-
1)bpm+bpm for the last batch on machine i=2, and so on. Fig. 1 illustrates in part a) the genotype
chromosome assigning a batch-position to each job and in part b) the resulting phenotype

15

schedule after decoding, i.e., after assigning jobs (italic) to the batch-positions (in the squares)
on the machines. Note that we do not have any ordering or sorting (e.g., by job families) in the
integer chromosome to avoid any positional bias (see the associated families f per job in Fig. 1
a)). This is in contrast to the family-wise ordering of integer chromosomes proposed by Huynh
& Chien (2018).

The decoding follows the gene sequence of the integer chromosome and adds one job
after the other to the corresponding batches: e.g., job 1 to batch-position 2 → (then) job 2 to
batch-position 5 → job 3 to batch-position 2 and so on (cf. Fig. 1 b)). Note that empty batches
(e.g., batch-position 4) are just ignored during the evaluation of the schedule.

5.1.2 Close and least impact insertion procedure (CLIP)

Several operations in GA-J2P (e.g., random solution generation or recombination) require the
insertion of a job into “new” batch-positions if the desired batch-position is already occupied
and an insertion is not feasible (due to job family or batch capacity requirements). In this case,
our proposed insertion procedure aims to insert the jobs into batch-positions closest to the
initially desired batch-position (e.g., near on the same machine or at a similar position on a
different machine) and that have the least impact on the overall schedule. The latter aspect is
important to allow the transfer of “good” partial schedules from one genotype to the other. To
achieve this insertion in a most efficient manner, we define 20 insertion sections, as exemplarily
depicted in Fig. 2.

For the definition of these sections, we use several bounds in relation to bpm: sections 1
to 8 are defined by lb1=1 and ub1=0.1∙bpm, sections 9 to 14 are defined by lb2=ub1+1 and

Fig. 2: Illustration of CLIP with a job insertion at the already occupied batch-position

48 (numbers in circles refer to insertion sections)

Fig. 1: Integer chromosome with job to batch-position assignment and decoding

16

ub2=3∙ub1, and sections 15 to 20 are defined by lb3=ub2+1 and ub3=bpm. Given these definitions,
Fig. 2 illustrates the procedure to find a new batch-position for all the jobs with the desired batch-
position 48: we first try to insert the job in a batch-position in section 1 (49→50), then in a batch-
position in section 2 (47→46), then in a batch-position in section 3 (28→8), then in a batch-
position in section 4 (68→88→108), then in a batch-position in section 5 (29→9→3→10), then
in a batch-position in section 6 (69→89→109→70→90→ 110), then in a batch-position in
section 7 (27→7→26→6), then in a batch-position in section 8 (67→87→107→66→86→106),
and so on.

Note that the sections 3, 5, 7, 11, 13, 17, and 19 contain the corresponding batch-positions
from the current machine (here 3) to machine one (i=1) and that the sections 4, 6, 8, 12, 14, 18,
and 20 contain the corresponding batch-positions from the current machine (here 3) to machine
i=m.

5.1.3 Initial population composition

To generate the initial population for GA-J2P, we use three approaches controlled by the
parameter “initial population composition” (ipc): the first approach uses only randomly
generated solutions (ipc=ran), the second one uses 30% initial solutions computed by the LACH
and 70% randomly generated solutions (ipc=icr), and the third one uses 30% initial solutions
computed by the LACH and 70% randomly modified initial solutions (ipc=iri; by the
recombination and mutation variation operators described below). The latter two approaches
significantly differ in the diversity of the initial population, and we will investigate the effect on
the solution process in our experimental study. Depending on the population size and since the
learning-augmented heuristics provide only a limited number of solutions related to the number
of jobs (i.e., 227 or 228 if n < 100, 75 or 76 if [100,1, 000)n Î , and 19 or 20 if n > 1,000; cf.
section 2.2), the number of available initial solutions may not be sufficient with respect to the
given proportion. In this case, additional random solutions are added to the initial population
according to the population size m . Because of the limited number of available initial solutions,
we are not going to tune the fraction of initial solutions during parameter tuning.

For the fully randomly generated solutions, we draw batch-positions from {1, , }m bpm×K
for each job (note that if not stated otherwise, random numbers are always drawn from restricted
uniform distributions). To ensure feasible solutions in the initial population, we decode all
generated genotypes after generation. If we identify an infeasible batch in terms of incompatible
job family or batch capacity during decoding, we store the job in an additional list instead of
adding it to the batch. After adding all jobs to the schedule or the list, we sort the list by non-
decreasing batch positions and add the jobs to the schedule in that order using CLIP.

For generating randomly modified initial solutions, we randomly pick two of the initial
solutions, apply all five mutation operators to them, use all two recombination operators to
generate four offsprings, and then apply all five mutation operators to the offspring. This leads
to 10 + 4 + (4∙10) = 54 randomized initial solutions. These actions are repeated with a gradually
increasing chance of mutation until the necessary quantity of initial solutions is reached. The
probability of mutation begins at 0.02 and rises by 0.005 per cycle. As all operators compute
feasible solutions, an additional feasibility checking is not required here.

5.1.4 Elitism and survivor selection

Since GA-J2P is basically designed to improve initial solutions, we use an elitism mechanism
that directly transfers a certain number e of best genotypes to the next population. This number
is controlled by the parameter “elitism rate” esr and defines the number of transferred best

17

genotypes as esre m= ×ê úë û . For the same reason, we follow a steady-state population
management model, i.e., we do not replace the entire population in each generation, but only a
part of it (cf., Eiben & Smith, 2015). In literature, the number of individuals replaced by its
offspring is named l and thus, the number of surviving individuals is m l- . As the number of
surviving genotypes is controlled by the “survival rate” parameter svr, svrl m m= - ×ê úë û . To
preserve the diversity of populations, not the best m l- genotypes are selected but more
advanced selection mechanisms, controlled by the “survivor selection mechanism” parameter
svs are applied. Here, we will study the fitness-based selection mechanisms “Tournament
Selection” (TOS) and “Stochastic-universal Sampling” (SUS). Note that we do not study
“Roulette wheel selection”, as it has been recognized that it does not actually provide a good
sample of the distribution when more than one sample is drawn (Eiben & Smith, 2015). In TOS,
a genotype wins a “tournament” if its fitness is greater than the fitness of the other s − 1
competing genotypes, whereat the competing genotypes are drawn randomly. To vary selection
pressure, one can adjust the tournament size s. When s is larger, genotypes with lower fitness
have a reduced chance of surviving. Note that the worst genotype never survives, and the fittest
genotype is the winner of every tournament in which it competes. The tournament selector is
commonly used in practice due to its lack of stochastic noise in comparison to fitness
proportional selectors. In contrast, SUS chooses individuals based on a given probability (related
to the fitness) to minimize the chance of fluctuations. It can be seen as a form of a roulette wheel
game with evenly spaced points that we spin. SUS uses a single random value to select
individuals at equally spaced intervals. This fitness-based selection method grants a better chance
of the selection of weaker individuals, thus reducing the “unfairness” associated with other
fitness-based selection methods. Because both survivor selection mechanism are intended to
preserve diversity, we use a tournament size of two (s=2) in all experiments. The parameters esr,
svr, and svs will be tuned in section 7.2.

5.1.5 Parent selection and recombination

To randomly select the parents that are used for offspring generation, we also study the two
selection mechanisms TOS (with s=2) and SUS from section 5.1.4. The parameter “parent
selection mechanism” pas is used to differentiate between them.

For the recombination of two genotypes, we adapted two standard operators from
literature: one-point crossover and two-point crossover. The first operator, “J2P adapted one-
point crossover” (J2PaOPX), begins with randomly selecting a crossover point from {2, …
m∙bpm-1} (e.g., 6 in Fig. 3 a)). This point partitions both the chromosomes A and B into head
and tail (see Fig. 3 a)). The J2P specific adaptation takes place with the exchanging of the tails.
Here, the batch-positions are transferred by CLIP in non-decreasing order of batch-positions and
job indices (see the small numbers in Fig. 3 a)) to the two offspring A* and B*, respectively.
Note that all following examples assume m=1, bc=2 (jobs), and bpm=11. Furthermore, actualized
batch-positions are marked bold and that gray shaded fields signal batch-position updates by
CLIP.

18

The second recombination operator “J2P adapted two-point crossover” (J2Pa2PX)
follows the same procedure but uses two randomly selected crossover points from
{2, , }m bpm×K (e.g., 3 and 9 in Fig. 3 b)) and first transfers the middle parts and then CLIP
inserts head and tail in non-decreasing order of batch-positions and job indices (see Fig. 3 b)).

Both recombination operators have individual recombination probabilities (J2P
aOPXP and

J2P
a2PXP) that must be tuned, whereby a value of 0 indicates that the operator is not in use (as also

for the following mutation operators).

5.1.6 Mutation

Mutation operators have two distinct (conflicting) roles in the evolution process of a GA:
Exploitation, i.e., intensification of the search in promising regions of the solution space by
making small changes, and exploration, i.e., maintaining population diversity to prevent a
premature convergence to a local optimum. In this context we developed five operators for
mutating the offspring resulting from recombination: “J2P random resetting” (J2Prr), “J2P batch
swap” (J2Pbsw), “J2P job swap” (J2Pjsw), “J2P batch insert” (J2Pbin), and “J2P job insert”
(J2Pjin). The latter four mutation operators are design to achieve similar mutations as the
mutation operators presented in Castillo & Gazmuri (2015).

Random resetting is a standard mutation operator for integer chromosomes that mutates
each gene independently (with a given probability J2P

rrP) and a new allele value (batch-position)
is drawn from {1, , }m bpm×K . The new batch positions are added by CLIP in non-decreasing
order of batch-positions and job indices.

Fig. 4 shows an example where the jobs 2, 5, 6, 10, and 11 have been selected, new
randomly chosen batch-positions have been drawn, and added to the new chromosome A* using

Fig. 3: Recombination operators for GA-J2P

Fig. 4: J2P random resetting with CLIP

19

CLIP. The number of mutated genes in a population can be approximated by 2J P
rrn Pm× × (where

n represents the number of genes in the chromosome). Therefore, J2Prr combined with a high
mutation probability J2P

rrP can be used to maintain population diversity as many jobs to batch-
positions assignments may be affected and batches may be “opened” or “closed”.

The mutation operator J2Pbsw swaps two complete batches with arbitrary families. This
is done by randomly selecting two genes with probability J2P

bswP and swapping batch-positions for
all jobs assigned to one of the batch-positions (see Fig. 5 a)). Since both batches (batch-positions
3 and 6, respectively) were feasible in terms of job family and batch capacity, the swapping must
be feasible.

In contrast, infeasibilities may occur when J2Pjsw tries to swap two jobs between batches
(by interchanging the batch-positions). Therefore, we first randomly select a single gene with
probability J2P

jswP (indicated by 1 in Fig. 5 b)), then determine all genes with jobs of the same
family (e.g., 1, 3, and 11 in Fig. 5 b)) and that are not in the selected batch-position (since
otherwise the probability of swapping jobs from batches with many jobs is lower compared to
other batches). Then we randomly select one of these genes (indicated by 2 in Fig. 5 b)). If
swapping is feasible in terms of batch capacity, the batch-positions are interchanged, otherwise,
the chromosome remains unchanged. In general, J2Pbsw has a greater impact on a chromosome
(because multiple jobs change their batch-position) than J2Pjsw, which only changes the batch-
position of two jobs. In both cases, the number of batches remains the same.

The mutation operator J2Pbin inserts a complete batch at a different batch-position. First,
a single gene j is randomly selected with probability J2P

binP and the assigned batch-position bpA is
determined (e.g., j=9 with pbA=6; cf., Fig. 6 a)). Then, the new batch-position bpB is drawn from
{1, , }m bpm×K . If bpB is empty (i.e., no job is assigned to it), all jobs at bpA are inserted into
bpB by updating the corresponding genes (see for example chromosome A*1 with bpB=4). If
bpB is not empty (e.g., bpB=2), all jobs at bpA are also inserted into bpB, and the batch-positions
of jobs formerly assigned to bpB are inserted into bpB+1. If bpB+1 is not empty, its jobs are
moved to bpB+2 and so on (see chromosome A*2 in Fig. 6 a); additionally actualized batch-
positions are marked in italic). If bpB x m bpm+ = × holds, the “search” for empty batch-positions
starts with batch-position one and ends at the latest when bpA is reached (which must now be
empty). This operator can have a high impact on a chromosome if many batch-positions are
occupied because many jobs may change their batch-position.

Fig. 5: J2P batch swap and J2P job swap

20

The fifth mutation operator J2Pjin extracts a single job from one batch and inserts it into
another batch that can already contain jobs (of the same family) or is empty. Again, we first
randomly select a single gene j with probability J2P

jinP , and the associated job family jfA and the
assigned batch-position bpA is derived from that gene (e.g., j=9 with jfA=X and bpA=6; cf. , Fig.
6 b)). Then, all batch-positions associated with jfA and different from bpA are determined and
combined with all empty batch-positions (e.g., 2 and 9 combined with 4, 10, and 11). From this
set of batch-positions, the new batch-position bpB is randomly selected. If bpB is empty (e.g.,
bpB=4), the batch-position of j is updated (cf., chromosome A*1 in Fig. 6 b)). If bpB is not empty,
a capacity feasibility check is required. If the check is positive, job j is inserted into bpB (see
chromosome A*2 in Fig. 6 b)); otherwise, the chromosome remains unchanged. The impact of
this operator on a chromosome is relatively low, as only a single job changes its batch-position.
However, it can ”open” a new batch or “close” a batch (if j was the only job in batch bpA and is
inserted into a batch already containing jobs).

5.2 GA-J2BRK

The schedule representation of GA-J2BRK requires two chromosomes and was also used by
Huynh & Chien (2018) for a problem very similar to the PSBIJF. However, we propose several
adaptations and enhancements.

5.2.1 Genotype representation and decoding

The first chromosome (INT) of the J2BRK genotype consists of n integer genes with one gene
for each of the n jobs (gene indices are therefore simultaneously job indices j) and the alleles
define the job-to-batch assignment by batch indices. In contrast to Huynh & Chien (2018), we
do not group jobs by job families to avoid positional biases. The second chromosome (RK)
consists of n real-valued genes (one for each possible batch) and the allele represent random keys
from [0, 1] indicating the batch-to-machine assignment and the sequence of batches on a
machine. Fig. 7 shows the two chromosomes in part a).

Fig. 6: J2P batch insert and J2P job insert

21

The batch-to-machine assignment is decoded by dividing [0,1] into m equal ranges (e.g.,
for m=3: [0,1)m , [1 , 2)m m , and [2 ,1]m) and batches with random keys in the first range are
assigned to machine one, batches with random keys in the second range are assigned to machine
two, and so on. The sequencing of batches on the machines is done by sorting the batches by
their random keys. To avoid that small random key changes leading to machine assignment
changes also completely changes the position of the changed batch and all other batches on the
“new” machine, we change the batch sorting according to the machine index: On machines with
an odd index, batches are sequencing in non-decreasing order of their random keys, whereas on
machines with an even index, batches are sequencing in non-increasing order of their random
keys. The decoding of the example is shown in Fig. 7 b).

A general advantage of this representation compared to the representation of GA-J2P is
the smaller chromosome as it consists of only 2n genes compared to 2n genes in the chromosome
of GA-J2P. However, due to the “gene-reducing” parameter bpm, this advantage becomes
smaller, and the handling of a single chromosome might be more efficient compared to the
handling of two.

5.2.2 Initial population composition

To generate the initial population for GA-J2BRK, we use the same three approaches as before:
ipc = ran, icr, or iri. For generating completely random initial solutions, we first randomly draw
n integers from {1, }nK for chromosome INT and n random keys from [0, 1] for chromosome
RK. As this will likely result in infeasible solutions regarding job families and batch capacities,
we need a repair mechanism. For repairing, we check if the insertion of a job into a batch is
feasible and if not, the corresponding allele in RK is incremented by one as long as insertion
becomes feasible. Since this may lead to a “chain” of allele updates, the resulting genotype is
very different from the initial one. However, as we just want to compute random initial solutions
here, it does not matter.

The procedure for generating randomized initial solutions remains the same as before.
We apply mutation and recombination operators iteratively, gradually increasing the mutation
probabilities.

5.2.3 Elitism and survivor selection

For elitism and survivor selection, we use the same mechanisms as for GA-J2P with the control

57441163272INT

Sequenced batches per machine (with jobs)

3 (4)6 (5)9 ()i=1

2 (1, 3)4 (8, 9)11 ()i=2

7 (2, 10)10 ()1 (6, 7)5 (11)i=3

a)

b)

.61.83.12.34.91.17.67.53.23.43.74RK

1110987654321b =

YYXXZXZf =

XYXXZZYZXYXf =
1110987654321j =

Fig. 7: Integer (INT) and random key (RK) chromosomes and decoding

22

parameters esr, svr, and svs to be tuned for GA-J2BRK.

5.2.4 Parent selection and recombination

To select the parents that are used for offspring generation, we also study the two selection
mechanisms TOS (with s=2) and SUS, controlled by the parameter pas.

For recombing to genotypes A and B, Huynh & Chien (2018) used a job family related
approach. They selected all genes of a randomly selected job family in genotype A (B),
transferred these genes to offspring A* (B*), and transferred the genes of all other job families
from B (A) to A* (B*). For the random key chromosome, they used a one-point crossover. In
contrast to this job family related approach, we propose using adapted standard recombination
mechanisms: “J2BRK adapted one-point crossover” (J2BRKaOPX) and “J2BRK adapted two-
point crossover” (J2BRKa2PX).

J2BRKaOPX starts with the random selection of the crossover point from {1, , }nK to
partition both chromosomes of genotypes A and B into head and tails (e.g., 6 in Fig. 8). First, the
heads of the INT chromosomes and the complete RK chromosomes are transferred to the
offsprings A* and B*. Next, the tail of both chromosomes of B (A) are transferred to A* (B*) in
non-decreasing order of assigned batches (already existing random keys are overwritten). If a
batch index to be transferred is already in use, the next unused batch index is used, and the
random key is set accordingly. Note that this procedure does not affect job-to-batch and batch-
to-machine assignments but only the batch sequence on a machine might change. Thus,
J2BRKaOPX is able to preserve promising parts of both parent genotypes. In Fig. 8, allele values
resulting from tail transfers are marked bold and gray shaded fields indicate values affected by
the batch renumbering.

The J2BRKa2PX recombination operator follows the same procedure except using two
randomly selected crossover points from {1, , }nK , first transfers the middle parts, and then
completes the offspring genotypes accordingly.

5.2.5 Mutation

For mutation we propose using three standard operators, “J2BRK random resetting” (J2BRKrr),
“J2BRK uniform” (J2BRKuni), and “J2BRK Gaussian” (J2BRKgau).

J2BRKrr is an adaptation of the standard random resetting mutation operator for integer
chromosomes. It mutates each gene with given probability J2BRK

rrP by drawing new allele values
for the INT chromosome from {1, , }nK . If one of the drawn batch indices is already in use,
renumbering takes place. The random keys of chromosome RK remain unchanged.

Fig. 8: The J2BRKaOPX recombination operator

23

In contrast, J2BRKuni (also used by Huynh & Chien, 2018) and J2BRKgau keep job-to-
batch assignments unchanged but random keys change. They mutate each gene with probability

J2BRK
uniP and J2BRK

gauP , respectively. As the names suggest, they differ in the distribution new allele
values are drawn from: J2BRKuni draws from a uniform distribution restricted by [0, 1], whereas
J2BRKgau draws from a Gaussian (normal) distribution with the mean equal to the old random
key and a standard deviation of 0.25 m . The adjustment by m is made to make the probability
that this mutation operator leads to a machine swap of a batch independent of the number of
machines m. Obviously, the drawn values must be clamped to [0, 1]. The INT chromosome
remains unchanged when J2BRKuni and J2BRKgau are applied.

In addition to these standard mutation operators, we developed four problem specific
mutation operators like those for GA-J2P: “J2BRK batch swap” (J2BRKbsw), “J2BRK job
swap” (J2BRKjsw), “J2BRK batch insert” (J2BRKbin), and “J2BRK job insert” (J2BRKjin).

J2BRKbsw swaps two complete batches of arbitrary job families by randomly selecting
two genes (with probability J2BRK

bswP) and swapping the batch indices for all jobs assigned to one
of these indices. Since both batches were feasible in terms of job family and batch capacity, the
swapping must be feasible. RK remains unchanged.

As for J2Pjsw (cf., Fig. 5 b)), J2BRKjsw first randomly selects a single gene from
chromosome INT with probability J2BRK

jswP , then determines all genes from INT with jobs of the
same family and that are not in the same batch, and finally randomly selects one of these genes.
If swapping the two jobs between the assigned batches is feasible in terms of batch capacity, the
batch indices are swapped, otherwise, the chromosome remains unchanged. Random keys are
always left unchanged. A similar mutation operator is also used by Huynh & Chien (2018).

The mutation operator J2BRKbin inserts a complete batch at a new position. To this, a
gene from INT is selected with probability J2BRK

binP and the assigned batch bA is determined.
Then, the new batch bB is drawn from {1, , }nK . If bB equals bA, no insertion is done. If batch
bB is empty, all jobs are inserted into bB by updating the corresponding genes of chromosome
INT. If bB is not empty, batch bA is inserted before bB by setting the random key of bA to the
random key of bB decremented by a very small number. This operator can be very influential as
a new batch may be created and batch positions on a machine may change.

J2BRKjin extracts a single job from one batch and inserts it into another batch that can
already contain jobs (of the same family) or is empty. We first randomly select a gene (job) j
from INT (with probability J2BRK

jinP) and determine its job family jfA. Then, all batches also
containing jobs of family jfA are combined with all empty batches. From this set of batches, the
new batch bB is randomly selected. If bB is empty, the batch index of j is updated to bB. If bB is
not empty, a capacity feasibility check is required. and if it is positive, job j is inserted into bB.
Otherwise, the chromosome INT remains unchanged (RK remains unchanged in any case). The
effect of this operator on INT is relatively small because only a single job-to-batch assignment
is changed. However, it can "open" a new batch or "close" a batch if j was the only job in batch
bA and is inserted into a batch that already contains jobs.

5.3 Task parallel implementation

As the task parallel implementation of the learning augmented heuristics proposed in Uzunoglu
et al. (2023b) resulted in a remarkably speedup, we follow this approach not only in the

24

implementation of the heuristics computing initial solutions but also for our GAs. Similar to the
multi-start of the heuristics, we start several evolution engines in parallel threads. This means,
that several identically parametrized GA are executed and the best result of all of them is
returned. As the results of Uzunoglu et al. (2023b) showed that the greatest efficiency gains are
achieved with four parallel threads, we also use four threads in our experiments.

6 Experimental setup

To perform training, validation (hyper-parameter tuning), GA parameter tuning, and testing, we
need to prepare the required data and ML models. Note that all used data sets are either already
available for download or are added to a new data set on Mendeley Data (reference to be added).
In addition, this section describes the performance metric used to assess the quality of the
solution and some implementation details.

6.1 Problem instances and data sets

For training good-performing ML models with a good generalization and prediction accuracy, it
is vital to have a sufficiently large set of problem instances. Furthermore, to validate models’
applicability to real-world problems, the instances should also be realistic, diverse (i.e.,
representing different scenarios), and present a challenging learning task. The data set provided
by Gahm (2022) fulfills these requirements. It contains three sets of instances that differ in the
number of jobs n and machines m. As we are interested realistic-large problem instances, we use
the sets L (containing 57,600 large instances with nÎ{100, 200, 400} and mÎ{1, 3, 4, 5, 10})
and XL (containing 13,440 large instances with nÎ{800, 1,600, 3,200} and mÎ{5, 10, 20}) to
define the problem space P for this paper (71,040P =). All generated instances base on nine
attributes (like n or m) and for each attribute combination, five instances are randomly generated
(thus, each instance has a marker sÎ{1, 2, …, 5}). Based on the marker, we can define different
data set for training, validation (hyper-parameter tuning), GA parameter tuning, and testing. To
represent these subsets, we use the notation

sD (e.g., 1,2D consists of all instances with the
markers 1 and 2).

6.2 Model training for the learning augmented heuristics

Since all 17 algorithms from algorithm space A use ML models to predict parameters in one way
or another, we must train these models. Because hyper-parameter tuning and validation was
already done in the referenced publications, we can use the instance subset 1,2,3,4D for training the
models. For future use, we provide all 17 models (and scaling data) for download (reference to
be added).

6.3 Performance metric

Comparing the performance of algorithms relative to the best solution could be misleading if
objective values tend to get close (or equal to) zero (like for the weighted tardiness criterion of
the PSBIJF). In these cases, small absolute deviations to zero result in huge relative deviations,
which may distort the analysis even with a large number of experiments. To get a robust metric
for our analysis, we use the key figure “mean relative improvement versus the worst objective
function value” (MRIW; cf., Valente & Schaller, 2012 and Gahm et al., 2022). The relative
improvement to the worst objective value for a problem instance ,a iRIW bases on the following

definitions: let A A¢ Í be the (sub)set of all algorithms to be analyzed, let ,a iov be the objective

25

value computed by algorithm a A¢Î for problem instance i P¢Î (with P P¢ Í), and let
,maxworst

i a ia A
ov ov

¢Î
= be the worst achieved objective value by one of the algorithms (note that

worst
iov is not an intermediate solution or the worst candidate objective value observed during the

execution of an algorithm but the worst final solution of one of the considered algorithms). With
these definitions, we define , ,()worst worst

a i i a i iRIW ov ov ov= - if 0worst
iov > and otherwise,

, 0a iRIW = . Aggregating these values using the mean over all instances of interest (P¢) for an
algorithm a gives us the

aM RIW . Here, it is fundamentally important that
aM RIW -values can

only be compared to each other if the same (sub)set of algorithms A¢ (and instances) is used for
their computation.

6.4 Implementation

The training, hyper-parameter tuning, validation, and testing of all ML models is implemented
in Python and uses “Keras” (keras.io), “TensorFlow” and “TensorFlow Ranking
(tensorflow.org), “scikit-learn” (Pedregosa et al., 2011), and XGBoost (xgboost.ai). All
heuristics, the GAs, and a tool for the management of the experiments are implemented in Java
10. For the GA implementations, we use the Jenetics framework (jenetics.io) and for task-parallel
execution of the learning-augmented heuristics and the GAs, we use the “Parallel Java 2 PJ2”
API (available at http://jimihford.github.io/pj2/).

The machine learning and all experiments have been executed on workstations with an
Intel® XEON® CPU E5-2690 with 3.0 GHz and 64 GB RAM.

7 Parameter tuning

Parameter tuning is a very important step for algorithms to achieve their best performance. This
is particularly true for ML models where this process is called hyper-parameter tuning. The
hyper-parameter tuning comes along with the validation of ASP models, i.e., the selection of the
best performing ML model type, labeling strategy, and loss function combination. This is
followed by the parameter tuning for GA-J2P and GA-J2BRK.

7.1 ASP model hyper-parameter tuning

The hyper-parameter tuning of the ASP models uses the dataset 1,2D for training and
3D for

validation (i.e., to determine the most suitable one). For the 15 NN-based ASP models, we use
NNs with three hidden layers and evaluated the following hyper-parameters: 256, 512, and 1,024
neurons for all three layers independently, the dropout rates 0.1, 0.2, and 0.3, and the L2 weight
regularization rates 0.001, 0.002, and 0.003. In total, 243 (33 ∙3∙3) hyper-parameter combinations
have to be evaluated to determine the best configuration for each NN-based ASP model. For the
14 GBDT-based ASP models, we evaluated the following hyper-parameters: number of
estimators 250, 350, and 450, learning rates 0.01 and 0.001, maximum depth 8, 9, and 10,
minimal child weights 1 and 2, subsampling rates 0.5 and 0.7, column sampling rates 0.5 and
0.7. In total, 144 (3∙2∙3∙2∙2∙2) hyper-parameter combinations must be evaluated.

Because the ASP models use different loss functions, we cannot use them for the
validation of the most suitable ASP model. Therefore, we introduce the metric “hit rate”,
quantifying the ratio of how often the model’s proposed (best) algorithm was in fact one of the
best algorithms for a problem instance. Table 3 depicts the best hit scores for every ML model,
labeling strategy, and loss function after tuning the hyper-parameters (see Appendix A-2 Table

http://jimihford.github.io/pj2/

26

13 and Table 14 for best hyper-parameters for each ML model, labeling strategy, and loss
function combination).

Table 3: Hit rates by ML models, labeling strategies, and loss functions

ML model type Labeling
strategy

Loss
function

Hit rate
[%]

MRIW
[%]

BIN BCE 70.16 40.33

OV MSE 57.09 36.38

OV-N MSE 64.92 39.61

MSE 66.31 39.89

iwMSE(1) 68.94 40.31

iwMSE(2) 68.98 40.39

iwMSE(3) 61.77 38.98

ApproxNDCG 68.28 39.45

LambdaRankNDCG 67.46 39.27

RANK

LambdaRankNDCG(1) 67.91 39.34

MSE 65.13 39.71

iwMSE(1) 65.70 39.72

iwMSE(2) 68.00 40.04

iwMSE(3) 64.23 38.46

NN

RANK-SC

ApproxNDCG 64.75 39.34

27

BIN BCE 73.44 41.14

BIN LambdaBinary 69.93 40.59

OV MSE 67.37 39.84

OV-N MSE 71.90 41.22

MSE 72.99 41.12

iwMSE(1) 73.11 41.10

iwMSE(2) 73.07 41.07

iwMSE(3) 72.99 41.08

RankPairwise 71.13 40.77

RANK

LambdaMARTNDCG 70.26 40.57

MSE 72.99 41.12

iwMSE(1) 73.08 41.13

iwMSE(2) 73.18 41.15

GBDT

RANK-SC

iwMSE(3) 73.24 41.14

The results in Table 3 show that GBDT as basic ML model type generally outperforms
NN, which is not surprising since GBDT is known to outperform other models on tabular data
(in contrast to image data or text documents; Shwartz-Ziv & Armon, 2022). For both model
types, representing the ranking problem as a binary classification achieves the highest hit scores.
It is also evident, that using (pure) objective value labeling strategies (see OV rows in Table 3)
perform worse than all other labeling strategies for NN and GBDT, respectively. Consequently,
we conclude to ask ML models for a ranking of algorithms is better than to ask for objective
values for each of the algorithm in A. For the NN, the two best-performing settings use the
labeling strategies BIN with training strategy BCE and RANK combined with the custom loss
function iwMSE(a). Interestingly, the custom loss function outperforms MSE and the scaling

28

factor a seems to play an important role as the hit rate decreases from 68.98% to 61.77% when
a changes from 2 to 3. This indicates that tuning the a -value is important. For GBDT, the two
best-performing settings are BINARY labels with BCE and RANK-SC labels with the custom
loss function iwMSE(a). In contrast to the NN, the GBDT seems to be less sensitive to changes
in the a -value. However, tuning the a -value is still important. Overall, the GBDT model type
achieves more consistent hit rates throughout the different methods. The results also show us
that the scaled RANK version RANK-SC performs better for GBDT, while this is not the case
for NN. Somewhat surprisingly, the “simple” binary encoding BIN combined with BCE for both
GBDT and NN outperforms more sophisticated alternatives (such as LambdaRankNDCG or
ApproxNDCG) with respect to the ASP at hand. The only loss function that achieves a similar
performance is the newly introduced iwMSE(α) function. An advantage of iwMSE(α) is its less
complex implementation compared to the more sophisticated ones. However, further studies
have to examine if iwMSE(α) is generally suitable for ranking predictions.

The best determined hyper-parameters for the four best ASP models show that both
model types prefer higher capacity models in almost every experiment. To achieve a maximum
prediction performance, we performed a second hyper-parameter tuning on the best four ASP
models with extended capacities but omitted certain hyper-parameters for the GBDT since they
did not lead to accurate models (e.g., 250 and 350 as number of estimators or 8 as maximum
depth) For GBDT models we define the hyper-parameter space as: 450 or 550 for number of
estimators, 9 or 10 for maximal depth, 0.001 or 0.01 for the learning rate, 1 or 2 for minimum
child weight, and 0.5 or 0.7 for subsampling rates for data points and columns. For the NN, we
increase the number of neurons in the hidden layers (all three hidden layers with 256, 512, 1,024,
or 2,048 neurons, dropout rate of 0.1 or 0.2, and regularization rates of 0.001, 0.002, or 0.003).
To further improve prediction accuracy, in the second hyper-parameter tuning, training is
performed the data set 1,2,3D and validation on

4D .

Table 4 Results of second hyper-parameter tuning

ML model type
Labeling
strategy

Loss
function

Hit rate
[%]

MRIW
[%]

NN BIN BCE 64.75 40.95

NN RANK iwMSE(2) 61.87 40.54

GBDT BIN BCE 67.67 41.56

GBDT RANK-SC iwMSE(3) 66.57 41.43

Table 4 shows that overall, the hit rate in the second hyper-parameter tuning slightly
decreases due to the new validation data set

4D . Nevertheless, the results confirm that GBDT-
RANK-SC-iwMSE(3) is competitive and that GBDT-BIN-BCE outperforms the other ASP
models (see Appendix A-3 Table 15 and Table 16 for best-performing hyper-parameters). In
consequence, GBDT-BIN-BCE is used to select the learning-augmented heuristics for initial
solution computation in all following experiments.

7.2 GA-J2P parameter tuning

29

Because of the large number of parameters and values for GA-2JP, we perform a two-step tuning
to keep experiments at a manageable level. For the parameter tuning of GA-J2P (and also GA-
J2BRK), we use a reduced set

P TD of 30 instances, i.e., five randomly selected instances for
each nÎ{100, 200, 400, 800, 1,600, 3,200} from

4D .

In parameter tuning step one, we are interested in the general behavior of GA-J2P for
example regarding the initial population composition or the effect of the elitism mechanism. The
parameters and their investigated values as listed in Table 5 are used to setup 51,840 experiments
in the first study GA-J2P-PT1 (1,728 parameter configurations∙30 problem instances from

P TD). For termination, we use setting TS1 (see Section 5). Because the MRIW of GA-J2P
without initial (ipc=ran) solutions is so much worse compared to the other ones (33.8% vs.
93.7% and 93.7%), we remove these results from further considerations (and MRIW
computations) to make the differences between parameter values more traceable. To simplify
readings we introduce .

J2P
custP for representing identical probabilities for J2P

bswP , J2P
jswP , J2P

binP , and J2P
jinP .

In Table 5, bold values indicate values to be further investigated in step two and bold and
underlined values indicate values that are fixed based on the results.

Table 5: Parameters and results of study GA-J2P-PT1

Parameters and values # values MRIW [%]

bpm n vs. 1.2(n/m) 2 19.9520.88

ipc (ran vs.) icr vs. iri 3 19.9820.85

m 200 vs. 400 2 20.6020.23

esr 0 vs. 0.05 2 19.2621.57

svr 0.2 vs. 0.4 2 19.8820.94

svs TOS(2) vs. SUS 2 20.4020.43

pas TOS(2) vs. SUS 2 20.2420.59

rec.

J2P
aOPXP =0.2 J2P

aOPXP =0.0 J2P
aOPXP =0.2

J2P
a2PXP =0.0

vs. J2P
a2PXP =0.2

vs. J2P
a2PXP =0.2

3 20.6421.0819.53

mut.

J2P
rrP =0.02 J2P

rrP =0.00 J2P
rrP =0.02

J2P
custP =0.00

vs. J2P
custP =0.02

vs. J2P
custP =0.02

3 17.1522.2521.85

Total number of parameter configurations: 1,728

The results in Table 5 show that reducing the number of batch positions has a remarkable
effect on the solution quality and thus, we conclude that different parameter values are worth

30

exploring in the second parameter tuning step. As already mentioned, the standalone execution
of GA-J2P without initial solutions is so much worse that we do not investigate this approach
further. Furthermore, since the randomized initial solutions outperform initial populations with
fully randomized solutions, we fix the parameter ipc to iri. We also fix the parameters esr to 0.05
as larger values are not used in literature and therefore perceived as unfavorable, and svs to SUS
and pas to SUS as results are almost similar. Because smaller populations sizes (leading to more
generations) seem to be favorable, we will explore different settings for m in the next tuning
step. Regarding recombination, we see that J2Pa2PX outperforms J2PaOPX, and thus, we only
tune J2P

a2PXP in the second step. For mutation, we can see that the problem specific mutation
operators J2Pbsw, J2Pjsw, J2Pbin, and J2Pjin perform best when solely applied. As the survival
rate (svr) is directly related to recombination and mutation probabilities, we investigate both esr
values in step two.

In the second parameter tuning study (GA-J2P-PT2), we use 540 parameter
configurations to define 16,200 experiments (see Table 6). To ensure a feasible transfer of initial
solutions to the genotype representation, we must guarantee that the number of batches on each
machine is not smaller than in any initial solution. Therefore, we calculate the maximum value
of used batches per machine of all solution MAX

mbpm and adjust the finally available batches-
positions per machine accordingly. In addition, we use this value to define two additional
settings.

Table 6: Parameters and results of study GA-J2P-PT2

Parameters and values #values MRIW [%]

bpm

max{n/m, 𝒃𝒑𝒎𝑴𝑨𝑿
𝒎 } vs.

max{1.1n/m, MAX
mbpm } vs.

max{1.2n/m, MAX
mbpm } vs.

1.1 MAX
mbpm , 1.2 MAX

mbpm

5 8.07 7.62 7.91 7.88 7.75

m 150 vs. 200 vs. 250 3 7.92 7.89 7.72

svr 0.2 vs. 0.4 2 7.43 8.27

rec.
J2P

a2PXP = 0.2 vs. 0.3 vs. 0.4 3 9.44 7.76 6.33

mut.
J2P

custP = 0.02 vs. 0.04 vs. 0.08 vs. 0.12 vs.
0.16 vs. 0.20

6 6.91 7.68 8.42 8.30 8.08 7.69

Total number of parameter configurations: 540

Based on the results of the parameter tuning studies GA-J2P-PT1 and GA-J2P-PT2, we
fix the parameters of GA-J2P as follows: batch-positions per machine bpm = max{n/m,

MAX
mbpm }, initial population composition ipc=iri, population size m =150, elitism rate esr

=0.05, survival rate svr=0.4, survivor selection mechanism svs=SUS, parent selection

31

mechanism pas=SUS, recombination probability J2P
a2PXP =0.2, and mutation probabilities J2P

bswP =
J2P
jswP = J2P

binP = J2P
jinP =0.08 (all other operator probabilities are set to 0).

7.3 GA-J2BRK parameter tuning

We also perform a two-step parameter tuning for GA-J2BRK and instance set
P TD . The

parameters and their investigated values as listed in Table 7 are used to setup 60,480 experiments
in study GA-J2BRK-PT1. For termination, we use setting TS1 (see the beginning of section 5).
The version of GA-J2BRK without initial solutions (ipc=ran) is much worse compared to the
other ones (22.7% vs. 89.1% and 85.1%) and therefore, we remove the corresponding results
from further considerations and MRIW computations. In Table 7, bold values indicate values to
be further investigated in step two and bold and underlined values that are fixed based on the
results. To simplify readings we introduce .

J2BRK
custP for representing identical probabilities for

J2BRK
bswP , J2BRK

jswP , J2BRK
binP , and J2BRK

jinP . Similarly, ,
J2BRK

uni gauP represents identical probabilities for
J2BRK

uniP and J2BRK
gauP .

Table 7: Parameters and results of study GA-J2BRK-PT1

Parameters and values # values MRIW [%]

ipc (cr vs.) icr vs. iri 3 23.5924.15

m 200 vs. 400 2 23.8223.92

esr 0 vs. 0.05 2 23.0024.74

svr 0.2 vs. 0.4 2 23.4824.26

svs TOS(2) vs. SUS 2 23.8023.94

pas TOS(2) vs. SUS 2 23.9123.83

rec.

J2BRK
aOPXP
=0.2

J2BRK
aOPXP
=0.0

J2BRK
aOPXP
=0.2

J2BRK
a2PXP
=0.0

vs. J2BRK
a2PXP
=0.2

vs. J2BRK
a2PXP
=0.2

3 23.6124.3323.67

mut.

J2BRK
rrP

=0.02

J2BRK
rrP

=0.00

J2BRK
rrP

=0.00

.
J2BRK

custP
=0.00

.
J2BRK

custP
=0.02

.
J2BRK

custP
=0.00

,
J2BRK

uni gauP
=0.00

vs.

,
J2BRK

uni gauP
=0.00

vs.

,
J2BRK

uni gauP
=0.02

3 23.8923.9424.03

32

J2BRK
rrP

=0.02

J2BRK
rrP

=0.02

.
J2BRK

custP
=0.02

.
J2BRK

custP
=0.00vs.

,
J2BRK

uni gauP
=0.00

vs.

,
J2BRK

uni gauP
=0.02

2 23.7923.88

J2BRK
rrP

=0.00

J2BRK
rrP

=0.02

.
J2BRK

custP
=0.02

.
J2BRK

custP
=0.02vs.

,
J2BRK

uni gauP
=0.02

vs.

,
J2BRK

uni gauP
=0.02

2 23.9223.64

Total number of parameter configurations: 2,016

The results in Table 7 support the previous observation that randomized initial solutions
are preferable compared to completely randomly generated solutions for initial population
composition. In contrast to GA-J2P, GA-J2BRK performs better with larger populations and m
will be tuned in the second step. For the parameters esr, svr, svs, and pas, the results are very
similar to those from GA-J2P and thus, we proceed as before. The recombination by
J2BRKa2PX leads to better results compared to J2BRKaOPX, accordingly, we tune the
corresponding probability J2BRK

a2PXP in the second step. The results for the mutation operator are
not as clear as for GA-J2P because the MRIWs are close together. However as the setting with

J2BRK
rrP = 0.00, .

J2BRK
custP =0.02, and ,

J2BRK
uni gauP =0.0 (23.94%) and the setting with J2BRK

rrP =0.00,

.
J2BRK

custP =0.00, and ,
J2BRK

uni gauP =0.02 (24.03%) perform best, we are going to tune .
J2BRK

custP and ,
J2BRK

uni gauP
independently of each other in tuning step two. The investigated parameter values are
summarized in Table 8.

Table 8: Parameters and results of study GA-J2BRK-PT2

Parameters and values # values MRIW [%]

m 300 vs. 350 vs. 400 vs. 450 4 1.291.311.281.26

svr 0.2 vs. 0.4 2 1.261.31

rec.
J2BRK

aOPXP = 0.2 vs. 0.3 vs 0.4 3 1.361.301.20

33

J2BRK
custP = 0.02 vs. 0.04 vs. 0.08 vs. 0.12 vs. 0.16

(with J2BRK
rrP =0.00 and ,

J2BRK
uni gauP =0.00)

1.271.301.231.271.24

mut.
,

J2BRK
uni gauP = 0.02 vs. 0.04 vs. 0.08 vs. 0.12 vs. 0.16

(with J2BRK
rrP =0.00 and J2BRK

custP =0.00)

10

1.371.311.291.311.26

Total number of parameter configurations: 240

The results in Table 8 clearly indicate most suitable parameters. The better performance
of ,

J2BRK
uni gauP = 0.02 compared to all other mutation settings can be traced back to be the most

efficient one and leads to the highest number of generations in the given time limit.

Based on the overall results of the parameter tuning studies GA-J2BRK-PT1 and GA-
J2BRK-PT2, we fix the parameters of GA-J2BRK as follows: initial population composition
ipc=iri, population size m =350, elitism rate esr=0.05, survival rate svr=0.4, survivor selection

mechanism svs=SUS, parent selection mechanism pas=TOS, recombination probability J2BRK
a2PXP

=0.2, and mutation probability ,
J2BRK

uni gauP =0.08 (all other operator probabilities are set to 0).

8 Experimental results

For the final testing of our developed algorithms, we reserved instance set
5D (20% of the

instances, which was not used in either of the previous training or tuning phases) for assessing
the solution quality on unseen problem instances. We use the MRIW metric to compare the
following six solution methods:

- BATCS-d-MLPP(PC6, GS3) has the highest MRIW score among the 17 solution
methods forming the base for the ASP (see section 2.2). We use this solution method as
a baseline to compare the effectiveness of our newly developed solution methods.

- AlgSel(GBDT, BIN, BCE) has the highest hit rate according to our analysis in section
7.1. We trained the model on 1,2,3,4D to predict the best performing LACH for each
problem instance from section 2.2 and used that algorithm to solve it.

- BATCS-d-ML(PC6, GS3)-LS(TS2) is the most efficient heuristic from the literature for
solving the PSBIJF (Uzunoglu et al., 2023b). In contrast to Uzunoglu et al. (2023b), we
use the same time-oriented termination setting as for our GAs (TS2) to make a fair
comparison (combined with the two parameters 81.0 10WTe -= ´ and 81.0 10FTe -= ´ to
avoid needles computation times; see Uzunoglu et al., 2023b for more details).

- GA-J2BRK with the parameters ipc=iri, m =350, esr=0.05, svr=0.4, svs=SUS,

pas=TOS, J2BRK
a2PXP =0.2, and ,

J2BRK
uni gauP =0.08 (cf., section 7.3).

- GA-J2BRK-HC is our GA-J2BRK implementation with parameters making our GA
most similar to GA1 of Huynh & Chien (2018) (without implementing the makespan

34

related improvement heuristics). Parameters are as follows: ipc=iri, m =150, esr=0.3,

svr=0.4, svs=TOS, pas=TOS, J2BRK
a2PXP =0.9, and J2BRK

jswP = J2BRK
uniP =0.1.

- GA-J2P with the parameters batch-positions per machine bpm = max{n/m, MAX
mbpm },

ipc=iri, m =150, esr=0.05, svr=0.4, svs=SUS, pas=SUS, J2P
a2PXP =0.2, and J2P

bswP = J2P
jswP =

J2P
binP = J2P

jinP =0.08 (cf., section 7.2).

Both GAs used the AlgSel(GBDT, BIN, BCE) to create their initial population and terminated
their computations after reaching the time limits as defined in TS2 (see the beginning of section
5). So, our algorithm set 𝐴′ consists of six solution methods for the computation of the MRIW.
Table 9 presents the MRIWs of all six methods grouped according to the number of jobs (n) and
number of machines (m). Certain (n, m) groups do not exist in the used data set and hence are
left blank in the table.

Our ML-based algorithm selection method outperforms the “statically” chosen best
solution method in every group (n, m). Averaged over all instances, it achieves an MRIW of
6.42% compared to the static best solution method’s MRIW of 2.23%. The performance
improvement is higher for instances with fewer jobs and decreases for very large instances, but
nonetheless exists. This justifies the efforts of training a model to rank solution methods if
several are available for the problem at hand. Both GAs create their initial population using the
AlgSel(GBDT-BIN-BCE) and hence achieve, as expected, substantially higher performances in
each group (n, m) than the algorithm selection method without post-optimization.

Table 9: MRIWs [%] per solution method, number of jobs, and machines.

n= 100 200 400 800 1,600 3,200 MEAN

BATCS-d-MLPP (PC6, GS3)

m=1 2.02 0.85 1.76 1.54

m=3 2.55 2.29 1.78 2.21

m=4 2.60 2.47 1.80 2.29

m=5 2.19 2.24 2.05 1.63 2.05

m=10 2.33 2.32 2.61 2.45 1.95 2.37

m=20 3.13 4.25 3.48 3.56

MEAN 2.34 2.03 2.00 2.40 3.10 3.48 2.23

AlgSel(GBDT, BIN, BCE)

m=1 6.71 6.60 6.92 6.74

35

m=3 4.62 5.55 4.93 5.03

m=4 5.99 6.53 5.72 6.08

m=5 5.92 5.96 5.25 4.51 5.47

m=10 9.48 9.22 8.01 5.68 5.63 7.95

m=20 9.79 5.25 3.65 7.25

MEAN 6.54 6.77 6.17 6.66 5.44 3.65 6.42

BATCS-d-MLPP (PC6, GS3)-LS(TS2)

m=1 10.8514.71 19.37 14.98

m=3 14.1616.39 18.72 16.43

m=4 15.9218.27 19.58 17.92

m=5 17.9718.37 19.79 17.92 18.55

m=10 22.9024.68 25.28 20.44 20.85 23.20

m=20 26.45 23.97 18.90 24.37

MEAN 16.3618.48 20.55 21.60 22.41 18.90 19.07

GA-J2BRK

m=1 11.3110.00 10.17 10.49

m=3 13.1912.06 9.70 11.65

m=4 15.8014.40 11.40 13.86

m=5 16.9214.11 12.72 8.66 13.40

m=10 22.2420.05 16.65 12.48 11.55 17.43

m=20 19.09 13.87 9.66 15.78

MEAN 15.8914.12 12.13 13.41 12.71 9.66 13.84

GA-J2BRK-HC

m=1 12.3310.20 10.59 11.04

m=3 14.4412.50 9.98 12.31

m=4 16.9214.59 11.18 14.23

m=5 18.3814.59 12.50 8.52 13.83

36

m=10 23.2820.84 16.46 11.84 10.13 17.53

m=20 18.79 12.01 4.72 14.19

MEAN 17.0714.54 12.14 13.05 11.07 4.72 14.07

GA-J2P

m=1 47.4249.87 47.56 48.28

m=3 41.5140.35 34.57 38.81

m=4 43.0740.60 33.43 39.03

m=5 44.8339.05 31.66 30.61 36.93

m=10 51.7245.63 36.71 28.70 24.57 39.50

m=20 32.69 23.18 16.52 26.83

MEAN 45.7143.10 36.79 30.67 23.88 16.52 39.19

Interestingly, a clear winner exists between three GAs. GA-J2P outperforms GA-J2BRK
and GA-J2BRK-CH in each group. The greatest difference in performance improvement
between the GAs can be observed for small instances (e.g., n = 100 or n = 200) but applies in
principle to all instances as the difference of mean improvements of 25.35 and 25.12 percentage
points show. Across the different machine settings (m), the three GAs performed (rather)
similarly. One exception to that is the performance of GA-J2P for m = 20. From m = 10 to m =
20, the MRIW severely drops from 39.50% to 26.83%. The overall better performance of GA-
J2P compared to the other GAs may be partly due to the higher number of generations performed
by GA-J2P within the time limit. This higher number of generations in turn results from the
“smaller” genotype GA-J2P (1.04n on average) compared to GA-J2BRK (2n) and GA-J2BRK-
CH (2n) and the resulting lower computational effort for encoding, decoding, and operator
execution.

Also interesting is that BATCS-d-MLPP (PC6, GS3)-LS(TS2) is able to outperform GA-
J2P for large instances with 3,200 jobs and 20 machines. In these instances, we can see that the
GA has not yet converged, and the evolution is still going on. This observation is confirmed by
the fact that the minimum objective value found by GA-J2P is computed after 92.97% of the
time limit (on average for instances with 3,200 jobs; see Table 10) and exemplarily illustrated
by the courses of objective values illustrated in Fig. 9 for two instances. The courses also show
that the evolution mechanisms of GA-J2P (with the tuned parameters) are capable to avoid
premature convergence.

37

On the left side of Fig. 9, we can exemplarily see that BATCS-d-MLPP (PC6, GS3)-
LS(TS2) is able to solve some large instances with a higher solution quality in less computation
time (976 seconds vs. 1,442 seconds) compared to GA-J2P. However, as can be seen by
comparing the MRIWS of Table 9 and the values in Table 10, BATCS-d-MLPP (PC6, GS3)-
LS(TS2) often gets stuck in a local optimum and is unable to explore the complete solution space.

Table 10: Mean relative percentage of the time limit in which minimum objective values
are computed

n= 100 200 400 800 1,600 3,200

BATCS-d-MLPP(PC6, GS3)-LS(TS2) 0.15 3.92 23.09 35.02 66.61 77.80

GA-J2P 59.52 79.67 87.06 88.92 95.02 92.97

In consequence, the overall performance of GA-J2P is much better (see Table 9). From
these results it can also be concluded that a combination of the two solution methods to a
Memetic Algorithm is worth investigating in the future.

Error! Not a valid bookmark self-reference. shows the MRIW grouped for each
instance characteristic (see Gahm et al., 2022 or Uzunoglu et al., 2023b for detailed description
of instance characteristics).

Table 11: Results of GA-J2P by instance characteristics

Instance characteristic
MRIWs [%]

n 100, 200, 400, 800, 1600, 3200 45.7143.1036.7930.6723.8816.52

m 1, 3, 4, 5, 10, 20 48.2838.8139.0336.9339.5026.83

Fig. 9: Exemplary courses of objective values for two instances with 3,200 jobs

38

q 3, 5, 10, 20, 40 37.0539.5441.5542.7424.75

jtfam ND, UD 39.0839.29

crs 1, 2, 3, 4 49.3640.4033.9733.02

st AR, AE, SE 38.4540.2738.84

eta 0.25, 0.75 39.7038.67

tf 0.3, 0.6 40.6637.72

rdd 0.5, 2.5 41.6236.75

The job to family assignment mode (jtfam), setup time allocation (st), setup time severity(eta),
tightness factor (tf), and due date range factor (rdd) seem to have minor effects on the
performance of GA-J2P. The capacity requirement scenarios (crs) define the ranges of a job’s
capacity demand and have a noticeable effect on the MRIW. Also, the MRIW for the number of
job families (q) drops immensely for q = 40. The reason for this is that this number of job families
only exists for n = 3200 and the lower performance of GA-J2P for these instances has already
been discussed. Due to its coupling to the job size, it is unclear how much of this effect should
be attributed to the characteristic itself. An explanation for the trend of decreasing improvement
with increasing job size might be the coupling between job size and the “complexity” of the
problem: large instances need more time for their mutation and repair mechanisms, and therefore,
GAs can search for solution improvements for these instances less intensely. However, this
situation needs a deeper understanding of its causes and must be analyzed more nuancedly in
future research.

9 Conclusions and further research directions

In this paper, we presented two learning-based contributions to both ends of using a heuristic to
solve a complex scheduling problem. First, we addressed an issue appearing before using a
heuristic – selecting the most suitable method. The ASP is an active topic in research and has
come a long way since its initial formulation in 1976 by Rice. Recent contributions incorporate
ML models, for example, by predicting the performance of an algorithm on a given instance. In
our approach, we used learning-to-rank methods from different ML research fields like
information retrieval and recommender systems that best suit the needs of the algorithm selection
task. Our computational results show that asking “the right questions” does matter: Asking for
the (probably) best algorithm (or a ranking of algorithms) instead of asking for a performance
prediction results in a better hit rate. Besides this finding, we can confirm that GBDTs perform
better on the tabular data of our ASP than NNs, and we can report that the importance weighted
MSE with weighting parameter α (iwMSE(α)) is competitive and worth to be studied in more
detail in the future. Overall, the application of the ASP model GBDT-BIN-BCE to dynamically
select an algorithm for solving an instance has outperformed the static selection of the best
algorithm (BATCS-d-MLPP(𝑃𝐶6, GS3)) (MRIW of 6.42% vs. 2.23%).

The second major contribution of this paper addressed what happens after solving the problem
instance with a selected construction heuristic – improving the initial solution(s). To that, we
presented the two GAs GA-J2P and GA-J2BRK with different representations (encodings). The
random keys approach (GA-J2BRK) represents feasible solutions with every representation and,

39

therefore, does not need any costly repair mechanism during its computation like the GA-J2P
approach. However, a great advantage of GA-J2P is that we can easily include knowledge about
reasonable solutions. For example, we know the number of used batches (i.e., batch positions
per machine) from the initial solutions and use it to limit the number of available batches. In
consequence, the computational effort for processing a single generation is much lower and thus,
more generations can be computed and the overall solution quality increases (compared to GA-
J2BRK). As the experimental results have shown, the GA-J2P approach achieves remarkably
higher improvements when compared to the other GAs. Comparing GA-J2P with the most
efficient heuristic from literature BATCS-d-ML(PC6, GS3)-LS(TS2), we see that the latter one
is only competitive for very large instances with 1,600 and 3,200 jobs. In conclusion, we
demonstrated in this paper how to integrate different (machine) learning related components in
a scheduling method to get better solutions faster. We strongly believe that having a more holistic
view on the solution method(s) will lead to very fruitful results for practical application.

Furthermore, we advocate shifting the goal of ASP from a mere, isolated selection of the best
algorithm to decisions involving the allocation of computational resources, interleaving of
algorithms, or use of information gathered online during the solving. Kotthoff, 2016 presented
an interesting survey on algorithm selection and referred to the topic in a broader sense with the
term algorithm portfolio. The algorithm portfolio technique outputs several (probably) good
algorithms for a problem instance to achieve more robust results. Their online variants may even
change the currently used algorithm if the solution quality misses the expectation to mitigate
wrong decisions made at the beginning. One next challenge for our solution method(s) would be
to include every part of our solution concept into the ASP. This could help us to use the potentials
of the GA(s) even for the largest instances. Fundamental questions implied by that would be:
how much time should we invest in finding the initial population compared to the GA? Or which
GA-variant to choose, and which parameter configuration to select, could be included in the
ASP. Taking that idea even further, information from a pre-solving phase of several GA variants
could be used to further improve the solution quality. These ideas and questions will definitely
need sophisticated ML models tailored to give the right answers. Researchers must, however,
carefully consider how to incorporate the feedback from these ML models into their decision-
making.

References

Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No Free
Lunch Theorem: A Review. In I. C. Demetriou & P. M. Pardalos (Eds.), Springer
Optimization and Its Applications. Approximation and Optimization (, 57–82), Cham:
Springer International Publishing.

Balasubramanian, H., Mönch, L., Fowler, J. W., & Pfund, M. E. (2004). Genetic algorithm
based scheduling of parallel batch machines with incompatible job families to minimize
total weighted tardiness. International Journal of Production Research, 42(8), 1621–1638.
doi:10.1080/00207540310001636994.

Burges, C., Ragno, R., & Le, Q. (2006). Learning to Rank with Nonsmooth Cost Functions. In
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing
Systems, MIT Press.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G.
(2005). Learning to rank using gradient descent. In S. Dzeroski (Ed.), Proceedings of the

40

22nd international conference on Machine learning - ICML '05, 89–96, New York, New
York, USA: ACM Press.

Burges, C. J. C. (2010). From ranknet to lambdarank to lambdamart: An overview. Learning,
11(23-581), 81.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: from pairwise
approach to listwise approach. In Z. Ghahramani (Ed.), ICML 2007. Proceedings of the
twenty-fourth International Conference on Machine Learning, 129–136, New York: ACM.

Castillo, F., & Gazmuri, P. (2015). Genetic algorithms for batch sizing and production
scheduling. The International Journal of Advanced Manufacturing Technology, 77(1-4),
261–280. doi:10.1007/s00170-014-6456-5.

Chapelle, O., Le, Q., & Smola, A. (2007). Large margin optimization of ranking measures. In
NIPS workshop: Machine learning for Web search.

Dauzère-Pérès, S., & Mönch, L. (2013). Scheduling jobs on a single batch processing machine
with incompatible job families and weighted number of tardy jobs objective. Computers &
Operations Research, 40(5), 1224–1233. doi:10.1016/j.cor.2012.12.012.

Donmez, P., Svore, K. M., & Burges, C. J. (2009). On the local optimality of LambdaRank. In
J. Allan, J. Aslam, M. Sanderson, C. Zhai, & J. Zobel (Eds.), Proceedings of the 32nd
international ACM SIGIR conference on Research and development in information
retrieval, 460–467, New York, NY, USA: ACM.

Droste, S., Jansen, T., & Wegener, I. (2002). Optimization with randomized search
heuristics—the (A)NFL theorem, realistic scenarios, and difficult functions. Theoretical
Computer Science, 287(1), 131–144. doi:10.1016/S0304-3975(02)00094-4.

Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing (Second Edition).
Natural computing series. Berlin, Heidelberg, New York, Dordrecht, London: Springer.

Feurer, M., & Hutter, F. (2019). Hyperparameter Optimization. In F. Hutter, L. Kotthoff, & J.
Vanschoren (Eds.), The Springer Series on Challenges in Machine Learning. Automated
Machine Learning (, 3–33), Cham: Springer International Publishing.

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research, 4(Nov), 933–969.

Gahm, C. (2022). Extended instance sets for the parallel serial-batch scheduling problem with
incompatible job families, sequence-dependent setup times, and arbitrary sizes (V1).
Mendeley Data. doi:10.17632/rxc695hj2k.1.

Gahm, C., Wahl, S., & Tuma, A. (2022). Scheduling parallel serial-batch processing machines
with incompatible job families, sequence-dependent setup times and arbitrary sizes.
International Journal of Production Research, 60(17), 5131–5154.
doi:10.1080/00207543.2021.1951446.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Adaptive computation and
machine learning. Cambridge, Massachusetts, London, England: The MIT Press.

41

Helo, P., Phuong, D., & Hao, Y. (2019). Cloud manufacturing – Scheduling as a service for
sheet metal manufacturing. Computers & Operations Research, 110, 208–219.
doi:10.1016/j.cor.2018.06.002.

Ho, Y. C., & Pepyne, D. L. (2002). Simple Explanation of the No-Free-Lunch Theorem and Its
Implications. Journal of Optimization Theory and Applications, 115(3), 549–570.
doi:10.1023/A:1021251113462.

Huang, J., Wang, L., & Jiang, Z. (2020). A method combining rules with genetic algorithm for
minimizing makespan on a batch processing machine with preventive maintenance.
International Journal of Production Research, 58(13), 4086–4102.
doi:10.1080/00207543.2019.1641643.

Huynh, N.-T., & Chien, C.-F. (2018). A hybrid multi-subpopulation genetic algorithm for
textile batch dyeing scheduling and an empirical study. Computers & Industrial
Engineering, 125, 615–627. doi:10.1016/j.cie.2018.01.005.

Järvelin, K., & Kekäläinen, J. (2000). IR evaluation methods for retrieving highly relevant
documents. In N. J. Belkin, P. Ingwersen, & M.-K. Leong (Eds.): Vol. v. 34. SIGIR forum,
SIGIR 2000. Proceedings of the 23rd annual international ACM SIGIR conference on
research and development in information retrieval held in Athens, Greece, July 24-28,
2000. Athens Greece, 41–48, New York: ACM Press.

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems, 20(4), 422–446. doi:10.1145/582415.582418.

Jia, W., Jiang, Z., & Li, Y. (2013). Closed loop control-based real-time dispatching heuristic on
parallel batch machines with incompatible job families and dynamic arrivals. International
Journal of Production Research, 51(15), 4570–4584. doi:10.1080/00207543.2013.774505.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm
selection and scheduling. In : CP’11, Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming, 454–469, Berlin, Heidelberg:
Springer-Verlag.

Kim, Y. J., Jang, J. W., Kim, D. S., & Kim, B. S. (2021). Batch loading and scheduling
problem with processing time deterioration and rate-modifying activities. International
Journal of Production Research, 1–21. doi:10.1080/00207543.2020.1866783.

Koh, S.-G., Koo, P.-H., Ha, J.-W., & Lee, W.-S. (2004). Scheduling parallel batch processing
machines with arbitrary job sizes and incompatible job families. International Journal of
Production Research, 42(19), 4091–4107. doi:10.1080/00207540410001704041.

Koh, S.-G., Koo, P.-H., Kim, D.-C., & Hur, W.-S. (2005). Scheduling a single batch
processing machine with arbitrary job sizes and incompatible job families. International
Journal of Production Economics, 98(1), 81–96. doi:10.1016/j.ijpe.2004.10.001.

Kotthoff, L. (2016). Algorithm Selection for Combinatorial Search Problems: A Survey. In C.
Bessiere, L. de Raedt, L. Kotthoff, S. Nijssen, B. O'Sullivan, & D. Pedreschi (Eds.), LNCS
sublibrary. SL 7, Artificial intelligence: Vol. 10101. Data Mining and Constraint
Programming. Foundations of a Cross-Disciplinary Approach (2016th ed., 149–190),
Cham: Springer International Publishing; Imprint; Springer.

42

Malve, S., & Uzsoy, R. (2007). A genetic algorithm for minimizing maximum lateness on
parallel identical batch processing machines with dynamic job arrivals and incompatible job
families. Computers & Operations Research, 34(10), 3016–3028.
doi:10.1016/j.cor.2005.11.011.

Michalewicz, Z. (1996). Genetic algorithms + data structures: = evolution programs ; with 36
tables (3., rev. and extended ed.). Berlin, Heidelberg: Springer.

Mönch, L., Balasubramanian, H., Fowler, J. W., & Pfund, M. E. (2005). Heuristic scheduling
of jobs on parallel batch machines with incompatible job families and unequal ready times.
Computers & Operations Research, 32(11), 2731–2750. doi:10.1016/j.cor.2004.04.001.

Mönch, L., Schabacker, R., Pabst, D., & Fowler, J. W. (2007). Genetic algorithm-based
subproblem solution procedures for a modified shifting bottleneck heuristic for complex job
shops. European Journal of Operational Research, 177(3), 2100–2118.
doi:10.1016/j.ejor.2005.12.020.

Murphy, K. P. (2013). Machine learning: A probabilistic perspective (4th ed.). Adaptive
computation and machine learning series. Cambridge, Mass.: MIT Press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., … (2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems (Fifth Edition). Cham:
Springer International Publishing.

Qin, T., Liu, T.-Y., & Li, H. (2010). A general approximation framework for direct
optimization of information retrieval measures. Information Retrieval, 13(4), 375–397.
doi:10.1007/s10791-009-9124-x.

Rice, J. R. (1976). The Algorithm Selection Problem. In Advances in Computers. Advances in
Computers Volume 15 (, 65–118), Elsevier.

Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need.
Information Fusion, 81, 84–90. doi:10.1016/j.inffus.2021.11.011.

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys, 41(1), 1–25. doi:10.1145/1456650.1456656.

Soares, C., Brazdil, P. B., & Kuba, P. (2004). A Meta-Learning Method to Select the Kernel
Width in Support Vector Regression. Machine Learning, 54(3), 195–209.
doi:10.1023/B:MACH.0000015879.28004.9b.

Streeter, M. J., Golovin, D., & Smith, S. F. (2007). Combining Multiple Heuristics Online. In
AAAI Conference on Artificial Intelligence.

Taylor, M., Guiver, J., Robertson, S., & Minka, T. (2008). SoftRank. In M. Najork, A. Broder,
& S. Chakrabarti (Eds.), Proceedings of the international conference on Web search and
web data mining - WSDM '08,p. 77–77, New York, New York, USA: ACM Press.

43

Uzunoglu, A., Gahm, C., & Tuma, A. (2023a). A machine learning enhanced multi-start
heuristic to efficiently solve a serial-batch scheduling problem. Annals of Operations
Research. doi:10.1007/s10479-023-05541-w.

Uzunoglu, A., Gahm, C., Wahl, S., & Tuma, A. (2023b). Learning-augmented heuristics for
scheduling parallel serial-batch processing machines. Computers & Operations Research,
151, 106122. doi:10.1016/j.cor.2022.106122.

Valente, J. M., & Schaller, J. E. (2012). Dispatching heuristics for the single machine weighted
quadratic tardiness scheduling problem. Computers & Operations Research, 39(9), 2223–
2231. doi:10.1016/j.cor.2011.11.005.

Wahl, S., Gahm, C., & Tuma, A. (2023). Knowledge base for batch-processing machine
scheduling research, Mendeley Data (V3). doi:10.17632/7cv58py5hk.3.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82. doi:10.1109/4235.585893.

Wu, K., Huang, E., Wang, M., & Zheng, M. (2022). Job scheduling of diffusion furnaces in
semiconductor fabrication facilities. European Journal of Operational Research, 301(1),
141–152. doi:10.1016/j.ejor.2021.09.044.

Xu, J., Liu, T.-Y., Lu, M., Li, H., & Ma, W.-Y. (2008). Directly optimizing evaluation
measures in learning to rank. In T.-S. Chua, M.-K. Leong, S. H. Myaeng, D. W. Oard, & F.
Sebastiani (Eds.), Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, 107–114, New York, NY, USA: ACM.

Appendix

A-1. Preliminary study of “d-MLRP” variants

Table 12: Performance of “d-MLRP” variants by pipeline configuration and ranking
application strategy

Ranking application strategy

Pipeline configuration
B1 B1-G Bx B(3)-G B(5)-G B(9)-G Mean

[1,9,0]-CF 34,42 76,41 76,75 76,86 76,86 76,90 69,70

[1,9,0]-AF 34,68 76,24 76,44 76,42 76,44 76,54 69,46

[0,5,5]-CF 51,82 77,38 77,55 77,59 77,64 77,46 73,24

[0,5,5]-AF 54,80 77,43 77,55 77,53 77,55 77,56 73,74

[1,4,5]-CF 56,80 77,55 77,62 77,53 77,63 77,55 74,12

[1,4,5]-AF 53,23 77,39 77,73 77,56 77,58 77,66 73,52

44

[0,2,8]-CF 52,56 77,02 77,46 77,38 77,44 77,53 73,23

[0,2,8]-AF 55,07 77,43 77,52 77,49 77,47 77,51 73,75

[1,2,7]-CF 56,05 77,15 77,33 77,30 77,38 77,34 73,76

[1,2,7]-AF 57,99 77,40 77,74 77,72 77,69 77,73 74,38

[0,1,9]-CF 46,56 76,95 76,90 77,14 77,11 76,99 71,94

[0,1 9]-AF 51,68 77,07 77,12 77,08 77,03 77,13 72,85

[1,0,9]-CF 49,32 77,06 77,00 77,06 77,02 76,99 72,41

[1,0,9]-AF 52,50 77,24 77,43 77,34 77,52 77,42 73,24

[0,0,10]-CF 47,44 76,74 75,97 76,74 76,72 76,52 71,69

[0,0,10]-AF 47,81 77,07 76,84 77,26 77,29 77,32 72,26

52.87 67.94 68.75 68.55 68.71 68.76

45

A-2. Best-performing hyper-parameters for tuning phase 1

Table 13 Best-performing hyper-parameter for NN tuning phase 1

Labeling strategy Loss function Layer 1 Layer 2 Layer 3 Dropout rate Reg. rate
BIN BCE 1024 1024 1024 0.1 0.010
OV MSE 256 1024 256 0.3 0.001

OV-N MSE 1024 1024 512 0.1 0.010
MSE 1024 1024 512 0.1 0.001

iwMSE(1) 1024 1024 512 0.1 0.001

iwMSE(3) 1024 512 512 0.1 0.002

iwMSE(3) 1024 1024 256 0.1 0.002

ApproxNDCG 1024 1024 256 0.1 0.002

LambdaRankNDCG 512 1024 1024 0.1 0.002

RANK

LambdaRankNDCG(1) 1024 256 256 0.1 0.002

MSE 1024 1024 1024 0.1 0.001

iwMSE(1) 1024 1024 1024 0.1 0.002

iwMSE(2) 512 512 1024 0.1 0.010

iwMSE(3) 1024 512 512 0.1 0.001

RANK-SC

ApproxNDCG 1024 256 512 0.1 0.002

Table 14 Best-performing hyper-parameter for GBDT tuning phase 1

Labeling
strategy Loss function

Number
of

estimators

Learning
rate

Maximum
depth

Min.
child

weight

Subsampling
rate

Column
sample

BIN BCE 450 0.01 9 1 0.7 0.5
BIN LambdaBinary 350 0.10 8 2 0.7 0.5

46

OV MSE 450 0.01 10 2 0.7 0.7
OV-N MSE 450 0.01 10 1 0.7 0.7

MSE 350 0.01 10 1 0.7 0.7

iwMSE(1) 450 0.01 10 2 0.7 0.7

iwMSE(2) 450 0.01 10 2 0.7 0.7

iwMSE(3) 350 0.01 10 2 0.7 0.7

RankPairwise 450 0.10 9 2 0.7 0.5

RANK

LambdaMARTNDCG 250 0.10 9 1 0.7 0.5
MSE 350 0.01 10 1 0.7 0.7

iwMSE(1) 450 0.01 10 1 0.7 0.5

iwMSE(2) 450 0.01 9 2 0.7 0.5
RANK-

SC

iwMSE(3) 450 0.01 10 1 0.7 0.5

A-3. Best-performing hyper-parameters for tuning phase 2

Table 15 Best performing hyper-parameters for NN phase 2

Labeling strategy Loss function Layer 1 Layer 2 Layer 3 Dropout rate Reg. rate
BIN BCE 2048 256 2048 0.1 0.001

RANK iwMSE(2) 2048 2048 2048 0.1 0.002

Table 16 Best-performing hyperparameters for GBDT phase 2

Labeling
strategy

Loss
function

Number of
estimators

Learning
rate

Maximum
depth

Min.
child

weight

Subsampling
rate

Column
sample

BIN BCE 550 0.01 10 2 0.7 0.5
RANK iwMSE(2) 550 0.01 10 2 0.7 0.5

Highlights

47

- A serial-batch scheduling problem is the application case of our analysis.

- “Learning-to-rank” ML models select the best-performing heuristic.

- Two Genetic Algorithms are introduced with different encoding schemes.

- Both Genetic Algorithms can use solutions from the heuristics as initial populations.

- Our method substantially improves the solution quality.

