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Abstract: 

Whenever combinatorial optimization problems cannot be solved by exact solution methods in 
reasonable time, tailor-made algorithms (heuristics, meta-heuristics) are developed. Often, these 
heuristics exploit structural properties and perform well on selected subsets of the problem space. 
For example, this is how the two best-known construction heuristics solve the scheduling 
problem investigated in this study (i.e., the scheduling of parallel serial-batch processing 
machines with incompatible job families, restricted batch capacities, arbitrary batch capacity 
demands, and sequence-dependent setup times). However, when the properties change, the 
performance of one algorithm might decrease, and another algorithm might have been the better 
choice. To resolve this issue, we propose using Machine Learning to exploit the strengths of 
different algorithms and to select the probably best-performing algorithm for each problem 
instance individually. To that, we investigate a variety of methods from the “learning-to-rank” 
literature and propose several adaptations. Furthermore, because there is no algorithm for the 
considered scheduling problem that is capable to explore the entire solution space, we developed 
two Genetic Algorithms for the improvement of initial solutions computed by the selected 
algorithms. Here, we put special emphasis on ensuring that the solution representation 
(encoding) reflects the entire solution space and that the operators (e.g., for recombination and 
mutation) are appropriate to explore and exploit this space completely. Our computational 
experiments show an average increase of 39.19% in solution quality.

Keywords: serial batching, total weighted tardiness, algorithm selection, genetic algorithm, 
machine learning
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1 Introduction

Whenever combinatorial optimization problems of industrial scale have to be solved, exact 
solution methods (algorithms in the narrower sense) need prohibitively long computation times 
due to the “combinatorial explosion” of the solution space (i.e., the set of all feasible solutions). 
Therefore, experts design heuristics or meta-heuristics (algorithms in a broader sense) 
incorporating knowledge about the specific problem to leverage prior information about 
structures or properties of good solutions. These algorithms return good results for the subset of 
problem instances they were designed for but fail to find good results for other subsets of the 
problem space comprising “all” problem instances of a specific problem. This is why, for most 
combinatorial problems, a variety of algorithms can be found in the literature. This situation also 
holds for the application case studied in this paper, a serial-batch scheduling problem often found 
in the metal processing industry (cf., e.g., Helo et al., 2019). It involves the decisions to group 
metal pieces into batches and to schedule the resulting batches, and can be summarized as the 
scheduling of parallel serial-batch processing machines with incompatible job families, restricted 
batch capacities, arbitrary batch capacity demands, and sequence-dependent setup times 
(abbreviated PSBIJF and classified as “P | if, crJ, sFS, sb | wT, F, Lex”-problem according to 
Wahl et al., 2023). To solve the PSBIJF, several (learning-augmented) construction heuristics 
(LACH) can be found in literature (most recent ones in Uzunoglu et al., 2023a and Uzunoglu et 
al., 2023b), for which none of them clearly dominates the other.

The dominance of algorithms on a narrow subset of problem instances is more than a 
mere empirical observation but rather an underlying property of combinatorial optimization 
problems and their algorithms. In some sense, researchers refer to this phenomenon as the “No 
Free Lunch theorem in optimization and search” (NFL; see Wolpert & Macready, 1997). Like 
other “negative” theoretical results, such as Gödel’s incompleteness theorem in mathematics or 
Arrow’s impossibility theorem in social choice theory, NFL shows the theoretical boundaries of 
optimization, namely that no general algorithm can dominate other algorithms on the whole 
problem space or even all combinatorial optimization problems. Since NFL is not the focus of 
our paper, we refer the reader to Droste et al. (2002) for a more practical reframing of NFL, Ho 
& Pepyne (2002) for a version of finite and discrete input and output spaces, and Adam et al. 
(2019) for a review. Apart from the theoretical discussion, the NFL points towards an essential 
question for optimization problems: which algorithm to use when there is no clear winner?

Long before the formalization of NFL, Rice (1976) presented a framework that deals 
with the fact that algorithms dominate (in terms of performance) for certain problem subsets and 
get dominated by other algorithms for other problem subsets. In the presence of a variety of 
algorithms for a problem, the so-called “algorithm selection problem” (ASP) aims to find a 
selector that, depending on a given problem instance, chooses an algorithm performing best 
according to a performance metric. In its basic form, the ASP comprises a problem space P 
containing problem instances i PÎ , an algorithm space A (finite or infinite), and a performance 
measure indicating the quality of an algorithm to solve a problem instance (e.g., objective value 
or computation time). Given that, the goal of the ASP is to find a selection function :S P A®  
mapping every problem instance to the algorithm that achieves the best value according to the 
performance measure. Rice proposes using a feature extraction step that converts a problem 
instance i PÎ  to a feature representation ( )f i FÎ , in the feature space F, which is often mR . 
The framework introduced by Rice (1976) is very versatile and applicable to a broad range of 
problems and applications. Since then, many approaches have been published in Operations 
Research and other fields like “meta-learning” (a subfield of Machine Learning) that have 
successfully applied the idea of ASP (see Soares et al., 2004 or Feurer & Hutter, 2019). Some of 
them incorporate Machine Learning (ML) models in their selection procedure that predict an 
algorithm's performance metric (e.g., objective value or computation time) on a specific problem 
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instance. Others even aim to design more sophisticated methods that create an “algorithm 
schedule” for a specific problem instance (e.g., Streeter et al., 2007 or Kadioglu et al., 2011). In 
such approaches, computational resources are not allocated to a single algorithm but are 
distributed among several algorithms according to their expected performance. Information from 
preceding algorithm runs, or even a pre-solving phase, can be used to make more intelligent 
decisions. Overall, the contributions to ASPs have evolved massively, helping to improve 
solution quality by combining algorithms and adding their strengths. However, as Smith-Miles 
(2009) argues in her review on ASP and “meta-learning”, both research areas could benefit from 
each other, but those connection have been missed in the past. Algorithm selection could use 
meta-learning methods and ML models if the following requirements are fulfilled (Smith-Miles, 
2009): 

i. A large collection of problem instances with various complexity is available. 

ii. Many diverse algorithms to solve the problem exist.

iii. Performance metrics to evaluate the algorithm’s performance are known.

iv. Suitable features to describe the properties of problem instances can be computed.

With those requirements, the ASP can be stated as a learning problem: given the feature 
vector representation of the problem instances and objective values computed by the algorithms 
as training data, learn an ML model that predicts the best-performing algorithm. In this 
representation, the ML model corresponds to the function S in Rice’s framework. In his review 
on algorithm selection applied to combinatorial optimization problems, Kotthoff (2016) 
emphasized the role of ML for performance prediction models. The ongoing progress suggests 
that “free lunches” are getting closer. With their growing prediction performance, ML models 
already play a significant role in the current literature and will gain importance in developing 
ASP solutions. They are capable of recognizing patterns between algorithms, problem instances, 
and their performance. Nevertheless, to achieve the most benefit from ML models, the question 
to be asked (i.e., what should be predicted) and the application of the model must be carefully 
designed.

In this paper, we propose using an ASP method to select the most appropriate algorithm 
for a single problem instance offline (i.e., before the solution process starts) and to use this 
algorithm to compute initial solutions to be improved by two Genetic Algorithms (GA)s. 

We make two major contributions to the literature: 

­ First, we thoroughly discuss and analyze ML models (from different research areas) and 
present several adaptations (e.g., an adapted loss function) for the ASP task at hand. In this 
context, we put special emphasis on the “question to ask” the ML model and on finding 
suitable models to answer it. As we show, “learning-to-rank” models are better suited for 
our ASP than pure performance predictions. 

­ Second, as no meta-heuristic has been developed so far for the PSBIJF, we present two 
GAs as improvement procedures. The two GAs mainly differ in their solution 
representation: the first one uses a single integer chromosome newly designed for the 
PSBIJF (but not restricted to it) and the second one, an adaptation from literature, 
combines an integer chromosome with a random key chromosome and is enhanced by new 
recombination and mutation operators.

The structure of the paper is as follows. In section 2, the PSBIJF is formally described 
and existing algorithms for solving are described. In section 3, we discuss literature related to 
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learning-to-rank models and GAs developed to solve problems similar to the PSBIF. Section 4 
presents the methods applied to solve the ASP and section 5 presents the two GAs. The basic 
experimental setup and the (hyper-)parameter tuning are described in section 6 and 7, 
respectively. The final experimental results are presented in section 8. In the closing section 9, 
we summarize the findings and give an outlook on future research topics.

2 Problem description (PSBIJF) and existing algorithms

To provide a common understanding of the investigated scheduling problem, the analyzed serial-
batch scheduling problem, called PSBIJF (Parallel Serial-Batch scheduling with Incompatible 
Job Families), is described in the next section. In the subsequent section, we describe existing 
algorithms for solving the PSBIJF. These algorithms make up the finite algorithm space A of the 
ASP under consideration.

2.1 The PSBIJF

Basic task of the PSBIJF considered in this paper is the grouping of n jobs (
{ 1, ..., }jJ J j n >= = Î¢ ) into o batches ( { 1, ..., }bB B b o >= = Î¢ ) and the scheduling 

(machine allocation and sequencing) of those batches on a set of m identical parallel machines (
{ 1, ..., }lM M l m >= = Î¢ ). The maximum batch capacity bc is identical for all machines and 

the sum of the individual (arbitrary) batch capacity requirement jcr  of each job assigned to a 

batch must be lower. Generally, jcr bc£  must hold. Furthermore, each job has individual 

weights jw , processing times jp , due dates jd , and each job belongs to a job family f  

( { 1, ..., }fF F f q >= = Î¢ ), whereby job families are “incompatible” (that means jobs of 
different families cannot be processed together in one batch, e.g., due to technical or material 
restrictions). Because setups between the processing of two batches (jobs) are required, the 
batching of jobs of the same family is done to reduce setup efforts. Hereby, the setup times are 
family- and sequence-dependent: ,f gs  defined the setup time for a setup from a family f  batch 

to a family g  batch. Note that 0, fs  depicts initial setup times for family f at the beginning of a 
schedule. Other assumptions include that each machine can process no more than one batch at a 
time, that a batch can only be processed by one machine at a time, that all jobs are available for 
processing at the start (i.e. no release dates), that batch processing cannot be interrupted (i.e. no 
preemption), that jobs cannot be added or removed once processing of a batch has started (i.e. 
batch availability), and that the completion time of a job is the completion time of the batch to 
which a job is assigned.

The primary objective is the minimization of the total weighted tardiness. Additionally, 
we aim to minimize the total flow time whenever all jobs can be delivered in time (i.e., tardiness 
is equal to zero). This objective function is writes as follows: 

max 10j jj J
TFov w T

C nÎ
= × +

× ×å % .
(1)

with tardiness of job jT  and total flow time TF. The ordering of the objectives is achieved by 
defining the (constant) denominator to be greater than the nominator (i.e., the total flow time) in 
the second part. To assure that the denominator is greater than the TF, the upper bound of the 
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maximum flow time of one job is estimated by the approximated makespan maxC%  and multiplied 
by the number of jobs. Because the makespan is approximated, we use a “safety” factor of 10.

2.2 Existing algorithms

The first time, the previously defined PSBIJF was considered in Gahm et al. (2022). The authors 
developed a mixed-integer linear program (MILP), multi-start construction heuristics based on 
existing, adapted, and new priority rules, and a local search mechanism. Multi-starts are used to 
perform a grid-search with different heuristic parameter configuration. Their results show that 
the BATCS-b heuristic (originally abbreviated ATCS-BATCS(β)) with a “controlled batch 
utilization” outperforms all other approaches. 

Based on these results Uzunoglu et al. (2023b) developed a similar multi-start heuristic 
with “controlled batch urgency” (called BATCS-d) and use the same MILP and local search for 
improving initial solutions. Furthermore, to improve solution efficiency, the authors proposed 
learning-augmented heuristics using ML methods (i.e., neural networks, NNs) to minimize the 
number of starts by predicting most suitable parameters for the heuristics. To that, not only the 
single predicted parameter configuration is used but a reduced parameter grid is computed, and 
a parameter is introduced to control the size of the reduced grid (and thus, can be used to balance 
between solution quality and computation time). Their results show that the best variants with 
ML-reduced grids (BATCS-b-ML(PC8, GS3) and BATCS-b-ML(PC6, GS3)) are very 
competitive regarding solution quality and clearly outperform BATCS-b and BATCS-d in terms 
of computation time. The results also show that the “d”-variants generally outperform the “b”-
variants but that for some problem instances, only a “b”-variant is capable to compute the best 
solution.

A similar approach to increase solution efficiency was proposed in Uzunoglu et al. 
(2023a). The authors also used ML to reduce the parameter grid searched by the multi-start 
heuristic BATCS-b but do not predict parameters. Instead, they used NNs to predict the 
performance of a certain parameter configuration and compute a ranking based on the 
predictions. After computing this ranking, which can be done efficiently due to the very low 
response time of NNs, several ranking application strategies are available to create a reduced 
parameter grid. Also, a parameter controls the size of the reduced grid. Their results show that 
their BATCS-b-MLGS variants are competitive regarding solution quality and clearly 
outperform BATCS-b in terms of computation time. Similar to the findings in Uzunoglu et al. 
(2023b), also Uzunoglu et al. (2023a) observe that not one specific BATCS-b-MLGS variant 
performs best for all problem instances but that different ones achieve best results in relation to 
some problem instance characteristics. Therefore, we conclude that selecting the most promising 
algorithm among the best available for the PSBIJF before starting the solution process has the 
potential to improve the solution quality without increasing the computation time. 

Table 1 lists the 13 most efficient algorithms from the literature. Note that we do not 
consider the algorithms presented in Uzunoglu et al. (2023b), which use improvement 
procedures, since the ASP task considered here is to select the algorithm that efficiently 
computes initial solutions.

Table 1: Algorithms from the literature

Algorithm based on parameter predictions
(see tables 21 and 22 in Uzunoglu et al., 2023b)

Algorithm based on ranking predictions 
(see table 6 in Uzunoglu et al., 2023a)
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BATCS-b-MLPP(PC4, GS3)
BATCS-b-MLRP ([0,5,5]-AF, Bx)

BATCS-b-MLPP(PC8, GS3)
BATCS-b-MLRP ([0,5,5]-AF, B(9)-G)

BATCS-b-MLPP(PC10, GS3)
BATCS-b-MLRP ([1,2,7]-AF, Bx)

BATCS-d-MLPP(PC1, GS3)
BATCS-b-MLRP ([1,2,7]-AF, B(9)-G)

BATCS-d-MLPP(PC4, GS3)
BATCS-b-MLRP ([1,0,9]-AF, Bx)

BATCS-d-MLPP(PC6, GS3)
BATCS-b-MLRP ([1,0,9]-AF, B(9)-G)

BATCS-d-MLPP(PC10, GS3)

Because Uzunoglu et al. (2023a) did not consider “d”-variants in their analysis, we 
performed a preliminary study to close this gap (see Table 12 in Appendix A-1). Based on the 
results of this study, we added the four most robust algorithms (BATCS-d-MLRP ([1,2,7]-AF, 
B(5)-G), BATCS-d-MLRP ([1,2,7]-AF, B(9)-G), BATCS-d-MLRP ([1,4,5]-CF, B(5)-G), 
BATCS-d-MLRP ([1,4,5]-CF, B(9)-G)) to the algorithm space A (with 17 : AA n= = ). Note that 
the MLRP-variants in their original version use larger grids (compared to the MLPP-variants), 
resulting in higher computation times. To align both variants, we adjust the grid sizes for the 
MLRP-variants in a way that all 17 considered algorithms perform similar grid searches. The 
following grid sizes are used (cf. Uzunoglu et al., 2023b): 228 if n < 100, 76 if nÎ[100, 1000), 
and 20 if n ³  1,000. Note that for the “d”-variants, the grid sizes are 1 less because the set of 
considered “d”-values only contains 10 elements (the set of “b” values contains 11 values).

3 Related literature

Since the literature on the PSBIJF and its solution methods has already been presented in the 
previous section (more details can be found in the referenced literature), and the basic literature 
on ASP has been presented in the introduction, we will focus on the learning-to-rank related 
literature in the next section (along with some notes and references on basic ML methods). The 
second part of the literature review is dedicated to existing GAs that have been developed to 
solve problems similar to PSBIJF.

3.1 Learning-to-rank literature

Concerning the problem at hand, we know that the four requirements i. to iv. (see section 1) for 
using meta-learning methods are met. Therefore, we conclude that an offline trained ML model 
is suitable to fulfill the ASP task. For using ML models, one should carefully consider what level 
of information is necessary for algorithm selection, i.e., what the model’s response should be. 
For example, is it necessary to predict the objective value of an algorithm, or is an ordering of 
algorithms (i.e., ranking) sufficient to select an algorithm? The latter question might be easier to 
answer when the objective values differ immensely between problem instances (like it is the case 
for given PSBIJF). Note that a ranking suffices to select an algorithm with a fixed set of 
algorithms but is not applicable in other cases. Because such a ranking better reflects its 
application for the algorithm selection, it could also be seen as the “more natural” question to be 
asked. However, we will analyze both approaches in this paper.
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For predicting objective values of algorithms, ML models and methods capable to 
perform regressions are required. As such ML models are widespread in literature, we are not 
going to discuss detail here but refer the reader to some standard literature (e.g., Murphy, 2013 
or Goodfellow et al., 2016). In contrast, ML techniques that return a ranking are less common 
and thus will be discussed in detail in the following.

As pointed out, a ranking of algorithms better reflects the application of the ML model 
output than a mere objective value prediction. ML models returning a ranking of objects are 
known as “learning-to-rank” models and are most often found in the field of recommender 
systems (e.g., recommending products to customers based on purchase history). Also, the 
terminologies “collaborative filtering” and “information retrieval” are used in the literature. For 
such problems, the ranking problem is stated as follows: given a query 

iq  (e.g., a user’s purchase 
history) and objects 

1 , . . . , nx x  (e.g., documents or products), find a machine learning model f  
that returns a ranking of 

ax  according to their relevance to the query. This assumes a numerical 
representation of the query 

iq  and the objects 
ax . In the literature, the mode of operation of 

learning-to-rank models are defined according to these three options: 

­ Pointwise ranking: every object gets a relevance score independent of other objects and is 
sorted according to the relevance score.

­ Pairwise ranking: the model predicts which one to prefer for each pair of objects (the final 
ranking results from multiple preference relations predicted by the model).

­ Listwise ranking: given a set of objects, the model outputs a permutation of the objects, 
considering the dependency in between.

Pointwise ranking computes a relevance score for each object and sorts accordingly. In this 
setting, standard loss functions, such as mean squared error (MSE) (if different levels of 
relevance exist) or binary cross entropy (if only levels “relevant” and “not relevant” exist), can 
be used directly. However, they fail to capture the interdependency between objects related to a 
query (Freund et al., 2003), which is better incorporated in the last two options – pairwise and 
listwise approaches. Regarding pairwise ranking approaches, a common drawback is that the 
learning objective minimizes the error in classifying preferences on pairs of objects rather than 
the error in ranking the objects (Cao et al., 2007). In consequence, we concluded that listwise 
ranking approaches are more suitable for solving the ASP as it accounts for the interdependencies 
between objects and loss function compare complete rankings instead of pairs of objects. 
Listwise ranking calculates the loss function on the predicted ranked list of objects and compares 
it to the ranked list given as ground truth. However, a major challenge in this approach is to find 
an appropriate loss function that can be used in common learning mechanisms (e.g., the loss 
function must be differentiable for using gradient descent). Note that we refer to the lowest index 
in the ranking as highest position (indicating the probably best algorithm in the ASP) and the 
highest index in the ranking as lowest position (indicating the probably worst algorithm in the 
ASP).

Järvelin & Kekäläinen (2000) proposed the metric normalized discounted cumulative 
gain (NDCG), taking into account that objects with high relevance in a higher position in the 
predicted ranking return a higher value (gain) for the user but objects in lower positions in the 
predicted ranking are less likely to be used. So, for example, misplacing the highest two objects 
in the ranking results in a higher loss than misplacing the lowest two objects. To define the 
NDCG metric, we first need a function :g X ® ¡  returning the gain (relevance or value) of 
objects for a query and the cumulative gain function :cg ®¥ ¡ , 

1
( ( ))p

k
p g ks

=åa  that sums 
up the gains obtained by the ranking s  up to position p. Then, the cumulative gain is discounted 
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according to the ranking position, for example, by dividing each gain in the sum by 
2lo g ( )×  of 

its rank: dcg: 
1 2

( ( ))
log ( ( ))

p

k
g kp k

s
s=åa . Also other monotonically increasing 

transformations can be used for the discounting. Lastly, the achieved discounted cumulative gain 
(DCG) is normalized by the highest DCG achievable by the optimal ranking (i.e., NDCG) to 
allow comparing predicted rankings between queries with different resulting rankings (Järvelin 
& Kekäläinen, 2002). The summation can also be truncated to a specific position k such that 
NDCG only considers the k highest ranked positions of the prediction (called NDCG(k)). As 
NDCG depends on the ranking s , which returns the position of object 

ax  and hence is non-
differentiable, the NDCG metric itself is non-differentiable and thus cannot be used in machine 
learning mechanisms relying on the loss function’s gradient. 

Burges et al. (2006) circumvent the non-differentiability of the NDCG metric in their 
algorithm “LambdaRank” by defining a smooth approximative loss function. During training, it 
is known which properties the gradient should have to achieve a better ranking outcome. To 
derive an appropriate loss function, the goal is to choose the gradient of the desired loss function 
l  that fulfils this property. In their evaluation, they analyzed different l  functions and 
compared them against RankNet using the NDCG metric. Their analysis revealed that neural 
nets trained with LambdaRank clearly outperform a competitive pairwise approach (RankNet; 
see Burges et al., 2005) regarding accuracy (NDCG) and training time. Its boosted decision tree 
equivalent was named “LambdaMART” and published in Burges (2010). 

Also, with a focus on treating the ranking problem in a listwise manner, Cao et al. (2007) 
present “ListNet”. ListNet is a neural network operating on probability distributions over 
permutations or the probability of objects being ranked on the top k positions (called top k 
probability). The computational experiments show the superiority of ListNet over other pairwise 
competitive algorithms on almost every test data set, concluding the advantage of listwise 
approaches over pairwise approaches.

Another line of research takes a more direct approach to find functions that are easier to 
optimize and behave like the previous metrics (e.g., NDCG). Some of the works try to optimize 
functions that are (upper) bounds to a ranking metric (see Chapelle et al., 2007 for a ‘structured 
output’ based approach and Xu et al., 2008 for a framework on upper bounds and applications). 
Another approach by Taylor et al. (2008) (called “SoftRank”) tries to smooth the metric by 
assuming randomness and using a Gaussian distribution as ranking score. Qin et al. (2010) 
proposed an approximation framework that reformulates the metrics needing a sorting, and 
therefore, positions as indices (i.e., indexed by positions), to metrics that derive indices from 
their objects. In addition, they approximate the position function with a logistic function based 
on the object’s ranking score and apply their approximation in an optimization technique called 
“ApproxNDCG” (and “ApproxAP” for average precision), which also needs a hyperparameter 
to be determined. They compared the accuracy of ApproxNDCG to SoftRank, ListNet, and 
others (but without including LambdaRank and LambdaMART in their analysis). They showed 
that ApproxNDCG outperforms all other methods on a variety of data sets. 

The literature on learning-to-rank presents a rich body that differs in how they treat the 
dependency between objects: pointwise approaches neglect dependencies between objects, 
pairwise approaches consider preferences between pairs of objects, and listwise approaches work 
on the complete list of objects. Listwise approaches best reflect how the prediction is applied for 
solving the ASP, but loss functions of interest are not differentiable and prevents their direct 
usage in gradient-based methods. Plenty of works attempt to overcome this issue and the more 
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recent approaches, such as LambdaRank/LambdaMART or ApproxNDCG, have shown to be 
superior in computational studies. 

In consequence, these approaches are of special interest regarding the ASP task at hand 
and their application, adaption (if necessary), and enhancements is elaborated in detail in section 
4.

3.2 Genetic algorithm related literature

The following part of the literature review analyses publications using GAs for solving batch 
scheduling problems that are closely related to the problem at hand, i.e., batch scheduling 
problems with bounded batch capacities, batch availability, and incompatible job families. Using 
the knowledge base provided by Wahl et al. (2023), we identified 13 relevant articles using GAs 
(note that we also use their notation scheme to specify batch scheduling problems in the 
following). Since our goal is to design a GA for the PSBIJF, we put special emphasis in the 
analysis on the used evolutionary mechanisms (e.g., mutation or recombination). Another 
important aspect for each GA is whether the chromosome decoding procedure (or any other 
batching procedure) follows a ”full-batch-policy” (i.e., batch are always filled with jobs until 
batch capacity does not exceed) or not. As discussed in Gahm et al. (2022) and Uzunoglu et al. 
(2023b), forced full batches may lead to suboptimal decisions for the PSBIJF (but, of course, 
might have been appropriate for the originally addressed problem). Furthermore, our GAs are 
designed to improve the quality of pre-computed solutions. To represent these pre-computed 
solutions and to not miss regions that could further improve them, we require our GA to operate 
on the entire solution space. Two aspects that are contrary to this goal (even if they have other 
benefits) are: decomposition approaches (instead of solving all subproblems jointly) and 
exclusion of certain parts of the solution space. Therefore, we report if the GA solves the 
complete problem or a decomposition approach is used, and if the solution methods cover the 
entire solution space of the problem. In Table 2, the developed GAs of the relevant literature are 
summarized according to the discussed aspects, if a full-batch-policy was used (F) or not (L), if 
the entire problem was solved by the GA (C) or a decomposition approach was used (D), the 
type of representation/chromosomes (bin := binary, int := integer; rk := random key, and obj := 
objects), and the information represented by the chromosomes. 

Since GAs using a full-batch-policy are not suitable for the PSBIJF, we concentrate on 
the other approaches in the following detailed analysis.

Table 2: Overview of related GA developments

Reference
Problem 

specification

(F
) o

r 
(L

)

(C
) o

r(
D

)

C
hr

om
os

om
e 

ty
pe

(s
)

Chromosome information
(chromosome size)

Balasubramanian 
et al. (2004)

P | pF, if, cr1, pb | 
wT’

F 
F

D
D

int
int

Job to batch assignment (n)
Batch to machine assignment (n)
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Koh et al. (2004)
P | pF, if, crJ, pb | 
C, wC, Cmax’

F

F

C

D

rk + rk

rk

Job to batch assignment + batch 
to machine assignment with batch 
sequence (2n)
Job to batch assignment (n)

Koh et al. (2005)
S | pF, if, crJ, pb | 
C, wC, Cmax’ F D rk Job to batch assignment (n)

Mönch et al. 
(2005)

P | pF, rJ, if, cr1, pb 
| wT’

L
L

D
D

int
int

Job to batch assignment (n)
Batch to machine assignment (n)

Malve & Uzsoy 
(2007)

P | rJ, if, cr1, pb | 
Lmax F C rk Job sequence (n)

Mönch et al. 
(2007)

P | rJ, net, if, cr1, 
sFS, elig, pb | wT L D int Batch to machine assignment (n)

Dauzère-Pérès & 
Mönch (2013)

S | pF, dJ, if, cr1, pb 
| wU F C rk Job sequence (n)

Jia et al. (2013)
P | pF, rJ, re, if, cr1, 
maxL, pb, bLb, on | 
wT, TP, cIh

F D int Batch to machine assignment (n)

Castillo & 
Gazmuri (2015)

HJ | if, crJ, sFMS, 
cb, sb, bF, bLb | 
Cmax

L C objects
Batch sequence, size, machine 
assignment, family (n)

Huynh & Chien 
(2018)

P | pF, dlJ, if, crJ, 
sFS, pb | Cmax L C int + rk

Job to batch assignment + batch 
to machine assignment with batch 
sequence (2n)

Huang et al. 
(2020)

S, aFlex | rJ, if, cr1, 
pb | Cmax’ F D rk + 

binary
Job sequence + preventive 
maintenance (2n)

Kim et al. (2021)
S, aFlex | pF, pDet, 
if, crJ, pb | Cmax

F
F
F

D
D
D

rk
rk

rk + rk

Job to batch assignment (n)
Batch sequence (up to n)
Job to batch assignment + 
Batch sequence (up to 2n)

Wu et al. (2022)
HJ, aFlex | pF, rO, 
dlO, re, if, cr1, elig, 
pb, bFM | TP’

L C objects
Job to batch assignment, batch to 
machine assignment, and batch 
sequence (up to n)

Mönch et al. (2005) proposed using GAs to solve the “P | pF, rJ, if, cr1, pb | wT”-problem. 
They used the same two decomposition approaches first presented in Balasubramanian et al. 
(2004) but combined the GAs with other heuristics for batching and sequencing. Their modified 
ATC dispatching rule considered multiple batch combinations, and thus, also batches with “free” 
capacity are considered (no full-batch-policy). In their GAs’ implementations, the roulette wheel 
selection mechanisms and operators (one-point crossover and a flip mutation) were the same as 
in Balasubramanian et al. (2004). However, due to their decomposition approach and the applied 
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dispatching rules for batching and sequencing, not the entire solution space is covered. We 
therefore do not consider their approach to be an appropriate solution method to the PSBIJF.

To solve a complex job shop scheduling problem, Mönch et al. (2007) proposed a 
decomposition approach, which needs to solve the batch-scheduling sub-problem “P | rJ, net, if, 
cr1, sFS, elig, pb | wT”. For solving this sub-problem, a GA allocated and sequenced already 
formed batches to and on machines. To that, the integer chromosome represents a batch’s 
machine allocation, and the sequence of genes (representing batches) in the chromosome is equal 
to the sequence of batches on the allocated machine. The GA used a one-point crossover, flip 
mutation, and overlapping populations as evolutionary mechanisms. Computations terminated 
after reaching a given number of generations. The batching procedure considered multiple batch 
combinations and thus did not aim at full batches, but due to the decomposition approach, not 
the entire solution space is covered. As this GA has the same characteristics as that of Mönch et 
al. (2005), we do not consider it appropriate either.

Castillo & Gazmuri (2015) proposed three GAs with different types of crossovers for 
solving the “HJ | if, crJ, sFMS, cb, sb, bF, bLb | Cmax”-problem. For solution representation, 
the authors used an ordered set of batches with additional information such as batch size and 
assigned machine. Three crossover mechanisms were developed: “edge recombination-based 
crossover”, “batch position-based crossover” (similar to a one-point crossover), and “guided 
mutation crossover” (a local search around the clone parent, towards the guide parent). For 
mutation, the authors proposed four mechanisms that partially use some kind of local search to 
keep all chromosomes feasible: “mutate amount of batches”, “mutate batch sizes”, “mutate 
machine assignments”, and “mutate batch sequence” (i.e., batch swapping). The experiments 
showed that the guided mutation crossover (with the integrated local search) had the fastest 
convergence of all three crossovers. The applied chromosome representation allows any batch 
size, the complete problem is solved, and the entire solution space is covered. However, solution 
representation, recombination and mutation operators are highly problem specific and thus, we 
do not directly follow their approach. Nevertheless, their developed mutation mechanisms 
influenced our mutation operator development. 

For the “P | pF, dlJ, if, crJ, sFS, pb | Cmax”-problem, Huynh & Chien (2018) proposed a 
multi-subpopulation GA combined with heuristics. Because our second GA uses the same 
solution representation and similar operators, we are not going into detail here but in section 5.2. 
The multi-subpopulation GA used three parallel subpopulations that evolved independently and 
were coordinated at certain points to prevent any single subpopulation from converging too 
quickly or slowly. To coordinate the three subpopulations, new subpopulations containing new 
chromosomes were created after a certain number of generations by interchanging a given 
number of best solutions. The results showed that the multi-subpopulation GA outperformed the 
conventional GAs by about 5% in terms of solution quality, while the CPU time was about the 
same. Unfortunately, the authors did not report results without the integration of the two local 
search heuristics. Therefore, it is not possible to isolate their multi-subpopulation-strategy’s  
contribution to the result. However, since the representation by two chromosomes allows 
arbitrary batch sizes and the complete problem is solved, the entire solution space for the problem 
at hand is covered and makes their approach interesting for solving the PSBIJF. As already 
mentioned, this GA directly inspired the development of our second GA, but we did not integrate 
their local search heuristics as those are dedicated to problem specific characteristics (e.g., the 
makespan objective) and therefore not appropriate for the PSBIJF. Furthermore, we made several 
adaptations regarding recombination and mutation operators.

To solve the “HJ, aFlex | pF, rO, dlO, re, if, cr1, elig, pb, bFM | TP”-problem, Wu et al. 
(2022) developed a GA where each chromosome represented a sequence of “batch objects” 
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defining the machine (assigned tool), the job family (recipe), the set of assigned operations, and 
the start time of the batch. The authors developed several problem-specific properties to reduce 
the solution space for the GA. These properties were also used by the procedure to randomly 
generate the initial population. Based on a fitness-proportional parent selection, the offspring 
were generated through representation-specific crossover and mutation operations. The authors 
explicitly stated that they did not follow a full-batch-policy because smaller batches may lead to 
better schedules. The proposed GA covers the entire solution space of the problem considered 
here. However, due to the large difference regarding the basic problem settings compared to the 
PSBIJF and the GA’s high problem specificity, particularly because of the used properties, we 
do not consider its application to be expedient. 

Summarizing this analysis of GAs, we come to the conclusion that the GA developed by 
Huynh & Chien (2018) provides the most suitable aspects for developing GAs for the PSBIJF 
which we integrated in our second GA. Both GAs are elaborated in detail in section 5.

4 Algorithm selection by learning-to-rank

As the more recent literature in algorithm selection suggests, ML models can be powerful tools 
to select good algorithms for a problem instance to solve. Empirical hardness models or models 
to predict the performance of an algorithm solving a problem instance are popular choices. 
However, predicting the actual performance value is unnecessary but a mere ordering of 
algorithms is sufficient for algorithm selection. Furthermore, evaluating the performance of an 
ML model for algorithm selection based on the error (e.g., the MSE) between the actual and 
predicted algorithm performance does not coincide with its later use. Loosely speaking, 
predicting an algorithm's (continuous) objective values is more challenging than predicting the 
algorithm performance on an ordinal scale (e.g., ”good” or ”mediocre” performance) or a listing 
according to the performance (which implies the latter two cases). This becomes particularly 
important when objective values can vary by several orders of magnitude from problem instance 
to problem instance, as is the case for the PSBIJF with the total weighted tardiness objective. In 
consequence, learning-to-rank methods seem the better choice. Nevertheless, one should be 
aware that many learning-to-rank algorithms were developed with use cases very different from 
algorithm selection. They stem from applications like recommender systems or search engines 
with vast sets of objects explained by numerical feature vectors and deal with problems like bias 
in human-generated data. Therefore, thoroughly analyzing the applicability of different learning-
to-rank methods is essential to find the most suitable technique for our ASP.

To perform the ASP task by learning-to-rank ML models, three components must be 
determined, considering their interdependencies: the basic ML model type, the labeling strategy, 
and the loss function used during training, validation, and testing. These components and 
combinations are discussed in the following paragraphs,

Because NNs are commonly used by recent ranking methods (and regression tasks in 
general) and gradient-boosting decision trees (GBDT) have shown their superior performance as 
learning-to-rank methods, we use them as basic ML model types in our ASP methods. 

In the context of ranking ML tasks like the ASP, the way of labeling the training data 
plays an important role. Therefore, we investigate five new or adapted “labeling strategies” in 
our analysis: In the first strategy called “BIN”, all algorithms from A that have computed the best 
solution for a problem instance are indicated by 1 and otherwise by 0. That means, each sample 
has 

An  binary labels indicating the best algorithm. In strategy “OV”, 
An  real-value labels depict 

the objective values computed by each algorithm (
ao v ) and in “OV-N”, the objective values 
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have been normalized on the interval [0,1] with max

max min

a
a

ov ovov
ov ov

-
=

-
 (regarding a single problem 

instance). Furthermore, we use the labeling strategy “RANK”, which has 
An  labels with integer 

from the interval {1, , }AnK . Here 
An  marks the best algorithm and 1 the worst. If two algorithms 

achieved the best objective values, both are labeled with 17 and the next is labeled with 15. We 
also use a version of RANK with scaled labels from {1 , 2 , , 1}A An n K  called RANK-SC, to 
analyze the impact of scaling on the training strategies. Here, 1 marks the best algorithm and 
1 An  the worst.

In addition to the labelling strategy, the loss function used during training, validation, 
and testing is essential. Therefore, we investigate different loss functions that are coupled to the 
labeling strategy and model type (i.e., not all loss functions are applicable to all labeling 
strategies or model types). For the labeling strategy BIN, the loss function binary cross entropy 
(BCE) and for the labeling strategies OV, OV-N, and RANK-SC the MSE is used as 
recommended in the literature. A newly developed loss function first proposed in this paper is 
the “importance weighted MSE” (iwMSE(α)). The idea of this loss function is to emphasize 
better (higher) ranked algorithms, so in a sense, the ML model also must understand which 
algorithms should be ranked higher. It is basically the MSE with a weight depending on the 

“true” ranking of algorithm a: ˆ( , )iwMSE y y =     
2

1
ˆ1 1An

A a a ai
n y y ya

=
- +å  (with 

ay  
representing the label and ˆ ay  the predicted ranking score). We use the parameter 0a >Î ¡  to 
control the effect of the weighting. Of course, this biases a model to predict higher ranking scores 
ˆ ay  since missing higher-ranked algorithms is punished stronger than missing lower-ranked 

algorithms. Therefore, the control parameter should not be exaggerated and be tuned with 
caution. Theoretically, an “optimal” model would not mind this effect, but approximation and 
estimation errors (and the fact that gradient descent could converge in a local optimum) hinder 
us from finding such models in practice. In our experiments, we analyze the impacts for aÎ{1, 
2, 3}. The following “loss functions” also affect the learning process (algorithm) and are 
therefore not applicable to both ML model types (see section 3.1 for further details): 
ApproxNDCG is a loss function particularly developed for NNs (Qin et al., 2010), 
LambdaRankNDCG is the learning method published in Burges et al. (2006) for the NDCG loss, 
and LambdaRankNDCG(1) is its truncated version to rank 1 only. For GBDTs and the labeling 
strategy BIN, the LambdaBinary trains according to the mean average precision (Donmez et al., 
2009). RankPairwise uses an GBDT-adaptation of the pairwise loss function RankNet developed 
by Burges et al. (2005) and LambdaMART is the GBDT-equivalent to LambdaRankNDCG 
presented in Burges (2010). 

All appropriate ML model types, labeling strategy, and loss function combinations 
forming “ASP-models” are summarized in Table 3 in section 7.1. Note that all the presented ML 
model types, labeling strategy, and loss function combinations can be considered as listwise 
ranking approaches as we have a finite and fixed object space (algorithm space).

For the training, validation, and testing of the ASP-models, we use a large instance set 
from the literature (see section 6.1) and solve each of the 71,040 instances with the 17 available 
algorithms. This leads to a set of 1,207,680 data points when each problem instance and 
algorithm combination is processed individually.

To convert a problem instance i PÎ  into a feature representation, we use the AF-vector 
(aggregated feature-vector) proposed in Uzunoglu et al. (2023b), as it has shown to be suitable 
for adequately representing the properties of PSBIJF problem instances.
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Since with the objective function in eq. (1) also a metric to evaluate an algorithm’s 
performance exists, all four requirements to use ML models (see i. to iv. in section 1) for solving 
the ASP Algorithm are fulfilled.

5 The Genetic Algorithms

To solve the present serial-batch scheduling problem, we propose to improve the solutions 
computed by the LACH with two GAs that mainly differ in their problem representation. The 
first one uses an integer representation where each job is assigned a batch-position (representing 
a specific position on one of the machines). We abbreviate this approach as GA-J2P (job-to-
position assignment). In the language of genetics, this means that a phenotype (schedule) is 
encoded by a genotype (individual) consisting of a single chromosome of n genes (one for each 
job), and the allele is an integer value representing one of the given batch-positions (for 
definitions and details of GA-related terms used in this paper see Eiben & Smith, 2015). The 
second GA uses a genotype consisting of two chromosomes: The first chromosome consists of 
n integer genes representing the job-to-batch assignment, and the second chromosome consists 
of n real-valued chromosomes representing the batch-to-machine assignment and the sequence 
of batches on a machine. This one is called GA-J2BRK (job-to-batch assignment with random 
keys). Note that both GAs are capable to represent all feasible solutions of interest because we 
do not integrate any heuristics for batching or scheduling and both representations and their 
decoding (genotype-phenotype mapping) produce non-delay schedules (no idle time is inserted) 
and the objective function (1) is regular (cf., Pinedo, 2016). This means that both mappings are 
complete (cf., Eiben & Smith, 2015).

For both GAs (individual aspects are described in sections 5.1 and 5.2, respectively), we 
implemented the following basic GA scheme (cf. Eiben & Smith, 2015) with the parameters 
“population size” ( m ), “initial population composition” (ipc), “elitism rate” (esr; fraction of best 
individuals that are certain to be transferred to the next generation), “survival rate” (svr; fraction 
of individuals that survive, i.e., that are transferred unaltered to the next generation), “survivor 
selection mechanism” (svs; how individuals are selected for survival), “parent selection 
mechanism” (pas; how individuals are selected to compute offspring individuals), 
“recombination probability” (Prec; probability that two parents are recombined into two offspring 
individuals), “mutation probability” (Pmut; probability that a gene of an offspring individual is 
mutated), and the “termination condition setting” (tcs).

General GA scheme 

pop(0){} := getInitialPopulation( m , ipc)
evaluate(pop(0){}) // calculate fitness of all initial individuals
Do 

g := g+1 // increment generation
s{} := selectSurvivor(pop(g-1){}, esr, svr, svs) 

// survivors are directly transferred to the next generation
p{} := selectParents( pop(g-1){}, 1 - svr, pas)  

// for recombination
o{} := recombine(p{}, Pr) // recombination of two parents
m{} := mutate(o{}, Pm) // mutation of the offspring
evaluate(m{}) // calculate fitness of all offspring individuals 
pop(g) := s{} + m{}

Until (tcs is satisfied)
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The corresponding GA-specific components are described in the following sections. 
However, we use the same termination criterion “maximum execution times in seconds” (maxS) 
for both GAs. This value is defined in relation to the number of jobs of an instance, as this is the 
major characteristic influencing the computation time. During different stages of the 
development and final testing of our GAs, we would like to use different settings to keep 
computation times manageable. Therefore, two settings are defined:

­ TS1: maxS=30 if n ≤ 600, maxS=60 if (600, 1, 200]n Î , maxS=90 if (1, 200, 2, 400]n Î , 
and maxS=120 if n > 2,400.

­ TS2: maxS=45 if n ≤ 100, maxS=90 if (100, 200]n Î , maxS=180 if (200, 400]n Î , 
maxS=360 if (400, 800]n Î , maxS=720 if (800, 1, 600]n Î , and maxS=1,440 if n > 1,600.

5.1 GA-J2P 

The basic idea of GA-J2P is the new genotype representation of a schedule by a single 
chromosome containing the complete information. The proposed representation can model the 
complete solution space, which is particularly important with respect to the problem 
characteristics combination of serial batching, arbitrary batch capacity requirements, and 
weighted tardiness. At the same time, we wanted to avoid an overly specific representation by 
complex genes (see. e.g., Castillo & Gazmuri, 2015 and Wu et al., 2022) to make the proposed 
GA applicable to a wider range of batch scheduling problems. Another benefit of this genotype 
representation lies in its close relation to the phenotype schedule as such “natural” 
representations combined with applicable genetic operators are “quite useful in the 
approximation of solutions of many problems” (Michalewicz, 1996, p. 4).

5.1.1 Genotype representation and decoding

The genotype consists of a single integer chromosome with one gene for each of the n jobs (gene 
indices are therefore simultaneously job indices j), and the allele values represent batch-
positions. Hereby, batch-positions simultaneously encode the machine and the sequence of 
batches on a machine, and therefore, each batch-position simultaneously represents one batch. 

This representation idea is very similar to the main decision variable (X) used in the mixed-
integer linear program presented in Gahm et al. (2022). In general, the number of batch-positions 
on each machine must not be less than n. However, since we observed that the number of batches 
created in the initial solutions is much smaller than this value and Gahm et al., 2022 also report 
a similar observation (see their table 14), we introduce the parameter “batch-positions per 
machine” (bpm) to control the total number of batch-positions. Here, we assume that smaller 
bpm values are beneficial for the solution process, but it is important to use values that do not 
restrict the solution space in a way that prevents good or optimum solutions. The effectiveness 
and increase in efficiency of different bpm values will be analyzed in detail in the experimental 
section. Batch-positions are numbered as follows: bp=1 for the first batch on machine i=1, bp=2 
for the second batch on machine i=1, bp =bpm for the last batch on machine i=1, bp=(i-1)bpm+1 
for the first batch on machine i=2, bp=(i-1)bpm+2 for the second batch on machine i=2, bp=(i-
1)bpm+bpm for the last batch on machine i=2, and so on. Fig. 1 illustrates in part a) the genotype 
chromosome assigning a batch-position to each job and in part b) the resulting phenotype 
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schedule after decoding, i.e., after assigning jobs (italic) to the batch-positions (in the squares) 
on the machines. Note that we do not have any ordering or sorting (e.g., by job families) in the 
integer chromosome to avoid any positional bias (see the associated families f per job in Fig. 1 
a)). This is in contrast to the family-wise ordering of integer chromosomes proposed by Huynh 
& Chien (2018).

The decoding follows the gene sequence of the integer chromosome and adds one job 
after the other to the corresponding batches: e.g., job 1 to batch-position 2 → (then) job 2 to 
batch-position 5 → job 3 to batch-position 2 and so on (cf. Fig. 1 b) ). Note that empty batches 
(e.g., batch-position 4) are just ignored during the evaluation of the schedule.

5.1.2 Close and least impact insertion procedure (CLIP)

Several operations in GA-J2P (e.g., random solution generation or recombination) require the 
insertion of a job into “new” batch-positions if the desired batch-position is already occupied 
and an insertion is not feasible (due to job family or batch capacity requirements). In this case, 
our proposed insertion procedure aims to insert the jobs into batch-positions closest to the 
initially desired batch-position (e.g., near on the same machine or at a similar position on a 
different machine) and that have the least impact on the overall schedule. The latter aspect is 
important to allow the transfer of “good” partial schedules from one genotype to the other. To 
achieve this insertion in a most efficient manner, we define 20 insertion sections, as exemplarily 
depicted in Fig. 2. 

For the definition of these sections, we use several bounds in relation to bpm: sections 1 
to 8 are defined by lb1=1 and ub1=0.1∙bpm, sections 9 to 14 are defined by lb2=ub1+1 and 

Fig. 2: Illustration of CLIP with a job insertion at the already occupied batch-position 

48 (numbers in circles refer to insertion sections)

Fig. 1: Integer chromosome with job to batch-position assignment and decoding
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ub2=3∙ub1, and sections 15 to 20 are defined by lb3=ub2+1 and ub3=bpm. Given these definitions, 
Fig. 2 illustrates the procedure to find a new batch-position for all the jobs with the desired batch-
position 48: we first try to insert the job in a batch-position in section 1 (49→50), then in a batch-
position in section 2 (47→46), then in a batch-position in section 3 (28→8), then in a batch-
position in section 4 (68→88→108), then in a batch-position in section 5 (29→9→3→10), then 
in a batch-position in section 6 (69→89→109→70→90→ 110), then in a batch-position in 
section 7 (27→7→26→6), then in a batch-position in section 8 (67→87→107→66→86→106), 
and so on.

Note that the sections 3, 5, 7, 11, 13, 17, and 19 contain the corresponding batch-positions 
from the current machine (here 3) to machine one (i=1) and that the sections 4, 6, 8, 12, 14, 18, 
and 20 contain the corresponding batch-positions from the current machine (here 3) to machine 
i=m.

5.1.3 Initial population composition

To generate the initial population for GA-J2P, we use three approaches controlled by the 
parameter “initial population composition” (ipc): the first approach uses only randomly 
generated solutions (ipc=ran), the second one uses 30% initial solutions computed by the LACH 
and 70% randomly generated solutions (ipc=icr), and the third one uses 30% initial solutions 
computed by the LACH and 70% randomly modified initial solutions (ipc=iri; by the 
recombination and mutation variation operators described below). The latter two approaches 
significantly differ in the diversity of the initial population, and we will investigate the effect on 
the solution process in our experimental study. Depending on the population size and since the 
learning-augmented heuristics provide only a limited number of solutions related to the number 
of jobs (i.e., 227 or 228 if n < 100, 75 or 76 if [100,1, 000)n Î , and 19 or 20 if n > 1,000; cf. 
section 2.2), the number of available initial solutions may not be sufficient with respect to the 
given proportion. In this case, additional random solutions are added to the initial population 
according to the population size m . Because of the limited number of available initial solutions, 
we are not going to tune the fraction of initial solutions during parameter tuning.

For the fully randomly generated solutions, we draw batch-positions from {1, , }m bpm×K  
for each job (note that if not stated otherwise, random numbers are always drawn from restricted 
uniform distributions). To ensure feasible solutions in the initial population, we decode all 
generated genotypes after generation. If we identify an infeasible batch in terms of incompatible 
job family or batch capacity during decoding, we store the job in an additional list instead of 
adding it to the batch. After adding all jobs to the schedule or the list, we sort the list by non-
decreasing batch positions and add the jobs to the schedule in that order using CLIP.

For generating randomly modified initial solutions, we randomly pick two of the initial 
solutions, apply all five mutation operators to them, use all two recombination operators to 
generate four offsprings, and then apply all five mutation operators to the offspring. This leads 
to 10 + 4 + (4∙10) = 54 randomized initial solutions. These actions are repeated with a gradually 
increasing chance of mutation until the necessary quantity of initial solutions is reached. The 
probability of mutation begins at 0.02 and rises by 0.005 per cycle. As all operators compute 
feasible solutions, an additional feasibility checking is not required here.

5.1.4 Elitism and survivor selection 

Since GA-J2P is basically designed to improve initial solutions, we use an elitism mechanism 
that directly transfers a certain number e of best genotypes to the next population. This number 
is controlled by the parameter “elitism rate” esr and defines the number of transferred best 
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genotypes as esre m= ×ê úë û . For the same reason, we follow a steady-state population 
management model, i.e., we do not replace the entire population in each generation, but only a 
part of it (cf., Eiben & Smith, 2015). In literature, the number of individuals replaced by its 
offspring is named l  and thus, the number of surviving individuals is m l- . As the number of 
surviving genotypes is controlled by the “survival rate” parameter svr, svrl m m= - ×ê úë û . To 
preserve the diversity of populations, not the best m l-  genotypes are selected but more 
advanced selection mechanisms, controlled by the “survivor selection mechanism” parameter 
svs are applied. Here, we will study the fitness-based selection mechanisms “Tournament 
Selection” (TOS) and “Stochastic-universal Sampling” (SUS). Note that we do not study 
“Roulette wheel selection”, as it has been recognized that it does not actually provide a good 
sample of the distribution when more than one sample is drawn (Eiben & Smith, 2015). In TOS, 
a genotype wins a “tournament” if its fitness is greater than the fitness of the other s − 1 
competing genotypes, whereat the competing genotypes are drawn randomly. To vary selection 
pressure, one can adjust the tournament size s. When s is larger, genotypes with lower fitness 
have a reduced chance of surviving. Note that the worst genotype never survives, and the fittest 
genotype is the winner of every tournament in which it competes. The tournament selector is 
commonly used in practice due to its lack of stochastic noise in comparison to fitness 
proportional selectors. In contrast, SUS chooses individuals based on a given probability (related 
to the fitness) to minimize the chance of fluctuations. It can be seen as a form of a roulette wheel 
game with evenly spaced points that we spin. SUS uses a single random value to select 
individuals at equally spaced intervals. This fitness-based selection method grants a better chance 
of the selection of weaker individuals, thus reducing the “unfairness” associated with other 
fitness-based selection methods. Because both survivor selection mechanism are intended to 
preserve diversity, we use a tournament size of two (s=2) in all experiments. The parameters esr, 
svr, and svs will be tuned in section 7.2.

5.1.5 Parent selection and recombination

To randomly select the parents that are used for offspring generation, we also study the two 
selection mechanisms TOS (with s=2) and SUS from section 5.1.4. The parameter “parent 
selection mechanism” pas is used to differentiate between them.

For the recombination of two genotypes, we adapted two standard operators from 
literature: one-point crossover and two-point crossover. The first operator, “J2P adapted one-
point crossover” (J2PaOPX), begins with randomly selecting a crossover point from {2, … 
m∙bpm-1} (e.g., 6 in Fig. 3 a) ). This point partitions both the chromosomes A and B into head 
and tail (see Fig. 3 a) ). The J2P specific adaptation takes place with the exchanging of the tails. 
Here, the batch-positions are transferred by CLIP in non-decreasing order of batch-positions and 
job indices (see the small numbers in Fig. 3 a) ) to the two offspring A* and B*, respectively. 
Note that all following examples assume m=1, bc=2 (jobs), and bpm=11. Furthermore, actualized 
batch-positions are marked bold and that gray shaded fields signal batch-position updates by 
CLIP.
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The second recombination operator “J2P adapted two-point crossover” (J2Pa2PX) 
follows the same procedure but uses two randomly selected crossover points from 
{2, , }m bpm×K  (e.g., 3 and 9 in Fig. 3 b)) and first transfers the middle parts and then CLIP 
inserts head and tail in non-decreasing order of batch-positions and job indices (see Fig. 3 b)). 

Both recombination operators have individual recombination probabilities ( J2P
aOPXP  and 

J2P
a2PXP ) that must be tuned, whereby a value of 0 indicates that the operator is not in use (as also 

for the following mutation operators).

5.1.6 Mutation

Mutation operators have two distinct (conflicting) roles in the evolution process of a GA: 
Exploitation, i.e., intensification of the search in promising regions of the solution space by 
making small changes, and exploration, i.e., maintaining population diversity to prevent a 
premature convergence to a local optimum. In this context we developed five operators for 
mutating the offspring resulting from recombination: “J2P random resetting” (J2Prr), “J2P batch 
swap” (J2Pbsw), “J2P job swap” (J2Pjsw), “J2P batch insert” (J2Pbin), and “J2P job insert” 
(J2Pjin). The latter four mutation operators are design to achieve similar mutations as the 
mutation operators presented in Castillo & Gazmuri (2015).

Random resetting is a standard mutation operator for integer chromosomes that mutates 
each gene independently (with a given probability J2P

rrP ) and a new allele value (batch-position) 
is drawn from {1, , }m bpm×K . The new batch positions are added by CLIP in non-decreasing 
order of batch-positions and job indices.

Fig. 4 shows an example where the jobs 2, 5, 6, 10, and 11 have been selected, new 
randomly chosen batch-positions have been drawn, and added to the new chromosome A* using 

Fig. 3: Recombination operators for GA-J2P

Fig. 4: J2P random resetting with CLIP
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CLIP. The number of mutated genes in a population can be approximated by 2J P
rrn Pm× ×  (where 

n represents the number of genes in the chromosome). Therefore, J2Prr combined with a high 
mutation probability J2P

rrP can be used to maintain population diversity as many jobs to batch-
positions assignments may be affected and batches may be “opened” or “closed”.

The mutation operator J2Pbsw swaps two complete batches with arbitrary families. This 
is done by randomly selecting two genes with probability J2P

bswP  and swapping batch-positions for 
all jobs assigned to one of the batch-positions (see Fig. 5 a) ). Since both batches (batch-positions 
3 and 6, respectively) were feasible in terms of job family and batch capacity, the swapping must 
be feasible. 

In contrast, infeasibilities may occur when J2Pjsw tries to swap two jobs between batches 
(by interchanging the batch-positions). Therefore, we first randomly select a single gene with 
probability J2P

jswP  (indicated by 1 in Fig. 5 b) ), then determine all genes with jobs of the same 
family (e.g., 1, 3, and 11 in Fig. 5 b) ) and that are not in the selected batch-position (since 
otherwise the probability of swapping jobs from batches with many jobs is lower compared to 
other batches). Then we randomly select one of these genes (indicated by 2 in Fig. 5 b) ). If 
swapping is feasible in terms of batch capacity, the batch-positions are interchanged, otherwise, 
the chromosome remains unchanged. In general, J2Pbsw has a greater impact on a chromosome 
(because multiple jobs change their batch-position) than J2Pjsw, which only changes the batch-
position of two jobs. In both cases, the number of batches remains the same.

The mutation operator J2Pbin inserts a complete batch at a different batch-position. First, 
a single gene j is randomly selected with probability J2P

binP  and the assigned batch-position bpA is 
determined (e.g., j=9 with pbA=6; cf., Fig. 6 a)). Then, the new batch-position bpB is drawn from 
{1, , }m bpm×K . If bpB is empty (i.e., no job is assigned to it), all jobs at bpA are inserted into 
bpB by updating the corresponding genes (see for example chromosome A*1 with bpB=4). If 
bpB is not empty (e.g., bpB=2), all jobs at bpA are also inserted into bpB, and the batch-positions 
of jobs formerly assigned to bpB are inserted into bpB+1. If bpB+1 is not empty, its jobs are 
moved to bpB+2 and so on (see chromosome A*2  in Fig. 6 a); additionally actualized batch-
positions are marked in italic). If bpB x m bpm+ = ×  holds, the “search” for empty batch-positions 
starts with batch-position one and ends at the latest when bpA is reached (which must now be 
empty). This operator can have a high impact on a chromosome if many batch-positions are 
occupied because many jobs may change their batch-position. 

Fig. 5: J2P batch swap and J2P job swap
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The fifth mutation operator J2Pjin extracts a single job from one batch and inserts it into 
another batch that can already contain jobs (of the same family) or is empty. Again, we first 
randomly select a single gene j with probability J2P

jinP  , and the associated job family jfA and the 
assigned batch-position bpA is derived from that gene (e.g., j=9 with jfA=X and bpA=6; cf. , Fig. 
6 b)). Then, all batch-positions associated with jfA and different from bpA are determined and 
combined with all empty batch-positions (e.g., 2 and 9 combined with 4, 10, and 11). From this 
set of batch-positions, the new batch-position bpB is randomly selected. If bpB is empty (e.g., 
bpB=4), the batch-position of j is updated (cf., chromosome A*1 in Fig. 6 b)). If bpB is not empty, 
a capacity feasibility check is required. If the check is positive, job j is inserted into bpB (see 
chromosome A*2 in Fig. 6 b)); otherwise, the chromosome remains unchanged. The impact of 
this operator on a chromosome is relatively low, as only a single job changes its batch-position. 
However, it can ”open” a new batch or “close” a batch (if j was the only job in batch bpA and is 
inserted into a batch already containing jobs).

5.2 GA-J2BRK

The schedule representation of GA-J2BRK requires two chromosomes and was also used by 
Huynh & Chien (2018) for a problem very similar to the PSBIJF. However, we propose several 
adaptations and enhancements. 

5.2.1 Genotype representation and decoding

The first chromosome (INT) of the J2BRK genotype consists of n integer genes with one gene 
for each of the n jobs (gene indices are therefore simultaneously job indices j) and the alleles 
define the job-to-batch assignment by batch indices. In contrast to Huynh & Chien (2018), we 
do not group jobs by job families to avoid positional biases. The second chromosome (RK) 
consists of n real-valued genes (one for each possible batch) and the allele represent random keys 
from [0, 1]  indicating the batch-to-machine assignment and the sequence of batches on a 
machine. Fig. 7 shows the two chromosomes in part a). 

Fig. 6: J2P batch insert and J2P job insert
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The batch-to-machine assignment is decoded by dividing [0,1]  into m equal ranges (e.g., 
for m=3: [0,1 )m , [1 , 2 )m m , and [ 2 ,1]m ) and batches with random keys in the first range are 
assigned to machine one, batches with random keys in the second range are assigned to machine 
two, and so on. The sequencing of batches on the machines is done by sorting the batches by 
their random keys. To avoid that small random key changes leading to machine assignment 
changes also completely changes the position of the changed batch and all other batches on the 
“new” machine, we change the batch sorting according to the machine index: On machines with 
an odd index, batches are sequencing in non-decreasing order of their random keys, whereas on 
machines with an even index, batches are sequencing in non-increasing order of their random 
keys. The decoding of the example is shown in Fig. 7 b).

A general advantage of this representation compared to the representation of GA-J2P is 
the smaller chromosome as it consists of only 2n genes compared to 2n  genes in the chromosome 
of GA-J2P. However, due to the “gene-reducing” parameter bpm, this advantage becomes 
smaller, and the handling of a single chromosome might be more efficient compared to the 
handling of two.

5.2.2 Initial population composition

To generate the initial population for GA-J2BRK, we use the same three approaches as before: 
ipc = ran, icr, or iri. For generating completely random initial solutions, we first randomly draw 
n integers from {1, }nK  for chromosome INT and n random keys from [0, 1]  for chromosome 
RK. As this will likely result in infeasible solutions regarding job families and batch capacities, 
we need a repair mechanism. For repairing, we check if the insertion of a job into a batch is 
feasible and if not, the corresponding allele in RK is incremented by one as long as insertion 
becomes feasible. Since this may lead to a “chain” of allele updates, the resulting genotype is 
very different from the initial one. However, as we just want to compute random initial solutions 
here, it does not matter.

The procedure for generating randomized initial solutions remains the same as before. 
We apply mutation and recombination operators iteratively, gradually increasing the mutation 
probabilities.

5.2.3 Elitism and survivor selection 

For elitism and survivor selection, we use the same mechanisms as for GA-J2P with the control 

57441163272INT

Sequenced batches per machine (with jobs)

3 (4)6 (5)9 ()i=1

2 (1, 3)4 (8, 9)11 ()i=2

7 (2, 10)10 ()1 (6, 7)5 (11)i=3
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.61.83.12.34.91.17.67.53.23.43.74RK
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1110987654321j =

Fig. 7: Integer (INT) and random key (RK) chromosomes and decoding
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parameters esr, svr, and svs to be tuned for GA-J2BRK.

5.2.4 Parent selection and recombination

To select the parents that are used for offspring generation, we also study the two selection 
mechanisms TOS (with s=2) and SUS, controlled  by the parameter pas.

For recombing to genotypes A and B, Huynh & Chien (2018) used a job family related 
approach. They selected all genes of a randomly selected job family in genotype A (B), 
transferred these genes to offspring A* (B*), and transferred the genes of all other job families 
from B (A) to A* (B*). For the random key chromosome, they used a one-point crossover. In 
contrast to this job family related approach, we propose using adapted standard recombination 
mechanisms: “J2BRK adapted one-point crossover” (J2BRKaOPX) and “J2BRK adapted two-
point crossover” (J2BRKa2PX). 

J2BRKaOPX starts with the random selection of the crossover point from {1, , }nK  to 
partition both chromosomes of genotypes A and B into head and tails (e.g., 6 in Fig. 8). First, the 
heads of the INT chromosomes and the complete RK chromosomes are transferred to the 
offsprings A* and B*. Next, the tail of both chromosomes of B (A) are transferred to A* (B*) in 
non-decreasing order of assigned batches (already existing random keys are overwritten). If a 
batch index to be transferred is already in use, the next unused batch index is used, and the 
random key is set accordingly. Note that this procedure does not affect job-to-batch and batch-
to-machine assignments but only the batch sequence on a machine might change. Thus, 
J2BRKaOPX is able to preserve promising parts of both parent genotypes. In Fig. 8, allele values 
resulting from tail transfers are marked bold and gray shaded fields indicate values affected by 
the batch renumbering.

The J2BRKa2PX recombination operator follows the same procedure except using two 
randomly selected crossover points from {1, , }nK , first transfers the middle parts, and then 
completes the offspring genotypes accordingly. 

5.2.5 Mutation

For mutation we propose using three standard operators, “J2BRK random resetting” (J2BRKrr), 
“J2BRK uniform” (J2BRKuni), and “J2BRK Gaussian” (J2BRKgau). 

J2BRKrr is an adaptation of the standard random resetting mutation operator for integer 
chromosomes. It mutates each gene with given probability J2BRK

rrP  by drawing new allele values 
for the INT chromosome from {1, , }nK . If one of the drawn batch indices is already in use, 
renumbering takes place. The random keys of chromosome RK remain unchanged. 

Fig. 8: The J2BRKaOPX recombination operator
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In contrast, J2BRKuni (also used by Huynh & Chien, 2018) and J2BRKgau keep job-to-
batch assignments unchanged but random keys change. They mutate each gene with probability 

J2BRK
uniP  and J2BRK

gauP , respectively. As the names suggest, they differ in the distribution new allele 
values are drawn from: J2BRKuni draws from a uniform distribution restricted by [0, 1], whereas 
J2BRKgau draws from a Gaussian (normal) distribution with the mean equal to the old random 
key and a standard deviation of 0.25 m . The adjustment by m is made to make the probability 
that this mutation operator leads to a machine swap of a batch independent of the number of 
machines m. Obviously, the drawn values must be clamped to [0, 1]. The INT chromosome 
remains unchanged when J2BRKuni and J2BRKgau are applied.

In addition to these standard mutation operators, we developed four problem specific 
mutation operators like those for GA-J2P: “J2BRK batch swap” (J2BRKbsw), “J2BRK job 
swap” (J2BRKjsw), “J2BRK batch insert” (J2BRKbin), and “J2BRK job insert” (J2BRKjin). 

J2BRKbsw swaps two complete batches of arbitrary job families by randomly selecting 
two genes (with probability J2BRK

bswP ) and swapping the batch indices for all jobs assigned to one 
of these indices. Since both batches were feasible in terms of job family and batch capacity, the 
swapping must be feasible. RK remains unchanged. 

As for J2Pjsw (cf., Fig. 5 b) ), J2BRKjsw first randomly selects a single gene from 
chromosome INT with probability J2BRK

jswP , then determines all genes from INT with jobs of the 
same family and that are not in the same batch, and finally randomly selects one of these genes. 
If swapping the two jobs between the assigned batches is feasible in terms of batch capacity, the 
batch indices are swapped, otherwise, the chromosome remains unchanged. Random keys are 
always left unchanged. A similar mutation operator is also used by Huynh & Chien (2018).

The mutation operator J2BRKbin inserts a complete batch at a new position. To this, a 
gene from INT is selected with probability J2BRK

binP  and the assigned batch bA is determined. 
Then, the new batch bB is drawn from {1, , }nK . If bB equals bA, no insertion is done. If batch 
bB is empty, all jobs are inserted into bB by updating the corresponding genes of chromosome 
INT. If bB is not empty, batch bA is inserted before bB by setting the random key of bA to the 
random key of bB decremented by a very small number. This operator can be very influential as 
a new batch may be created and batch positions on a machine may change.

J2BRKjin extracts a single job from one batch and inserts it into another batch that can 
already contain jobs (of the same family) or is empty. We first randomly select a gene (job) j 
from INT (with probability J2BRK

jinP ) and determine its job family jfA. Then, all batches also 
containing jobs of family jfA are combined with all empty batches. From this set of batches, the 
new batch bB is randomly selected. If bB is empty, the batch index of j is updated to bB. If bB is 
not empty, a capacity feasibility check is required. and if it is positive, job j is inserted into bB. 
Otherwise, the chromosome INT remains unchanged (RK remains unchanged in any case). The 
effect of this operator on INT is relatively small because only a single job-to-batch assignment 
is changed. However, it can "open" a new batch or "close" a batch if j was the only job in batch 
bA and is inserted into a batch that already contains jobs.

5.3 Task parallel implementation

As the task parallel implementation of the learning augmented heuristics proposed in Uzunoglu 
et al. (2023b) resulted in a remarkably speedup, we follow this approach not only in the 
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implementation of the heuristics computing initial solutions but also for our GAs. Similar to the 
multi-start of the heuristics, we start several evolution engines in parallel threads. This means, 
that several identically parametrized GA are executed and the best result of all of them is 
returned. As the results of Uzunoglu et al. (2023b) showed that the greatest efficiency gains are 
achieved with four parallel threads, we also use four threads in our experiments.

6 Experimental setup

To perform training, validation (hyper-parameter tuning), GA parameter tuning, and testing, we 
need to prepare the required data and ML models. Note that all used data sets are either already 
available for download or are added to a new data set on Mendeley Data (reference to be added). 
In addition, this section describes the performance metric used to assess the quality of the 
solution and some implementation details.

6.1 Problem instances and data sets

For training good-performing ML models with a good generalization and prediction accuracy, it 
is vital to have a sufficiently large set of problem instances. Furthermore, to validate models’ 
applicability to real-world problems, the instances should also be realistic, diverse (i.e., 
representing different scenarios), and present a challenging learning task. The data set provided 
by Gahm (2022) fulfills these requirements. It contains three sets of instances that differ in the 
number of jobs n and machines m. As we are interested realistic-large problem instances, we use 
the sets L (containing 57,600 large instances with nÎ{100, 200, 400} and mÎ{1, 3, 4, 5, 10}) 
and XL (containing 13,440 large instances with nÎ{800, 1,600, 3,200} and mÎ{5, 10, 20}) to 
define the problem space P for this paper ( 71,040P = ). All generated instances base on nine 
attributes (like n or m) and for each attribute combination, five instances are randomly generated 
(thus, each instance has a marker sÎ{1, 2, …, 5}). Based on the marker, we can define different 
data set for training, validation (hyper-parameter tuning), GA parameter tuning, and testing. To 
represent these subsets, we use the notation 

sD  (e.g., 1,2D  consists of all instances with the 
markers 1 and 2). 

6.2 Model training for the learning augmented heuristics

Since all 17 algorithms from algorithm space A use ML models to predict parameters in one way 
or another, we must train these models. Because hyper-parameter tuning and validation was 
already done in the referenced publications, we can use the instance subset 1,2,3,4D  for training the 
models. For future use, we provide all 17 models (and scaling data) for download (reference to 
be added).

6.3 Performance metric

Comparing the performance of algorithms relative to the best solution could be misleading if 
objective values tend to get close (or equal to) zero (like for the weighted tardiness criterion of 
the PSBIJF). In these cases, small absolute deviations to zero result in huge relative deviations, 
which may distort the analysis even with a large number of experiments. To get a robust metric 
for our analysis, we use the key figure “mean relative improvement versus the worst objective 
function value” (MRIW; cf., Valente & Schaller, 2012 and Gahm et al., 2022). The relative 
improvement to the worst objective value for a problem instance ,a iRIW  bases on the following 

definitions: let A A¢ Í  be the (sub)set of all algorithms to be analyzed, let ,a iov  be the objective 
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value computed by algorithm a A¢Î  for problem instance i P¢Î  (with P P¢ Í ), and let
,maxworst

i a ia A
ov ov

¢Î
=  be the worst achieved objective value by one of the algorithms (note that 

worst
iov  is not an intermediate solution or the worst candidate objective value observed during the 

execution of an algorithm but the worst final solution of one of the considered algorithms). With 
these definitions, we define , ,( )worst worst

a i i a i iRIW ov ov ov= -  if 0worst
iov >  and otherwise, 

, 0a iRIW = . Aggregating these values using the mean over all instances of interest ( P¢) for an 
algorithm a gives us the 

aM RIW . Here, it is fundamentally important that 
aM RIW -values can 

only be compared to each other if the same (sub)set of algorithms A¢  (and instances) is used for 
their computation.

6.4 Implementation 

The training, hyper-parameter tuning, validation, and testing of all ML models is implemented 
in Python and uses “Keras” (keras.io), “TensorFlow” and “TensorFlow Ranking 
(tensorflow.org), “scikit-learn” (Pedregosa et al., 2011), and XGBoost (xgboost.ai). All 
heuristics, the GAs, and a tool for the management of the experiments are implemented in Java 
10. For the GA implementations, we use the Jenetics framework (jenetics.io) and for task-parallel 
execution of the learning-augmented heuristics and the GAs, we use the “Parallel Java 2 PJ2” 
API (available at http://jimihford.github.io/pj2/).

The machine learning and all experiments have been executed on workstations with an 
Intel® XEON® CPU E5-2690 with 3.0 GHz and 64 GB RAM.

7 Parameter tuning

Parameter tuning is a very important step for algorithms to achieve their best performance. This 
is particularly true for ML models where this process is called hyper-parameter tuning. The 
hyper-parameter tuning comes along with the validation of ASP models, i.e., the selection of the 
best performing ML model type, labeling strategy, and loss function combination. This is 
followed by the parameter tuning for GA-J2P and GA-J2BRK.

7.1 ASP model hyper-parameter tuning

The hyper-parameter tuning of the ASP models uses the dataset 1,2D  for training and 
3D for 

validation (i.e., to determine the most suitable one). For the 15 NN-based ASP models, we use 
NNs with three hidden layers and evaluated the following hyper-parameters: 256, 512, and 1,024 
neurons for all three layers independently, the dropout rates 0.1, 0.2, and 0.3, and the L2 weight 
regularization rates 0.001, 0.002, and 0.003. In total, 243 ( 33 ∙3∙3) hyper-parameter combinations 
have to be evaluated to determine the best configuration for each NN-based ASP model. For the 
14 GBDT-based ASP models, we evaluated the following hyper-parameters: number of 
estimators 250, 350, and 450, learning rates 0.01 and 0.001, maximum depth 8, 9, and 10, 
minimal child weights 1 and 2, subsampling rates 0.5 and 0.7, column sampling rates 0.5 and 
0.7. In total, 144 (3∙2∙3∙2∙2∙2) hyper-parameter combinations must be evaluated. 

Because the ASP models use different loss functions, we cannot use them for the 
validation of the most suitable ASP model. Therefore, we introduce the metric “hit rate”, 
quantifying the ratio of how often the model’s proposed (best) algorithm was in fact one of the 
best algorithms for a problem instance. Table 3 depicts the best hit scores for every ML model, 
labeling strategy, and loss function after tuning the hyper-parameters (see Appendix A-2 Table 

http://jimihford.github.io/pj2/
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13 and Table 14 for best hyper-parameters for each ML model, labeling strategy, and loss 
function combination).

Table 3: Hit rates by ML models, labeling strategies, and loss functions

ML model type Labeling 
strategy

Loss 
function

Hit rate
[%]

MRIW
[%]

BIN BCE 70.16 40.33

OV MSE 57.09 36.38

OV-N MSE 64.92 39.61

MSE 66.31 39.89

iwMSE(1) 68.94 40.31

iwMSE(2) 68.98 40.39

iwMSE(3) 61.77 38.98

ApproxNDCG 68.28 39.45

LambdaRankNDCG 67.46 39.27

RANK

LambdaRankNDCG(1) 67.91 39.34

MSE 65.13 39.71

iwMSE(1) 65.70 39.72

iwMSE(2) 68.00 40.04

iwMSE(3) 64.23 38.46

NN

RANK-SC

ApproxNDCG 64.75 39.34
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BIN BCE 73.44 41.14

BIN LambdaBinary 69.93 40.59

OV MSE 67.37 39.84

OV-N MSE 71.90 41.22

MSE 72.99 41.12

iwMSE(1) 73.11 41.10

iwMSE(2) 73.07 41.07

iwMSE(3) 72.99 41.08

RankPairwise 71.13 40.77

RANK

LambdaMARTNDCG 70.26 40.57

MSE 72.99 41.12

iwMSE(1) 73.08 41.13

iwMSE(2) 73.18 41.15

GBDT

RANK-SC

iwMSE(3) 73.24 41.14

The results in Table 3 show that GBDT as basic ML model type generally outperforms 
NN, which is not surprising since GBDT is known to outperform other models on tabular data 
(in contrast to image data or text documents; Shwartz-Ziv & Armon, 2022). For both model 
types, representing the ranking problem as a binary classification achieves the highest hit scores. 
It is also evident, that using (pure) objective value labeling strategies (see OV rows in Table 3) 
perform worse than all other labeling strategies for  NN and GBDT, respectively. Consequently, 
we conclude to ask ML models for a ranking of algorithms is better than to ask for objective 
values for each of the algorithm in A. For the NN, the two best-performing settings use the 
labeling strategies BIN with training strategy BCE and RANK combined with the custom loss 
function iwMSE(a ). Interestingly, the custom loss function outperforms MSE and the scaling 
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factor a  seems to play an important role as the hit rate decreases from 68.98% to 61.77% when 
a  changes from 2 to 3. This indicates that tuning the a -value is important. For GBDT, the two 
best-performing settings are BINARY labels with BCE and RANK-SC labels with the custom 
loss function iwMSE(a ). In contrast to the NN, the GBDT seems to be less sensitive to changes 
in the a -value. However, tuning the a -value is still important. Overall, the GBDT model type 
achieves more consistent hit rates throughout the different methods. The results also show us 
that the scaled RANK version RANK-SC performs better for GBDT, while this is not the case 
for NN. Somewhat surprisingly, the “simple” binary encoding BIN combined with BCE for both 
GBDT and NN outperforms more sophisticated alternatives (such as LambdaRankNDCG or 
ApproxNDCG) with respect to the ASP at hand. The only loss function that achieves a similar 
performance is the newly introduced iwMSE(α) function. An advantage of iwMSE(α) is its less 
complex implementation compared to the more sophisticated ones. However, further studies 
have to examine if iwMSE(α) is generally suitable for ranking predictions.

The best determined hyper-parameters for the four best ASP models show that both 
model types prefer higher capacity models in almost every experiment. To achieve a maximum 
prediction performance, we performed a second hyper-parameter tuning on the best four ASP 
models with extended capacities but omitted certain hyper-parameters for the GBDT since they 
did not lead to accurate models (e.g., 250 and 350 as number of estimators or 8 as maximum 
depth) For GBDT models we define the hyper-parameter space as: 450 or 550 for number of 
estimators, 9 or 10 for maximal depth, 0.001 or 0.01 for the learning rate, 1 or 2 for minimum 
child weight, and 0.5 or 0.7 for subsampling rates for data points and columns. For the NN, we 
increase the number of neurons in the hidden layers (all three hidden layers with 256, 512, 1,024, 
or 2,048 neurons, dropout rate of 0.1 or 0.2, and regularization rates of 0.001, 0.002, or 0.003). 
To further improve prediction accuracy, in the second hyper-parameter tuning, training is 
performed the data set 1,2,3D  and validation on 

4D .

Table 4 Results of second hyper-parameter tuning

ML model type 
Labeling 
strategy

Loss 
function

Hit rate
[%]

MRIW
[%]

NN BIN BCE 64.75 40.95

NN RANK iwMSE(2) 61.87 40.54

GBDT BIN BCE 67.67 41.56

GBDT RANK-SC iwMSE(3) 66.57 41.43

Table 4 shows that overall, the hit rate in the second hyper-parameter tuning slightly 
decreases due to the new validation data set 

4D .  Nevertheless, the results confirm that GBDT-
RANK-SC-iwMSE(3) is competitive and that GBDT-BIN-BCE outperforms the other ASP 
models (see Appendix A-3 Table 15 and Table 16 for best-performing hyper-parameters). In 
consequence, GBDT-BIN-BCE is used to select the learning-augmented heuristics for initial 
solution computation in all following experiments.

7.2 GA-J2P parameter tuning
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Because of the large number of parameters and values for GA-2JP, we perform a two-step tuning 
to keep experiments at a manageable level. For the parameter tuning of GA-J2P (and also GA-
J2BRK), we use a reduced set 

P TD  of 30 instances, i.e., five randomly selected instances for 
each nÎ{100, 200, 400, 800, 1,600, 3,200} from 

4D . 

In parameter tuning step one, we are interested in the general behavior of GA-J2P for 
example regarding the initial population composition or the effect of the elitism mechanism. The 
parameters and their investigated values as listed in Table 5 are used to setup 51,840 experiments 
in the first study GA-J2P-PT1 (1,728 parameter configurations∙30 problem instances from 

P TD ). For termination, we use setting TS1 (see Section 5). Because the MRIW of GA-J2P 
without initial (ipc=ran) solutions is so much worse compared to the other ones (33.8% vs. 
93.7% and 93.7%), we remove these results from further considerations (and MRIW 
computations) to make the differences between parameter values more traceable. To simplify 
readings we introduce .

J2P
custP  for representing identical probabilities for J2P

bswP , J2P
jswP , J2P

binP , and J2P
jinP . 

In Table 5, bold values indicate values to be further investigated in step two and bold and 
underlined values indicate values that are fixed based on the results.

Table 5: Parameters and results of study GA-J2P-PT1

Parameters and values # values MRIW [%]

bpm n  vs. 1.2(n/m) 2 19.9520.88

ipc (ran vs.) icr vs. iri 3 19.9820.85

m 200 vs.  400 2 20.6020.23

esr 0 vs. 0.05 2 19.2621.57

svr 0.2 vs. 0.4 2 19.8820.94

svs TOS(2) vs. SUS 2 20.4020.43

pas TOS(2) vs. SUS 2 20.2420.59

rec.

J2P
aOPXP =0.2 J2P

aOPXP =0.0 J2P
aOPXP =0.2

J2P
a2PXP =0.0

vs. J2P
a2PXP =0.2

vs. J2P
a2PXP =0.2

3 20.6421.0819.53

mut.

J2P
rrP =0.02 J2P

rrP =0.00 J2P
rrP =0.02

J2P
custP =0.00

vs. J2P
custP =0.02

vs. J2P
custP =0.02

3 17.1522.2521.85

Total number of parameter configurations: 1,728

The results in Table 5 show that reducing the number of batch positions has a remarkable 
effect on the solution quality and thus, we conclude that different parameter values are worth 
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exploring in the second parameter tuning step. As already mentioned, the standalone execution 
of GA-J2P without initial solutions is so much worse that we do not investigate this approach 
further. Furthermore, since the randomized initial solutions outperform initial populations with 
fully randomized solutions, we fix the parameter ipc to iri. We also fix the parameters esr to 0.05 
as larger values are not used in literature and therefore perceived as unfavorable, and svs to SUS 
and pas to SUS as results are almost similar. Because smaller populations sizes (leading to more 
generations) seem to be favorable, we will explore different settings for m  in the next tuning 
step. Regarding recombination, we see that J2Pa2PX outperforms J2PaOPX, and thus, we only 
tune J2P

a2PXP  in the second step. For mutation, we can see that the problem specific mutation 
operators J2Pbsw, J2Pjsw, J2Pbin, and J2Pjin perform best when solely applied. As the survival 
rate (svr) is directly related to recombination and mutation probabilities, we investigate both esr 
values in step two.

In the second parameter tuning study (GA-J2P-PT2), we use 540 parameter 
configurations to define 16,200 experiments (see Table 6). To ensure a feasible transfer of initial 
solutions to the genotype representation, we must guarantee that the number of batches on each 
machine is not smaller than in any initial solution. Therefore, we calculate the maximum value 
of used batches per machine of all solution MAX

mbpm  and adjust the finally available batches-
positions per machine accordingly. In addition, we use this value to define two additional 
settings. 

Table 6: Parameters and results of study GA-J2P-PT2

Parameters and values  #values MRIW [%]

bpm

max{n/m, 𝒃𝒑𝒎𝑴𝑨𝑿
𝒎 } vs.

max{1.1n/m, MAX
mbpm } vs.

max{1.2n/m, MAX
mbpm } vs. 

1.1 MAX
mbpm , 1.2 MAX

mbpm

5 8.07 7.62 7.91 7.88 7.75

m 150 vs. 200 vs. 250 3 7.92 7.89 7.72

svr 0.2 vs. 0.4 2 7.43 8.27

rec.
J2P

a2PXP = 0.2 vs. 0.3 vs. 0.4 3 9.44 7.76 6.33

mut.
J2P

custP = 0.02 vs. 0.04 vs. 0.08 vs. 0.12 vs. 
0.16 vs. 0.20

6 6.91 7.68 8.42 8.30 8.08 7.69

Total number of parameter configurations: 540

Based on the results of the parameter tuning studies GA-J2P-PT1 and GA-J2P-PT2, we 
fix the parameters of GA-J2P as follows: batch-positions per machine bpm = max{n/m, 

MAX
mbpm }, initial population composition ipc=iri, population size m =150, elitism rate esr 

=0.05, survival rate svr=0.4, survivor selection mechanism svs=SUS, parent selection 
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mechanism pas=SUS, recombination probability J2P
a2PXP =0.2, and mutation probabilities J2P

bswP =
J2P
jswP = J2P

binP = J2P
jinP =0.08 (all other operator probabilities are set to 0).

7.3 GA-J2BRK parameter tuning

We also perform a two-step parameter tuning for GA-J2BRK and instance set 
P TD . The 

parameters and their investigated values as listed in Table 7 are used to setup 60,480 experiments 
in study GA-J2BRK-PT1. For termination, we use setting TS1 (see the beginning of section 5). 
The version of GA-J2BRK without initial solutions (ipc=ran) is much worse compared to the 
other ones (22.7% vs. 89.1% and 85.1%) and therefore, we remove the corresponding results 
from further considerations and MRIW computations. In Table 7, bold values indicate values to 
be further investigated in step two and bold and underlined values that are fixed based on the 
results. To simplify readings we introduce .

J2BRK
custP  for representing identical probabilities for 

J2BRK
bswP , J2BRK

jswP , J2BRK
binP , and J2BRK

jinP . Similarly, ,
J2BRK

uni gauP   represents identical probabilities for 
J2BRK

uniP  and J2BRK
gauP .

Table 7: Parameters and results of study GA-J2BRK-PT1

Parameters and values # values MRIW [%]

ipc (cr vs.) icr vs. iri 3 23.5924.15

m 200 vs. 400 2 23.8223.92

esr 0 vs. 0.05 2 23.0024.74

svr 0.2 vs. 0.4 2 23.4824.26

svs TOS(2) vs. SUS 2 23.8023.94

pas TOS(2) vs. SUS 2 23.9123.83

rec.

J2BRK
aOPXP
=0.2

J2BRK
aOPXP
=0.0

J2BRK
aOPXP
=0.2

J2BRK
a2PXP
=0.0

vs. J2BRK
a2PXP
=0.2

vs. J2BRK
a2PXP
=0.2

3 23.6124.3323.67

mut.

J2BRK
rrP

=0.02

J2BRK
rrP

=0.00

J2BRK
rrP

=0.00

.
J2BRK

custP
=0.00

.
J2BRK

custP
=0.02

.
J2BRK

custP
=0.00

,
J2BRK

uni gauP
=0.00

vs.

,
J2BRK

uni gauP
=0.00

vs.

,
J2BRK

uni gauP
=0.02

3 23.8923.9424.03
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J2BRK
rrP

=0.02

J2BRK
rrP

=0.02

.
J2BRK

custP
=0.02

.
J2BRK

custP
=0.00vs.

,
J2BRK

uni gauP
=0.00

vs.

,
J2BRK

uni gauP
=0.02

2 23.7923.88

J2BRK
rrP

=0.00

J2BRK
rrP

=0.02

.
J2BRK

custP
=0.02

.
J2BRK

custP
=0.02vs.

,
J2BRK

uni gauP
=0.02

vs.

,
J2BRK

uni gauP
=0.02

2 23.9223.64

Total number of parameter configurations: 2,016

The results in Table 7 support the previous observation that randomized initial solutions 
are preferable compared to completely randomly generated solutions for initial population 
composition. In contrast to GA-J2P, GA-J2BRK performs better with larger populations and m  
will be tuned in the second step. For the parameters esr, svr, svs, and pas, the results are very 
similar to those from GA-J2P and thus, we proceed as before. The recombination by 
J2BRKa2PX leads to better results compared to J2BRKaOPX, accordingly, we tune the 
corresponding probability J2BRK

a2PXP  in the second step. The results for the mutation operator are 
not as clear as for GA-J2P because the MRIWs are close together. However as the setting with 

J2BRK
rrP = 0.00, .

J2BRK
custP =0.02, and ,

J2BRK
uni gauP =0.0 (23.94%) and the setting with J2BRK

rrP =0.00, 

.
J2BRK

custP =0.00, and ,
J2BRK

uni gauP =0.02 (24.03%) perform best, we are going to tune .
J2BRK

custP  and ,
J2BRK

uni gauP  
independently of each other in tuning step two. The investigated parameter values are 
summarized in Table 8.

Table 8: Parameters and results of study GA-J2BRK-PT2

Parameters and values # values MRIW [%]

m 300 vs. 350 vs. 400 vs. 450 4 1.291.311.281.26

svr 0.2 vs. 0.4 2 1.261.31

rec.
J2BRK

aOPXP = 0.2 vs. 0.3 vs 0.4 3 1.361.301.20
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J2BRK
custP = 0.02 vs. 0.04 vs. 0.08 vs. 0.12 vs. 0.16 

(with J2BRK
rrP =0.00 and ,

J2BRK
uni gauP =0.00)

1.271.301.231.271.24

mut.
,

J2BRK
uni gauP = 0.02 vs. 0.04 vs. 0.08 vs. 0.12 vs. 0.16

(with J2BRK
rrP =0.00 and J2BRK

custP =0.00)

10

1.371.311.291.311.26

Total number of parameter configurations: 240

The results in Table 8 clearly indicate most suitable parameters. The better performance 
of ,

J2BRK
uni gauP = 0.02 compared to all other mutation settings can be traced back to be the most 

efficient one and leads to the highest number of generations in the given time limit.

Based on the overall results of the parameter tuning studies GA-J2BRK-PT1 and GA-
J2BRK-PT2, we fix the parameters of GA-J2BRK as follows: initial population composition 
ipc=iri, population size m =350, elitism rate esr=0.05, survival rate svr=0.4, survivor selection 

mechanism svs=SUS, parent selection mechanism pas=TOS, recombination probability J2BRK
a2PXP

=0.2, and mutation probability ,
J2BRK

uni gauP =0.08 (all other operator probabilities are set to 0).

8 Experimental results

For the final testing of our developed algorithms, we reserved instance set 
5D  (20% of the 

instances, which was not used in either of the previous training or tuning phases) for assessing 
the solution quality on unseen problem instances. We use the MRIW metric to compare the 
following six solution methods:

- BATCS-d-MLPP(PC6, GS3) has the highest MRIW score among the 17 solution 
methods forming the base for the ASP (see section 2.2). We use this solution method as 
a baseline to compare the effectiveness of our newly developed solution methods.

- AlgSel(GBDT, BIN, BCE) has the highest hit rate according to our analysis in section 
7.1. We trained the model on 1,2,3,4D  to predict the best performing LACH for each 
problem instance from section 2.2 and used that algorithm to solve it.

- BATCS-d-ML(PC6, GS3)-LS(TS2) is the most efficient heuristic from the literature for 
solving the PSBIJF (Uzunoglu et al., 2023b). In contrast to Uzunoglu et al. (2023b), we 
use the same time-oriented termination setting as for our GAs (TS2) to make a fair 
comparison (combined with the two parameters 81.0 10WTe -= ´  and 81.0 10FTe -= ´  to 
avoid needles computation times; see Uzunoglu et al., 2023b for more details).

- GA-J2BRK with the parameters ipc=iri, m =350, esr=0.05, svr=0.4, svs=SUS, 

pas=TOS, J2BRK
a2PXP =0.2, and ,

J2BRK
uni gauP =0.08 (cf., section 7.3).

- GA-J2BRK-HC is our GA-J2BRK implementation with parameters making our GA 
most similar to GA1 of Huynh & Chien (2018) (without implementing the makespan 
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related improvement heuristics). Parameters are as follows: ipc=iri, m =150, esr=0.3, 

svr=0.4, svs=TOS, pas=TOS, J2BRK
a2PXP =0.9, and J2BRK

jswP = J2BRK
uniP =0.1.

- GA-J2P with the parameters batch-positions per machine bpm = max{n/m, MAX
mbpm }, 

ipc=iri, m =150, esr=0.05, svr=0.4, svs=SUS, pas=SUS, J2P
a2PXP =0.2, and J2P

bswP = J2P
jswP =

J2P
binP = J2P

jinP =0.08 (cf., section 7.2).

Both GAs used the AlgSel(GBDT, BIN, BCE) to create their initial population and terminated 
their computations after reaching the time limits as defined in TS2 (see the beginning of section 
5). So, our algorithm set 𝐴′ consists of six solution methods for the computation of the MRIW. 
Table 9 presents the MRIWs of all six methods grouped according to the number of jobs (n) and 
number of machines (m). Certain (n, m) groups do not exist in the used data set and hence are 
left blank in the table.

Our ML-based algorithm selection method outperforms the “statically” chosen best 
solution method in every group (n, m). Averaged over all instances, it achieves an MRIW of 
6.42% compared to the static best solution method’s MRIW of 2.23%. The performance 
improvement is higher for instances with fewer jobs and decreases for very large instances, but 
nonetheless exists. This justifies the efforts of training a model to rank solution methods if 
several are available for the problem at hand. Both GAs create their initial population using the 
AlgSel(GBDT-BIN-BCE) and hence achieve, as expected, substantially higher performances in 
each group (n, m) than the algorithm selection method without post-optimization. 

Table 9: MRIWs [%] per solution method, number of jobs, and machines.

n= 100 200 400 800 1,600 3,200 MEAN

BATCS-d-MLPP (PC6, GS3)

m=1 2.02 0.85 1.76 1.54

m=3 2.55 2.29 1.78 2.21

m=4 2.60 2.47 1.80 2.29

m=5 2.19 2.24 2.05 1.63 2.05

m=10 2.33 2.32 2.61 2.45 1.95 2.37

m=20 3.13 4.25 3.48 3.56

MEAN 2.34 2.03 2.00 2.40 3.10 3.48 2.23

AlgSel(GBDT, BIN, BCE)

m=1 6.71 6.60 6.92 6.74
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m=3 4.62 5.55 4.93 5.03

m=4 5.99 6.53 5.72 6.08

m=5 5.92 5.96 5.25 4.51 5.47

m=10 9.48 9.22 8.01 5.68 5.63 7.95

m=20 9.79 5.25 3.65 7.25

MEAN 6.54 6.77 6.17 6.66 5.44 3.65 6.42

BATCS-d-MLPP (PC6, GS3)-LS(TS2)

m=1 10.8514.71 19.37 14.98

m=3 14.1616.39 18.72 16.43

m=4 15.9218.27 19.58 17.92

m=5 17.9718.37 19.79 17.92 18.55

m=10 22.9024.68 25.28 20.44 20.85 23.20

m=20 26.45 23.97 18.90 24.37

MEAN 16.3618.48 20.55 21.60 22.41 18.90 19.07

GA-J2BRK

m=1 11.3110.00 10.17 10.49

m=3 13.1912.06 9.70 11.65

m=4 15.8014.40 11.40 13.86

m=5 16.9214.11 12.72 8.66 13.40

m=10 22.2420.05 16.65 12.48 11.55 17.43

m=20 19.09 13.87 9.66 15.78

MEAN 15.8914.12 12.13 13.41 12.71 9.66 13.84

GA-J2BRK-HC

m=1 12.3310.20 10.59 11.04

m=3 14.4412.50 9.98 12.31

m=4 16.9214.59 11.18 14.23

m=5 18.3814.59 12.50 8.52 13.83
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m=10 23.2820.84 16.46 11.84 10.13 17.53

m=20 18.79 12.01 4.72 14.19

MEAN 17.0714.54 12.14 13.05 11.07 4.72 14.07

GA-J2P

m=1 47.4249.87 47.56 48.28

m=3 41.5140.35 34.57 38.81

m=4 43.0740.60 33.43 39.03

m=5 44.8339.05 31.66 30.61 36.93

m=10 51.7245.63 36.71 28.70 24.57 39.50

m=20 32.69 23.18 16.52 26.83

MEAN 45.7143.10 36.79 30.67 23.88 16.52 39.19

Interestingly, a clear winner exists between three GAs. GA-J2P outperforms GA-J2BRK 
and GA-J2BRK-CH in each group. The greatest difference in performance improvement 
between the GAs can be observed for small instances (e.g., n = 100 or n = 200) but applies in 
principle to all instances as the difference of mean improvements of 25.35 and 25.12 percentage 
points show. Across the different machine settings (m), the three GAs performed (rather) 
similarly. One exception to that is the performance of GA-J2P for m = 20. From m = 10 to m = 
20, the MRIW severely drops from 39.50% to 26.83%. The overall better performance of GA-
J2P compared to the other GAs may be partly due to the higher number of generations performed 
by GA-J2P within the time limit. This higher number of generations in turn results from the 
“smaller” genotype GA-J2P (1.04n on average) compared to GA-J2BRK (2n) and GA-J2BRK-
CH (2n) and the resulting lower computational effort for encoding, decoding, and operator 
execution. 

Also interesting is that BATCS-d-MLPP (PC6, GS3)-LS(TS2) is able to outperform GA-
J2P for large instances with 3,200 jobs and 20 machines. In these instances, we can see that the 
GA has not yet converged, and the evolution is still going on. This observation is confirmed by 
the fact that the minimum objective value found by GA-J2P is computed after 92.97% of the 
time limit (on average for instances with 3,200 jobs; see Table 10) and exemplarily illustrated 
by the courses of objective values illustrated in Fig. 9 for two instances. The courses also show 
that the evolution mechanisms of GA-J2P (with the tuned parameters) are capable to avoid 
premature convergence.
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On the left side of Fig. 9, we can exemplarily see that BATCS-d-MLPP (PC6, GS3)-
LS(TS2) is able to solve some large instances with a higher solution quality in less computation 
time (976 seconds vs. 1,442 seconds) compared to GA-J2P. However, as can be seen by 
comparing the MRIWS of Table 9 and the values in Table 10, BATCS-d-MLPP (PC6, GS3)-
LS(TS2) often gets stuck in a local optimum and is unable to explore the complete solution space.

Table 10: Mean relative percentage of the time limit in which minimum objective values 
are computed

n= 100 200 400 800 1,600 3,200

BATCS-d-MLPP(PC6, GS3)-LS(TS2) 0.15 3.92 23.09 35.02 66.61 77.80

GA-J2P 59.52 79.67 87.06 88.92 95.02 92.97

In consequence, the overall performance of GA-J2P is much better (see Table 9). From 
these results it can also be concluded that a combination of the two solution methods to a 
Memetic Algorithm is worth investigating in the future.

Error! Not a valid bookmark self-reference. shows the MRIW grouped for each 
instance characteristic (see Gahm et al., 2022 or Uzunoglu et al., 2023b for detailed description 
of instance characteristics).

Table 11: Results of GA-J2P by instance characteristics

Instance characteristic
MRIWs [%]

n 100, 200, 400, 800, 1600, 3200 45.7143.1036.7930.6723.8816.52

m 1, 3, 4, 5, 10, 20 48.2838.8139.0336.9339.5026.83

Fig. 9: Exemplary courses of objective values for two instances with 3,200 jobs
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q 3, 5, 10, 20, 40 37.0539.5441.5542.7424.75

jtfam ND, UD 39.0839.29

crs 1, 2, 3, 4 49.3640.4033.9733.02

st AR, AE, SE 38.4540.2738.84

eta 0.25, 0.75 39.7038.67

tf 0.3, 0.6 40.6637.72

rdd 0.5, 2.5 41.6236.75

The job to family assignment mode (jtfam), setup time allocation (st), setup time severity(eta), 
tightness factor (tf), and due date range factor (rdd) seem to have minor effects on the 
performance of GA-J2P. The capacity requirement scenarios (crs) define the ranges of a job’s 
capacity demand and have a noticeable effect on the MRIW. Also, the MRIW for the number of 
job families (q) drops immensely for q = 40. The reason for this is that this number of job families 
only exists for n = 3200 and the lower performance of GA-J2P for these instances has already 
been discussed. Due to its coupling to the job size, it is unclear how much of this effect should 
be attributed to the characteristic itself. An explanation for the trend of decreasing improvement 
with increasing job size might be the coupling between job size and the “complexity” of the 
problem: large instances need more time for their mutation and repair mechanisms, and therefore, 
GAs can search for solution improvements for these instances less intensely. However, this 
situation needs a deeper understanding of its causes and must be analyzed more nuancedly in 
future research.

9 Conclusions and further research directions

In this paper, we presented two learning-based contributions to both ends of using a heuristic to 
solve a complex scheduling problem. First, we addressed an issue appearing before using a 
heuristic – selecting the most suitable method. The ASP is an active topic in research and has 
come a long way since its initial formulation in 1976 by Rice. Recent contributions incorporate 
ML models, for example, by predicting the performance of an algorithm on a given instance. In 
our approach, we used learning-to-rank methods from different ML research fields like 
information retrieval and recommender systems that best suit the needs of the algorithm selection 
task. Our computational results show that asking “the right questions” does matter: Asking for 
the (probably) best algorithm (or a ranking of algorithms) instead of asking for a performance 
prediction results in a better hit rate. Besides this finding, we can confirm that GBDTs perform 
better on the tabular data of our ASP than NNs, and we can report that the importance weighted 
MSE with weighting parameter α (iwMSE(α)) is competitive and worth to be studied in more 
detail in the future. Overall, the application of the ASP model GBDT-BIN-BCE to dynamically 
select an algorithm for solving an instance has outperformed the static selection of the best 
algorithm (BATCS-d-MLPP(𝑃𝐶6, GS3)) (MRIW of 6.42% vs. 2.23%).

The second major contribution of this paper addressed what happens after solving the problem 
instance with a selected construction heuristic – improving the initial solution(s). To that, we 
presented the two GAs GA-J2P and GA-J2BRK with different representations (encodings). The 
random keys approach (GA-J2BRK) represents feasible solutions with every representation and, 
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therefore, does not need any costly repair mechanism during its computation like the GA-J2P 
approach. However, a great advantage of GA-J2P is that we can easily include knowledge about 
reasonable solutions. For example, we know the number of used batches (i.e., batch positions 
per machine) from the initial solutions and use it to limit the number of available batches. In 
consequence, the computational effort for processing a single generation is much lower and thus, 
more generations can be computed and the overall solution quality increases (compared to GA-
J2BRK). As the experimental results have shown, the GA-J2P approach achieves remarkably 
higher improvements when compared to the other GAs. Comparing GA-J2P with the most 
efficient heuristic from literature BATCS-d-ML(PC6, GS3)-LS(TS2), we see that the latter one 
is only competitive for very large instances with 1,600 and 3,200 jobs. In conclusion, we 
demonstrated in this paper how to integrate different (machine) learning related components in 
a scheduling method to get better solutions faster. We strongly believe that having a more holistic 
view on the solution method(s) will lead to very fruitful results for practical application.

Furthermore, we advocate shifting the goal of ASP from a mere, isolated selection of the best 
algorithm to decisions involving the allocation of computational resources, interleaving of 
algorithms, or use of information gathered online during the solving. Kotthoff, 2016 presented 
an interesting survey on algorithm selection and referred to the topic in a broader sense with the 
term algorithm portfolio. The algorithm portfolio technique outputs several (probably) good 
algorithms for a problem instance to achieve more robust results. Their online variants may even 
change the currently used algorithm if the solution quality misses the expectation to mitigate 
wrong decisions made at the beginning. One next challenge for our solution method(s) would be 
to include every part of our solution concept into the ASP. This could help us to use the potentials 
of the GA(s) even for the largest instances. Fundamental questions implied by that would be: 
how much time should we invest in finding the initial population compared to the GA? Or which 
GA-variant to choose, and which parameter configuration to select, could be included in the 
ASP. Taking that idea even further, information from a pre-solving phase of several GA variants 
could be used to further improve the solution quality. These ideas and questions will definitely 
need sophisticated ML models tailored to give the right answers. Researchers must, however, 
carefully consider how to incorporate the feedback from these ML models into their decision-
making.
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Appendix

A-1. Preliminary study of “d-MLRP” variants

Table 12: Performance of “d-MLRP” variants by pipeline configuration and ranking 
application strategy

Ranking application strategy  

Pipeline configuration
B1 B1-G Bx B(3)-G B(5)-G B(9)-G Mean

[1,9,0]-CF 34,42 76,41 76,75 76,86 76,86 76,90 69,70

[1,9,0]-AF 34,68 76,24 76,44 76,42 76,44 76,54 69,46

[0,5,5]-CF 51,82 77,38 77,55 77,59 77,64 77,46 73,24

[0,5,5]-AF 54,80 77,43 77,55 77,53 77,55 77,56 73,74

[1,4,5]-CF 56,80 77,55 77,62 77,53 77,63 77,55 74,12

[1,4,5]-AF 53,23 77,39 77,73 77,56 77,58 77,66 73,52
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[0,2,8]-CF 52,56 77,02 77,46 77,38 77,44 77,53 73,23

[0,2,8]-AF 55,07 77,43 77,52 77,49 77,47 77,51 73,75

[1,2,7]-CF 56,05 77,15 77,33 77,30 77,38 77,34 73,76

[1,2,7]-AF 57,99 77,40 77,74 77,72 77,69 77,73 74,38

[0,1,9]-CF 46,56 76,95 76,90 77,14 77,11 76,99 71,94

[0,1 9]-AF 51,68 77,07 77,12 77,08 77,03 77,13 72,85

[1,0,9]-CF 49,32 77,06 77,00 77,06 77,02 76,99 72,41

[1,0,9]-AF 52,50 77,24 77,43 77,34 77,52 77,42 73,24

[0,0,10]-CF 47,44 76,74 75,97 76,74 76,72 76,52 71,69

[0,0,10]-AF 47,81 77,07 76,84 77,26 77,29 77,32 72,26

52.87 67.94 68.75 68.55 68.71 68.76
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A-2. Best-performing hyper-parameters for tuning phase 1

Table 13 Best-performing hyper-parameter for NN tuning phase 1

Labeling strategy Loss function Layer 1 Layer 2 Layer 3 Dropout rate Reg. rate
BIN BCE 1024 1024 1024 0.1 0.010
OV MSE 256 1024 256 0.3 0.001

OV-N MSE 1024 1024 512 0.1 0.010
MSE 1024 1024 512 0.1 0.001

iwMSE(1) 1024 1024 512 0.1 0.001

iwMSE(3) 1024 512 512 0.1 0.002

iwMSE(3) 1024 1024 256 0.1 0.002

ApproxNDCG 1024 1024 256 0.1 0.002

LambdaRankNDCG 512 1024 1024 0.1 0.002

RANK

LambdaRankNDCG(1) 1024 256 256 0.1 0.002

MSE 1024 1024 1024 0.1 0.001

iwMSE(1) 1024 1024 1024 0.1 0.002

iwMSE(2) 512 512 1024 0.1 0.010

iwMSE(3) 1024 512 512 0.1 0.001

RANK-SC

ApproxNDCG 1024 256 512 0.1 0.002

Table 14 Best-performing hyper-parameter for GBDT tuning phase 1

Labeling 
strategy Loss function

Number 
of 

estimators

Learning 
rate

Maximum 
depth

Min. 
child 

weight

Subsampling 
rate

Column 
sample

BIN BCE 450 0.01 9 1 0.7 0.5
BIN LambdaBinary 350 0.10 8 2 0.7 0.5
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OV MSE 450 0.01 10 2 0.7 0.7
OV-N MSE 450 0.01 10 1 0.7 0.7

MSE 350 0.01 10 1 0.7 0.7

iwMSE(1) 450 0.01 10 2 0.7 0.7

iwMSE(2) 450 0.01 10 2 0.7 0.7

iwMSE(3) 350 0.01 10 2 0.7 0.7

RankPairwise 450 0.10 9 2 0.7 0.5

RANK

LambdaMARTNDCG 250 0.10 9 1 0.7 0.5
MSE 350 0.01 10 1 0.7 0.7

iwMSE(1) 450 0.01 10 1 0.7 0.5

iwMSE(2) 450 0.01 9 2 0.7 0.5
RANK-

SC

iwMSE(3) 450 0.01 10 1 0.7 0.5

A-3. Best-performing hyper-parameters for tuning phase 2

Table 15 Best performing hyper-parameters for NN phase 2

Labeling strategy Loss function Layer 1 Layer 2 Layer 3 Dropout rate Reg. rate
BIN BCE 2048 256 2048 0.1 0.001

RANK iwMSE(2) 2048 2048 2048 0.1 0.002

Table 16 Best-performing hyperparameters for GBDT phase 2

Labeling 
strategy

Loss 
function

Number of 
estimators

Learning 
rate

Maximum 
depth

Min. 
child 

weight

Subsampling 
rate

Column 
sample

BIN BCE 550 0.01 10 2 0.7 0.5
RANK iwMSE(2) 550 0.01 10 2 0.7 0.5

Highlights
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- A serial-batch scheduling problem is the application case of our analysis. 

- “Learning-to-rank” ML models select the best-performing heuristic.

- Two Genetic Algorithms are introduced with different encoding schemes.

- Both Genetic Algorithms can use solutions from the heuristics as initial populations.

- Our method substantially improves the solution quality.


