
28th European Symposium on Programming, ESOP 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019, Proceedings

Programming
Languages
and SystemsLN

CS
 1

14
23

AR
Co

SS
Luís Caires (Ed.)

Lecture Notes in Computer Science 11423

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Luís Caires (Ed.)

Programming
Languages
and Systems
28th European Symposium on Programming, ESOP 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019
Proceedings

Editor
Luís Caires
Universidade NOVA de Lisboa
Caparica, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17183-4 ISBN 978-3-030-17184-1 (eBook)
https://doi.org/10.1007/978-3-030-17184-1

Library of Congress Control Number: 2019936299

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3215-6734
https://doi.org/10.1007/978-3-030-17184-1
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.

The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbrücken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Lüttgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara König (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Müller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at the 28th European Symposium on
Programming (ESOP 2019) held April 8–11, 2019, in Prague, Czech Republic. ESOP
is one of the European Joint Conferences on Theory and Practice of Software (ETAPS).
It is devoted to fundamental issues in the specification, design, analysis, and imple-
mentation of programming languages and systems.

The 28 papers in this volume were selected from 86 submissions based on origi-
nality and quality. Each submission was reviewed by at least three Program Committee
(PC) members and external reviewers, with an average of 3.2 reviews per paper.
Authors were given the opportunity to respond to the reviews of their papers during the
rebuttal period, January 11–14, 2019.

Each paper was assigned a guardian in the PC, who was in charge of making sure
that additional reviews were solicited if necessary, and for presenting a summary of the
reviews, author responses, and decision proposals at the physical PC meeting. All
submissions, reviews, and author responses were considered during online discussion,
which identified 52 submissions to be further discussed at the physical PC meeting held
in Cascais, Portugal, January 19, 2019. All non-conflicted PC members participated in
the discussion of each paper’s merits.

The PC wrote summaries based on online discussions and on discussions during the
physical PC meeting, to help authors understand decisions and improve the final
version of their papers. Papers co-authored by members of the PC were held to a higher
standard and were discussed first at the physical PC meeting. There were 11 such
submissions of which five were accepted. Papers for which the PC chair had a conflict
of interest were kindly handled by Shao Zhong.

I would like to thank all who contributed to the success of the conference: the
authors who submitted papers for consideration, the external reviewers, who provided
expert reviews, and the Program Committee, who worked hard to provide detailed
reviews, and engaged in deep discussions about the submissions. I am also grateful to
have benefited from the experience of past ESOP PC chairs Amal Ahmed and Jan
Vitek, and to the ESOP Steering Committee chairs, Giuseppe Castagna and Peter
Thiemann, who provided essential advice for numerous procedural issues. I would like
also to thank the ETAPS Steering Committee chair, Joost-Pieter Katoen, for his ded-
icated work and blazing fast responsiveness.

EasyChair was used to handle submissions, online discussions, and proceedings
editing. Finally, I would like to thank the NOVA Laboratory for Computer Science and
Informatics and OutSystems SA for supporting the physical PC meeting and Joana
Dâmaso for assisting with the organization.

February 2019 Luís Caires

Organization

Program Committee

Nada Amin Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Stephanie Balzer CMU
Lars Birkedal Aarhus University, Denmark
Johannes Borgström Uppsala University, Finland
Luís Caires Universidade NOVA de Lisboa, Portugal
Ugo Dal Lago Università di Bologna, Italy, and Inria Sophia

Antipolis, France
Constantin Enea IRIF, University Paris Diderot, France
Deepak Garg Max Planck Institute for Software Systems, Germany
Simon Gay University of Glasgow, UK
Alexey Gotsman IMDEA Software Institute, Spain
Atsushi Igarashi Kyoto University, Japan
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Isabella Mastroeni Università di Verona, Italy
J. Garrett Morris The University of Kansas, USA
Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany
Tim Nelson Brown University, USA
Scott Owens University of Kent, UK
Luca Padovani Università di Torino, Italy
Brigitte Pientka McGill University, Canada
Zhong Shao Yale University, USA
Alexandra Silva University College London, UK
David Walker Princeton University, USA

Additional Reviewers

Andersen, Kristoffer Just
Asai, Kenichi
Atkey, Robert
Avanzini, Martin
Berger, Martin
Bernardi, Giovanni
Bocchi, Laura
Bracevac, Oliver
Byrd, William
Cano, Mauricio

Cohen, Liron
Contrastin, Mistral
D’Osualdo, Emanuele
Dahlqvist, Fredrik
Delbianco,

Germán Andrés
Dezani, Mariangiola
Docherty, Simon
Fellleisen, Mattthias
Frumin, Dan

Fränzle, Martin
Genestier, Guillaume
Ghyselen, Alexis
Gratzer, Daniel
Gregersen, Simon
Gutsfeld, Jens Oliver
Hackett, Jennifer
Hamza, Jad
Heo, Kihong
Hirai, Yoichi

Hirokawa, Nao
Jung, Ralf
Kammar, Ohad
Kappé, Tobias
Katsumata, Shin-Ya
Kenter, Sebastian
Krebbers, Robbert
Kuchen, Herbert
Laird, James
Lammich, Peter
Lanese, Ivan
Levy, Paul Blain
Liu, Fengyun
Mackie, Ian
Martres, Guillaume
Mazza, Damiano
McLaughlin, Craig
Meyer, Roland

Miltner, Anders
Momigliano, Alberto
Mutluergil, Suha Orhun
Nakazawa, Koji
Norman, Gethin
Novotný, Petr
Ohlenbusch, Marit
Ohrem, Christoph
Pavlogiannis, Andreas
Peressotti, Marco
Rogalewicz, Adam
Sacerdoti Coen, Claudio
Sammartino, Matteo
Scalas, Alceste
Sekiyama, Taro
Sieczkowski, Filip
Sighireanu, Mihaela
Singer, Jeremy

Sjöberg, Vilhelm
Staton, Sam
Stiévenart, Quentin
Sutherland, Julian
Tanter, Éric
Tate, Ross
Thibodeau, David
Timany, Amin
Tsukada, Takeshi
Ulbrich, Mattias
Voorneveld, Niels
Wang, Yuting
Weber, Tjark
Yamada, Akihisa
Zdancewic, Steve
Zinkov, Rob

x Organization

From Quadcopters to Helicopters:
Formal Verification to Eliminate

Exploitable Bugs
(Abstract of Invited Talk)

Kathleen Fisher

Computer Science Department, Tufts University

For decades, formal methods have offered the promise of software that does not have
exploitable bugs. Until recently, however, it has not been possible to verify software of
sufficient complexity to be useful. Recently, that situation has changed. SeL4 [1] is an
open-source operating system microkernel efficient enough to be used in a wide range
of practical applications. It has been proven to be fully functionally correct, ensuring
the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and
to enforce integrity and confidentiality properties.

The CompCert Verifying C Compiler [2] maps source C programs to provably
equivalent assembly language, ensuring the absence of exploitable bugs in the com-
piler. A number of factors have enabled this revolution in the formal methods
community, including increased processor speed, better infrastructure like the
Isabelle/HOL and Coq theorem provers, specialized logics for reasoning about
low-level code, increasing levels of automation afforded by tactic languages and
SAT/SMT solvers, and the decision to move away from trying to verify existing
artifacts and instead focus on co-developing the code and the correctness proof.

In this talk I will explore the promise and limitations of current formal methods
techniques for producing useful software that provably does not contain exploitable
bugs. I will discuss these issues in the context of DARPA’s HACMS program, which
had as its goal the creation of high-assurance software for vehicles, including
quad-copters, helicopters, and automobiles. This talk summarizes the goals and results
of the HACMS program, which are described in more detail in a recent paper written
by the speaker and the two other DARPA program managers who oversaw the
HACMS program [3].

References

1. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2:1–2:70 (2014). http://doi.acm.org/10.1145/2560537

http://doi.acm.org/10.1145/2560537

2. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL 2006, pp. 42–54. ACM, New York (2006).
http://doi.acm.org/10.1145/1111037.1111042

3. Fisher, K., Launchbury, J., Richards, R.: The HACMS program: using formal
methods to eliminate exploitable bugs. Philos. Trans. A 375(2104) (2017). http://rsta.
royalsocietypublishing.org/content/375/2104/20150401

xii K. Fisher

http://doi.acm.org/10.1145/1111037.1111042
http://rsta.royalsocietypublishing.org/content/375/2104/20150401
http://rsta.royalsocietypublishing.org/content/375/2104/20150401

Contents

Program Verification

Time Credits and Time Receipts in Iris . 3
Glen Mével, Jacques-Henri Jourdan, and François Pottier

Meta-FI: Proof Automation with SMT, Tactics, and Metaprograms 30
Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis,
Chris Hawblitzel, Cătălin Hriţcu, Monal Narasimhamurthy,
Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko,
Tahina Ramananandro, Aseem Rastogi, and Nikhil Swamy

Semi-automated Reasoning About Non-determinism in C Expressions 60
Dan Frumin, Léon Gondelman, and Robbert Krebbers

Safe Deferred Memory Reclamation with Types . 88
Ismail Kuru and Colin S. Gordon

Language Design

Codata in Action. 119
Paul Downen, Zachary Sullivan, Zena M. Ariola,
and Simon Peyton Jones

Composing Bidirectional Programs Monadically . 147
Li-yao Xia, Dominic Orchard, and Meng Wang

Counters in Kappa: Semantics, Simulation, and Static Analysis. 176
Pierre Boutillier, Ioana Cristescu, and Jérôme Feret

One Step at a Time: A Functional Derivation of Small-Step Evaluators
from Big-Step Counterparts . 205

Ferdinand Vesely and Kathleen Fisher

Program Semantics

Extended call-by-push-value: Reasoning About Effectful Programs
and Evaluation Order. 235

Dylan McDermott and Alan Mycroft

Effectful Normal Form Bisimulation . 263
Ugo Dal Lago and Francesco Gavazzo

On the Multi-Language Construction . 293
Samuele Buro and Isabella Mastroeni

Probabilistic Programming Inference via Intensional Semantics 322
Simon Castellan and Hugo Paquet

Types

Handling Polymorphic Algebraic Effects . 353
Taro Sekiyama and Atsushi Igarashi

Distributive Disjoint Polymorphism for Compositional Programming 381
Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers

Types by Need . 410
Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle

Verifiable Certificates for Predicate Subtyping . 440
Frederic Gilbert

Security and Incremental Computation

Robustly Safe Compilation . 469
Marco Patrignani and Deepak Garg

Compiling Sandboxes: Formally Verified Software Fault Isolation. 499
Frédéric Besson, Sandrine Blazy, Alexandre Dang, Thomas Jensen,
and Pierre Wilke

Fixing Incremental Computation: Derivatives of Fixpoints, and the
Recursive Semantics of Datalog . 525

Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones,
and C.-H. Luke Ong

Incremental k-Calculus in Cache-Transfer Style: Static Memoization
by Program Transformation . 553

Paolo G. Giarrusso, Yann Régis-Gianas, and Philipp Schuster

Concurrency and Distribution

Asynchronous Timed Session Types: From Duality
to Time-Sensitive Processes . 583

Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos,
and Nobuko Yoshida

Manifest Deadlock-Freedom for Shared Session Types 611
Stephanie Balzer, Bernardo Toninho, and Frank Pfenning

xiv Contents

A Categorical Model of an i=o-typed p-calculus . 640
Ken Sakayori and Takeshi Tsukada

A Process Algebra for Link Layer Protocols. 668
Rob van Glabbeek, Peter Höfner, and Michael Markl

Program Analysis and Automated Verification

Data Races and Static Analysis for Interrupt-Driven Kernels. 697
Nikita Chopra, Rekha Pai, and Deepak D’Souza

An Abstract Domain for Trees with Numeric Relations 724
Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout

A Static Higher-Order Dependency Pair Framework 752
Carsten Fuhs and Cynthia Kop

Coinduction in Uniform: Foundations for Corecursive Proof Search
with Horn Clauses. 783

Henning Basold, Ekaterina Komendantskaya, and Yue Li

Author Index . 815

Contents xv

Program Verification

Time Credits and Time Receipts in Iris

Glen Mével1, Jacques-Henri Jourdan2(B), and François Pottier1

1 Inria, Paris, France
2 CNRS, LRI, Univ. Paris Sud, Université Paris Saclay, Orsay, France

jacques-henri.jourdan@lri.fr

Abstract. We present a machine-checked extension of the program logic
Iris with time credits and time receipts, two dual means of reasoning
about time. Whereas time credits are used to establish an upper bound on
a program’s execution time, time receipts can be used to establish a lower
bound. More strikingly, time receipts can be used to prove that certain
undesirable events—such as integer overflows—cannot occur until a very
long time has elapsed. We present several machine-checked applications
of time credits and time receipts, including an application where both
concepts are exploited.

“Alice: How long is forever? White Rabbit: Sometimes, just one second.”
— Lewis Carroll, Alice in Wonderland

1 Introduction

A program logic, such as Hoare logic or Separation Logic, is a set of deduction
rules that can be used to reason about the behavior of a program. To this day,
considerable effort has been invested in developing ever-more-powerful program
logics that control the extensional behavior of programs, that is, logics that
guarantee that a program safely computes a valid final result. A lesser effort has
been devoted to logics that allow reasoning not just about safety and functional
correctness, but also about intensional aspects of a program’s behavior, such as
its time consumption and space usage.

In this paper, we are interested in narrowing the gap between these lines of
work. We present a formal study of two mechanisms by which a standard program
logic can be extended with means of reasoning about time. As a starting point,
we take Iris [11–14], a powerful evolution of Concurrent Separation Logic [3]. We
extend Iris with two elementary time-related concepts, namely time credits [1,
4,9] and time receipts.

Time credits and time receipts are independent concepts: it makes sense to
extend a program logic with either of them in isolation or with both of them
simultaneously. They are dual concepts: every computation step consumes one
time credit and produces one time receipt. They are purely static: they do not
exist at runtime. We view them as Iris assertions. Thus, they can appear in the
correctness statements that we formulate about programs and in the proofs of
these statements.
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 3–29, 2019.
https://doi.org/10.1007/978-3-030-17184-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_1

4 G. Mével et al.

Time credits can be used to establish an upper bound on the execution time
of a program. Dually, time receipts can be used to establish a lower bound,
and (as explained shortly) can be used to prove that certain undesirable events
cannot occur until a very long time has elapsed.

Until now, time credits have been presented as an ad hoc extension of some
fixed flavor of Separation Logic [1,4,9]. In contrast, we propose a construction
which in principle allows time credits to be introduced on top of an arbitrary
“base logic”, provided this base logic is a sufficiently rich variety of Separation
Logic. In order to make our definitions and proofs more concrete, we use Iris as
the base logic. Our construction involves composing the base logic with a program
transformation that inserts a tick() instruction in front of every computation
step. As far as a user of the composite logic is concerned, the tick() instruction
and the assertion $1, which represents one time credit, are abstract: the only
fact to which the user has access is the Hoare triple {$1} tick() {True}, which
states that “tick() consumes one time credit”.

There are two reasons why we choose Iris [12] as the base logic. First, in the
proof of soundness of the composite logic, we must exhibit concrete definitions
of tick and $1 such that {$1} tick() {True} holds. Several features of Iris, such as
ghost state and shared invariants, play a key role in this construction. Second,
at the user level, the power of Iris can also play a crucial role. To illustrate this,
we present the first machine-checked reconstruction of Okasaki’s debits [19] in
terms of time credits. The construction makes crucial use of both time credits
and Iris’ ghost monotonic state and shared invariants.

Time receipts are a new concept, a contribution of this paper. To extend
a base logic with time receipts, we follow the exact same route as above: we
compose the base logic with the same program transformation as above, which
we refer to as “the tick translation”. In the eyes of a user of the composite logic,
the tick() instruction and the assertion � 1, which represents one time receipt,
are again abstract: this time, the only published fact about tick is the triple
{True} tick() {� 1}, which states that “tick() produces one time receipt”.

Thus far, the symmetry between time credits and time receipts seems perfect:
whereas time credits allow establishing an upper bound on the cost of a program
fragment, time receipts allow establishing a lower bound. This raises a pragmatic
question, though: why invest effort, time and money into a formal proof that a
piece of code is slow? What might be the point of such an endeavor? Taking
inspiration from Clochard et al. [5], we answer this question by turning slowness
into a quality. If there is a certain point at which a process might fail, then by
showing that this process is slow, we can show that failure is far away into the
future. More specifically, Clochard et al. propose two abstract types of integer
counters, dubbed “one-time” integers and “peano” integers, and provide a paper
proof that these counters cannot overflow in a feasible time: that is, it would take
infeasible time (say, centuries) for an execution to reach a point where overflow
actually occurs. To reflect this idea, we abandon the symmetry between time
credits and time receipts and publish a fact about time receipts which has no
counterpart on the time-credit side. This fact is an implication: �N �� False,

Time Credits and Time Receipts in Iris 5

that is, “N time receipts imply False”. The global parameter N can be adjusted
so as to represent one’s idea of a running time that is infeasible, perhaps due
to physical limitations, perhaps due to assumptions about the conditions in
which the software is operated. In this paper, we explain what it means for the
composite program logic to remain sound in the presence of this axiom, and
provide a formal proof that Iris, extended with time receipts, is indeed sound.
Furthermore, we verify that Clochard et al.’s ad hoc concepts of “one-time”
integers and “peano” integers can be reconstructed in terms of time receipts, a
more fundamental concept.

Finally, to demonstrate the combined use of time credits and receipts, we
present a proof of the Union-Find data structure, where credits are used to
express an amortized time complexity bound and receipts are used to prove that
a node’s integer rank cannot overflow, even if it is stored in very few bits.

In summary, the contributions of this paper are as follows:

1. A way of extending an off-the-shelf program logic with time credits and/or
receipts, by composition with a program transformation.

2. Extensions of Iris with time credits and receipts, accompanied with machine-
checked proofs of soundness.

3. A machine-checked reconstruction of Okasaki’s debits as a library in Iris with
time credits.

4. A machine-checked reconstruction of Clochard et al.’s “one-time” integers and
“peano” integers in Iris with time receipts.

5. A machine-checked verification of Union-Find in Iris with time credits and
receipts, offering both an amortized complexity bound and a safety guarantee
despite the use of machine integers of very limited width.

All of the results reported in this paper have been checked in Coq [17].

2 A User’s Overview of Time Credits and Time Receipts

2.1 Time Credits

A small number of axioms, presented in Fig. 1, govern time credits. The asser-
tion $n denotes n time credits. The splitting axiom, a logical equivalence, means
that time credits can be split and combined. Because Iris is an affine logic, it is
implicitly understood that time credits cannot be duplicated, but can be thrown
away.

The axiom timeless($n) means that time credits are independent of Iris’ step-
indexing. In practice, this allows an Iris invariant that involves time credits to
be acquired without causing a “later” modality to appear [12, §5.7]. The reader
can safely ignore this detail.

The last axiom, a Hoare triple, means that every computation step requires
and consumes one time credit. As in Iris, the postconditions of our Hoare triples
are λ-abstractions: they take as a parameter the return value of the term.
At this point, tick () can be thought of as a pseudo-instruction that has no
runtime effect and is implicitly inserted in front of every computation step.

6 G. Mével et al.

Fig. 1. The axiomatic interface TCIntf of time credits

Fig. 2. The axiomatic interface of exclusive time receipts (further enriched in Fig. 3)

Time credits can be used to express worst-case time complexity guarantees.
For instance, a sorting algorithm could have the following specification:

{array(a, xs) ∗ n = |xs| ∗ $(6n log n)}
sort(a)

{array(a, xs′) ∧ xs′ = . . .}
Here, array(a, xs) asserts the existence and unique ownership of an array at
address a, holding the sequence of elements xs. This Hoare triple guarantees not
only that the function call sort(a) runs safely and has the effect of sorting the
array at address a, but also that sort(a) runs in at most 6n log n time steps,
where n is the length of the sequence xs, that is, the length of the array. Indeed,
only 6n log n time credits are provided in the precondition, so the algorithm does
not have permission to run for a greater number of steps.

2.2 Time Receipts

In contrast with time credits, time receipts are a new concept, a contribution
of this paper. We distinguish two forms of time receipts. The most basic form,
exclusive time receipts, is the dual of time credits, in the sense that every compu-
tation step produces one time receipt. The second form, persistent time receipts,
exhibits slightly different properties. Inspired by Clochard et al. [5], we show
that time receipts can be used to prove that certain undesirable events, such as
integer overflows, cannot occur unless a program is allowed to execute for a very,
very long time—typically centuries. In the following, we explain that exclusive
time receipts allow reconstructing Clochard et al.’s “one-time” integers [5, §3.2],
which are so named because they are not duplicable, whereas persistent time
receipts allow reconstructing their “peano” integers [5, §3.2], which are so named
because they do not support unrestricted addition.

Time Credits and Time Receipts in Iris 7

Exclusive time receipts. The assertion �n denotes n time receipts. Like time
credits, these time receipts are “exclusive”, by which we mean that they are not
duplicable. The basic laws that govern exclusive time receipts appear in Fig. 2.
They are the same laws that govern time credits, with two differences. The first
difference is that time receipts are the dual of time credits: the specification of
tick , in this case, states that every computation step produces one time receipt.1
The second difference lies in the last axiom of Fig. 2, which has no analogue in
Fig. 1, and which we explain below.

In practice, how do we expect time receipts to be exploited? They can be used
to prove lower bounds on the execution time of a program: if the Hoare triple
{True} p {�n} holds, then the execution of the program p cannot terminate in
less than n steps. Inspired by Clochard et al. [5], we note that time receipts can
also be used to prove that certain undesirable events cannot occur in a feasible
time. This is done as follows. Let N be a fixed integer, chosen large enough
that a modern processor cannot possibly execute N operations in a feasible
time.2 The last axiom of Fig. 2, �N �� False, states that N time receipts imply
a contradiction.3 This axiom informally means that we won’t compute for N
time steps, because we cannot, or because we promise not to do such a thing.
A consequence of this axiom is that �n implies n < N : that is, if we have
observed n time steps, then n must be small.

Adopting this axiom weakens the guarantee offered by the program logic. A
Hoare triple {True} p {True} no longer implies that the program p is forever
safe. Instead, it means that p is (N −1)-safe: the execution of p cannot go wrong
until at least N − 1 steps have been taken. Because N is very large, for many
practical purposes, this is good enough.

How can this axiom be exploited in practice? We hinted above that it can be
used to prove the absence of certain integer overflows. Suppose that we wish to
use signed w-bit machine integers as a representation of mathematical integers.
(For instance, let w be 64.) Whenever we perform an arithmetic operation, such
as an addition, we must prove that no overflow can occur. This is reflected in
the specification of the addition of two machine integers:

{ι(x1) = n1 ∗ ι(x2) = n2 ∗ −2w−1 ≤ n1 + n2 < 2w−1}
add(x1, x2)

{λx. ι(x) = n1 + n2}
Here, the variables xi denote machine integers, while the auxiliary variables ni

denote mathematical integers, and the function ι is the injection of machine
integers into mathematical integers. The conjunct −2w−1 ≤ n1 + n2 < 2w−1 in
the precondition represents an obligation to prove that no overflow can occur.
1 For now, we discuss time credits and time receipts separately, which is why we have

different specifications for tick in either case. They are combined in Sect. 6.
2 For a specific example, let N be 263. Clochard et al. note that, even at the rate of one

billion operations per second, it takes more than 292 years to execute 263 operations.
On a 64-bit machine, 263 is also the maximum representable signed integer, plus one.

3 The connective �� is an Iris view shift, that is, a transition that can involve a side
effect on ghost state.

8 G. Mével et al.

Suppose now that the machine integers x1 and x2 represent the lengths of
two disjoint linked lists that we wish to concatenate. To construct each of these
lists, we must have spent a certain amount of time: as proofs of this work, let
us assume that the assertions �n1 and �n2 are at hand. Let us further assume
that the word size w is sufficiently large that it takes a very long time to count
up to the largest machine integer. That is, let us make the following assumption:

N ≤ 2w−1 (large word size assumption)

(E.g., with N = 263 and w = 64, this holds.) Then, we can prove that the
addition of x1 and x2 is permitted. This goes as follows. From the separating
conjunction �n1 ∗ �n2, we get �(n1 +n2). The existence of these time receipts
allows us to deduce 0 ≤ n1 + n2 < N , which implies 0 ≤ n1 + n2 < 2w−1. Thus,
the precondition of the addition operation add(x1, x2) is met.

In summary, we have just verified that the addition of two machine integers
satisfies the following alternative specification:

{ι(x1) = n1 ∗ �n1 ∗ ι(x2) = n2 ∗ �n2}
add(x1, x2)

{λx. ι(x) = n1 + n2 ∗ �(n1 + n2)}
This can be made more readable and more abstract by defining a “clock” to be
a machine integer x accompanied with ι(x) time receipts:

clock(x) � ∃n.(ι(x) = n ∗ �n)

Then, the above specification of addition can be reformulated as follows:

{clock(x1) ∗ clock(x2)}
add(x1, x2)

{λx. clock(x) ∗ ι(x) = ι(x1) + ι(x2)}
In other words, clocks support unrestricted addition, without any risk of overflow.
However, because time receipts cannot be duplicated, neither can clocks: clock(x)
does not entail clock(x) ∗ clock(x). In other words, a clock is uniquely owned.
One can think of a clock x as a hard-earned integer : the owner of this clock has
spent x units of time to obtain it.

Clocks are a reconstruction of Clochard et al.’s “one-time integers” [5], which
support unrestricted addition, but cannot be duplicated. Whereas Clochard et
al. view one-time integers as a primitive concept, and offer a direct paper proof of
their soundness, we have just reconstructed them in terms of a more elementary
notion, namely time receipts, and in the setting of a more powerful program
logic, whose soundness is machine-checked, namely Iris.

Persistent time receipts. In addition to exclusive time receipts, it is useful
to introduce a persistent form of time receipts.4 The axioms that govern both
exclusive and persistent time receipts appear in Fig. 3.
4 Instead of viewing persistent time receipts as a primitive concept, one could define

them as a library on top of exclusive time receipts. Unfortunately, this construction
leads to slightly weaker laws, which is why we prefer to view them as primitive.

Time Credits and Time Receipts in Iris 9

Fig. 3. The axiomatic interface TRIntf of time receipts

We write �n for a persistent receipt, a witness that at least n units of time
have elapsed. (We avoid the terminology “n persistent time receipts”, in the
plural form, because persistent time receipts are not additive. We view �n as
one receipt whose face value is n.) This assertion is persistent, which in Iris
terminology means that once it holds, it holds forever. This implies, in particular,
that it is duplicable: �n ≡ �n ∗ �n. It is created just by observing the existence
of n exclusive time receipts, as stated by the following axiom, also listed in Fig. 3:
�n �� �n ∗ �n. Intuitively, someone who has access to the assertion �n is
someone who knows that n units of work have been performed, even though they
have not necessarily “personally” performed that work. Because this knowledge
is not exclusive, the conjunction �n1 ∗ �n2 does not entail �(n1+n2). Instead,
we have the following axiom, also listed in Fig. 3: �(max(n1, n2)) ≡ �n1 ∗ �n2.

More subtly, the specification of tick in Fig. 3 is stronger than the one in
Fig. 2. According to this strengthened specification, tick () does not just produce
an exclusive receipt � 1. In addition to that, if a persistent time receipt �n is at
hand, then tick () is able to increment it and to produce a new persistent receipt
�(n+1), thus reflecting the informal idea that a new unit of time has just been
spent. A user who does not wish to make use of this feature can pick n = 0 and
recover the specification of tick in Fig. 2 as a special case.

Finally, because �n means that n steps have been taken, and because we
promise never to reach N steps, we adopt the axiom �N �� False, also listed in
Fig. 3. It implies the earlier axiom �N �� False, which is therefore not explicitly
shown in Fig. 3.

In practice, how are persistent time receipts exploited? By analogy with
clocks, let us define a predicate for a machine integer x accompanied with ι(x)
persistent time receipts:

snapclock(x) � ∃n.(ι(x) = n ∗ �n)

10 G. Mével et al.

By construction, this predicate is persistent, therefore duplicable:

snapclock(x) ≡ snapclock(x) ∗ snapclock(x)

We refer to this concept as a “snapclock”, as it is not a clock, but can be thought
of as a snapshot of some clock. Thanks to the axiom � k �� � k ∗ � k, we have:

clock(x) �� clock(x) ∗ snapclock(x)

Furthermore, snapclocks have the valuable property that, by performing just
one step of extra work, a snapclock can be incremented, yielding a new snapclock
that is greater by one. That is, the following Hoare triple holds:

{snapclock(x)}
tick (); add(x, 1)

{λx′. snapclock(x′) ∗ ι(x′) = ι(x) + 1}

The proof is not difficult. Unfolding snapclock(x) in the precondition yields �n,
where ι(x) = n. As per the strengthened specification of tick , the execution of
tick () then yields � 1 ∗ �(n+1). As in the case of clocks, the assertion �(n+1)
implies 0 ≤ n + 1 < 2w−1, which means that no overflow can occur. Finally, � 1
is thrown away and �(n+1) is used to justify snapclock(x′) in the postcondition.

Adding two arbitrary snapclocks x1 and x2 is illegal: from the sole assumption
snapclock(x1) ∗ snapclock(x2), one cannot prove that the addition of x1 and x2

won’t cause an overflow, and one cannot prove that its result is a valid snapclock.
However, snapclocks do support a restricted form of addition. The addition of
two snapclocks x1 and x2 is safe, and produces a valid snapclock x, provided it
is known ahead of time that its result is less than some preexisting snapclock y:

{snapclock(x1) ∗ snapclock(x2) ∗ ι(x1 + x2) ≤ ι(y) ∗ snapclock(y)}
add(x1, x2)

{λx. snapclock(x) ∗ ι(x) = ι(x1) + ι(x2)}

Snapclocks are a reconstruction of Clochard et al.’s “peano integers” [5], which
are so named because they do not support unrestricted addition. Clocks and
snapclocks represent different compromises: whereas clocks support addition but
not duplication, snapclocks support duplication but not addition. They are useful
in different scenarios: as a rule of thumb, if an integer counter is involved in the
implementation of a mutable data structure, then one should attempt to view it
as a clock; if it is involved in the implementation of a persistent data structure,
then one should attempt to view it as a snapclock.

3 HeapLang and the Tick Translation

In the next section (Sect. 4), we extend Iris with time credits, yielding a new
program logic Iris$. We do this without modifying Iris. Instead, we compose
Iris with a program transformation, the “tick translation”, which inserts tick()

Time Credits and Time Receipts in Iris 11

instructions into the code in front of every computation step. In the construction
of Iris�, our extension of Iris with time receipts, the tick translation is exploited
in a similar way (Sect. 5). In this section, we define the tick translation and state
some of its properties.

Iris is a generic program logic: it can be instantiated with an arbitrary cal-
culus for which a small-step operational semantics is available [12]. Ideally, our
extension of Iris should take place at this generic level, so that it, too, can be
instantiated for an arbitrary calculus. Unfortunately, it seems difficult to define
the tick translation and to prove it correct in a generic manner. For this rea-
son, we choose to work in the setting of HeapLang [12], an untyped λ-calculus
equipped with Booleans, signed machine integers, products, sums, recursive func-
tions, references, and shared-memory concurrency. The three standard opera-
tions on mutable references, namely allocation, reading, and writing, are avail-
able. A compare-and-set operation (e1, e2, e3) and an operation for spawning
a new thread are also provided. As the syntax and operational semantics of Hea-
pLang are standard and very much irrelevant in this paper, we omit them. They
appear in our online repository [17].

The tick translation transforms a HeapLang expression e to a HeapLang
expression 〈〈e〉〉tick . It is parameterized by a value tick . Its effect is to insert a
call to tick in front of every operation in the source expression e. The translation
of a function application, for instance, is as follows:

〈〈e1 (e2)〉〉tick = tick (〈〈e1〉〉tick) (〈〈e2〉〉tick)
For convenience, we assume that tick can be passed an arbitrary value v as an
argument, and returns v. Because evaluation in HeapLang is call-by-value and
happens to be right-to-left5, the above definition means that, after evaluating
the argument 〈〈e2〉〉tick and the function 〈〈e1〉〉tick , we invoke tick , then carry on
with the function call. This translation is syntactically well-behaved: it preserves
the property of being a value, and commutes with substitution. This holds for
every value tick .

tickc � self (x) =
k = ! c

k = 0 oops ()
(c, k , k − 1) x self (x)

Fig. 4. Implementation of tickc in HeapLang

As far the end user is concerned, tick remains abstract (Sect. 2). Yet, in our
constructions of Iris$ and Iris�, we must provide a concrete implementation of
it in HeapLang. This implementation, named tickc , appears in Fig. 4. A global
5 If HeapLang used left-to-right evaluation, the definition of the translation would be

slightly different, but the lemmas that we prove would be the same.

12 G. Mével et al.

integer counter c stores the number of computation steps that the program is still
allowed to take. The call tickc () decrements a global counter c, if this counter
holds a nonzero value, and otherwise invokes oops ().

At this point, the memory location c and the value oops are parameters.
We stress that tickc plays a role only in the proofs of soundness of Iris$ and

Iris�. It is never actually executed, nor is it shown to the end user.
Once tick is instantiated with tickc , one can prove that the translation is

correct in the following sense: the translated code takes the same computation
steps as the source code and additionally keeps track of how many steps are
taken. More specifically, if the source code can make n computation steps, and
if c is initialized with a value m that is sufficiently large (that is, m ≥ n), then
the translated code can make n computation steps as well, and c is decremented
from m to m − n in the process.

Lemma 1 (Reduction Preservation). Assume there is a reduction sequence:

(T1, σ1) →n
tp (T2, σ2)

Assume c is fresh for this reduction sequence. Let m ≥ n. Then, there exists a
reduction sequence:

(〈〈T1〉〉, 〈〈σ1〉〉 [c ← m]) →∗
tp (〈〈T2〉〉, 〈〈σ2〉〉 [c ← m − n])

In this statement, the metavariable T stands for a thread pool, while σ stands
for a heap. The relation →tp is HeapLang’s “threadpool reduction”. For the sake
of brevity, we write just 〈〈e〉〉 for 〈〈e〉〉tickc , that is, for the translation of the
expression e, where tick is instantiated with tickc . This notation is implicitly
dependent on the parameters c and oops.

The above lemma holds for every choice of oops. Indeed, because the counter c
initially holds the value m, and because we have m ≥ n, the counter is never
about to fall below zero, so oops is never invoked.

The next lemma also holds for every choice of oops. It states that if the
translated program is safe and if the counter c has not yet reached zero then the
source program is not just about to crash.

Lemma 2 (Immediate Safety Preservation). Assume c is fresh for e. Let
m > 0. If the configuration (〈〈e〉〉, 〈〈σ〉〉 [c ←m]) is safe, then either e is a value
or the configuration (e, σ) is reducible.

By combining Lemmas 1 and 2 and by contraposition, we find that safety is
preserved backwards, as follows: if, when the counter c is initialized with m, the
translated program 〈〈e〉〉 is safe, then the source program e is m-safe.

Lemma 3 (Safety Preservation). If for every location c the configuration
(〈〈T 〉〉, 〈〈σ〉〉 [c ← m]) is safe, then the configuration (T, σ) is m-safe.

Time Credits and Time Receipts in Iris 13

4 Iris with Time Credits

The authors of Iris [12] have used Coq both to check that Iris is sound and to
offer an implementation of Iris that can be used to carry out proofs of programs.
The two are tied: if {True} p {True} can be established by applying the proof
rules of Iris, then one gets a self-contained Coq proof that the program p is safe.

In this section, we temporarily focus on time credits and explain how we
extend Iris with time credits, yielding a new program logic Iris$. The new logic
is defined in Coq and still offers an end-to-end guarantee: if {$k} p {True} can
be established in Coq by applying the proof rules of Iris$, then one has proved
in Coq that p is safe and runs in at most k steps.

To define Iris$, we compose Iris with the tick translation. We are then able to
argue that, because this program transformation is operationally correct (that is,
it faithfully accounts for the passing of time), and because Iris is sound (that is, it
faithfully approximates the behavior of programs), the result of the composition
is a sound program logic that is able to reason about time.

In the following, we view the interface TCIntf as explicitly parameterized
over $ and tick . Thus, we write “TCIntf ($) tick ” for the separating conjunction
of all items in Fig. 1 except the declarations of $ and tick .

We require the end user, who wishes to perform proofs of programs in Iris$,
to work with Iris$ triples, which are defined as follows:

Definition 1 (Iris$ triple). An Iris$ triple {P } e {Φ}$ is syntactic sugar for:

∀($: N → iProp) ∀tick TCIntf ($) tick −∗ {P } 〈〈e〉〉tick {Φ}
Thus, an Iris$ triple is in reality an Iris triple about the instrumented expression
〈〈e〉〉tick . While proving this Iris triple, the end user is given an abstract view
of the predicate $ and the instruction tick . He does not have access to their
concrete definitions, but does have access to the laws that govern them.

We prove that Iris$ is sound in the following sense:

Theorem 1 (Soundness of Iris$). If {$n} e {True}$ holds, then the machine
configuration (e, ∅), where ∅ is the empty heap, is safe and terminates in at
most n steps.

In other words, a program that is initially granted n time credits cannot run
for more than n steps. To establish this theorem, we proceed roughly as follows:

1. we provide a concrete definition of tick ;
2. we provide a concrete definition of $ and prove that TCIntf ($) tick holds;
3. this yields {$n} 〈〈e〉〉tick {True}; from this and from the correctness of the tick

translation, we deduce that e cannot crash or run for more than n steps.

Step 1. Our first step is to provide an implementation of tick . As announced
earlier (Sect. 3), we use tickc (Fig. 4). We instantiate the parameter oops with
crash, an arbitrary function whose application is unsafe. (That is, crash is chosen
so that crash () reduces to a stuck term.) For the moment, c remains a parameter.

14 G. Mével et al.

With these concrete choices of tick and oops, the translation transforms an
out-of-time-budget condition into a hard crash. Because Iris forbids crashes,
Iris$, which is the composition of the translation with Iris, will forbid out-of-
time-budget conditions, as desired.

For technical reasons, we need two more lemmas about the translation, whose
proofs rely on the fact that oops is instantiated with crash. They are slightly
modified or strengthened variants of Lemmas 2 and 3. First, if the source code
can take one step, then the translated code, supplied with zero budget, crashes.
Second, if the translated code, supplied with a runtime budget of m, does not
crash, then the source code terminates in at most m steps.

Lemma 4 (Credit Exhaustion). Suppose the configuration (T, σ) is reducible.
Then, for all c, the configuration (〈〈T 〉〉, 〈〈σ〉〉 [c ← 0]) is unsafe.

Lemma 5 (Safety Preservation, Strengthened). If for every location c the
configuration (〈〈T 〉〉, 〈〈σ〉〉 [c ←m]) is safe, then (T, σ) is safe and terminates in
at most m steps.

Step 2. Our second step, roughly, is to exhibit a definition of $: N → iProp
such that TCIntf ($) tickc is satisfied. That is, we would like to prove something
along the lines of: ∃($: N → iProp) TCIntf ($) tickc . However, these informal
sentences do not quite make sense. This formula is not an ordinary proposition:
it is an Iris assertion, of type iProp. Thus, it does not make sense to say that
this formula “is true” in an absolute manner. Instead, we prove in Iris that we
can make this assertion true by performing a view shift, that is, a number of
operations that have no runtime effect, such as allocating a ghost location and
imposing an invariant that ties this ghost state with the physical state of the
counter c. This is stated as follows:

Lemma 6 (Time Credit Initialization). For every c and n, the following
Iris view shift holds:

(c → n) �� ∃($: N → iProp) (TCIntf ($) tickc ∗ $n)

In this statement, on the left-hand side of the view shift symbol, we find
the “points-to” assertion c → n, which represents the unique ownership of the
memory location c and the assumption that its initial value is n. This assertion
no longer appears on the right-hand side of the view shift. This reflects the fact
that, when the view shift takes place, it becomes impossible to access c directly;
the only way of accessing it is via the operation tickc .

On the right-hand side of the view shift symbol, beyond the existential quan-
tifier, we find a conjunction of the assertion TCIntf ($) tickc , which means that
the laws of time credits are satisfied, and $n, which means that there are initially
n time credits in existence.

In the interest of space, we provide only a brief summary of the proof
of Lemma 6; the reader is referred to the extended version of this paper [18,
Appendix A] for more details. In short, the assertion $1 is defined in such a way

Time Credits and Time Receipts in Iris 15

that it represents an exclusive contribution of one unit to the current value of
the global counter c. In other words, we install the following invariant: at every
time, the current value of c is (at least) the sum of all time credits in existence.
Thus, the assertion $1 guarantees that c is nonzero, and can be viewed as a
permission to decrement c by one. This allows us to prove that the specification
of tick in Fig. 1 is satisfied by our concrete implementation tickc . In particular,
tickc cannot cause a crash: indeed, under the precondition $1, c is not in danger
of falling below zero, and crash () is not executed—it is in fact dead code.

Step 3. In the last reasoning step, we complete the proof of Theorem 1. The
proof is roughly as follows. Suppose the end user has established {$n} e {True}$.
By Safety Preservation, Strengthened (Lemma 5), to prove that (e, ∅) is safe and
runs in at most n steps, it suffices to show (for an arbitrary location c) that the
translated expression 〈〈e〉〉, executed in the initial heap ∅ [c ←n], is safe. To do
so, beginning with this initial heap, we perform Time Credit Initialization, that
is, we execute the view shift whose statement appears in Lemma 6. This yields
an abstract predicate $ as well as the assertions TCIntf ($) tick and $n. At
this point, we unfold the Iris$ triple {$n} e {True}$, yielding an implication (see
Definition 1), and apply it to $, to tickc , and to the hypothesis TCIntf ($) tick .
This yields the Iris triple {$n} 〈〈e〉〉 {True}. Because we have $n at hand and
because Iris is sound [12], this implies that 〈〈e〉〉 is safe. This concludes the proof.

This last step is, we believe, where the modularity of our approach shines.
Iris’ soundness theorem is re-used as a black box, without change. In fact, any
program logic other than Iris could be used as a basis for our construction, as
along as it is expressive enough to prove Time Credit Initialization (Lemma 6).
The last ingredient, Safety Preservation, Strengthened (Lemma 5), involves only
the operational semantics of HeapLang, and is independent of Iris.

This was just an informal account of our proof. For further details, the reader
is referred to the online repository [17].

5 Iris with Time Receipts

In this section, we extend Iris with time receipts and prove the soundness of
the new logic, dubbed Iris�. To do so, we follow the scheme established in the
previous section (Sect. 4), and compose Iris with the tick translation.

From here on, let us view the interface of time receipts as parameterized
over �, �, and tick . Thus, we write “TRIntf (�) (�) tick ” for the separating
conjunction of all items in Fig. 3 except the declarations of �, �, and tick .

As in the case of credits, the user is given an abstract view of time receipts:

Definition 2 (Iris� triple). An Iris� triple {P } e {Φ}� is syntactic sugar for:

∀(�,� : N → iProp) ∀tick TRIntf (�) (�) tick −∗ {P } 〈〈e〉〉tick {Φ}
Theorem 2 (Soundness of Iris�). If {True} e {True}� holds, then the machine
configuration (e, ∅) is (N − 1)-safe.

16 G. Mével et al.

As indicated earlier, we assume that the end user is interested in proving
that crashes cannot occur until a very long time has elapsed, which is why we
state the theorem in this way.6 Whereas an Iris triple {True} e {True} guarantees
that e is safe, the Iris� triple {True} e {True}� guarantees that it takes at least
N − 1 steps of computation for e to crash. In this statement, N is the global
parameter that appears in the axiom �N �� False (Fig. 3). Compared with
Iris, Iris� provides a weaker safety guarantee, but offers additional reasoning
principles, leading to increased convenience and modularity.

In order to establish Theorem 2, we again proceed in three steps:

1. provide a concrete definition of tick ;
2. provide concrete definitions of �,� and prove that TRIntf (�) (�) tick holds;
3. from {True} 〈〈e〉〉tick {True}, deduce that e is (N − 1)-safe.

Step 1. In this step, we keep our concrete implementation of tick , namely tickc

(Fig. 4). One difference with the case of time credits, though, is that we plan to
initialize c with N − 1. Another difference is that, this time, we instantiate the
parameter oops with loop, where loop () is an arbitrary divergent term.7

Step 2. The next step is to prove that we are able to establish the time receipt
interface. We prove the following:
Lemma 7 (Time Receipt Initialization). For every location c, the following
Iris view shift holds:

(c → N − 1) �� ∃(�,� : N → iProp) TRIntf (�) (�) tickc

We provide only a brief summary of the proof of Lemma 7; for further details,
the reader is referred to the extended version of this paper [18, Appendix B].
Roughly speaking, we install the invariant that c holds N −1−i, where i is some
number that satisfies 0 ≤ i < N . We define �n as an exclusive contribution of n
units to the current value of i, and define �n as an observation that i is at least
n. (i grows with time, so such an observation is stable.) As part of the proof of
the above lemma, we check that the specification of tick holds:

{�n} tick (v) {λw. w = v ∗ � 1 ∗ �(n + 1)}
In contrast with the case of time credits, in this case, the precondition �n does
not guarantee that c holds a nonzero value. Thus, it is possible for tick() to
be executed when c is zero. This is not a problem, though, because loop() is
safe to execute in any situation: it satisfies the Hoare triple {True} loop() {False}.
In other words, when c is about to fall below zero and therefore the invariant
i < N seems about to be broken, loop () saves the day by running away and
never allowing execution to continue normally.
6 If the user instead wishes to establish a lower bound on a program’s execution time,

this is possible as well.
7 In fact, it is not essential that loop() diverges. What matters is that loop satisfy

the Iris triple {True} loop() {False}. A fatal runtime error that Iris does not rule out
would work just as well, as it satisfies the same specification.

Time Credits and Time Receipts in Iris 17

Step 3. In the last reasoning step, we complete the proof of Theorem 2. Suppose
the end user has established {True} e {True}�. By Safety Preservation (Lemma3),
to prove that (e, ∅) is (N−1)-safe, it suffices to show (for an arbitrary location c)
that 〈〈e〉〉, executed in the initial heap ∅ [c ←N − 1], is safe. To do so, beginning
with this initial heap, we perform Time Receipt Initialization, that is, we execute
the view shift whose statement appears in Lemma 7. This yields two abstract
predicates � and � as well as the assertion TRIntf (�) (�) tick . At this point, we
unfold {True} e {True}� (see Definition 2), yielding an implication, and apply this
implication, yielding the Iris triple {True} 〈〈e〉〉 {True}. Because Iris is sound [12],
this implies that 〈〈e〉〉 is safe. This concludes the proof. For further detail, the
reader is again referred to our online repository [17].

6 Marrying Time Credits and Time Receipts

It seems desirable to combine time credits and time receipts in a single program
logic, Iris$�. We have done so [17]. In short, following the scheme of Sects. 4
and 5, the definition of Iris$� involves composing Iris with the tick translation.
This time, tick serves two purposes: it consumes one time credit and produces
one exclusive time receipt (and increments a persistent time receipt). Thus, its
specification is as follows:

{$1 ∗ �n} tick (v) {λw. w = v ∗ � 1 ∗ �(n + 1)}

Let us write TCTRIntf ($) (�) (�) tick for the combined interface of time credits
and time receipts. This interface combines all of the axioms of Figs. 1 and 3, but
declares a single tick function8 and proposes a single specification for it, which
is the one shown above.

Definition 3 (Iris$� triple). An Iris$� triple {P } e {Φ}$� stands for:

∀ ($) (�) (�) tick TCTRIntf ($) (�) (�) tick −∗ {P } 〈〈e〉〉tick {Φ}

Theorem 3 (Soundness of Iris$�). If {$n} e {True}$� holds then the machine
configuration (e, ∅) is (N − 1)-safe. If furthermore n < N holds, then this
machine configuration terminates in at most n steps.

Iris$� allows exploiting time credits to prove time complexity bounds and,
at the same time, exploiting time receipts to prove the absence of certain integer
overflows. Our verification of Union-Find (Sect. 8) illustrates these two aspects.

Guéneau et al. [7] use time credits to reason about asymptotic complexity,
that is, about the manner in which a program’s complexity grows as the size
of its input grows towards infinity. Does such asymptotic reasoning make sense
in Iris$�, where no program is ever executed for N time steps or beyond? It
8 Even though the interface provides only one tick function, it gets instantiated in the

soundness theorem with different implementations depending on whether there are
more than N time credits or not.

18 G. Mével et al.

seems to be the case that if a program p satisfies the triple {$n} p {Φ}$�, then
it also satisfies the stronger triple {$min(n,N)} p {Φ}$�, therefore also satisfies
{$N} p {Φ}$�. Can one therefore conclude that p has “constant time complexity”?
We believe not. Provided N is considered a parameter, as opposed to a constant,
one cannot claim that “N is O(1)”, so {$min(n,N)} p {Φ}$� does not imply
that “p runs in constant time”. In other words, a universal quantification on N
should come after the existential quantifier that is implicit in the O notation. We
have not yet attempted to implement this idea; this remains a topic for further
investigation.

7 Application: Thunks in Iris$

In this section, we illustrate the power of Iris$ by constructing an implementation
of thunks as a library in Iris$. A thunk, also known as a suspension, is a very
simple data structure that represents a suspended computation. There are two
operations on thunks, namely create, which constructs a new thunk, and force,
which demands the result of a thunk. A thunk memoizes its result, so that even
if it is forced multiple times, the computation only takes place once.

Okasaki [19] proposes a methodology for reasoning about the amortized time
complexity of computations that involve shared thunks. For every thunk, he
keeps track of a debit, which can be thought of as an amount of credit that one
must still pay before one is allowed to force this thunk. A ghost operation, pay ,
changes one’s view of a thunk, by reducing the debit associated with this thunk.
force can be applied only to a zero-debit thunk, and has amortized cost O(1).
Indeed, if this thunk has been forced already, then force really requires constant
time; and if this thunk is being forced for the first time, then the cost of perform-
ing the suspended computation must have been paid for in advance, possibly in
several installments, via pay . This discipline is sound even in the presence of
sharing, that is, of multiple pointers to a thunk. Indeed, whereas duplicating
a credit is unsound, duplicating a debit leads to an over-approximation of the
true cost, hence is sound. Danielsson [6] formulates Okasaki’s ideas as a type
system, which he proves sound in Agda. Pilkiewicz and Pottier [20] reconstruct
this type discipline in the setting of a lower-level type system, equipped with
basic notions of time credits, hidden state, and monotonic state. Unfortunately,
their type system is presented in an informal manner and does not come with a
proof of type soundness.

We reproduce Pilkiewicz and Pottier’s construction in the formal setting of
Iris$. Indeed, Iris$ offers all of the necessary ingredients, namely time credits,
hidden state (invariants, in Iris terminology) and monotonic state (a special case
of Iris’ ghost state). Our reconstruction is carried out inside Coq [17].

7.1 Concurrency and Reentrancy

One new problem that arises here is that Okasaki’s analysis, which is valid in a
sequential setting, potentially becomes invalid in a concurrent setting. Suppose

Time Credits and Time Receipts in Iris 19

we wish to allow multiple threads to safely share access to a thunk. A natural,
simple-minded approach would be to equip every thunk with a lock and allow
competition over this lock. Then, unfortunately, forcing would become a blocking
operation: one thread could waste time waiting for another thread to finish
forcing. In fact, in the absence of a fairness assumption about the scheduler,
an unbounded amount of time could be wasted in this way. This appears to
invalidate the property that force has amortized cost O(1).

Technically, the manner in which this problem manifests itself in Iris$ is in
the specification of locks. Whereas in Iris a spin lock can be implemented and
proved correct with respect to a simple and well-understood specification [2], in
Iris$, it cannot. The lock() method contains a potentially infinite loop: therefore,
no finite amount of time credits is sufficient to prove that lock() is safe. This
issue is discussed in greater depth later on (Sect. 9).

A distinct yet related problem is reentrancy. Arguably, an implementation
of thunks should guarantee that a suspended computation is evaluated at most
once. This guarantee seems particularly useful when the computation has a side
effect: the user can then rely on the fact that this side effect occurs at most
once. However, this property does not naturally hold: in the presence of heap-
allocated mutable state, it is possible to construct an ill-behaved “reentrant”
thunk which, when forced, attempts to recursively force itself. Thus, something
must be done to dynamically reject or statically prevent reentrancy. In Pilkiewicz
and Pottier’s code [20], reentrancy is detected at runtime, thanks to a three-color
scheme, and causes a fatal runtime failure. In a concurrent system where each
thunk is equipped with a lock, reentrancy is also detected at runtime, and turned
into deadlock; but we have explained earlier why we wish to avoid locks.

Fortunately, Iris provides us with a static mechanism for forbidding both con-
currency and reentrancy. We introduce a unique token E, which can be thought
of as “permission to use the thunk API”, and set things up so that pay and
force require and return E. This forbids concurrency: two operations on thunks
cannot take place concurrently. Furthermore, when a user-supplied suspended
computation is executed, the token E is not transmitted to it. This forbids reen-
trancy.9 The implementation of this token relies on Iris’ “nonatomic invariants”
(Sect. 7.4). With these restrictions, we are able to prove that Okasaki’s discipline
is sound.

7.2 Implementation of Thunks

A simple implementation of thunks in HeapLang appears in Fig. 5. A thunk can
be in one of two states: White f and Black v. A white thunk is unevaluated:

9 Therefore, a suspended computation cannot force any thunk. This is admittedly a
very severe restriction, which rules out many useful applications of thunks. In fact,
we have implemented a more flexible discipline, where thunks can be grouped in
multiple “regions” and there is one token per region instead of a single global E
token. This discipline allows concurrent or reentrant operations on provably distinct
thunks, yet can still be proven sound.

20 G. Mével et al.

create � λf . (White f)

force � λt . ! t
White f ⇒ v = f () t Black v ; v

| Black v ⇒ v

Fig. 5. An implementation of thunks

Fig. 6. A simple specification of thunks in Iris$

the function f represents a suspended computation. A black thunk is evaluated:
the value v is the result of the computation that has been performed already.
Two colors are sufficient: because our static discipline rules out reentrancy, there
is no need for a third color, whose purpose would be to dynamically detect an
attempt to force a thunk that is already being forced.

7.3 Specification of Thunks in Iris$

Our specification of thunks appears in Fig. 6. It declares an abstract predicate
isThunk t n Φ, which asserts that t is a valid thunk, that the debt associated
with this thunk is n, and that this thunk (once forced) produces a value that
satisfies the postcondition Φ. The number n, a debit, is the number of credits
that remain to be paid before this thunk can be forced. The postcondition Φ
is chosen by the user when a thunk is created. It must be duplicable (this is
required in the specification of force) because force can be invoked several times
and we must guarantee, every time, that the result v satisfies Φ v.

The second axiom states that isThunk t n Φ is a persistent assertion. This
means that a valid thunk, once created, remains a valid thunk forever. Among

Time Credits and Time Receipts in Iris 21

other things, it is permitted to create two pointers to a single thunk and to
reason independently about each of these pointers.

The third axiom states that isThunk t n Φ is covariant in its parameter n.
Overestimating a debt still leads to a correct analysis of a program’s worst-case
time complexity.

Next, the specification declares an abstract assertion E, and provides the user
with one copy of this assertion. We refer to it as “the thunderbolt”.

The next item in Fig. 6 is the specification of create. It is higher-order: the
precondition of create contains a specification of the function f that is passed
as an argument to create. This axiom states that, if f represents a computa-
tion of cost n, then create (f) produces an n-debit thunk. The cost of creation
itself is 3 credits. This specification is somewhat simplistic, as it does not allow
the function f to have a nontrivial precondition. It is possible to offer a richer
specification; we eschew it in favor of simplicity.

Next comes the specification of force. Only a 0-debit thunk can be forced. The
result is a value v that satisfies Φ. The (amortized) cost of forcing is 11 credits.
The thunderbolt appears in the pre- and postcondition of force, forbidding any
concurrent attempts to force a thunk.

The last axiom in Fig. 6 corresponds to pay . It is a view shift, a ghost oper-
ation. By paying k credits, one turns an n-debit thunk into an (n − k)-debit
thunk. At runtime, nothing happens: it is the same thunk before and after the
payment. Yet, after the view shift, we have a new view of the number of debits
associated with this thunk. Here, paying requires the thunderbolt. It should be
possible to remove this requirement; we have not yet attempted to do so.

7.4 Proof of Thunks in Iris$

After implementing thunks in HeapLang (Sect. 7.2) and expressing their speci-
fication in Iris$ (Sect. 7.3), there remains to prove that this specification can be
established. We sketch the key ideas of this proof.

Following Pilkiewicz and Pottier [20], when a new thunk is created, we install
a new Iris invariant, which describes this thunk. The invariant is as follows:

ThunkInv t γ nc Φ �

∃ac.

(
• ac

γ ∗
{ ∃f . t → White f ∗ {$nc} f () {Φ} ∗ $ac

∨ ∃v. t → Black v

)

γ is a ghost location, which we allocate at the same time as the thunk t . It holds ele-
ments of the authoritative monoid Auth(N,max) [12]. The variable nc, for “nec-
essary credits”, is the cost of the suspended computation: it appears in the precon-
dition of f . The variable ac, for “available credits”, is the number of credits that
have been paid so far. The disjunction inside the invariant states that:

– either the thunk is white, in which case we have ac credits at hand;
– or the thunk is black, in which case we have no credits at hand, as they have

been spent already.

22 G. Mével et al.

The predicate isThunk t n Φ is then defined as follows:

isThunk t n Φ �

∃γ, nc.
(

◦ (nc − n)
γ ∗ NaInv(ThunkInv t γ nc Φ)

)

The non-authoritative assertion ◦ (nc − n)
γ

inside isThunk t n Φ, confronted
with the authoritative assertion • ac

γ
that can be obtained by acquiring the

invariant, implies the inequality nc − n ≤ ac, therefore nc ≤ ac+n. That is, the
credits paid so far (ac) plus the credits that remain to be paid (n) are sufficient
to cover for the actual cost of the computation (nc). In particular, in the proof
of force, we have a 0-debit thunk, so nc ≤ ac holds. In the case where the thunk
is white, this means that the ac credits that we have at hand are sufficient to
justify the call f (), which requires nc credits.

The final aspect that remains to be explained is our use of NaInv(· · ·), an Iris
“nonatomic invariant”. Indeed, in this proof, we cannot rely on Iris’ primitive
invariants. A primitive invariant can be acquired only for the duration of an
atomic instruction [12]. In our implementation of thunks (Fig. 5), however, we
need a “critical section” that encompasses several instructions. That is, we must
acquire the invariant before dereferencing t , and (in the case where this thunk is
white) we cannot release it until we have marked this thunk black. Fortunately,
Iris provides a library of “nonatomic invariants” for this very purpose. (This
library is used in the RustBelt project [10] to implement Rust’s type Cell.) This
library offers separate ghost operations for acquiring and releasing an invariant.
Acquiring an invariant consumes a unique token, which is recovered when the
invariant is released: this guarantees that an invariant cannot be acquired twice,
or in other words, that two threads cannot be in a critical section at the same
time. The unique token involved in this protocol is the one that we expose to
the end user as “the thunderbolt”.

8 Application: Union-Find in Iris$�

As an illustration of the use of both time credits and time receipts, we formally
verify the functional correctness and time complexity of an implementation of
the Union-Find data structure. Our proof [17] is based on Charguéraud and
Pottier’s work [4]. We port their code from OCaml to HeapLang, and port their
proof from Separation Logic with Time Credits to Iris$�. At this point, the proof
exploits just Iris$, a subset of Iris$�. The mathematical analysis of Union-Find,
which represents a large part of the proof, is unchanged. Our contribution lies in
the fact that we modify the data structure to represent ranks as machine integers
instead of unbounded integers, and exploit time receipts in Iris$� to establish the
absence of overflow. We equip HeapLang with signed machine integers whose bit
width is a parameter w. Under the hypothesis log logN < w − 1, we are able
to prove that, even though the code uses limited-width machine integers, no
overflow can occur in a feasible time. If for instance N is 263, then this condition
boils down to w ≥ 7. Ranks can be stored in just 7 bits without risking overflow.

Time Credits and Time Receipts in Iris 23

As in Charguéraud and Pottier’s work, the Union-Find library advertises
an abstract representation predicate isUFD R V , which describes a well-formed,
uniquely-owned Union-Find data structure. The parameter D, a set of nodes, is
the domain of the data structure. The parameter R, a function, maps a node
to the representative element of its equivalence class. The parameter V , also a
function, maps a node to a payload value associated with its equivalence class.
We do not show the specification of every operation. Instead, we focus on union,
which merges two equivalence classes. We establish the following Iris$� triple:

log logN < w − 1
x ∈ D
y ∈ D

⎫⎬
⎭ ⇒

{isUFD R V ∗ $(44α(|D|) + 152)}
union (x, y){

λz.
isUFD R′ V ′ ∗
z = R(x) ∨ z = R(y)

}
$�

where the functions R′ and V ′ are defined as follows:10

(R′(w), V ′(w)) =

{
(z, V (z)) if R(w) = R(x) or R(w) = R(y)
(R(w), V (w)) otherwise

The hypotheses x ∈ D and y ∈ D and the conjunct isUFD R V in the
precondition require that x and y be two nodes in a valid Union-Find data
structure. The postcondition λz. . . . describes the state of the data structure
after the operation and the return value z.

The conjunct $(44α(|D|)+152) in the precondition indicates that union has
time complexity O(α(n)), where α is an inverse of Ackermann’s function and
n is the number of nodes in the data structure. This is an amortized bound;
the predicate isUF also contains a certain number of time credits, known as the
potential of the data structure, which are used to justify union operations whose
actual cost exceeds the advertised cost. The constants 44 and 152 differ from
those found in Charguéraud and Pottier’s specification [4] because Iris$� counts
every computation step, whereas they count only function calls. Abstracting
these constants by using O notation, as proposed by Guéneau et al. [7], would
be desirable, but we have not attempted to do so yet.

The main novelty, with respect to Charguéraud and Pottier’s specification,
is the hypothesis log logN < w − 1, which is required to prove that no overflow
can occur when the rank of a node is incremented. In our proof, N and w are
parameters; once their values are chosen, this hypothesis is easily discharged,
once and for all. In the absence of time receipts, we would have to publish the
hypothesis log log n < w − 1, where n is the cardinal of D, forcing every (direct
and indirect) user of the data structure to keep track of this requirement.

For the proof to go through, we store n time receipts in the data structure:
that is, we include the conjunct �n, where n stands for |D|, in the definition of
the invariant isUFD R V . The operation of creating a new node takes at least one
10 This definition of R′ and V ′ has free variables x, y, z, therefore in reality must appear

inside the postcondition. Here, it is presented separately, for greater readability.

24 G. Mével et al.

step, therefore produces one new time receipt, which is used to prove that the
invariant is preserved by this operation. At any point, then, from the invariant,
and from the basic laws of time receipts, we can deduce that n < N holds.
Furthermore, it is easy to show that a rank is at most log n. Therefore, a rank
is at most logN . In combination with the hypothesis log logN < w − 1, this
suffices to prove that a rank is at most 2w−1 − 1, the largest signed machine
integer, and therefore that no overflow can occur in the computation of a rank.

Clochard et al. [5, §2] already present Union-Find as a motivating example
among several others. They write that “there is obviously no danger of arithmetic
overflow here, since [ranks] are only obtained by successive increments by one”.
This argument would be formalized in their system by representing ranks as
either “one-time” or “peano” integers (in our terminology, clocks or snapclocks).
This argument could be expressed in Iris$�, but would lead to requiring logN <
w − 1. In contrast, we use a more refined argument: we note that ranks are
logarithmic in n, the number of nodes, and that n itself can never overflow. This
leads us to the much weaker requirement log logN < w − 1, which means that
a rank can be stored in very few bits. We believe that this argument cannot be
expressed in Clochard et al.’s system.

9 Discussion

One feature of Iris and HeapLang that deserves further discussion is concur-
rency. Iris is an evolution of Concurrent Separation Logic, and HeapLang has
shared-memory concurrency. How does this impact our reasoning about time?
At a purely formal level, this does not have any impact: Theorems 1, 2, 3 and
their proofs are essentially oblivious to the absence or presence of concurrency
in the programming language. At a more informal level, though, this impacts
our interpretation of the real-world meaning of these theorems. Whereas in a
sequential setting a “number of computation steps” can be equated (up to a
constant factor) with “time”, in a concurrent setting, a “number of computation
steps” is referred to as “work”, and is related to “time” only up to a factor of p,
the number of processors. In short, our system measures work, not time. The
number of available processors should be taken into account when choosing a
specific value of N : this value must be so large that N computation steps are
infeasible even by p processors. With this in mind, we believe that our system
can still be used to prove properties that have physical relevance.

In short, our new program logics, Iris$, Iris�, and Iris$�, tolerate concurrency.
Yet, is it fair to say that they have “good support” for reasoning about concur-
rent programs? We believe not yet, and this is an area for future research. The
main open issue is that we do not at this time have good support for reason-
ing about the time complexity of programs that perform busy-waiting on some
resource. The root of the difficulty, already mentioned during the presentation of
thunks (Sect. 7.1), is that one thread can fail to make progress, due to interfer-
ence with another thread. A retry is then necessary, wasting time. In a spin lock,
for instance, the “compare-and-set” (CAS) instruction that attempts to acquire

Time Credits and Time Receipts in Iris 25

the lock can fail. There is no bound on the number of attempts that are required
until the lock is eventually acquired. Thus, in Iris$, we are currently unable to
assign any specification to the lock method of a spin lock.

In the future, we wish to take inspiration from Hoffmann, Marmar and
Shao [9], who use time credits in Concurrent Separation Logic to establish the
lock-freedom of several concurrent data structures. The key idea is to formalize
the informal argument that “failure of a thread to make progress is caused by
successful progress in another thread”. Hoffmann et al. set up a “quantitative
compensation scheme”, that is, a protocol by which successful progress in one
thread (say, a successful CAS operation) must transmit a number of time credits
to every thread that has encountered a corresponding failure and therefore must
retry. Quite interestingly, this protocol is not hardwired into the reasoning rule
for CAS. In fact, CAS itself is not primitive; it is encoded in terms of an atomic
{ . . . } construct. The protocol is set up by the user, by exploiting the basic tools
of Concurrent Separation Logic, including shared invariants. Thus, it should be
possible in Iris$ to reproduce Hoffmann et al.’s reasoning and to assign useful
specifications to certain lock-free data structures. Furthermore, we believe that,
under a fairness assumption, it should be possible to assign Iris$ specifications
also to coarse-grained data structures, which involve locks. Roughly speaking,
under a fair scheduler, the maximum time spent waiting for a lock is the max-
imum number of threads that may compete for this lock, multiplied by the
maximum cost of a critical section protected by this lock. Whether and how this
can be formalized is a topic of future research.

The axiom �N �� False comes with a few caveats that should be mentioned.
The same caveats apply to Clochard et al.’s system [5], and are known to them.

One caveat is that it is possible in theory to use this axiom to write and justify
surprising programs. For instance, in Iris�, the loop “for i = 1 to N do () done”
satisfies the specification {True} — {False}: that is, it is possible to prove that this
loop “never ends”. As a consequence, this loop also satisfies every specification
of the form {True} — {Φ}. On the face of it, this loop would appear to be a
valid solution to every programming assignment! In practice, it is up to the user
to exhibit taste and to refrain from exploiting such a paradox. In reality, the
situation is no worse than that in plain Iris, a logic of partial correctness, where
the infinite loop “while true do () done” also satisfies {True} — {False}.

Another important caveat is that the compiler must in principle be instructed
to never optimize ticks away. If, for instance, the compiler was allowed to recog-
nize that the loop “for i = 1 to N do () done” does nothing, and to replace this
loop with a no-op, then this loop, which according to Iris� “never ends”, would
in reality end immediately. We would thereby be in danger of proving that a
source program cannot crash unless it is allowed to run for centuries, whereas
in reality the corresponding compiled program does crash in a short time. In
practice, this danger can be avoided by actually instrumenting the source code
with tick() instructions and by presenting tick to the compiler as an unknown
external function, which cannot be optimized away. However, this seems a pity,
as it disables many compiler optimizations.

26 G. Mével et al.

We believe that, despite these pitfalls, time receipts can be a useful tool. We
hope that, in the future, better ways of avoiding these pitfalls will be discovered.

10 Related Work

Time credits in an affine Separation Logic are not a new concept. Atkey [1]
introduces them in the setting of Separation Logic. Pilkiewicz and Pottier [20]
exploit them in an informal reconstruction of Danielsson’s type discipline for
lazy thunks [6], which itself is inspired by Okasaki’s work [19]. Several authors
subsequently exploit time credits in machine-checked proofs of correctness and
time complexity of algorithms and data structures [4,7,22]. Hoffmann, Marmar
and Shao [9], whose work was discussed earlier in this paper (Sect. 9), use time
credits in Concurrent Separation Logic to prove that several concurrent data
structure implementations are lock-free.

At a metatheoretic level, Charguéraud and Pottier [4] provide a machine-
checked proof of soundness of a Separation Logic with time credits. Haslbeck
and Nipkow [8] compare three program logics that can provide worst-case time
complexity guarantees, including Separation Logic with time credits.

To the best of our knowledge, affine (exclusive and persistent) time receipts
are new, and the axiom �N �� False is new as well. It is inspired by Clochard
et al.’s idea that “programs cannot run for centuries” [5], but distills this idea
into a simpler form.

Our implementation of thunks and our reconstruction of Okasaki’s debits [19]
in terms of credits are inspired by earlier work [6,20]. Although Okasaki’s analysis
assumes a sequential setting, we adapt it to a concurrent setting by explicitly
forbidding concurrent operations on thunks; to do so, we rely on Iris nonatomic
invariants. In contrast, Danielsson [6] views thunks as a primitive construct in an
otherwise pure language. He equips the language with a type discipline, where
the type Thunk, which is indexed with a debit, forms a monad, and he provides
a direct proof of type soundness. The manner in which Danielsson inserts tick
instructions into programs is a precursor of our tick translation; this idea can
in fact be traced at least as far back as Moran and Sands [16]. Pilkiewicz and
Pottier [20] sketch an encoding of debits in terms of credits. Because they work in
a sequential setting, they are able to install a shared invariant by exploiting the
anti-frame rule [21], whereas we use Iris’ nonatomic invariants for this purpose.
The anti-frame rule does not rule out reentrancy, so they must detect it at
runtime, whereas in our case both concurrency and reentrancy are ruled out by
our use of nonatomic invariants.

Madhavan et al. [15] present an automated system that infers and verifies
resource bounds for higher-order functional programs with thunks (and, more
generally, with memoization tables). They transform the source program to an
instrumented form where the state is explicit and can be described by monotone
assertions. For instance, it is possible to assert that a thunk has been forced
already (which guarantees that forcing it again has constant cost). This seems
analogous in Okasaki’s terminology to asserting that a thunk has zero debits,

Time Credits and Time Receipts in Iris 27

also a monotone assertion. We presently do not know whether Madhavan et al.’s
system could be encoded into a lower-level program logic such as Iris$; it would
be interesting to find out.

11 Conclusion

We have presented two mechanisms, namely time credits and time receipts, by
which Iris, a state-of-the-art concurrent program logic, can be extended with
means of reasoning about time. We have established soundness theorems that
state precisely what guarantees are offered by the extended program logics Iris$,
Iris�, and Iris$�. We have defined these new logics modularly, by composing Iris
with a program transformation. The three proofs follow a similar pattern: the
soundness theorem of Iris is composed with a simulation lemma about the tick
translation. We have illustrated the power of the new logics by reconstructing
Okasaki’s debit-based analysis of thunks, by reconstructing Clochard et al.’s
technique for proving the absence of certain integer overflows, and by presenting
an analysis of Union-Find that exploits both time credits and time receipts.

One limitation of our work is that all of our metatheoretic results are specific
to HeapLang, and would have to be reproduced, following the same pattern, if
one wished to instantiate Iris$� for another programming language. It would be
desirable to make our statements and proofs generic. In future work, we would
also like to better understand what can be proved about the time complexity
of concurrent programs that involve waiting. Can the time spent waiting be
bounded? What specification can one give to a lock, or a thunk that is protected
by a lock? A fairness hypothesis about the scheduler seems to be required, but it
is not clear yet how to state and exploit such a hypothesis. Hoffmann, Marmar
and Shao [9] have carried out pioneering work in this area, but have dealt only
with lock-free data structures and only with situations where the number of
competing threads is fixed. It would be interesting to transpose their work into
Iris$ and to develop it further.

References

1. Atkey, R.: Amortised resource analysis with separation logic. Log. Methods Com-
put. Sci. 7(2:17) (2011). http://bentnib.org/amortised-sep-logic-journal.pdf

2. Birkedal, L.: Lecture11: CAS and spin locks, November 2017. https://iris-project.
org/tutorial-pdfs/lecture11-cas-spin-lock.pdf

3. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. SIGLOG News
3(3), 47–65 (2016). http://siglog.hosting.acm.org/wp-content/uploads/2016/07/
siglognews9.pdf#page=49

4. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity of
a union-find implementation in separation logic with time credits. J. Autom. Rea-
son. (2017). http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.
pdf

http://bentnib.org/amortised-sep-logic-journal.pdf
https://iris-project.org/tutorial-pdfs/lecture11-cas-spin-lock.pdf
https://iris-project.org/tutorial-pdfs/lecture11-cas-spin-lock.pdf
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglognews9.pdf#page=49
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglognews9.pdf#page=49
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf

28 G. Mével et al.

5. Clochard, M., Filliâtre, J.-C., Paskevich, A.: How to avoid proving the absence
of integer overflows. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE 2015. LNCS,
vol. 9593, pp. 94–109. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29613-5_6. https://hal.inria.fr/al-01162661

6. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Principles of Programming Languages (POPL) (2008).
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf

7. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: formalizing
asymptotic complexity claims via deductive program verification. In: Ahmed,
A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 533–560. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89884-1_19. http://gallium.inria.fr/~fpottier/
publis/gueneau-chargeraud-pottier-esop2018.pdf

8. Haslbeck, M.P.L., Nipkow, T.: Hoare logics for time bounds: a study in meta
theory. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
155–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_9.
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf

9. Hoffmann, J., Marmar, M., Shao, Z.: Quantitative reasoning for proving lock-
freedom. In: Logic in Computer Science (LICS), pp. 124–133 (2013). http://www.
cs.cmu.edu/~janh/papers/lockfree2013.pdf

10. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the rust programming language. PACMPL 2(POPL), 66:1–66:34 (2018).
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

11. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
International Conference on Functional Programming (ICFP), pp. 256–269 (2016).
http://iris-project.org/pdfs/2016-icfp-iris2-final.pdf

12. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://people.mpi-sws.org/~dreyer/papers/
iris-ground-up/paper.pdf

13. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: Principles of Programming Languages (POPL), pp. 637–650 (2015).
http://plv.mpi-sws.org/iris/paper.pdf

14. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1_26. http://iris-project.org/pdfs/2017-esop-iris3-final.pdf

15. Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. In: Principles of Programming Languages
(POPL), pp. 330–343 (2017). http://lara.epfl.ch/~kandhada/orb-popl17.pdf

16. Moran, A., Sands, D.: Improvement in a lazy context: an operational theory for
call-by-need. In: Principles of Programming Languages (POPL), pp. 43–56 (1999).
http://www.cse.chalmers.se/~dave/papers/cbneed-theory.pdf

17. Mével, G., Jourdan, J.H., Pottier, F.: Time credits and time receipts in Iris – Coq
proofs, October 2018. https://gitlab.inria.fr/gmevel/iris-time-proofs

18. Mével, G., Jourdan, J.H., Pottier, F.: Time credits and time receipts in Iris –
extended version (2019). https://jhjourdan.mketjh.fr/pdf/mevel2019time.pdf

19. Okasaki, C.: Purely Functional Data Structures. Cambridge University
Press, Cambridge (1999). http://www.cambridge.org/us/catalogue/catalogue.asp?
isbn=0521663504

https://doi.org/10.1007/978-3-319-29613-5_6
https://doi.org/10.1007/978-3-319-29613-5_6
https://hal.inria.fr/al-01162661
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
https://doi.org/10.1007/978-3-319-89884-1_19
http://gallium.inria.fr/~fpottier/publis/gueneau-chargeraud-pottier-esop2018.pdf
http://gallium.inria.fr/~fpottier/publis/gueneau-chargeraud-pottier-esop2018.pdf
https://doi.org/10.1007/978-3-319-89960-2_9
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf
http://www.cs.cmu.edu/~janh/papers/lockfree2013.pdf
http://www.cs.cmu.edu/~janh/papers/lockfree2013.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
http://iris-project.org/pdfs/2016-icfp-iris2-final.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
http://iris-project.org/pdfs/2017-esop-iris3-final.pdf
http://lara.epfl.ch/~kandhada/orb-popl17.pdf
http://www.cse.chalmers.se/~dave/papers/cbneed-theory.pdf
https://gitlab.inria.fr/gmevel/iris-time-proofs
https://jhjourdan.mketjh.fr/pdf/mevel2019time.pdf
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504

Time Credits and Time Receipts in Iris 29

20. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Types in Language
Design and Implementation (TLDI) (2011). http://gallium.inria.fr/~fpottier/
publis/pilkiewicz-pottier-monotonicity.pdf

21. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In:
Logic in Computer Science (LICS), pp. 331–340 (2008). http://gallium.inria.fr/
~fpottier/publis/fpottier-antiframe-2008.pdf

22. Zhan, B., Haslbeck, M.P.L.: Verifying asymptotic time complexity of imperative
programs in Isabelle. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR
2018. LNCS (LNAI), vol. 10900, pp. 532–548. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94205-6_35. arxiv:1802.01336

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://gallium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
http://gallium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
https://doi.org/10.1007/978-3-319-94205-6_35
https://doi.org/10.1007/978-3-319-94205-6_35
http://arxiv.org/abs/1802.01336
http://creativecommons.org/licenses/by/4.0/

Meta-F�: Proof Automation with SMT,
Tactics, and Metaprograms

Guido Mart́ınez1,2(B), Danel Ahman3, Victor Dumitrescu4, Nick Giannarakis5,
Chris Hawblitzel6, Cătălin Hriţcu2, Monal Narasimhamurthy8,

Zoe Paraskevopoulou5, Clément Pit-Claudel9, Jonathan Protzenko6,
Tahina Ramananandro6, Aseem Rastogi7, and Nikhil Swamy6

1 CIFASIS-CONICET, Rosario, Argentina
martinez@cifasis-conicet.gov.ar

2 Inria, Paris, France
3 University of Ljubljana, Ljubljana, Slovenia

4 MSR-Inria Joint Centre, Paris, France
5 Princeton University, Princeton, USA
6 Microsoft Research, Redmond, USA
7 Microsoft Research, Bangalore, India

8 University of Colorado Boulder, Boulder, USA
9 MIT CSAIL, Cambridge, USA

Abstract. We introduce Meta-F�, a tactics and metaprogramming
framework for the F� program verifier. The main novelty of Meta-F� is
allowing the use of tactics and metaprogramming to discharge assertions
not solvable by SMT, or to just simplify them into well-behaved SMT frag-
ments. Plus, Meta-F� can be used to generate verified code automatically.

Meta-F� is implemented as an F� effect, which, given the powerful effect
system of F�, heavily increases code reuse and even enables the lightweight
verification of metaprograms. Metaprograms can be either interpreted, or
compiled to efficient native code that can be dynamically loaded into the
F� type-checker and can interoperate with interpreted code. Evaluation
on realistic case studies shows that Meta-F� provides substantial gains in
proof development, efficiency, and robustness.

Keywords: Tactics · Metaprogramming · Program verification ·
Verification conditions · SMT solvers · Proof assistants

1 Introduction

Scripting proofs using tactics and metaprogramming has a long tradition in inter-
active theorem provers (ITPs), starting with Milner’s Edinburgh LCF [37]. In
this lineage, properties of pure programs are specified in expressive higher-order
(and often dependently typed) logics, and proofs are conducted using various
imperative programming languages, starting originally with ML.

Along a different axis, program verifiers like Dafny [47], VCC [23], Why3 [33],
and Liquid Haskell [59] target both pure and effectful programs, with side-effects
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 30–59, 2019.
https://doi.org/10.1007/978-3-030-17184-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_2

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 31

ranging from divergence to concurrency, but provide relatively weak logics for
specification (e.g., first-order logic with a few selected theories like linear arith-
metic). They work primarily by computing verification conditions (VCs) from
programs, usually relying on annotations such as pre- and postconditions, and
encoding them to automated theorem provers (ATPs) such as satisfiability mod-
ulo theories (SMT) solvers, often providing excellent automation.

These two sub-fields have influenced one another, though the situation is
somewhat asymmetric. On the one hand, most interactive provers have gained
support for exploiting SMT solvers or other ATPs, providing push-button
automation for certain kinds of assertions [26,31,43,44,54]. On the other hand,
recognizing the importance of interactive proofs, Why3 [33] interfaces with ITPs
like Coq. However, working over proof obligations translated from Why3 requires
users to be familiar not only with both these systems, but also with the specifics
of the translation. And beyond Why3 and the tools based on it [25], no other
SMT-based program verifiers have full-fledged support for interactive proving,
leading to several downsides:

Limits to expressiveness. The expressiveness of program verifiers can be lim-
ited by the ATP used. When dealing with theories that are undecidable and
difficult to automate (e.g., non-linear arithmetic or separation logic), proofs in
ATP-based systems may become impossible or, at best, extremely tedious.

Boilerplate. To work around this lack of automation, programmers have to
construct detailed proofs by hand, often repeating many tedious yet error-prone
steps, so as to provide hints to the underlying solver to discover the proof.
In contrast, ITPs with metaprogramming facilities excel at expressing domain-
specific automation to complete such tedious proofs.

Implicit proof context. In most program verifiers, the logical context of a
proof is implicit in the program text and depends on the control flow and the pre-
and postconditions of preceding computations. Unlike in interactive proof assis-
tants, programmers have no explicit access, neither visual nor programmatic, to
this context, making proof structuring and exploration extremely difficult.

In direct response to these drawbacks, we seek a system that successfully
combines the convenience of an automated program verifier for the common case,
while seamlessly transitioning to an interactive proving experience for those parts
of a proof that are hard to automate. Towards this end, we propose Meta-F�, a
tactics and metaprogramming framework for the F� [1,58] program verifier.

Highlights and Contributions of Meta-F�

F� has historically been more deeply rooted as an SMT-based program verifier.
Until now, F� discharged VCs exclusively by calling an SMT solver (usually
Z3 [28]), providing good automation for many common program verification
tasks, but also exhibiting the drawbacks discussed above.

Meta-F� is a framework that allows F� users to manipulate VCs using tactics.
More generally, it supports metaprogramming, allowing programmers to script

32 G. Mart́ınez et al.

the construction of programs, by manipulating their syntax and customizing the
way they are type-checked. This allows programmers to (1) implement custom
procedures for manipulating VCs; (2) eliminate boilerplate in proofs and pro-
grams; and (3) to inspect the proof state visually and to manipulate it program-
matically, addressing the drawbacks discussed above. SMT still plays a central
role in Meta-F�: a typical usage involves implementing tactics to transform VCs,
so as to bring them into theories well-supported by SMT, without needing to
(re)implement full decision procedures. Further, the generality of Meta-F� allows
implementing non-trivial language extensions (e.g., typeclass resolution) entirely
as metaprogramming libraries, without changes to the F� type-checker.

The technical contributions of our work include the following:

“Meta-” is just an effect (Sect. 3.1). Meta-F� is implemented using F�’s
extensible effect system, which keeps programs and metaprograms properly iso-
lated. Being first-class F� programs, metaprograms are typed, call-by-value,
direct-style, higher-order functional programs, much like the original ML. Fur-
ther, metaprograms can be themselves verified (to a degree, see Sect. 3.4) and
metaprogrammed.

Reconciling tactics with VC generation (Sect. 4.2). In program verifiers
the programmer often guides the solver towards the proof by supplying inter-
mediate assertions. Meta-F� retains this style, but additionally allows assertions
to be solved by tactics. To this end, a contribution of our work is extracting,
from a VC, a proof state encompassing all relevant hypotheses, including those
implicit in the program text.

Executing metaprograms efficiently (Sect. 5). Metaprograms are executed
during type-checking. As a baseline, they can be interpreted using F�’s exist-
ing (but slow) abstract machine for term normalization, or a faster normalizer
based on normalization by evaluation (NbE) [10,16]. For much faster execution
speed, metaprograms can also be run natively. This is achieved by combining
the existing extraction mechanism of F� to OCaml with a new framework for
safely extending the F� type-checker with such native code.

Examples (Sect. 2) and evaluation (Sect. 6). We evaluate Meta-F� on sev-
eral case studies. First, we present a functional correctness proof for the Poly1305
message authentication code (MAC) [11], using a novel combination of proofs
by reflection for dealing with non-linear arithmetic and SMT solving for lin-
ear arithmetic. We measure a clear gain in proof robustness: SMT-only proofs
succeed only rarely (for reasonable timeouts), whereas our tactic+SMT proof
is concise, never fails, and is faster. Next, we demonstrate an improvement in
expressiveness, by developing a small library for proofs of heap-manipulating
programs in separation logic, which was previously out-of-scope for F�. Finally,
we illustrate the ability to automatically construct verified effectful programs, by
introducing a library for metaprogramming verified low-level parsers and serial-
izers with applications to network programming, where verification is accelerated
by processing the VC with tactics, and by programmatically tweaking the SMT
context.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 33

We conclude that tactics and metaprogramming can be prosperously com-
bined with VC generation and SMT solving to build verified programs with
better, more scalable, and more robust automation.

The full version of this paper, including appendices, can be found online in
https://www.fstar-lang.org/papers/metafstar.

2 Meta-F� by Example

F� is a general-purpose programming language aimed at program verification. It
puts together the automation of an SMT-backed deductive verification tool with
the expressive power of a language with full-spectrum dependent types. Briefly, it
is a functional, higher-order, effectful, dependently typed language, with syntax
loosely based on OCaml. F� supports refinement types and Hoare-style specifi-
cations, computing VCs of computations via a type-level weakest precondition
(WP) calculus packed within Dijkstra monads [57]. F�’s effect system is also
user-extensible [1]. Using it, one can model or embed imperative programming
in styles ranging from ML to C [55] and assembly [35]. After verification, F� pro-
grams can be extracted to efficient OCaml or F# code. A first-order fragment
of F�, called Low�, can also be extracted to C via the KreMLin compiler [55].

This paper introduces Meta-F�, a metaprogramming framework for F� that
allows users to safely customize and extend F� in many ways. For instance, Meta-
F� can be used to preprocess or solve proof obligations; synthesize F� expressions;
generate top-level definitions; and resolve implicit arguments in user-defined
ways, enabling non-trivial extensions. This paper primarily discusses the first
two features. Technically, none of these features deeply increase the expressive
power of F�, since one could manually program in F� terms that can now be
metaprogrammed. However, as we will see shortly, manually programming terms
and their proofs can be so prohibitively costly as to be practically infeasible.

Meta-F� is similar to other tactic frameworks, such as Coq’s [29] or
Lean’s [30], in presenting a set of goals to the programmer, providing commands
to break them down, allowing to inspect and build abstract syntax, etc. In this
paper, we mostly detail the characteristics where Meta-F� differs from other
engines.

This section presents Meta-F� informally, displaying its usage through case
studies. We present any necessary F� background as needed.

2.1 Tactics for Individual Assertions and Partial Canonicalization

Non-linear arithmetic reasoning is crucially needed for the verification of opti-
mized, low-level cryptographic primitives [18,64], an important use case for F�

[13] and other verification frameworks, including those that rely on SMT solv-
ing alone (e.g., Dafny [47]) as well as those that rely exclusively on tactic-based
proofs (e.g., FiatCrypto [32]). While both styles have demonstrated significant
successes, we make a case for a middle ground, leveraging the SMT solver for
the parts of a VC where it is effective, and using tactics only where it is not.

https://www.fstar-lang.org/papers/metafstar

34 G. Mart́ınez et al.

We focus on Poly1305 [11], a widely-used cryptographic MAC that computes
a series of integer multiplications and additions modulo a large prime number
p = 2130−5. Implementations of the Poly1305 multiplication and mod operations
are carefully hand-optimized to represent 130-bit numbers in terms of smaller
32-bit or 64-bit registers, using clever tricks; proving their correctness requires
reasoning about long sequences of additions and multiplications.

Previously: Guiding SMT Solvers by Manually Applying Lemmas.
Prior proofs of correctness of Poly1305 and other cryptographic primitives using
SMT-based program verifiers, including F� [64] and Dafny [18], use a combi-
nation of SMT automation and manual application of lemmas. On the plus
side, SMT solvers are excellent at linear arithmetic, so these proofs delegate all
associativity-commutativity (AC) reasoning about addition to SMT. Non-linear
arithmetic in SMT solvers, even just AC-rewriting and distributivity, are, how-
ever, inefficient and unreliable—so much so that the prior efforts above (and
other works too [40,41]) simply turn off support for non-linear arithmetic in the
solver, in order not to degrade verification performance across the board due to
poor interaction of theories. Instead, users need to explicitly invoke lemmas.1

For instance, here is a statement and proof of a lemma about Poly1305 in F�.
The property and its proof do not really matter; the lines marked “(∗argh! ∗)”
do. In this particular proof, working around the solver’s inability to effectively
reason about non-linear arithmetic, the programmer has spelled out basic facts
about distributivity of multiplication and addition, by calling the library lemma
distributivity add right, in order to guide the solver towards the proof. (Below, p44

and p88 represent 244 and 288 respectively)

let lemma carry limb unrolled (a0 a1 a2 : nat) : Lemma (ensures (

a0 % p44 + p44 * ((a1 + a0 / p44) % p44) + p88 * (a2 + ((a1 + a0 / p44) / p44))
== a0 + p44 * a1 + p88 * a2)) =

let z = a0 % p44 + p44 * ((a1 + a0 / p44) % p44)
+ p88 * (a2 + ((a1 + a0 / p44) / p44)) in

distributivity add right p88 a2 ((a1 + a0 / p44) / p44); (* argh! *)

pow2 plus 44 44;

lemma div mod (a1 + a0 / p44) p44;
distributivity add right p44 ((a1 + a0 / p44) % p44)

(p44 * ((a1 + a0 / p44) / p44)); (* argh! *)

assert (p44 * ((a1 + a0 / p44) % p44) + p88 * ((a1 + a0 / p44) / p44)
== p44 * (a1 + a0 / p44));

distributivity add right p44 a1 (a0 / p44); (* argh! *)

lemma div mod a0 p44

Even at this relatively small scale, needing to explicitly instantiate the distribu-
tivity lemma is verbose and error prone. Even worse, the user is blind while
doing so: the program text does not display the current set of available facts nor

1 Lemma (requires pre) (ensures post) is F� notation for the type of a computation
proving pre =⇒ post—we omit pre when it is trivial. In F�’s standard library, math
lemmas are proved using SMT with little or no interactions between problematic
theory combinations. These lemmas can then be explicitly invoked in larger contexts,
and are deleted during extraction.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 35

the final goal. Proofs at this level of abstraction are painfully detailed in some
aspects, yet also heavily reliant on the SMT solver to fill in the aspects of the
proof that are missing.

Given enough time, the solver can sometimes find a proof without the addi-
tional hints, but this is usually rare and dependent on context, and almost never
robust. In this particular example we find by varying Z3’s random seed that, in
an isolated setting, the lemma is proven automatically about 32% of the time.
The numbers are much worse for more complex proofs, and where the context
contains many facts, making this style quickly spiral out of control. For example,
a proof of one of the main lemmas in Poly1305, poly multiply, requires 41 steps of
rewriting for associativity-commutativity of multiplication, and distributivity of
addition and multiplication—making the proof much too long to show here.

SMT and Tactics in Meta-F�. The listing below shows the statement and
proof of poly multiply in Meta-F�, of which the lemma above was previously only
a small part. Again, the specific property proven is not particularly relevant to
our discussion. But, this time, the proof contains just two steps.
let poly multiply (n p r h r0 r1 h0 h1 h2 s1 d0 d1 d2 h1 h2 hh : int) : Lemma
(requires p > 0 ∧ r1 ≥ 0 ∧ n > 0 ∧ 4 * (n * n) == p + 5 ∧ r == r1 * n + r0 ∧

h == h2 * (n * n) + h1 * n + h0 ∧ s1 == r1 + (r1 / 4) ∧ r1 % 4 == 0 ∧
d0 == h0 * r0 + h1 * s1 ∧ d1 == h0 * r1 + h1 * r0 + h2 * s1 ∧
d2 == h2 * r0 ∧ hh == d2 * (n * n) + d1 * n + d0)

(ensures (h * r) % p == hh % p) =

let r14 = r1 / 4 in
let h r expand = (h2 * (n * n) + h1 * n + h0) * ((r14 * 4) * n + r0) in
let hh expand = (h2 * r0) * (n * n) + (h0 * (r14 * 4) + h1 * r0

+ h2 * (5 * r14)) * n + (h0 * r0 + h1 * (5 * r14)) in
let b = (h2 * n + h1) * r14 in
modulo addition lemma hh expand p b;
assert (h r expand == hh expand + b * (n * n * 4 + (−5)))

by (canon semiring int csr) (* Proof of this step by Meta-F* tactic *)

First, we call a single lemma about modular addition from F�’s standard
library. Then, we assert an equality annotated with a tactic (assert..by). Instead
of encoding the assertion as-is to the SMT solver, it is preprocessed by the
canon semiring tactic. The tactic is presented with the asserted equality as its
goal, in an environment containing not only all variables in scope but also
hypotheses for the precondition of poly multiply and the postcondition of the
modulo addition lemma call (otherwise, the assertion could not be proven). The
tactic will then canonicalize the sides of the equality, but notably only “up to”
linear arithmetic conversions. Rather than fully canonicalizing the terms, the
tactic just rewrites them into a sum-of-products canonical form, leaving all the
remaining work to the SMT solver, which can then easily and robustly discharge
the goal using linear arithmetic only.

This tactic works over terms in the commutative semiring of integers (int csr)
using proof-by-reflection [12,20,36,38]. Internally, it is composed of a simpler,
also proof-by-reflection based tactic canon monoid that works over monoids, which
is then “stacked” on itself to build canon semiring. The basic idea of proof-by-
reflection is to reduce most of the proof burden to mechanical computation,

36 G. Mart́ınez et al.

obtaining much more efficient proofs compared to repeatedly applying lemmas.
For canon monoid, we begin with a type for monoids, a small AST representing
monoid values, and a denotation for expressions back into the monoid type.

type monoid (a:Type) = { unit : a; mult : (a → a → a); (∗ + monoid laws ... ∗) }
type exp (a:Type) = | Unit : exp a | Var : a → exp a | Mult : exp a → exp a → exp a
(∗ Note on syntax: #a below denotes that a is an implicit argument ∗)
let rec denote (#a:Type) (m:monoid a) (e:exp a) : a =

match e with
| Unit → m.unit | Var x → x | Mult x y → m.mult (denote m x) (denote m y)

To canonicalize an exp, it is first converted to a list of operands (flatten) and then
reflected back to the monoid (mldenote). The process is proven correct, in the
particular case of equalities, by the monoid reflect lemma.

val flatten : #a:Type → exp a → list a
val mldenote : #a:Type → monoid a → list a → a
let monoid reflect (#a:Type) (m:monoid a) (e1 e2 : exp a)

: Lemma (requires (mldenote m (flatten e1) == mldenote m (flatten e2)))
(ensures (denote m e1 == denote m e2)) = ...

At this stage, if the goal is t1== t2, we require two monoidal expressions e1
and e2 such that t1== denote m e1 and t2== denote m e2. They are constructed
by the tactic canon monoid by inspecting the syntax of the goal, using Meta-F�’s
reflection capabilities (detailed ahead in Sect. 3.3). We have no way to prove once
and for all that the expressions built by canon monoid correctly denote the terms,
but this fact can be proven automatically at each application of the tactic, by
simple unification. The tactic then applies the lemma monoid reflect m e1e2, and
the goal is changed to mldenote m (flatten e1) == mldenote m (flatten e2). Finally,
by normalization, each side will be canonicalized by running flatten and mldenote.

The canon semiring tactic follows a similar approach, and is similar to existing
reflective tactics for other proof assistants [9,38], except that it only canonicalizes
up to linear arithmetic, as explained above. The full VC for poly multiply contains
many other facts, e.g., that p is non-zero so the division is well-defined and that
the postcondition does indeed hold. These obligations remain in a “skeleton” VC
that is also easily proven by Z3. This proof is much easier for the programmer
to write and much more robust, as detailed ahead in Sect. 6.1. The proof of
Poly1305’s other main lemma, poly reduce, is also similarly well automated.

Tactic Proofs Without SMT. Of course, one can verify poly multiply in Coq,
following the same conceptual proof used in Meta-F�, but relying on tactics only.
Our proof (included in the appendix) is 27 lines long, two of which involve the
use of Coq’s ring tactic (similar to our canon semiring tactic) and omega tactic for
solving formulas in Presburger arithmetic. The remaining 25 lines include steps
to destruct the propositional structure of terms, rewrite by equalities, enriching
the context to enable automatic modulo rewriting (Coq does not fully automat-
ically recognize equality modulo p as an equivalence relation compatible with
arithmetic operators). While a mature proof assistant like Coq has libraries and
tools to ease this kind of manipulation, it can still be verbose.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 37

In contrast, in Meta-F� all of these mundane parts of a proof are simply
dispatched to the SMT solver, which decides linear arithmetic efficiently, beyond
the quantifier-free Presburger fragment supported by tactics like omega, handles
congruence closure natively, etc.

2.2 Tactics for Entire VCs and Separation Logic

A different way to invoke Meta-F� is over an entire VC. While the exact shape
of VCs is hard to predict, users with some experience can write tactics that find
and solve particular sub-assertions within a VC, or simply massage them into
shapes better suited for the SMT solver. We illustrate the idea on proofs for
heap-manipulating programs.

One verification method that has eluded F� until now is separation logic,
the main reason being that the pervasive “frame rule” requires instantiating
existentially quantified heap variables, which is a challenge for SMT solvers, and
simply too tedious for users. With Meta-F�, one can do better. We have written
a (proof-of-concept) embedding of separation logic and a tactic (sl auto) that
performs heap frame inference automatically.

The approach we follow consists of designing the WP specifications for prim-
itive stateful actions so as to make their footprint syntactically evident. The
tactic then descends through VCs until it finds an existential for heaps arising
from the frame rule. Then, by solving an equality between heap expressions
(which requires canonicalization, for which we use a variant of canon monoid

targeting commutative monoids) the tactic finds the frames and instantiates
the existentials. Notably, as opposed to other tactic frameworks for separation
logic [4,45,49,51], this is all our tactic does before dispatching to the SMT solver,
which can now be effective over the instantiated VC.

We now provide some detail on the framework. Below, ‘emp’ represents the
empty heap, ‘•’ is the separating conjunction and ‘r �→ v’ is the heaplet with
the single reference r set to value v.2 Our development distinguishes between
a “heap” and its “memory” for technical reasons, but we will treat the two as
equivalent here. Further, defined is a predicate discriminating valid heaps (as
in [52]), i.e., those built from separating conjunctions of actually disjoint heaps.

We first define the type of WPs and present the WP for the frame rule:

let pre = memory → prop (∗ predicate on initial heaps ∗)
let post a = a → memory → prop (∗ predicate on result values and final heaps ∗)
let wp a = post a → pre (∗ transformer from postconditions to preconditions ∗)

let frame post (#a:Type) (p:post a) (m0:memory) : post a =
λx m1 → defined (m0 • m1) ∧ p x (m0 • m1)

let frame wp (#a:Type) (wp:wp a) (post:post a) (m:memory) =
∃m0 m1. defined (m0 • m1) ∧ m == (m0 • m1) ∧ wp (frame post post m1) m0

2 This differs from the usual presentation where these three operators are heap predi-
cates instead of heaps.

38 G. Mart́ınez et al.

Intuitively, frame post p m0 behaves as the postcondition p “framed” by m0, i.e.,
frame post p m0 x m1 holds when the two heaps m0 and m1 are disjoint and p

holds over the result value x and the conjoined heaps. Then, frame wp wp takes a
postcondition p and initial heap m, and requires that m can be split into disjoint
subheaps m0 (the footprint) and m1 (the frame), such that the postcondition p,
when properly framed, holds over the footprint.

In order to provide specifications for primitive actions we start in small-
footprint style. For instance, below is the WP for reading a reference:

let read wp (#a:Type) (r:ref a) = λpost m0 → ∃x. m0 == r �→ x ∧ post x m0

We then insert framing wrappers around such small-footprint WPs when expos-
ing the corresponding stateful actions to the programmer, e.g.,

val (!) : #a:Type → r:ref a → STATE a (λ p m → frame wp (read wp r) p m)

To verify code written in such style, we annotate the corresponding programs to
have their VCs processed by sl auto. For instance, for the swap function below, the
tactic successfully finds the frames for the four occurrences of the frame rule and
greatly reduces the solver’s work. Even in this simple example, not performing
such instantiation would cause the solver to fail.

let swap wp (r1 r2 : ref int) =
λp m → ∃x y. m == (r1 �→ x • r2 �→ y) ∧ p () (r1 �→ y • r2 �→ x)

let swap (r1 r2 : ref int) : ST unit (swap wp r1 r2) by (sl auto ()) =
let x = !r1 in let y = !r2 in r1 := y; r2 := x

The sl auto tactic: (1) uses syntax inspection to unfold and traverse the goal
until it reaches a frame wp—say, the one for !r2; (2) inspects frame wp’s first
explicit argument (here read wp r2) to compute the references the current com-
mand requires (here r2); (3) uses unification variables to build a memory expres-
sion describing the required framing of input memory (here r2 �→ ?u1 • ?u2) and
instantiates the existentials of frame wp with these unification variables; (4) builds
a goal that equates this memory expression with frame wp’s third argument (here
r1 �→ x • r2 �→ y); and (5) uses a commutative monoids tactic (similar to Sect. 2.1)
with the heap algebra (emp, •) to canonicalize the equality and sort the heaplets.
Next, it can solve for the unification variables component-wise, instantiating ?u1

to y and ?u2 to r1 �→ x, and then proceed to the next frame wp.
In general, after frames are instantiated, the SMT solver can efficiently prove

the remaining assertions, such as the obligations about heap definedness. Thus,
with relatively little effort, Meta-F� brings an (albeit simple version of a) widely
used yet previously out-of-scope program logic (i.e., separation logic) into F�.
To the best of our knowledge, the ability to script separation logic into an SMT-
based program verifier, without any primitive support, is unique.

2.3 Metaprogramming Verified Low-Level Parsers and Serializers

Above, we used Meta-F� to manipulate VCs for user-written code. Here, we focus
instead on generating verified code automatically. We loosely refer to the previ-
ous setting as using “tactics”, and to the current one as “metaprogramming”.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 39

In most ITPs, tactics and metaprogramming are not distinguished; however in a
program verifier like F�, where some proofs are not materialized at all (Sect. 4.1),
proving VCs of existing terms is distinct from generating new terms.

Metaprogramming in F� involves programmatically generating a (potentially
effectful) term (e.g., by constructing its syntax and instructing F� how to type-
check it) and processing any VCs that arise via tactics. When applicable (e.g.,
when working in a domain-specific language), metaprogramming verified code
can substantially reduce, or even eliminate, the burden of manual proofs.

We illustrate this by automating the generation of parsers and serializers
from a type definition. Of course, this is a routine task in many mainstream
metaprogramming frameworks (e.g., Template Haskell, camlp4, etc). The novelty
here is that we produce imperative parsers and serializers extracted to C, with
proofs that they are memory safe, functionally correct, and mutually inverse.
This section is slightly simplified, more detail can be found the appendix.

We proceed in several stages. First, we program a library of pure, high-level
parser and serializer combinators, proven to be (partial) mutual inverses of each
other. A parser for a type t is represented as a function possibly returning a t

along with the amount of input bytes consumed. The type of a serializer for a
given p:parser t contains a refinement3 stating that p is an inverse of the serializer.
A package is a dependent record of a parser and an associated serializer.

let parser t = seq byte → option (t ∗ nat)
let serializer #t (p:parser t) = f:(t → seq byte){∀ x. p (f x) == Some (x, length (f x))}
type package t = { p : parser t ; s : serializer p }
Basic combinators in the library include constructs for parsing and serializing
base values and pairs, such as the following:

val p u8 : parse u8
val s u8 : serializer p u8
val p pair : parser t1 → parser t2 → parser (t1 ∗ t2)
val s pair : serializer p1 → serializer p2 → serializer (p pair p1 p2)

Next, we define low-level versions of these combinators, which work over muta-
ble arrays instead of byte sequences. These combinators are coded in the Low�

subset of F� (and so can be extracted to C) and are proven to both be
memory-safe and respect their high-level variants. The type for low-level parsers,
parser impl (p:parser t), denotes an imperative function that reads from an array
of bytes and returns a t, behaving as the specificational parser p. Conversely, a
serializer impl (s:serializer p) writes into an array of bytes, behaving as s.

Given such a library, we would like to build verified, mutually inverse, low-
level parsers and serializers for specific data formats. The task is mechanical,
yet overwhelmingly tedious by hand, with many auxiliary proof obligations of a
predictable structure: a perfect candidate for metaprogramming.

Deriving Specifications from a Type Definition. Consider the following F� type,
representing lists of exactly 18 pairs of bytes.
3 F� syntax for refinements is x:t {φ}, denoting the type of all x of type t satisfying φ .

40 G. Mart́ınez et al.

type sample = nlist 18 (u8 ∗ u8)

The first component of our metaprogram is gen specs, which generates parser
and serializer specifications from a type definition.

let ps sample : package sample = by (gen specs (`sample))

The syntax by τ is the way to call Meta-F� for code generation. Meta-F� will
run the metaprogram τ and, if successful, replace the underscore by the result. In
this case, the gen specs (`sample) inspects the syntax of the sample type (Sect. 3.3)
and produces the package below (seq p and seq s are sequencing combinators):

let ps sample = { p = p nlist 18 (p u8 `seq p` p u8)
; s = s nlist 18 (s u8 `seq s` s u8) }

Deriving Low-Level Implementations that Match Specifications. From this pair
of specifications, we can automatically generate Low� implementations for them:

let p low : parser impl ps sample.p = by gen parser impl
let s low : serializer impl ps sample.s = by gen serializer impl

which will produce the following low-level implementations:

let p low = parse nlist impl 18ul (parse u8 impl `seq pi` parse u8 impl)
let s low = serialize nlist impl 18ul (serialize u8 impl `seq si` serialize u8 impl)

For simple types like the one above, the generated code is fairly simple. However,
for more complex types, using the combinator library comes with non-trivial
proof obligations. For example, even for a simple enumeration, type color = Red

| Green, the parser specification is as follows:

parse synth (parse bounded u8 2)
(λ x2 → mk if t (x2 = 0uy) (λ → Red) (λ → Green))
(λ x → match x with | Green → 1uy | Red → 0uy)

We represent Red with 0uy and Green with 1uy. The parser first parses a
“bounded” byte, with only two values. The parse synth combinator then expects
functions between the bounded byte and the datatype being parsed (color), which
must be proven to be mutual inverses. This proof is conceptually easy, but for
large enumerations nested deep within the structure of other types, it is notori-
ously hard for SMT solvers. Since the proof is inherently computational, a proof
that destructs the inductive type into its cases and then normalizes is much more
natural. With our metaprogram, we can produce the term and then discharge
these proof obligations with a tactic on the spot, eliminating them from the final
VC. We also explore simply tweaking the SMT context, again via a tactic, with
good results. A quantitative evaluation is provided in Sect. 6.2.

3 The Design of Meta-F�

Having caught a glimpse of the use cases for Meta-F�, we now turn to its design.
As usual in proof assistants (such as Coq, Lean and Idris), Meta-F� tactics work

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 41

over a set of goals and apply primitive actions to transform them, possibly solving
some goals and generating new goals in the process. Since this is standard, we
will focus the most on describing the aspects where Meta-F� differs from other
engines. We first describe how metaprograms are modelled as an effect (Sect. 3.1)
and their runtime model (Sect. 3.2). We then detail some of Meta-F�’s syntax
inspection and building capabilities (Sect. 3.3). Finally, we show how to perform
some (lightweight) verification of metaprograms (Sect. 3.4) within F�.

3.1 An Effect for Metaprogramming

Meta-F� tactics are, at their core, programs that transform the “proof state”,
i.e. a set of goals needing to be solved. As in Lean [30] and Idris [22], we define a
monad combining exceptions and stateful computations over a proof state, along
with actions that can access internal components such as the type-checker. For
this we first introduce abstract types for the proof state, goals, terms, environ-
ments, etc., together with functions to access them, some of them shown below.

type proofstate
type goal
type term
type env

val goals of : proofstate → list goal
val goal env : goal → env
val goal type : goal → term
val goal solution : goal → term

We can now define our metaprogramming monad: tac. It combines F�’s existing
effect for potential divergence (Div), with exceptions and stateful computations
over a proofstate. The definition of tac, shown below, is straightforward and given
in F�’s standard library. Then, we use F�’s effect extension capabilities [1] in
order to elevate the tac monad and its actions to an effect, dubbed TAC.

type error = exn ∗ proofstate (∗ error and proofstate at the time of failure ∗)
type result a = | Success : a → proofstate → result a | Failed : error → result a
let tac a = proofstate → Div (result a)
let t return #a (x:a) = λps → Success x ps
let t bind #a #b (m:tac a) (f:a → tac b) : tac b = λps → ... (∗ omitted, yet simple ∗)
let get () : tac proofstate = λps → Success ps ps
let raise #a (e:exn) : tac a = λps → Failed (e, ps)
new effect { TAC with repr = tac ; return = t return ; bind = t bind

; get = get ; raise = raise }
The new effect declaration introduces computation types of the form TAC t wp,
where t is the return type and wp a specification. However, until Sect. 3.4 we shall
only use the derived form Tac t, where the specification is trivial. These com-
putation types are distinct from their underlying monadic representation type
tac t—users cannot directly access the proof state except via the actions. The
simplest actions stem from the tac monad definition: get : unit → Tac proofstate

returns the current proof state and raise: exn → Tac α fails with the given excep-
tion4. Failures can be handled using catch : (unit → Tac α) → Tac (either exn α),
which resets the state on failure, including that of unification metavariables.

4 We use greek letters α, β, ... to abbreviate universally quantified type variables.

42 G. Mart́ınez et al.

We emphasize two points here. First, there is no “set” action. This is to for-
bid metaprograms from arbitrarily replacing their proof state, which would be
unsound. Second, the argument to catch must be thunked, since in F� impure
un-suspended computations are evaluated before they are passed into functions.

The only aspect differentiating Tac from other user-defined effects is the exis-
tence of effect-specific primitive actions, which give access to the metaprogram-
ming engine proper. We list here but a few:

val trivial : unit → Tac unit val tc : term → Tac term val dump : string → Tac unit

All of these are given an interpretation internally by Meta-F�. For instance, trivial

calls into F�’s logical simplifier to check whether the current goal is a trivial
proposition and discharges it if so, failing otherwise. The tc primitive queries the
type-checker to infer the type of a given term in the current environment (F�

types are a kind of terms, hence the codomain of tc is also term). This does not
change the proof state; its only purpose is to return useful information to the
calling metaprograms. Finally, dump outputs the current proof state to the user
in a pretty-printed format, in support of user interaction.

Having introduced the Tac effect and some basic actions, writing metapro-
grams is as straightforward as writing any other F� code. For instance, here are
two metaprogram combinators. The first one repeatedly calls its argument until
it fails, returning a list of all the successfully-returned values. The second one
behaves similarly, but folds the results with some provided folding function.

let rec repeat (τ : unit → Tac α) : Tac (list α) =
match catch τ with | Inl → [] | Inr x → x :: repeat τ

let repeat fold f e τ = fold left f e (repeat τ)

These two small combinators illustrate a few key points of Meta-F�. As for all
other F� effects, metaprograms are written in applicative style, without explicit
return, bind, or lift of computations (which are inserted under the hood). This
also works across different effects: repeat fold can seamlessly combine the pure
fold left from F�’s list library with a metaprogram like repeat. Metaprograms are
also type- and effect-inferred: while repeat fold was not at all annotated, F� infers
the polymorphic type (β→ α→ β) → β→ (unit → Tac α) → Tac α for it.

It should be noted that, if lacking an effect extension feature, one could
embed metaprograms simply via the (properly abstracted) tac monad instead of
the Tac effect. It is just more convenient to use an effect, given we are working
within an effectful program verifier already. In what follows, with the exception
of Sect. 3.4 where we describe specifications for metaprograms, there is little
reliance on using an effect; so, the same ideas could be applied in other settings.

3.2 Executing Meta-F� Metaprograms

Running metaprograms involves three steps. First, they are reified [1] into their
underlying tac representation, i.e. as state-passing functions. User code cannot
reify metaprograms: only F� can do so when about to process a goal.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 43

Second, the reified term is applied to an initial proof state, and then simply
evaluated according to F�’s dynamic semantics, for instance using F�’s existing
normalizer. For intensive applications, such as proofs by reflection, we provide
faster alternatives (Sect. 5). In order to perform this second step, the proof state,
which up until this moments exists only internally to F�, must be embedded as
a term, i.e., as abstract syntax. Here is where its abstraction pays off: since
metaprograms cannot interact with a proof state except through a limited inter-
face, it need not be deeply embedded as syntax. By simply wrapping the internal
proofstate into a new kind of “alien” term, and making the primitives aware of
this wrapping, we can readily run the metaprogram that safely carries its alien
proof state around. This wrapping of proof states is a constant-time operation.

The third step is interpreting the primitives. They are realized by functions
of similar types implemented within the F� type-checker, but over an internal
tac monad and the concrete definitions for term, proofstate, etc. Hence, there is
a translation involved on every call and return, switching between embedded
representations and their concrete variants. Take dump, for example, with type
string → Tac unit. Its internal implementation, implemented within the F� type-
checker, has type string → proofstate → Div (result unit). When interpreting a call
to it, the interpreter must unembed the arguments (which are representations of
F� terms) into a concrete string and a concrete proofstate to pass to the internal
implementation of dump. The situation is symmetric for the return value of the
call, which must be embedded as a term.

3.3 Syntax Inspection, Generation, and Quotation

If metaprograms are to be reusable over different kinds of goals, they must be
able to reflect on the goals they are invoked to solve. Like any metaprogramming
system, Meta-F� offers a way to inspect and construct the syntax of F� terms.
Our representation of terms as an inductive type, and the variants of quotations,
are inspired by the ones in Idris [22] and Lean [30].

Inspecting Syntax. Internally, F� uses a locally-nameless representation [21]
with explicit, delayed substitutions. To shield metaprograms from some of this
internal bureaucracy, we expose a simplified view [61] of terms. Below we present
a few constructors from the term view type:
val inspect : term → Tac term view
val pack : term view → term

type term view =
| Tv BVar : v:dbvar → term view
| Tv Var : v:name → term view
| Tv FVar : v:qname → term view
| Tv Abs : bv:binder → body:term → term view
| Tv App : hd:term → arg:term → term view
...

The term view type provides the “one-level-deep” structure of a term: metapro-
grams must call inspect to reveal the structure of the term, one constructor at a
time. The view exposes three kinds of variables: bound variables, Tv BVar; named

44 G. Mart́ınez et al.

local variables Tv Var; and top-level fully qualified names, Tv FVar. Bound vari-
ables and local variables are distinguished since the internal abstract syntax
is locally nameless. For metaprogramming, it is usually simpler to use a fully-
named representation, so we provide inspect and pack functions that open and
close binders appropriately to maintain this invariant. Since opening binders
requires freshness, inspect has effect Tac.5 As generating large pieces of syntax
via the view easily becomes tedious, we also provide some ways of quoting terms:

Static Quotations. A static quotation `e is just a shorthand for statically
calling the F� parser to convert e into the abstract syntax of F� terms above.
For instance, `(f 1 2) is equivalent to the following,

pack (Tv App (pack (Tv App (pack (Tv FVar "f"))
(pack (Tv Const (C Int 1)))))

(pack (Tv Const (C Int 2))))

Dynamic Quotations. A second form of quotation is dquote: #a:Type → a →
Tac term, an effectful operation that is interpreted by F�’s normalizer during
metaprogram evaluation. It returns the syntax of its argument at the time
dquote e is evaluated. Evaluating dquote e substitutes all the free variables in
e with their current values in the execution environment, suspends further eval-
uation, and returns the abstract syntax of the resulting term. For instance,
evaluating (λx → dquote (x + 1)) 16 produces the abstract syntax of 16 + 1.

Anti-quotations. Static quotations are useful for building big chunks of syntax
concisely, but they are of limited use if we cannot combine them with existing bits
of syntax. Subterms of a quotation are allowed to “escape” and be substituted by
arbitrary expressions. We use the syntax `#t to denote an antiquoted t, where t

must be an expression of type term in order for the quotation to be well-typed.
For example, `(1 +`#e) creates syntax for an addition where one operand is the
integer constant 1 and the other is the term represented by e.

Unquotation. Finally, we provide an effectful operation, unquote: #a:Type →
t:term → Tac a, which takes a term representation t and an expected type for it a

(usually inferred from the context), and calls the F� type-checker to check and
elaborate the term representation into a well-typed term.

3.4 Specifying and Verifying Metaprograms

Since we model metaprograms as a particular kind of effectful program within
F�, which is a program verifier, a natural question to ask is whether F� can
specify and verify metaprograms. The answer is “yes, to a degree”.

To do so, we must use the WP calculus for the TAC effect: TAC-computations
are given computation types of the form TAC a wp, where a is the computa-
tion’s result type and wp is a weakest-precondition transformer of type tacwp a

= proofstate → (result a → prop) → prop. However, since WPs tend to not be very

5 We also provide functions inspect ln, pack ln which stay in a locally-nameless repre-
sentation and are thus pure, total functions.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 45

intuitive, we first define two variants of the TAC effect: TacH in “Hoare-style” with
pre- and postconditions and Tac (which we have seen before), which only spec-
ifies the return type, but uses trivial pre- and postconditions. The requires and
ensures keywords below simply aid readability of pre- and postconditions—they
are identity functions.

effect TacH (a:Type) (pre : proofstate → prop) (post : proofstate → result a → prop) =
TAC a (λ ps post’ → pre ps ∧ (∀ r. post ps r =⇒ post’ r))

effect Tac (a:Type) = TacH a (requires (λ →)) (ensures (λ →))

Previously, we only showed the simple type for the raise primitive, namely exn →
Tac α. In fact, in full detail and Hoare style, its type/specification is:

val raise : e:exn→ TacH α (requires (λ →))
(ensures (λ ps r → r == Failed (e, ps)))

expressing that the primitive has no precondition, always fails with the provided
exception, and does not modify the proof state. From the specifications of the
primitives, and the automatically obtained Dijkstra monad, F� can already prove
interesting properties about metaprograms. We show a few simple examples.

The following metaprogram is accepted by F� as it can conclude, from the
type of raise, that the assertion is unreachable, and hence raise flow can have a
trivial precondition (as Tac unit implies).

let raise flow () : Tac unit = raise SomeExn; assert ⊥
For cur goal safe below, F� verifies that (given the precondition) the pattern
match is exhaustive. The postcondition is also asserting that the metaprogram
always succeeds without affecting the proof state, returning some unspecified
goal. Calls to cur goal safe must statically ensure that the goal list is not empty.

let cur goal safe () : TacH goal (requires (λ ps → ¬(goals of ps == [])))
(ensures (λ ps r → ∃g. r == Success g ps)) =

match goals of (get ()) with | g :: → g

Finally, the divide combinator below “splits” the goals of a proof state in two at a
given index n, and focuses a different metaprogram on each. It includes a runtime
check that the given n is non-negative, and raises an exception in the TAC effect
otherwise. Afterwards, the call to the (pure) List.splitAt function requires that
n be statically known to be non-negative, a fact which can be proven from the
specification for raise and the effect definition, which defines the control flow.

let divide (n:int) (tl : unit → Tac α) (tr : unit → Tac β) : Tac (α ∗ β) =
if n < 0 then raise NegativeN;
let gsl, gsr = List.splitAt n (goals ()) in ...

This enables a style of “lightweight” verification of metaprograms, where expres-
sive invariants about their state and control-flow can be encoded. The program-
mer can exploit dynamic checks (n < 0) and exceptions (raise) or static ones
(preconditions), or a mixture of them, as needed.

46 G. Mart́ınez et al.

Due to type abstraction, though, the specifications of most primitives cannot
provide complete detail about their behavior, and deeper specifications (such as
ensuring a tactic will correctly solve a goal) cannot currently be proven, nor even
stated—to do so would require, at least, an internalization of the typing judgment
of F�. While this is an exciting possibility [3], we have for now only focused on
verifying basic safety properties of metaprograms, which helps users detect errors
early, and whose proofs the SMT can handle well. Although in principle, one can
also write tactics to discharge the proof obligations of metaprograms.

4 Meta-F�, Formally

We now describe the trust assumptions for Meta-F� (Sect. 4.1) and then how we
reconcile tactics within a program verifier, where the exact shape of VCs is not
given, nor known a priori by the user (Sect. 4.2).

4.1 Correctness and Trusted Computing Base (TCB)

As in any proof assistant, tactics and metaprogramming would be rather useless
if they allowed to “prove” invalid judgments—care must be taken to ensure
soundness. We begin with a taste of the specifics of F�’s static semantics, which
influence the trust model for Meta-F�, and then provide more detail on the TCB.

Proof Irrelevance in F�. The following two rules for introducing and eliminat-
ing refinement types are key in F�, as they form the basis of its proof irrelevance.

T-Refine
Γ � e : t Γ |= φ[e/x]

Γ � e : x : t{φ}

V-Refine
Γ � e : x : t{φ}

Γ |= φ[e/x]

The � symbol represents F�’s validity judgment [1] which, at a high-level,
defines a proof-irrelevant, classical, higher-order logic. These validity hypotheses
are usually collected by the type-checker, and then encoded to the SMT solver
in bulk. Crucially, the irrelevance of validity is what permits efficient interaction
with SMT solvers, since reconstructing F� terms from SMT proofs is unneeded.

As evidenced in the rules, validity and typing are mutually recursive, and
therefore Meta-F� must also construct validity derivations. In the implementa-
tion, we model these validity goals as holes with a “squash” type [5,53], where
squash φ = :unit{φ }, i.e., a refinement of unit. Concretely, we model Γ � φ as
Γ � ?u : squash φ using a unification variable. Meta-F� does not construct deep
solutions to squashed goals: if they are proven valid, the variable ?u is simply
solved by the unit value ‘()’. At any point, any such irrelevant goal can be sent
to the SMT solver. Relevant goals, on the other hand, cannot be sent to SMT.

Scripting the Typing Judgment. A consequence of validity proofs not being
materialized is that type-checking is undecidable in F�. For instance: does the
unit value () solve the hole Γ � ?u : squash φ ? Well, only if φ holds—a condi-
tion which no type-checker can effectively decide. This implies that the type-
checker cannot, in general, rely on proof terms to reconstruct a proof. Hence, the

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 47

primitives are designed to provide access to the typing judgment of F� directly,
instead of building syntax for proof terms. One can think of F�’s type-checker
as implementing one particular algorithmic heuristic of the typing and validity
judgments—a heuristic which happens to work well in practice. For convenience,
this default type-checking heuristic is also available to metaprograms: this is in
fact precisely what the exact primitive does. Having programmatic access to
the typing judgment also provides the flexibility to tweak VC generation as
needed, instead of leaving it to the default behavior of F�. For instance, the
refine intro primitive implements T-Refine. When applied, it produces two new
goals, including that the refinement actually holds. At that point, a metapro-
gram can run any arbitrary tactic on it, instead of letting the F� type-checker
collect the obligation and send it to the SMT solver in bulk with others.

Trust. There are two common approaches for the correctness of tactic engines:
(1) the de Bruijn criterion [6], which requires constructing full proofs (or proof
terms) and checking them at the end, hence reducing trust to an indepen-
dent proof-checker; and (2) the LCF style, which applies backwards reasoning
while constructing validation functions at every step, reducing trust to primitive,
forward-style implementations of the system’s inference rules.

As we wish to make use of SMT solvers within F�, the first approach is
not easy. Reconstructing the proofs SMT solvers produce, if any, back into a
proper derivation remains a significant challenge (even despite recent progress,
e.g. [17,31]). Further, the logical encoding from F� to SMT, along with the
solver itself, are already part of F�’s TCB: shielding Meta-F� from them would
not significantly increase safety of the combined system.

Instead, we roughly follow the LCF approach and implement F�’s typing
rules as the basic user-facing metaprogramming actions. However, instead of
implementing the rules in forward-style and using them to validate (untrusted)
backwards-style tactics, we implement them directly in backwards-style. That is,
they run by breaking down goals into subgoals, instead of combining proven facts
into new proven facts. Using LCF style makes the primitives part of the TCB.
However, given the primitives are sound, any combination of them also is, and
any user-provided metaprogram must be safe due to the abstraction imposed by
the Tac effect, as discussed next.

Correct Evolutions of the Proof State. For soundness, it is imperative that
tactics do not arbitrarily drop goals from the proof state, and only discharge
them when they are solved, or when they can be solved by other goals tracked
in the proof state. For a concrete example, consider the following program:

let f : int → int = by (intro (); exact (`42))

Here, Meta-F� will create an initial proof state with a single goal of the form
[∅ � ?u1 : int → int] and begin executing the metaprogram. When applying the
intro primitive, the proof state transitions as shown below.

[∅ � ?u1 : int → int] � [x:int � ?u2 : int]

48 G. Mart́ınez et al.

Here, a solution to the original goal has not yet been built, since it depends on
the solution to the goal on the right hand side. When it is solved with, say, 42,
we can solve our original goal with λx → 42. To formalize these dependencies, we
say that a proof state φ correctly evolves (via f) to ψ, denoted φ �f ψ, when
there is a generic transformation f , called a validation, from solutions to all of
ψ’s goals into correct solutions for φ’s goals. When φ has n goals and ψ has m
goals, the validation f is a function from termm into termn. Validations may be
composed, providing the transitivity of correct evolution, and if a proof state φ
correctly evolves (in any amount of steps) into a state with no more goals, then
we have fully defined solutions to all of φ’s goals. We emphasize that validations
are not constructed explicitly during the execution of metaprograms. Instead we
exploit unification metavariables to instantiate the solutions automatically.

Note that validations may construct solutions for more than one goal, i.e.,
their codomain is not a single term. This is required in Meta-F�, where primitive
steps may not only decompose goals into subgoals, but actually combine goals
as well. Currently, the only primitive providing this behavior is join, which finds
a maximal common prefix of the environment of two irrelevant goals, reverts
the “extra” binders in both goals and builds their conjunction. Combining goals
using join is especially useful for sending multiple goals to the SMT solver in a
single call. When there are common obligations within two goals, joining them
before calling the SMT solver can result in a significantly faster proof.

We check that every primitive action respects the � preorder. This relies on
them modeling F�’s typing rules. For example, and unsurprisingly, the following
rule for typing abstractions is what justifies the intro primitive:

T-Fun
Γ, x : t � e : t′

Γ � λ(x : t).e : (x : t) → t′

Then, for the proof state evolution above, the validation function f is the (math-
ematical, meta-level) function taking a term of type int (the solution for ?u2) and
building syntax for its abstraction over x. Further, the intro primitive respects
the correct-evolution preorder, by the very typing rule (T-Fun) from which it is
defined. In this manner, every typing rule induces a syntax-building metapro-
gramming step. Our primitives come from this dual interpretation of typing
rules, which ensures that logical consistency is preserved.

Since the � relation is a preorder, and every metaprogramming primitive we
provide the user evolves the proof state according �, it is trivially the case that
the final proof state returned by a (successful) computation is a correct evolution
of the initial one. That means that when the metaprogram terminates, one has
indeed broken down the proof obligation correctly, and is left with a (hopefully)
simpler set of obligations to fulfill. Note that since � is a preorder, Tac provides
an interesting example of monotonic state [2].

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 49

4.2 Extracting Individual Assertions

As discussed, the logical context of a goal processed by a tactic is not always
syntactically evident in the program. And, as shown in the List.splitAt call in
divide from Sect. 3.4, some obligations crucially depend on the control-flow of
the program. Hence, the proof state must crucially include these assumptions if
proving the assertion is to succeed. Below, we describe how Meta-F� finds proper
contexts in which to prove the assertions, including control-flow information.
Notably, this process is defined over logical formulae and does not depend at all
on F�’s WP calculus or VC generator: we believe it should be applicable to any
VC generator.

As seen in Sect. 2.1, the basic mechanism by which Meta-F� attaches a tactic
to a specific sub-goal is assert φ by τ . Our encoding of this expression is built sim-
ilarly to F�’s existing assert construct, which is simply sugar for a pure function
assert of type φ :prop → Lemma (requires φ) (ensures φ), which essentially intro-

duces a cut in the generated VC. That is, the term (assert φ ; e) roughly produces
the verification condition φ ∧ (φ =⇒ VCe), requiring a proof of φ at this point,
and assuming φ in the continuation. For Meta-F�, we aim to keep this style
while allowing asserted formulae to be decorated with user-provided tactics that
are tasked with proving or pre-processing them. We do this in three steps.

First, we define the following “phantom” predicate:

let with tactic (φ : prop) (τ : unit → Tac unit) = φ

Here φ `with tactic`τ simply associates the tactic τ with φ , and is equivalent to
φ by its definition. Next, we implement the assert by tactic lemma, and desugar
assert φ by τ into assert by tactic φ τ . This lemma is trivially provable by F�.

let assert by tactic (φ : prop) (τ : unit → Tac unit)
: Lemma (requires (φ `with tactic` τ)) (ensures φ) = ()

Given this specification, the term (assert φ by τ ; e) roughly produces the verifica-
tion condition φ `with tactic`τ ∧ (φ =⇒ VCe), with a tagged left sub-goal, and φ

as an hypothesis in the right one. Importantly, F� keeps the with tactic marker
uninterpreted until the VC needs to be discharged. At that point, it may con-
tain several annotated subformulae. For example, suppose the VC is VC0 below,
where we distinguish an ambient context of variables and hypotheses Δ:

(VC0) Δ |= X =⇒ (∀ (x:t). R `with tactic` τ 1 ∧ (R =⇒ S))

In order to run the τ 1 tactic on R, it must first be “split out”. To do so, all logical
information “visible” for τ 1 (i.e. the set of premises of the implications traversed
and the binders introduced by quantifiers) must be included. As for any program
verifier, these hypotheses include the control flow information, postconditions,
and any other logical fact that is known to be valid at the program point where
the corresponding assert R by τ 1 was called. All of them are collected into Δ as
the term is traversed. In this case, the VC for R is:

(VC1) Δ, :X, x:t |= R

50 G. Mart́ınez et al.

Afterwards, this obligation is removed from the original VC. This is done by
replacing it with 	, leaving a “skeleton” VC with all remaining facts.

(VC2) Δ |= X =⇒ (∀ (x:t). 	 ∧ (R =⇒ S))

The validity of VC1 and VC2 implies that of VC0. F� also recursively descends
into R and S, in case there are more with tactic markers in them. Then, tactics
are run on the the split VCs (e.g., τ 1 on VC1) to break them down (or solve
them). All remaining goals, including the skeleton, are sent to the SMT solver.

Note that while the obligation to prove R, in VC1, is preprocessed by the
tactic τ 1, the assumption R for the continuation of the code, in VC2, is left as-is.
This is crucial for tactics such as the canonicalizer from Sect. 2.1: if the skeleton
VC2 contained an assumption for the canonicalized equality it would not help
the SMT solver show the uncanonicalized postcondition.

However, not all nodes marked with with tactic are proof obligations. Suppose
X in the previous VC was given as (Y `with tactic`τ 2). In this case, one certainly
does not want to attempt to prove Y, since it is an hypothesis. While it would be
sound to prove it and replace it by 	, it is useless at best, and usually irreparably
affects the system. Consider asserting the tautology (⊥`with tactic`τ) =⇒ ⊥.

Hence, F� splits such obligations only in strictly-positive positions. On all
others, F� simply drops the with tactic marker, e.g., by just unfolding the def-
inition of with tactic. For regular uses of the assert..by construct, however, all
occurrences are strictly-positive. It is only when (expert) users use the with tactic

marker directly that the above discussion might become relevant.
Formally, the soundness of this whole approach is given by the following

metatheorem, which justifies the splitting out of sub-assertions, and by the cor-
rectness of evolution detailed in Sect. 4.1. The proof of Theorem 1 is straightfor-
ward, and included in the appendix. We expect an analogous property to hold
in other verifiers as well (in particular, it holds for first-order logic).

Theorem 1. Let E be a context with Γ � E : prop ⇒ prop, and φ a squashed
proposition such that Γ � φ : prop. Then the following holds:

Γ � E[�] Γ, γ(E) � φ

Γ � E[φ]

where γ(E) is the set of binders E introduces. If E is strictly-positive, then the
reverse implication holds as well.

5 Executing Metaprograms Efficiently

F� provides three complementary mechanisms for running metaprograms. The
first two, F�’s call-by-name (CBN) interpreter and a (newly implemented) call-
by-value (CBV) NbE-based evaluator, support strong reduction—henceforth we
refer to these as “normalizers”. In addition, we design and implement a new
native plugin mechanism that allows both normalizers to interface with Meta-
F� programs extracted to OCaml, reusing F�’s existing extraction pipeline for
this purpose. Below we provide a brief overview of the three mechanisms.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 51

5.1 CBN and CBV Strong Reductions

As described in Sect. 3.1, metaprograms, once reified, are simply F� terms of
type proofstate → Div (result a). As such, they can be reduced using F�’s existing
computation machinery, a CBN interpreter for strong reductions based on the
Krivine abstract machine (KAM) [24,46]. Although complete and highly con-
figurable, F�’s KAM interpreter is slow, designed primarily for converting types
during dependent type-checking and higher-order unification.

Shifting focus to long-running metaprograms, such as tactics for proofs by
reflection, we implemented an NbE-based strong-reduction evaluator for F� com-
putations. The evaluator is implemented in F� and extracted to OCaml (as is
the rest of F�), thereby inheriting CBV from OCaml. It is similar to Boespflug
et al.’s [16] NbE-based strong-reduction for Coq, although we do not implement
their low-level, OCaml-specific tag-elimination optimizations—nevertheless, it is
already vastly more efficient than the KAM-based interpreter.

5.2 Native Plugins and Multi-language Interoperability

Since Meta-F� programs are just F� programs, they can also be extracted to
OCaml and natively compiled. Further, they can be dynamically linked into
F� as “plugins”. Plugins can be directly called from the type-checker, as is
done for the primitives, which is much more efficient than interpreting them.
However, compilation has a cost, and it is not convenient to compile every sin-
gle invocation. Instead, Meta-F� enables users to choose which metaprograms
are to be plugins (presumably those expected to be computation-intensive, e.g.
canon semiring). Users can choose their native plugins, while still quickly scripting
their higher-level logic in the interpreter.

This requires (for higher-order metaprograms) a form of multi-language inter-
operability, converting between representations of terms used in the normalizers
and in native code. We designed a small multi-language calculus, with ML-style
polymorphism, to model the interaction between normalizers and plugins and
conversions between terms. See the appendix for details.

Beyond the notable efficiency gains of running compiled code vs. interpreting
it, native metaprograms also require fewer embeddings. Once compiled, metapro-
grams work over the internal, concrete types for proofstate, term, etc., instead
of over their F� representations (though still treating them abstractly). Hence,
compiled metaprograms can call primitives without needing to embed their argu-
ments or unembed their results. Further, they can call each other directly as well.
Indeed, operationally there is little operational difference between a primitive
and a compiled metaprogram used as a plugin.

Native plugins, however, are not a replacement for the normalizers, for sev-
eral reasons. First, the overhead in compilation might not be justified by the
execution speed-up. Second, extraction to OCaml erases types and proofs. As
a result, the F� interface of the native plugins can only contain types that can
also be expressed in OCaml, thereby excluding full-dependent types—internally,
however, they can be dependently typed. Third, being OCaml programs, native

52 G. Mart́ınez et al.

plugins do not support reducing open terms, which is often required. However,
when the programs treat their open arguments parametrically, relying on para-
metric polymorphism, the normalizers can pass such arguments as-is, thereby
recovering open reductions in some cases. This allows us to use native datastruc-
ture implementations (e.g. List), which is much faster than using the normalizers,
even for open terms. See the appendix for details.

6 Experimental Evaluation

We now present an experimental evaluation of Meta-F�. First, we provide bench-
marks comparing our reflective canonicalizer from Sect. 2.1 to calling the SMT
solver directly without any canonicalization. Then, we return to the parsers and
serializers from Sect. 2.3 and show how, for VCs that arise, a domain-specific
tactic is much more tractable than a SMT-only proof.

6.1 A Reflective Tactic for Partial Canonicalization

In Sect. 2.1, we have described the canon semiring tactic that rewrites semir-
ing expressions into sums of products. We find that this tactic significantly
improves proof robustness. The table below compares the success rates and
times for the poly multiply lemma from Sect. 2.1. To test the robustness of each
alternative, we run the tests 200 times while varying the SMT solver’s ran-
dom seed. The smtix rows represent asking the solver to prove the lemma
without any help from tactics, where i represents the resource limit (rlimit)
multiplier given to the solver. This rlimit is memory-allocation based and
independent of the particular system or current load. For the interp and
native rows, the canon semiring tactic is used, running it using F�’s KAM
normalizer and as a native plugin respectively—both with an rlimit of 1.

Rate Queries Tactic Total

smt1x 0.5% 0.216 ± 0.001 – 2.937
smt2x 2% 0.265 ± 0.003 – 2.958
smt3x 4% 0.304 ± 0.004 – 3.022
smt6x 10% 0.401 ± 0.008 – 3.155
smt12x 12.5% 0.596 ± 0.031 – 3.321
smt25x 16.5% 1.063 ± 0.079 – 3.790
smt50x 22% 2.319 ± 0.230 – 5.030
smt100x 24% 5.831 ± 0.776 – 8.550
interp 100% 0.141 ± 0.001 1.156 4.003
native 100% 0.139 ± 0.001 0.212 3.071

For each setup, we display
the success rate of verifica-
tion, the average (CPU) time
taken for the SMT queries
(not counting the time for
parsing/processing the the-
ory) with its standard devi-
ation, and the average total
time (its standard deviation
coincides with that of the
queries). When applicable,
the time for tactic execution
(which is independent of the
seed) is displayed. The smt
rows show very poor success
rates: even when upping the rlimit to a whopping 100x, over three quarters of
the attempts fail. Note how the (relative) standard deviation increases with the

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 53

rlimit: this is due to successful runs taking rather random times, and failing
ones exhausting their resources in similar times. The setups using the tactic show
a clear increase in robustness: canonicalizing the assertion causes this proof to
always succeed, even at the default rlimit. We recall that the tactic variants
still leave goals for SMT solving, namely, the skeleton for the original VC and
the canonicalized equality left by the tactic, easily dischargeable by the SMT
solver through much more well-behaved linear reasoning. The last column shows
that native compilation speeds up this tactic’s execution by about 5x.

6.2 Combining SMT and Tactics for the Parser Generator

In Sect. 2.3, we presented a library of combinators and a metaprogramming
approach to automate the construction of verified, mutually inverse, low-level
parsers and serializers from type descriptions. Beyond generating the code, tac-
tics are used to process and discharge proof obligations that arise when using the
combinators.

We present three strategies for discharging these obligations, including those
of bijectivity that arise when constructing parsers and serializers for enumer-
ated types. First, we used F�’s default strategy to present all of these proofs
directly to the SMT solver. Second, we programmed a ∼100 line tactic to dis-
charge these proofs without relying on the SMT solver at all. Finally, we used
a hybrid approach where a simple, 5-line tactic is used to prune the context of
the proof removing redundant facts before presenting the resulting goals to the
SMT solver.

Size SMT only Tactic only Hybrid

4 178 17.3 6.6
7 468 38.3 9.8

10 690 63.0 19.4

The table alongside shows the total
time in seconds for verifying metapro-
grammed low-level parsers and serializ-
ers for enumerations of different sizes.
In short, the hybrid approach scales the
best; the tactic-only approach is some-
what slower; while the SMT-only approach scales poorly and is an order of
magnitude slower. Our hybrid approach is very simple. With some more work,
a more sophisticated hybrid strategy could be more performant still, relying on
tactic-based normalization proofs for fragments of the VC best handled compu-
tationally (where the SMT solver spends most of its time), while using SMT only
for integer arithmetic, congruence closure etc. However, with Meta-F�’s ability to
manipulate proof contexts programmatically, our simple context-pruning tactic
provides a big payoff at a small cost.

7 Related Work

Many SMT-based program verifiers [7,8,19,34,48], rely on user hints, in the
form of assertions and lemmas, to complete proofs. This is the predominant
style of proving used in tools like Dafny [47], Liquid Haskell [60], Why3 [33], and

54 G. Mart́ınez et al.

F� itself [58]. However, there is a growing trend to augment this style of semi-
automated proof with interactive proofs. For example, systems like Why3 [33]
allow VCs to be discharged using ITPs such as Coq, Isabelle/HOL, and PVS,
but this requires an additional embedding of VCs into the logic of the ITP in
question. In recent concurrent work, support for effectful reflection proofs was
added to Why3 [50], and it would be interesting to investigate if this could also
be done in Meta-F�. Grov and Tumas [39] present Tacny, a tactic framework for
Dafny, which is, however, limited in that it only transforms source code, with the
program verifier unchanged. In contrast, Meta-F� combines the benefits of an
SMT-based program verifier and those of tactic proofs within a single language.

Moving away from SMT-based verifiers, ITPs have long relied on separate
languages for proof scripting, starting with Edinburgh LCF [37] and ML, and
continuing with HOL, Isabelle and Coq, which are either extensible via ML,
or have dedicated tactic languages [3,29,56,62]. Meta-F� builds instead on a
recent idea in the space of dependently typed ITPs [22,30,42,63] of reusing the
object-language as the meta-language. This idea first appeared in Mtac, a Coq-
based tactics framework for Coq [42,63], and has many generic benefits including
reusing the standard library, IDE support, and type checker of the proof assis-
tant. Mtac can additionally check the partial correctness of tactics, which is also
sometimes possible in Meta-F� but still rather limited (Sect. 3.4). Meta-F�’s
design is instead more closely inspired by the metaprogramming frameworks of
Idris [22] and Lean [30], which provide a deep embedding of terms that metapro-
grams can inspect and construct at will without dependent types getting in the
way. However, F�’s effects, its weakest precondition calculus, and its use of SMT
solvers distinguish Meta-F� from these other frameworks, presenting both chal-
lenges and opportunities, as discussed in this paper.

Some SMT solvers also include tactic engines [27], which allow to process
queries in custom ways. However, using SMT tactics from a program verifier is
not very practical. To do so effectively, users must become familiar not only with
the solver’s language and tactic engine, but also with the translation from the
program verifier to the solver. Instead, in Meta-F�, everything happens within
a single language. Also, to our knowledge, these tactics are usually coarsely-
grained, and we do not expect them to enable developments such as Sect. 2.2.
Plus, SMT tactics do not enable metaprogramming.

Finally, ITPs are seeing increasing use of “hammers” such as Sledgeham-
mer [14,15,54] in Isabelle/HOL, and similar tools for HOL Light and HOL4 [43],
and Mizar [44], to interface with ATPs. This technique is similar to Meta-F�,
which, given its support for a dependently typed logic is especially related to
a recent hammer for Coq [26]. Unlike these hammers, Meta-F� does not aim
to reconstruct SMT proofs, gaining efficiency at the cost of trusting the SMT
solver. Further, whereas hammers run in the background, lightening the load on
a user otherwise tasked with completing the entire proof, Meta-F� relies more
heavily on the SMT solver as an end-game tactic in nearly all proofs.

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 55

8 Conclusions

A key challenge in program verification is to balance automation and expres-
siveness. Whereas tactic-based ITPs support highly expressive logics, the tactic
author is responsible for all the automation. Conversely, SMT-based program
verifiers provide good, scalable automation for comparatively weaker logics, but
offer little recourse when verification fails. A design that allows picking the right
tool, at the granularity of each verification sub-task, is a worthy area of research.
Meta-F� presents a new point in this space: by using hand-written tactics along-
side SMT-automation, we have written proofs that were previously impractical
in F�, and (to the best of our knowledge) in other SMT-based program verifiers.

Acknowledgements. We thank Leonardo de Moura and the Project Everest team
for many useful discussions. The work of Guido Mart́ınez, Nick Giannarakis, Monal
Narasimhamurthy, and Zoe Paraskevopoulou was done, in part, while interning at
Microsoft Research. Clément Pit-Claudel’s work was in part done during an internship
at Inria Paris. The work of Danel Ahman, Victor Dumitrescu, and Cătălin Hriţcu is
supported by the MSR-Inria Joint Centre and the European Research Council under
ERC Starting Grant SECOMP (1-715753).

References

1. Ahman, D., et al.: Dijkstra monads for free. In: POPL (2017). https://doi.org/10.
1145/3009837.3009878

2. Ahman, D., Fournet, C., Hriţcu, C., Maillard, K., Rastogi, A., Swamy, N.: Recalling
a witness: foundations and applications of monotonic state. PACMPL 2(POPL),
65:1–65:30 (2018). https://arxiv.org/abs/1707.02466

3. Anand, A., Boulier, S., Cohen, C., Sozeau, M., Tabareau, N.: Towards certified
meta-programming with typed Template-Coq. In: Avigad, J., Mahboubi, A.
(eds.) ITP 2018. LNCS, vol. 10895, pp. 20–39. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94821-8 2. https://template-coq.github.io/template-coq/

4. Appel, A.W.: Tactics for separation logic. Early Draft (2006). https://www.cs.
princeton.edu/∼appel/papers/septacs.pdf

5. Awodey, S., Bauer, A.: Propositions as [Types]. J. Log. Comput. 14(4), 447–471
(2004). https://doi.org/10.1093/logcom/14.4.447

6. Barendregt, H., Geuvers, H.: Proof-assistants using dependent type systems. In:
Handbook of Automated Reasoning, pp. 1149–1238. Elsevier Science Publishers B.
V., Amsterdam (2001). http://dl.acm.org/citation.cfm?id=778522.778527

7. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

8. Barnett, M., et al.: The Spec# programming system: challenges and directions.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69149-5 16

9. Barras, B., Grégoire, B., Mahboubi, A., Théry, L.: Chap. 25: The ring and field
tactic families. Coq reference manual. https://coq.inria.fr/refman/ring.html

https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3009837.3009878
https://arxiv.org/abs/1707.02466
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/978-3-319-94821-8_2
https://template-coq.github.io/template-coq/
https://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://doi.org/10.1093/logcom/14.4.447
http://dl.acm.org/citation.cfm?id=778522.778527
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-69149-5_16
https://coq.inria.fr/refman/ring.html

56 G. Mart́ınez et al.

10. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: LICS (1991). https://doi.org/10.1109/LICS.1991.151645

11. Bernstein, D.J.: The Poly1305-AES message-authentication code. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp.
32–49. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760 3.
https://cr.yp.to/mac/poly1305-20050329.pdf

12. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1 4

13. Bhargavan, K., et al.: Everest: towards a verified, drop-in replacement of
HTTPS. In: SNAPL (2017). http://drops.dagstuhl.de/opus/volltexte/2017/7119/
pdf/LIPIcs-SNAPL-2017-1.pdf

14. Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In:
Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI),
vol. 8152, pp. 245–260. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40885-4 17

15. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. JAR 51(1), 109–128 (2013). https://doi.org/10.1007/s10817-013-9278-5

16. Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: Jouan-
naud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 362–377. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25379-9 26

17. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5 14

18. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code. In:
USENIX Security (2017). https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/bond

19. Burdy, L., et al.: An overview of JML tools and applications. STTT 7(3), 212–232
(2005). https://doi.org/10.1007/s10009-004-0167-4

20. Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J.
Autom. Reason. 41(1), 33–59 (2008). https://doi.org/10.1007/s10817-008-9101-x

21. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3),
363–408 (2012). https://doi.org/10.1007/s10817-011-9225-2

22. Christiansen, D.R., Brady, E.: Elaborator reflection: extending Idris in Idris. In:
ICFP (2016). https://doi.org/10.1145/2951913.2951932

23. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-
ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 42

24. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. HOSC
20(3), 209–230 (2007). https://doi.org/10.1007/s10990-007-9015-z

25. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7 16

26. Czajka, �L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory.
JAR 61(1–4), 423–453 (2018). https://doi.org/10.1007/s10817-018-9458-4

https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/11502760_3
https://cr.yp.to/mac/poly1305-20050329.pdf
https://doi.org/10.1007/978-3-540-74464-1_4
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
https://doi.org/10.1007/978-3-642-40885-4_17
https://doi.org/10.1007/978-3-642-40885-4_17
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/978-3-642-25379-9_26
https://doi.org/10.1007/978-3-642-14052-5_14
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/s10817-008-9101-x
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/s10817-018-9458-4

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 57

27. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina,
M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI),
vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36675-8 2. http://dl.acm.org/citation.cfm?id=2554473.2554475

28. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

29. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1 7

30. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. PACMPL 1(ICFP), 34:1–34:29 (2017). https://
doi.org/10.1145/3110278

31. Ekici, B., et al.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part II. LNCS, vol. 10427, pp. 126–
133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 7

32. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: IEEE S&P
(2019). https://doi.org/10.1109/SP.2019.00005

33. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–
128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8.
https://hal.inria.fr/hal-00789533/document

34. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
PLDI 2002: extended static checking for Java. SIGPLAN Not. 48(4S), 22–33
(2013). https://doi.org/10.1145/2502508.2502520

35. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A.,
Swamy, N.: A verified, efficient embedding of a verifiable assembly language.
PACMPL (POPL) (2019). https://github.com/project-everest/project-everest.
github.io/raw/master/assets/vale-popl.pdf

36. Gonthier, G.: Formal proof—the four-color theorem. Not. AMS 55(11), 1382–1393
(2008). https://www.ams.org/notices/200811/tx081101382p.pdf

37. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic
of Computation. LNCS, vol. 78. Springer, Heidelberg (1979). https://doi.org/10.
1007/3-540-09724-4

38. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in
Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 7

39. Grov, G., Tumas, V.: Tactics for the Dafny program verifier. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 36–53. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49674-9 3

40. Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated full-
system verification. In: OSDI (2014). https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/hawblitzel

41. Hawblitzel, C., et al.: Ironfleet: proving safety and liveness of practical distributed
systems. CACM 60(7), 83–92 (2017). https://doi.org/10.1145/3068608

42. Kaiser, J., Ziliani, B., Krebbers, R., Régis-Gianas, Y., Dreyer, D.: Mtac2: typed tac-
tics for backward reasoning in Coq. PACMPL 2(ICFP), 78:1–78:31 (2018). https://
doi.org/10.1145/3236773

https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
http://dl.acm.org/citation.cfm?id=2554473.2554475
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1007/978-3-642-37036-6_8
https://hal.inria.fr/hal-00789533/document
https://doi.org/10.1145/2502508.2502520
https://github.com/project-everest/project-everest.github.io/raw/master/assets/vale-popl.pdf
https://github.com/project-everest/project-everest.github.io/raw/master/assets/vale-popl.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/978-3-662-49674-9_3
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1145/3068608
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773

58 G. Mart́ınez et al.

43. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
JAR 53(2), 173–213 (2014). https://doi.org/10.1007/s10817-014-9303-3

44. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. JAR 55(3), 245–256 (2015).
https://doi.org/10.1007/s10817-015-9330-8

45. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order
concurrent separation logic. In: POPL (2017). http://dl.acm.org/citation.cfm?
id=3009855

46. Krivine, J.-L.: A call-by-name lambda-calculus machine. Higher Order Symbol.
Comput. 20(3), 199–207 (2007). https://doi.org/10.1007/s10990-007-9018-9

47. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20.
http://dl.acm.org/citation.cfm?id=1939141.1939161

48. Rustan, K., Leino, M., Nelson, G.: An extended static checker for modula-3. In:
Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 302–305. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0026441

49. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 24

50. Melquiond, G., Rieu-Helft, R.: A Why3 framework for reflection proofs and its
application to GMP’s algorithms. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 178–193. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94205-6 13

51. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type the-
ory, polymorphism and separation. JFP 18(5–6), 865–911 (2008).
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf

52. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-
manipulating programs. In: POPL (2010). https://doi.org/10.1145/1706299.
1706331

53. Nogin, A.: Quotient types: a modular approach. In: Carreño, V.A., Muñoz, C.A.,
Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 263–280. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45685-6 18

54. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: IWIL (2010).
https://www21.in.tum.de/∼blanchet/iwil2010-sledgehammer.pdf

55. Protzenko, J., et al.: Verified low-level programming embedded in F*. PACMPL
1(ICFP), 17:1–17:29 (2017). https://doi.org/10.1145/3110261

56. Stampoulis, A., Shao, Z.: VeriML: typed computation of logical terms inside a
language with effects. In: ICFP (2010). https://doi.org/10.1145/1863543.1863591

57. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying
higher-order programs with the Dijkstra monad. In: PLDI (2013). https://www.
microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-
the-dijkstra-monad/

58. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: POPL
(2016). https://www.fstar-lang.org/papers/mumon/

59. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton Jones, S.L.: Refinement
types for Haskell. In: ICFP (2014). https://goto.ucsd.edu/∼nvazou/refinement
types for haskell.pdf

60. Vazou, N., et al.: Refinement reflection: complete verification with SMT. PACMPL
2(POPL), 53:1–53:31 (2018). https://doi.org/10.1145/3158141

https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-015-9330-8
http://dl.acm.org/citation.cfm?id=3009855
http://dl.acm.org/citation.cfm?id=3009855
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1007/978-3-642-17511-4_20
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/978-3-642-03359-9_24
https://doi.org/10.1007/978-3-319-94205-6_13
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1007/3-540-45685-6_18
https://www21.in.tum.de/~blanchet/iwil2010-sledgehammer.pdf
https://doi.org/10.1145/3110261
https://doi.org/10.1145/1863543.1863591
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.fstar-lang.org/papers/mumon/
https://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
https://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
https://doi.org/10.1145/3158141

Meta-F�: Proof Automation with SMT, Tactics, and Metaprograms 59

61. Wadler, P.: Views: a way for pattern matching to cohabit with data abstraction.
In: POPL (1987). https://dl.acm.org/citation.cfm?doid=41625.41653

62. Wenzel, M.: The Isabelle/Isar reference manual (2017). http://isabelle.in.tum.de/
doc/isar-ref.pdf

63. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a
monad for typed tactic programming in Coq. JFP 25 (2015). https://doi.org/10.
1017/S0956796815000118

64. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a ver-
ified modern cryptographic library. In: CCS (2017). http://eprint.iacr.org/2017/
536

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://dl.acm.org/citation.cfm?doid=41625.41653
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
https://doi.org/10.1017/S0956796815000118
https://doi.org/10.1017/S0956796815000118
http://eprint.iacr.org/2017/536
http://eprint.iacr.org/2017/536
http://creativecommons.org/licenses/by/4.0/

Semi-automated Reasoning About
Non-determinism in C Expressions

Dan Frumin1(B), Léon Gondelman1, and Robbert Krebbers2

1 Radboud University, Nijmegen, The Netherlands
{dfrumin,lgg}@cs.ru.nl

2 Delft University of Technology, Delft, The Netherlands
mail@robbertkrebbers.nl

Abstract. Research into C verification often ignores that the C standard
leaves the evaluation order of expressions unspecified, and assigns unde-
fined behavior to write-write or read-write conflicts in subexpressions—
so called “sequence point violations”. These aspects should be accounted
for in verification because C compilers exploit them.

We present a verification condition generator (vcgen) that enables one
to semi-automatically prove the absence of undefined behavior in a given
C program for any evaluation order. The key novelty of our approach is
a symbolic execution algorithm that computes a frame at the same time
as a postcondition. The frame is used to automatically determine how
resources should be distributed among subexpressions.

We prove correctness of our vcgen with respect to a new monadic def-
initional semantics of a subset of C. This semantics is modular and gives
a concise account of non-determinism in C.

We have implemented our vcgen as a tactic in the Coq interactive the-
orem prover, and have proved correctness of it using a separation logic
for the new monadic definitional semantics of a subset of C.

1 Introduction

The ISO C standard [22]—the official specification of the C language—leaves
many parts of the language semantics either unspecified (e.g., the order of evalu-
ation of expressions), or undefined (e.g., dereferencing a NULL pointer or integer
overflow). In case of undefined behavior a program may do literally anything,
e.g., it may crash, or it may produce an arbitrary result and side-effects. There-
fore, to establish the correctness of a C program, one needs to ensure that the
program has no undefined behavior for all possible choices of non-determinism
due to unspecified behavior.

In this paper we focus on the undefined and unspecified behaviors related to
C’s expression semantics, which have been ignored by most existing verification
tools, but are crucial for establishing the correctness of realistic C programs. The
C standard does not require subexpressions to be evaluated in a specific order
(e.g., from left to right), but rather allows them to be evaluated in any order.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 60–87, 2019.
https://doi.org/10.1007/978-3-030-17184-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_3

Semi-automated Reasoning About Non-determinism in C Expressions 61

Moreover, an expression has undefined behavior when there is a conflicting write-
write or read-write access to the same location between two sequence points [22,
6.5p2] (so called “sequence point violation”). Sequence points occur e.g., at the
end of a full expression (;), before and after each function call, and after the
first operand of a conditional expression (- ? - : -) has been evaluated [22,
Annex C]. Let us illustrate this by means of the following example:

int main() {
int x; int y = (x = 3) + (x = 4);
printf("%d�%d\n", x, y);

}

Due to the unspecified evaluation order, one would naively expect this program
to print either “3 7” or “4 7”, depending on which assignment to x was evalu-
ated first. But this program exhibits undefined behavior due to a sequence point
violation: there are two conflicting writes to the variable x. Indeed, when com-
piled with GCC (version 8.2.0), the program in fact prints “4 8”, which does
not correspond to the expected results of any of the evaluation orders.

One may expect that these programs can be easily ruled out statically using
some form of static analysis, but this is not the case. Contrary to the simple pro-
gram above, one can access the values of arbitrary pointers, making it impossible
to statically establish the absence of write-write or read-write conflicts. Besides,
one should not merely establish the absence of undefined behavior due to con-
flicting accesses to the same locations, but one should also establish that there
are no other forms of undefined behavior (e.g., that no NULL pointers are deref-
erenced) for any evaluation order.

To deal with this issue, Krebbers [29,30] developed a program logic based on
Concurrent Separation Logic (CSL) [46] for establishing the absence of undefined
behavior in C programs in the presence of non-determinism. To get an impression
of how his logic works, let us consider the rule for the addition operator:

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2. Ψ1 v1 ∗ Ψ2 v2 � Φ (v1 + v2)
{P1 ∗ P2} e1 + e2 {Φ}

This rule is much like the rule for parallel composition in CSL—the precondition
should be separated into two parts P1 and P2 describing the resources needed for
proving the Hoare triples of both operands. Crucially, since P1 and P2 describe
disjoint resources as expressed by the separating conjunction ∗, it is guaranteed
that e1 and e2 do not interfere with each other, and hence cannot cause sequence
point violations. The purpose of the rule’s last premise is to ensure that for all
possible return values v1 and v2, the postconditions Ψ1 and Ψ2 of both operands
can be combined into the postcondition Φ of the whole expression.

Krebbers’s logic [29,30] has some limitations that impact its usability:

– The rules are not algorithmic, and hence it is not clear how they could be
implemented as part of an automated or interactive tool.

– It is difficult to extend the logic with new features. Soundness was proven
with respect to a monolithic and ad-hoc model of separation logic.

62 D. Frumin et al.

In this paper we address both of these problems.
We present a new algorithm for symbolic execution in separation logic. Con-

trary to ordinary symbolic execution in separation logic [5], our symbolic execu-
tor takes an expression and a precondition as its input, and computes not only
the postcondition, but also simultaneously computes a frame that describes the
resources that have not been used to prove the postcondition. The frame is used
to infer the pre- and postconditions of adjacent subexpressions. For example, in
e1 + e2, we use the frame of e1 to symbolically execute e2.

In order to enable semi-automated reasoning about C programs, we integrate
our symbolic executor into a verification condition generator (vcgen). Our vcgen
does not merely turn programs into proof goals, but constructs the proof goals
only as long as it can discharge goals automatically using our symbolic executor.
When an attempt to use the symbolic executor fails, our vcgen will return a new
goal, from which the vcgen can be called back again after the user helped out.
This approach is useful when integrated into an interactive theorem prover.

We prove soundness of the symbolic executor and verification condition gener-
ator with respect to a refined version of the separation logic by Krebbers [29,30].
Our new logic has been developed on top of the Iris framework [24–26,33], and
thereby inherits all advanced features of Iris (like its expressive support for ghost
state and invariants), without having to model these explicitly. To make our new
logic better suited for proving the correctness of the symbolic executor and ver-
ification condition generator, our new logic comes with a weakest precondition
connective instead of Hoare triples as in Krebbers’s original logic.

To streamline the soundness proof of our new program logic, we give a new
monadic definitional translation of a subset of C relevant for non-determinism
and sequence points into an ML-style functional language with concurrency.
Contrary to the direct style operational semantics for a subset of C by Kreb-
bers [29,30], our approach leads to a semantics that is both easier to understand,
and easier to extend with additional language features.

We have mechanized our whole development in the Coq interactive theorem
prover. The symbolic executor and verification condition generator are defined
as computable functions in Coq, and have been integrated into tactics in the
Iris Proof Mode/MoSeL framework [32,34]. To obtain end-to-end correctness,
we mechanized the proofs of soundness of our symbolic executor and verification
condition generator with respect to our new separation logic and new monadic
definitional semantics for a subset of C. The Coq development is available at [18].

Contributions. We describe an approach to semi-automatically prove the
absence of undefined behavior in a given C program for any evaluation order.
While doing so, we make the following contributions:

– We define λMC: a small C-style language with a semantics by a monadic
translation into an ML-style functional language with concurrency (Sect. 2);

– We present a separation logic with weakest preconditions for λMC based on
the separation logic for non-determinism in C by Krebbers [29,30] (Sect. 3);

Semi-automated Reasoning About Non-determinism in C Expressions 63

– We prove soundness of our separation logic with weakest preconditions by
giving a modular model using the Iris framework [24–26,33] (Sect. 4);

– We present a new symbolic executor that not only computes the postcondition
of a C expression, but also a frame, used to determine how resources should
be distributed among subexpressions (Sect. 5);

– On top of our symbolic executor, we define a verification condition genera-
tor that enables semi-automated proofs using an interactive theorem prover
(Sect. 6);

– We demonstrate that our approach can be implemented and proved sound
using Coq for a superset of the λMC language considered in this paper
(Sect. 7).

2 λMC: A Monadic Definitional Semantics of C

In this section we describe a small C-style language called λMC, which features
non-determinism in expressions. We define its semantics by translation into a
ML-style functional language with concurrency called HeapLang.

We briefly describe the λMC source language (Sect. 2.1) and the HeapLang
target language (Sect. 2.2) of the translation. Then we describe the translation
scheme itself (Sect. 2.3). We explain in several steps how to exploit concurrency
and monadic programming to give a concise and clear definitional semantics.

2.1 The Source Language λMC

The syntax of our source language called λMC is as follows:

v ∈ val ::= z | f | l | NULL | (v1, v2) | () (z ∈ Z, l ∈ Loc)
e ∈ expr ::= v | x | (e1, e2) | e.1 | e.2 | e1 � e2 | (� ∈ {+,−, . . . })

x ← e1 ; e2 | if(e1){e2}{e3} | while(e1){e2} | e1(e2) |
alloc(e) | *e | e1 = e2 | free(e)

The values include integers, NULL pointers, concrete locations l, function pointers
f, structs with two fields (tuples), and the unit value () (for functions without
return value). There is a global list of function definitions, where each definition
is of the form f(x){e}. Most of the expression constructs resemble standard C
notation, with some exceptions. We do not differentiate between expressions and
statements to keep our language uniform. As such, if-then-else and sequencing
constructs are not duplicated for both expressions and statements. Moreover, we
do not differentiate between lvalues and rvalues [22, 6.3.2.1]. Hence, there is no
address operator &, and, similarly to ML, the load (*e) and assignment (e1 = e2)
operators take a reference as their first argument.

The sequenced bind operator x ← e1 ; e2 generalizes the normal sequencing
operator e1 ; e2 of C by binding the result of e1 to the variable x in e2. As such,

64 D. Frumin et al.

x ← e1 ; e2 can be thought of as the declaration of an immutable local variable
x. We omit mutable local variables for now, but these can be easily added as an
extension to our method, as shown in Sect. 7. We write e1 ; e2 for a sequenced
bind ← e1 ; e2 in which we do not care about the return value of e1.

To focus on the key topics of the paper—non-determinism and the sequence
point restriction—we take a minimalistic approach and omit most other features
of C. Notably, we omit non-local control (return, break, continue, and goto). Our
memory model is simplified; it only supports structs with two fields (tuples),
but no arrays, unions, or machine integers. In Sect. 7 we show that some of
these features (arrays, pointer arithmetic, and mutable local variables) can be
incorporated.

2.2 The Target Language HeapLang

The target language of our definitional semantics of λMC is an ML-style func-
tional language with concurrency primitives and a call-by-value semantics. This
language, called HeapLang, is included as part of the Iris Coq development [21].
The syntax is as follows:

v ∈ Val ::= z | true | false | rec f x = e | � | () | . . . (z ∈ Z, � ∈ Loc)
e ∈ Expr ::= v | x | e1 e2 | ref(e) | !HL e | e1 :=HL e2 | assert(e) |

e1 ||HL e2 | newmutex | acquire | release | . . .

The language contains some concurrency primitives that we will use to model
non-determinism in λMC. Those primitives are (||HL), newmutex, acquire, and
release. The first primitive is the parallel composition operator, which executes
expressions e1 and e2 in parallel, and returns a tuple of their results. The expres-
sion newmutex () creates a new mutex. If lk is a mutex that was created this way,
then acquire lk tries to acquire it and blocks until no other thread is using lk.
An acquired mutex can be released using release lk.

2.3 The Monadic Definitional Semantics of λMC

We now give the semantics of λMC by translation into HeapLang. The transla-
tion is carried out in several stages, each iteration implementing and illustrating
a specific aspect of C. First, we model non-determinism in expressions by con-
currency, parallelizing execution of subexpressions (step 1). After that, we add
checks for sequence point violations in the translation of the assignment and
dereferencing operations (step 2). Finally, we add function calls and demonstrate
how the translation can be simplified using a monadic notation (step 3).

Semi-automated Reasoning About Non-determinism in C Expressions 65

Step 1: Non-determinism via Parallel Composition. We model the
unspecified evaluation order in binary expressions like e1 + e2 and e1 = e2 by
executing the subexpressions in parallel using the (||HL) operator:

�e1 + e2� � let (v1, v2) = �e1� ||HL �e2� in v1 +HL v2

�e1 = e2� � let (v1, v2) = �e1� ||HL �e2� in

match v1 with

| None → assert(false) (* NULL pointer *)

| Some l → match !HL l with

| None → assert(false) (* Use after free *)

| Some → l :=HL Some v2; v2

Since our memory model is simple, the value interpretation is straightforward:

�z�val � z (if z ∈ Z) �NULL�val � None

�(v1, v2)�val � (�v1�val , �v2�val) �()�val � () �l�val � Some l

The only interesting case is the translation of locations. Since there is no con-
cept of a NULL pointer in HeapLang, we use the option type to distinguish NULL
pointers from concrete locations (l). The interpretation of assignments thus con-
tains a pattern match to check that no NULL pointers are dereferenced. A similar
check is performed in the interpretation of the load operation (*e). Moreover,
each location contains an option to distinguish freed from active locations.

Step 2: Sequence Points. So far we have not accounted for undefined behavior
due to sequence point violations. For instance, the program (x = 3)+ (x =
4) gets translated into a HeapLang expression that updates the value of the
location x non-deterministically to either 3 or 4, and returns 7. However, in
C, the behavior of this program is undefined, as it exhibits a sequence point
violation: there is a write conflict for the location x.

To give a semantics for sequence point violations, we follow the approach
by Norrish [44], Ellison and Rosu [17], and Krebbers [29,30]. We keep track of
a set of locations that have been written to since the last sequence point. We
refer to this set as the environment of our translation, and represent it using a
global variable env of the type mset Loc. Because our target language HeapLang
is concurrent, all updates to the environment env must be executed atomically,
i.e., inside a critical section, which we enforce by employing a global mutex lk.
The interpretation of assignments e1 = e2 now becomes:

66 D. Frumin et al.

ret e � λ . e

e1 || e2 � λ env lk. (e1 env lk) ||HL (e2 env lk)

x ← e1; e2 � λ env lk. let x = e1 env lk in e2 env lk

atomic env e � λ env lk. acquire lk; let a = e env in release lk; a

atomic e � λ env lk. acquire lk; let a = e env (newmutex ()) in release lk; a

run(e) � e (mset create ()) (newmutex ())

Fig. 1. The monadic combinators.

�e1 = e2� � let (v1, v2) = �e1� ||HL �e2� in

acquire lk;
match v1 with

| None → assert(false) (* NULL pointer *)

| Some l →
assert(¬mset member l env); (* Seq. point violation *)

match !HL l with

| None → assert(false) (* Use after free *)

| Some → mset add l env; l :=HL Some v2;

release lk; v2

Whenever we assign to (or read from) a location l, we check if the location l
is not already present in the environment env. If the location l is present, then
it was already written to since the last sequence point. Hence, accessing the
location constitutes undefined behavior (see the assert in the interpretation of
assignments above). In the interpretation of assignments, we furthermore insert
the location l into the environment env.

In order to make sure that one can access a variable again after a sequence
point, we define the sequenced bind operator x ← e1 ; e2 as follows:

�x ← e1 ; e2� � let x = �e1� in acquire lk; mset clear env; release lk; �e2�

After we finished executing the expression e1, we clear the environment env, so
that all locations are accessible in e2 again.

Step 3: Non-interleaved Function Calls. As the final step, we present
the correct translation scheme for function calls. Unlike the other expressions,
function calls are not interleaved during the execution of subexpressions [22,
6.5.2.2p10]. For instance, in the program f() + g() the possible orders of exe-
cution are: either all the instructions in f() followed by all the instructions in
g(), or all the instructions in g() followed by all the instructions in f().

Semi-automated Reasoning About Non-determinism in C Expressions 67

e1 + e2 � (v1, v2) e1 || e2 ; ret (v1 +HL v2)

e1 = e2 � (v1, v2) e1 || e2 ;

atomic env (λ env.

match v1 with

| None assert(false) (* NULL pointer *)

| Some l

assert(¬mset member l env); (* Seq. point violation *)

match !HL l with

| None assert(false) (* Use after free *)

| Some mset add l env; l :=HL Some v2; ret v2)

x e1 ; e2 � x e1 ; (atomic env mset clear); e2

e1(e2) � (f, a) e1 || e2 ; atomic (atomic env mset clear; f a)

f(x){e} � let rec f x = v e ; (atomic env mset clear); ret v

Fig. 2. Selected clauses from the monadic definitional semantics.

To model this, we execute each function call atomically. In the previous step
we used a global mutex for guarding the access to the environment. We could use
that mutex for function calls too. However, reusing a single mutex for entering
each critical section would not work because a body of a function may contain
invocations of other functions. To that extent, we use multiple mutexes to reflect
the hierarchical structure of function calls.

To handle multiple mutexes, each C expression is interpreted as a HeapLang
function that receives a mutex and returns its result. That is, each C expression
is modeled by a monadic expression in the reader monad M(A) � msetLoc →
mutex → A. For consistency’s sake, we now also use the monad to thread through
the reference to the environment (msetLoc), instead of using a global variable
env as we did in the previous step.

We use a small set of monadic combinators, shown in Fig. 1, to build the
translation in a more abstract way. The return and bind operators are standard
for the reader monad. The parallel operator runs two monadic expressions con-
currently, propagating the environment and the mutex. The atomic combinator
invokes a monadic expression with a fresh mutex. The atomic env combinator
atomically executes its body with the current environment as an argument. The
run function executes the monadic computation by instantiating it with a fresh
mutex and a new environment. Selected clauses for the translation are presented
in Fig. 2. The translation of the binary operations remains virtually unchanged,
except for the usage of monadic parallel composition instead of the standard one.
The translation for the assignment and the sequenced bind uses the atomic env
combinator for querying and updating the environment. We also have to adapt
our translation of values, by wrapping it in ret : �v� � ret �v�val .

68 D. Frumin et al.

A global function definition f(x){e} is translated as a top level let-binding. A
function call is then just an atomically executed function invocation in HeapLang,
modulo the fact that the function pointer and the arguments are computed in
parallel. In addition, sequence points occur at the beginning of each function call
and at the end of each function body [22, Annex C], and we reflect that in our
translation by clearing the environment at appropriate places.

Our semantics by translation can easily be extended to cover other features of
C, e.g., a more advanced memory model (see Sect. 7). However the fragment pre-
sented here already illustrates the challenges that non-determinism and sequence
point violations pose for verification. In the next section we describe a logic for
reasoning about the semantics by translation given in this section.

3 Separation Logic with Weakest Preconditions for λMC

In this section we present a separation logic with weakest precondition proposi-
tions for reasoning about λMC programs. The logic tackles the main features of
our semantics—non-determinism in expressions evaluation and sequence point
violations. We will discuss the high-level rules of the logic pertaining to C con-
nectives by going through a series of small examples.

The logic presented here is similar to the separation logic by Krebbers [29],
but it is given in a weakest precondition style, and moreover, it is constructed
synthetically on top of the separation logic framework Iris [24–26,33], whereas
the logic by Krebbers [29] is interpreted directly in a bespoke model.

The following grammar defines the formulas of the logic:

P,Q ∈ Prop ::= True | False | ∀x. P | ∃x. P | v1 = v2 | l q	−→ξ v | (q ∈ (0, 1])
P ∗ Q | P −∗ Q | wp e {Φ} | . . . (ξ ∈ {L,U})

Most of the connectives are commonplace in separation logic, with the exception
of the modified points-to connective, which we describe in this section.

As is common, Hoare triples {P } e {Φ} are syntactic sugar for P � wp e {Φ}.
The weakest precondition connective wp e {Φ} states that the program e is safe
(the program has defined behavior), and if e terminates to a value v, then v
satisfies the predicate Φ. We write wp e {v. Φ v} for wp e {λv. Φ v}.

Contrary to the paper by Krebbers [29], we use weakest preconditions instead
of Hoare triples throughout this paper. There are several reasons for doing so:

1. We do not have to manipulate the preconditions explicitly, e.g., by applying
the consequence rule to the precondition.

2. The soundness of our symbolic executor (Theorem 5.1) can be stated more
concisely using weakest precondition propositions.

3. It is more convenient to integrate weakest preconditions into the Iris Proof
Mode/MoSeL framework in Coq that we use for our implementation (Sect. 7).

A selection of rules is presented in Fig. 3. Each inference rule
P1 . . . Pn

Q
in

this paper should be read as the entailment P1 ∗ . . . ∗ Pn � Q. We now explain
and motivate the rules of our logic.

Semi-automated Reasoning About Non-determinism in C Expressions 69

wp-value
Φ v

wp v {Φ}

wp-wand
wp e {Φ} (∀v. Φ v −∗ Ψ v)

wp e {Ψ}

wp-seq
wp e1 {v. U(wp e2[v/x] {Φ})}

wp (x ← e1 ; e2) {Φ}
wp-bin-op
wp e1 {Ψ1} wp e2 {Ψ2} (∀w1w2. Ψ1 w1 ∗ Ψ2 w2 −∗ Φ(w1 � w2))

wp (e1 � e2) {Φ}
wp-load

wp e
{
l. ∃w q. l

q→� U w ∗ (l
q→� U w −∗ Φ w)

}

wp (*e) {Φ}

wp-alloc
wp e {v. ∀l. l U v −∗ Φ l}

wp alloc(e) {Φ}
wp-store

wp e1 {Ψ1} wp e2 {Ψ2}
(∀l w. Ψ1 l ∗ Ψ2 w −∗ ∃v. l U v ∗ (l �→L w −∗ Φ w))

wp (e1 = e2) {Φ}

wp-free
wp e {l. ∃v. l �→U v ∗ Φ ()}

wp free(e) {Φ}

mapsto-split

l
q1� ξ1 v ∗ l

q2� ξ2 v �	 l
q1+q2

ξ1∨ξ2 v

mapsto-values-agree
l

q1
ξ1 v1 l

q2
ξ2 v2

v1 = v2

U-unlock
l

q→−� L v

U(l
q→−� U v)

U-mono
P −∗ Q

UP −∗ UQ

U-intro
P

UP

U-sep
UP ∗ UQ

U(P ∗ Q)

Fig. 3. Selected rules for weakest preconditions.

Non-determinism. In the introduction (Sect. 1) we have already shown the
rule for addition from Krebbers’s logic [29], which was written using Hoare
triples. Using weakest preconditions, the corresponding rule (wp-bin-op) is:

wp e1 {Ψ1} wp e2 {Ψ2} (∀w1w2. Ψ1 w1 ∗ Ψ2 w2 −∗ Φ(w1 ��� w2))
wp (e1 � e2) {Φ}

This rule closely resembles the usual rule for parallel composition in ordinary
concurrent separation logic [46]. This should not be surprising, as we have given
a definitional semantics to binary operators using the parallel composition opera-
tor. It is important to note that the premises wp-bin-op are combined using the
separating conjunction ∗. This ensures that the weakest preconditions wp e1 {Ψ1}
and wp e2 {Ψ2} for the subexpressions e1 and e2 are verified with respect to
disjoint resources. As such they do not interfere with each other, and can be
evaluated in parallel without causing sequence point violations.

To see how one can use the rule wp-bin-op, let us verify P � wp (e1 +
e2) {Φ}. That is, we want to show that (e1 + e2) satisfies the postcondition
Φ assuming the precondition P . This goal can be proven by separating the

70 D. Frumin et al.

precondition P into disjoint parts P1 ∗ P2 ∗ R
� P . Then using wp-bin-op
the goal can be reduced to proving Pi � wp ei {Ψi} for i ∈ {0, 1}, and
R ∗ Ψ1 w1 ∗ Ψ2 w2 � Φ(w1 ��� w2) for any return values wi of the expressions
ei.

Fractional Permissions. Separation logic includes the points-to connective
l 	→ v, which asserts unique ownership of a location l with value v. This con-
nective is used to specify the behavior of stateful operations, which becomes
apparent in the following proposed rule for load:

wp e {l. ∃w. l 	→ w ∗ (l 	→ w −∗ Φ w)}
wp (*e) {Φ}

In order to verify *e we first make sure that e evaluates to a location l, and
then we need to provide the points-to connective l 	→ w for some value stored at
the location. This rule, together with wp-value, allows for verification of simple
programs like l 	→ v � wp (*l) {w. w = v ∗ l 	→ v}.

However, the rule above is too weak. Suppose that we wish to verify the
program *l+*l from the precondition l 	→ v. According to wp-bin-op, we have
to separate the proposition l 	→ v into two disjoint parts, each used to verify
the load operation. In order to enable sharing of points-to connectives we use
fractional permissions [7,8]. In separation logic with fractional permissions each
points-to connective is annotated with a fraction q ∈ (0, 1], and the resources
can be split in accordance with those fractions:

l
q1+q2	−−−−→ v
� l

q1	−→ v ∗ l q2	−→ v.

A connective l
1	−→ v provides a unique ownership of the location, and we refer

to it as a write permission. A points-to connective with q ≤ 1 provides shared
ownership of the location, referred to as a read permission. By convention, we
write l 	→ v to denote the write permission l

1	−→ v.
With fractional permissions at hand, we can relax the proposed load rule, by

allowing to dereference a location even if we only have a read permission:

wp e
{
l. ∃w q. l

q	−→ w ∗ (l
q	−→ w −∗ Φ w)

}

wp (*e) {Φ}
This corresponds to the intuition that multiple subexpressions can safely deref-
erence the same location, but not write to them.

Using the rule above we can verify l 	→ 1 � wp (*l + *l) {v. v = 2 ∗ l 	→ 1}
by splitting the assumption into l

0.5	−−→ 1 ∗ l 0.5	−−→ 1 and first applying wp-bin-op

with Ψ1 and Ψ2 being λv. (v = 1) ∗ l
0.5	−−→ 1. Then we apply wp-load on both

subgoals. After that, we can use mapsto-split to prove the remaining formula:

(v1 = 1) ∗ l 0.5	−−→ 1 ∗ (v2 = 1) ∗ l 0.5	−−→ 1 � (v1 + v2 = 2) ∗ l 	→ 1.

Semi-automated Reasoning About Non-determinism in C Expressions 71

The Assignment Operator. The second main operation that accesses the
heap is the assignment operator e1 = e2. The arguments on the both sides of the
assignment are evaluated in parallel, and a points-to connective is required to
perform an update to the heap. A naive version of the assignment rule can be
obtained by combining the binary operation rule and the load rule:

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w. Ψ1 l ∗ Ψ2 w −∗ ∃v. l 	→ v ∗ (l 	→ w −∗ Φ w))
wp (e1 = e2) {Φ}

The write permission l 	→ v can be obtained by combining the resources of both
sides of the assignment. This allows us to verify programs like l= *l + *l.

However, the rule above is unsound, because it fails to account for sequence
point violations. We could use the rule above to prove safety of undefined pro-
grams, e.g., the program l= (l= 3).

To account for sequence point violations we decorate the points-to connec-
tives l

q	−→ξ v with access levels ξ ∈ {L,U}. These have the following seman-
tics: we can read from and write to a location that is unlocked (U), and the
location becomes locked (L) once someone writes to it. Proposition l

q	−→U v

(resp. l
q	−→L v) asserts ownership of the unlocked (resp. locked) location l.

We refer to such propositions as lockable points-to connectives. Using lockable
points-to connectives we can formulate the correct assignment rule:

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w. Ψ1 l ∗ Ψ2 w −∗ ∃v. l 	→ v ∗ (l 	→L w −∗ Φ w))
wp (e1 = e2) {Φ}

The set {L,U} has a lattice structure with L ≤ U , and the levels can be com-
bined with a join operation, see mapsto-split. By convention, l

q	−→ v denotes
l

q	−→U v.

The Unlocking Modality. As locations become locked after using the assign-
ment rule, we wish to unlock them in order to perform further heap operations.
For instance, in the expression l= 4 ; *l the location l becomes unlocked after
the sequence point “;” between the store and the dereferencing operations. To
reflect this in the logic, we use the rule wp-seq which features the unlocking
modality U (which is called the unlocking assertion in [29, Definition 5.6]):

wp e1 { .U(wp e2 {Φ})}
wp (e1 ; e2) {Φ}

Intuitively, UP states that P holds, after unlocking all locations. The rules of U
in Fig. 3 allow one to turn (P1 ∗ . . . ∗ Pm) ∗ (l1 	→L v1 ∗ . . . ∗ lm 	→L vm) � UQ
into (P1 ∗ . . .∗Pm)∗ (l1 	→U v1 ∗ . . .∗lm 	→U vm) � Q. This is done by applying
either U-unlock or U-intro to each premise; then collecting all premises into
one formula under U by U-sep; and finally, applying U-mono to the whole
sequent.

72 D. Frumin et al.

4 Soundness of Weakest Preconditions for λMC

In this section we prove adequacy of the separation logic with weakest precon-
ditions for λMC as presented in Sect. 3. We do this by giving a model using the
Iris framework that is structured in a similar way as the translation that we
gave in Sect. 2. This translation consisted of three layers: the target HeapLang
language, the monadic combinators, and the λMC operations themselves. In the
model, each corresponding layer abstracts from the details of the previous layer,
in such a way that we never have to break the abstraction of a layer. At the end,
putting all of this together, we get the following adequacy statement:

Theorem 4.1 (Adequacy of Weakest Preconditions). If wp e {Φ} is deriv-
able, then e has no undefined behavior for any evaluation order. In other words,
run(e) does not assert false.

The proof of the adequacy theorem closely follows the layered structure,
by combining the correctness of the monadic run combinator with adequacy of
HeapLang in Iris [25, Theorem 6]. The rest of this section is organized as:

1. Because our translation targets HeapLang, we start by recalling the separation
logic with weakest preconditions, for HeapLang part of Iris (Sect. 4.1).

2. On top of the logic for HeapLang, we define a notion of weakest preconditions
wpmon e {Φ} for expressions e built from our monadic combinators (Sect. 4.2).

3. Next, we define the lockable points-to connective �
q	−→ξ v using Iris’s machin-

ery for custom ghost state (Sect. 4.3).
4. Finally, we define weakest preconditions for λMC by combining the weakest

preconditions for monadic expressions with our translation scheme (Sect. 4.4).

4.1 Weakest Preconditions for HeapLang

We recall the most essential Iris connectives for reasoning about HeapLang pro-
grams: wpHL e {Φ} and � 	→HL v, which are the HeapLang weakest precondition
proposition and the HeapLang points-to connective, respectively. Other Iris con-
nectives are described in [6, Section 8.1] or [25,33]. An example rule is the store
rule for HeapLang, shown in Fig. 4. The rule requires a points-to connective
� 	→HL v, and the user receives the updated points-to connective � 	→HL w back
for proving Φ (). Note that the rule is formulated for a concrete location �
and a value w, instead of arbitrary expressions. This does not limit the expres-
sive power; since the evaluation order in HeapLang is deterministic1, arbitrary
expressions can be handled using the wphl-bind rule. Using this rule, one can
bind an expression e in an arbitrary evaluation context K. We can thus use the
wphl-bind rule twice to derive a more general store rule for HeapLang:

wpHL e2 {w.wpHL e1 {�. (∃v. � 	→HL v) ∗ (� 	→HL w −∗ Φ ())}}
wpHL (e1 :=HL e2) {Φ}

1 And right-to-left, although our monadic translation does not rely on that.

Semi-automated Reasoning About Non-determinism in C Expressions 73

(� HL v) ∗ (� HL v −∗ Φ v) 	 wpHL !HL � {Φ}
(� HL v) ∗ (� HL w −∗ Φ ()) 	 wpHL � :=HL w {Φ}

wpHL-bind
wpHL e {v.wpHL K[v] {Φ}}

wpHL K[e] {Φ}

R ∗ (∀γ lk. is mutex(γ, lk, R) −∗ Φ lk) 	 wpHL newmutex () {Φ}
is mutex(γ, lk, R) ∗ (R ∗ locked(γ) −∗ Φ ()) 	 wpHL acquire lk {Φ}

is mutex(γ, lk, R) ∗ R ∗ locked(γ) ∗ Φ () 	 wpHL release lk {Φ}
is mutex(γ, lk, R) ∗ is mutex(γ, lk, R) �	 is mutex(γ, lk, R) (ismutex-dupl)

Fig. 4. Selected wpHL rules.

To verify the monadic combinators and the translation of λMC operations in
the upcoming Sects. 4.2 and 4.4, we need the specifications for all the functions
that we use, including those on mutable sets and mutexes. The rules for mutable
sets are standard, and thus omitted. They involve the usual abstract predicate
is mset(s,X) stating that the reference s represents a set with contents X. The
rules for mutexes are presented in Fig. 4. When a new mutex is created, a user
gets access to a proposition is mutex(γ, lk, R), which states that the value lk is
a mutex containing the resources R. This proposition can be duplicated freely
(ismutex-dupl). A thread can acquire the mutex and receive the resources
contained in it. In addition, the thread receives a token locked(γ) meaning that
it has entered the critical section. When a thread leaves the critical section and
releases the mutex, it has to give up both the token and the resources R.

4.2 Weakest Preconditions for Monadic Expressions

As a next step, we define a weakest precondition proposition wpmon e {Φ} for a
monadic expression e. The definition is constructed in the ambient logic, and
it encapsulates the monadic operations in a separate layer. Due to that, we are
able to carry out proofs of high-level specifications without breaking the abstrac-
tion (Sect. 4.4). The specifications for selected monadic operations in terms of
wpmon are presented in Fig. 5. We define the weakest precondition for a monadic
expression e as follows:

wpmon e {Φ} � wpHL e

{
g. ∀γ env lk. is mutex(γ, lk, env inv(env)) −∗

wpHL (g env lk) {Φ}

}

The idea is that we first reduce e to a monadic value g. To perform this reduction
we have the outermost wpHL connective in the definition of wpmon. This monadic
value is then evaluated with an arbitrary environment and an arbitrary mutex.
Note that we universally quantify over any mutex lk to support nested lock-
ing in atomic . This definition is parameterized by an environment invariant
env inv(env), which describes the resources accessible in the critical sections. We
show how to define env inv in the next subsection.

74 D. Frumin et al.

wp-ret
wpHL e {Φ}

wpmon (ret e) {Φ}

wp-bind
wpmon e1 {v.wpmon e2[v/x] {Φ}}

wpmon (x e1; e2) {Φ}
wp-par
wpmon e1 {Ψ1} wpmon e2 {Ψ2} (∀w1w2. Ψ1 w1 ∗ Ψ2 w2 −∗ Φ (w1, w2))

wpmon (e1 || e2) {Φ}
wp-atomic-env
∀env. env inv(env) −∗ wpHL (v env) {w. env inv(env) ∗ Φ w}

wpmon (atomic env v) {Φ}

Fig. 5. Selected monadic wpmon rules.

Using this definition we derive the monadic rules in Fig. 5. In a monad, the
expression evaluation order is made explicit via the bind operation x ← e1; e2.
To that extent, contrary to HeapLang, we no longer have a rule like wphl-bind,
which allows to bind an expression in a general evaluation context. Instead, we
have the rule wp-bind, which reflects that the only evaluation context we have
is the monadic bind x ← [•]; e.

4.3 Modeling the Heap

The monadic rules in Fig. 5 are expressive enough to derive some of the λMC-
level rules, but we are still missing one crucial part: handling of the heap. In
order to do that, we need to define lockable points-to connectives l

q	−→ξ v in such
a way that they are linked to the HeapLang points-to connectives � 	→HL v.

The key idea is the following. The environment invariant env inv of monadic
weakest preconditions will track all HeapLang points-to connectives � 	→HL v that
have ever been allocated at the λMC level. Via Iris ghost state, we then connect
this knowledge to the lockable points-to connectives l

q	−→ξ v. We refer to the
construction that allows us to carry this out as the lockable heap. Note that the
description of lockable heap is fairly technical and requires an understanding of
the ghost state mechanism in Iris.

A lockable heap is a map σ : Loc fin−⇀ {L,U} × Val that keeps track of the
access levels and values associated with the locations. The connective full heap(σ)
asserts the ownership of all the locations present in the domain of σ. Specifically,
it asserts � 	→HL v for each {�←(ξ, v)} ∈ σ. The connective �

q	−→ξ v then states
that {�←(ξ, v)} is part of the global lockable heap, and it asserts this with the
fractional permission q. We treat the lockable heap as an opaque abstraction,
whose exact implementation via Iris ghost state is described in the Coq for-
malization [18]. The main interface for the locking heap are the rules in Fig. 6.
The rule heap-alloc states that we can turn a HeapLang points-to connec-
tive � 	→HL v into � 	−→ξ v by changing the lockable heap σ accordingly. The

Semi-automated Reasoning About Non-determinism in C Expressions 75

heap-alloc
� HL v full heap(σ)

|�� U v ∗ full heap(σ [� (U, v)])

heap-upd
� U v full heap(σ)

|�σ(�) = (U, v) ∗ � HL v ∗ (∀v′ ξ′. � HL v′ ≡−∗ � ξ′ v′ ∗ full heap(σ
[
� (ξ′, v′)

]
))

Fig. 6. Selected rules of the lockable heap construction.

rule heap-upd states that given � 	−→ξ v, we can temporarily get a HeapLang
points-to connective � 	→HL v out of the locking heap and update its value.

The environment invariant env inv(env) in the definition of wpmon ties the
contents of the lockable heap to the contents of the environment env:

env inv(env) � ∃σ X. is set(env,X) ∗ full heap(σ) ∗ (∀� ∈ X.∃v. σ(�) = (L, v))

The first conjunct states that X : ℘fin(Loc) is a set of locked locations, according
to the environment env. The second conjunct asserts ownership of the global
lockable heap σ. Finally, the last conjunct states that the contents of env agrees
with the lockable heap: every location that is in X is locked according to σ.

The Unlocking Modality. The unlocking modality is defined in the logic as:

UP � ∃S. (∗(l,v,q)∈Sl
q	−→L v) ∗ ((∗(l,v,q)∈Sl

q	−→U v) −∗ P)

Here S is a finite multiset of tuples containing locations, values, and fractions.
The update modality accumulates the locked locations, waiting for them to be
unlocked at a sequence point.

4.4 Deriving the λMC Rules

To model weakest preconditions for λMC (Fig. 3) we compose the construction
we have just defined with the translation of Sect. 2 wp e {Φ} � wpmon �e� {Φ′}.
Here, Φ′ is the obvious lifting of Φ from λMC values to HeapLang values. Using
the rules from Figs. 5 and 6 we derive the high-level λMC rules without unfolding
the definition of the monadic wpmon.

Example 4.2. Consider the rule wp-store for assignments e1 = e2. Using
wp-bind and wp-par, the soundness of wp-store can be reduced to verify-
ing the assignment with e1 being l, e2 being v′, under the assumption l 	→U v.
We use wp-atomic-env to turn our goal into a HeapLang weakest precondi-
tion proposition and to gain access an environment env, and to the proposition
env inv(env), from which we extract the lockable heap σ. We then use heap-upd

76 D. Frumin et al.

to get access to the underlying HeapLang location and obtain that l is not locked
according to σ. Due to the environment invariant, we obtain that l is not in env,
which allows us to prove the assert for sequence point violation in the interpre-
tation of the assignment. Finally, we perform the physical update of the location.

5 A Symbolic Executor for λMC

In order to turn our program logic into an automated procedure, it is important
to have rules for weakest preconditions that have an algorithmic form. However,
the rules for binary operators in our separation logic for λMC do not have such
a form. Take for example the rule wp-bin-op for binary operators e1 � e2. This
rule cannot be applied in an algorithmic manner. To use the rule one should
supply the postconditions for e1 and e2, and frame the resources from the context
into two disjoint parts. This is generally impossible to do automatically.

To address this problem, we first describe how the rules for binary operators
can be transformed into algorithmic rules by exploiting the notion of symbolic
execution [5] (Sect. 5.1). We then show how to implement these algorithmic rules
as part of an automated symbolic execution procedure (Sect. 5.2).

5.1 Rules for Symbolic Execution

We say that we can symbolically execute an expression e using a precondition P ,
if we can find a symbolic execution tuple (w, Q,R) consisting of a return value w,
a postcondition Q, and a frame R satisfying:

P � wp e {v. v = w ∗ Q} ∗ R

This specification is much like that of ordinary symbolic execution in separation
logic [5], but there is important difference. Apart from computing the postcon-
dition Q and the return value w, there is also the frame R, which describes the
resources that are not used for proving e. For instance, if the precondition P is
P ′ ∗l q	−→ w and e is a load operation *l, then we can symbolically execute e with

the postcondition Q being l
q/2	−−→ w, and the frame R being P ′ ∗l q/2	−−→ w. Clearly,

P ′ is not needed for proving the load, so it can be moved into the frame. More
interestingly, since loading the contents of l requires a read permission l

p	−→ w,
with p ∈ (0, 1], we can split the hypothesis l

q	−→ w into two halves and move one
into the frame. Below we will see why that matters.

If we can symbolically execute one of the operands of a binary expression
e1 � e2, say e1 in P , and find a symbolic execution tuple (w1, Q,R), then we
can use the following admissible rule:

R � wp e2 {w2. Q −∗ Φ (w1 ��� w2)}
P � wp (e1 � e2) {Φ}

This rule has a much more algorithmic flavor than the rule wp-bin-op. Applying
the above rule now boils down to finding such a tuple (w, Q,R), instead of having
to infer postconditions for both operands, as we need to do to apply wp-bin-op.

Semi-automated Reasoning About Non-determinism in C Expressions 77

For instance, given an expression (*l) � e2 and a precondition P ′ ∗ l
q	−→ v,

we can derive the following rule:

P ′ ∗ l q/2	−−→ v � wp e2

{
w2. l

q/2	−−→ v −∗ Φ (v ��� w2)
}

P ′ ∗ l q	−→ v � wp (*l � e2) {Φ}

This rule matches the intuition that only a fraction of the permission l
q	−→ v is

needed to prove a load *l, so that the remaining half of the permission can be
used to prove the correctness of e2 (which may contain other loads of l).

5.2 An Algorithm for Symbolic Execution

For an arbitrary expression e and a proposition P , it is unlikely that one can find
such a symbolic execution tuple (w, Q,R) automatically. However, for a certain
class of C expressions that appear in actual programs we can compute a choice
of such a tuple. To illustrate our approach, we will define such an algorithm for
a small subset expr of C expressions described by the following grammar:

ē ∈ expr ::= v | *ē | ē1 = ē2 | ē1 � ē2.

We keep this subset small to ease presentation. In Sect. 7 we explain how to
extend the algorithm to cover the sequenced bind operator x ← ē1 ; ē2.

Moreover, to implement symbolic execution, we cannot manipulate arbitrary
separation logic propositions. We thus restrict to symbolic heaps (m ∈ sheap),
which are defined as finite partial functions Loc

fin−⇀ ({L,U} × (0, 1] × val) rep-
resenting a collection of points-to propositions:

�m� � ∗
l∈dom(m)

m(l)=(ξ,q,v)

l
q	−→ξ v.

We use the following operations on symbolic heaps:

– m[l 	→ (ξ, q, v)] sets the entry m(l) to (ξ, q, v);
– m \ {l 	→ } removes the entry m(l) from m;
– m1 � m2 merges the symbolic heaps m1 and m2 in such a way that for each
l ∈ dom(m1) ∪ dom(m2), we have:

(m1 � m2)(l) =

⎧
⎨

⎩

mi(l) if l ∈ dom(mi) and l /∈ dom(mj)

(ξ ∨ ξ′, q + q′, v) if m1(l) = (ξ, q, v) and m2(l) = (ξ′, q′,).

With this representation of propositions, we define the symbolic execution
algorithm as a partial function forward : (sheap × expr) → (val× sheap× sheap),
which satisfies the specification stated in Sect. 5.1, i.e., for which the following
holds:

Theorem 5.1. Given an expression e and an symbolic heap m, if forward(m, e)
returns a tuple (w,mo

1,m1), then �m� � wp e {v. v = w ∗ �mo
1�} ∗ �m1�.

78 D. Frumin et al.

The definition of the algorithm is shown in Fig. 7. Given a tuple (m, e), a call
to forward(m, e) either returns a tuple (v,mo,m′) or fails, which either happens
when e �∈ expr or when one of intermediate steps of computation fails. In the
latter cases, we write forward(m, e) = ⊥.

The algorithm proceeds by case analysis on the expression e. In each case,
the expected output is described by the equation forward(m, e) = (v,mo,m′).
The results of the intermediate computations appear on separate lines under the
clause “where . . .”. If one of the corresponding equations does not hold, e.g.,
a recursive call fails, then the failure is propagated. Let us now explain the case
for the assignment operator.

If e is an assignment operator e1 = e2, we first evaluate e1 and then e2.
Fixing the order of symbolic execution from left to right does not compromise the
non-determinism underlying the C semantics of binary operators. Indeed, when
forward(m, e1) = (v1,mo

1,m1), we evaluate the expression e2, using the frame
m1, i.e., only the resources of m that remain after the execution of e1. When
forward(m, e1) = (l,mo

1,m1), with l ∈ Loc, and forward(m1, e2) = (v2,mo
2,m2),

the function delete full 2(l,m2,m
o
1 � mo

2) checks whether (m2 � mo
1 � mo

2)(l)

forward(m, v) � (v, ∅, m)

forward(m, e1 � e2) � (v1 � v2, m
o
1 � mo

2, m2)
where (v1, mo

1, m1) = forward(m, e1)

(v2, mo
2, m2) = forward(m1, e2)

forward(m, *e1) � (w, mo
2 � {l (U, q, w)}, m2)

where (l, mo
1, m1) = forward(m, e1) provided l ∈ Loc

(m2, m
o
2, q, w) = delete frac 2(l, m1, m

o
1)

forward(m, e1 = e2) � (v2, mo
3 � {l (L, 1, v2)}, m3)

where (l, mo
1, m1) = forward(m, e1) provided l ∈ Loc

(v2, mo
2, m2) = forward(m1, e2)

(m3, m
o
3) = delete full 2(l, m2, m

o
1 � mo

2)

forward(m, e) � ⊥ if e �∈ expr

Auxiliary functions:

delete frac 2(l, m1, m2) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(m1[l (U, q/2, v)], m2, q/2, v) if m1(l) = (U, q, v)

(m1, m2[l (U, q/2, v)], q/2, v) if m1(l) �= (U, ,),
m2(l) = (U, q, v)

⊥ otherwise

delete full 2(l, m1, m2) � (m1 \ {l }, m2 \ {l })
where (U, 1,) = (m1 � m2)(l)

Fig. 7. The definition of the symbolic executor.

Semi-automated Reasoning About Non-determinism in C Expressions 79

contains the write permission l 	−→U . If this holds, it removes the location l, so
that the write permission is now consumed. Finally, we merge {l 	→ (L, 1, v2)}
with the output heap mo

3, so that after assignment, the write permission l 	−→L v2
is given back in a locked state.

6 A Verification Condition Generator for λMC

To establish correctness of programs, we need to prove goals P � wp e {Φ}. To
prove such a goal, one has to repeatedly apply the rules for weakest preconditions,
intertwined with logical reasoning. In this section we will automate this process
for λMC by means of a verification condition generator (vcgen).

As a first attempt to define a vcgen, one could try to recurse over the expres-
sion e and apply the rules in Fig. 3 eagerly. This would turn the goal into a
separation logic proposition that subsequently should be solved. However, as we
pointed out in Sect. 5.1, the resulting separation logic proposition will be very
difficult to prove—either interactively or automatically—due to the existentially
quantified postconditions that appear because of uses of the rules for binary
operators (e.g., wp-bin-op). We then proposed alternative rules that avoid the
need for existential quantifiers. These rules look like:

R � wp e2 {v2. Q −∗ Φ (v1 ��� v2)}
P � wp (e1 � e2) {Φ}

To use this rule, the crux is to symbolically execute e1 with precondition P into
a symbolic execution triple (v1, Q,R), which we alluded could be automatically
computed by means of the symbolic executor if e1 ∈ expr (Sect. 5.2).

We can only use the symbolic executor if P is of the shape �m� for a symbolic
heap m. However, in actual program verification, the precondition P is hardly
ever of that shape. In addition to a series of points-to connectives (as described by
a symbolic heap), we may have arbitrary propositions of separation logic, such as
pure facts, abstract predicates, nested Hoare triples, Iris ghost state, etc. These
propositions may be needed to prove intermediate verification conditions, e.g.,
for function calls. As such, to effectively apply the above rule, we need to separate
our precondition P into two parts: a symbolic heap �m� and a remainder P ′.
Assuming forward(m, e1) = (v1,mo

1,m1), we may then use the following rule:

P ′ ∗ �m1� � wp e2 {v2. �mo
1� −∗ Φ (v1 ��� v2)}

P ′ ∗ �m� � wp (e1 � e2) {Φ}
It is important to notice that by applying this rule, the remainder P ′ remains
in our precondition as is, but the symbolic heap is changed from �m� into �m1�,
i.e., into the frame that we obtained by symbolically executing e1.

It should come as no surprise that we can automate this process, by applying
rules, such as the one we have given above, recursively, and threading through
symbolic heaps. Formally, we do this by defining the vcgen as a total function:
vcg : (sheap × expr × (sheap → val → Prop)) → Prop where Prop is the type of

80 D. Frumin et al.

propositions of our logic. The definition of vcg is given in Fig. 8. Before explaining
the details, let us state its correctness theorem:

Theorem 6.1. Given an expression e, a symbolic heap m, and a postcondition
Φ, the following statement holds:

P ′ � vcg(m, e, λm′ v. �m′� −∗ Φ v)

P ′ ∗ �m� � wp e {Φ}
This theorem reflects the general shape of the rules we previously described.

We start off with a goal P ′∗�m� � wp e {Φ}, and after using the vcgen, we should
prove that the generated goal follows from P ′. It is important to note that the
continuation in the vcgen is not only parameterized by the return value, but also
by a symbolic heap corresponding to the resources that remain. To get these
resources back, the vcgen is initiated with the continuation λm′ v. �m′� −∗ Φ v.

Most clauses of the definition of the vcgen (Fig. 8) follow the approach we
described so far. For unary expressions like load we generate a condition that
corresponds to the weakest precondition rule. For binary expressions, we sym-
bolically execute either operand, and proceed recursively in the other. There are
a number of important bells and whistles that we will discuss now.

Sequencing. In the case of sequenced binds x ← e1 ; e2, we recursively compute
the verification condition for e1 with the continuation:

λm′ v.U (vcg(unlock(m′), e2[v/x],K)) .

Due to a sequence point, all locations modified by e1 will be in the unlocked state
after it is finished executing. Therefore, in the recursive call to e2 we unlock all
locations in the symbolic heap (c.f. unlock(m′)), and we include a U modality
in the continuation. The U modality is crucial so that the resources that are not
given to the vcgen (the remainder P ′ in Theorem 6.1) can also be unlocked.

Handling Failure. In the case of binary operators e1 � e2, it could be that
the symbolic executor fails on both e1 and e2, because neither of the arguments
were of the right shape (i.e., not an element of expr), or the required resources
were not present in the symbolic heap. In this case the vcgen generates the goal
of the form �m� −∗ wp (e1 � e2) {Kret} where Kret � λw. ∃m′. �m′� ∗ K m′ w.
What appears here is that the current symbolic heap �m� is given back to the
user, which they can use to prove the weakest precondition of e1 � e2 by hand.
Through the postcondition ∃m′. �m′� ∗ K m′ w the user can resume the vcgen,
by choosing a new symbolic heap m′ and invoking the continuation K m′ w.

For assignments e1 = e2 we have a similar situation. Symbolic execution of
both e1 and e2 may fail, and then we generate a goal similar to the one for binary
operators. If the location l that we wish to assign to is not in the symbolic heap,
we use the continuation �m� −∗ ∃w. l 	−→U w ∗ (l 	−→L v −∗ Kret v). As before,
the user gets back the current symbolic heap �m�, and could resume the vcgen
through the postcondition Kret v by picking a new symbolic heap.

Semi-automated Reasoning About Non-determinism in C Expressions 81

vcg(m, v, K) � K m v

vcg(m, e1 � e2, K) �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vcg(m2, e2, λ m′ v2. K (m′ � mo) (v1 � v2)) if forward(m, e1) = (v1, mo, m2)

vcg(m1, e1, λ m′ v1. K (m′ � mo) (v1 � v2)) if forward(m, e1) = ⊥ and
forward(m, e2) = (v2, mo, m1)

m −∗ wp (e1 � e2) {Kret} otherwise

vcg(m, *e, K) � vcg(m, e, K′
)

with K′ � λ m l.

⎧⎨
⎩

K m w if l ∈ Loc and m(l) = (U, q, w)

m −∗ ∃w q. l
q

U w ∗ (l
q

U w −∗ Kret w) otherwise

vcg(m, e1 = e2, K) �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vcg(m2, e2, λ m′ v. K′ (m′ � mo)(l, v)) if forward(m, e1) = (l, mo, m2)

vcg(m1, e1, λ m′ l. K′ (m′ � mo)(l, v)) if forward(m, e1) = ⊥ and
forward(m, e2) = (v, mo, m1)

m −∗ wp (e1 = e2) {Kret} otherwise

with K′ � λ m (l, v).⎧⎨
⎩

K (m′ � {l (L, 1, v)}) v if l ∈ Loc and delete full(l, m) = m′

m −∗ ∃w. l U w ∗ (l L v −∗ Kret v) otherwise

vcg(m, x e1 ; e2, K) � vcg(m, e1, λ m′
v. U vcg(unlock(m′

), e2[v/x], K)
)
)

Auxiliary functions:

Kret : val Prop � λ w. (∃m′. m′ ∗ K m′
w) unlock(m) �

⊔
l∈dom(m)

m(l)=(,q,v)

{l (U, q, v)}

Fig. 8. Selected cases of the verification condition generator.

7 Discussion

Extensions of the Language. The memory model that we have presented
in this paper was purposely oversimplified. In Coq, the memory model for λMC
additionally supports mutable local variables, arrays, and pointer arithmetic.
Adding support for these features was relatively easy and required only local
changes to the definitional semantics and the separation logic.

For implementing mutable local variables, we tag each location with a
Boolean that keeps track of whether it is an allocated or a local variable. That
way, we can forbid deallocating local variables using the free(−) operator.

Our extended memory model is block/offset-based like CompCert’s memory
model [38]. Pointers are not simply represented as locations, but as pairs (�, i),
where � is a HeapLang reference to a memory block containing a list of values,

82 D. Frumin et al.

and i is an offset into that block. The points-to connectives of our separation
logic then correspondingly range over block/offset-based pointers.

Symbolic Execution of Sequence Points. We adapt our forward algorithm
to handle sequenced bind operators x ← e1 ; e2. The subtlety lies in supporting
nested sequenced binds. For example, in an expression (x ← e1 ; e2) + e3 the
postcondition of e1 can be used (along with the frame) for the symbolic execution
of e2, but it cannot be used for the symbolic execution of e3. In order to solve
this, our forward algorithm takes a stack of symbolic heaps as an input, and
returns a stack of symbolic heaps (of the same length) as a frame. All the cases
shown in Fig. 7 are easily adapted w.r.t. this modification, and the following
definition captures the case for the sequence point bind:

forward(�m, x ← e1 ; e2) � (v2,mo
2 � m′, �m2)

where (v1,mo
1, �m1) = forward(�m, e1)

(v2,mo
2,m

′ :: �m2) = forward(unlock(mo
1) :: �m1, e2[v1/x])

Shared Resource Invariants. As in Krebbers’s logic [29], the rules for binary
operators in Fig. 3 require the resources to be separated into disjoint parts for the
subexpressions. If both sides of a binary operator are function calls, then they
can only share read permissions despite that both function calls are executed
atomically. Following Krebbers, we address this limitation by adding a shared
resource invariant R to our weakest preconditions and add the following rules:

R1 wpR1∗R2
e {v. R1 −∗ Φ v}

wpR2
e {Φ}

f(x){e} defined
R −∗ U(wpTrue e [x/v] {w. R ∗ Φ w})

wpR f(v) {Φ}

To temporarily transfer resources into the invariant, one can use the first
rule. Because function calls are not interleaved, one can use the last rule to gain
access to the shared resource invariant for the duration of the function call.

Our handling of shared resource invariants generalizes the treatment by Kreb-
bers: using custom ghost state in Iris we can endow the resource invariant with a
protocol. This allows us to verify examples that were previously impossible [29]:

int f(int *p, int y) { return (*p = y); }
int main() { int x; f(&x, 3) + f(&x, 4); return x; }

Krebbers could only prove that main returns 0, 3 or 4, whereas we can prove
it returns 3 or 4 by combining resource invariants with Iris’s ghost state.

Implementation in Coq. In the Coq development [18] we have:

– Defined λMC with the extensions described above, as well as the monadic
combinators, as a shallow embedding on top of Iris’s HeapLang [21,25].

– Modeled the separation logic for λMC and the monadic combinators as a
shallow embedding on top of the Iris’s program logic for HeapLang.

Semi-automated Reasoning About Non-determinism in C Expressions 83

– Implemented the symbolic executor and vcgen as computable Coq functions,
and proved their soundness w.r.t. our separation logic.

– Turned the verification condition generator into a tactic that integrates into
the Iris Proof Mode/MoSeL framework [32,34].

This last point allowed us to leverage the existing machinery for separation
logic proofs in Coq. Firstly, we get basic building blocks for implementing the
vcgen tactic for free. Secondly, when the vcgen is unable to solve the goal, one
can use the Iris Proof Mode/MoSeL tactics to help out in a convenient manner.

To implement the symbolic executor and vcgen, we had to reify the terms
and values of λMC. To see why reification is needed, consider the data type for
symbolic heaps, which uses locations as keys. In proofs, those locations appear
as universally quantified variables. To compute using these, we need to reify
them into some symbolic representation. We have implemented the reification
mechanism using type classes, following Spitters and van der Weegen [47].

With all the mechanics in place, our vcgen is able to significantly aid us. Con-
sider the following program that copies the contents of one array into another:

int arraycopy(int *p, int *q, int n) {
int pend = p + n;
while (p < pend) { *(p++) = *(q++); }

}

We proved {p 	→ �x∗q 	→ �y∗(|�x|= |�y|= n)}arraycopy(p,q,n){p 	→ �y∗q 	→ �y} in
11 lines of Coq code. The vcgen can automatically process the program up until
the while loop. At that point, the user has to manually perform an induction on
the array, providing a suitable induction hypothesis. The vcgen is then able to
discharge the base case automatically. In the inductive case, it will automatically
process the program until the next iteration of the while loop, where the user
has to apply the induction hypothesis.

8 Related Work

C Semantics. There has been a considerable body of work on formal semantics
for the C language, including several large projects that aimed to formalize sub-
stantial subsets of C [17,20,30,37,41,44], and projects that focused on specific
aspects like its memory model [10,13,27,28,31,38,40,41], weak memory concur-
rency [4,36,43], non-local control flow [35], verified compilation [37,48], etc.

The focus of this paper—non-determinism in C expressions—has been treated
formally a number of times, notably by Norrish [44], Ellison and Rosu [17],
Krebbers [31], and Memarian et al. [41]. The first three have in common that they
model the sequence point restriction by keeping track of the locations that have
been written to. The treatment of sequence points in our definitional semantics
is closely inspired by the work of Ellison and Rosu [17], which resembles closely
what is in the C standard. Krebbers [31] used a more restrictive version of the
semantics by Ellison and Rosu—he assigned undefined behavior in some corner
cases to ease the soundness theorem of his logic. We directly proved soundness
of the logic w.r.t. the more faithful model by Ellison and Rosu.

84 D. Frumin et al.

Memarian et al. [41] give a semantics to C by elaboration into a language they
call Core. Unspecified evaluation order in Core is modeled using an unseq oper-
ation, which is similar to our ||HL operation. Compared to our translation, Core
is much closer to C (it has function calls, memory operations, etc. as primitives,
while we model them with monadic combinators), and supports concurrency.

Reasoning Tools and Program Logics for C. Apart from formalizing the
semantics of C, there have been many efforts to create reasoning tools for the C
language in one way or another. There are standalone tools, like VeriFast [23],
VCC [12], and the Jessie plugin of Frama-C [42], and there are tools built on top
of general purpose proof assistants like VST [1,10] in Coq, or AutoCorres [19] in
Isabelle/HOL. Although, admittedly, all of these tools cover larger subsets of C
than we do, as far as we know, they all ignore non-determinism in expressions.

There are a few exceptions. Norrish proved confluence for a certain class of
C expressions [45]. Such a confluence result may be used to justify proofs in a
tool that does not have an underlying non-deterministic semantics.

Another exception is the separation logic for non-determinism in C by Kreb-
bers [29]. Our work is inspired by his, but there are several notable differences:

– We have proved soundness with respect to a definitional semantics for a subset
of C. We believe that this approach is more modular, since the semantics can
be specified at a higher level of abstraction.

– We have built our logic on top of the Iris framework. This makes the devel-
opment more modular (since we can use all the features as well as the Coq
infrastructure of Iris) and more expressive (as shown in Sect. 7).

– There was no automation like our vcgen, so one had to subdivide resources
between subexpressions manually all the time. Also, there was not even tac-
tical support for carrying out proofs manually. Our logic is redesigned to get
such support from the Iris Proof Mode/MoSeL framework.

To handle missing features of C as part of our vcgen, we plan to explore
approaches by other verification projects in proof assistants. A notable example
of such a project is VST, which supports machine arithmetic [16] and data types
like structs and unions [10] as part of its tactics for symbolic execution.

Separation Logic and Symbolic Execution. In their seminal work, Berdine
et al. [5] demonstrate the application of symbolic execution to automated rea-
soning in separation logic. In their setting, frame inference is used to perform
symbolic execution of function calls. The frame has to be computed when the call
site has more resources than needed to invoke a function. In our setting we com-
pute frames for subexpressions, which, unlike functions, do not have predefined
specifications. Due to that, we have to perform frame inference simultaneously
with symbolic execution. The symbolic execution algorithm of Berdine et al. can
handle inductive predicates, and can be extended with shape analysis [15]. We
do not support such features, and leave them to future work.

Caper [14] is a tool for automated reasoning in concurrent separation logic,
and it also deals with non-determinism, although the nature of non-determinism in
Caper is different. Non-determinism in Caper arises due to branching on unknown

Semi-automated Reasoning About Non-determinism in C Expressions 85

conditionals and due to multiple possible ways to apply ghost state related rules
(rules pertaining to abstract regions and guards). The former cause is tackled by
considering sets of symbolic execution traces, and the latter is resolved by employ-
ing heuristics based on bi-abduction [9]. Applications of abductive reasoning to
our approach to symbolic execution are left for future work.

Recently, Bannister et al. [2,3] proposed a new separation logic connective for
performing forwards reasoning whilst avoiding frame inference. This approach,
however, is aimed at sequential deterministic programs, focusing on a notion of
partial correctness that allows for failed executions. Another approach to veri-
fication of sequential stateful programs is based on characteristic formulae [11].
A stateful program is transformed into a higher-order logic predicate, implicitly
encoding the frame rule. The resulting formula is then proved by a user in Coq.

When implementing a vcgen in a proof assistant (see e.g., [10,39]) it is com-
mon to let the vcgen return a new goal when it gets stuck, from which the
user can help out and call back the vcgen. The novelty of our work is that this
approach is applied to operations that are called in parallel.

Acknowledgments. We are grateful to Gregory Malecha and the anonymous review-
ers and for their comments and suggestions. This work was supported by the Nether-
lands Organisation for Scientific Research (NWO), project numbers STW.14319 (first
and second author) and 016.Veni.192.259 (third author).

References

1. Appel, A.W. (ed.): Program Logics for Certified Compilers. Cambridge University
Press, New York (2014)

2. Bannister, C., Höfner, P.: False failure: creating failure models for separation logic.
In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol.
11194, pp. 263–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02149-8 16

3. Bannister, C., Höfner, P., Klein, G.: Backwards and forwards with separation
logic. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 68–87.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94821-8 5

4. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL, pp. 55–66 (2011)

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). https://doi.org/10.1007/11575467 5

6. Birkedal, L., Bizjak, A.: Lecture Notes on Iris: Higher-Order Concurrent Separation
Logic, August 2018. https://iris-project.org/tutorial-material.html

7. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270 (2005)

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

10. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: a separa-
tion logic tool to verify correctness of C programs. JAR 61(1–4), 367–422 (2018)

https://doi.org/10.1007/978-3-030-02149-8_16
https://doi.org/10.1007/978-3-030-02149-8_16
https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1007/11575467_5
https://iris-project.org/tutorial-material.html
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4

86 D. Frumin et al.

11. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. SIGPLAN Not. 46(9), 418–430 (2011)

12. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

13. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for C. ENTCS 254, 85–103 (2009)

14. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper -
automatic verification for fine-grained concurrency. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 16

15. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

16. Dodds, J., Appel, A.W.: Mostly sound type system improves a foundational pro-
gram verifier. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
17–32. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 2

17. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
POPL, pp. 533–544 (2012)

18. Frumin, D., Gondelman, L., Krebbers, R.: Semi-automated reasoning about non-
determinism in C expressions: Coq development, February 2019. https://cs.ru.nl/
∼dfrumin/wpc/

19. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
formal verification of C code without the pain. In: PLDI, pp. 429–439 (2014)

20. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: PLDI,
pp. 336–345 (2015)

21. Iris: Iris Project, November 2018. https://iris-project.org/
22. ISO: ISO/IEC 9899–2011: Programming Languages - C. ISO Working Group 14

(2012)
23. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.

In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

24. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
ICFP, pp. 256–269 (2016)

25. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://doi.org/10.1017/S0956796818000151

26. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, pp. 637–650 (2015)

27. Kang, J., Hur, C., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal C memory model supporting integer-pointer casts. In: POPL, pp. 326–335
(2015)

28. Krebbers, R.: Aliasing restrictions of C11 formalized in Coq. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 50–65. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 4

29. Krebbers, R.: An operational and axiomatic semantics for non-determinism and
sequence points in C. In: POPL, pp. 101–112 (2014)

30. Krebbers, R.: The C standard formalized in Coq. Ph.D. thesis, Radboud University
Nijmegen (2015)

31. Krebbers, R.: A formal C memory model for separation logic. JAR 57(4), 319–387
(2016)

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-3-319-03545-1_2
https://cs.ru.nl/~dfrumin/wpc/
https://cs.ru.nl/~dfrumin/wpc/
https://iris-project.org/
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-319-03545-1_4

Semi-automated Reasoning About Non-determinism in C Expressions 87

32. Krebbers, R., et al.: MoSeL: a general, extensible modal framework for interactive
proofs in separation logic. PACMPL 2(ICFP), 77:1–77:30 (2018)

33. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
Essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 26

34. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: POPL, pp. 205–217 (2017)

35. Krebbers, R., Wiedijk, F.: Separation logic for non-local control flow and block
scope variables. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 257–
272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 17

36. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing Sequential Con-
sistency in C/C++11. In: PLDI, pp. 618–632 (2017)

37. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
38. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for

verifying program transformations. JAR 41(1), 1–31 (2008)
39. Malecha, G.: Extensible proof engineering in intensional type theory. Ph.D. thesis,

Harvard University (2014)
40. Memarian, K., et al.: Exploring C semantics and pointer provenance. PACMPL

3(POPL), 67:1–67:32 (2019)
41. Memarian, K., et al.: Into the depths of C: elaborating the De Facto Standards.

In: PLDI, pp. 1–15 (2016)
42. Moy, Y., Marché, C.: The Jessie Plugin for Deduction Verification in Frama-C,

Tutorial and Reference Manual (2011)
43. Nienhuis, K., Memarian, K., Sewell, P.: An operational semantics for C/C++11

concurrency. In: OOPSLA, pp. 111–128 (2016)
44. Norrish, M.: C Formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
45. Norrish, M.: Deterministic expressions in C. In: Swierstra, S.D. (ed.) ESOP 1999.

LNCS, vol. 1576, pp. 147–161. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49099-X 10

46. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1), 271–307 (2007). Festschrift for John C. Reynolds’s 70th birthday

47. Spitters, B., Van der Weegen, E.: Type classes for mathematics in type theory.
Math. Struct. Comput. Sci. 21(4), 795–825 (2011)

48. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional CompCert. In:
POPL, pp. 275–287 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/3-540-49099-X_10
https://doi.org/10.1007/3-540-49099-X_10
http://creativecommons.org/licenses/by/4.0/

Safe Deferred Memory Reclamation
with Types

Ismail Kuru(B) and Colin S. Gordon

Drexel University, Philadelphia, USA
{ik335,csgordon}@drexel.edu

Abstract. Memory management in lock-free data structures remains a
major challenge in concurrent programming. Design techniques including
read-copy-update (RCU) and hazard pointers provide workable solutions,
and are widely used to great effect. These techniques rely on the concept
of a grace period: nodes that should be freed are not deallocated imme-
diately, and all threads obey a protocol to ensure that the deallocating
thread can detect when all possible readers have completed their use of
the object. This provides an approach to safe deallocation, but only when
these subtle protocols are implemented correctly.

We present a static type system to ensure correct use of RCU mem-
ory management: that nodes removed from a data structure are always
scheduled for subsequent deallocation, and that nodes are scheduled for
deallocation at most once. As part of our soundness proof, we give an
abstract semantics for RCU memory management primitives which cap-
tures the fundamental properties of RCU. Our type system allows us to
give the first proofs of memory safety for RCU linked list and binary
search tree implementations without requiring full verification.

1 Introduction

For many workloads, lock-based synchronization – even fine-grained locking – has
unsatisfactory performance. Often lock-free algorithms yield better performance,
at the cost of more complex implementation and additional difficulty reasoning
about the code. Much of this complexity is due to memory management: devel-
opers must reason about not only other threads violating local assumptions, but
whether other threads are finished accessing nodes to deallocate. At the time a
node is unlinked from a data structure, an unknown number of additional threads
may have already been using the node, having read a pointer to it before it was
unlinked in the heap.

A key insight for manageable solutions to this challenge is to recognize that
just as in traditional garbage collection, the unlinked nodes need not be reclaimed
immediately, but can instead be reclaimed later after some protocol finishes run-
ning. Hazard pointers [29] are the classic example: all threads actively collaborate
on bookkeeping data structures to track who is using a certain reference. For
structures with read-biased workloads, Read-Copy-Update (RCU) [23] provides
an appealing alternative. The programming style resembles a combination of
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 88–116, 2019.
https://doi.org/10.1007/978-3-030-17184-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_4&domain=pdf
http://orcid.org/0000-0002-5796-2150
http://orcid.org/0000-0002-9012-4490
https://doi.org/10.1007/978-3-030-17184-1_4

Safe Deferred Memory Reclamation with Types 89

reader-writer locks and lock-free programming. Multiple concurrent readers per-
form minimal bookkeeping – often nothing they wouldn’t already do. A single
writer at a time runs in parallel with readers, performing additional work to track
which readers may have observed a node they wish to deallocate. There are now
RCU implementations of many common tree data structures [3,5,8,19,24,33],
and RCU plays a key role in Linux kernel memory management [27].

However, RCU primitives remain non-trivial to use correctly: developers
must ensure they release each node exactly once, from exactly one thread,
after ensuring other threads are finished with the node in question. Model
checking can be used to validate correctness of implementations for a mock
client [1,7,17,21], but this does not guarantee correctness of arbitrary client
code. Sophisticated verification logics can prove correctness of the RCU primi-
tives and clients [12,15,22,32]. But these techniques require significant verifica-
tion expertise to apply, and are specialized to individual data structures or imple-
mentations. One important reason for the sophistication in these logics stems
from the complexity of the underlying memory reclamation model. However,
Meyer and Wolff [28] show that a suitable abstraction enables separating veri-
fying correctness of concurrent data structures from its underlying reclamation
model under the assumption of memory safety, and study proofs of correctness
assuming memory safety.

We propose a type system to ensure that RCU client code uses the RCU
primitives safely, ensuring memory safety for concurrent data structures using
RCU memory management. We do this in a general way, not assuming the client
implements any specific data structure, only one satisfying some basic properties
common to RCU data structures (such as having a tree memory footprint). In
order to do this, we must also give a formal operational model of the RCU
primitives that abstracts many implementations, without assuming a particular
implementation of the RCU primitives. We describe our RCU semantics and type
system, prove our type system sound against the model (which ensures memory
is reclaimed correctly), and show the type system in action on two important
RCU data structures.

Our contributions include:

– A general (abstract) operational model for RCU-based memory management
– A type system that ensures code uses RCU memory management correctly,

which is significantly simpler than full-blown verification logics
– Demonstration of the type system on two examples: a linked-list based bag

and a binary search tree
– A proof that the type system guarantees memory safety when using RCU

primitives.

2 Background and Motivation

In this section, we recall the general concepts of read-copy-update concurrency.
We use the RCU linked-list-based bag [25] from Fig. 1 as a running example. It
includes annotations for our type system, which will be explained in Sect. 4.2.

90 I. Kuru and C. S. Gordon

Fig. 1. RCU client: singly linked list based bag implementation.

As with concrete RCU implementations, we assume threads operating on
a structure are either performing read-only traversals of the structure—reader
threads—or are performing an update—writer threads—similar to the use of
many-reader single-writer reader-writer locks.1 It differs, however, in that readers
may execute concurrently with the (single) writer.

This distinction, and some runtime bookkeeping associated with the read-
and write-side critical sections, allow this model to determine at modest cost
when a node unlinked by the writer can safely be reclaimed.

Figure 1 gives the code for adding and removing nodes from a bag. Type
checking for all code, including membership queries for bag, can be found in
our technical report [20]. Algorithmically, this code is nearly the same as any
sequential implementation. There are only two differences. First, the read-side
critical section in member is indicated by the use of ReadBegin and ReadEnd; the
write-side critical section is between WriteBegin and WriteEnd. Second, rather
than immediately reclaiming the memory for the unlinked node, remove calls
1 RCU implementations supporting multiple concurrent writers exist [3], but are the

minority.

Safe Deferred Memory Reclamation with Types 91

SyncStart to begin a grace period—a wait for reader threads that may still hold
references to unlinked nodes to finish their critical sections. SyncStop blocks
execution of the writer thread until these readers exit their read critical section
(via ReadEnd). These are the essential primitives for the implementation of an
RCU data structure.

These six primitives together track a critical piece of information: which
reader threads’ critical sections overlapped the writer’s. Implementing them effi-
ciently is challenging [8], but possible. The Linux kernel for example finds ways
to reuse existing task switch mechanisms for this tracking, so readers incur no
additional overhead. The reader primitives are semantically straightforward –
they atomically record the start, or completion, of a read-side critical section.

The more interesting primitives are the write-side primitives and memory
reclamation. WriteBegin performs a (semantically) standard mutual exclusion
with regard to other writers, so only one writer thread may modify the structure
or the writer structures used for grace periods.

SyncStart and SyncStop implement grace periods [31]: a mechanism to wait
for readers to finish with any nodes the writer may have unlinked. A grace period
begins when a writer requests one, and finishes when all reader threads active
at the start of the grace period have finished their current critical section. Any
nodes a writer unlinks before a grace period are physically unlinked, but not
logically unlinked until after one grace period.

An attentive reader might already realize that our usage of logical/physical
unlinking is different than the one used in data-structures literature where typi-
cally a logical deletion (e.g., marking) is followed by a physical deletion (unlink-
ing). Because all threads are forbidden from holding an interior reference into the
data structure after leaving their critical sections, waiting for active readers to
finish their critical sections ensures they are no longer using any nodes the writer
unlinked prior to the grace period. This makes actually freeing an unlinked node
after a grace period safe.

SyncStart conceptually takes a snapshot of all readers active when it is run.
SyncStop then blocks until all those threads in the snapshot have finished at least
one critical section. SyncStop does not wait for all readers to finish, and does not
wait for all overlapping readers to simultaneously be out of critical sections.

To date, every description of RCU semantics, most centered around the
notion of a grace period, has been given algorithmically, as a specific (effi-
cient) implementation. While the implementation aspects are essential to real
use, the lack of an abstract characterization makes judging the correctness of
these implementations – or clients – difficult in general. In Sect. 3 we give formal
abstract, operational semantics for RCU implementations – inefficient if imple-
mented directly, but correct from a memory-safety and programming model per-
spective, and not tied to specific low-level RCU implementation details. To use
these semantics or a concrete implementation correctly, client code must ensure:

– Reader threads never modify the structure
– No thread holds an interior pointer into the RCU structure across critical

sections

92 I. Kuru and C. S. Gordon

– Unlinked nodes are always freed by the unlinking thread after the unlinking,
after a grace period, and inside the critical section

– Nodes are freed at most once

In practice, RCU data structures typically ensure additional invariants to sim-
plify the above, e.g.:

– The data structure is always a tree
– A writer thread unlinks or replaces only one node at a time.

and our type system in Sect. 4 guarantees these invariants.

3 Semantics

In this section, we outline the details of an abstract semantics for RCU imple-
mentations. It captures the core client-visible semantics of most RCU primitives,
but not the implementation details required for efficiency [27]. In our semantics,
shown in Fig. 2, an abstract machine state, MState, contains:

– A stack s, of type Var × TID ⇀ Loc
– A heap, h, of type Loc × FName ⇀ Val
– A lock, l, of type TID � {unlocked}
– A root location rt of type Loc
– A read set, R, of type P(TID) and
– A bounding set, B, of type P(TID)

The lock l enforces mutual exclusion between write-side critical sections.
The root location rt is the root of an RCU data structure. We model only a
single global RCU data structure; the generalization to multiple structures is
straightforward but complicates formal development later in the paper. The
reader set R tracks the thread IDs (TIDs) of all threads currently executing
a read block. The bounding set B tracks which threads the writer is actively
waiting for during a grace period—it is empty if the writer is not waiting.

Figure 2 gives operational semantics for atomic actions; conditionals, loops,
and sequencing all have standard semantics, and parallel composition uses
sequentially-consistent interleaving semantics.

The first few atomic actions, for writing and reading fields, assigning among
local variables, and allocating new objects, are typical of formal semantics for
heaps and mutable local variables. Free is similarly standard. A writer thread’s
critical section is bounded by WriteBegin and WriteEnd, which acquire and release
the lock that enforces mutual exclusion between writers. WriteBegin only reduces
(acquires) if the lock is unlocked.

Standard RCU APIs include a primitive synchronize_rcu() to wait for a
grace period for the current readers. We decompose this here into two actions,
SyncStart and SyncStop. SyncStart initializes the blocking set to the current set
of readers—the threads that may have already observed any nodes the writer
has unlinked. SyncStop blocks until the blocking set is emptied by completing

Safe Deferred Memory Reclamation with Types 93

Fig. 2. Operational semantics for RCU.

reader threads. However, it does not wait for all readers to finish, and does not
wait for all overlapping readers to simultaneously be out of critical sections. If
two reader threads A and B overlap some SyncStart-SyncStop’s critical section,
it is possible that A may exit and re-enter a read-side critical section before
B exits, and vice versa. Implementations must distinguish subsequent read-side
critical sections from earlier ones that overlapped the writer’s initial request to
wait: since SyncStart is used after a node is physically removed from the data
structure and readers may not retain RCU references across critical sections, A
re-entering a fresh read-side critical section will not permit it to re-observe the
node to be freed.

Reader thread critical sections are bounded by ReadBegin and ReadEnd.
ReadBegin simply records the current thread’s presence as an active reader.
ReadEnd removes the current thread from the set of active readers, and also
removes it (if present) from the blocking set—if a writer was waiting for a cer-
tain reader to finish its critical section, this ensures the writer no longer waits
once that reader has finished its current read-side critical section.

Grace periods are implemented by the combination of ReadBegin, ReadEnd,
SyncStart, and SyncStop. ReadBegin ensures the set of active readers is known.
When a grace period is required, SyncStart;SyncStop; will store (in B) the active
readers (which may have observed nodes before they were unlinked), and wait
for reader threads to record when they have completed their critical section (and
implicitly, dropped any references to nodes the writer wants to free) via ReadEnd.

These semantics do permit a reader in the blocking set to finish its read-side
critical section and enter a new read-side critical section before the writer wakes.
In this case, the writer waits only for the first critical section of that reader to
complete, since entering the new critical section adds the thread’s ID back to R,
but not B.

94 I. Kuru and C. S. Gordon

4 Type System and Programming Language

In this section, we present a simple imperative programming language with two
block constructs for modeling RCU, and a type system that ensures proper
(memory-safe) use of the language. The type system ensures memory safety
by enforcing these sufficient conditions:

– A heap node can only be freed if it is no longer accessible from an RCU data
structure or from local variables of other threads. To achieve this we ensure
the reachability and access which can be suitably restricted. We explain how
our types support a delayed ownership transfer for the deallocation.

– Local variables may not point inside an RCU data structure unless they are
inside an RCU read or write block.

– Heap mutations are local : each unlinks or replaces exactly one node.
– The RCU data structure remains a tree. While not a fundamental constraint

of RCU, it is a common constraint across known RCU data structures because
it simplifies reasoning (by developers or a type system) about when a node
has become unreachable in the heap.

We also demonstrate that the type system is not only sound, but useful: we
show how it types Fig. 1’s list-based bag implementation [25]. We also give type
checked fragments of a binary search tree to motivate advanced features of the
type system; the full typing derivation can be found in our technical report [20]
Appendix B. The BST requires type narrowing operations that refine a type
based on dynamic checks (e.g., determining which of several fields links to a
node). In our system, we presume all objects contain all fields, but the number
of fields is finite (and in our examples, small). This avoids additional overhead
from tracking well-established aspects of the type system—class and field types
and presence, for example—and focus on checking correct use of RCU primitives.
Essentially, we assume the code our type system applies to is already type-correct
for a system like C or Java’s type system.

4.1 RCU Type System for Write Critical Section

Section 4.1 introduces RCU types and the need for subtyping. Section 4.2, shows
how types describe program states, through code for Fig. 1’s list-based bag exam-
ple. Section 4.3 introduces the type system itself.

RCU Types. There are six types used in Write critical sections

τ ::= rcuItr ρ N | rcuFresh N | unlinked | undef | freeable | rcuRoot

rcuItr is the type given to references pointing into a shared RCU data structure.
A rcuItr type can be used in either a write region or a read region (without
the additional components). It indicates both that the reference points into the
shared RCU data structure and that the heap location referenced by rcuItr ref-
erence is reachable by following the path ρ from the root. A component N is a

Safe Deferred Memory Reclamation with Types 95

set of field mappings taking the field name to local variable names. Field maps
are extended when the referent’s fields are read. The field map and path com-
ponents track reachability from the root, and local reachability between nodes.
These are used to ensure the structure remains acyclic, and for the type system
to recognize exactly when unlinking can occur.

Read-side critical sections use rcuItr without path or field map components.
These components are both unnecessary for readers (who perform no updates)
and would be invalidated by writer threads anyways. Under the assumption
that reader threads do not hold references across critical sections, the read-
side rules essentially only ensure the reader performs no writes, so we omit the
reader critical section type rules. They can be found in our technical report [20]
Appendix E.

unlinked is the type given to references to unlinked heap locations—objects
previously part of the structure, but now unreachable via the heap. A heap
location referenced by an unlinked reference may still be accessed by reader
threads, which may have acquired their own references before the node became
unreachable. Newly-arrived readers, however, will be unable to gain access to
these referents.

freeable is the type given to references to an unlinked heap location that is safe
to reclaim because it is known that no concurrent readers hold references to it.
Unlinked references become freeable after a writer has waited for a full grace
period.

undef is the type given to references where the content of the referenced location
is inaccessible. A local variable of type freeable becomes undef after reclaiming
that variable’s referent.

rcuFresh is the type given to references to freshly allocated heap locations.
Similar to rcuItr type, it has field mappings set N . We set the field mappings
in the set of an existing rcuFresh reference to be the same as field mappings in
the set of rcuItr reference when we replace the heap referenced by rcuItr with the
heap referenced by rcuFresh for memory safe replacement.

rcuRoot is the type given to the fixed reference to the root of the RCU data
structure. It may not be overwritten.

Subtyping. It is sometimes necessary to use imprecise types—mostly for con-
trol flow joins. Our type system performs these abstractions via subtyping on
individual types and full contexts, as in Fig. 3.

Figure 3 includes four judgments for subtyping. The first two—� N ≺: N ′

and � ρ ≺: ρ′—describe relaxations of field maps and paths respectively.
� N ≺: N ′ is read as “the field map N is more precise than N ′” and similarly
for paths. The third judgment � T ≺: T ′ uses path and field map subtyping to
give subtyping among rcuItr types—one rcuItr is a subtype of another if its paths

96 I. Kuru and C. S. Gordon

Fig. 3. Subtyping rules.

Fig. 4. Type rules for control-flow.

and field maps are similarly more precise—and to allow rcuItr references to be
“forgotten”—this is occasionally needed to satisfy non-interference checks in the
type rules. The final judgment � Γ ≺: Γ ′ extends subtyping to all assumptions
in a type context.

It is often necessary to abstract the contents of field maps or paths, without
simply forgetting the contents entirely. In a binary search tree, for example,
it may be the case that one node is a child of another, but which parent field
points to the child depends on which branch was followed in an earlier conditional
(consider the lookup in a BST, which alternates between following left and right
children). In Fig. 5, we see that cur aliases different fields of par – either Left or
Right – in different branches of the conditional. The types after the conditional

Safe Deferred Memory Reclamation with Types 97

must overapproximate this, here as Left|Right �→ cur in par’s field map, and a
similar path disjunction in cur’s path. This is reflected in Fig. 3’s T-NSub1-5
and T-PSub1-2 – within each branch, each type is coerced to a supertype to
validate the control flow join.

Another type of control flow join is handling loop invariants – where paths
entering the loop meet the back-edge from the end of a loop back to the start for
repetition. Because our types include paths describing how they are reachable
from the root, some abstraction is required to give loop invariants that work for
any number of iterations – in a loop traversing a linked list, the iterator pointer
would naïvely have different paths from the root on each iteration, so the exact
path is not loop invariant. However, the paths explored by a loop are regular,
so we can abstract the paths by permitting (implicitly) existentially quantified
indexes on path fragments, which express the existence of some path, without
saying which path. The use of an explicit abstract repetition allows the type
system to preserve the fact that different references have common path prefixes,
even after a loop.

Assertions for the add function in lines 19 and 20 of Fig. 1 show the loop’s
effects on paths of iterator references used inside the loop, cur and par. On line
20, par’s path contains has (Next)k. The k in the (Next)k abstracts the number
of loop iterations run, implicitly assumed to be non-negative. The trailing Next
in cur’s path on line 19 – (Next)k.Next – expresses the relationship between
cur and par: par is reachable from the root by following Next k times, and cur
is reachable via one additional Next. The types of 19 and 20, however, are not
the same as lines 23 and 24, so an additional adjustment is needed for the types
to become loop-invariant. Reindexing (T-ReIndex in Fig. 4) effectively incre-
ments an abstract loop counter, contracting (Next)k.Next to Nextk everywhere
in a type environment. This expresses the same relationship between par and
cur as before the loop, but the choice of k to make these paths accurate after
each iteration would be one larger than the choice before. Reindexing the type
environment of lines 23–24 yields the type environment of lines 19–20, making
the types loop invariant. The reindexing essentially chooses a new value for the
abstract k. This is sound, because the uses of framing in the heap mutation
related rules of the type system ensure uses of any indexing variable are never
separated – either all are reindexed, or none are.

While abstraction is required to deal with control flow joins, reasoning about
whether and which nodes are unlinked or replaced, and whether cycles are cre-
ated, requires precision. Thus the type system also includes means (Fig. 4) to
refine imprecise paths and field maps. In Fig. 5, we see a conditional with the
condition par.Left == cur. The type system matches this condition to the
imprecise types in line 1’s typing assertion, and refines the initial type assump-
tions in each branch accordingly (lines 2 and 7) based on whether execution
reflects the truth or falsity of that check. Similarly, it is sometimes required
to check – and later remember – whether a field is null, and the type system
supports this.

98 I. Kuru and C. S. Gordon

Fig. 5. Choosing fields to read.

4.2 Types in Action

The system has three forms of typing judgement: Γ � C for standard typing
outside RCU critical sections; Γ �R C � Γ ′ for reader critical sections, and
Γ �M C � Γ ′ for writer critical sections. The first two are straightforward,
essentially preventing mutation of the data structure, and preventing nesting
of a writer critical section inside a reader critical section. The last, for writer
critical sections, is flow sensitive: the types of variables may differ before and after
program statements. This is required in order to reason about local assumptions
at different points in the program, such as recognizing that a certain action may
unlink a node. Our presentation here focuses exclusively on the judgment for the
write-side critical sections.

Below, we explain our types through the list-based bag implementation [25]
from Fig. 1, highlighting how the type rules handle different parts of the code.
Figure 1 is annotated with “assertions” – local type environments – in the style
of a Hoare logic proof outline. As with Hoare proof outlines, these annotations
can be used to construct a proper typing derivation.

Reading a Global RCU Root. All RCU data structures have fixed roots, which
we characterize with the rcuRoot type. Each operation in Fig. 1 begins by reading
the root into a new rcuItr reference used to begin traversing the structure. After
each initial read (line 12 of add and line 4 of remove), the path of cur reference
is the empty path (ε) and the field map is empty ({}), because it is an alias to
the root, and none of its field contents are known yet.

Reading an Object Field and a Variable. As expected, we explore the heap
of the data structure via reading the objects’ fields. Consider line 6 of remove
and its corresponding pre- and post- type environments. Initially par’s field map
is empty. After the field read, its field map is updated to reflect that its Next
field is aliased in the local variable cur. Likewise, after the update, cur’s path
is Next (= ε · Next), extending the par node’s path by the field read. This
introduces field aliasing information that can subsequently be used to reason
about unlinking.

Unlinking Nodes. Line 24 of remove in Fig. 1 unlinks a node. The type annota-
tions show that before that line cur is in the structure (rcuItr), while afterwards

Safe Deferred Memory Reclamation with Types 99

its type is unlinked. The type system checks that this unlink disconnects only
one node: note how the types of par, cur, and curl just before line 24 completely
describe a section of the list.

Grace and Reclamation. After the referent of cur is unlinked, concurrent
readers traversing the list may still hold references. So it is not safe to actually
reclaim the memory until after a grace period. Lines 28–29 of remove initiate a
grace period and wait for its completion. At the type level, this is reflected by the
change of cur’s type from unlinked to freeable, reflecting the fact that the grace
period extends until any reader critical sections that might have observed the
node in the structure have completed. This matches the precondition required by
our rules for calling Free, which further changes the type of cur to undef reflecting
that cur is no longer a valid reference. The type system also ensures no local
(writer) aliases exist to the freed node and understanding this enforcement is
twofold. First, the type system requires that only unlinked heap nodes can be
freed. Second, framing relations in rules related to the heap mutation ensure no
local aliases still consider the node linked.

Fresh Nodes. Some code must also allocate new nodes, and the type system
must reason about how they are incorporated into the shared data structure.
Line 8 of the add method allocates a new node nw, and lines 10 and 29 initialize
its fields. The type system gives it a fresh type while tracking its field contents,
until line 32 inserts it into the data structure. The type system checks that nodes
previously reachable from cur remain reachable: note the field maps of cur and
nw in lines 30–31 are equal (trivially, though in general the field need not be
null).

4.3 Type Rules

Figure 6 gives the primary type rules used in checking write-side critical section
code as in Fig. 1.

T-Root reads a root pointer into an rcuItr reference, and T-ReadS copies a
local variable into another. In both cases, the free variable condition ensures that
updating the modified variable does not invalidate field maps of other variables
in Γ . These free variable conditions recur throughout the type system, and we
will not comment on them further. T-Alloc and T-Free allocate and reclaim
objects. These rules are relatively straightforward. T-ReadH reads a field into
a local variable. As suggested earlier, this rule updates the post-environment to
reflect that the overwritten variable z holds the same value as x.f . T-WriteFH
updates a field of a fresh (thread-local) object, similarly tracking the update in
the fresh object’s field map at the type level. The remaining rules are a bit more
involved, and form the heart of the type system.

Grace Periods. T-Sync gives pre- and post-environments to the compound
statement SyncStart;SyncStop implementing grace periods. As mentioned earlier,
this updates the environment afterwards to reflect that any nodes unlinked before
the wait become freeable afterwards.

100 I. Kuru and C. S. Gordon

Fig. 6. Type rules for write side critical section.

Unlinking. T-UnlinkH type checks heap updates that remove a node from
the data structure. The rule assumes three objects x, z, and r, whose identities
we will conflate with the local variable names in the type rule. The rule checks
the case where x.f1 == z and z.f2 == r initially (reflected in the path and field
map components, and a write x.f1 = r removes z from the data structure (we
assume, and ensure, the structure is a tree).

The rule must also avoid unlinking multiple nodes: this is the purpose of the
first (smaller) implication: it ensures that beyond the reference from z to r, all
fields of z are null.

Finally, the rule must ensure that no types in Γ are invalidated. This could
happen one of two ways: either a field map in Γ for an alias of x duplicates

Safe Deferred Memory Reclamation with Types 101

Fig. 7. Replacing existing heap nodes with fresh ones. Type rule T-Replace.

the assumption that x.f1 == z (which is changed by this write), or Γ contains
a descendant of r, whose path from the root will change when its ancestor is
modified. The final assumption of T-UnlinkH (the implication) checks that for
every rcuItr reference n in Γ , it is not a path alias of x, z, or r; no entry of its field
map (m) refers to r or z (which would imply n aliased x or z initially); and its
path is not an extension of r (i.e., it is not a descendant). MayAlias is a predicate
on two paths (or a path and set of paths) which is true if it is possible that any
concrete paths the arguments may abstract (e.g., via adding non-determinism
through|or abstracting iteration with indexing) could be the same. The negation
of a MayAlias use is true only when the paths are guaranteed to refer to different
locations in the heap.

Replacing with a Fresh Node. Replacing with a rcuFresh reference faces the
same aliasing complications as direct unlinking. We illustrate these challenges
in Figs. 7a and b. Our technical report [20] also includes Figures 32a and 32b in
Appendix D to illustrate complexities in unlinking. The square R nodes are root
nodes, and H nodes are general heap nodes. All resources in thick straight lines
and dotted lines form the memory foot print of a node replacement. The hollow
thick circular nodes – pr and cr – point to the nodes involved in replacing H1

(referenced by cr) with Hf (referenced by cf) in the structure. We may have a0

and a1 which are aliases with pr and cr respectively. They are path-aliases as
they share the same path from root to the node that they reference. Edge labels
l and r are abbreviations for the Left and Right fields of a binary search tree.
The thick dotted Hf denotes the freshly allocated heap node referenced by thick
dotted cf . The thick dotted field l is set to point to the referent of cl and the
thick dotted field r is set to point to the referent of the heap node referenced
by lm.

Hf initially (Fig. 7a) is not part of the shared structure. If it was, it would
violate the tree shape requirement imposed by the type system. This is why we
highlight it separately in thick dots—its static type would be rcuFresh. Note that
we cannot duplicate a rcuFresh variable, nor read a field of an object it points
to. This restriction localizes our reasoning about the effects of replacing with

102 I. Kuru and C. S. Gordon

a fresh node to just one fresh reference and the object it points to. Otherwise
another mechanism would be required to ensure that once a fresh reference was
linked into the heap, there were no aliases still typed as fresh—since that would
have risked linking the same reference into the heap in two locations.

The transition from the Fig. 7a to b illustrates the effects of the heap mutation
(replacing with a fresh node). The reasoning in the type system for replacing
with a fresh node is nearly the same as for unlinking an existing node, with one
exception. In replacing with a fresh node, there is no need to consider the paths of
nodes deeper in the tree than the point of mutation. In the unlinking case, those
nodes’ static paths would become invalid. In the case of replacing with a fresh
node, those descendants’ paths are preserved. Our type rule for ensuring safe
replacement (T-Replace) prevents path aliasing (representing the nonexistence
of a0 and a1 via dashed lines and circles) by negating a MayAlias query and
prevents field mapping aliasing (nonexistence of any object field from any other
context pointing to cr) via asserting (y �= o). It is important to note that objects
(H4,H2) in the field mappings of the cr whose referent is to be unlinked captured
by the heap node’s field mappings referenced by cf in rcuFresh. This is part of
enforcing locality on the heap mutation and captured by assertion N = N ′ in
the type rule (T-Replace).

Inserting a Fresh Node. T-Insert type checks heap updates that link a fresh
node into a linked data structure. Inserting a rcuFresh reference also faces some
of the aliasing complications that we have already discussed for direct unlinking
and replacing a node. Unlike the replacement case, the path to the last heap
node (the referent of o) from the root is extended by f , which risks falsifying the
paths for aliases and descendants of o. The final assumption (the implication) of
T-Insert checks for this inconsistency.

There is also another rule, T-LinkF-Null, not shown in Fig. 6, which han-
dles the case where the fields of the fresh node are not object references, but
instead all contain null (e.g., for appending to the end of a linked list or inserting
a leaf node in a tree).

Critical Sections (Referencing inside RCU Blocks). We introduce the
syntactic sugaring RCUWrite x.f as y in {C} for write-side critical sections
where the analogous syntactic sugaring can be found for read-side critical sec-
tions in Appendix E of the technical report [20].

The type system ensures unlinked and freeable references are handled linearly,
as they cannot be dropped – coerced to undef. The top-level rule ToRCUWrite
in Fig. 6 ensures unlinked references have been freed by forbidding them in the
critical section’s post-type environment. Our technical report [20] also includes
the analogous rule ToRCURead for the read critical section in Figure 33 of
Appendix E.

Preventing the reuse of rcuItr references across critical sections is subtler:
the non-critical section system is not flow-sensitive, and does not include rcuItr.
Therefore, the initial environment lacks rcuItr references, and trailing rcuItr ref-
erences may not escape.

Safe Deferred Memory Reclamation with Types 103

5 Evaluation

We have used our type system to check correct use of RCU primitives in two
RCU data structures representative of the broader space.

Figure 1 gives the type-annotated code for add and remove operations on a
linked list implementation of a bag data structure, following McKenney’s exam-
ple [25]. Our technical report [20] contains code for membership checking.

We have also type checked the most challenging part of an RCU binary search
tree, the deletion (which also contains the code for a lookup). Our implemen-
tation is a slightly simplified version of the Citrus BST [3]: their code supports
fine-grained locking for multiple writers, while ours supports only one writer by
virtue of using our single-writer primitives. For lack of space the annotated code
is only in Appendix B of the technical report [20], but here we emphasise the
important aspects our type system via showing its capabilities of typing BST
delete method, which also includes looking up for the node to be deleted.

In Fig. 8, we show the steps for deleting the heap node H1. To locate the
node H1, as shown in Fig. 8a, we first traverse the subtree T0 with references pr
and cr, where pr is the parent of cr during traversal:

pr : rcuItr(l|r)k{l|r → cr}, cr : rcuItr(l|r)k.(l|r){}
Traversal of T0 is summarized as (l|k)k. The most subtle aspect of the deletion
is the final step in the case the node H1 to remove has both children; as shown
in Fig. 8b, the code must traverse the subtree T4 to locate the next element in
collection order: the node Hs, the left-most node of H1’s right child (sc) and its
parent (lp):

lp : (l|r)k.(l|r).r.(l|r)m{l|r → sc}, sc : (l|r)k.(l|r).r.l.(l)m.l{}
where the traversal of T4 is summarized as (l|m)m.

Then Hs is copied into a new freshly-allocated node as shown in Fig. 8b, which
is then used to replace node H1 as shown in Fig. 8c: the replacement’s fields
exactly match H1’s except for the data (T-Replace via N1 = N2) as shown in
Fig. 8b, and the parent is updated to reference the replacement, unlinking H1.

At this point, as shown in Figs. 8c and d, there are two nodes with the
same value in the tree (the weak BST property of the Citrus BST [3]): the
replacement node, and what was the left-most node under H1’s right child.
This latter (original) node Hs must be unlinked as shown in Fig. 8e, which is
simpler because by being left-most the left child is null, avoiding another round
of replacement (T-UnlinkH via ∀f∈dom(N1). f �= f2 =⇒ (N1(f) = null).

Traversing T4 to find successor complicates the reasoning in an interesting
way. After the successor node Hs is found in Fig. 8b, there are two local unlinking
operations as shown in Figs. 8c and e, at different depths of the tree. This is why
the type system must keep separate abstract iteration counts, e.g., k of (l|r)k
or m of (l|r)m, for traversals in loops—these indices act like multiple cursors
into the data structure, and allow the types to carry enough information to keep
those changes separate and ensure neither introduces a cycle.

104 I. Kuru and C. S. Gordon

Fig. 8. Delete of a heap node with two children in BST [3].

To the best of our knowledge, we are the first to check such code for memory-
safe use of RCU primitives modularly, without appeal to the specific implemen-
tation of RCU primitives.

Safe Deferred Memory Reclamation with Types 105

6 Soundness

This section outlines the proof of type soundness – our full proof appears the
accompanying technical report [20]. We prove type soundness by embedding the
type system into an abstract concurrent separation logic called the Views Frame-
work [9], which when given certain information about proofs for a specific lan-
guage (primitives and primitive typing) gives back a full program logic including
choice and iteration. As with other work taking this approach [13,14], this con-
sists of several key steps explained in the following subsections, but a high-level
informal soundness argument is twofold. First, because the parameters given to
the Views framework ensure the Views logic’s Hoare triples {−}C{−} are sound,
this proves soundness of the type rules with respect to type denotations. Second,
as our denotation of types encodes the property that the post-environment of
any type rule accurately characterizes which memory is linked vs. unlinked, etc.,
and the global invariants ensure all allocated heap memory is reachable from
the root or from some thread’s stack, this entails that our type system prevents
memory leaks.

6.1 Proof

This section provides more details on how the Views Framework [9] is used to
prove soundness, giving the major parameters to the framework and outlining
global invariants and key lemmas.

Logical State. Section 3 defined what Views calls atomic actions (the primitive
operations) and their semantics on runtime machine states. The Views Frame-
work uses a separate notion of instrumented (logical) state over which the logic
is built, related by a concretization function �−� taking an instrumented state
to the machine states of Sect. 3. Most often—including in our proof—the logical
state adds useful auxiliary state to the machine state, and the concretization is
simply projection. Thus we define our logical states LState as:

– A machine state, σ = (s, h, l, rt, R,B)
– An observation map, O, of type Loc → P(obs)
– Undefined variable map, U , of type P(Var × TID)
– Set of threads, T , of type P(TIDS)
– A to-free map (or free list), F , of type Loc ⇀ P(TID)

The thread ID set T includes the thread ID of all running threads. The free map
F tracks which reader threads may hold references to each location. It is not
required for execution of code, and for validating an implementation could be
ignored, but we use it later with our type system to help prove that memory
deallocation is safe. The (per-thread) variables in the undefined variable map U
are those that should not be accessed (e.g., dangling pointers).

The remaining component, the observation map O, requires some further
explanation. Each memory allocation/object can be observed in one of the fol-
lowing states by a variety of threads, depending on how it was used.

obs := iterator tid | unlinked | fresh | freeable | root

106 I. Kuru and C. S. Gordon

An object can be observed as part of the structure (iterator), removed but
possibly accessible to other threads, freshly allocated, safe to deallocate, or the
root of the structure.

Invariants of RCU Views and Denotations of Types. Next, we aim to con-
vey the intuition behind the predicate WellFormed which enforces global invari-
ants on logical states, and how it interacts with the denotations of types (Fig. 9)
in key ways.

WellFormed is the conjunction of a number of more specific invariants, which
we outline here. For full details, see Appendix A.2 of the technical report [20].

The Invariant for Read Traversal. Reader threads access valid heap locations
even during the grace period. The validity of their heap accesses ensured by
the observations they make over the heap locations—which can only be iterator
as they can only use local rcuItr references. To this end, a Readers-Iterators-Only
invariant asserts that reader threads can only observe a heap location as iterator.

Invariants on Grace-Period. Our logical state includes a “free list” auxiliary
state tracking which readers are still accessing each unlinked node during grace
periods. This must be consistent with the bounding thread set B in the machine
state, and this consistency is asserted by the Readers-In-Free-List invariant. This
is essentially tracking which readers are being “shown grace” for each location.
The Iterators-Free-List invariant complements this by asserting all readers with
such observations on unlinked nodes are in the bounding thread set.

The writer thread can refer to a heap location in the free list with a local
reference either in type freeable or unlinked. Once the writer unlinks a heap
node, it first observes the heap node as unlinked then freeable. The denotation of
freeable is only valid following a grace period: it asserts no readers hold aliases
of the freeable reference. The denotation of unlinked permits the either the same
(perhaps no readers overlapped) or that it is in the to-free list.

Invariants on Safe Traversal Against Unlinking. The write-side critical section
must guarantee that no updates to the heap cause invalid memory accesses. The
Writer-Unlink invariant asserts that a heap location observed as iterator by the
writer thread cannot be observed differently by other threads. The denotation of
the writer thread’s rcuItr reference, �rcuItr ρN �tid, asserts that following a path
from the root compatible with ρ reaches the referent, and all are observed as
iterator.

The denotation of a reader thread’s rcuItr reference, �rcuItr�tid and the invari-
ants Readers-Iterator-Only, Iterators-Free-List and Readers-In-Free-List all together
assert that a reader thread (which can also be a bounding thread) can view an
unlinked heap location (which can be in the free list) only as iterator. At the
same time, it is essential that reader threads arriving after a node is unlinked
cannot access it. The invariants Unlinked-Reachability and Free-List-Reachability
ensure that any unlinked nodes are reachable only from other unlinked nodes,
and never from the root.

Safe Deferred Memory Reclamation with Types 107

Fig. 9. Type environments

Invariants on Safe Traversal Against Inserting/Replacing. A writer replacing an
existing node with a fresh one or inserting a single fresh node assumes the fresh
(before insertion) node is unreachable to readers before it is published/linked.
The Fresh-Writes invariant asserts that a fresh heap location can only be allocated
and referenced by the writer thread. The relation between a freshly allocated
heap and the rest of the heap is established by the Fresh-Reachable invariant,
which requires that there exists no heap node pointing to the freshly allocated
one. This invariant supports the preservation of the tree structure. The Fresh-
Not-Reader invariant supports the safe traversal of the reader threads via assert-
ing that they cannot observe a heap location as fresh. Moreover, the denotation
of the rcuFresh type, �rcuFreshN �tid, enforces that fields in N point to valid heap
locations (observed as iterator by the writer thread).

Invariants on Tree Structure. Our invariants enforce the tree structure heap
layouts for data structures. The Unique-Reachable invariant asserts that every
heap location reachable from root can only be reached with following an unique
path. To preserve the tree structure, Unique-Root enforces unreachability of the
root from any heap location that is reachable from root itself.

Type Environments. Assertions in the Views logic are (almost) sets of the
logical states that satisfy a validity predicate WellFormed, outlined above:

M def
= {m ∈ (MState × O × U × T × F) | WellFormed(m)}

Every type environment represents a set of possible views (WellFormed logical
states) consistent with the types in the environment. We make this precise with
a denotation function

�−�_ : TypeEnv → TID → P(M)

108 I. Kuru and C. S. Gordon

Fig. 10. Composition (•) and Thread Interference Relation (R0)

that yields the set of states corresponding to a given type environment. This is
defined as the intersection of individual variables’ types as in Fig. 9.

Individual variables’ denotations are extended to context denotations slightly
differently depending on whether the environment is a reader or writer thread
context: writer threads own the global lock, while readers do not:

– For read-side as �x1 : T1, . . . xn : Tn�tid,R = �x1 : T1�tid ∩ . . . ∩ �xn : Tn�tid ∩
�R�tid where �R�tid = {(s, h, l, rt, R,B), O, U, T, F | tid ∈ R}

– For write-side as �x1 : T1, . . . xn : Tn�tid,M = �x1 : T1�tid ∩ . . . ∩ �xn : Tn�tid ∩
�M�tid where �M�tid = {(s, h, l, rt, R,B), O, U, T, F | tid = l}

Composition and Interference. To support framing (weakening), the Views
Framework requires that views form a partial commutative monoid under an
operation • : M −→ M −→ M, provided as a parameter to the framework. The
framework also requires an interference relation R ⊆ M × M between views
to reason about local updates to one view preserving validity of adjacent views
(akin to the small-footprint property of separation logic). Figure 10 defines our
composition operator and the core interference relation R0—the actual interfer-
ence between views (between threads, or between a local action and framed-away
state) is the reflexive transitive closure of R0. Composition is mostly straightfor-
ward point-wise union (threads’ views may overlap) of each component. Inter-
ference bounds the interference writers and readers may inflict on each other.
Notably, if a view contains the writer thread, other threads may not modify the
shared portion of the heap, or release the writer lock. Other aspects of interfer-
ence are natural restrictions like that threads may not modify each others’ local
variables. WellFormed states are closed under both composition (with another
WellFormed state) and interference (R relates WellFormed states only to other
WellFormed states).

Safe Deferred Memory Reclamation with Types 109

Fig. 11. Encoding branch conditions with assume(b)

Stable Environment and Views Shift. The framing/weakening type rule will
be translated to a use of the frame rule in the Views Framework’s logic. There
separating conjunction is simply the existence of two composable instrumented
states:

m ∈ P ∗ Q
def
= ∃m′.∃m′′.m′ ∈ P ∧ m′′ ∈ Q ∧ m ∈ m′ • m′′

In order to validate the frame rule in the Views Framework’s logic, the assertions
in its logic—sets of well-formed instrumented states—must be restricted to sets
of logical states that are stable with respect to expected interference from other
threads or contexts, and interference must be compatible in some way with
separating conjunction. Thus a View—the actual base assertions in the Views
logic—are then:

ViewM
def
= {M ∈ P(M)|R(M) ⊆ M}

Additionally, interference must distribute over composition:

∀m1,m2,m. (m1 • m2)Rm =⇒ ∃m′
1m

′
2.m1Rm′

1 ∧ m2Rm′
2 ∧ m ∈ m′

1 • m′
2

Because we use this induced Views logic to prove soundness of our type
system by translation, we must ensure any type environment denotes a valid
view:

Lemma 1 (Stable Environment Denotation-M). For any closed environ-
ment Γ (i.e., ∀x ∈ dom(Γ). ,FV(Γ (x)) ⊆ dom(Γ)): R(�Γ �M,tid) ⊆ �Γ �M,tid.
Alternatively, we say that environment denotation is stable (closed under R).

Proof. In Appendix A.1 Lemma 7 of the technical report [20].

We elide the statement of the analogous result for the read-side critical section,
available in Appendix A.1 of the technical report.

With this setup done, we can state the connection between the Views Frame-
work logic induced by earlier parameters, and the type system from Sect. 4. The
induced Views logic has a familiar notion of Hoare triple—{p}C{q} where p and
q are elements of ViewM—with the usual rules for non-deterministic choice, non-
deterministic iteration, sequential composition, and parallel composition, sound
given the proof obligations just described above. It is parameterized by a rule
for atomic commands that requires a specification of the triples for primitive
operations, and their soundness (an obligation we must prove). This can then be
used to prove that every typing derivation embeds to a valid derivation in the

110 I. Kuru and C. S. Gordon

Views Logic, roughly ∀Γ,C, Γ ′, tid . Γ � C � Γ ′ ⇒ {�Γ �tid}�C�tid{�Γ ′�tid} once
for the writer type system, once for the readers.

There are two remaining subtleties to address. First, commands C also
require translation: the Views Framework has only non-deterministic branches
and loops, so the standard versions from our core language must be encoded.
The approach to this is based on a standard idea in verification, which we show
here for conditionals as shown in Fig. 11. assume(b) is a standard idea in verifica-
tion semantics [4,30], which “does nothing” (freezes) if the condition b is false, so
its postcondition in the Views logic can reflect the truth of b. assume in Fig. 11
adapts this for the Views Framework as in other Views-based proofs [13,14],
specifying sets of machine states as a predicate. We write boolean expressions
as shorthand for the set of machine states making that expression true. With
this setup done, the top-level soundness claim then requires proving – once for
the reader type system, once for the writer type system – that every valid
source typing derivation corresponds to a valid derivation in the Views logic:
∀Γ,C, Γ ′, Γ �M C � Γ ′ ⇒ {�Γ �} ↓ C ↓ {�Γ ′�}.

Second, we have not addressed a way to encode subtyping. One might hope
this corresponds to a kind of implication, and therefore subtyping corresponds to
consequence. Indeed, this is how we (and prior work [13,14]) address subtyping
in a Views-based proof. Views defines the notion of view shift2 (�) as a way to
reinterpret a set of instrumented states as a new (compatible) set of instrumented
states, offering a kind of logical consequence, used in a rule of consequence in
the Views logic:

p � q
def
= ∀m ∈ M. �p ∗ {m}� ⊆ �q ∗ R({m})�

We are now finally ready to prove the key lemmas of the soundness proof,
relating subtying to view shifts, proving soundness of the primitive actions, and
finally for the full type system. These proofs occur once for the writer type
system, and once for the reader; we show here only the (more complex) writer
obligations:

Lemma 2 (Axiom of Soundness for Atomic Commands). For each
axiom, Γ1 �M α � Γ2, we show ∀m. �α�(��Γ1�tid ∗ {m}�) ⊆ ��Γ2�tid ∗ R({m})�
Proof. By case analysis on α. Details in Appendix A.1 of the technical report [20].

Lemma 3 (Context-SubTyping-M). Γ ≺: Γ ′ =⇒ �Γ �M,tid � �Γ ′�M,tid

Proof. Induction on the subtyping derivation, then inducting on the single-type
subtype relation for the first variable in the non-empty context case.

Lemma 4 (Views Embedding for Write-Side).

∀Γ,C, Γ ′, t . Γ �M C � Γ ′ ⇒ �Γ �t ∩ �M�t � �C�t � �Γ ′�t ∩ �M�t

2 This is the same notion present in later program logics like Iris [18], though more
recent variants are more powerful.

Safe Deferred Memory Reclamation with Types 111

Proof. By induction on the typing derivation, appealing to Lemma 2 for primi-
tives, Lemma 3 and consequence for subtyping, and otherwise appealing to struc-
tural rules of the Views logic and inductive hypotheses. Full details in Appendix
A.1 of the technical report [20].

The corresponding obligations and proofs for the read-side critical section
type system are similar in statement and proof approach, just for the read-side
type judgments and environment denotations.

7 Discussion and Related Work

Our type system builds on a great deal of related work on RCU implementations
and models; and general concurrent program verification. Due to space limit,
this section captures only discussions on program logics, modeling RCU and
memory models, but our technical report [20] includes detailed discussions on
model-checking [8,17,21], language oriented approaches [6,16,16] and realization
of our semantics in an implementation as well.

Modeling RCU and Memory Models. Alglave et al. [2] propose a mem-
ory model to be assumed by the platform-independent parts of the Linux kernel,
regardless of the underlying hardware’s memory model. As part of this, they give
the first formalization of what it means for an RCU implementation to be correct
(previously this was difficult to state, as the guarantees in principle could vary by
underlying CPU architecture). Essentially, reader critical sections must not span
grace periods. They prove by hand that the Linux kernel RCU implementation [1]
satisfies this property. McKenney has defined fundamental requirements of RCU
implementations [26]; our model in Sect. 3 is a valid RCU implementation accord-
ing to those requirements (assuming sequential consistency) aside from one per-
formance optimization, Read-to-Write Upgrade, which is important in practice
but not memory-safety centric – see the technical report [20] for detailed discus-
sion on satisfying RCU requirements. To the best of our knowledge, ours is the
first abstract operational model for a Linux kernel-style RCU implementation –
others are implementation-specific [22] or axiomatic like Alglave et al.’s.

Tassarotti et al. model a well-known way of implementing RCU synchro-
nization without hurting readers’ performance—Quiescent State Based Reclama-
tion (QSBR) [8]—where synchronization between the writer thread and reader
threads occurs via per-thread counters. Tassarotti et al. [32] uses a protocol based
program logic based on separation and ghost variables called GPS [34] to verify
a user-level implementation of RCU with a singly linked list client under release-
acquire semantics, which is a weaker memory model than sequential-consistency.
Despite the weaker model, the protocol that they enforce on their RCU primi-
tives is nearly the same what our type system requires. The reads and writes to
per thread QSBR structures are similar to our more abstract updates to reader
and bounding sets. Therefore, we anticipate it would be possible to extend our
type system in the future for similar weak memory models.

112 I. Kuru and C. S. Gordon

Program Logics. Fu et al. [12] extend Rely-Guarantee and Separation-
Logic [10,11,35] with the past-tense temporal operator to eliminate the need for
using a history variable and lift the standard separation conjunction to assert
over on execution histories. Gotsman et al. [15] take assertions from temporal
logic to separation logic [35] to capture the essence of epoch-based memory recla-
mation algorithms and have a simpler proof than what Fu et al. have [12] for
Michael’s non-blocking stack [29] implementation under a sequentially consistent
memory model.

Tassarotti et al. [32] use abstract-predicates – e.g. WriterSafe – that are spe-
cialized to the singly-linked structure in their evaluation. This means reusing
their ideas for another structure, such as a binary search tree, would require
revising many of their invariants. By contrast, our types carry similar informa-
tion (our denotations are similar to their definitions), but are reusable across at
least singly-linked and tree data structures (Sect. 5). Their proofs of a linked list
also require managing assertions about RCU implementation resources, while
these are effectively hidden in the type denotations in our system. On the other
hand, their proofs ensure full functional correctness. Meyer and Wolff [28] make
a compelling argument that separating memory safety from correctness if prof-
itable, and we provide such a decoupled memory safety argument.

8 Conclusions

We presented the first type system that ensures code uses RCU memory man-
agement safely, and which is significantly simpler than full-blown verification
logics. To this end, we gave the first general operational model for RCU-based
memory management. Based on our suitable abstractions for RCU in the oper-
ational semantics we are the first showing that decoupling the memory-safety
proofs of RCU clients from the underlying reclamation model is possible. Meyer
et al. [28] took similar approach for decoupling the correctness verification of
the data structures from the underlying reclamation model under the assump-
tion of the memory-safety for the data structures. We demonstrated the appli-
cability/reusability of our types on two examples: a linked-list based bag [25]
and a binary search tree [3]. To our best knowledge, we are the first presenting
the memory-safety proof for a tree client of RCU. We managed to prove type
soundness by embedding the type system into an abstract concurrent separation
logic called the Views Framework [9] and encode many RCU properties as either
type-denotations or global invariants over abstract RCU state. By doing this,
we managed to discharge these invariants once as a part of soundness proof and
did not need to prove them for each different client.

Acknowledgements. We are grateful to Matthew Parkinson for guidance and pro-
ductive discussions on the early phase of this project. We also thank to Nik Sultana
and Klaus V. Gleissenthall for their helpful comments and suggestions for improving
the paper.

Safe Deferred Memory Reclamation with Types 113

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_9

2. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.: Frightening
small children and disconcerting grown-ups: concurrency in the Linux kernel.
In: Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2018,
pp. 405–418. ACM, New York (2018). https://doi.org/10.1145/3173162.3177156.
http://doi.acm.org/10.1145/3173162.3177156

3. Arbel, M., Attiya, H.: Concurrent updates with RCU: search tree as an example.
In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Com-
puting, PODC 2014, pp. 196–205. ACM, New York (2014). https://doi.org/10.
1145/2611462.2611471. http://doi.acm.org/10.1145/2611462.2611471

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

5. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address spaces using RCU
balanced trees. In: Proceedings of the 17th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2012, London, UK, 3–7 March 2012, pp. 199–210 (2012). https://doi.org/10.1145/
2150976.2150998. http://doi.acm.org/10.1145/2150976.2150998

6. Cooper, T., Walpole, J.: Relativistic programming in Haskell using types to
enforce a critical section discipline (2015). http://web.cecs.pdx.edu/~walpole/
papers/haskell2015.pdf

7. Desnoyers, M., McKenney, P.E., Dagenais, M.R.: Multi-core systems
modeling forformal verification of parallel algorithms. SIGOPS Oper.
Syst. Rev. 47(2), 51–65 (2013). https://doi.org/10.1145/2506164.2506174.
http://doi.acm.org/10.1145/2506164.2506174

8. Desnoyers, M., McKenney, P.E., Stern, A., Walpole, J.: User-level imple-
mentations of read-copy update. IEEE Trans. Parallel Distrib. Syst. (2009).
/static/publications/desnoyers-ieee-urcu-submitted.pdf

9. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2013, Rome, Italy, 23–25 January, 2013, pp. 287–300 (2013). https://doi.org/10.
1145/2429069.2429104. http://doi.acm.org/10.1145/2429069.2429104

10. Feng, X.: Local rely-guarantee reasoning. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, pp. 315–327. ACM, New York (2009). https://doi.org/10.1145/1480881.
1480922. http://doi.acm.org/10.1145/1480881.1480922

11. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation
logic and assume-guarantee reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 173–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71316-6_13

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156
http://doi.acm.org/10.1145/3173162.3177156
https://doi.org/10.1145/2611462.2611471
https://doi.org/10.1145/2611462.2611471
http://doi.acm.org/10.1145/2611462.2611471
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1145/2150976.2150998
http://doi.acm.org/10.1145/2150976.2150998
http://web.cecs.pdx.edu/~walpole/papers/haskell2015.pdf
http://web.cecs.pdx.edu/~walpole/papers/haskell2015.pdf
https://doi.org/10.1145/2506164.2506174
http://doi.acm.org/10.1145/2506164.2506174
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
http://doi.acm.org/10.1145/2429069.2429104
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1480881.1480922
http://doi.acm.org/10.1145/1480881.1480922
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-540-71316-6_13

114 I. Kuru and C. S. Gordon

12. Fu, M., Li, Y., Feng, X., Shao, Z., Zhang, Y.: Reasoning about optimistic concur-
rency using a program logic for history. In: Gastin, P., Laroussinie, F. (eds.) CON-
CUR 2010. LNCS, vol. 6269, pp. 388–402. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15375-4_27

13. Gordon, C.S., Ernst, M.D., Grossman, D., Parkinson, M.J.: Verifying invariants of
lock-free data structures with rely-guarantee and refinement types. ACM Trans.
Program. Lang. Syst. (TOPLAS) 39(3) (2017). https://doi.org/10.1145/3064850.
http://doi.acm.org/10.1145/3064850

14. Gordon, C.S., Parkinson, M.J., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness
and reference immutability for safe parallelism. In: Proceedings of the 2012 ACM
International Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2012), Tucson, AZ, USA, October 2012. https://doi.
org/10.1145/2384616.2384619. http://dl.acm.org/citation.cfm?id=2384619

15. Gotsman, A., Rinetzky, N., Yang, H.: Verifying concurrent memory reclamation
algorithms with grace. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 249–269. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37036-6_15

16. Howard, P.W., Walpole, J.: A relativistic enhancement to software transactional
memory. In: Proceedings of the 3rd USENIX Conference on Hot Topic in Paral-
lelism, HotPar 2011, p. 15. USENIX Association, Berkeley (2011). http://dl.acm.
org/citation.cfm?id=2001252.2001267

17. Kokologiannakis, M., Sagonas, K.: Stateless model checking of the Linux kernel’s
hierarchical read-copy-update (tree RCU). In: Proceedings of the 24th ACM SIG-
SOFT International SPIN Symposium on Model Checking of Software, SPIN 2017,
pp. 172–181. ACM, New York (2017). https://doi.org/10.1145/3092282.3092287.
http://doi.acm.org/10.1145/3092282.3092287

18. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1_26

19. Kung, H.T., Lehman, P.L.: Concurrent manipulation of binary search trees.
ACMTrans. Database Syst. 5(3), 354–382 (1980). https://doi.org/10.1145/320613.
320619. http://doi.acm.org/10.1145/320613.320619

20. Kuru, I., Gordon, C.S.: Safe deferred memory reclamation with types. CoRR
abs/1811.11853 (2018). http://arxiv.org/abs/1811.11853

21. Liang, L., McKenney, P.E., Kroening, D., Melham, T.: Verification of the tree-
based hierarchical read-copy update in the Linux kernel. CoRR abs/1610.03052
(2016). http://arxiv.org/abs/1610.03052

22. Mandrykin, M.U., Khoroshilov, A.V.: Towards deductive verification of C programs
with shared data. Program. Comput. Softw. 42(5), 324–332 (2016). https://doi.
org/10.1134/S0361768816050054

23. Mckenney, P.E.: Exploiting deferred destruction: an analysis of read-copy-update
techniques in operating system kernels. Ph.D. thesis, Oregon Health & Science
University (2004). aAI3139819

24. McKenney, P.E.: N4037: non-transactional implementation of atomic tree move,
May 2014. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.
pdf

25. McKenney, P.E.: Some examples of kernel-hacker informal correctness reason-
ing. Technical report paulmck.2015.06.17a (2015). http://www2.rdrop.com/users/
paulmck/techreports/IntroRCU.2015.06.17a.pdf

https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1145/3064850
http://doi.acm.org/10.1145/3064850
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
http://dl.acm.org/citation.cfm?id=2384619
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1007/978-3-642-37036-6_15
http://dl.acm.org/citation.cfm?id=2001252.2001267
http://dl.acm.org/citation.cfm?id=2001252.2001267
https://doi.org/10.1145/3092282.3092287
http://doi.acm.org/10.1145/3092282.3092287
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/320613.320619
https://doi.org/10.1145/320613.320619
http://doi.acm.org/10.1145/320613.320619
http://arxiv.org/abs/1811.11853
http://arxiv.org/abs/1610.03052
https://doi.org/10.1134/S0361768816050054
https://doi.org/10.1134/S0361768816050054
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
http://www2.rdrop.com/users/paulmck/techreports/IntroRCU.2015.06.17a.pdf
http://www2.rdrop.com/users/paulmck/techreports/IntroRCU.2015.06.17a.pdf

Safe Deferred Memory Reclamation with Types 115

26. Mckenney, P.E.: A tour through RCU’s requirements (2017). https://www.kernel.
org/doc/Documentation/RCU/Design/Requirements/Requirements.html

27. Mckenney, P.E., et al.: Read-copy update. In: Ottawa Linux Symposium,
pp. 338–367 (2001)

28. Meyer, R., Wolff, S.: Decoupling lock-free data structures from mem-
ory reclamation for static analysis. PACMPL 3(POPL), 58:1–58:31 (2019).
https://dl.acm.org/citation.cfm?id=3290371

29. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004). https://doi.org/10.
1109/TPDS.2004.8

30. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

31. McKenney, P.E., Mathieu Desnoyers, L.J., Triplett, J.: The RCU-barrier
menagerie, November 2016. https://lwn.net/Articles/573497/

32. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for
weak memory. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2015, pp. 110–120. ACM,
New York (2015). https://doi.org/10.1145/2737924.2737992. http://doi.acm.org/
10.1145/2737924.2737992

33. Triplett, J., McKenney, P.E., Walpole, J.: Resizable, scalable, concurrent hash
tables via relativistic programming. In: Proceedings of the 2011 USENIX Confer-
ence on USENIX Annual Technical Conference, USENIXATC 2011, p. 11. USENIX
Association, Berkeley (2011). http://dl.acm.org/citation.cfm?id=2002181.2002192

34. Turon, A., Vafeiadis, V., Dreyer, D.: Gps: Navigating weak memory with ghosts,
protocols, and separation. In: Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2014, pp. 691–707. ACM, New York (2014). https://doi.org/10.1145/
2660193.2660243. http://doi.acm.org/10.1145/2660193.2660243

35. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_18

https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://dl.acm.org/citation.cfm?id=3290371
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://lwn.net/Articles/573497/
https://doi.org/10.1145/2737924.2737992
http://doi.acm.org/10.1145/2737924.2737992
http://doi.acm.org/10.1145/2737924.2737992
http://dl.acm.org/citation.cfm?id=2002181.2002192
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243
http://doi.acm.org/10.1145/2660193.2660243
https://doi.org/10.1007/978-3-540-74407-8_18

116 I. Kuru and C. S. Gordon

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Language Design

Codata in Action

Paul Downen1, Zachary Sullivan1(B), Zena M. Ariola1,
and Simon Peyton Jones2

1 University of Oregon, Eugene, USA
{pdownen,zsulliva,ariola}@cs.uoregon.edu

2 Microsoft Research, Cambridge, UK
simonpj@microsoft.com

Abstract. Computer scientists are well-versed in dealing with data
structures. The same cannot be said about their dual: codata. Even
though codata is pervasive in category theory, universal algebra, and
logic, the use of codata for programming has been mainly relegated
to representing infinite objects and processes. Our goal is to demon-
strate the benefits of codata as a general-purpose programming abstrac-
tion independent of any specific language: eager or lazy, statically or
dynamically typed, and functional or object-oriented. While codata
is not featured in many programming languages today, we show how
codata can be easily adopted and implemented by offering simple inter-
compilation techniques between data and codata. We believe codata is a
common ground between the functional and object-oriented paradigms;
ultimately, we hope to utilize the Curry-Howard isomorphism to further
bridge the gap.

Keywords: Codata · Lambda-calculi · Encodings · Curry-Howard ·
Function programming · Object-oriented programming

1 Introduction

Functional programming enjoys a beautiful connection to logic, known as the
Curry-Howard correspondence, or proofs as programs principle [22]; results and
notions about a language are translated to those about proofs, and vice-versa
[17]. In addition to expressing computation as proof transformations, this connec-
tion is also fruitful for education: everybody would understand that the assump-
tion “an x is zero” does not mean “every x is zero,” which in turn explains the
subtle typing rules for polymorphism in programs. The typing rules for modules
are even more cryptic, but knowing that they correspond exactly to the rules for
existential quantification certainly gives us more confidence that they are cor-
rect! While not everything useful must have a Curry-Howard correspondence, we
believe finding these delightful coincidences where the same idea is rediscovered
many times in both logic and programming can only be beneficial [42].

P. Downen and Z. M. Ariola—This work is supported by the National Science Foun-
dation under grants CCF-1423617 and CCF-1719158.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 119–146, 2019.
https://doi.org/10.1007/978-3-030-17184-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_5

120 P. Downen et al.

One such instance involves codata. In contrast with the mystique it has as
a programming construct, codata is pervasive in mathematics and logic, where
it arises through the lens of duality. The most visual way to view the duality
is in the categorical diagrams of sums versus products—the defining arrows go
into a sum and come out of a product—and in algebras versus coalgebras [25].
In proof theory, codata has had an impact on theorem proving [5] and on the
foundation of computation via polarity [29,45]. Polarity recognizes which of two
dialogic actors speaks first: the proponent (who seeks to verify or prove a fact)
or the opponent (who seeks to refute the fact).

The two-sided, interactive view appears all over the study of programming
languages, where data is concerned about how values are constructed and codata
is concerned about how they are used [15]. Sometimes, this perspective is read-
ily apparent, like with session types [7] which distinguish internal choice (a
provider’s decision) versus external choice (a client’s decision). But other occur-
rences are more obscure, like in the semantics of PCF (i.e. the call-by-name
λ-calculus with numbers and general recursion). In PCF, the result of evaluat-
ing a program must be of a ground type in order to respect the laws of functions
(namely η) [32]. This is not due to differences between ground types versus
“higher types,” but to the fact that data types are directly observable, whereas
codata types are only indirectly observable via their interface.

Clearly codata has merit in theoretical pursuits; we think it has merit in
practical ones as well. The main application of codata so far has been for repre-
senting infinite objects and coinductive proofs in proof assistants [1,39]. However,
we believe that codata also makes for an important general-purpose program-
ming feature. Codata is a bridge between the functional and object-oriented
paradigms; a common denominator between the two very different approaches
to programming. On one hand, functional languages are typically rich in data
types—as many as the programmer wants to define via data declarations—but
has a paucity of codata types (usually just function types). On the other hand,
object-oriented languages are rich in codata types—programmer-defined in terms
of classes or interfaces—but a paucity of data types (usually just primitives like
booleans and numbers). We illustrate this point with a collection of example
applications that arise in both styles of programming, including common encod-
ings, demand-driven programming, abstraction, and Hoare-style reasoning.

While codata types can be seen in the shadows behind many examples of
programming—often hand-compiled away by the programmer—not many func-
tional languages have native support for them. To this end, we demonstrate a
pair of simple compilation techniques between a typical core functional language
(with data types) and one with codata. One direction—based on the well-known
visitor pattern from object-oriented programming—simultaneously shows how
to extend an object-oriented language with data types (as is done by Scala) and
how to compile core functional programs to a more object-oriented setting (e.g.
targeting a backend like JavaScript or the JVM). The other shows how to add
native codata types to functional languages by reducing them to commonly-
supported data types and how to compile a “pure” object-oriented style of

Codata in Action 121

programming to a functional setting. Both of these techniques are macro-
expansions that are not specific to any particular language, as they work with
both statically and dynamically typed disciplines, and they preserve the well-
typed status of programs without increasing the complexity of the types involved.

Our claim is that codata is a universal programming feature that has been
thus-far missing or diminished in today’s functional programming languages.
This is too bad, since codata is not just a feature invented for the convenience
of programmers, but a persistent idea that has sprung up over and over from
the study of mathematics, logic, and computation. We aim to demystify codata,
and en route, bridge the wide gulf between the functional and object-oriented
paradigms. Fortunately, it is easy for most mainstream languages to add or
bring out codata today without a radical change to their implementation. But
ultimately, we believe that the languages of the future should incorporate both
data and codata outright. To that end, our contributions are to:

– (Section 2) Illustrate the benefits of codata in both theory and practice: (1) a
decomposition of well-known λ-calculus encodings by inverting the priority
of construction and destruction; (2) a first-class abstraction mechanism; (3) a
method of demand-driven programming; and (4) a static type system for
representing Hoare-style invariants on resource use.

– (Section 3) Provide simple transformations for compiling data to codata,
and vice-versa, which are appropriate for languages with different evaluation
strategies (eager or lazy) and type discipline (static or dynamic).

– (Section 4) Demonstrate various implementations of codata for general-
purpose programming in two ways: (1) an extension of Haskell with codata;
and (2) a prototype language that compiles to several languages of different
evaluation strategies, type disciplines, and paradigms.

2 The Many Faces of Codata

Codata can be used to solve other problems in programming besides representing
infinite objects and processes like streams and servers [1,39]. We start by present-
ing codata as a merger between theory and practice, whereby encodings of data
types in an object-oriented style turn out to be a useful intermediate step in the
usual encodings of data in the λ-calculus. Demand-driven programming is con-
sidered a virtue of lazy languages, but codata is a language-independent tool for
capturing this programming idiom. Codata exactly captures the essence of pro-
cedural abstraction, as achieved with λ-abstractions and objects, with a logically
founded formalism [16]. Specifying pre- and post-conditions of protocols, which is
available in some object systems [14], is straightforward with indexed, recursive
codata types, i.e. objects with guarded methods [40].

2.1 Church Encodings and Object-Oriented Programming

Crucial information structures, like booleans, numbers, and lists can be encoded
in the untyped λ-calculus (a.k.a. Church encodings) or in the typed polymorphic

122 P. Downen et al.

λ-calculus (a.k.a. Böhm-Berarducci [9] encodings). It is quite remarkable that
data structures can be simulated with just first-class, higher-order functions.
The downside is that these encodings can be obtuse at first blush, and have the
effect of obscuring the original program when everything is written with just λs
and application. For example, the λ-representation of the boolean value True,
the first projection out of a pair, and the constant function K are all expressed
as λx.λy.x, which is not that immediately evocative of its multi-purpose nature.

Object-oriented programmers have also been representing data structures in
terms of objects. This is especially visible in the Smalltalk lineage of languages
like Scala, wherein an objective is that everything that can be an object is. As
it turns out, the object-oriented features needed to perform this representation
technique are exactly those of codata. That is because Church-style encodings
and object-oriented representations of data all involve switching focus from the
way values are built (i.e. introduced) to the way they are used (i.e. eliminated).

Consider the representation of Boolean values as an algebraic data type.
There may be many ways to use a Boolean value. However, it turns out that there
is a most-general eliminator of Booleans: the expression if b then x else y.
This basic construct can be used to define all the other uses for Bools. Instead of
focusing on the constructors True and False let’s then focus on this most-general
form of Bool elimination; this is the essence of the encodings of booleans in terms
of objects. In other words, booleans can be thought of as objects that implement
a single method: If. So that the expression if b then x else y would instead
be written as (b.If x y). We then define the true and false values in terms of
their reaction to If:

true = {If x y → x} false = {If x y → y}

Or alternatively, we can write the same definition using copatterns, popularized
for use in the functional paradigm by Abel et al. [1] by generalizing the usual
pattern-based definition of functions by multiple clauses, as:

true.If x y = x false.If x y = y

This works just like equational definitions by pattern-matching in functional
languages: the expression to the left of the equals sign is the same as the expres-
sion to the right (for any binding of x and y). Either way, the net result is that
(true.If "yes" "no") is "yes", whereas (false.If "yes" "no") is "no".

This covers the object-based presentation of booleans in a dynamically typed
language, but how do static types come into play? In order to give a type descrip-
tion of the above boolean objects, we can use the following interface, analogous
to a Java interface:

codata Bool where If : Bool → (forall a. a → a → a)

This declaration is dual to a data declaration in a functional language: data
declarations define the types of constructors (which produce values of the data
type) and codata declarations define the types of destructors (which consume
values of the codata type) like If. The reason that the If observation introduces
its own polymorphic type a is because an if-then-else might return any type of

Codata in Action 123

result (as long as both branches agree on the type). That way, both the two
objects true and false above are values of the codata type Bool.

At this point, the representation of booleans as codata looks remarkably close
to the encodings of booleans in the λ-calculus! Indeed, the only difference is that
in the λ-calculus we “anonymize” booleans. Since they reply to only one request,
that request name can be dropped. We then arrive at the familiar encodings in
the polymorphic λ-calculus:

Bool = ∀a.a → a → a true = Λa.λx:a.λy:a.x false = Λa.λx:a.λy:a.y

In addition, the invocation of the If method just becomes ordinary function
application; b.If x y of type a is written as b a x y. Otherwise, the definition
and behavior of booleans as either codata types or as polymorphic functions are
the same.

This style of inverting the definition of data types—either into specific codata
types or into polymorphic functions—is also related to another concept in object-
oriented programming. First, consider how a functional programmer would rep-
resent a binary Tree (with integer-labeled leaves) and a walk function that
traverses a tree by converting the labels on all leaves and combining the results
of sub-trees:

data Tree where Leaf : Int → Tree

Branch : Tree → Tree → Tree

walk : (Int → a) → (a → a → a) → Tree → a

walk b f (Leaf x) = b x

walk b f (Branch l r) = f (walk b f l) (walk b f r)

The above code relies on pattern-matching on values of the Tree data type and
higher-order functions b and f for accumulating the result. Now, how might an
object-oriented programmer tackle the problem of traversing a tree-like struc-
ture? The visitor pattern! With this pattern, the programmer specifies a “visitor”
object which contains knowledge of what to do at every node of the tree, and
tree objects must be able to accept a visitor with a method that will recursively
walk down each subcomponent of the tree. In a pure style—which returns an
accumulated result directly instead of using mutable state as a side channel for
results—the visitor pattern for a simple binary tree interface will look like:
codata TreeVisitor a where

VisitLeaf : TreeVisitor a → (Int → a)

VisitBranch : TreeVisitor a → (a → a → a)

codata Tree where

Walk : Tree → (forall a. TreeVisitor a → a)

leaf : Int → Tree

leaf x = {Walk v → v.VisitLeaf x}

branch : Tree → Tree → Tree

branch l r = {Walk v → v.VisitBranch (l.Walk v) (r.Walk v)}

124 P. Downen et al.

And again, we can write this same code more elegantly, without the need to
break apart the two arguments across the equal sign with a manual abstraction,
using copatterns as:

(leaf x).Walk v = v.VisitLeaf x

(branch l r).Walk v = v.VisitBranch (l.Walk v) (r.Walk v)

Notice how the above code is just an object-oriented presentation of the following
encoding of binary trees into the polymorphic λ-calculus:

Tree = ∀a.TreeVisitor a → a TreeVisitor a = (Int → a) × (a → a → a)
leaf : Int → Tree
leaf (x:Int) = Λa.λv:TreeVisitor a. (fst v) x

branch : ∀a.Tree → Tree → Tree
branch (l:Tree) (r:Tree) = Λa.λv:TreeVisitor a. (snd v) (l a v) (r a v)

The only essential difference between this λ-encoding of trees versus the λ-
encoding of booleans above is currying: the representation of the data type
Tree takes a single product TreeVisitor a of the necessary arguments, whereas
the data type Bool takes the two necessary arguments separately. Besides this
easily-converted difference of currying, the usual Böhm-Berarducci encodings
shown here correspond to a pure version of the visitor pattern.

2.2 Demand-Driven Programming

In “Why functional programming matters” [23], Hughes motivates the utility
of practical functional programming through its excellence in compositionality.
When designing programs, one of the goals is to decompose a large problem into
several manageable sub-problems, solve each sub-problem in isolation, and then
compose the individual parts together into a complete solution. Unfortunately,
Hughes identifies some examples of programs which resist this kind of approach.

In particular, numeric algorithms—for computing square roots, derivatives
integrals—rely on an infinite sequence of approximations which converge on the
true answer only in the limit of the sequence. For these numeric algorithms, the
decision on when a particular approximation in the sequence is “close enough”
to the real answer lies solely in the eyes of the beholder: only the observer of
the answer can say when to stop improving the approximation. As such, stan-
dard imperative implementations of these numeric algorithms are expressed as
a single, complex loop, which interleaves both the concerns of producing bet-
ter approximations with the termination decision on when to stop. Even more
complex is the branching structure of the classic minimax algorithm from arti-
ficial intelligence for searching for reasonable moves in two-player games like
chess, which can have an unreasonably large (if not infinite) search space. Here,
too, there is difficulty separating generation from selection, and worse there is
the intermediate step of pruning out uninteresting sub-trees of the search space
(known as alpha-beta pruning). As a result, a standard imperative implemen-
tation of minimax is a single, recursive function that combines all the tasks—
generation, pruning, estimation, and selection—at once.

Codata in Action 125

Hughes shows how both instances of failed decomposition can be addressed
in functional languages through the technique of demand-driven programming.
In each case, the main obstacle is that the control of how to drive the next
step of the algorithm—whether to continue or not—lies with the consumer. The
producer of potential approximations and game states, in contrast, should only
take over when demanded by the consumer. By giving primary control to the
consumer, each of these problems can be decomposed into sensible sub-tasks, and
recomposed back together. Hughes uses lazy evaluation, as found in languages
like Miranda and Haskell, in order to implement the demand-driven algorithms.
However, the downside of relying on lazy evaluation is that it is a whole-language
decision: a language is either lazy by default, like Haskell, or not, like OCaml.
When working in a strict language, expressing these demand-driven algorithms
with manual laziness loses much of their original elegance [33].

In contrast, a language should directly support the capability of yielding
control to the consumer independently of the language being strict or lazy; anal-
ogously to what happens with lambda abstractions. An abstraction computes
on-demand, why is this property relegated to this predefined type only? In fact,
the concept of codata also has this property. As such, it allows us to describe
demand-driven programs in an agnostic way which works just as well in Haskell
as in OCaml without any additional modification. For example, we can imple-
ment Hughes’ demand-driven AI game in terms of codata instead of laziness. To
represent the current game state, and all of its potential developments, we can
use an arbitrarily-branching tree codata type.

codata Tree a where

Node : Tree a → a

Children : Tree a → List (Tree a)

The task of generating all potential future boards from the current board state
produces one of these tree objects, described as follows (where moves of type
Board → List Board generates a list of possible moves):

gameTree : Board → Tree Board

(gameTree b).Node = b

(gameTree b). Children = map gameTree (moves b)

Notice that the tree might be finite, such as in the game of Tic-Tac-Toe. However,
it would still be inappropriate to waste resources fully generating all moves
before determining which are even worth considering. Fortunately, the fact that
the responses of a codata object are only computed when demanded means that
the consumer is in full control over how much of the tree is generated, just as in
Hughes’ algorithm. This fact lets us write the following simplistic prune function
which cuts off sub-trees at a fixed depth.

prune : Int → Tree Board → Tree Board

(prune x t).Node = t.Node

(prune 0 t). Children = []

(prune x t). Children = map (prune(x-1)) t.Children

126 P. Downen et al.

The more complex alpha-beta pruning algorithm can be written as its own pass,
similar to prune above. Just like Hughes’ original presentation, the evaluation
of the best move for the opponent is the composition of a few smaller functions:

eval = maximize . maptree score . prune 5 . gameTree

What is the difference between this codata version of minimax and the one pre-
sented by Hughes that makes use of laziness? They both compute on-demand
which makes the game efficient. However, demand-driven code written with
codata can be easily ported between strict and lazy languages with only syntac-
tic changes. In other words, codata is a general, portable, programming feature
which is the key for compositionality in program design.1

2.3 Abstraction Mechanism

In the pursuit of scalable and maintainable program design, the typical followup
to composability is abstraction. The basic purpose of abstraction is to hide cer-
tain implementation details so that different parts of the code base need not be
concerned with them. For example, a large program will usually be organized into
several different parts or “modules,” some of which may hold general-purpose
“library” code and others may be application-specific “clients” of those libraries.
Successful abstractions will leverage tools of the programming language in ques-
tion so that there is a clear interface between libraries and their clients, codi-
fying which details are exposed to the client and which are kept hidden inside
the library. A common such detail to hide is the concrete representation of some
data type, like strings and collections. Clear abstraction barriers give freedom to
both the library implementor (to change hidden details without disrupting any
clients) as well as the client (to ignore details not exposed by the interface).

Reynolds [35] identified, and Cook [12] later elaborated on, two different
mechanisms to achieve this abstraction: abstract data types and procedural
abstraction. Abstract data types are crisply expressed by the Standard ML mod-
ule system, based on existential types, which serves as a concrete practical touch-
stone for the notion. Procedural abstraction is pervasively used in object-oriented
languages. However, due to the inherent differences among the many languages
and the way they express procedural abstraction, it may not be completely clear
of what the “essence” is, the way existential types are the essence of modules.
What is the language-agnostic representation of procedural abstraction? Codata!
The combination of observation-based interfaces, message-passing, and dynamic
dispatch are exactly the tools needed for procedural abstraction. Other common
object-oriented features—like inheritance, subtyping, encapsulation, and muta-
ble state—are orthogonal to this particular abstraction goal. While they may
be useful extensions to codata for accomplishing programming tasks, only pure
codata itself is needed to represent abstraction.

1 To see the full code for all the examples of [24] implemented in terms of codata, visit
https://github.com/zachsully/codata examples.

https://github.com/zachsully/codata_examples

Codata in Action 127

Specifying a codata type is giving an interface—between an implementation
and a client—so that instances of the type (implementations) can respond to
requests (clients). In fact, method calls are the only way to interact with our
objects. As usual, there is no way to “open up” a higher-order function—one
example of a codata type—and inspect the way it was implemented. The same
intuition applies to all other codata types. For example, Cook’s [12] procedural
“set” interface can be expressed as a codata type with the following observations:

codata Set where

IsEmpty : Set → Bool

Contains : Set → Int → Bool

Insert : Set → Int → Set

Union : Set → Set → Set

Every single object of type Set will respond to these observations, which is
the only way to interact with it. This abstraction barrier gives us the freedom of
defining several different instances of Set objects that can all be freely composed
with one another. One such instance of Set uses a list to keep track of a hidden
state of the contained elements (where elemOf : List Int → Int → Bool
checks if a particular number is an element of the given list, and the operation
fold : (a → b → b) → b → List a → b is the standard functional fold):

finiteSet : List Int → Set

(finiteSet xs). IsEmpty = xs == []

(finiteSet xs). Contains y = elemOf xs y

(finiteSet xs). Insert y = finiteSet (y:xs)

(finiteSet xs). Union s = fold (λx t → t.Insert x) s xs

emptySet = finiteSet []

But of course, many other instances of Set can also be given. For example,
this codata type interface also makes it possible to represent infinite sets like
the set evens of all even numbers which is defined in terms of the more gen-
eral evensUnion that unions all even numbers with some other set (where the
function isEven : Int → Int checks if a number is even):

evens = evensUnion emptySet

evensUnion : Set → Set

(evensUnion s). IsEmpty = False

(evensUnion s). Contains y = isEven y || s.Contains y

(evensUnion s). Insert y = evensUnion (s.Insert y)

(evensUnion s). Union t = evensUnion (s.Union t)

Because of the natural abstraction mechanism provided by codata, different Set
implementations can interact with each other. For example, we can union a
finite set and evens together because both definitions of Union know nothing
of the internal structure of the other Set. Therefore, all we can do is apply the
observations provided by the Set codata type.

128 P. Downen et al.

While sets of numbers are fairly simplistic, there are many more practical
real-world instances of the procedural abstraction provided by codata to be
found in object-oriented languages. For example, databases are a good use of
abstraction, where basic database queries can be represented as the observations
on table objects. A simplified interface to a database table (containing rows of
type a) with selection, deletion, and insertion, is given as follows:

codata Database a where

Select : Database a → (a → Bool) → List a

Delete : Database a → (a → Bool) → Database a

Insert : Database a → a → Database a

On one hand, specific implementations can be given for connecting to and com-
municating with a variety of different databases—like Postgres, MySQL, or just
a simple file system—which are hidden behind this interface. On the other hand,
clients can write generic operations independently of any specific database, such
as copying rows from one table to another or inserting a row into a list of com-
patible tables:

copy : Database a → Database a → Database a

copy from to = let rows = from.Select(λ_ → True)

in foldr (λrow db → db.Insert row) to rows

insertAll : List (Database a) → a → List (Database a)

insertAll dbs row = map (λdb → db.Insert row) dbs

In addition to abstracting away the details of specific databases, both copy and
insertAll can communicate between completely different databases by just
passing in the appropriate object instances, which all have the same generic
type. Another use of this generality is for testing. Besides the normal instances
of Database a which perform permanent operations on actual tables, one can
also implement a fictitious simulation which records changes only in temporary
memory. That way, client code can be seamlessly tested by running and checking
the results of simulated database operations that have no external side effects
by just passing pure codata objects.

2.4 Representing Pre- and Post-Conditions

The extension of data types with indexes (a.k.a. generalized algebraic data types)
has proven useful to statically verify a data structure’s invariant, like for red-
black trees [43]. With indexed data types, the programmer can inform the static
type system that a particular value of a data type satisfies some additional
conditions by constraining the way in which it was constructed. Unsurprisingly,
indexed codata types are dual and allow the creator of an object to constrain
the way it is going to be used, thereby adding pre- and post-conditions to the
observations of the object. In other words, in a language with type indexes,
codata enables the programmer to express more information in its interface.

This additional expressiveness simplifies applications that rely on a type
index to guard observations. Thibodeau et al. [40] give examples of such

Codata in Action 129

programs, including an automaton specification where its transitions correspond
to an observation that changes a pre- and post-condition in its index, and a fair
resource scheduler where the observation of several resources is controlled by an
index tracking the number of times they have been accessed. For concreteness,
let’s use an indexed codata type to specify safe protocols as in the following
example from an object-oriented language with guarded methods:

index Raw , Bound , Live

codata Socket i where

Bind : Socket Raw → String → Socket Bound

Connect : Socket Bound → Socket Live

Send : Socket Live → String → ()

Receive : Socket Live → String

Close : Socket Live → ()

This example comes from DeLine and Fähndrich [14], where they present an
extension to C� constraining the pre- and post-conditions for method calls. If
we have an instance of this Socket i interface, then observing it through the
above methods can return new socket objects with a different index. The index
thereby governs the order in which clients are allowed to apply these methods.
A socket will start with the index Raw. The only way to use a Socket Raw is to
Bind it, and the only way to use a Socket Bound is to Connect it. This forces
us to follow a protocol when initializing a Socket.

Intermezzo 1. This declaration puts one aspect in the hands of the program-
mer, though. A client can open a socket and never close it, hogging the resource.
We can remedy this problem with linear types, which force us to address any
loose ends before finishing the program. With linear types, it would be a type
error to have a lingering Live socket laying around at the end of the program,
and a call to Close would use it up. Furthermore, linear types would ensure
that outdated copies of Socket objects cannot be used again, which is espe-
cially appropriate for actions like Bind which is meant to transform a Raw socket
into a Bound one, and likewise for Connect which transforms a Bound socket
into a Live one. Even better, enhancing linear types with a more sophisticated
notion of ownership—like in the Rust programming language which differentiates
a permanent transfer of ownership from temporarily borrowing it—makes this
resource-sensitive interface especially pleasant. Observations like Bind, Connect,
and Close which are meant to fully consume the observed object would involve
full ownership of the object itself to the method call and effectively replace the
old object with the returned one. In contrast, observations like Send and Receive
which are meant to be repeated on the same object would merely borrow the
object for the duration of the action so that it could be used again.

3 Inter-compilation of Core Calculi

We saw previously examples of using codata types to replicate well-known encod-
ings of data types into the λ-calculus. Now, let’s dive in and show how data and

130 P. Downen et al.

codata types formally relate to one another. In order to demonstrate the relation-
ship, we will consider two small languages that extend the common polymorphic
λ-calculus: λdata extends λ with user-defined algebraic data types, and λcodata

extends λ with user-defined codata types. In the end, we will find that both of
these foundational languages can be inter-compiled into one another. Data can
be represented by codata via the visitor pattern (V). Codata can be represented
by data by tabulating the possible answers of objects (T).

λdata λcodata

Visitor (V)

Tabulate (T)

In essence, this demonstrates how to compile programs between the functional
and object-oriented paradigms. The T direction shows how to extend existing
functional languages (like OCaml, Haskell, or Racket) with codata objects with-
out changing their underlying representation. Dually, the V direction shows how
to compile functional programs with data types into an object-oriented target
language (like JavaScript).

Each of the encodings are macro expansions, in the sense that they leave the
underlying base λ-calculus constructs of functions, applications, and variables
unchanged (as opposed to, for example, continuation-passing style translations).
They are defined to operate on untyped terms, but they also preserve typabil-
ity when given well-typed terms. The näıve encodings preserve the operational
semantics of the original term, according to a call-by-name semantics. We also
illustrate how the encodings can be modified slightly to correctly simulate the
call-by-value operational semantics of the source program. To conclude, we show
how the languages and encodings can be generalized to more expressive type
systems, which include features like existential types and indexed types (a.k.a.
generalized algebraic data types and guarded methods).

Notation. We use both an overline t and dots t1 . . . to indicate a sequence of
terms t (and likewise for types, variables, etc.). The arrow type τ → T means
τ1 → · · · → τn → T; when n is 0, it is not a function type, i.e. just the codomain
T. The application K t means (((K t1) . . .) tn); when n is 0, it is not a func-
tion application, but the constant K. We write a single step of an operational
semantics with the arrow �→, and many steps (i.e. its reflexive-transitive closure)
as �→→. Operational steps may occur within an evaluation context E, i.e. t �→ t′

implies that E[t] �→ E[t′].

3.1 Syntax and Semantics

We present the syntax and semantics of the base language and the two extensions
λdata and λcodata. For the sake of simplicity, we keep the languages as minimal
as possible to illustrate the main inter-compilations. Therefore, λdata and λcodata

do not contain recursion, nested (co)patterns, or indexed types. The extension
with recursion is standard, and an explanation of compiling (co)patterns can be
found in [11,38,39]. Indexed types are later discussed informally in Sect. 3.6.

Codata in Action 131

Syntax:
Type � τ, ρ ::= a | τ ρ | ∀a. τ
Term � t, u, e ::= x | t u | λx. e

Operational Semantics:

Call-by-name

V ::= x | λx. e E ::= � | E u

(λx. e) u e[u/x]

Call-by-value

V ::= x | λx. e E ::= � | E u | V E

(λx. e) V e[V/x]

Type System (where S = t for call-by-name and S = V for call-by-value):

x : τ ∈ Γ
Γ � x : τ

Γ � t : τ ρ Γ � u : τ

Γ � t u : ρ

Γ, x : τ � e : ρ

Γ � λx. e : τ ρ

Γ, a � S : τ

Γ � S : ∀a. τ

Γ � t : ∀a.τ Γ � ρ

Γ � t : τ [ρ/a]

Fig. 1. Polymorphic λ-calculus: the base language

The Base Language. We will base both our core languages of interest on a
common starting point: the polymorphic λ-calculus as shown in Fig. 1.2 This is
the standard simply typed λ-calculus extended with impredicative polymorphism
(a.k.a. generics). There are only three forms of terms (variables x, applications
t u, and function abstractions λx.e) and three forms of types (type variables a,
function types τ → ρ, and polymorphic types ∀a.τ). We keep the type abstrac-
tion and instantiation implicit in programs—as opposed to explicit as in System
F—for two reasons. First, this more accurately resembles the functional lan-
guages in which types are inferred, as opposed to mandatory annotations explicit
within the syntax of programs. Second, it more clearly shows how the transla-
tions that follow do not rely on first knowing the type of terms, but apply to any
untyped term. In other words, the compilation techniques are also appropriate
for dynamically typed languages like Scheme and Racket.

Figure 1 reviews both the standard call-by-name and call-by-value opera-
tional semantics for the λ-calculus. As usual, the difference between the two is
that in call-by-value, the argument of a function call is evaluated prior to substi-
tution, whereas in call-by-name the argument is substituted first. This is implied
by the different set of evaluation contexts (E) and the fact that the operational
rule uses a more restricted notion of value (V) for substitutable arguments in
call-by-value. Note that, there is an interplay between evaluation and typing. In
a more general setting where effects are allowed, the typing rule for introducing
polymorphism (i.e. the rule with S : ∀a.τ in the conclusion) is only safe for
substitutable terms, which imposes the well-known the value restriction for call-
by-value (limiting S to values), but requires no such restriction in call-by-name
where every term is a substitutable value (letting S be any term).

2 The judgement Γ � ρ should be read as: all free type variables in ρ occur in Γ . As
usual Γ, a means that a does not occur free in Γ .

132 P. Downen et al.

Syntax:

Declaration � d ::= data T a where K : τ T a . . .
Type � τ, ρ ::= a | τ ρ | ∀a. τ | T ρ

Term � t, u, e ::= x | t u | λx. e | K t | case t {K x t}
Operational Semantics:

Call-by-name

V ::= · · · | K t

E ::= · · · | case E {K x e}

case (K t) {K x e, . . .} e[t/x]

Call-by-value

V ::= · · · | K V

E ::= · · · | case E {K x e} | K V E t

case (K V) {K x e, . . .} e[V/x]

Type System:

K : ∀a. τ1 · · · T a ∈ Γ Γ � t1 : τ1[ρ/a] . . .

Γ � K t1 · · · : T ρ

Γ � t : T ρ K1 : ∀a. τ1 T a ∈ Γ Γ, x1 : τ1[ρ/a] � e1 : τ ′ . . .

Γ � case t {K1 x1 e1, . . .} : τ ′

Fig. 2. λdata: Extending polymorphic λ-calculus with data types

A Language with Data. The first extension of the λ-calculus is with user-
defined data types, as shown in Fig. 2; it corresponds to a standard core language
for statically typed functional languages. Data declarations introduce a new type
constructor (T) as well as some number of associated constructors (K) that build
values of that data type. For simplicity, the list of branches in a case expression
are considered unordered and non-overlapping (i.e. no two branches for the same
constructor within a single case expression). The types of constructors are given
alongside free variables in Γ , and the typing rule for constructors requires they
be fully applied. We also assume an additional side condition to the typing rule
for case expressions that the branches are exhaustive (i.e. every constructor of
the data type in question is covered as a premise).

Figure 2 presents the extension to the operational semantics from Fig. 1,
which is also standard. The new evaluation rule for data types reduces a case
expression matched with an applied constructor. Note that since the branches
are unordered, the one matching the constructor is chosen out of the possi-
bilities and the parameters of the constructor are substituted in the branch’s
pattern. There is also an additional form of constructed values: in call-by-name
any constructor application is a value, whereas in call-by-value only construc-
tors parameterized by other values is a value. As such, call-by-value goes on to
evaluate constructor parameters in advance, as shown by the extra evaluation
context. In both evaluation strategies, there is a new form of evaluation context
that points out the discriminant of a case expression, since it is mandatory to
determine which constructor was used before deciding the appropriate branch
to take.

Codata in Action 133

Syntax:
Declaration � d ::= codata U a where H : U a τ . . .
Type � τ, ρ ::= a | τ ρ | ∀a. τ | U ρ

Term � t, u, e ::= x | t u | λx. e | t.H | {H e}
Operational Semantics:

Call-by-name

V ::= · · · | {H e} E ::= · · · | E.H

{H e, . . .}.H e

Call-by-value

V ::= · · · | {H e} E ::= · · · | E.H

{H e, . . .}.H �→ e

Type System:

H : ∀a.U a τ ∈ Γ Γ � t : U ρ

Γ � t.H : τ [ρ/a]
Γ � H1 : U ρ τ1 Γ � e1 : τ1 . . .

Γ � {H1 e1, . . .} : U ρ

Fig. 3. λcodata: Extending polymorphic λ-calculus with codata types

A Language with Codata. The second extension of the λ-calculus is with
user-defined codata types, as shown in Fig. 3. Codata declarations in λcodata

define a new type constructor (U) along with some number of associated destruc-
tors (H) for projecting responses out of values of a codata type. The type level
of λcodata corresponds directly to λdata. However, at the term level, we have
codata observations of the form t.H using “dot notation”, which can be thought
of as sending the message H to the object t or as a method invocation from
object-oriented languages. Values of codata types are introduced in the form
{H1 → e1, . . . ,Hn → en}, which lists each response this value gives to all the
possible destructors of the type. As with case expressions, we take the branches
to be unordered and non-overlapping for simplicity.

Interestingly, the extension of the operational semantics with codata—the
values, evaluation contexts, and reduction rules—are identical for both call-by-
name and call-by-value evaluation. In either evaluation strategy, a codata object
{H → e, . . .} is considered a value and the codata observation t.H must evaluate
t no matter what to continue, leading to the same form of evaluation context
E.H. The additional evaluation rule selects and invokes the matching branch of
a codata object and is the same regardless of the evaluation strategy.

Note that the reason that values of codata types are the same in any eval-
uation strategy is due to the fact that the branches of the object are only ever
evaluated on-demand, i.e. when they are observed by a destructor, similar to
the fact that the body of a function is only ever evaluated when the function is
called. This is the semantic difference that separates codata types from records
found in many programming languages. Records typically map a collection of
labels to a collection of values, which are evaluated in advance in a call-by-value
language similar to the constructed values of data types. Whereas with codata
objects, labels map to behavior which is only invoked when observed.

134 P. Downen et al.

V

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣
data T a where

K1 : τ1 T a
...

Kn : τn T a

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ =

codata Tvisit a b where
K1 : Tvisit a b τ1 b

...
Kn : Tvisit a b τn b

codata T a where
CaseT : T a ∀b.Tvisit a b b

V[[Ki t]] = {CaseT λv. (v.Ki) V[[t]]}
V[[case t {K1 x1 e1, . . .}]] = (V[[t]].CaseT) {K1 λx1.V[[e1]], . . .}

Fig. 4. V : λdata → λcodata mapping data to codata via the visitor pattern

The additional typing rules for λcodata are also given in Fig. 3. The rule for
typing t.H is analogous to a combination of type instantiation and application,
when viewing H as a function of the given type. The rule for typing a codata
object, in contrast, is similar to the rule for typing a case expression of a data
type. However, in this comparison, the rule for objects is partially “upside down”
in the sense that the primary type in question (U ρ) appears in the conclusion
rather than as a premise. This is the reason why there is one less premise for
typing codata objects than there is for typing data case expressions. As with
that rule, we assume that the branches are exhaustive, so that every destructor
of the codata type appears in the premise.

3.2 Compiling Data to Codata: The Visitor Pattern

In Sect. 2.1, we illustrated how to convert a data type representing trees into a
codata type. This encoding corresponds to a rephrasing of the object-oriented
visitor pattern to avoid unnecessary side-effects. Now lets look more generally
at the pattern, to see how any algebraic data type in λdata can be encoded in
terms of codata in λcodata.

The visitor pattern has the net effect of inverting the orientation of a data
declaration (wherein construction comes first) into codata declarations (wherein
destruction comes first). This reorientation can be used for compiling user-
defined data types in λdata to codata types in λcodata as shown in Fig. 4. As
with all of the translations we will consider, this is a macro expansion since
the syntactic forms from the base λ-calculus are treated homomorphically (i.e.
V[[λx. e]] = λx.V[[e]], V[[t u]] = V[[t]] V[[u]], and V[[x]] = x). Furthermore, this
translation also perfectly preserves types, since the types of terms are exactly
the same after translation (i.e. V[[τ]] = τ).

Notice how each data type (T a) gets represented by two codata types: the
“visitor” (Tvisit a b) which says what to do with values made with each construc-
tor, and the type itself (T a) which has one method which accepts a visitor and
returns a value of type b. An object of the codata type, then, must be capable of
accepting any visitor, no matter what type of result it returns. Also notice that
we include no other methods in the codata type representation of T a.

Codata in Action 135

At the level of terms, first consider how the case expression of the data type
is encoded. The branches of the case (contained within the curly braces) are
represented as a first-class object of the visitor type: each constructor is mapped
to the corresponding destructor of the same name and the variables bound in
the pattern are mapped to parameters of the function returned by the object
in each case. The whole case expression itself is then implemented by calling
the sole method (CaseT) of the codata object and passing the branches of the
case as the corresponding visitor object. Shifting focus to the constructors, we
can now see that they are compiled as objects that invoke the corresponding
destructor on any given visitor, and the terms which were parameters to the
constructor are now parameters to a given visitor’s destructor. Of course, other
uses of the visitor pattern might involve a codata type (T) with more methods
implementing additional functionality besides case analysis. However, we only
need the one method to represent data types in λdata because case expressions
are the primitive destructor for values of data types in the language.

For example, consider applying the above visitor pattern to a binary tree
data type as follows:

V

⎡
⎣
⎡
⎣
data Tree where

Leaf : Int → Tree
Branch : Tree → Tree → Tree

⎤
⎦
⎤
⎦ =

codata Treevisit b where
Leaf : Int → b
Branch : Tree → Tree → b

codata Tree where
CaseTree : Tree → ∀b.Treevisit b → b

V[[Leaf n]] = {CaseTree → λv. v.Leaf n}
V[[Branch l r]] = {CaseTree → λv. v.Branch l r}

V

[[
case t

{
Leaf n → el

Branch l r → eb

}]]
= V[[t]].CaseTree

{
Leaf → λn.V[[el]]

Branch → λl. λr.V[[eb]]

}

Note how this encoding differs from the one that was given in Sect. 2.1 since the
CaseTree method is non-recursive whereas the WalkTree method was recursive, in
order to model a depth-first search traversal of the tree.

Of course, other operations, like the walk function, could be written in terms
of case expressions and recursion as usual by an encoding with above method
calls. However, it is possible to go one step further and include other primitive
destructors—like recursors or iterators in the style of Gödel’s system T—by
embedding them as other methods of the encoded codata type. For example, we
can represent walk as a primitive destructor as it was in Sect. 2.1 in addition
to non-recursive case analysis by adding an alternative visitor Treewalk and one
more destructor to the generated Tree codata type like so:

codata Treewalk b where
Leaf : Int → b
Branch : b → b → b

codata Tree where
CaseTree : Tree → ∀b.Treevisit b → b
WalkTree : Tree → ∀b.Treewalk b → b

V[[Leaf n]] =

{
CaseTree → λv. v.Leaf n
WalkTree → λw. w.Leaf n

}

136 P. Downen et al.

For codata types with n destructors, where n ≥ 1:

T

⎡
⎢⎢⎣

⎡
⎢⎢⎣
codata U a where

H1 : U a τ1...
Hn : U a τn

⎤
⎥⎥⎦

⎤
⎥⎥⎦ =

data U a where
TableU : τ1 · · · τn U a

T[[t.Hi]] = case T[[t]] {TableU y1 . . . yn yi}
T[[{H1 e1, . . . ,Hn en}]] = TableU T[[e1]] . . .T[[en]]

For codata types with 0 destructors (where Unit is the same for every such U):

T

[[
codata U a where

--no destructors

]]
=

data Unit where
unit : Unit

T[[{}]] = unit

Fig. 5. T : λcodata → λdata tabulating codata responses with data tuples

V[[Branch l r]] =

{
CaseTree → λv. v.Branch l r
WalkTree → λw. w.Branch (l.WalkTree) (r.WalkTree)

}

where the definition of Treevisit and the encoding of case expressions is the same.
In other words, this compilation technique can generalize to as many primitive
observations and recursion schemes as desired.

3.3 Compiling Codata to Data: Tabulation

Having seen how to compile data to codata, how can we go the other way? The
reverse compilation would be useful for extending functional languages with
user-defined codata types, since many functional languages are compiled to a
core representation based on the λ-calculus with data types.

Intuitively, the declared data types in λdata can be thought of as “sums of
products.” In contrast, the declared codata types in λcodata can be thought of as
“products of functions.” Since both core languages are based on the λ-calculus,
which has higher-order functions, the main challenge is to relate the two notions
of “products.” The codata sense of products are based on projections out of
abstract objects, where the different parts are viewed individually and only when
demanded. The data sense of products, instead, are based on tuples, in which
all components are laid out in advance in a single concrete structure.

One way to convert codata to data is to tabulate an object’s potential answers
ahead of time into a data structure. This is analogous to the fact that a function
of type Bool → String can be alternatively represented by a tuple of type
String * String, where the first and second components are the responses of
the original function to true and false, respectively. This idea can be applied
to λcodata in general as shown in the compilation in Fig. 5.

Codata in Action 137

A codata declaration of U becomes a data declaration with a single con-
structor (TableU) representing a tuple containing the response for each of the
original destructors of U. At the term level, a codata abstraction is compiled by
concretely tabulating each of its responses into a tuple using the TableU construc-
tor. A destructor application returns the specific component of the constructed
tuple which corresponds to that projection. Note that, since we assume that each
object is exhaustive, the tabulation transformation is relatively straightforward;
filling in “missing” method definitions with some error value that can be stored
in the tuple at the appropriate index would be done in advance as a separate
pre-processing step.

Also notice that there is a special case for non-observable “empty” codata
types, which are all collapsed into a single pre-designated Unit data type. The
reason for this collapse is to ensure that this compilation preserves typability: if
applied to a well-typed term, the result is also well-typed. The complication arises
from the fact that when faced with an empty object {}, we have no idea which
constructor to use without being given further typing information. So rather
than force type checking or annotation in advance for this one degenerate case,
we instead collapse them all into a single data type so that there is no need to
differentiate based on the type. In contrast, the translation of non-empty objects
is straightforward, since we can use the name of any one of the destructors to
determine the codata type it is associated with, which then informs us of the
correct constructor to use.

3.4 Correctness

For the inter-compilations between λcodata into λdata to be useful in practice,
they should preserve the semantics of programs. For now, we focus only on the
call-by-name semantics for each of the languages. With the static aspect of the
semantics, this means they should preserve the typing of terms.

Proposition 1 (Type Preservation). For each of the V and T translations:
if Γ � t : τ then [[Γ]] � [[t]] : [[τ]] (in the call-by-name type system).

Proof (Sketch). By induction on the typing derivation of Γ � t : τ .

With the dynamic aspect of the semantics, the translations should preserve the
outcome of evaluation (either converging to some value, diverging into an infinite
loop, or getting stuck) for both typed and untyped terms. This works because
each translation preserves the reduction steps, values, and evaluation contexts
of the source calculus’ call-by-name operational semantics.

Proposition 2 (Evaluation Preservation). For each of the V and T trans-
lations: t �→→ V if and only if [[t]] �→→ [[V]] (in the call-by-name semantics).

Proof (Sketch). The forward (“only if”) implication is a result of the following
facts that hold for each translation in the call-by-name semantics:

138 P. Downen et al.

– For any redex t in the source, if t �→ t′ then [[t]] �→ t′′ �→→ [[t′]].
– For any value V in the source, [[V]] is a value.
– For any evaluation context E in the source, there is an evaluation context E′

in the target such that [[E[t]]] = E′[[[t]]] for all t.

The reverse (“if”) implication then follows from the fact that the call-by-name
operational semantics of both source and target languages is deterministic.

3.5 Call-by-Value: Correcting the Evaluation Order

The presented inter-compilation techniques are correct for the call-by-name
semantics of the calculi. But what about the call-by-value semantics? It turns
out that the simple translations seen so far do not correctly preserve the call-
by-value semantics of programs, but they can be easily fixed by being more
careful about how they treat the values of the source and target calculi. In other
words, we need to make sure that values are translated to values, and evaluation
contexts to evaluation contexts. For instance, the following translation (up to
renaming) does not preserve the call-by-value semantics of the source program:

T[[{Fst → error ,Snd → True}]] = Pair error True

The object {Fst → error ,Snd → True} is a value in call-by-value, and the erro-
neous response to the Fst will only be evaluated when observed. However, the
structure Pair error True is not a value in call-by-value, because the field error
must be evaluated in advance which causes an error immediately. In the other
direction, we could also have

V[[Pair error True]] = {Case → λv. v.Pair error True}
Here, the immediate error in Pair error True has become incorrectly delayed
inside the value {Case → λv. v.Pair error True}.

The solution to this problem is straightforward: we must manually delay
computations that are lifted out of (object or λ) abstractions, and manually
force computations before their results are hidden underneath abstractions. For
the visitor pattern, the correction is to only introduce the codata object on
constructed values. We can handle other constructed terms by naming their
non-value components in the style of administrative-normalization like so:

V[[Ki V]] = {CaseT → λv. v.Ki V }
V[[Ki V u t]] = let x = u in V[[Ki V x t]] if u is not a value

Conversely, the tabulating translation T will cause the on-demand observa-
tions of the object to be converted to preemptive components of a tuple struc-
ture. To counter this change in evaluation order, a thunking technique can be
employed as follows:

T[[t.Hi]] = case T[[t]] {TableU y1 . . . yn → force yi}
T[[{H1 → e1, . . . ,Hn → en}]] = TableU (delayT[[e1]]) . . . (delayT[[en]])

Codata in Action 139

The two operations can be implemented as delay t = λz. t and force t = t unit
as usual, but can also be implemented as more efficient memoizing operations.
With all these corrections, Propositions 1 and 2 also hold for the call-by-value
type system and operational semantics.

3.6 Indexed Data and Codata Types: Type Equalities

In the world of types, we have so far only formally addressed inter-compilation
between languages with simple and polymorphic types. What about the compi-
lation of indexed data and codata types? It turns out some of the compilation
techniques we have discussed so far extend to type indexes without further effort,
whereas others need some extra help. In particular, the visitor-pattern-based
translation V can just be applied straightforwardly to indexed data types:

V

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

data T a where
K1 : τ1 → T ρ1

...
Kn : τn → T ρn

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ =

codata Tvisit a b where
K1 : Tvisit ρ1 b → τ1 → b

...
Kn : Tvisit ρn b → τn → b

codata T a where
CaseT : T a → ∀b.Tvisit a b → b

In this case, the notion of an indexed visitor codata type exactly corresponds
to the mechanics of case expressions for GADTs. In contrast, the tabulation
translation T does not correctly capture the semantics of indexed codata types,
if applied näıvely.

Thankfully, there is a straightforward way of “simplifying” indexed data
types to more conventional data types using some built-in support for type equal-
ities. The idea is that a constructor with a more specific return type can be
replaced with a conventional constructor that is parameterized by type equali-
ties that prove that the normal return type must be the more specific one. The
same idea can be applied to indexed codata types as well. A destructor that can
only act on a more specific instance of the codata type can instead be replaced by
one which works on any instance, but then immediately asks for proof that the
object’s type is the more specific one before completing the observation. These
two translations, of replacing type indexes with type equalities, are defined as:

Eq

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

data T a where
K1 : τ1 → T ρ1

...
Kn : τn → T ρn

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ =

data T a where
K1 : a ≡ ρ1 → τ1 → T a

...
Kn : a ≡ ρn → τn → T a

Eq

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

codata U a where
H1 : U ρ1 → τ1

...
Hn : U ρn → τn

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ =

codata U a where
H1 : U a → a ≡ ρ1 → τ1

...
Hn : U a → a ≡ ρn → τn

140 P. Downen et al.

This formalizes the intuition that indexed data types can be thought of as enrich-
ing constructors to carry around additional constraints that were available at
their time of construction, whereas indexed codata types can be thought of as
guarding methods with additional constraints that must be satisfied before an
observation can be made. Two of the most basic examples of this simplification
are for the type declarations which capture the notion of type equality as an
indexed data or indexed codata type, which are defined and simplified like so:

Eq

[[
data Eq a b where

Refl : Eq a a

]]
=

data Eq a b where
Refl : a ≡ b → Eq a b

Eq

[[
codata IfEq a b c where

AssumeEq : IfEq a a c → c

]]
=

codata IfEq a b c where
AssumeEq : IfEq a b c → a ≡ b → c

With the above ability to simplify away type indexes, all of the presented com-
pilation techniques are easily generalized to indexed data and codata types by
composing them with Eq. For practical programming example, consider the fol-
lowing safe stack codata type indexed by its number of elements.

codata Stack a where
Pop : Stack (Succ a) → (Z, Stack a)
Push : Stack a → Z → Stack (Succ a)

This stack type is safe in the sense that the Pop operation can only be applied to
non-empty Stacks. We cannot compile this to a data type via T directly, because
that translation does not apply to indexed codata types. However, if we first
simplify the Stack type via Eq, we learn that we can replace the type of the
Pop destructor with Pop : Stack a → ∀b.a ≡ Succ b → (Z,Stack b), whereas
the Push destructor is already simple, so it can be left alone. That way, for any
object s : Stack Zero, even though a client can initiate the observation s.Pop, it
will never be completed since there is no way to choose a b and prove that Zero
equals Succ b. Therefore, the net result of the combined T ◦Eq translation turns
Stack into the following data type, after some further simplification:

data Stack a where
MkS : (∀b.a ≡ Succ b → (Z, Stack b)) → (Z → Stack (Succ a)) → Stack a

Notice how the constructor of this type has two fields; one for Pop and one for
Push, respectively. However, the Pop operation is guarded by a proof obligation:
the client can only receive the top integer and remaining stack if he/she proves
that the original stack contains a non-zero number of elements.

4 Compilation in Practice

We have shown how data and codata are related through the use of two different
core calculi. To explore how these ideas manifest in practice, we have imple-
mented codata in a couple of settings. First, we extended Haskell with codata

Codata in Action 141

n Time(s) codata Time(s) data Allocs(bytes) codata Allocs(bytes) data

10000 0.02 0.01 10,143,608 6,877,048

100000 0.39 0.27 495,593,464 463,025,832

1000000 19.64 18.54 44,430,524,144 44,104,487,488

Table 1. Fibonacci scaling tests for the GHC implementation

in order to compare the lazy and codata approaches to demand-driven program-
ming described in Sect. 2.2.3 Second, we have created a prototype language with
indexed (co)data types to further explore the interaction between the compila-
tion and target languages. The prototype language does not commit to a par-
ticular evaluation strategy, typing discipline, or paradigm; instead this decision
is made when compiling a program to one of several backends. The supported
backends include functional ones—Haskell (call-by-need, static types), OCaml
(call-by-value, static types), and Racket (call-by-value, dynamic types)—as well
as the object-oriented JavaScript.4 The following issues of complex copattern
matching and sharing applies to both implementations; the performance results
on efficiency of memoized codata objects are tested with the Haskell extension
for the comparison with conventional Haskell code.

Complex Copattern Matching. Our implementations support nested copat-
terns so that objects can respond to chains of multiple observations, even though
λcodata only provides flat copatterns. This extension does not enhance the lan-
guage expressivity but allows more succinct programs [2]. A flattening step is
needed to compile nested copatterns down to a core calculus, which has been
explored in previous work by Setzer et al. [37] and Thibodeau [39] and imple-
mented in OCaml by Regis-Gianas and Laforgue [33]. Their flattening algo-
rithm requires copatterns to completely cover the object’s possible observations
because the coverage information is used to drive flattening. This approach was
refined and incorporated in a dependently typed setting by Cockx and Abel [11].
With our goal of supporting codata independently of typing discipline and cov-
erage analysis, we have implemented the purely syntax driven approach to flat-
tening found in [38]. For example, the prune function from Sect. 2.2 expands to:

prune = λx → λt →
{ Node → t.Node ,

Children → case x of

0 → []

_ → map (prune(x-1)) t.Children }

Sharing. If codata is to be used instead of laziness for demand-driven program-
ming, then it must have the same performance characteristics, which relies on
sharing the results of computations [6]. To test this, we compare the performance
of calculating streams of Fibonacci numbers—the poster child for sharing—
implemented with both lazy list data types and a stream codata type in Haskell

3 The GHC fork is at https://github.com/zachsully/ghc/tree/codata-macro.
4 The prototype compiler is at https://github.com/zachsully/dl/tree/esop2019.

https://github.com/zachsully/ghc/tree/codata-macro
https://github.com/zachsully/dl/tree/esop2019

142 P. Downen et al.

Syntax
Values � V ::= · · · | {H V }
Terms � t, u, e ::= · · · | t.H | {H V } | letneed x = t in e

Transformation
A[[t.H]] = A[[t]].H

A[[{H t}]] = letneed x = A[[t]] in {H x}

Fig. 6. Memoization of λcodata

extended with codata. These tests, presented in Table 1, show the speed of the
codata version is always slower in terms of run time and allocations than the lazy
list version, but the difference is small and the two versions scale at the same
rate. These performance tests are evidence that codata shares the same infor-
mation when compiled to a call-by-need language; this we get for free because
call-by-need data constructors—which codata is compiled into via T—memoize
their fields. In an eager setting, it is enough to use memoized versions of delay
and force, which are introduced by the call-by-value compilation described in
Sect. 3.5. This sharing is confirmed by the OCaml and Racket backends of the
prototype language which find the 100th Fibonacci in less than a second (a task
that takes hours without sharing).

As the object-oriented representative, the JavaScript backend is a compila-
tion from data to codata using the visitor pattern presented in Sect. 3.2. Because
codata remains codata (i.e. JavaScript objects), an optimization must be per-
formed to ensure the same amount of sharing of codata as the other backends.
The solution is to lift out the branches of a codata object, as shown in Fig. 6,
where the call-by-need let-bindings can be implemented by delay and force in
strict languages as usual. It turns out that this transformation is also needed in
an alternative compilation technique presented by Regis-Gianas and Laforgue
[33] where codata is compiled to functions, i.e. another form of codata.

5 Related Work

Our work follows in spirit of Amin et al.’s [3] desire to provide a minimal theory
that can model type parameterization, modules, objects and classes. Another
approach to combine type parameterization and modules is also offered by 1ML
[36], which is mapped to System F. Amin et al.’s work goes one step further by
translating System F to a calculus that directly supports objects and classes.
Our approach differs in methodology: instead of searching for a logical foun-
dation of a pre-determined notion of objects, we let the logic guide us while
exploring what objects are. Even though there is no unanimous consensus that
functional and object-oriented paradigms should be combined, there have been
several hybrid languages for combining both styles of programming, including
Scala, the Common Lisp Object System [8], Objective ML [34], and a proposed
but unimplemented object system for Haskell [30].

Codata in Action 143

Arising out of the correspondence between programming languages, category
theory, and universal algebras, Hagino [20] first proposed codata as an extension
to ML to remedy the asymmetry created by data types. In the same way that
data types represent initial F-algebras, codata types represent final F-coalgebras.
These structures were implemented in the categorical programming language
Charity [10]. On the logical side of the correspondence, codata arises naturally
in the sequent calculus [15,28,44] since it provides the right setting to talk about
construction of either the provider (i.e. the term) or the client (i.e. the context)
side of a computation, and has roots in classical [13,41] and linear logic [18,19].

In session-typed languages, which also have a foundation in linear logic, exter-
nal choice can be seen as a codata (product) type dual to the way internal choice
corresponds to a data (sum) type. It is interesting that similar problems arise in
both settings. Balzer and Pfenning [7] discuss an issue that shows up in choos-
ing between internal and external choice; this corresponds to choosing between
data and codata, known as the expression problem. They [7] also suggest using
the visitor pattern to remedy having external choice (codata) without internal
choice (data) as we do in Sect. 3.2. Of course, session types go beyond codata
by adding a notion of temporality (via linearity) and multiple processes that
communicate over channels.

To explore programming with coinductive types, Ancona and Zucca [4] and
Jeannin et al. [26] extended Java and OCaml with regular cyclic structures;
these have a finite representation that can be eagerly evaluated and fully stored
in memory. A less restricted method of programming these structures was intro-
duced by Abel et al. [1,2] who popularized the idea of programming by observa-
tions, i.e. using copatterns. This line of work further developed the functionality
of codata types in dependently typed languages by adding indexed codata types
[40] and dependent copattern matching [11], which enabled the specification of
bisimulation proofs and encodings of productive infinite objects in Agda. We
build on these foundations by developing codata in practical languages.

Focusing on implementation, Regis-Gianas and Laforgue [33] added codata
with a macro transformation in OCaml. As it turns out, this macro defini-
tion corresponds to one of the popular encodings of objects in the λ-calculus
[27], where codata/objects are compiled to functions from tagged messages to
method bodies. This compilation scheme requires the use of GADTs for static
type checking, and is therefore only applicable to dynamically typed languages
or the few statically typed languages with expressive enough type systems like
Haskell, OCaml, and dependently typed languages. Another popular technique
for encoding codata/objects is presented in [31], corresponding to a class-based
organization of dynamic dispatch [21], and is presented in this paper. This tech-
nique compiles codata/objects to products of methods, which has the advantage
of being applicable in a simply-typed setting.

6 Conclusion

We have shown here how codata can be put to use to capture several practical
programming idioms and applications, besides just modeling infinite structures.

144 P. Downen et al.

In order to help incorporate codata in today’s programming languages, we have
shown how to compile between two core languages: one based on the familiar
notion of data types from functional languages such as Haskell and OCaml,
and the other one, based on the notion of a structure defined by reactions to
observations [1]. This paper works toward the goal of providing common ground
between the functional and object-oriented paradigms; as future work, we would
like to extend the core with other features of full-fledged functional and object-
oriented languages. A better understanding of codata clarifies both the theory
and practice of programming languages. Indeed, this work is guiding us in the
use of fully-extensional functions for the compilation of Haskell programs. The
design is motivated by the desire to improve optimizations, in particular the
ones relying on the “arity” of functions, to be more compositional and work
between higher-order abstractions. It is interesting that the deepening of our
understanding of objects is helping us in better compiling functional languages!

References

1. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2013, pp.
27–38 (2013)

2. Abel, A.M., Pientka, B.: Wellfounded recursion with copatterns: a unified approach
to termination and productivity. In: Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2013, pp. 185–196 (2013)

3. Amin, N., Rompf, T., Odersky, M.: Foundations of path-dependent types. In: Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, pp. 233–249 (2014)

4. Ancona, D., Zucca, E.: Corecursive featherweight Java. In: Proceedings of the 14th
Workshop on Formal Techniques for Java-Like Programs, FTfJP 2012, Beijing,
China, 12 June 2012, pp. 3–10 (2012)

5. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2, 297–347 (1992)

6. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

7. Balzer, S., Pfenning, F.: Objects as session-typed processes. In: Proceedings of
the 5th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE! 2015, pp. 13–24. ACM, New York (2015)

8. Bobrow, D.G., Kahn, K.M., Kiczales, G., Masinter, L., Stefik, M., Zdybel, F.:
Commonloops: merging Lisp and object-oriented programming. In: Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
1986), Portland, Oregon, USA, Proceedings, pp. 17–29 (1986)

9. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theor. Comput. Sci. 39, 135–154 (1985)

10. Cockett, R., Fukushima, T.: About charity. Technical report, University of Calgary
(1992)

11. Cockx, J., Abel, A.: Elaborating dependent (co)pattern matching. In: Proceedings
of the 23rd ACM SIGPLAN International Conference on Functional Programming,
ICFP 2018, pp. 75:1–75:30 (2018)

Codata in Action 145

12. Cook, W.R.: On understanding data abstraction, revisited. In: Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications, pp. 557–572 (2009)

13. Curien, P.L., Herbelin, H.: The duality of computation. In: Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP
2000, pp. 233–243. ACM, New York (2000)

14. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4 21

15. Downen, P., Ariola, Z.M.: The duality of construction. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 249–269. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54833-8 14

16. Dummett, M.: The Logical Basis of Methaphysics: The William James Lectures,
1976. Harvard University Press, Cambridge (1991)

17. Gallier, J.: Constructive logics. Part I: a tutorial on proof systems and typed
lambda-calculi. Theor. Comput. Sci. 110(2), 249–339 (1993)

18. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
19. Girard, J.Y.: On the unity of logic. Ann. Pure Appl. Logic 59(3), 201–217 (1993)
20. Hagino, T.: Codatatypes in ML. J. Symbolic Comput. 8, 629–650 (1989)
21. Harper, R.: Practical Foundations for Programming Languages, 2nd edn.

Cambridge University Press, New York (2016)
22. Howard, W.A.: The formulae-as-types notion of construction. In: Curry, H.B.,

Hindley, J.R., Seldin, J.P. (eds.) To H.B. Curry Essays on Combinatory Logic,
Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980).
unpublished manuscript of 1969

23. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

24. Hughes, R.J.M.: Super-combinators: a new implementation method for applica-
tive languages. In: Proceedings of the ACM Symposium on Lisp and Functional
Programming, pp. 1–10 (1982)

25. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bull.
62, 222–259 (1997)

26. Jeannin, J., Kozen, D., Silva, A.: CoCaml: functional programming with regular
coinductive types. Fundam. Inform. 150(3–4), 347–377 (2017)

27. Krishnamurthi, S.: Programming Languages: Application and Interpretation
(2007)

28. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: Grädel, E.,
Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 409–423. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04027-6 30

29. Munch-Maccagnoni, G.: Syntax and models of a non-associative composition of
programs and proofs. Ph.D. thesis, Université Paris Diderot (2013)

30. Nordlander, J.: Polymorphic subtyping in O’Haskell. Sci. Comput. Program.
43(2–3), 93–127 (2002)

31. Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

32. Plotkin, G.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

33. Regis-Gianas, Y., Laforgue, P.: Copattern-matchings and first-class observations
in OCaml, with a macro. In: Proceedings of the 19th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2017 (2017)

https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/978-3-642-04027-6_30

146 P. Downen et al.

34. Rémy, D., Vouillon, J.: Objective ML: a simple object-oriented extension of ML.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1997, pp. 40–53. ACM, New York (1997)

35. Reynolds, J.C.: User-defined types and procedural data structures as complemen-
tary approaches to data abstraction. In: Gries, D. (ed.) Programming Methodol-
ogy. MCS, pp. 309–317. Springer, New York (1978). https://doi.org/10.1007/978-
1-4612-6315-9 22

36. Rossberg, A.: 1ML - core and modules united (F-ing first-class modules). In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2015, pp. 35–47. ACM, New York (2015)

37. Setzer, A., Abel, A., Pientka, B., Thibodeau, D.: Unnesting of copatterns. In:
Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 31–45. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08918-8 3

38. Sullivan, Z.: The essence of codata and its implementation. Master’s thesis, Uni-
versity of Oregon (2018)

39. Thibodeau, D.: Programming infinite structures using copatterns. Master’s thesis,
McGill University (2015)

40. Thibodeau, D., Cave, A., Pientka, B.: Indexed codata types. In: Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, pp.
351–363 (2016)

41. Wadler, P.: Call-by-value is dual to call-by-name. In: Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming, pp. 189–
201 (2003)

42. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015)
43. Weirich, S.: Depending on types. In: Proceedings of the 19th ACM SIGPLAN

International Conference on Functional Programming, ICFP 2014 (2014)
44. Zeilberger, N.: On the unity of duality. Ann. Pure Appl. Logic 153, 66–96 (2008)
45. Zeilberger, N.: The logical basis of evaluation order and pattern-matching. Ph.D.

thesis, Carnegie Mellon University (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1007/978-3-319-08918-8_3
http://creativecommons.org/licenses/by/4.0/

Composing Bidirectional Programs
Monadically

Li-yao Xia1(B), Dominic Orchard2, and Meng Wang3

1 University of Pennsylvania, Philadelphia, USA
xialiyao@seas.upenn.edu

2 University of Kent, Canterbury, UK
3 University of Bristol, Bristol, UK

Abstract. Software frequently converts data from one representation
to another and vice versa. Naïvely specifying both conversion directions
separately is error prone and introduces conceptual duplication. Instead,
bidirectional programming techniques allow programs to be written which
can be interpreted in both directions. However, these techniques often
employ unfamiliar programming idioms via restricted, specialised combi-
nator libraries. Instead, we introduce a framework for composing bidirec-
tional programs monadically, enabling bidirectional programming with
familiar abstractions in functional languages such as Haskell. We demon-
strate the generality of our approach applied to parsers/printers, lenses,
and generators/predicates. We show how to leverage compositionality
and equational reasoning for the verification of round-tripping properties
for such monadic bidirectional programs.

1 Introduction

A bidirectional transformation (BX) is a pair of mutually related mappings
between source and target data objects. A well-known example solves the view-
update problem [2] from relational database design. A view is a derived database
table, computed from concrete source tables by a query. The problem is to map
an update of the view back to a corresponding update on the source tables. This
is captured by a bidirectional transformation. The bidirectional pattern is found
in a broad range of applications, including parsing [17,30], refactoring [31], code
generation [21,27], and model transformation [32] and XML transformation [25].

When programming a bidirectional transformation, one can separately con-
struct the forwards and backwards functions. However, this approach duplicates
effort, is prone to error, and causes subsequent maintenance issues. These prob-
lems can be avoided by using specialised programming languages that generate
both directions from a single definition [13,16,33], a discipline known as bidirec-
tional programming.

The most well-known language family for BX programming is lenses [13].
A lens captures transformations between sources S and views V via a pair of
functions get : S → V and put : V → S → S. The get function extracts a view

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 147–175, 2019.
https://doi.org/10.1007/978-3-030-17184-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_6

148 L. Xia et al.

from a source and put takes an updated view and a source as inputs to produce
an updated source. The asymmetrical nature of get and put makes it possible
for put to recover some of the source data that is not present in the view. In
other words, get does not have to be injective to have a corresponding put.

Bidirectional transformations typically respect round-tripping laws, captur-
ing the extent to which the transformations preserve information between the
two data representations. For example, well-behaved lenses [5,13] should satisfy:

put (get s) s = s get (put v s) = v

Lens languages are typically designed to enforce these properties. This focus on
unconditional correctness inevitably leads to reduced practicality in program-
ming: lens combinators are often stylised and disconnected from established
programming idioms. In this paper, we instead focus on expressing bidirectional
programs directly, using monads as an interface for sequential composition.

Monads are a popular pattern [35] (especially in Haskell) which combinator
libraries in other domains routinely exploit. Introducing monadic composition to
BX programming significantly expands the expressiveness of BX languages and
opens up a route for programmers to explore the connection between BX pro-
gramming and mainstream uni-directional programming. Moreover, it appears
that many applications of bidirectional transformations (e.g., parsers and print-
ers [17]) do not share the lens get/put pattern, and as a result have not been
sufficiently explored. However, monadic composition is known to be an effective
way to construct at least one direction of such transformations (e.g., parsers).

Contributions. In this paper, we deliberately avoid the well-tried approach of
specialised lens languages, instead exploring a novel point in the BX design space
based on monadic programming, naturally reusing host language constructs.
We revisit lenses, and two more bidirectional patterns, demonstrating how they
can be subject to monadic programming. By being uncompromising about the
monad interface, we expose the essential ideas behind our framework whilst
maximising its utility. The trade off with our approach is that we can no longer
enforce correctness in the same way as conventional lenses: our interface does
not rule out all non-round-tripping BXs. We tackle this issue by proposing a
new compositional reasoning framework that is flexible enough to characterise a
variety of round-tripping properties, and simplifies the necessary reasoning.

Specifically, we make the following contributions:

– We describe a method to enable monadic composition for bidirectional pro-
grams (Sect. 3). Our approach is based on a construction which generates a
monadic profunctor, parameterised by two application-specific monads which
are used to generate the forward and backward directions.

– To demonstrate the flexibility of our approach, we apply the above method
to three different problem domains: parsers/printers (Sects. 3 and 4), lenses
(Sect. 5), and generators/predicates for structured data (Sect. 6). While the
first two are well-explored areas in the bidirectional programming literature,
the third one is a completely new application domain.

Composing Bidirectional Programs Monadically 149

– We present a scalable reasoning framework, capturing notions of composition-
ality for bidirectional properties (Sect. 4). We define classes of round-tripping
properties inherent to bidirectionalism, which can be verified by following sim-
ple criteria. These principles are demonstrated with our three examples. We
include some proofs for illustration in the paper. The supplementary mate-
rial [12] contains machine-checked Coq proofs for the main theorems.
An extended version of this manuscript [36] includes additional definitions,
proofs, and comparisons in its appendices.

– We have implemented these ideas as Haskell libraries [12], with two wrappers
around attoparsec for parsers and printers, and QuickCheck for generators and
predicates, showing the viability of our approach for real programs.

We use Haskell for concrete examples, but the programming patterns can be
easily expressed in many functional languages. We use the Haskell notation of
assigning type signatures to expressions via an infix double colon “ ::”.

1.1 Further Examples of BX

We introduced lenses briefly above. We now introduce the other two examples
used in this paper: parsers/printers and generators/predicates.

Parsing and printing. Programming language tools (such as interpreters, com-
pilers, and refactoring tools) typically require two intimately linked components:
parsers and printers, respectively mapping from source code to ASTs and back.
A simple implementation of these two functions can be given with types:

parser :: String → AST printer :: AST → String

Parsers and printers are rarely actual inverses to each other, but instead typically
exhibit a variant of round-tripping such as:

parser ◦ printer ◦ parser ≡ parser printer ◦ parser ◦ printer ≡ printer

The left equation describes the common situation that parsing discards informa-
tion about source code, such as whitespace, so that printing the resulting AST
does not recover the original source. However, printing retains enough informa-
tion such that parsing the printed output yields an AST which is equivalent to
the AST from parsing the original source. The right equation describes the dual:
printing may map different ASTs to the same string. For example, printed code
1 + 2 + 3 might be produced by left- and right-associated syntax trees.

For particular AST subsets, printing and parsing may actually be left- or
right- inverses to each other. Other characterisations are also possible, e.g., with
equivalence classes of ASTs (accounting for reassociations). Alternatively, parsers
and printers may satisfy properties about the interaction of partially-parsed
inputs with the printer and parser, e.g., if parser :: String → (AST, String):

(let (x, s’) = parser s in parser ((printer x) ++ s’)) ≡ parser s

150 L. Xia et al.

Thus, parsing and printing follows a pattern of inverse-like functions which does
not fit the lens paradigm. The pattern resembles lenses between a source (source
code) and view (ASTs), but with a compositional notion for the source and
partial “gets” which consume some of the source, leaving a remainder.

Writing parsers and printers by hand is often tedious due to the redundancy
implied by their inverse-like relation. Thus, various approaches have been pro-
posed for reducing the effort of writing parsers/printers by generating both from
a common definition [17,19,30].

Generating and checking. Property-based testing (e.g., QuickCheck) [10]
expresses program properties as executable predicates. For instance, the fol-
lowing property checks that an insertion function insert, given a sorted list—as
checked by the predicate isSorted :: [Int] → Bool—produces another sorted
list. The combinator =⇒ represents implication for properties.

To test this property, a testing framework generates random inputs for val and
list. The implementation of =⇒ applied here first checks whether list is
sorted, and if it is, checks that insert val list is sorted as well. This process
is repeated with further random inputs until either a counterexample is found
or a predetermined number of test cases pass.

However, this naïve method is inefficient: many properties such as propInsert
have preconditions which are satisfied by an extremely small fraction of inputs. In
this case, the ratio of sorted lists among lists of length n is inversely proportional
to n!, so most generated inputs will be discarded for not satisfying the isSorted
precondition. Such tests give no information about the validity of the predicate
being tested and thus are prohibitively inefficient.

When too many inputs are being discarded, the user must instead supply
the framework with custom generators of values satisfying the precondition:
genSorted :: Gen [Int].

One can expect two complementary properties of such a generator. A genera-
tor is sound with respect to the predicate isSorted if it generates only values sat-
isfying isSorted; soundness means that no tests are discarded, hence the tested
property is better exercised. A generator is complete with respect to isSorted
if it can generate all satisfying values; completeness ensures the correctness of
testing a property with isSorted as a precondition, in the sense that if there
is a counterexample, it will be eventually generated. In this setting of testing,
completeness, which affects the potential adequacy of testing, is arguably more
important than soundness, which affects only efficiency.

It is clear that generators and predicates are closely related, forming a pat-
tern similar to that of bidirectional transformations. Given that good generators
are usually difficult to construct, the ability to extract both from a common
specification with bidirectional programming is a very attractive alternative.

Roadmap. We begin by outlining a concrete example of our monadic approach
via parsers and printers (Sect. 2), before explaining the general approach of using

Composing Bidirectional Programs Monadically 151

monadic profunctors to structure bidirectional programs (Sect. 3). Section 4 then
presents a compositional reasoning framework for monadic bidirectional pro-
grams, with varying degrees of strength adapted to different round-tripping
properties. We then replay the developments of the earlier sections to define
lenses as well as generators and predicates in Sects. 5 and 6.

2 Monadic Bidirectional Programming

A bidirectional parser, or biparser, combines both a parsing direction and print-
ing direction. Our first novelty here is to express biparsers monadically.

In code samples, we use the Haskell pun of naming variables after their types,
e.g., a variable of some abstract type v will also be called v. Similarly, for some
type constructor m, a variable of type m v will be called mv. A function u → m v
(a Kleisli arrow for a monad m) will be called kv.

Monadic parsers. The following data type provides the standard way to describe
parsers of values of type v which may consume only part of the input string:

data Parser v = Parser { parse :: String → (v, String) }

It is well-known that such parsers are monadic [35], i.e., they have a notion of
monadic sequential composition embodied by the interface:

instance Monad Parser where
(>>=) :: Parser v → (v → Parser w) → Parser w
return :: v → Parser v

The sequential composition operator (>>=), called bind, describes the scheme
of constructing a parser by sequentially composing two sub-parsers where the
second depends on the output of the first; a parser of w values is made up of a
parser of v and a parser of w that depends on the previously parsed v. Indeed,
this is the implementation given to the monadic interface:

pv >>= kw = Parser (λs → let (v, s’) = parse pv s in parse (kw v) s’)
return v = Parser (λs → (v, s))

Bind first runs the parser pv on an input string s, resulting in a value v which is
used to create the parser kw v, which is in turn run on the remaining input s’
to produce parsed values of type w. The return operation creates a trivial parser
for any value v which does not consume any input but simply produces v.

In practice, parsers composed with (>>=) often have a relationship between
the output types of the two operands: usually that the former “contains” the
latter in some sense. For example, we might parse an expression and compose
this with a parser for statements, where statements contain expressions. This
relationship will be useful later when we consider printers.

As a shorthand, we can discard the remaining unparsed string of a parser
using projection, giving a helper function parser :: Parser v → (String → v).

152 L. Xia et al.

Monadic printers. Our goal is to augment parsers with their inverse printer,
such that we have a monadic type Biparser which provides two complementary
(bi-directional) transformations:

parser :: Biparser v → (String → v)
printer :: Biparser v → (v → String)

However, this type of printer v → String (shown also in Sect. 1.1) cannot form
a monad because it is contravariant in its type parameter v. Concretely, we
cannot implement the bind (>>=) operator for values with types of this form:

We are stuck trying to fill the hole (??) as there is no way to get a value of type v
to pass as an argument to pv (first printer) and kw (second printer which depends
on a v). Subsequently, we cannot construct a monadic biparser by simply taking
a product of the parser monad and v → String and leveraging the result that
the product of two monads is a monad.

But what if the type variables of bind were related by containment, such that
v is contained within w and thus we have a projection w → v? We could use this
projection to fill the hole in the failed attempt above, defining a bind-like operator:

bind’ :: (w → v) → (v → String) → (v → (w → String)) → (w → String)
bind’ from pv kw = λw → let v = from w in pv v ++ kw v w

This is closer to the monadic form, where from :: w → v resolves the difficulty
of contravariance by “contextualizing” the printers. Thus, the first printer is no
longer just “a printer of v”, but “a printer of v extracted from w”. In the context
of constructing a bidirectional parser, having such a function to hand is not an
unrealistic expectation: recall that when we compose two parsers, typically the
values of the first parser for v are contained within the values returned by the
second parser for w, thus a notion of projection can be defined and used here to
recover a v in order to build the corresponding printer compositionally.

Of course, this is still not a monad. However, it suggests a way to generate a
monadic form by putting the printer and the contextualizing projection together,
(w → v, v → String) and fusing them into (w → (v, String)). This has
the advantage of removing the contravariant occurence of v, yielding a data type:

data Printer w v = Printer { print :: w → (v, String) }

If we fix the first parameter type w, then the type Printer w of printers for w
values is indeed monadic, combining a reader monad (for some global read-only
parameter of type w) and a writer monad (for strings), with implementation:

Composing Bidirectional Programs Monadically 153

The printer return v ignores its input and prints nothing. For bind, an input w
is shared by both printers and the resulting strings are concatenated.

We can adapt the contextualisation of a printer by the following operation
which amounts to pre-composition, witnessing the fact that Printer is a con-
travariant functor in its first parameter:

comap :: (w → w’) → Printer w’ v → Printer w v
comap from (Printer f) = Printer (f ◦ from)

2.1 Monadic Biparsers

So far so good: we now have a monadic notion of printers. However, our goal is
to combine parsers and printers in a single type. Since we have two monads, we
use the standard result that a product of monads is a monad, defining biparsers:

By pairing parsers and printers we have to unify their covariant parameters.
When both the type parameters of Biparser are the same it is easy to interpret
this type: a biparser Biparser v v is a parser from strings to v values and
printer from v values to strings. We refer to biparsers of this type as aligned
biparsers. What about when the type parameters differ? A biparser of type
Biparser u v provides a parser from strings to v values and a printer from u
values to strings, but where the printers can compute v values from u values,
i.e., u is some common broader representation which contains relevant v-typed
subcomponents. A biparser Biparser u v can be thought of as printing a certain
subtree v from the broader representation of a syntax tree u.

The corresponding monad for Biparser is the product of the previous two
monad definitions for Parser and Printer, allowing both to be composed sequen-
tially at the same time. To avoid duplication we elide the definition here which
is shown in full in Appendix A of the extended version [36]

We can also lift the previous notion of comap from printers to biparsers, which
gives us a way to contextualize a printer:

comap :: (u → u’) → Biparser u’ v → Biparser u v
comap f (Biparser parse print) = Biparser parse (print ◦ f)

upon :: Biparser u’ v → (u → u’) → Biparser u v
upon = flip comap

In the rest of this section, we use the alias “upon” for comap with flipped
parameters where we read p ‘upon‘ subpart as applying the printer of
p :: Biparser u’ v on a subpart of an input of type u calculated by
subpart :: u → u’, thus yielding a biparser of type Biparser u v.

An example biparser. Let us write
a biparser, string :: Biparser String String, for strings which are prefixed
by their length and a space. For example, the following unit tests should be
true:

154 L. Xia et al.

We start by defining a primitive biparser of single characters as:

A character is parsed by deconstructing the source string into its head and tail.
For brevity, we do not handle the failure associated with an empty string. A
character c is printed as its single-letter string (a singleton list) paired with c.

Next, we define a biparser int for an integer followed by a single space. An
auxiliary biparser digits (on the right) parses an integer one digit at a time into
a string. Note that in Haskell, the do-notation statement
desugars to “char ‘upon’ head >>= λ d → . . . ” which uses (>>=) and a func-
tion binding d in the scope of the rest of the desugared block.

On the right, digits extracts a String consisting of digits followed by a single
space. As a parser, it parses a character (char ‘upon‘ head); if it is a digit
then it continues parsing recursively (digits ‘upon‘ tail) appending the first
character to the result (d : igits). Otherwise, if the parsed character is a space
the parser returns . As a printer, digits expects a non-empty string of the
same format; ‘upon‘ head extracts the first character of the input, then char
prints it and returns it back as d; if it is a digit, then ‘upon‘ tail extracts
the rest of the input to print recursively. If the character is a space, the printer
returns a space and terminates; otherwise (not digit or space) the printer throws
an error.

On the left, the biparser int uses read to convert an input string of digits
(parsed by digits) into an integer, and printedInt to convert an integer to an
output string printed by digits. A safer implementation could return the Maybe
type when parsing but we keep things simple here for now.

After parsing an integer n, we can parse the string following it by iterating n
times the biparser char. This is captured by the replicateBiparser combinator
below, defined recursively like digits but with the termination condition given
by an external parameter. To iterate n times a biparser pv: if , there is
nothing to do and we return the empty list; otherwise for n > 0, we run pv once
to get the head v, and recursively iterate n-1 times to get the tail vs.

Note that although not reflected in its type, replicateBiparser n pv
expects, as a printer, a list l of length n: if , there is nothing to print; if
n > 0, ‘upon‘ head extracts the head of l to print it with pv, and ‘upon‘ tail
extracts its tail, of length n-1, to print it recursively.

Composing Bidirectional Programs Monadically 155

(akin to replicateM from Haskell’s standard library). We can now fulfil our task:

string :: Biparser String String
string = int ‘upon‘ length >>= λn → replicateBiparser n char

Interestingly, if we erase applications of upon, i.e., we substitute every expression
of the form py ‘upon‘ f with py and ignore the second parameter of the types,
we obtain what is essentially the definition of a parser in an idiomatic style for
monadic parsing. This is because ‘upon‘ f is the identity on the parser compo-
nent of Biparser. Thus the biparser code closely resembles standard, idiomatic
monadic parser code but with “annotations” via upon expressing how to apply
the backwards direction of printing to subparts of the parsed string.

Despite its simplicity, the syntax of length-prefixed strings is notably context-
sensitive. Thus the example makes crucial use of the monadic interface for bidi-
rectional programming: a value (the length) must first be extracted to dynam-
ically delimit the string that is parsed next. Context-sensitivity is standard for
parser combinators in contrast with parser generators, e.g., Yacc, and applicative
parsers, which are mostly restricted to context-free languages. By our monadic
BX approach, we can now bring this power to bear on bidirectional parsing.

3 A Unifying Structure: Monadic Profunctors

The biparser examples of the previous section were enabled by both the monadic
structure of Biparser and the comap operation (also called upon, with flipped
arguments). We describe a type as being a monadic profunctor when it has both
a monadic structure and a comap operation (subject to some equations). The
notion of a monadic profunctor is general, but it characterises a key class of
structures for bidirectional programs, which we explain here. Furthermore, we
show a construction of monadic profunctors from pairs of monads which elicits
the necessary structure for monadic bidirectional programming in the style of
the previous section.

Profunctors. In Sect. 2.1, biparsers were defined by a data type with two
type parameters (Biparser u v) which is functorial and monadic in the sec-
ond parameter and contravariantly functorial in the first parameter (provided
by the comap operation). In standard terminology, a two-parameter type p which
is functorial in both its type parameters is called a bifunctor. In Haskell, the term
profunctor has come to mean any bifunctor which is contravariant in the first
type parameter and covariant in the second.1 This differs slightly from the stan-
dard category theory terminology where a profunctor is a bifunctor F : Dop×C →
1 http://hackage.haskell.org//profunctors/docs/Data-Profunctor.html.

http://hackage.haskell.org/ /profunctors/docs/Data-Profunctor.html

156 L. Xia et al.

Set. This corresponds to the Haskell community’s use of the term “profunctor”
if we treat Haskell in an idealised way as the category of sets.

We adopt this programming-oriented terminology, capturing the comap opera-
tion via a class Profunctor. In the preceding section, some uses of comap involved
a partial function, e.g., comap head. We make the possibility of partiality explicit
via the Maybe type, yielding the following definition.

Definition 1. A binary data type is a profunctor if it is a contravariant functor
in its first parameter and covariant functor in its second, with the operation:

class ForallF Functor p ⇒ Profunctor p where
comap :: (u → Maybe u’) → p u’ v → p u v

which should obey two laws:

comap Just = id comap (f >=> g) = comap f ◦ comap g

where (>=>) :: (a → Maybe b) → (b → Maybe c) → (a → Maybe c) com-
poses partial functions (left-to-right), captured by Kleisli arrows of the Maybe
monad.

The constraint ForallF Functor p captures a universally quantified con-
straint [6]: for all types u then p u has an instance of the Functor class.2

The requirement for comap to take partial functions is in response to
the frequent need to restrict the domain of bidirectional transformations. In
combinator-based approaches, combinators typically constrain bidirectional pro-
grams to be bijections, enforcing domain restrictions by construction. Our more
flexible approach requires a way to include such restrictions explicitly, hence
comap.

Since the contravariant part of the bifunctor applies to functions of type
u → Maybe u’, the categorical analogy here is more precisely a profunctor F :
CT

op×C → Set where CT is the Kleisli category of the partiality (Maybe) monad.

Definition 2. A monadic profunctor is a profunctor p (in the sense of
Definition 1) such that p u is a monad for all u. In terms of type class con-
straints, this means there is an instance Profunctor p and for all u there is a
Monad (p u) instance. Thus, we represent monadic profunctors by the following
empty class (which inherits all its methods from its superclasses):

class (Profunctor p, ForallF Monad p) ⇒ Profmonad p

Monadic profunctors must obey the following laws about the interaction between
profunctor and monad operations:

comap f (return y) = return y
comap f (py >>= kz) = comap f py >>= (λ y → comap f (kz y))

2 As of GHC 8.6, the QuantifiedConstraints extension allows universal quantification
in constraints, written as forall u. Functor (p u), but for simplicity we use the
constraint constructor ForallF from the constraints package: http://hackage.haskell.
org/package/constraints.

http://hackage.haskell.org/package/constraints
http://hackage.haskell.org/package/constraints

Composing Bidirectional Programs Monadically 157

(for all f :: u → Maybe v, py :: p v y, kz :: y → p v z). These laws are
equivalent to saying that comap lifts (partial) functions into monad morphisms.
In Haskell, these laws are obtained for free by parametricity [34]. This means
that every contravariant functor and monad is in fact a monadic profunctor,
thus the following universal instance is lawful:

instance (Profunctor p, ForallF Monad p) ⇒ Profmonad p

Corollary 1. Biparsers form a monadic profunctor as there is an instance of
Monad (P u) and Profunctor p satisfying the requisite laws.

Lastly, we introduce a useful piece of terminology (mentioned in the previous
section on biparsers) for describing values of a profunctor of a particular form:

Definition 3. A value p :: P u v of a profunctor P is called aligned if u = v.

3.1 Constructing Monadic Profunctors

Our examples (parsers/printers, lenses, and generators/predicates) share
monadic profunctors as an abstraction, making it possible to write different
kinds of bidirectional transformations monadically. Underlying these definitions
of monadic profunctors is a common structure, which we explain here using
biparsers, and which will be replayed in Sect. 5 for lenses and Sect. 6 for bigen-
erators.

There are two simple ways in which a covariant functor m (resp. a monad)
gives rise to a profunctor (resp. a monadic profunctor). The first is by con-
structing a profunctor in which the contravariant parameter is discarded, i.e.,
p u v = m v; the second is as a function type from the contravariant parameter u
to m v, i.e., p u v = u → m v. These are standard mathematical constructions,
and the latter appears in the Haskell profunctors package with the name Star.
Our core construction is based on these two ways of creating a profunctor, which
we call Fwd and Bwd respectively:

The naming reflects the idea that these two constructions will together capture
a bidirectional transformation and are related by domain-specific round-tripping
properties in our framework. Both Fwd and Bwd map any functor into a profunctor
by the following type class instances:

instance Functor m ⇒ Functor (Fwd m u) where
fmap f (Fwd x) = Fwd (fmap f x)

instance Functor m ⇒ Profunctor (Fwd m) where
comap f (Fwd x) = Fwd x

instance Functor m ⇒ Functor (Bwd m u) where
fmap f (Bwd x) = Bwd ((fmap f) ◦ x)

instance (Monad m, MonadPartial m) ⇒ Profunctor (Bwd m) where
comap f (Bwd x) = Bwd ((toFailure ◦ f) >=> x)

158 L. Xia et al.

There is an additional constraint here for Bwd, enforcing that the monad m is a
member of the MonadPartial class which we define as:

class MonadPartial m where toFailure :: Maybe a → m a

This provides an interface for monads which can internalise a notion of failure,
as captured at the top-level by Maybe in comap.

Furthermore, Fwd and Bwd both map any monad into a monadic profunctor:
instance Monad m

⇒ Monad (Fwd m u) where
return x = Fwd (return x)
Fwd py >>= kz =

Fwd (py >>= unFwd ◦ kz)

instance Monad m
⇒ Monad (Bwd m u) where

return x = Bwd (λ_ → return x)
Bwd my >>= kz = Bwd

(λu → my u >>= (λy → unBwd (kz y) u))

The product of two monadic profunctors is also a monadic profunctor. This
follows from the fact that the product of two monads is a monad and the product
of two contravariant functors is a contravariant functor.

data (:*:) p q u v = (:*:) { pfst :: p u v, psnd :: q u v }

instance (Monad (p u), Monad (q u)) ⇒ Monad ((p :*: q) u) where
return y = return y :*: return y
py :*: qy >>= kz = (py >>= pfst ◦ kz) :*: (qy >>= psnd ◦ kz)

instance (ForallF Functor (p :*: q), Profunctor p, Profunctor q)
⇒ Profunctor (p :*: q) where

comap f (py :*: qy) = comap f py :*: comap f qy

3.2 Deriving Biparsers as Monadic Profunctor Pairs

We can redefine biparsers in terms of the above data types, their instances, and
two standard monads, the state and writer monads:

type State s a = s → (a, s)
type WriterT w m a = m (a, w)
type Biparser = Fwd (State String) :*: Bwd (WriterT Maybe String)

The backward direction composes the writer monad with the Maybe monad using
WriterT (the writer monad transformer, equivalent to composing two monads
with a distributive law). Thus the backwards component of Biparser corresponds
to printers (which may fail) and the forwards component to parsers:

Bwd (WriterT Maybe String) u v ∼= u → Maybe (v, String)
Fwd (State String) u v ∼= String → (v, String)

For the above code to work in Haskell, the State and WriterT types need to be
defined via either a data type or newtype in order to allow type class instances on

Composing Bidirectional Programs Monadically 159

partially applied type constructors. We abuse the notation here for simplicity but
define smart constructors and deconstructors for the actual implementation:3

parse :: Biparser u v → (String → (v, String))
print :: Biparser u v → (u → Maybe (v, String))
mkBP :: (String → (v, String)) → (u → Maybe (v, String)) → Biparser u v

The monadic profunctor definition for biparsers now comes for free from the
constructions in Sect. 3.1 along with the following instance of MonadPartial for
the writer monad transformer with the Maybe monad:

instance Monoid w ⇒ MonadPartial (WriterT w Maybe) where
toFailure Nothing = WriterT Nothing
toFailure (Just a) = WriterT (Just (a, mempty))

In a similar manner, we will use this monadic profunctor construction to
define monadic bidirectional transformations for lenses (Sect. 5) and bigener-
ators (Sect. 6).

The example biparsers from Sect. 2.1 can be easily redefined using the struc-
ture here. For example, the primitive biparser char becomes:

char :: Biparser Char Char
char = mkBP (λ (c : s) → (c, s)) (λ c → Just (c, [c]))

Codec library. The codec library [8] provides a general type for bidirectional
programming isomorphic to our composite type Fwd r :*: Bwd w:

data Codec r w c a = Codec { codecIn :: r a, codecOut :: c → w a }

Though the original codec library was developed independently, its current form
is a result of this work. In particular, we contributed to the package by general-
ising its original type (codecOut :: c → w ()) to the one above, and provided
Monad and Profunctor instances to support monadic bidirectional programming
with codecs.

4 Reasoning about Bidirectionality

So far we have seen how the monadic profunctor structure provides a way to
define biparsers using familiar operations and syntax: monads and do-notation.
This structuring allows both the forwards and backwards components of a
biparser to be defined simultaneously in a single compact definition.

This section studies the interaction of monadic profunctors with the round-
tripping laws that relate the two components of a bidirectional program. For
every bidirectional transformation we can define dual properties: backward round
tripping (going backwards-then-forwards) and forward round tripping (going
forwards-then-backwards). In each BX domain, such properties also capture
3 Smart constructors (and dually smart deconstructors) are just functions that hide

boilerplate code for constructing and deconstructing data types.

160 L. Xia et al.

additional domain-specific information flow inherent to the transformations. We
use biparsers as the running example. We then apply the same principles to our
other examples in Sects. 5 and 6. For brevity, we use Bp as an alias for Biparser.

Definition 4. A biparser p :: Bp u u is backward round tripping if for all x :: u
and s, s’ :: String then (recalling that print p :: u → Maybe (v, String)):

fmap snd (print p x) = Just s =⇒ parse p (s ++ s’) = (x, s’).

That is, if a biparser p when used as a printer (going backwards) on an input
value x produces a string s, then using p as a parser on a string with prefix s
and suffix s’ yields the original input value x and the remaining input s’.

Note that backward round tripping is defined for aligned biparsers (of type
Bp u u) since the same value x is used as both the input of the printer (typed by
the first type parameter of Bp) and as the expected output of the parser (typed
by the second type parameter of Bp).

The dual property is forward round tripping: a source string s is parsed (going
forwards) into some value x which when printed produces the initial source s:

Definition 5. A biparser p :: Bp u u is forward round tripping if for every
x :: u and s :: String we have that:

Proposition 1. The biparser char :: Bp Char Char (Sect. 3.2) is both back-
ward and forward round tripping. Proof by expanding definitions and algebraic
reasoning.

Note, in some applications, forward round tripping is too strong. Here it
requires that every printed value corresponds to at most one source string. This
is often not the case as ASTs typically discard formatting and comments so that
pretty-printed code is lexically different to the original source. However, different
notions of equality enable more reasonable forward round-tripping properties.

Although one can check round-tripping properties of biparsers by expand-
ing their definitions and the underlying monadic profunctor operations, a more
scalable approach is provided if a round-tripping property is compositional with
respect to the monadic profunctor operations, i.e., if these operations preserve
the property. Compositional properties are easier to enforce and check since only
the individual atomic components need round-tripping proofs. Such properties
are then guaranteed “by construction” for programs built from those components.

4.1 Compositional Properties of Monadic Bidirectional
Programming

Let us first formalize compositionality as follows. A property R over a monadic
profunctor P is a family of subsets Ru

v of P u v indexed by types u and v.

Composing Bidirectional Programs Monadically 161

Definition 6. A property R over a monadic profunctor P is compositional if the
monadic profunctor operations are closed over R, i.e., the following conditions
hold for all types u, v, w:

1. For all x :: v, (return x) ∈ Ru
v (comp-return)

2. For all p :: P u v and k :: v → P u w,
(
p ∈ Ru

v
) ∧ (∀v. (k v) ∈ Ru

w
)

=⇒ (p >>= k) ∈ Ru
w (comp-bind)

3. For all p :: P u’ v and f :: u → Maybe u’,

p ∈ Ru’
v =⇒ (comap f p) ∈ Ru

v (comp-comap)

Unfortunately for biparsers, forward and backward round tripping as defined
above are not compositional: return is not backward round tripping and >>=
does not preserve forward round tripping. Furthermore, these two properties are
restricted to biparsers of type Bp u u (i.e., aligned biparsers) but composition-
ality requires that the two type parameters of the monadic profunctor can differ
in the case of comap and (>>=). This suggests that we need to look for more
general properties that capture the full gamut of possible biparsers.

We first focus on backward round tripping. Informally, backward round trip-
ping states that if you print (going backwards) and parse the resulting out-
put (going forwards) then you get back the initial value. However, in a general
biparser p :: Bp u v, the input type of the printer u differs from the output type
of the parser v, so we cannot compare them. But our intent for printers is that
what we actually print is a fragment of u, a fragment which is given as the output
of the printer. By thus comparing the outputs of both the parser and printer,
we obtain the following variant of backward round tripping:

Definition 7. A biparser p :: Bp u v is weak backward round tripping if for all
x :: u, y :: v, and s, s’ :: String then:

print p x = Just (y, s) =⇒ parse p (s ++ s’) = (y, s’)

Removing backward round tripping’s restriction to aligned biparsers and using
the result y :: v of the printer gives us a property that is compositional:

Proposition 2. Weak backward round tripping of biparsers is compositional.

Proposition 3. The primitive biparser char is weak backward round tripping.

Corollary 2. Propositions 2 & 3 imply string is weak backward round trip-
ping.

This property is “weak” as it does not constrain the relationship between the
input u of the printer and its output v. In fact, there is no hope for a compo-
sitional property to do so: the monadic profunctor combinators do not enforce
a relationship between them. However, we can regain compositionality for the
stronger backward round-tripping property by combining the weak composi-
tional property with an additional non-compositional property on the relation-
ship between the printer’s input and output. This relationship is represented

162 L. Xia et al.

by the function that results from ignoring the printed string, which amounts to
removing the main effect of the printer. Thus we call this operation a purifica-
tion:

purify :: forall u v. Bp u v → u → Maybe v
purify p u = fmap fst (print p u)

Ultimately, when a biparser is aligned (p :: Bp u u) we want an input to the
printer to be returned in its output, i.e, purify p should equal λx → Just x.
If this is the case, we recover the original backward round tripping property:

Theorem 1. If p :: P u u is weak backward round tripping, and for all x :: u.
purify p x = Just x, then p is backward round tripping.

Thus, for any biparser p, we can get backward round tripping by proving that
its atomic subcomponents are weak backward round tripping, and proving that
purify p x = Just x. The interesting aspect of the purification condition here
is that it renders irrelevant the domain-specific effects of the biparser, i.e., those
related to manipulating source strings. This considerably simplifies any proof.
Furthermore, the definition of purify is a monadic profunctor homomorphism
which provides a set of equations that can be used to expedite the reasoning.

Definition 8. A monadic profunctor homomorphism between monadic profunc-
tors P and Q is a polymorphic function proj :: P u v → Q u v such that:

proj (comapP f p) ≡ comapQ f (proj p)

proj (p >>=P k) ≡ (proj p) >>=Q (λx → proj (k x))

proj (returnP x) ≡ returnQ x

Proposition 4. The purify :: Bp u v → u → Maybe v operation for
biparsers (above) is a monadic profunctor homomorphism between Bp and the
monadic profunctor PartialFun u v = u → Maybe v.

Corollary 3. (of Theorem 1 with Corollary 2 and Proposition 4) The biparser
string is backward round tripping.

Proof First prove (in Appendix B [36]) the following properties of biparsers
char, int, and replicatedBp :: Int → Bp u v → Bp [u] [v] (writing proj
for purify):

proj char n ≡ Just n (4.1)
proj int n ≡ Just n (4.2)

proj (replicateBp (length xs) p) xs ≡ mapM (proj p) xs (4.3)

Composing Bidirectional Programs Monadically 163

From these and the homomorphism properties we can prove
proj string = Just:

proj string xs

≡ proj (comap length int >>= λn → replicateBp n char) xs

Prop.4 ≡ (comap length (proj int) >>= λn → proj (replicateBp n char)) xs

(4.2) ≡ (comap length Just >>= λn → proj (replicateBp n char)) xs

Def.2 ≡ proj (replicateBp (length xs) char) xs

(4.3) ≡ mapM (proj char) xs

(4.1) ≡ mapM Just xs

{monad} ≡ Just xs

Combining proj string = Just with Corollary 2 (string is weak backward
round tripping) enables Theorem 1, proving that string is backward round
tripping.

The other two core examples in this paper also permit a definition of purify.
We capture the general pattern as follows:

Definition 9. A purifiable monadic profunctor is a monadic profunctor P with
a homomorphism proj from P to the monadic profunctor of partial functions
- → Maybe -. We say that proj p is the pure projection of p.

Definition 10. A pure projection proj p :: u → Maybe v is called the identity
projection when proj p x = Just x for all x :: u.

Here and in Sects. 5 and 6, identity projections enable compositional round-
tripping properties to be derived from more general non-compositional proper-
ties, as seen above for backward round tripping of biparsers.

We have neglected forward round tripping, which is not compositional, not
even in a weakened form. However, we can generalise compositionality with con-
ditions related to injectivity, enabling a generalisation of forward round tripping.
We call the generalised meta-property quasicompositionality.

4.2 Quasicompositionality for Monadic Profunctors

An injective function f : A → B is a function for which there exists a left inverse
f−1 : B → A, i.e., where f−1 ◦ f = id. We can see this pair of functions as
a simple kind of bidirectional program, with a forward round-tripping property
(assuming f is the forwards direction). We can lift the notion of injectivity to
the monadic profunctor setting and capture forward round-tripping properties
that are preserved by the monadic profunctor operations, given some additional
injectivity-like restriction. We first formalise the notion of an injective arrow.

Informally, an injective arrow k :: v → m w produces an output from which
the input can be recalculated:

164 L. Xia et al.

Definition 11. Let m be a monad. A function k :: v → m w is an injective
arrow if there exists k’ :: w → v (the left arrow inverse of k) such that for all
x :: v:

k x >>= λy → return (x, y) ≡ k x >>= λy → return (k’ y, y)

Next, we define quasicompositionality which extends the compositionality
meta-property with the requirement for >>= to be applied to injective arrows:

Definition 12. Let P be a monadic profunctor. A property Ru
v ⊆ P u v indexed

by types u and v is quasicompositional if the following holds

1. For all x :: v, (return x) ∈ Ru
v (qcomp-return)

2. For all p :: P u v, k :: v → P u w, if k is an injective arrow,
(
p ∈ Ru

v
) ∧ (∀v. (k v) ∈ Ru

w
)

=⇒ (p >>= k) ∈ Ru
w (qcomp-bind)

3. For all p :: P u’ v, f :: u → Maybe u’,

p ∈ Ru’
v ∧ =⇒ (comap f p) ∈ Ru

w (qcomp-comap)

We now formulate a weakening of forward round tripping. As with weak back-
ward round tripping, we rely on the idea that the printer outputs both a string
and the value that was printed, so that we need to compare the outputs of both
the parser and the printer, as opposed to comparing the output of the parser
with the input of the printer as in (strong) forward round tripping. If running the
parser component of a biparser on a string s01 yields a value y and a remaining
string s1, and the printer outputs that same value y along with a string s0, then
s0 is the prefix of s01 that was consumed by the parser, i.e., s01 = s0 ++ s1.

Definition 13. A biparser p : Bp u v is weak forward round tripping if for all
x :: u, y :: v, and s0, s1, s01 :: String then:

parse p s01 = (y, s1) ∧ print p x = Just (y, s0) =⇒ s01 = s0 ++ s1

Proposition 5. Weak forward round tripping is quasicompositional.

Proof. We sketch the qcomp-bind case, where p = (m >>= k) for some m and k
that are weak forward roundtripping. From parse (m >>= k) s01 = (y, s1),
it follows that there
exists z, s such that parse m s01 = (z, s) and parse (k z) s = (y, s1). Sim-
ilarly print (m >>= k) x = Just (y, s0) implies there exists z’, s0’ such that
print m x = Just (z’, s0’) and print (k z’) x = Just (y, s1’) and s0 =
s0’ ++ s1’. Because k is an injective arrow, we have z = z’ (see appendix).
We then use the assumption that m and k are weak forward roundtripping on
m and on k a, and deduce that s01 = s0’ ++ s and s = s1’ ++ s1 therefore
s01 = s0 ++ s1.

Proposition 6. The char biparser is weak forward round tripping.

Composing Bidirectional Programs Monadically 165

Corollary 4. Propositions 5 and 6 imply that string is weak forward round
tripping if we restrict the parser to inputs whose digits do not contain redundant
leading zeros.

Proof. All of the right operands of >>= in the definition of string are injective
arrows, apart from λds → return (read ds) at the end of the auxiliary int
biparser. Indeed, the read function is not injective since multiple strings may
parse to the same integer: . But the pre-condition to the
proposition (no redundant leading zero digits) restricts the input strings so that
read is injective. The rest of the proof is a corollary of Propositions 5 and 6.

Thus, quasicompositionality gives us scalable reasoning for weak forward
round tripping, which is by construction for biparsers: we just need to prove this
property for individual atomic biparsers. Similarly to backward round tripping,
we can prove forward round tripping by combining weak forward round tripping
with the identity projection property:

Theorem 2. If p :: P u u is weak forward round-tripping, and for all x :: u,
purify p x = Just x, then p is forward round tripping.

Corollary 5. The biparser string is forward round tripping by the above theo-
rem (with identity projection shown in the proof of Corollary 3) and Corollary 4.

In summary, for any BX we can consider two round-tripping properties: forwards-
then-backwards and backwards-then-forwards, called just forward and backward
here respectively. Whilst combinator-based approaches can guarantee round-
tripping by construction, we have made a trade-off to get greater expressivity in
the monadic approach. However, we regain the ability to reason about bidirec-
tional transformations in a manageable, scalable way if round-tripping properties
are compositional. Unfortunately, due to the monadic profunctor structuring,
this tends not to be the case. Instead, weakened round-tripping properties can
be compositional or quasicompositional (adding injectivity). In such cases, we
recover the stronger property by proving a simple property on aligned transfor-
mations: that the backwards direction faithfully reproduces its input as its out-
put (identity projection). Appendix C in our extended manuscript [36] compares
this reasoning approach to a proof of backwards round tripping for separately
implemented parsers and printers (not using our combined monadic approach).

5 Monadic Bidirectional Programming for Lenses

Lenses are a common object of study in bidirectional programming, comprising
a pair of functions (get : S → V, put : V → S → S) satisfying well-behaved
lens laws shown in Sect. 1. Previously, when considering the monadic structure
of parsers and printers, the starting point was that parsers already have a well-
known monadic structure. The challenge came in finding a reasonable monadic
characterisation for printers that was compatible with the parser monad. In the
end, this construction was expressed by a product of two monadic profunctors

166 L. Xia et al.

Fwd m and Bwd n for monads m and n. For lenses we are in the same position: the
forwards direction (get) is already a monad—the reader monad. The backwards
direction put is not a monad since it is contravariant in its parameter; the same
situation as printers. We can apply the same approach of “monadisation” used
for parsers and printers, giving the following new data type for lenses:

data L s u v = L { get :: s → v, put :: u → s → (v, s) }

The result of put is paired with a covariant parameter v (the result type of get)
in the same way as monadic printers. Instead of mapping a view and a source
to a source, put now maps values of a different type u, which we call a pre-view,
along with a source s into a pair of a view v and source s. This definition can be
structured as a monadic profunctor via a pair of Fwd and Bwd constructions:

type L s = (Fwd (Reader s)) :*: (Bwd (State s))

Thus by the results of Sect. 3, we now have a monadic profunctor characterisation
of lenses that allows us to compose lenses via the monadic interface.

Ideally, get and put should be total, but this is impossible without a way
to restrict the domains. In particular, there is the known problem of “duplica-
tion” [23], where source data may appear more than once in the view, and a
necessary condition for put to be well-behaved is that the duplicates remain
equal amid view updates. This problem is inherent to all bidirectional transfor-
mations, and bidirectional languages have to rule out inconsistent updates of
duplicates either statically [13] or dynamically [23]. To remedy this, we capture
both partiality of get and a predicate on sources in put for additional dynamic
checking. This is provided by the following Fwd and Bwd monadic profunctors:

Going forwards, getting a view v from a source s may fail if there is no view for
the current source. Going backwards, putting a pre-view u updates some source s
(via the state transformer StateT s), but with some further structure returned,
provided by WriterT (s → Bool) Maybe (similar to the writer transformer used
for biparsers, Sect. 3.2). The Maybe here captures the possibility that put can
fail. The WriterT (s → Bool) structure provides a predicate which detects the
“duplication” issue mentioned earlier. Informally, the predicate can be used to
check that previously modified locations in the source are not modified again.
For example, if a lens has a source made up of a bit vector, and a put sets bit i
to 1, then the returned predicate will return True for all bit vectors where bit i is

Composing Bidirectional Programs Monadically 167

1, and False otherwise. This predicate can then be used to test whether further
put operations on the source have modified bit i.

Similarly to biparsers, a pre-view u can be understood as containing the view
v that is to be merged with the source, and which is returned with the updated
source. Ultimately, we wish to form lenses of matching input and output types
(i.e. L s v v) satisfying the standard lens well-behavedness laws, modulo explicit
management of partiality via Maybe and testing for conflicts via the predicate:

put l x s = Just ((_, s’), p’) ∧ p’ s’ =⇒ get l s’ = Just x (L-PutGet)
get l s = Just x =⇒ put l x s = Just ((_, s), _) (L-GetPut)

L-PutGet and L-GetPut are backward and forward round tripping respectively.
Some lenses, such as the later example, are not defined for all views. In that case
we may say that the lens is backward/forward round tripping in some subset
P ⊆ u when the above properties only hold when x is an element of P.

For every source type s, the lens type L s is automatically a monadic profunc-
tor by its definition as the pairing of Fwd and Bwd (Sect. 3.1), and the following
instance of MonadPartial for handling failure and instance of Monoid to satisfy
the requirements of the writer monad:

instance MonadPartial (StateT s (WriterT (s → Bool) Maybe)) where
toFailure Nothing = StateT (λ_ → WriterT Nothing)
toFailure (Just x) = StateT (λs → WriterT (Just ((x , s), mempty)))

instance Monoid (s → Bool) where
mempty = λ_ → True
mappend h j = λs0 → h s0 && j s0

A simple lens example operates on key-value maps. For keys of type Key and
values of type Value, we have the following source type and a simple lens:

The get component of the atKey lens does a lookup of the key k in a map,
producing Maybe of a Value. The put component inserts a value for key k. When
the key already exists, put overwrites its associated value.

Due to our approach, multiple calls to atKey can be composed monadically,
giving a lens that gets/sets multiple key-value pairs at once. The list of keys and
the list of values are passed separately, and are expected to be the same length.

168 L. Xia et al.

We refer interested readers to our implementation [12] for more examples, includ-
ing further examples involving trees.

Round tripping. We apply the reasoning framework of Sect. 4, taking the stan-
dard lens laws as the starting point (neither of which are compositional).

We first weaken backward round tripping to be compositional. Informally,
the property expresses the idea, that if we put some value x in a source s,
resulting in a source s’, then what we get from s’ is x. However two important
changes are needed to adapt to our generalised type of lenses and to ensure
compositionality. First, the value x that was put is now to be found in the output
of put, whereas there is no way to constrain the input of put because its type
v is abstract. Second, by sequentially composing lenses such as in l >>= k, the
output source s’ of put l will be further modified by put (k x), so this round-
tripping property must constrain all potential modifications of s’. In fact, the
predicate p ensures exactly that the view get l has not changed and is still x. It
is not even necessary to refer to s’, which is just one source for which we expect
p to be True.

Definition 14. A lens l :: L s u v is weak backward round tripping if for all
x :: u, y :: v, for all sources s, s’, and for all p :: s → Bool, we have:

put l x s = Just ((y, _), p) ∧ p s’ =⇒ get l s’ = Just y

Theorem 3. Weak backward round tripping is a compositional property.

Again, we complement this weakened version of round tripping with the
notion of purification.

Proposition 7. Our lens type L is a purifiable monadic profunctor (Defini-
tion 9), with a family of pure projections proj s indexed by a source s, defined:

proj :: s → L s u v → (u → Maybe v)
proj s = λl u → fmap (fst ◦ fst) (put l u s)

Theorem 4. If a lens l :: L s u u is weak backward round tripping and has
identity projections on some subset P ⊆ u (i.e., for all s, x then x ∈ P ⇒
proj s l x = Just x) then l is also backward round tripping on all x ∈ P.

To demonstrate, we apply this result to atKeys :: [Key] → L Src [Value] [Value].

Proposition 8. The lens atKey k is weak backward round tripping.

Proposition 9. The lens atKey k has identity projection: proj z (atKey k)=Just.

Our lens atKeys ks is therefore weak backward round tripping by construc-
tion. We now interpret/purify atKeys ks as a partial function, which is actually
the identity function when restricted to lists of the same length as ks.

Composing Bidirectional Programs Monadically 169

Proposition 10. For all vs :: [Value] such that length vs = length ks, and
for all s :: Src then proj s (atKeys ks) vs = Just vs.

Corollary 6. By the above results, atKeys ks :: L Src [Value] [Value] for
all ks is backward round tripping on lists of length length ks.

The other direction, forward round tripping, follows a similar story. We first
restate it as a quasicompositional property.

Definition 15. A lens l :: L s u v is weak forward round tripping if for all
x :: u, y :: v, for all sources s, s’, and for all p :: s → Bool, we have:

get l s = Just y ∧ put l x s = Just ((y, s’), _) =⇒ s = s’

Theorem 5. Weak forward round tripping is a quasicompositional property.

Along with identity projection, this gives the original forward L-GetPut
property.

Theorem 6 If a lens l is weak forward round tripping and has identity projec-
tions on some subset P (i.e., for all s, x then x ∈ P ⇒ proj s l x = Just x)
then l is also forward round tripping on P.

We can thus apply this result to our example (details omitted).

Proposition 11. For all ks, the lens atKeys ks :: L Src [Value] [Value] is
forward round tripping on lists of length length ks.

6 Monadic Bidirectional Programming for Generators

Lastly, we capture the novel notion of bidirectional generators (bigenera-
tors) extending random generators in property-based testing frameworks like
QuickCheck [10] to a bidirectional setting. The forwards direction generates val-
ues conforming to a specification; the backwards direction checks whether values
conform to a predicate. We capture the two together via our monadic profunctor
pair as:

The forwards direction of a bigenerator is a generator, while the backwards
direction is a partial function u → Maybe v. A value G u v represents a subset
of v, where generate is a generator of values in that subset and check maps
pre-views u to members of the generated subset. In the backwards direction,
check g defines a predicate on u, which is true if and only if check g u is Just of
some value. The function toPredicate extracts this predicate from the backward
direction:

170 L. Xia et al.

toPredicate :: G u v → u → Bool
toPredicate g x = case check g x of Just _ → True; Nothing → False

The bigenerator type G is automatically a monadic profunctor due to our con-
struction (Sect. 3). Thus, monad and profunctor instances come for free, modulo
(un)wrapping of constructors and given a trivial instance of MonadPartial:

instance MonadPartial Maybe where toFailure = id

Due to space limitations, we refer readers to Appendix E [36] for an example of
a compositionally-defined bigenerator that produces binary search trees.

Round tripping. A random generator can be interpreted as the set of values it
may generate, while a predicate represents the set of values satisfying it. For a
bigenerator g, we write x ∈ generate g when x is a possible output of the genera-
tor. The generator of a bigenerator g should match its predicate toPredicate g.
This requirement equates to round-tripping properties: a bigenerator is sound if
every value which it can generate satisfies the predicate (forward round tripping);
a bigenerator is complete if every value which satisfies the predicate can be gen-
erated (backward round tripping). Completeness is often more important than
soundness in testing because unsound tests can be filtered out by the predicate,
but completeness determines the potential adequacy of testing.

Definition 16. A bigenerator g :: G u u is complete (backward round tripping)
when toPredicate g x = True implies x ∈ generate g.

Definition 17. A bigenerator g :: G u u is sound (forward round tripping) if
for all x :: u, x ∈ generate g implies that toPredicate g x = True.

Similarly to backward round tripping of biparsers and lenses, completeness can
be split into a compositional weak completeness and a purifiable property.

As before, the compositional weakening of completeness relates the forward
and backward components by their outputs, which have the same type.

Definition 18. A bigenerator g :: G u v is weak-complete when

check g x = Just y =⇒ y ∈ generate g.

Theorem 7. Weak completeness is compositional.

In a separate step, we connect the input of the backward direction, i.e., the
checker, by reasoning directly about its pure projection (via a more general
form of identity projection) which is defined to be the checker itself:

Theorem 8. A bigenerator g :: G u u is complete if it is weak-complete and its
checker satisfies a pure projection property: check g x = Just x’ ⇒ x = x’

Thus to prove completeness of a bigenerator g :: G u u, we first have weak-
completeness by construction, and we can then show that check g is a restriction
of the identity function, interpreting all bigenerators simply as partial functions.

Composing Bidirectional Programs Monadically 171

Considering the other direction, soundness, there is unfortunately no decom-
position into a quasicompositional property and a property on pure projections.
To see why, let bool be a random uniform bigenerator of booleans, then con-
sider for example, comap isTrue bool and comap isTrue (return True), where
isTrue True = Just True and isTrue False = Nothing. Both satisfy any qua-
sicompositional property satisfied by bool, and both have the same pure pro-
jection isTrue, and yet the former is unsound—it can generate False, which is
rejected by isTrue—while the latter is sound. This is not a problem in practice,
as unsoundness, especially in small scale, is inconsequential in testing. But it
does raise an intellectual challenge and an interesting point in the design space,
where ease of reasoning has been traded for greater expressivity in the monadic
approach.

7 Discussion and Related Work

Bidirectional transformations are a widely applicable technique used in many
domains [11]. Among language-based solutions, the lens framework is most influ-
ential [3,4,13,14,24,29]. Broadly speaking, combinators are used as program-
ming constructs with which complex lenses are created by combining simpler
ones. The combinators preserve round tripping, and therefore the resulting pro-
grams are correct by construction. A problem with lens languages is that they
tend to be disconnected from more general programming. Lenses can only be con-
structed by very specialised combinators and are not subject to existing abstrac-
tion mechanisms. Our approach allows bidirectional transformations to be built
using standard components of functional programming, and gives a reasoning
framework for studying compositionality of round-tripping properties.

The framework of applicative lenses [18] uses a function representation of
lenses to lift the point-free restriction of the combinator-based languages, and
enables bidirectional programming with explicit recursion and pattern matching.
Note that the use of “applicative” in applicative lenses refers to the transitional
sense of programming with λ-abstractions and functional applications, which is
not directly related to applicative functors. In a subsequent work, the authors
developed a language known as HOBiT [20], which went further in featuring
proper binding of variables. Despite the success in supporting λ-abstractions and
function applications in programming bidirectional transformations, none of the
languages have explored advanced patterns such as monadic programming.

The work on monadic lenses [1] investigates lenses with effects. For instance,
a “put” could require additional input to resolve conflicts. Representing effects
with monads helps reformulate the laws of round-tripping. In contrast, we made
the type of lenses itself a monad, and showed how they can be composed monad-
ically. Our method is applicable to monadic lenses, yielding what one might call
monadic monadic lenses: monadically composable lenses with monadic effects.
We conjecture that laws for monadic lenses can be adapted to this setting with
similar compositionality properties, reusing our reasoning framework.

Other work leverages profunctors for bidirectionality. Notably, a Profunc-
tor optic [26] between a source type s and a view type v is a function of type

172 L. Xia et al.

p v v → p s s, for an abstract profunctor p. Profunctor optics and our monadic
profunctors offer orthogonal composition patterns: profunctor optics can be
composed “vertically” using function composition, whereas monadic profunctor
composition is “horizontal” providing sequential composition. In both cases, com-
position in the other direction can only be obtained by breaking the abstraction.

It is folklore in the Haskell community that profunctors can be combined
with applicative functors [22]. The pattern is sometimes called a monoidal pro-
functor. The codec library [8] mentioned in Sect. 3 prominently features two
applications of this applicative programming style: binary serialisation (a form
of parsing/printing) and conversion to and from JSON structures (analogous
to lenses above). Opaleye [28], an EDSL of SQL queries for Postgres databases,
uses an interface of monoidal profunctors to implement generic operations such as
transformations between Haskell datatypes and database queries and responses.

Our framework adapts gracefully to applicative programming, a restricted
form of monadic programming. By separating the input type from the output
type, we can reuse the existing interface of applicative functors without modifi-
cation. Besides our generalisation to monads, purification and verifying round-
tripping properties via (quasi)compositionality are novel in our framework.

Rendel and Ostermann proposed an interface for programming parsers and
printers together [30], but they were unable to reuse the existing structure of
Functor, Applicative and Alternative classes (because of the need to han-
dle types that are both covariant and contravariant), and had to reproduce the
entire hierarchy separately. In contrast, our approach reuses the standard type
class hierarchy, further extending the expressive power of bidirectional program-
ming in Haskell. FliPpr [17,19] is an invertible language that generates a parser
from a definition of a pretty printer. In this paper, our biparser definitions are
more similar to those of parsers than printers. This makes sense as it has been
established that many parsers are monadic. Similar to the case of HOBiT, there
is no discussion of monadic programming in the FliPpr work.

Previous approaches to unifying random generators and predicates mostly
focused on deriving generators from predicates. One general technique evaluates
predicates lazily to drive generation (random or enumerative) [7,9], but one loses
control over the resulting distribution of generated values. Luck [15] is a domain-
specific language blending narrowing and constraint solving to specify generators
as predicates with user-provided annotations to control the probability distribu-
tion. In contrast, our programs can be viewed as generators annotated with left
inverses with which to derive predicates. This reversed perspective comes with
trade-offs: high-level properties would be more naturally expressed in a declara-
tive language of predicates, whereas it is a priori more convenient to implement
complex generation strategies in a specialised framework for random generators.

Conclusions. This paper advances the expressive power of bidirectional program-
ming; we showed that the classic bidirectional patterns of parsers/printers and
lenses can be restructured in terms of monadic profunctors to provide sequential
composition, with associated reasoning techniques. This opens up a new area
in the design of embedded domain-specific languages for BX programming, that

Composing Bidirectional Programs Monadically 173

does not restrict programmers to stylised interfaces. Our example of bigenera-
tors broadened the scope of BX programming from transformations (converting
between two data representations) to non-transformational applications.

To demonstrate the applicability of our approach to real code, we have devel-
oped two bidirectional libraries [12], one extending the attoparsec monadic parser
combinator library to biparsers and one extending QuickCheck to bigenerators.
One area for further work is studying biparsers with lookahead. Currently looka-
head can be expressed in our extended attoparsec, but understanding its inter-
action with (quasi)compositional round-tripping is further work.

However, this is not the final word on sequentially composable BX programs.
In all three applications, round-tripping properties are similarly split into weak
round tripping, which is weaker than the original property but compositional,
and purifiable, which is equationally friendly. An open question is whether an
underlying structure can be formalised, perhaps based on an adjunction model,
that captures bidirectionality even more concretely than monadic profunctors.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
The second author was supported partly by EPSRC grant EP/M026124/1.

References

1. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Reflections on
monadic lenses. In: Lindley, S., McBride, C., Trinder, P., Sannella, D. (eds.) A List
of Successes That Can Change the World. LNCS, vol. 9600, pp. 1–31. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30936-1_1

2. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981)

3. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: International Conference on Functional
Programming (ICFP), pp. 193–204. ACM (2010)

4. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: Symposium on Principles of Programming
Languages (POPL), pp. 407–419. ACM (2008)

5. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updat-
able views. In: Symposium on Principles of Database Systems (PODS), pp. 338–
347. ACM (2006)

6. Bottu, G.-J., Karachalias, G., Schrijvers, T., Oliveira, B.C.d.S., Wadler, P.: Quan-
tified class constraints. In: International Symposium on Haskell (Haskell), pp. 148–
161. ACM (2017)

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on
Java predicates. In: International Symposium on Software Testing and Analysis
(ISSTA), pp. 123–133. ACM (2002)

8. Chilton, P.: Codec library. https://hackage.haskell.org/package/codec
9. Claessen, K., Duregård, J., Palka, M.H.: Generating constrained random data with

uniform distribution. J. Funct. Program. 25 (2015). Article e8
10. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing

of Haskell programs. In: International Conference on Functional Programming
(ICFP), pp. 268–279. ACM (2000)

https://doi.org/10.1007/978-3-319-30936-1_1
https://hackage.haskell.org/package/codec

174 L. Xia et al.

11. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02408-5_19

12. Xia et al.: Further implementations, November 2018. https://github.com/Lysxia/
profunctor-monad

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: a linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007)

14. Foster, N., Matsuda, K., Voigtländer, J.: Three complementary approaches to bidi-
rectional programming. In: SSGIP, pp. 1–46 (2010)

15. Lampropoulos, L., Gallois-Wong, D., Hritcu, C., Hughes, J., Pierce, B.C., Xia,
L.-y.: Beginner’s luck: a language for property-based generators. In: Symposium
on Principles of Programming Languages (POPL), pp. 114–129. ACM (2017)

16. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
International Conference on Functional Programming (ICFP), pp. 47–58. ACM
(2007)

17. Matsuda, K., Wang, M.: FliPpr: a prettier invertible printing system. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 101–120. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_6

18. Matsuda, K., Wang, M.: Applicative bidirectional programming with lenses. In:
International Conference on Functional Programming (ICFP), pp. 62–74. ACM
(2015)

19. Matsuda, K., Wang, M.: Embedding invertible languages with binders: a case of the
FliPpr language. In: International Symposium on Haskell (Haskell), pp. 158–171.
ACM (2018)

20. Matsuda, K., Wang, M.: HOBiT: programming lenses without using lens combi-
nators. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 31–59. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_2

21. Mayer, M., Kuncak, V., Chugh, R.: Bidirectional evaluation with direct manipu-
lation. Proc. ACM Program. Lang. 2(OOPSLA), 127:1–127:28 (2018)

22. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

23. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30477-7_2

24. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “Putback” style bidirec-
tional programming. In: Workshop on Partial Evaluation and Program Manipula-
tion (PEPM), pp. 39–50. ACM (2014)

25. Pacheco, H., Zan, T., Hu, Z.: BiFluX: a bidirectional functional update language
for XML. In: International Symposium on Principles and Practice of Declarative
Programming (PPDP). ACM (2014)

26. Pickering, M., Gibbons, J., Wu, N.: Profunctor optics: modular data accessors. Art
Sci. Eng. Program. 1(2) (2017). Article 7

27. Pombrio, J., Krishnamurthi, S.: Resugaring: lifting evaluation sequences through
syntactic sugar. In: Programming Language Design and Implementation (PLDI).
ACM (2014)

28. Purely Agile. Opaleye library. https://hackage.haskell.org/package/opaleye
29. Rajkumar, R., Lindley, S., Foster, N., Cheney, J.: Lenses for web data. In: Inter-

national Workshop on Bidirectional Transformations (BX) (2013)

https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://github.com/Lysxia/profunctor-monad
https://github.com/Lysxia/profunctor-monad
https://doi.org/10.1007/978-3-642-37036-6_6
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-540-30477-7_2
https://hackage.haskell.org/package/opaleye

Composing Bidirectional Programs Monadically 175

30. Rendel, T., Ostermann, K.: Invertible syntax descriptions: unifying parsing and
pretty-printing. In: International Symposium on Haskell (Haskell), pp. 1–12 (2010)

31. Schuster, C., Disney, T., Flanagan, C.: Macrofication: refactoring by reverse macro
expansion. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 644–671.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_25

32. Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3_10

33. Voigtländer, J.: Bidirectionalization for free! (Pearl). In: Symposium on Principles
of Programming Languages (POPL), pp. 165–176. ACM (2009)

34. Wadler, P.: Theorems for free! In: FPCA, pp. 347–359 (1989)
35. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5_2

36. Xia, L.-Y., Orchard, D., Wang, M.: Composing bidirectional programs monadically
(with appendices) (2019). https://arxiv.org/abs/1902.06950

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49498-1_25
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://arxiv.org/abs/1902.06950
http://creativecommons.org/licenses/by/4.0/

Counters in Kappa: Semantics,
Simulation, and Static Analysis

Pierre Boutillier1, Ioana Cristescu2, and Jérôme Feret3(B)

1 Harvard Medical School, Boston, USA
Pierre Boutillier@hms.harvard.edu

2 Inria Rennes - Bretagne Atlantique, Rennes, France
ioana-domnina.cristescu@inria.fr

3 DI-ENS (INRIA/ÉNS/CNRS/PSL*), Paris, France
feret@ens.fr

Abstract. Site-graph rewriting languages, such as Kappa or BNGL,
offer parsimonious ways to describe highly combinatorial systems of
mechanistic interactions among proteins. These systems may be then
simulated efficiently. Yet, the modeling mechanisms that involve counting
(a number of phosphorylated sites for instance) require an exponential
number of rules in Kappa. In BNGL, updating the set of the potential
applications of rules in the current state of the system comes down to
the sub-graph isomorphism problem (which is NP-complete).

In this paper, we extend Kappa to deal both parsimoniously and effi-
ciently with counters. We propose a single push-out semantics for Kappa
with counters. We show how to compile Kappa with counters into Kappa
without counters (without requiring an exponential number of rules).
We design a static analysis, based on affine relationships, to identify the
meaning of counters and bound their ranges accordingly.

1 Introduction

Site-graph rewriting is a paradigm for modeling mechanistic interactions among
proteins. In Kappa [18] and BNGL [3,40], rewriting rules describe how instances
of proteins may bind and unbind, and how each protein may activate the inter-
action sites of each others, by changing their properties. Sophisticated signal-
ing cascades may be described. The long term behavior of such models usu-
ally emerges from competition against shared-resources, proteins with multiple-
phosphorylation sites, scaffolds, separation of scales, and non-linear feedback
loops.

It is often desirable to add more structure to states in order to describe
generic mechanisms more compactly. In this paper, we consider extending Kappa
with counters with numerical values. As opposed to the properties of classical
Kappa sites, which offer no structure, counters allow for expressive preconditions
(such as the value of a counter is less than 2), but also for generic update
functions (such as incrementing or decrementing the current value of a counter
by a given value independently of its current value). Without counters, such
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 176–204, 2019.
https://doi.org/10.1007/978-3-030-17184-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_7

Counters in Kappa: Semantics, Simulation, and Static Analysis 177

Fig. 1. Three representations for the phosphorylation of a site. We assume that the
rate of phosphorylation of a site in a protein in which exactly k sites are already
phosphorylated, is equal to the value f(k). The function f is left as a parameter of
the model. In (a), we do not use counters. In order to get the number of sites that are
already phosphorylated, we have to document the state of all the sites of the protein.
In this rule, there are exactly 2 sites already phosphorylated, thus the rate of the
rule is equal to f(2). In (b), we use a counter to encode the number of sites already
phosphorylated. The variable k, that is introduced by the notation @k, contains the
number of sites that are phosphorylated before the application of the rule. Thus, the
rate of the rule is equal to f(k). In the right hand side, the notation +1 indicates that
the counter is incremented at each application of the rule. The rule in (b) summarizes
exactly 8 rules of the kind of the one in (a) (it defines the phosphorylation of the site
a regardless of the states of the three other phosphorylation sites). In (c), we abstract
away the sites and keep only the counter. The notation @k binds the variable k to the
value of the counter. The left hand side also indicates that the rule may be applied
only if the value of the counter is less than or equal to 3 (so that at least one site is not
already phosphorylated). The right hand side specifies that the value of the counter
is incremented at each application of the rule and that after the application of a rule,
the value of the counter is always less than or equal to 4. The rule in (c) stands for 32
rules of the kind of the one in (a) (it depends neither on which site is phosphorylated,
nor on the state of the three other sites).

update functions would require one rule per potential value of the counter. This
raises efficiency issues for the simulation and also blurs any potential reasoning
on the causality of the system.

However adding counters cannot be done without consequences. The effi-
ciency of Kappa simulations mainly relies on two ingredients. Firstly, Kappa
graphs are rigid [16,39]: an embedding from a connected site-graph into a site-
graph, when it exists, is fully determined by the image of one node. Thanks to
rigidity, searching for the occurrences of a sub-graph into another graph (up-to
isomorphism) may be done without backtracking (once a first node has been
placed), and embeddings can be described in memory very concisely. Secondly,
the representation of the set of potential applications of rules relies on a categori-
cal construction [6] that optimizes sharing among patterns. Yet this construction
cannot cope with the more expressive patterns that involve counters. In order
to efficiently simulate models with counters, we need an efficient encoding that
preserves rigidity and that use classical site-graph patterns.

Let us consider a case study so as to illustrate the need for counters in Kappa.
This example is inspired from the behavior of the protein KaiC that is involved in
the synchronization of the proteins in the circadian clock. We consider one kind
of protein with n identified sites that can get phosphorylated. Indeed, n is equal

178 P. Boutillier et al.

to 6 in the protein KaiC . We take n equal to 4 to make graphical representation
lighter. We will make n diverge towards the infinity so as to empirically estimate
the combinatorial complexity of several encoding schemes.

The rate of phosphorylation/dephosphorylation of each site, depends on the
number of sites that are already phosphorylated. In Fig. 1(a), we provide the
example of a rule that phosphorylates the site a of the protein, assuming that
the sites b and c are already phosphorylated and that the site d is not. Proteins
are depicted as rectangles. Sites are depicted clockwise from the site a to the
site d starting at the top left corner of the protein. Phosphorylation states are
depicted with a black mark when the site is phosphorylated, and with a white
mark otherwise. To fully encode this model in Kappa, we would require n · 2n

rules. Indeed, we need to decide whether this is a phosphorylation or a dephos-
phorylation (2 possibilities), then on which site to apply the transformation (n
possibilities), then what the state of the other sites is (2n−1 possibilities). This
combinatorial complexity may be reduced by the means of counters. We con-
sider a fresh site (this site is depicted on the right of the protein) and we assume
that this site takes numerical values. Writing each rule carefully, we can enforce
that the value of this site is always equal to the number of the sites that are
phosphorylated in the protein instance. Thanks to this invariant, describing our
model requires 2·n rules according to whether we describe a phosphorylation
or a dephosphorylation (2 possibilities) and to which site the transformation is
applied (n possibilities). An example of rule for the phosphorylation of the site a
is given in Fig. 1(b). The notation @k assigns the value of the counter before the
application of the rule to the variable k. Then the rate of the rule may depend
on the value of k. This way, we can make the rate of phosphorylation depend on
the number of sites already phosphorylated in the protein. Since there are only
n sites that may be phosphorylated, it is straightforward to see that the counter
may range only between the values 0 and n.

If only the number of phosphorylated sites matters, we can go even further:
we need just one counter and two rules, one for phosphorylating a new site
(e. g. see Fig. 1(c)) and one for dephosphorylating it. The value of the counter
is no longer related explicitly to a number of phosphorylated sites, thus we need
another way to specify that the value of the counter is bounded. We do this, by
specifying in the precondition of the rule that the phosphorylation rule may be
applied only if the value of the counter is less or equal to n − 1, which entails
that the value of the counter may range only between the values 0 and n.

Not only parsimonious description of the mechanistic interactions in a model
eases the process of writing a model, enhances readability and leads to more
efficient simulation, but also it may provide better grain of observation of the
system behavior. In Fig. 2, we illustrate this by looking at three causal traces
that denote the same execution, but for three different encodings. Intuitively,
causal traces [14,15] are inspired by event structures [43]. They describe sets
of traces seen up to permutation of concurrent computation steps. The level of
representation for the potential configurations of each protein impacts the way
causality is defined, because what is tested in rules depends on the representation

Counters in Kappa: Semantics, Simulation, and Static Analysis 179

level. In our case study, the phosphorylation of each site is intuitively causally
independent: one site may be phosphorylated whatever the state of the other
sites is. Without counters, the only way to specify that the rate of phosphoryla-
tion depends on the number of the sites that are already phosphorylated, is to
detail the state of every site of the protein in the precondition of the rule. This
induces spurious causal relations (e. g. see Fig. 2(a)). Utilizing counters relaxes
this constraint. However it is important to equip counters with arithmetic. With-
out arithmetic, a rule may only set the value of a counter to a constant value.
Thus for implementing counter increment, rules have to enumerate the potential
values of the counter before their applications, and set the value of this counter
accordingly. This induces again spurious causal relations (e. g. see Fig. 2(b)).
With arithmetic, incrementing counters becomes a generic operation that may
be applied independently of the current value of the counter. As a result the
phosphorylation of the four sites can be seen as causally independent (e. g. see
Fig. 2(c)). This faithfully represents the fact that the phosphorylation of the four
sites may happen in arbitrary order.

Contribution. Now we describe the main contributions of this paper.
In Sect. 2, we formalize a single push-out (SPO) semantics for Kappa with

counters. Having a categorical framework dealing with counters, as opposed to
implementing counters as syntactic sugar, is important. Firstly, this semantics
will serve as a reference for the formal specification of the behavior of coun-
ters. Secondly, the categorical setting of Kappa provides efficient ways to define
causality [14,15], symmetries [25], and some sound symbolic reasonings on the
behavior of the number of occurrences of patterns [1,26] that are used in model
reduction. Including counters in the categorical semantics of Kappa allows for
extending the definition of these concepts to Kappa with counters for free.

Yet different encodings of counters may be necessary to extend other tools for
Kappa. In Sect. 3, we propose a couple of translations from Kappa with counters
into Kappa without counters. The goal is to simulate models with counters effi-
ciently without modifying the implementation of the Kappa simulator, KaSim
[17]. The first encoding requires counters to be bounded from below and it sup-
ports only two kinds of preconditions over counters: a rule may require the value
of a counter to be equal to a given value, or to be greater than a given value.
Requiring the value of a counter to be less than a given value is not supported.
The second encoding supports equality and inequality (in both directions) tests.
But it requires the value of each counter to be bounded also from above.

Static analysis is needed not only to prove these requirements, but also to
retrieve the meaning of counters. In Sect. 4, we introduce a generic abstract
interpretation framework [9] to infer the properties of reachable states of a model.
This framework is parametric with respect to a class of properties. In Sect. 5, we
instantiate this framework with a relational numerical analysis aiming at relating
the value of each counter to its interpretation with respect to the state of the
other sites. This is used to detect and prove bounds on the range of counters.

180 P. Boutillier et al.

Fig. 2. Three causal traces. Each causal trace is made of a set of partially ordered
computation steps. Roughly speaking, a computation step precedes another one, if
the former is necessary to perform the later. Each computation step is denoted as an
arrow labeled with the rule that implements it. In (a), counters are not used. Every
rule tests the full configuration of the protein. At this level of representation, the k-
th phosphorylation causally precedes the k + 1-th one, whatever the order in which
the sites have been phosphorylated. In (b), an additional site is used to record the
number of phosphorylated sites in its internal state. With this encoding, the number
of phosphorylated sites cannot be incremented without testing explicitly the internal
state of the additional site. As a consequence, here again, at this level of representa-
tion, each phosphorylation causally depends on the previous one. In (c), we use the
expressiveness of arithmetic. We use generic rules to increment the counter regardless
of its current value. Hence, at this level of representation, the phosphorylation of the
four sites become independent, which flatten the causal trace.

Related Works. Many modeling languages support arbitrary data-types. In
Spatial-Kappa [41], counters encode the discrete position of agents. More gen-
erally, in Chromar [29] and in colored Petri nets [30,35], agents may be tagged
with values in arbitrary auxiliary programming languages. In ML-Rules [28],
agents with attributes continuously diffuse within compartments and collide to
interact.

We have different motivations. Our goal is to enrich the state of proteins
with some redundant information, so as to reduce the number of rules that are
necessary to describe their mechanistic interactions. Also we want to avoid too
expressive data-types, which could not be integrated within simulation, causal-
ity analysis, and static analysis tools, without altering their performance. For
instance, analysis of colored Petri nets usually relies on unfolding them into
classical ones. Unfolding rule sets into classical ones does not scale because the

Counters in Kappa: Semantics, Simulation, and Static Analysis 181

number of rules would become intractable. Thus we need tools which deal directly
with counters.

An encoding of two-counter machines has been proposed to show that most
problems in Kappa are undecidable [19,34]. We represent counters the same way
in our first encoding, but we provide atomic implementation for more primitives.

The number of isomorphic classes of connected components that may occur in
Kappa models during simulation is usually huge (if not infinite), which prevents
from using agent-centric approaches [4]. For instance, one of the first non-toy
model written in Kappa was involving more than 1019 kinds of bio-molecular
complexes [16,26]. Kappa follows a rule-centric approach which allows for the
description and the execution of models independently from the number of poten-
tial complexes. Also, Kappa disallows to describe diffusion of molecules. Instead
the state of the system is assumed to satisfy the well-mixed assumption. This
provides efficient ways to represent and update the distribution of potential com-
putation steps, along a simulation [6,17].

Equivalent sites [3] or hyperlinks [31] offer promising solutions to extend the
decision procedures to extract minimal causal traces in the case of counters, but
the rigidity of graphs is lost. Our encodings rely neither on the use of equivalent
sites, nor on expanding the rules into more refined and more numerous ones.
Hence our encodings preserve the efficiency of the simulation.

Our analysis is based on the use of affine relationships [32]. It relates counter
values to the state of the other variables. Such relationships look like the ones
that help understanding and proving the correctness of semaphores [20,21]. We
use the decision procedure that is described in [23,24] to deduce bounds on the
values of counters from the affine relationships. The cost of each atomic com-
putation is cubic with respect to the number of variables. Abstract multi-sets
[27,38] may succeed in expressing the properties of interest, but they require a
parameter setting a bound on the values that can abstract precisely. In practice,
their time-cost is exponential as soon as this bound is not chosen big enough.
Our abstraction has an infinite height. It uses widening [11] and reduction [12]
to discover the bounds of interest automatically. Octagons [36,37] have a cubic
complexity, but they cannot express the properties involving more than two vari-
ables which are required in our context. Polyhedra [13] express all the properties
needed for an exponential time-cost in practice.

2 Kappa

In this section, we enrich the syntax and the operational semantics of Kappa so
as to cope with counters. We focus on the single push-out (SPO) semantics.

2.1 Signature

Firstly we define the signature of a model.

Definition 1 (signature). The signature of a model is defined as a tuple Σ =
(Σag, Σsite, Σint, Σ

int
ag-st, Σ

lnk
ag-st, Σ

$
ag-st,Prop$,Update$) where:

182 P. Boutillier et al.

1. Σag is a finite set of agent types,
2. Σsite is a finite set of site identifiers,
3. Σint is a finite set of internal state identifiers,
4. Σlnk

ag-st, Σint
ag-st, and Σ$

ag-st are three site maps (from Σag into ℘(Σsite))
5. Prop$ is a potentially infinite set of non-empty subsets of Z,
6. Update$ is a potentially infinite set of functions from Z to Z containing the

identity function.

For every G ∈ Prop$, we assume that for every function f ∈ Update$, the set
{f(k) | k ∈ G} belongs to the set Prop$, and that for every element k ∈ G, the
set {k} belongs to the set Prop$ as well.

Agent types in Σag denote the agents of interest, the different kinds of pro-
teins for instance. A site identifier in Σsite represents an identified locus for a
capability of interaction. Each agent type A ∈ Σag is associated with a set of sites
Σint

ag-st(A) with an internal state (i.e. a property), a set of sites Σlnk
ag-st(A) which

may be linked, and a set of sites Σ$
ag-st(A) with a counter. We assume without

any loss of generality that the three sets Σlnk
ag-st(A), Σint

ag-st(A), and Σ$
ag-st(A) are

disjoint pairwise. The set Prop$ contains the set of valid conditions that may be
checked on the value of counters, whereas the set Update$ contains all the pos-
sible update functions for the value of counters. We assume that every singleton
that is included in a valid condition is a valid condition as well. In this way, a
valid condition may be refined to a fully specified value. Additionally, the image
of a valid condition is required to be valid, so that the post-condition obtained
by applying an update function to a valid precondition, is valid as well.

Example 1 (running example). We define the signature for our case study as
the tuple (Σag, Σsite, Σint, Σ

int
ag-st, Σ

lnk
ag-st, Σ

$
ag-st,Prop$,Update$) where:

1. Σag := {P};
2. Σsite := {a, b, c, d, x};
3. Σint := {◦, •};
4. Σint

ag-st := [P �→ {a, b, c, d}];
5. Σlnk

ag-st := [P �→ ∅];
6. Σ$

ag-st := [P �→ {x}];
7. Prop$ is the set of all the convex parts of Z;
8. Update$ contains the function mapping each integer n ∈ Z to its successor,

and the function mapping each integer n ∈ Z to its predecessor.

The agent type P denotes the only kind of proteins. It has four sites a, b, c, d
carrying an internal state and one site x carrying a counter. ��

Until the rest of the paper, we assume given a signature Σ.

2.2 Site-Graphs

Site-graphs describe both patterns and chemical mixtures. Their nodes are typed
agents with some sites which may carry internal and binding states, and counters.

Counters in Kappa: Semantics, Simulation, and Static Analysis 183

Fig. 3. Four site-graphs G1, G2, G3, and G4.

Definition 2 (site-graph). A site-graph is a tuple G = (A, type,S,L, pκ, cκ)
where:

1. A is a finite set of agents,
2. type : A → Σag is a function mapping each agent to its type,
3. S is a set of sites satisfying the following property:

S ⊆ {(n, i) | n ∈ A, i ∈ Σag-st(type(n))},
4. L maps the set:

{(n, i) ∈ S | i ∈ Σlnk
ag-st(type(n))}

to the set:

{(n, i) ∈ S | i ∈ Σlnk
ag-st(type(n))} ∪ {�,−},

such that:
(a) for any site (n, i) ∈ S, we have L(n, i) �= (n, i);
(b) for any two sites (n, i), (n′, i′) ∈ S, we have (n′, i′) = L(n, i) if and only

if (n, i) = L(n′, i′);
5. pκ maps the set {(n, i) ∈ S | i ∈ Σint

ag-st(type(n))} to the set Σint;
6. cκ maps the set {(n, i) ∈ S | i ∈ Σ$

ag-st(type(n))} to the set Prop$.

For a site-graph G, we write as AG its set of agents, typeG its typing function,
SG its set of sites, and LG its set of links. Given a site-graph G, we write as S lnk

G

(resp. Sint
G , resp. S$

G) its set of binding sites (resp. property sites, resp. counters)
that is to say the set of the sites (n, i) such that i ∈ Σlnk

ag-st(typeG(n)) (resp. i ∈
Σint

ag-st(typeG(n)), resp. i ∈ Σ$
ag-st(typeG(n))).

Let us consider a binding site (n, i) ∈ S lnk
G . Whenever LG(n, i) =�, the site

(n, i) is free. Various levels of information may be given about the sites that are
bound. Whenever LG(n, i) = −, the site (n, i) is bound to an unspecified site.
Whenever LG(n, i) = (n′, i′) (and hence LG(n′, i′) = (n, i)), the sites (n, i) and
(n′, i′) are bound together.

A chemical mixture is a site-graph in which the state of each site is fully
specified. Formally, a site-graph G is a chemical mixture, if and only if, the
three following properties:

1. the set SG is equal to the set {(n, i) | n ∈ AG, i ∈ Σag-st(typeG(n))};
2. every binding site is free or bound to another binding site (i. e. for every

(n, i) ∈ SG ∩ Σlnk
ag-st(typeG(n)), LG(n, i) �= −);

184 P. Boutillier et al.

3. every counter has a single value (i. e. for every (n, i) ∈ Σ$
ag-st, cκG(n, i) is a

singleton);

are satisfied.

Example 2 (running example). In Fig. 3, we give a graphical representation of
the four site-graphs, G1, G2, G3, and G4 that are defined as follows:

1. (a) AG1 = {1},
(b) typeG1

= [1 �→ P],
(c) SG1 = {(1, a), (1, x)},
(d) LG1 = ∅,
(e) pκG1 = [(1, a) �→ ◦],
(f) cκG1 = [(1, x) �→ {k ∈ Z | k ≤ 2}];

2. (a) AG2 = {1},
(b) typeG2

= [1 �→ P],
(c) SG2 = {(1, x)},
(d) LG2 = ∅,
(e) pκG2 = [],
(f) cκG2 = [(1, x) �→ {k ∈ Z | k ≤ 2}];

3. (a) AG3 = {1},
(b) typeG3

= [1 �→ P],
(c) SG3 = {(1, a), (1, x)},
(d) LG3 = ∅,
(e) pκG3 = [(1, a) �→ •],
(f) cκG3 = [(1, x) �→ {k ∈ Z | k ≤ 3}];

4. (a) AG4 = {1},
(b) typeG4

= [1 �→ P],
(c) SG4 = {(1, a), (1, b), (1, c), (1, d), (1, x)},
(d) LG4 = ∅,
(e) pκG4 = [(1, a) �→ ◦, (1, b) �→ •, (1, c) �→ •, (1, d) �→ ◦],
(f) cκG4 = [(1, x) �→ {2}];

The white site on the side of proteins is always the site x. The other sites, starting
from the top-left one denote the sites a, b, c, and d clockwise. ��

2.3 Sliding Embeddings

In classical Kappa, two site-graphs may be related by structure-preserving injec-
tions, which are called embeddings. Here, we extend their definition to cope with
counters. There are two main issues: a rule may require the value of a given
counter to belong to a non-singleton set; also updating counters may involve
arithmetic computations. The smaller the set of the potential values for a counter
is, the more information we have. Thus, embeddings may map the potential val-
ues of a given counter into a subset. In order to cope with update functions,
we equip embeddings with some arithmetic functions which explain how to get
from the value of the counter in the source of the embedding to its value in the
target. This way, our embeddings not only define instances of site-graphs, but
they also contain the information to compute the values of counters.

Counters in Kappa: Semantics, Simulation, and Static Analysis 185

Fig. 4. Three sliding embeddings from the G2 respectively into the site-graphs G3, G1,
and G4. Only the second and the third embeddings are pure.

Definition 3 (sliding embedding). A sliding embedding
from a site-graph G into a site-graph H is a pair (he, h$) where he is a function
of agents he : AG → AH and h$ is a function mapping the counters of the
site-graph G to update functions h$: S$

G → Update$ such that for all agent
identifiers m, n, n′ ∈ AG and for all site identifiers i ∈ Σag-st(typeG(n)), i′ ∈
Σag-st(typeG(n′)), the following properties are satisfied:

1. if m �= n, then he(m) �= he(n);
2. typeG(n) = typeH(he(n));
3. if (n, i) ∈ SG, then (he(n), i) ∈ SH ;
4. if (n, i) ∈ S lnk

G and LG(n, i) = (n′, i′), then LH(he(n), i) = (he(n′), i′);
5. if (n, i) ∈ S lnk

G and LG(n, i) =�, then LH(he(n), i) =�;
6. if (n, i) ∈ S lnk

G and LG(n, i) = −, then LH(he(n), i) ∈ {−} ∪ SH ;
7. if (n, i) ∈ Sint

G and pκG(n, i) = ι, then pκH(he(n), i) = ι;
8. if (n, i) ∈ S$

G, then cκH(h(n), i) ⊆ {h$(k) | k ∈ cκG(n, i)}.
Two sliding embeddings between site-graphs, from E to F , and from F to

G respectively, compose to form a sliding embedding from E to G (functions
compose pair-wise). A sliding embedding (he, h$) such that h$ maps each counter
to the identity function is called a pure embedding. A pure embedding from E to
F is denoted as . Pure embeddings compose. Two site-graphs E and F
are isomorphic if and only if there exist a pure embedding from E to F and a pure
embedding from F to E. A pure embedding between two isomorphic site-graphs
is called an isomorphism. When it exists, the unique pure embedding (he, h$)
from a site-graph E into the site-graph F such that AE ⊆ AF and he(n) = n
for every agent n ∈ AE , is called the inclusion from E to F and is denoted as
iE,F or as . In such a case, we say that the site-graph E is included in
the site-graph F . The inclusion from a site-graph into itself always exists and is
called an identity embedding.

Example 3 (running example). We show in Fig. 4 three sliding embeddings from
the site-graph G2 respectively into the site-graphs G3, G1, and G4. The first of
these three sliding embeddings is assumed to increment the value of the counter
of the site x. The last two embeddings are pure. ��

Let L, R, and D be three site-graphs, such that R is included in D, and let
φ be a sliding embedding from L into D. Then there exist a site graph D′ that
is included in L and a sliding embedding ψ from D′ to R such that iR,Dψ =
φiD′,L and such that D′ is maximal (w.r.t. inclusion among site-graphs) for this
property. The pair (D′, iD′,L, ψ) is called the pull-pack of the pair (φ, iR,D).

186 P. Boutillier et al.

Fig. 5. Composition of partial sliding embeddings.

Fig. 6. Rule application.

Let L, R, and D be three site-graphs such that D is included in L. A partial
sliding embedding from L into R is defined as a pair made of the inclusion iD,L

and a sliding embedding from D to R. Sliding embeddings may be considered as
partial sliding embeddings with the inclusion as the identity embedding. Partial
sliding embeddings compose by the means of a pull-back (e.g. see Fig. 5(b)).

2.4 Rules

Rules represent transformations between site-graphs. For the sake of simplicity,
we only use a fragment of Kappa (we assume here that there are no side effects).
Rules may break and create bonds between pairs of sites, change the properties
of sites, update the value of counters. They may also create and remove agents.
When an agent is created, all its sites must be fully specified: binding sites may
be either free, or bound to a specific site, and the value of counters must be
singletons. So as to ensure that there is no side-effect when an agent is removed,
we also assume that the binding sites of removed agents are fully specified. These
requirements are formalized as follows:

Definition 4 (rule). A rule is a partial sliding embedding
such that:

1. (modified agents) for all agents n ∈ AD such that he(n) ∈ AR and for every
site identifier i ∈ Σsite(typeL(n)),

Counters in Kappa: Semantics, Simulation, and Static Analysis 187

(a) the site (n, i) belongs to the set SL if and only if (he(n), i) belongs to set
SR;

(b) if the site (n, i) belongs to the set S lnk
L , then either LL(n, i) = − and

LR(he(n), i) = −, or LL(n, i) ∈ S lnk
L ∪{�} and LR(he(n), i) ∈ S lnk

R ∪{�};
(c) if the site (n, i) belongs to the set S$

L, then the sets cκR(he(n), i) and
{h$(v) | v ∈ cκL(n, i)} are equal.

2. (removed agents) for all agents n ∈ AL such that n �∈ AD, for every site
identifier i ∈ Σlnk

ag-st(typeL(n)), (n, i) ∈ S lnk
L and LL(n, i) ∈ S lnk

L ∪ {�}.
3. (created agents) for all agents n ∈ AR for which there exists no n′ ∈ AD such

that n = he(n′), and for every site identifier i ∈ Σsite(typeR(n)),
(a) the site (n, i) belongs to the set SR;
(b) if the site (n, i) belongs to the set S lnk

R , then the binding state LR(n, i)
belong to the set S lnk

R ∪ {�};
(c) if the site (n, i) belongs to the set S$

R, then cκR(n, i) is a singleton.

In Definition 4, each agent that is modified occurs on both hand sides of a
rule. Constraint 1a ensures that they document the same sites. Constraint 1b
ensures that, if the binding state of a site is modified, then it has to be fully
specified (either free, or bound to a specific site) in both hand sides of the rule.
Constraint 1c ensures that the post-condition associated to a counter is the direct
image of its precondition by its update function. Constraint 2 ensures that the
agents that are removed have their binding sites fully specified. Constraint 3a
ensures that, in the agents that are created, all the sites are documented. Beside,
constraint 3b requires that the state of their binding site is either free or bound
to a specific site. Constraint 3c ensures that their counters have a single value.

An example of a rule is given in Fig. 6(a).
A rule is usually denoted as (leaving the common

region and the sliding embedding implicit). Rules are applied to site-graphs via
pure embeddings using the single push-out construction [22].

Definition 5 (rule application [14]). Let r be a rule , L′ be a site-
graph, and hL be a pure embedding from L to L′. Then, there exists a rule

and a pure embedding such that the following
properties are satisfied (e. g. see Fig. 6(c)):

1. hRr = r′hL;
2. for all rules r′′ between the site-graph L′ and a site-graph R′′ and all embed-

dings h′
R from R into R′′ such that h′

Rr = r′′hL, there exists a unique pure
embedding h from R′ into R′′ such that r′′ = hr′ and h′

R = hhR.

Moreover, whenever the site-graph L′ is a chemical mixture, the site-graph R′ is
a chemical mixture as well.

We write L′ r−→ R′ for a transition from the state L′ into the state R′ via an
application of a rule r. Usually transition labels also mention the pure embedding
(hL here), but we omit it since we do not use it in the rest of the paper.

188 P. Boutillier et al.

Example 4 (running example). An example of rule application is depicted in
Fig. 6. We consider the rule r that takes a protein with the site a unphospho-
rylated and a counter with a value at least equal to 2, and that phosphorylates
the site a while incrementing the counter by 1 (e. g. see Fig. 6(a)). Note that
the update function of the counter is written next to its post-condition in the
right hand side of the rule. We apply the rule to a protein with the sites b and
c phosphorylated, the site d unphosphorylated, and the counter equal to 2 (e. g.
see Fig. 6(b)). The result is a protein with the sites a, b, and c phosphorylated,
the site d unphosphorylated and the counter equal to 3 (e. g. see Fig. 6(d)). ��

A model M over a given signature Σ is defined as the pair (G0,R) where
G0 is a chemical mixture, representing the initial state, and R is a set of rules.
Each rule is associated with a functional rate which maps each potential tuple
of values for the counters of the left hand side of the rule to a non negative real
number. We write C(M) for the set of states obtained from G0 by applying a
potentially empty sequence of rules in R.

3 Encoding Counters

In this section, we introduce two encodings from Kappa with counters into Kappa
without counters. As explained in Sect. 1, our goal is to preserve the rigidity of
site-graphs and to avoid the blow-up of the number of rules in the target model.
This is mandatory to preserve the good performances of the Kappa simulator.
Both encodings rely on syntactic restrictions over the preconditions and the
update functions that may be applied to counters and on semantics ones about
the potential range of counters. In Sects. 4 and 5, we provide a static analysis to
check whether, or not, these semantics assumptions hold.

3.1 Encoding the Value of Counters as Unbounded Chains of
Agents

In this encoding, each counter is bound to a chain of fictitious agents the length of
which minus 1 denotes the value of the counter (another encoding not requiring
the subtraction is possible but it would require side-effects). Encoding coun-
ters as chains of agents has already been used in the implementation of two-
counter machines in Kappa [19,34]. We slightly extend these works to implement
more atomic operations over counters. We assume that the value of counters is
bounded from below. For the sake of simplicity, we assume that counters range in
N, but arbitrary lower bounds may be considered by shifting each value accord-
ingly. We denote by Ω1 the set of the site-graphs that have a counter with a
negative value. They are considered as erroneous states, since they may not be
encoded with chains of agents.

Only two kinds of guards are handled. A rule may require the value of a
counter to be equal to a given number or that the value of a counter is greater
than a given number. Rules testing whether a value is less than a given number

Counters in Kappa: Semantics, Simulation, and Static Analysis 189

Fig. 7. Encoding the value of counters as unbounded chains of agents.

require unfolding each such rule into several ones (one per potential value). Also
when the rate of a rule depends on the value of some counters, we unfold each
rule according to the value of these counters, so that the rate of each unfolded
rule is a constant (the Kappa simulator requires all the instances of a given rule
in a given simulation state to have the same rate, for efficiency concerns). For
update functions, we only consider constant functions and the functions that
increase/decrease the value of counters by a fixed value. Testing whether the
value of a counter is equal to (resp. greater than) n, can be done by requiring
the corresponding chain to contain exactly (resp. at least) n+1 agents (e. g. see
Figs. 7(b) and (c)). Incrementing (resp. decrementing) the value of a counter is
modeled by inserting (resp. removing) agents at the beginning its chain (e. g. see
Fig. 7(d), resp. Fig. 7(e)). Setting a counter to a fixed value, requires to detach
its full chain in order to create a new one of the appropriate length (e. g. see
Fig. 7(f)). In such a case, the former chain remains as a junk. Thus the state
of the model must be understood up to insertion of junk agents. We introduce
the function gc1 that removes every chain of spurious agents not bound to any
counter. We denote as �G�g

1 (resp. �r�r
1) the encoding of a site-graph G (resp. of

a rule r).

3.2 Encoding the Value of Counters as Circular Lists of Agents

In this second encoding, each counter is bound to a ring of agents. Each such
agent has three binding sites zero , pred , and next , and a property site value
which may be activated, or not. In a ring, agents are connected circularly through
their site pred and next . Exactly one agent per ring is bound to a counter and
exactly one agent per ring has the site value activated. The value of the counter
is encoded by the distance between the agent bound to the counter and the agent
that is activated, scanning the agents by following the direction given by the site
next of each agent (clock-wisely in the graphical representation). We have to
consider that counter values are bounded from above and below. Without any
loss of generality, we assume that the length of each ring is the same, that is to
say that counters range from 0 to n− 1, for a given n ∈ N. We denote by Ω2 the
set of the site-graphs with at least one counter not satisfying these bounds.

190 P. Boutillier et al.

Fig. 8. Encoding the value of counters as circular lists of agents.

Compared to the first encoding, this one may additionally cope with testing
that a counter has a value less than a given constant without having to unfold the
rule. Both encodings may deal with the same update functions. Testing whether
a counter is equal to a value is done by requiring that the activated agent is at
the appropriate distance of the agent that is connected to the counter (e. g. see
Fig. 8(b)). It is worth noting that the intermediary agents are required to be
not activated. This is not mandatory for the soundness of the encoding, this is
an optimization that helps the simulator for detecting early that no embedding
may associate a given agent of the left hand side of a rule to a given agent in the
current state of the system. Inequalities are handled by checking that enough
agents starting from the one that is connected to the counter and in the direction
specified by the direction of the inequality, are not activated (e. g. see Fig. 8(c)).
Incrementing/decrementing the value of a counter is modeled by making counter
glide along the ring (e. g. see Figs. 8(d) and (e)). Special care has to be taken
to ensure that the activated agent never crosses the agent linked to the counter
(which would cause a numerical wrap-around). Assigning a given value to a
counter requires to entirely remove the ring and to replace it with a fresh one
(e. g. see Fig. 8(f)). It may be efficiently implemented without memory allocation.
As in the first encoding, when the rate of a rule depends on the value of some
counters, we unfold each rule according to the value of these counters, so that
the rate of each unfolded rule is constant.

We introduce the function gc2 as the identity function over site-graphs (there
are no junk agent in this encoding). We denote as �G�g

2 (resp. �r�r
2) the encoding

without counter of a site-graph G (resp. of a rule r).

Counters in Kappa: Semantics, Simulation, and Static Analysis 191

3.3 Correspondence

The following theorem states that, whenever there is no numerical overflow and
providing that junk agents are neglected, the semantics of Kappa with counters
and the semantics of their encodings are in bisimulation.

Theorem 1 (correspondence). Let i be either 1 or 2. Let G be a fully spec-
ified site-graph such that G �∈ Ωi and r be a rule. Both following properties are
satisfied:

1. whenever there exists a site-graph G′ such that G
r−→ G′ and G′ �∈ Ωi, there

exists a site-graph G′
$, such that �G�g

i

�r�ri−−→ G′
$ and �G′�g

i = gci(G′
$);

2. whenever there exists a site-graph G′
$ such that �G�g

i

�r�ri−−→ G′
$, there exists a

site-graph G′ such that G
r−→ G′, G′ �∈ Ωi, and �G′�g

i = gci(G′
$).

3.4 Benchmarks

The experimental evaluation of the impact of both encodings to the performance
of the simulator KaSim [6,17] is presented in Fig. 9. We focus on the example that
has been presented in Sect. 1. We plot the number of events that are simulated
per second of CPU. For the sake of comparison, we also provide the simulation
efficiency of the simulator NFSim [40] on the models written in BNGL with
equivalent sites (with a linear number of rules only).

We notice that, with KaSim, the direct approach (without counter) is the
most efficient when there are less than 9 phosphorylation sites. We explain this
overhead, by the fact that each encoding utilizes spurious agents that have to
be allocated in memory and relies on rules with bigger left hand sides. Never-
theless this overhead is reasonable if we consider the gain in conciseness in the
description of the models. The versions of models with counters rely on a linear
number of rules, which make models easier to read, document, and update. For
more phosphorylation sites, simulation time for models written without counters
blow up very quickly, due to the large number of rules. The simulation of the
models with counters scales much better for both encodings.

Models can be concisely described in BNGL without using counters, by the
means of equivalent sites. Each version of the model uses n indistinguishable sites
and only a linear number of rules is required. However, detecting the potential
applications of rules in the case of equivalent sites relies on the sub-graph iso-
morphism problem on general graphs, which prevent the approach to scale to
large value of n. We observe that the efficiency of NFSim on this family of exam-
ples is not as good as the ones of KaSim (whatever which of the three modeling
methods is used). We also observe a very quick deterioration of the performances
starting at n equal to 5.

192 P. Boutillier et al.

1
10

0
10

00
0

Simulation efficiency

nb phos sites

ev
en

t l
oo

ps
/C

PU
 s

1
10

0
10

00
0

1
10

0
10

00
0

1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10

1
10

0
10

00
0

No counters
Cyclic counters
Linear counters
NFSim with symmetric sites

Fig. 9. Efficiency of the simulation for the example in Sect. 1 with n ranging between
1 and 14. We test the simulator KaSim with a version of the models written without
counters and versions of the models according to both encodings (including the n
phosphorylation sites). For the sake of comparison, we also compare with the efficiency
of the simulator NFSim with the same model but written in BNGL by the means of
equivalent sites. For each version of the model and each simulation method, we run
15 simulations of 105 events on an initial state made of 100 agents and we plot the
number of computation steps computed in average per second of CPU on a log scale.
Every simulation has been performed on 4 processors: Intel(R) Xeon(R) CPU E5-2609 0
@ 2.40 GHz 126 GB of RAM, running ubuntu 18.04.

4 Generic Abstraction of Reachable States

So far, we have provided two encodings to compile Kappa with counters into
Kappa without counters. These encodings are sound under some assumptions
over the range of counters. Now we propose a static analysis not only to check
that these conditions are satisfied, but also to infer the meaning of the counters
(in our case study, that they are equal to the number of phosphorylated sites).

Firstly, we provide a generic abstraction to capture the properties of the
states that a Kappa model may potentially take. Our abstraction is parametric
with respect to the class of properties. It will be instantiated in Sect. 5. Our
analysis is not complete: not all the properties of the program are discovered;
nevertheless, the result is sound: all the properties that are captured, are correct.

4.1 Collecting Semantics

Let Q be the set of all the site-graphs. We are interested in the set C(M) of all
the states that a model M = (G0,R) may take in 0, 1, or more computation

Counters in Kappa: Semantics, Simulation, and Static Analysis 193

steps. This is the collecting semantics [7]. By [33], it may be expressed as the
least fixpoint of the ∪-complete endomorphism F on the complete lattice ℘(Q)
that is defined as F(X) = {G0} ∪ {q′ | ∃q ∈ X, r ∈ R such that q

r−→ q′}. By
[42], the collecting semantics is also equal to the meet of all the post-fixpoints
of the function F (i. e. C(M) =

⋂{X ∈ ℘(Q) | F(X) ⊆ X}), that is to say the
strongest inductive invariant of our model that is satisfied by the initial state.

4.2 Generic Abstraction

The collecting semantics is usually not decidable. We use the Abstract Interpre-
tation framework [9,10] to compute a sound approximation of it.

Definition 6 (abstraction). A tuple A = (Q�,�, γ,�,⊥, I�, t�,∇) is called
an abstraction when all following conditions are satisfied:

1. the pair (Q�,�) is a pre-order of abstract properties;
2. the component γ : Q� → ℘(Q) is a monotonic map (i. e. for every two

abstract elements q�
1, q�

2 ∈ Q� such that q�
1 � q�

2, we have γ(q�
1) ⊆ γ(q�

2));
3. the component � maps each finite set of abstract properties X� ∈ ℘finite(Q�) to

an abstract property �(X�) ∈ Q� such that for each abstract property q� ∈ X�,
we have: q� � �(X�);

4. the component ⊥ ∈ Q� is an abstract property such that γ(⊥) = ∅;
5. the component I� is an element of the set Q� such that {G0} ⊆ γ(I�);
6. the component t� is a function mapping each pair (q, r) ∈ Q�×R to an abstract

property t�(q, r) ∈ Q� such that: ∀q� ∈ Q�, ∀q ∈ γ(q�), ∀r ∈ R, ∀q′ ∈ Q, we
have q′ ∈ γ(t�(q�)) whenever q

r−→ q′;
7. the component ∇ : Q� × Q� → Q� satisfies both following properties:

(a) ∀q�
1, q�

2 ∈ Q�, q�
1 � q�

1∇q�
2 and q�

2 � q�
1∇q�

2,
(b) ∀(q�

n)n∈N ∈ (Q�
)N, the sequence (q∇

n)n∈N that is defined as q∇
0 = q�

0 and
q∇
n+1 = q∇

n ∇q�
n+1 for every integer n ∈ N, is ultimately stationary.

The set Q� is an abstract domain. It captures the properties of interest, and
abstracts away the others. Each property q� ∈ Q� is mapped to the set of the
concrete states γ(q�) which satisfy this property by the means of the concretiza-
tion function γ. The pre-order � describes the amount of information which is
known about the properties that we approximate. We use a pre-order to allow
some concrete properties to be described by several unrelated abstract elements.
The abstract union � is used to gather the information described by a finite num-
ber of abstract elements. It may not necessarily compute the least upper bound
of a finite set of abstract elements (this least bound may not even exist). The
abstract element ⊥ provides the basis for abstract iterations. The concretization
function is strict which means that it maps the element ⊥ to the empty set.
The abstract property I� is satisfied by the initial state. The function t� is used
to mimic concrete rewriting steps in the abstract. The operator ∇ is called a
widening. It ensures the convergence of the analysis in finitely many iterations.

194 P. Boutillier et al.

Given an abstraction (Q�,�, γ,�,⊥, I�, t�,∇), the abstract counterpart F
�

to F is defined as F
�(q�) = ��

({q�, I�} ∪ {t�(q�, r) | r ∈ R}). The function F
�

satisfies the soundness condition ∀q� ∈ Q�, [F ◦ γ](q�) ⊆ [γ ◦ F
�](q�). Following

[7], we compute a sound and decidable approximation of our abstract semantics
by using the widening operator ∇. The abstract iteration [10,11] of F� is defined
by the following induction: F∇

0 = ⊥ and, for each integer n ∈ N, F∇
n+1 = F

∇
n

whenever F
�(F∇

n) � F
∇
n , and F

∇
n+1 = F

∇
n ∇F

�(F∇
n) otherwise.

Theorem 2 (Termination and soundness). The abstract iteration is ulti-
mately stationary and its limit F∇ satisfies C(M) ⊆ γ(F∇).

Proof. By construction, F
�(F∇) � F

∇. Since γ is monotonic, it follows that:
γ(F�(F∇)) ⊆ γ(F∇). Since, F ◦ γ

.⊆ γ ◦ F
�, F(γ(F∇)) ⊆ γ(F∇). So γ(F∇) is a

post-fixpoint of F. By [42], we have lfp F ⊆ γ(F∇). ��

4.3 Coalescent Product

Two abstractions may be combined pair-wise to form a new one. The result is a
coalescent product that defines a mutual induction over both abstractions.

Definition 7 (coalescent product). The coalescent product between two
abstractions (Q�

1,�1, γ1,�1,⊥1, I�
1, t

�
1,∇1) and (Q�

2,�2, γ2,�2,⊥2, I�
2, t

�
2,∇2) is

defined as the tuple (Q�,�, γ,�,⊥, I�, t�,∇) where

1. Q� = Q�
1 × Q�

2;
2. �, �, ⊥, and ∇ are defined pair-wise;
3. γ maps every pair (q�

1, q
�
2) to the meet γ1(q

�
1) ∩ γ2(q

�
2) of their respective con-

cretization;
4. I� = (I�

1, I�
2);

5. t� maps every pair ((q�
1, q

�
2), r) ∈ Q� ×R made of a pair of abstract properties

and a rule to the abstract property (t�1(q
�
1, r), t

�
2(q

�
2, r)) whenever t�1(q

�
1, r) �= ⊥1

and t�2(q
�
2, r) �= ⊥2, and to the pair (⊥1,⊥2) otherwise.

Theorem 3 (Soundness of the coalescent product). The coalescent prod-
uct of two abstractions is an abstraction as well.

We notice that if either of both abstractions proves that the precondition
of a rule is not satisfiable, then this rule is discarded in the other abstraction
(hence the term coalescent). By mutual induction, the composite abstraction
may detect which rules may be safely discarded along the iterations of the
analysis.

We may now define an analysis modularly with respect to the class of con-
sidered properties. We use the coalescent product to extend the existing static
analyzer KaSa [5] with a new abstraction dedicated to the range of counters.

Counters in Kappa: Semantics, Simulation, and Static Analysis 195

5 Numerical Abstraction

Now we specialize our generic abstraction to detect and prove safe bounds to
the range of counters. In general, this requires to relate the value of the counters
to the state of others sites. Our approach consists in translating each protein
configuration into a vector of relative numbers and in abstracting each rule by
its potential effect on these vectors. We obtain an integer linear programming
problem that we will solve by choosing an appropriate abstract domain.

The set of convex parts of Z is written as IZ. We assume that guards on
counters are element of IZ and that each update function either set counters to
a constant value, or increment/decrement counters by a constant value.

5.1 Encoding States and Preconditions

We propose to translate each agent into a set of numerical constraints. A protein
of type A is associated with one variable χλ

i for each binding site i and each
binding state λ, one variable χι

i for each property site i and each internal state
identifier ι, and one variable vali for each counter in i.

Definition 8 (numerical variables). Let A ∈ Σag be an agent type. We define
the set VarA as the set of variables VarlnkA ∪ VarintA ∪ Var$A where:

1. VarlnkA = {χλ
i | i ∈ Σlnk

ag-st(A), λ ∈ {�} ∪ {(A′, i′) | A′ ∈ Σag, i
′ ∈ Σlnk

ag-st(A
′)}};

2. VarintA = {χι
i | i ∈ Σint

ag-st(A), ι ∈ Σint};
3. Var$A = {vali | i ∈ Σ$

ag-st}.
Intuitively, variables of the form χλ

i (resp. χι
i) take the value 1 if the binding

(resp. internal) state of the site i is λ (resp. ι), whereas the variables of the form
vali takes the value of the counter i.

Each agent of type A may be translated into a function mapping each variable
in the set VarA into a subset of the set Z. Such a function is called a guard.

Definition 9 (Encoding of agents). Let G be a site-graph and n be an agent
in AG. We denote by A the type typeG(n). We define as follows the function
guardG(n) from the set VarA into the set IZ:

1. guardG(n)(χ�
i) is equal to the singleton {1} whenever (n, i) ∈ S lnk

G (A) and
LG(n, i) =�, to the singleton {0} whenever (n, i) ∈ S lnk

G (A) and LG(n, i) �=�,
and to the set {0, 1} whenever (n, i) �∈ S lnk

G (A);
2. guardG(n)(χ(A′,i′)

i) is equal to the singleton {1} whenever (n, i) ∈ S lnk
G (A) and

there exists n′ ∈ AG such that both conditions typeG(n′) = A′ and LG(n, i) =
(n′, i′) are satisfied, to the singleton {0} whenever (n, i) ∈ S lnk

G (A) and either
LG(n, i) =�, or there exist an agent identifier n′′ ∈ AG and a site name
i′′ ∈ Σsite such that (typeG(n′′), i′′) �= (A′, i′), and to the set {0, 1} whenever
(n, i) �∈ S lnk

G (A) or LG(n, i) = −;
3. guardG(n)(χι

i) is equal to the singleton {1} whenever (n, i) ∈ Sint
G (A) and

pκG(n, i) = ι; to the singleton {0} whenever (n, i) ∈ Sint
G (A) and pκG(n, i) �=

ι; and to set {0, 1} whenever (n, i) �∈ Sint
G (A).

196 P. Boutillier et al.

4. guardG(n)(vali) is equal to the set cκG(c) whenever (n, i) ∈ S$
G and to the set

Z otherwise.

The variable χ�
i takes the value {1} if we know that the site i is free, the

value {0} if we know that it is bound, and the value {0, 1} if we do not know
whether the site is free or not. This is the same for binding type, the variable
χ
(A′,i′)
i takes the value {1} if we know that the site is bound to the site i′ of

an agent of type A′, the value {0} if we know that this is not the case, and the
value {0, 1} otherwise. Property sites work the same way. Lastly, the variable
vali takes as value the set attached to the counter or the value Z if the site is not
mentioned in the agent. We notice that when n is a fully-specified agent of type
A, the function guardG(n) maps every variable in the set VarA to a singleton.

Example 5 (running example). We provide the translation of the unique agent
of the site-graph G1 (e. g. see Fig. 3(a)) and the one of the unique agent of the
site-graph G4 (e. g. see Fig. 3(d)).

The agent of the site-graph G1 is translated as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ◦
a = {1};χ•

a = {0};
χ◦

b = {0, 1};χ•
b = {0, 1};

χ◦
c = {0, 1};χ•

c = {0, 1};
χ◦

d = {0, 1};χ•
d = {0, 1};

valx = {z ∈ Z | z ≤ 2}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

According to the first two constraints, the site a is unphosphorylated. According
to the next six ones, the sites b , c , and d have an unspecified state. According
to the last constraint, the value of the counter must be less than or equal to 2.

The translation of the agent of the site-graph G4 is obtained the same way:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ◦
a = {1};χ•

a = {0};
χ◦

b = {0};χ•
b = {1};

χ◦
c = {0};χ•

c = {1};
χ◦

d = {1};χ•
d = {0};

valx = {2}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

This means that the sites b and c are phosphorylated while the sites a and d
are not. According to the last constraint, the value of the counter is equal to 2.

5.2 Encoding Rules

In Kappa, a rule may be applied only when its precondition is satisfied. Moreover,
the application of a rule modifies the state of some sites in agents. We translate
each rule into a tuple of guards that encodes its precondition, a set of non-
invertible assignments (when a site is given a new state that does not depend
on the former one), and a set of invertible assignments (when the new state
of a site depends on the previous one). Such a distinction is important as we
want to establish relationships among the value of some variables [32]: a non-
invertible assignment completely hides the former value of a variable. This is not

Counters in Kappa: Semantics, Simulation, and Static Analysis 197

the case with invertible assignments for which relationships may be propagated
more easily. The agents that are created (which have no precondition) and the
ones that are removed (which disappear), have a special treatment.

Definition 10 (Encoding of rules). Each rule is
associated with the tuple (prer,not-invertr, invertr,newr) where:

1. prer maps every agent n ∈ AL in the left hand side of the rule r to its guard
guardL(n);

2. not-invertr maps every agent n ∈ AD and every variable v ∈ VartypeD(n)

such that the set guardR(he(n))(v) is a singleton and guardR(he(n))(v) �=
guardL(n)(v) to the unique element of the set guardR(he(n))(v).

3. invertr maps every agent n ∈ AD and every variable v ∈ VartypeD(n) such
that the set guardR(he(n))(v) is not a singleton and h$(n, i) is a function of
the form [z ∈ Z �→ z + c] with c ∈ Z, to the relative number c.

4. newr maps every agent n′ ∈ AR such that there is no agent n ∈ AD satisfying
he(n) = n′ to the guard guardR(n′).

Example 6 (running example). The encoding of the rule of Fig. 6(a) is given as
follows:

– the function prer maps the agent 1 to the following set of constraints:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ◦
a = {1};χ•

a = {0};
χ◦

b = {0, 1};χ•
b = {0, 1};

χ◦
c = {0, 1};χ•

c = {0, 1};
χ◦

d = {0, 1};χ•
d = {0, 1};

valx = {z ∈ Z | z ≤ 2}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

;

– the function not-invertr maps the pair (1, χ◦
a) to the value 0, and the pair

(1, χ•
a) to the value 1;

– the function invertr maps the pair (1, x) to the successor function;
– the function newr is the function with the empty domain.

The guard specifies that the site a must be unphosphorylated and the value
of the counter less or equal to 2. Applying the rule modifies the value of three
variables. The site a gets phosphorylated. This is a non-invertible modification
that sets the variable χ◦

a to the constant value 0 and the variable χ•
a to the

constant value 1. The counter x is incremented. This is an invertible modification
that is encoded by incrementing the value of the variable valx.

5.3 Generic Numerical Abstract Domain

We are now ready to define a generic numerical abstraction.

Definition 11 (Numerical domain). A numerical abstract domain is a fam-
ily (AN

A)A∈Σag
of tuples (DN

A ,�N
A , γA,�N

A ,⊥N
A ,�N

A , gN
A , forgetNA , δN

A ,∇N
A) that

satisfy the following conditions, for every agent type A ∈ Σag:

198 P. Boutillier et al.

1. the pair (DN
A ,�N

A) is a pre-order;
2. the component γN

A : DN
A → ℘(ZVarA) is a monotonic function;

3. the component �N
A : ℘finite(DN

A) → DN
A is an operator such that ∀X� ∈

℘finite(DN
A), ∀ρ� ∈ X�, ρ� � �(X�);

4. the component ⊥N
A is an element in the set DN

A such that γN
A (⊥N

A) = ∅;
5. the component �N

A is an element in the set DN
A such that γN

A (�N
A) = Z

VarA ;
6. the component gN

A is a function mapping each pair (g, ρ�) where g is a guard
and ρ� an abstract property in DN

A to an abstract element in DN
A such that

the set γN
A (gN

A (g, ρ�)) contains at least each function ρ ∈ γN
A (ρ�) that verifies

the condition ρ(v) ∈ ρ�(v) for every variable v ∈ VarA;
7. the component forgetNA maps each pair (V, ρ�) ∈ ℘(VarA)×DN

A to an abstract
property forgetNA (V, ρ�) ∈ DN

A , the concretization γ(forgetNA (V, ρ�)) of which
contains at least each function ρ ∈ Z

VarA such that there exists a function
ρ′ ∈ γN

A (ρ�) satisfying ρ(v) = ρ′(v) for each variable v ∈ VarA \ V ;
8. the component δN

A maps each pair (t, ρ�) ∈ Z
VarA ×DN

A to an abstract property
δN
A (t, ρ�) ∈ DN

A , such for each function ρ ∈ γN
A (ρ�), the function mapping each

variable v ∈ VarA to the value ρ(v) + t(v) belongs to the set γN
A (δN

A (t, ρ�));
9. the component ∇N is a widening operator satisfies both following properties:

(a) ∀ρ�
1, ρ�

2 ∈ DN
A , ρ�

1 �N
A ρ�

1∇N ρ�
2 and ρ�

2 �N
A ρ�

1∇N ρ�
2,

(b) ∀(ρ�
n)n∈N ∈ (DN

A

)N, the sequence (ρ∇
n)n∈N that is defined as ρ∇

0 = ρ�
0 and

ρ∇
n+1 = ρ∇

n ∇N ρ�
n+1 for every integer n ∈ N, is ultimately stationary.

5.4 Numerical Abstraction

The following theorem explains how to build an abstraction (as defined in Sect. 4)
from a numerical abstract domain. We introduce an operator ↑ to extend the
domain of functions with default values. Given a function f , a value v and a
super-set X of the domain of f , we write ↑v

X f the extension of the function f
that maps each element x ∈ X \ Dom (f) to the value v. We also write setA for
the function mapping pairs (f,X�) where f is a partial function from the set
VarA into the set of the convex parts of Z and X� an abstract property in DN

A ,
to the abstract property: gN

A (↑ZVarA
f, forgetNA (dom(f),X�)). The function setA

forgets all the information about the variables in the domain of the function f ,
and reassign their range to their image by f in the abstract.

Theorem 4. Let (DN
A ,�N

A , γA,�N
A ,⊥N

A ,�N
A , gN

A , forgetNA , δN
A ,∇N

A)A∈Σag
be a

numerical abstract domain. The tuple (Q�,�, γ,�,⊥, I�, t�,∇) that is defined
by:

1. the component Q� is the set of the functions mapping each agent type A ∈ Σag

to an abstract property in the set DN
A ;

2. the component γ is the function mapping a function X� ∈ Q�, to the set of
the fully specified site-graph G such that for each agent n ∈ AG, we have
guardG(n) ∈ γtypeG(n)(X�(typeG(n)));

3. the components �, �, ⊥ are defined component-wise;

Counters in Kappa: Semantics, Simulation, and Static Analysis 199

4. the component I� maps each agent type A ∈ Σag to the abstract property
�N

A {gN
A (guardG0

(n),�N
A) | n ∈ AG0};

5. the component t� is a function mapping each pair (X�, r) ∈ Q� ×R (we write
) to the element ⊥N

A whenever there exists an agent
n in AL such that gN

A (prer(n),X�(typeL(n))) = ⊥N
A , and, otherwise, to the

function mapping each agent type A to the numerical property:

�N
A ({X�(A)} ∪ fresh(r,A) ∪ updated(r,A,X�)),

with:
– fresh(r,A) the set of the numerical abstract elements gN

A (newrn,�N
A) for

every n ∈ dom(newr) such that typeR(n) = A;
– and updated(r,A,X�) the set of the elements:

setA(not-invertr(n), δN
A (↑0A invertr(n), gN

A (prer(n),X�(A))))
for each agent n ∈ AD with typeD(n) = A;

is a generic abstraction.

Most of the constructions of the abstraction are standard. The expression
gN
A (prer(n),X�(typeL(n))) refines the abstract information about the potential

configurations of the n-th agent in the left hand side of the rule, by taking into
account its precondition. Whenever a bottom element is obtained for at least
one agent, the precondition of the rule is not satisfiable and the rule is dis-
carded at this moment of the iteration. Otherwise, the information about each
agent is updated. Starting from the result of the refinement of the abstract ele-
ment by the precondition, the function δN

A applies the invertible transformations
↑0A invertr(n) (the function ↑0A extends the domain of the function invertr(n)
by specifying that the variables not in the domain of this function remain
unchanged), and the function setA applies non invertible one not-invertr(n).

The domain of intervals [8] and the one of affine relationships [32] provide
all the primitives requested by Definition 11. We use a product of them, when
all primitives are defined pair-wise, except the guards which refine its output by
using the algorithm that is described in [23]. We use widening with thresholds [2]
for intervals so as to avoid infinite bounds when possible. This way we obtain a
domain, where all operations are cubic with respect to the number of variables.

This is a very good trade-off. A relational domain is required. Other relational
domain are either too imprecise [37], or to costly [13], or both [27,38].

5.5 Benchmarks

We run our analysis on the family of models of Sect. 1 for n ranging between 1
and 25. For each version of the model, the protein is made of n phosphorylation
sites and a counter. Moreover, our analysis always discover that the counter
ranges between 0 and n. CPU time is plot in Fig. 10.

200 P. Boutillier et al.

Fig. 10. Efficiency of the static analysis for the example in Sect. 1 with n ranging
between 1 and 25. Every analysis has successfully computed the exact range of the
counter. The analysis has been performed on a MacBook Pro on a 2.8 GHz intel Core
i7, 16 GB of RAM, running under macOS High Sierra version 10.13.6.

6 Conclusion

When potential protein transformations depend on the number of sites satisfy-
ing a given property, counters offer a convenient way to describe generic mecha-
nisms while avoiding the explosion in the number of rules. We have extended the
semantics of Kappa to deal with counters. We have proposed some encodings to
remove counters while preserving the performance of the Kappa simulator. In
particular, graphs remain rigid and the number of rules remain the same. Then,
we have introduced a static analysis to bound the range of counters.

It is quite common to find proteins with more than 40 phosphorylation sites.
Without our contributions, the modeler has no choice but to assume these
proteins to be active only when all their sites are phosphorylated. This is a
harsh simplification. Modeling simplifications are usually done not only because
detailed knowledge is missing, but also because corresponding models cannot be
described, executed, or analyzed efficiently. Yet these simplifications are done
without any clue of their impact on the behavior of the systems. By providing
ways of describing and handling some complex details, we offer the modelers the
means to incorporate these details and to test empirically their impact.

Our framework is fully integrated within the Kappa modeling platform which
is open-source and usable online (https://kappalanguage.org). It is worth noting
that we have taken two radically different approaches to deal with counters in
simulation and in static analysis. Encodings are good for simulation, but they
tend to obfuscate the properties of interest, hence damaging drastically the capa-
bility of the static analysis to infer useful properties about them. The extension of
the categorical semantics provides a parsimonious definition of causality between
computation steps, as well as means to reason symbolically on the behavior of
the number of occurrences of patterns. For further works, we will extend exist-
ing decision procedures [14,15] that compute minimal causal traces to cope with
counters. It is very likely that a third approach will be required. We suggest to

https://kappalanguage.org

Counters in Kappa: Semantics, Simulation, and Static Analysis 201

use the traces obtained by simulation, then translate the counters in these traces
thanks to equivalent sites, and apply existing decision procedures the traces that
will be obtained this way.

References

1. Behr, N., Danos, V., Garnier, I.: Stochastic mechanics of graph rewriting. In:
Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), New York,
NY, USA, pp. 46–55. ACM (2016)

2. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI 2003), San Diego, California, USA, 7–14 June 2003,
pp. 196–207. ACM Press (2003)

3. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

4. Bortolussi, L., et al.: CARMA: collective adaptive resource-sharing Markovian
agents. In: Bertrand, N., Tribastone, M. (eds.) Proceedings of the Thirteenth Work-
shop on Quantitative Aspects of Programming Languages and Systems (QAPL
2015), London, UK. EPTCS, vol. 194, pp. 16–31 (2015)

5. Boutillier, P., et al.: KaSa: a static analyzer for Kappa. In: Češka, M., Šafránek,
D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 285–291. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99429-1 17

6. Boutillier, P., Ehrhard, T., Krivine, J.: Incremental update for graph rewriting. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 201–228. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 8

7. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S.S., Jones,
N.D. (eds.) Program Flow Analysis: Theory and Applications, vol. 10. Prentice-
Hall Inc., Englewood Cliffs (1981)

8. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, pp. 106–
130. Dunod, Paris (1976)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977. ACM Press (1977)

10. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2(4),
511–547 (1992)

11. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55844-6 142

12. Cousot, P., et al.: Combination of abstractions in the Astrée static analyzer. In:
Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77505-8 23

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, USA, January 1978, pp. 84–96. ACM Press (1978)

https://doi.org/10.1007/978-3-319-99429-1_17
https://doi.org/10.1007/978-3-662-54434-1_8
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/978-3-540-77505-8_23

202 P. Boutillier et al.

14. Danos, V., et al.: Graphs, rewriting and pathway reconstruction for rule-based
models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2012, Hyderabad, India, 15–17 December 2012. LIPIcs, vol. 18, pp.
276–288. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

15. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74407-8 3

16. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
Jouannaud, J.-P. (ed.) Proceedings of the Twenty-Fifth Annual IEEE Symposium
on Logic in Computer Science, LICS 2010, Edinburgh, UK, 11–14 July 2010, pp.
362–381. IEEE Computer Society (2010)

17. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular sig-
naling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76637-7 10

18. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1),
69–110 (2004)

19. Delzanno, G., Di Giusto, C., Gabbrielli, M., Laneve, C., Zavattaro, G.: The kappa-
lattice: decidability boundaries for qualitative analysis in biological languages. In:
Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 158–172. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-7 11

20. Dijkstra, E.W.: Over de sequentialiteit van procesbeschrijvingen. circulated pri-
vately, 1962 or 1963

21. Dijkstra, E.W.: Cooperating sequential processes. Technical report EWD-123
(1965)

22. Ehrig, H., et al.: Algebraic approaches to graph transformation. Part II: sin-
gle pushout approach and comparison with double pushout approach. In: Hand-
book of Graph Grammars and Computing by Graph Transformation, pp. 247–312.
Springer-Verlag, New York Inc., Secaucus (1997)

23. Feret, J.: Occurrence counting analysis for the pi-calculus. Electron. Notes Theor.
Comput. Sci. 39(2), 1–18 (2001). Workshop on GEometry and Topology in COn-
currency theory, PennState, USA, August 21, 2000

24. Feret, J.: Abstract interpretation of mobile systems. J. Log. Algebr. Program.
63(1), 59–130 (2005)

25. Feret, J.: An algebraic approach for inferring and using symmetries in rule-based
models. Electron. Notes Theor. Comput. Sci. 316, 45–65 (2015)

26. Feret, J., Danos, V., Harmer, R., Fontana, W., Krivine, J.: Internal coarse-graining
of molecular systems. PNAS 106(16), 6453–6458 (2009)

27. Hansen, R.R., Jensen, J.G., Nielson, F., Nielson, H.R.: Abstract interpretation of
mobile ambients. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp.
134–148. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48294-6 9

28. Helms, T., Warnke, T., Maus, C., Uhrmacher, A.M.: Semantics and efficient sim-
ulation algorithms of an expressive multilevel modeling language. ACM Trans.
Model. Comput. Simul. 27(2), 8:1–8:25 (2017)

29. Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D., Zardilis, A.: Chromar, a lan-
guage of parameterised agents. Theor. Comput. Sci. (2017)

30. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use: Basic Concepts, Analysis Methods and Practical Use. Volume 1. Monographs

https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-76637-7_10
https://doi.org/10.1007/978-3-642-03845-7_11
https://doi.org/10.1007/3-540-48294-6_9

Counters in Kappa: Semantics, Simulation, and Static Analysis 203

in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg
(1996). https://doi.org/10.1007/978-3-662-03241-1

31. John, M., Lhoussaine, C., Niehren, J., Versari, C.: Biochemical reaction rules
with constraints. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 338–357.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-5 18

32. Karr, M.: Affine relationships among variables of a program. Acta Informatica
6(2), 133–151 (1976)

33. Kleene, S.C.: Introduction to Mathematics. ISHI Press International, New York
(1952)

34. Kreyßig, P.: Chemical organisation theory beyond classical models: discrete dynam-
ics and rule-based models. Ph.D. thesis, Friedrich-Schiller-University Jena (2015)

35. Liu, F., Blätke, M.A., Heiner, M., Yang, M.: Modelling and simulating reaction-
diffusion systems using coloured petri nets. Comput. Biol. Med. 53, 297–308 (2014)

36. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7 10

37. Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput. (HOSC)
19(1), 31–100 (2006)

38. Nielson, H.R., Nielson, F.: Shape analysis for mobile ambients. In: Proceedings of
POPL 2000. ACM Press (2000)

39. Petrov, T., Feret, J., Koeppl, H.: Reconstructing species-based dynamics from
reduced stochastic rule-based models. In: Laroque, C., Himmelspach, J., Pasu-
pathy, R., Rose, O., Uhrmacher, A.M. (eds.) Winter Simulation Conference, WSC
2012 (2012)

40. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183
(2011)

41. Stewart, D.: Spatial biomodelling. Master thesis, School of Informatics, University
of Edinburgh (2010)

42. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285 (1955)

43. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-642-19718-5_18
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

204 P. Boutillier et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

One Step at a Time

A Functional Derivation of Small-Step Evaluators
from Big-Step Counterparts

Ferdinand Vesely1,2(B) and Kathleen Fisher1

1 Tufts University, Medford, USA
{fvesely,kfisher}@eecs.tufts.edu
2 Swansea University, Swansea, UK

f.vesely@swansea.ac.uk

Abstract. Big-step and small-step are two popular flavors of opera-
tional semantics. Big-step is often seen as a more natural transcription
of informal descriptions, as well as being more convenient for some appli-
cations such as interpreter generation or optimization verification. Small-
step allows reasoning about non-terminating computations, concurrency
and interactions. It is also generally preferred for reasoning about type
systems. Instead of having to manually specify equivalent semantics in
both styles for different applications, it would be useful to choose one
and derive the other in a systematic or, preferably, automatic way.

Transformations of small-step semantics into big-step have been inves-
tigated in various forms by Danvy and others. However, it appears that a
corresponding transformation from big-step to small-step semantics has
not had the same attention. We present a fully automated transformation
that maps big-step evaluators written in direct style to their small-step
counterparts. Many of the steps in the transformation, which include
CPS-conversion, defunctionalisation, and various continuation manipu-
lations, mirror those used by Danvy and his co-authors. For many stan-
dard languages, including those with either call-by-value or call-by-need
and those with state, the transformation produces small-step semantics
that are close in style to handwritten ones. We evaluate the applicability
and correctness of the approach on 20 languages with a range of features.

Keywords: Structural operational semantics · Big-step semantics ·
Small-step semantics · Interpreters · Transformation ·
Continuation-passing style · Functional programming

1 Introduction

Operational semantics allow language designers to precisely and concisely spec-
ify the meaning of programs. Such semantics support formal type soundness
proofs [29], give rise (sometimes automatically) to simple interpreters [15,27]
and debuggers [14], and document the correct behavior for compilers. There are

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 205–231, 2019.
https://doi.org/10.1007/978-3-030-17184-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_8

206 F. Vesely and K. Fisher

two popular approaches for defining operational semantics: big-step and small-
step. Big-step semantics (also referred to as natural or evaluation semantics)
relate initial program configurations directly to final results in one “big” evalu-
ation step. In contrast, small-step semantics relate intermediate configurations
consisting of the term currently being evaluated and auxiliary information. The
initial configuration corresponds to the entire program, and the final result, if
there is one, can be obtained by taking the transitive-reflexive closure of the
small-step relation. Thus, computation progresses as a series of “small steps.”

The two styles have different strengths and weaknesses, making them suitable
for different purposes. For example, big-step semantics naturally correspond to
definitional interpreters [23], meaning many big-step semantics can essentially
be transliterated into a reasonably efficient interpreter in a functional language.
Big-step semantics are also more convenient for verifying program optimizations
and compilation – using big-step, semantic preservation can be verified (for ter-
minating programs) by induction on the derivation [20,22].

In contrast, small-step semantics are often better suited for stepping through
the evaluation of an example program, and for devising a type system and prov-
ing its soundness via the classic syntactic method using progress and preservation
proofs [29]. As a result, researchers sometimes develop multiple semantic spec-
ifications and then argue for their equivalence [3,20,21]. In an ideal situation,
the specifier writes down a single specification and then derives the others.

Approaches to deriving big-step semantics from a small-step variant have
been investigated on multiple occasions, starting from semantics specified as
either interpreters or rules [4,7,10,12,13]. An obvious question is: what about
the reverse direction?

This paper presents a systematic, mechanised transformation from a big-step
interpreter into its small-step counterpart. The overall transformation consists
of multiple stages performed on an interpreter written in a functional program-
ming language. For the most part, the individual transformations are well known.
The key steps in this transformation are to explicitly represent control flow as
continuations, to defunctionalise these continuations to obtain a datatype of rei-
fied continuations, to “tear off” recursive calls to the interpreter, and then to
return the reified continuations, which represent the rest of the computation.
This process effectively produces a stepping function. The remaining work con-
sists of finding translations from the reified continuations to equivalent terms in
the source language. If such a term cannot be found, we introduce a new term
constructor. These new constructors correspond to the intermediate auxiliary
forms commonly found in handwritten small-step definitions.

We define the transformations on our evaluator definition language – an
extension of λ-calculus with call-by-value semantics. The language is untyped
and, crucially, includes tagged values (variants) and a case analysis construct for
building and analysing object language terms. Our algorithm takes as input a
big-step interpreter written in this language in the usual style: a main function
performing case analysis on a top-level term constructor and recursively call-
ing itself or auxiliary functions. As output, we return the resulting small-step

One Step at a Time 207

interpreter which we can “pretty-print” as a set of small-step rules in the usual
style. Hence our algorithm provides a fully automated path from a restricted
class of big-step semantic specifications written as interpreters to corresponding
small-step versions.

To evaluate our algorithm, we have applied it to 20 different languages with
various features, including languages based on call-by-name and call-by-value
λ-calculi, as well as a core imperative language. We extend these base languages
with conditionals, loops, and exceptions.

We make the following contributions:

– We present a multi-stage, automated transformation that maps any deter-
ministic big-step evaluator into a small-step counterpart. Section 2 gives an
overview of this process. Each stage in the transformation is performed on
our evaluator definition language – an extended call-by-value λ-calculus.
Each stage in the transformation is familiar and principled. Section 4 gives a
detailed description.

– We have implemented the transformation process in Haskell and evaluate
it on a suite of 20 representative languages in Section 5. We argue that the
resulting small-step evaluation rules closely mirror what one would expect
from a manually written small-step specification.

– We observe that the same process with minimal modifications can be used to
transform a big-step semantics into its pretty-big-step [6] counterpart.

2 Overview

In this section, we provide an overview of the transformation steps on a simple
example language. The diagram in Fig. 1 shows the transformation pipeline. As
the initial step, we first convert the input big-step evaluator into continuation-
passing style (CPS). We limit the conversion to the eval function itself and leave all
other functions in direct style. The resulting continuations take a value as input
and advance the computation. In the generalization step, we modify these con-
tinuations so that they take an arbitrary term and evaluate it to a value before
continuing as before. With this modification, each continuation handles both the
general non-value case and the value case itself. The next stage lifts a carefully cho-
sen set of free variables as arguments to continuations, which allows us to define all
of them at the same scope level. After generalization and argument lifting, we can
invoke continuations directly to switch control, instead of passing them as argu-
ments to the eval function. Next we defunctionalize the continuations, converting
them into a set of tagged values together with an apply function capturing their
meaning. This transformation enables the next step, in which we remove recursive
tail-calls to apply. This allows us to interrupt the interpreter and make it return
a continuation or a term: effectively, it yields a stepping function, which is the
essence of a small-step semantics. The remainder of the pipeline converts contin-
uations to terms, performs simplifications, and then converts the CPS evaluator
back to direct style to obtain the final small-step interpreter. This interpreter can
be pretty-printed as a set of small-step rules.

208 F. Vesely and K. Fisher

CPS

gene-
raliza-
tion

argument
lifting

switch
control

defunc-
tionali-
zation

remove
tail-calls

continu-
ations

to terms
inlining

direct
style

big-step
eval

small-step
eval

Fig. 1. Transformation overview

Our example language is a λ-calculus with call-by-value semantics. Fig. 2
gives its syntax and big-step rules. We use environments to give meaning to
variables. The only values in this language are closures, formed by packaging a
λ-abstraction with an environment.

x ∈ Var ρ ∈ Env = Var Val

v ::= clo(x, e, ρ)
e ::= var(x)

| val(v)
| lam(x, e)
| app(e1, e2)

ρ � val(v) ⇓ v

ρ(x) = v

ρ � var(x) ⇓ v

ρ � lam(x, e) ⇓ clo(x, e, ρ)

ρ � e1 ⇓ clo(x, e, ρ′) ρ � e2 ⇓ v2 ρ′[x v2] � e ⇓ v

ρ � app(e1, e2) ⇓ v

Fig. 2. Example: Call-by-value λ-calculus, abstract syntax and big-step semantics

We will now give a series of interpreters to illustrate the transformation pro-
cess. We formally define the syntax of the meta-language in which we write these
interpreters in Section 3, but we believe for readers familiar with functional pro-
gramming the language is intuitive enough to not require a full explanation at this
point. Shaded text highlights (often small) changes to subsequent interpreters.

Big-Step Evaluator. We start with an interpreter corresponding directly to the
big-step semantics given in Fig. 2. We represent environments as functions –
the empty environment returns an error for any variable. The body of the eval
function consists of a pattern match on the top-level language term. Function
abstractions are evaluated to closures by packaging them with the current envi-
ronment. The only term that requires recursive calls to eval is application: both
its arguments are evaluated in the current environment, and then its first argu-
ment is pattern-matched against a closure, the body of which is then evaluated
to a value in an extended environment using a third recursive call to eval.

One Step at a Time 209

let empty = λx. error() in
let update x v ρ = λx′. let xx′ = (== x x′) in if xx′ then v else (ρ x′) in
let rec eval e ρ =
case e of {
val(v) → v |
var(x) → let v = (ρ x) in v |
lam(x , e ′) → clo(x , e ′, ρ) |
app(e1 , e2) →

let v1 = (eval e1 ρ) in
let v2 = (eval e2 ρ) in
case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′) in
let v = (eval e ′ ρ′′) in
v

}
}

CPS Conversion. Our first transformation introduces a continuation argument
to eval, capturing the “rest of the computation” [9,26,28]. Instead of returning
the resulting value directly, eval will pass it to the continuation. For our example
we need to introduce three continuations – all of them in the case for app. The
continuation kapp1 captures what remains to be done after evaluating the first
argument of app, kapp2 captures the computation remaining after evaluating the
second argument, and kclo1 the computation remaining after the closure body is
fully evaluated. This final continuation simply applies the top-level continuation
to the resulting value and might seem redundant; however, its utility will become
apparent in the following step. Note that the CPS conversion is limited to the
eval function, leaving any other functions in the program intact.

let rec eval e ρ k =

case e of {
val(v) → (k v) |
var(x) → let v = (ρ x) in (k v) |
lam(x , e ′) → (k clo(x , e ′, ρ)) |
app(e1 , e2) →

letcont kapp1 v1 =

letcont kapp2 v2 =

case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′) in

letcont kclo1 v = (k v) in

(eval e ′ ρ′′ (λv . (kclo1 v)))

} in

(eval e2 ρ (λv2 . (kapp2 v2))) in

(eval e1 ρ (λv1 . (kapp1 v1)))

}

210 F. Vesely and K. Fisher

Generalization. Next, we modify the continuation definitions so that they handle
both the case when the term is a value (the original case) and the case where it is
still a term that needs to be evaluated. To achieve this goal, we introduce a case
analysis on the input. If the continuation’s argument is a value, the evaluation
will proceed as before. Otherwise it will call eval with itself as the continuation
argument. Intuitively, the latter case will correspond to a congruence rule in the
resulting small-step semantics and we refer to these as congruence cases in the
rest of this paper.

let rec eval e ρ k = case e of {
val(v) → (k val(v)) |
var(x) → let v = (ρ x) in (k val(v)) |
lam(x , e ′) → (k val(clo(x , e ′, ρ))) |
app(e1 , e2) →

letcont kapp1 e1 =

case e1 of {
val(v1) →

. . .
case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′) in
letcont kclo1 e =

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′′ (λe ′. (kclo1 e ′)))

} in

(eval e ′ ρ′′ (λv . (kclo1 v)))
. . .

ELSE(e1) → (eval e1 ρ (λe ′
1 . (kapp1 e ′

1)))

} in

(eval e1 ρ (λv1 . (kapp1 v1)))
}

Argument Lifting. The free variables inside each continuation can be divided
into those that depend on the top-level term and those that parameterize the
evaluation. The former category contains variables dependent on subterms of
the top-level term, either by standing for a subterm itself, or by being derived
from it. In our example, for kapp1, it is the variable e2, i.e., the right argu-
ment of app, for kapp2, the variable v1 as the value resulting from evaluating
the left argument, and for kclo1 it is the environment obtained by extending
the closure’s environment by binding the closure variable to the operand value
(ρ′′ derived from v2). We lift variables that fall into the first category, that is,
variables derived from the input term. We leave variables that parametrize the
evaluation, such as the input environment or the store, unlifted. The rationale
is that, eventually, we want the continuations to act as term constructors and
they need to carry information not contained in arguments passed to eval.

One Step at a Time 211

let rec eval e ρ k = case e of {
. . .
app(e1 , e2) →

letcont kapp1 e2 e1 =

. . .

letcont kapp2 v1 e2 =

. . .

letcont kclo1 ρ′ e =

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (kclo1 ρ′ e ′)))

} in

(eval e ′ ρ′′ (λv . (kclo1 ρ′′ v)))

} |
ELSE(e2) → (eval e2 ρ (λe ′

2 . (kapp2 v1 e ′
2)))

} in

(eval e2 ρ (λv2 . (kapp2 v1 v2))) |
ELSE(e1) → (eval e1 ρ (λe ′

1 . (kapp1 e2 e ′
1)))

} in

(eval e1 ρ (λv1 . (kapp1 e2 v1)))

}
Continuations Switch Control. Since continuations now handle the full evalu-
ation of their argument themselves, they can be used to switch stages in the
evaluation of a term. Observe how in the resulting evaluator below, the evalu-
ation of an app term progresses through stages initiated by kapp1, kapp2, and
finally kclo1.

let rec eval e ρ k = case e of {
. . .
app(e1 , e2) →

letcont kapp1 e2 e1 =
. . .

letcont kapp2 v1 e2 =
. . .
letcont kclo1 ρ′ e =

. . .

in (kclo1 ρ′′ e ′)
. . .

in (kapp2 v1 e2) |
. . .

in (kapp1 e2 e1)

}
Defunctionalization. In the next step, we defunctionalize continuations. For each
continuation, we introduce a constructor with the corresponding number of
arguments. The apply function gives the meaning of each defunctionalized
continuation.

212 F. Vesely and K. Fisher

let rec apply eval ek ρ k = case ek of {
kapp1(e2 , e1) →

case e1 of {
val(v1) → (apply eval kapp2(v1 , e2) ρ k) |
ELSE(e1) → (eval e1 ρ (λe ′

1 . (apply eval kapp1(e2 , e ′
1) ρ k)))

} |
kapp2(v1 , e2) →

case e2 of {
val(v2) →

case v1 of {
clo(x , e ′, ρ′) →

let ρ′′ = (update x v2 ρ′)
in (apply eval kclo1(ρ′′, e ′) ρ k)

} |
ELSE(e2) → (eval e2 ρ (λe ′

2 . (apply eval kapp2(v1 , e ′
2) ρ k)))

} |
kclo1(ρ′, e) →

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (apply eval kclo1(ρ′, e ′) ρ k)))

}
} in

let rec eval e ρ k = case e of {
val(v) → (k val(v)) |
var(x) → let v = (ρ x) in (k val(v)) |
lam(x , e ′) → (k val(clo(x , e ′, ρ))) |
app(e1 , e2) → (apply eval kapp1(e2 , e1) ρ k)

}
Remove Tail-Calls. We can now move from a recursive evaluator to a stepping
function by modifying the continuation arguments passed to eval in congruence
cases. Instead of calling apply on the defunctionalized continuation, we return
the defunctionalized continuation itself. Note, that we leave intact those calls to
apply that switch control between different continuations (e.g., in the definition
of eval).

let rec apply eval ek ρ k = case ek of {
kapp1(e2 , e1) →

case e1 of {
val(v1) → (apply eval kapp2(v1 , e2) ρ k) |
ELSE(e1) → (eval e1 ρ (λe ′

1 . (k kapp1(e2 , e ′
1))))

} |
kapp2(v1 , e2) →

case e2 of {
val(v2) → . . . (apply eval kclo1(ρ′′, e ′) ρ k) |
ELSE(e2) → (eval e2 ρ (λe ′

2 . (k kapp2(v1 , e ′
2))))

} |
kclo1(ρ′, e) →

One Step at a Time 213

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (k kclo1(ρ′, e ′))))

}
} in . . .

Convert Continuations into Terms. At this point, we have a stepping func-
tion that returns either a term or a continuation, but we want a function
returning only terms. The most straightforward approach to achieving this goal
would be to introduce a term constructor for each defunctionalized continuation
constructor. However, many of these continuation constructors can be trivially
expressed using constructors already present in the object language. We want to
avoid introducing redundant terms, so we aim to reuse existing constructors as
much as possible. In our example we observe that kapp1(e2, e1) corresponds to
app(e1, e2), while kapp2(v1, e2) to app(val(v1), e2). We might also observe that
kclo1(ρ′, e) would correspond to app(clo(x, e, ρ), val(v2)) if ρ′ = update x v2 ρ.
Our current implementation doesn’t handle such cases, however, and so we intro-
duce kclo1 as a new term constructor.

let rec apply eval ek ρ k = case ek of {
kapp1(e2 , e1) →

case e1 of {
val(v1) → (apply eval kapp2(v1 , e2) ρ k) |
ELSE(e1) → (eval e1 ρ (λe ′

1 . (k app(e ′
1 , e2))))

} |
kapp2(v1 , e2) →

case e2 of {
val(v2) →

case v1 of {
clo(x , e ′, ρ′) → let ρ′′ = (update x v2 ρ′) in kclo1(ρ′′, e ′)

} |
ELSE(e2) → (eval e2 ρ (λe ′

2 . (k app(val(v1), e ′
2))))

} |
kclo1(ρ′, e) →

case e of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (k kclo1(ρ′, e ′))))

}
} in
let rec eval e ρ k = case e of {

. . .

kclo1(ρ′, e ′) → (apply eval kclo1(ρ′, e ′) ρ k)
}

Inlining and Simplification. Next, we eliminate the apply function by inlining
its applications and simplifying the result. At this point we have obtained a
small-step interpreter in continuation-passing style.

214 F. Vesely and K. Fisher

let rec eval e ρ k = case e of {
. . .
app(e1 , e2) →

case e1 of {
val(v1) →

case e2 of {
val(v2) →

case v1 of {
clo(x , e ′, ρ′) → let ρ′′ = (update x v2 ρ′) in kclo1(ρ′′, e ′)

} |
ELSE(e2) → (eval e2 ρ (λe ′

2 . (k app(val(v1), e ′
2))))

} |
ELSE(e1) → (eval e1 ρ (λe ′

1 . (k app(e ′
1 , e2))))

} |
kclo1(ρ′, e ′) →

case e ′ of {
val(v) → (k val(v)) |
ELSE(e) → (eval e ρ′ (λe ′. (k kclo1(ρ′, e ′))))

}
}
Convert to Direct Style and Remove the Value Case. The final transformation
is to convert our small-step interpreter back to direct style. Moreover, we also
remove the value case val(v) → val(v) as we, usually, do not want values to step.

let rec eval e ρ = case e of {
var(x) → let v = (ρ x) in val(v) |
lam(x , e ′) → val(clo(x , e ′, ρ)) |
app(e1 , e2) →

case e1 of {
val(v1) →

case e2 of {
val(v2) →

case v1 of {
clo(x , e ′, ρ′) → let ρ′′ = (update x v2 ρ′) in kclo1(ρ′′, e ′)

} |
ELSE(e2) → let e ′

2 = (eval e2 ρ) in app(val(v1), e ′
2)

} |
ELSE(e1) → let e ′

1 = (eval e1 ρ) in app(e ′
1 , e2)

} |
kclo1(ρ′, e ′) →

case e ′ of {
val(v) → val(v) |
ELSE(e) → let e ′ = (eval e ρ′) in kclo1(ρ′, e ′)

}
}
Small-Step Evaluator. Fig. 3 shows the small-step rules corresponding to our
last interpreter. Barring the introduction of the kclo1 constructor, the resulting
semantics is essentially identical to one we would write manually.

One Step at a Time 215

1
v = ρ x

ρ � var(x) val(v)
2

ρ � lam(x , e ′) val(clo(x , e ′, ρ))

3
ρ′′ = update x v2 ρ′

ρ � app(val(clo(x , e ′, ρ′)), val(v2)) kclo1(ρ′′, e ′)

4
ρ � e2 e′

2

ρ � app(val(v1), e2) app(val(v1), e′
2)

5
ρ � e1 e′

1

ρ � app(e1, e2) app(e′
1, e2)

6
ρ � kclo1(ρ′ , val(v)) val(v)

7
ρ′ � e e′

ρ � kclo1(ρ′ , e) kclo1(ρ′ , e′)

Fig. 3. Resulting small-step semantics

3 Big-Step Specifications

We define our transformations on an untyped extended λ-calculus with call-by-
value semantics that allows the straightforward definition of big- and small-step
interpreters. We call this language an evaluator definition language (EDL).

3.1 Evaluator Definition Language

Table 1 gives the syntax of EDL. We choose to restrict ourselves to A-normal
form, which greatly simplifies our partial CPS conversion without compromising
readability. Our language has the usual call-by-value semantics, with arguments
being evaluated left-to-right. All of the examples of the previous section were
written in this language.

Our language has 3 forms of let-binding constructs: the usual (optionally
recursive) let, a let-construct for evaluator definition, and a let-construct for
defining continuations. The behavior of all three constructs is the same, however,
we treat them differently during the transformations. The leteval construct also
comes with the additional static restriction that it may appear only once (i.e.,
there can be only one evaluator). The leteval and letcont forms are recursive
by default, while let has an optional rec specifier to create a recursive binding.
For simplicity, our language does not offer implicit mutual recursion, so mutual
recursion has to be made explicit by inserting additional arguments. We do this
when we generate the apply function during defunctionalization.

Notation and Presentation. We use vector notation to denote syntactic lists
belonging to a particular sort. For example, �e and �ae are lists of elements of,
respectively, Expr and AExpr , while �x is a list of variables. Separators can be
spaces (e.g., function arguments) or commas (e.g., constructor arguments or
configuration components). We expect the actual separator to be clear from the
context. Similarly for lists of expressions: �e, �ae, etc. In let bindings, f x1 . . . xn =
e and f = λx1 . . . xn. e are both syntactic sugar for f = λx1. . . . λxn. e.

216 F. Vesely and K. Fisher

Table 1. Syntax of the evaluator definition language.

Expr � e ::= let bn = ce in e (let-binding)
| let rec bn = ce in e (recursive let-binding)
| leteval x = ce in e (evaluator definition)
| letcont k = ce in e (continuation definition)
| ce

CExpr � ce ::= (ae ae . . .) (application)
| case ae of { cas | . . . | cas } (pattern matching)
| if ae then e else e (conditional)
| ae

AExpr � ae ::= v | op (value, operator)
| x | k (variable, continuation variable)
| λbn. e (λ-abstraction)
| c(ae, . . ., ae) (constructor application)
| 〈 ae, . . ., ae 〉 (configuration expression)

Binder � bn ::= x | 〈 x, . . ., x 〉 (variable, configuration)

Case � cas ::= c(x, . . ., x) → e (constructor pattern)
| ELSE(x) → e (default pattern)

Value � v ::= n | b | c(v,. . .,v) | 〈 v,. . .,v 〉 | abs(λx.e, ρ)

4 Transformation Steps

In this section, we formally define each of the transformation steps informally
described in Section 2. For each transformation function, we list only the most
relevant cases; the remaining cases trivially recurse on the A-normal form (ANF)
abstract syntax. We annotate functions with E,CE , andAE to indicate the corre-
sponding ANF syntactic classes. We omit annotations when a function only oper-
ates on a single syntactic class. For readability, we annotate meta-variables to hint
at their intended use – ρ stands for read-only entities (such as environments),
whereas σ stands for read-write or “state-like” entities of a configuration (e.g.,
stores or exception states). These can be mixed with our notation for syntactic
lists, so, for example, �xσ is a sequence of variables referring to state-like entities,
while �aeρ is a sequence of a-expressions corresponding to read-only entities.

4.1 CPS Conversion

The first stage of the process is a partial CPS conversion [8,25] to make control
flow in the evaluator explicit. We limit this transformation to the main evalu-
ator function, i.e., only the function eval will take an additional continuation
argument and will pass results to it. Because our input language is already in
ANF, the conversion is relatively easy to express. In particular, applications of
the evaluator are always let-bound to a variable (or appear in a tail position),

One Step at a Time 217

which makes constructing the current continuation straightforward. Below are
the relevant clauses of the conversion. For this transformation we assume the
following easily checkable properties:

– The evaluator name is globally unique.
– The evaluator is never applied partially.
– All bound variables are distinct.

The conversion is defined as three mutually recursive functions with the following
signatures:

cpsE : Expr → (CExpr → Expr) → Expr
cpsCE : CExpr → (CExpr → Expr) → Expr
cpsAE : AExpr → AExpr

In the equations, K, I, Ak : CExpr → Expr are meta-continuations; I injects a
CExpr into Expr .

cpsE
[
leteval eval �bn = e1 in e2

] K =

leteval eval �bn k =
(
cpsE

[
e1

] Ak

)
in

(
cpsE

[
e2

] K)

where k is a fresh continuation variable

cpsE
[
let bn = (eval ae1 �ae) in e

] K =

letcont k bn =
(
cpsE

[
e
] K)

in cpsCE

[
(eval ae1 �ae)

] Ak

where k is a fresh continuation variable

cpsE
[
let bn = ce in e

] K =

renorm
[
let’ bn =

(
cpsCE

[
ce

] I)
in

(
cpsE

[
e
] K)]

cpsCE

[
(eval ae1 �ae)

] K = (eval
(
cpsAE

[
ae1

]) (
cpsAE

[
�ae

])
(λx. K[

x
]
))

where x is a fresh variable

cpsCE

[
ae

] K = K(
cpsAE

[
ae

])

cpsAE

[
λx.e

]
= λx.

(
cpsE

[
e
] I)

cpsAE

[
ae

]
= ae

where for any k, Ak is defined as

Ak

[
ae

]
= k ae

Ak

[
ce

]
= let x = ce in k x where x is fresh

and

renorm
[
let’ x = ce in e

]
= let x = ce in e

renorm
[
let’ x = (let x′ = ce in e′) in e

]
=

let x′ = ce in renorm
[
let’ x = e′ in e

]

218 F. Vesely and K. Fisher

In the above equations, let’ is a pseudo-construct used to make renormal-
ization more readable. In essence, it is a non-ANF version of let where the
bound expression is generalized to Expr . Note that renorm only works correctly
if x′ �∈ fv(e), which is implied by our assumption that all bound variables are
distinct.

4.2 Generalization of Continuations

The continuations resulting from the above CPS conversion expect to be applied
to value terms. The next step is to generalize (or “lift”) the continuations so that
they recursively call the evaluator to evaluate non-value arguments. In other
words, assuming the term type can be factored into values and computations
V +C, we convert each continuation k with the type V → V into a continuation
k′ : V + C → V using the following schema:

let rec k′ t = case t of inl v → k v | inr c → eval c k′

The recursive clauses will correspond to congruence rules in the resulting small-
step semantics.

The transformation works by finding the unique application site of the con-
tinuation and then inserting the corresponding call to eval in the non-value case.

gencontE
[
letcont k 〈 x, �xσ 〉 = ek in e

]
=

letcont k 〈 x̂, �xσ 〉 =

case x̂ of {
val(x) → ek ;

ELSE(x̂) → eval 〈 x̂, �aeσ 〉 �aeρ aek

}
if findApp k e = eval 〈 , �aeσ 〉 �aeρ aek

where

– findApp k e is the unique use site of the continuation k in expression e, that
is, the CExpr where eval is applied with k as its continuation; and

– x̂ is a fresh variable associated with x – it stands for “a term corresponding
to (the value) x”.

Following the CPS conversion, each named continuation is applied exactly
once in e, so findApp k e is total and returns the continuation’s unique use site.
Moreover, because the continuation was originally defined and let-bound at that
use site, all free variables in findApp k e are also free in the definition of k.

When performing this generalization transformation, we also modify tail posi-
tions in eval that return a value so that they wrap their result in the val con-
structor. That is, if the continuation parameter of eval is k, then we rewrite all
sites applying k to a configuration as follows:

k 〈 ae, �aeσ 〉 ⇒ k 〈 val(ae), �aeσ 〉

One Step at a Time 219

4.3 Argument Lifting in Continuations

In the next phase, we partially lift free variables in continuations to make them
explicit arguments. We perform a selective lifting in that we avoid lifting non-
term arguments to the evaluation function. These arguments represent entities
that parameterize the evaluation of a term. If an entity is modified during evalua-
tion, the modified entity variable gets lifted. In the running example of Section 2,
such a lifting occurred for kclo1.

Function lift specifies the transformation at the continuation definition site:

lift Ξ Δ [letcont k = λx. ek in e] =
letcont k = λ x1 . . . xn x. (lift Ξ ′ Δ′ [ek]) in (lift Ξ ′ Δ′ [e])

where

– Ξ ′ = Ξ ∪ {k}
– {x1, . . . , xn} = fv ek ∪ (

⋃
g∈(domΔ ∩ fv ek)

Δ(g)) − Ξ ′

– Δ′ = Δ[k 	→ (x1, . . . , xn)]

and at the continuation application site – recall that continuations are always
applied fully, but at this point they are only applied to one argument:

lift Ξ Δ
[
k ae

]
= k x1 . . . xn (lift Ξ Δ

[
ae′])

if k ∈ domΔ and Δ(k) = (x1, . . . , xn).
Our lifting function is a restricted version of a standard argument-lifting

algorithm [19]. The first restriction is that we do not lift all free variables, since
we do not aim to float and lift the continuations to the top-level of the program,
only to the top-level of the evaluation function. The other difference is that we
can use a simpler way to compute the set of lifted parameters due to the absence
of mutual recursion between continuations. The correctness of this can be proved
using the approach of Fischbach [16].

4.4 Continuations Switch Control Directly

At this point, continuations handle the full evaluation of a term themselves.
Instead of calling eval with the continuation as an argument, we can call the
continuation directly to switch control between evaluation stages of a term. We
will replace original eval call sites with direct applications of the corresponding
continuations. The recursive call to eval in congruence cases of continuations will
be left untouched, as this is where the continuation’s argument will be evaluated
to a value. Following from the continuation generalization transformation, this
call to eval is with the same arguments as in the original site (which we are now
replacing). In particular, the eval is invoked with the same �aeρ arguments in the
continuation body as in the original call site.

directcontE
[
letcont k = ce in e

]
K =

letcont k = directcontCE

[
ce

]
K in directcontE

[
e
]
(K
 {k})

directcontCE

[
eval 〈 ae, �aeσ 〉 �aeρ (λy. k �x y)

]
K = k �x 〈 ae, �aeσ 〉 if k ∈ K

220 F. Vesely and K. Fisher

4.5 Defunctionalization

Now we can move towards a first-order representation of continuations which can
be further converted into term constructions. We defunctionalize continuations
by first collecting all continuations in eval, then introducing corresponding con-
structors (the syntax), and finally generating an apply function (the semantics).
The collection function accumulates continuation names and their definitions.
At the same time it removes the definitions.

collectE
[
letcont k = ce in e

]
= ({(k, ce′)} ∪ Kce ∪ Ke, e

′)

where (Kce, ce
′) = collectCE

[
ce

]

(Ke, e
′) = collectE

[
e
]

We reuse continuation names for constructors. The apply function is generated
by simply generating a case analysis on the constructors and reusing the argu-
ment names from the continuation function arguments. In addition to the defunc-
tionalized continuations, the generated apply function will take the same argu-
ments as eval. Because of the absence of mutual recursion in our meta-language,
apply takes eval as an argument.

genApply �xρ �xσ ktop
{
(k1, λp1,1 . . . p1,i. e1), . . . , (kn, λpn,1 . . . pn,j . en)

}
=

λeval 〈 xk, �xσ 〉 �xρ ktop .

case xk of {
k1(p1,1, . . . , p1,i) → e1 ;

. . . ;

kn(pn,1, . . . , pn,j) → en

}
Now we need a way to replace calls to continuations with corresponding calls to
apply. For �aeρ and ktop we use the arguments passed to eval or apply (depending
on where we are replacing).

replaceCE

[
k �aek 〈ae, �aeσ〉](�xρ, ktop) = apply eval 〈 k(�aek, ae), �aeσ 〉 �xρ ktop

Finally, the complete defunctionalization is defined in terms of the above three
functions.

4.6 Remove Self-recursive Tail-Calls

This is the transformation which converts a recursive evaluator into a stepping
function. The transformation itself is very simple: we simply replace the self-
recursive calls to apply in congruence cases.

derecCE

[
eval 〈 ae, �aeσ 〉 �aeρ (λ〈 x′, �xσ′ 〉. apply eval 〈 ck(�ae, x′), �xσ′ 〉 �aeρ′ k)

]
=

eval 〈 ae, �aeσ 〉 �aeρ (λ〈 x′, �xσ′ 〉. k 〈 ck(�ae, x′), �xσ′ 〉)

One Step at a Time 221

Note, that we still leave those invocations of apply that serve to switch control
through the stages of evaluation. Unless a continuation constructor will become
a part of the output language, its application will be inlined in the final phase
of our transformation.

4.7 Convert Continuations to Terms

After defunctionalization, we effectively have two sorts of terms: those con-
structed using the original constructors and those constructed using continu-
ation constructors. Terms in these two sorts are given their semantics by the
eval and apply functions, respectively. To get only one evaluator function at
the end of our transformation process, we will join these two sorts, adding
extra continuation constructors as new term constructors. We could simply
merge apply to eval, however, this would give us many overlapping construc-
tors. For example, in Section 2, we established that kapp1(e2, e1) ≈ app(e1, e2)
and kapp2(v1, e2) ≈ app(val(v1), e2). The inference of equivalent term construc-
tors is guided by the following simple principle. For each continuation term
ck(ae1, . . . , aen) we are looking for a term c′(ae′

1, . . . , ae′
m), such that, for all

�aeσ, �aeρ and aek

apply eval 〈 ck(ae1, . . . , aen), �aeσ 〉 �aeρ aek

= eval 〈 c′(ae′
1, . . . , ae′

m), �aeσ 〉 �aeρ aek

In our current implementation, we use a conservative approach where, start-
ing from the cases in eval, we search for continuations reachable along a control
flow path. Variables appearing in the original term are instantiated along the
way. Moreover, we collect variables dependent on configuration entities (state).
If control flow is split based on information derived from the state, we auto-
matically include any continuation constructors reachable from that point as
new constructors in the resulting language and interpreter. This, together with
how information flows from the top-level term to subterms in congruence cases,
preserves the coupling between state and corresponding subterms between steps.

If, starting from an input term c(�x), an invocation of apply on a continuation
term ck(�aek) is reached, and if, after instantiating the variables in the input
term c(�ae), the sets of their free variables are equal, then we can introduce a
translation from ck(�aek) into c(�ae). If such a direct path is not found, the ck will
become a new term constructor in the language and a case in eval is introduced
such that the above equation is satisfied.

4.8 Inlining, Simplification and Conversion to Direct Style

To finalize the generation of a small-step interpreter, we inline all invocations
of apply and simplify the final program. After this, the interpreter will con-
sists of only the eval function, still in continuation-passing style. To convert the
interpreter to direct style, we simply substitute eval’s continuation variable for

222 F. Vesely and K. Fisher

(λx.x) and reduce the new redexes. Then we remove the continuation argument
performing rewrites following the scheme:

eval �ae (λbn. e) ⇒ let bn = eval �ae in e

Finally, we remove the reflexive case on values (i.e., val(v) → val(v)). At this
point we have a small-step interpreter in direct form.

4.9 Removing Vacuous Continuations

After performing the above transformation steps, we may end up with some
redundant term constructors, which we call “empty” or vacuous. These are con-
structors which only have one argument and their semantics is equivalent to
the argument itself, save for an extra step which returns the computed value. In
other words, they are unary constructs which only have two rules in the resulting
small-step semantics matching the following pattern.

�ρ � 〈c(val(v)), �σ〉 −→ 〈val(v), �σ〉
�ρ � 〈e, �σ〉 −→ 〈e′, �σ′〉

�ρ � 〈c(e), �σ〉 −→ 〈c(e′), �σ′〉

Such a construct will result from a continuation, which, even after generaliza-
tion and argument lifting, merely evaluates its sole argument and returns the
corresponding value:

letcont rec ki e = case e of {
val(v) → k v |
ELSE(e) → eval e (λe′. ki e′)

}
These continuations can be easily identified and removed once argument lifting
is performed, or at any point in the transformation pipeline, up until apply is
absorbed into eval.

4.10 Detour: Generating Pretty-Big-Step Semantics

It is interesting to see what kind of semantics we get by rearranging or removing
some steps of the above process. If, after CPS conversion, we do not general-
ize the continuations, but instead just lift their arguments and defunctionalize
them,1 we obtain a pretty-big-step [6] interpreter. The distinguishing feature of
pretty-big-step semantics is that constructs which would normally have rules
with multiple premises are factorized into intermediate constructs. As observed
by Charguéraud, each intermediate construct corresponds to an intermediate
state of the interpreter, which is why, in turn, they naturally correspond to
continuations. Here are the pretty-big-step rules generated from the big-step
semantics in Fig. 2 (Section 2).

1 The complete transformation to pretty-big-step style involves these steps: 1. CPS
conversion, 2. argument lifting, 3. removal of vacuous continuations, 4. defunction-
alization, 5. merging of apply and eval, and 6. conversion to direct style.

One Step at a Time 223

ρ � val(v) ⇓P
B v

ρ � e1 ⇓P
B v1 ρ � kapp1(e2 , v1) ⇓P

B v

ρ � app(e1 , e2) ⇓P
B v

v = ρ x

ρ � var(x) ⇓P
B v

ρ � e2 ⇓P
B v2 ρ � kapp2(v1 , v2) ⇓P

B v

ρ � kapp1(e2 , v1) ⇓P
B v

ρ � lam(x , e ′) ⇓P
B clo(x , e ′, ρ)

ρ′′ = update x v2 ρ′ ρ′′ � e ′ ⇓P
B v

ρ � kapp2(clo(x , e ′, ρ′), v2) ⇓P
B v

As we can see, the evaluation of app now proceeds through two intermediate
constructs, kapp1 and kapp2, which correspond to continuations introduced in
the CPS conversion. The evaluation of app(e1, e2) starts by evaluating e1 to
v1. Then kapp1 is responsible for evaluating e2 to v2. Finally, kapp2 evaluates
the closure body just as the third premise of the original rule for app. Save
for different order of arguments, the resulting intermediate constructs and their
rules are identical to Charguéraud’s examples.

4.11 Pretty-Printing

For the purpose of presenting and studying the original and transformed seman-
tics, we add a final pretty-printing phase. This amounts to generating inference
rules corresponding to the control flow in the interpreter. This pretty-printing
stage can be applied to both the big-step and small-step interpreters and was
used to generate many of the rules in this paper, as well as for generating the
appendix of the full version of this paper [1].

4.12 Correctness

A correctness proof for the full pipeline is not part of our current work. How-
ever, several of these steps (partial CPS conversion, partial argument lifting,
defunctionalization, conversion to direct style) are instances of well-established
techniques. In other cases, such as generalization of continuations (Section 4.2)
and removal of self-recursive tail-calls (Section 4.6), we have informal proofs using
equational reasoning [1]. The proof for tail-call removal is currently restricted to
compositional interpreters.

5 Evaluation

We have evaluated our approach to deriving small-step interpreters on a range
of example languages. Table 2 presents an overview of example big-step specifi-
cations and their properties, together with their derived small-step counterparts.
A full listing of the input and output specifications for these case studies appears
in the appendix to the full version of the paper, which is available online [1].

224 F. Vesely and K. Fisher

Table 2. Overview of transformed example languages. Input is a given big-step inter-
preter and our transformations produce a small-step counterpart as output automati-
cally. “Prems” columns only list structural premises: those that check for a big or small
step. Unless otherwise stated, environments are used to give meaning to variables and
they are represented as functions.

Big-step Small-step
Example Rules Prems Rules Prems New Features

Call-by-value 4 3 7 3 1
Call-by-value, substitution 4 5 7 4 0 addition
Call-by-value, booleans 13 20 24 11 1 add., conditional, equality
Call-by-value, pairs 7 7 14 7 1 pairs, left/right projection
Call-by-value, dynamic
scopes

5 5 10 5 1 add., defunctionalized
environments (DEs)

Call-by-value, recursion &
iteration

26 44 57 26 6 fixpoint operator, add.,
sub., let-expressions,
applicative for and while
loops, cond., strict and
“lazy” conjunction, eq.,
pairs

Call-by-name 5 5 11 5 2 add., DEs
Call-by-name, substitution 4 4 6 3 0 add., DEs
Call-by-name, booleans 13 20 25 11 2 add., cond., eq., DEs
Call-by-name, pairs 7 7 15 7 2 pairs, left/right proj., DEs
Minimal imperative 4 4 6 3 0 add., store without

indirection, combined
assignment with
sequencing

While 7 9 14 6 2 add., store w/o indir.,
assign., seq., while

While, environments 8 10 17 7 3 add., store w/ indir.,
scoped var. declaration,
assign., seq., while

Extended While 17 26 33 15 2 add., subt., mult., seq.,
store w/o indir., while,
cond., “ints as bools”,
equality, “lazy conj.”

Exceptions as state 8 7 11 3 1 add.
Exceptions as values 8 7 10 3 0 add.
Call-by-value, exceptions 21 29 34 12 2 add., div., try block
CBV, exceptions as state 20 26 39 11 8 add., div., handle & try

blocks
CBV, non-determinism 7 7 13 5 2 add., choice operator
Store rewinding 8 10 19 8 4 assign., rewinding of the

store

One Step at a Time 225

For our case studies, we have used call-by-value and call-by-name λ-calculi,
and a simple imperative language as base languages and extended them with
some common features. Overall, the small-step specifications (as well as the cor-
responding interpreters) resulting from our transformation are very similar to
ones we could find in the literature. The differences are either well justified—for
example, by different handling of value terms—or they are due to new term con-
structors which could be potentially eliminated by a more powerful translation.

We evaluated the correctness of our transformation experimentally, by com-
paring runs of the original big-step and the transformed small-step interpreters,
as well as by inspecting the interpreters themselves. In a few cases, we proved
the transformation correct by transcribing the input and output interpreters in
Coq (as an evaluation relation coupled with a proof of determinism) and proving
them equivalent. From the examples in Table 2, we have done so for “Call-by-
value”, “Exceptions as state”, and a simplified version of “CBV, exceptions as
state”.

We make a few observations about the resulting semantics here.

New Auxiliary Constructs. In languages that use an environment to look up
values bound to variables, new constructs are introduced to keep the updated
environment as context. These constructs are simple: they have two arguments –
one for the environment (context) and one for the term to be evaluated in that
environment. A congruence rule will ensure steps of the term argument in the
given context and another rule will return the result. The construct kclo1 from
the λ-calculus based examples is a typical example.

ρ � kclo1(ρ′, val(v)) −→ val(v)

ρ′ � t −→ t′

ρ � kclo1(ρ′, t) −→ kclo1(ρ′, t′)

As observed in Section 2, if the environment ρ′′ is a result of updating an envi-
ronment ρ′ with a binding of x to v, then the app rule

ρ′′ = update x v ρ′

ρ � app(clo(ρ′, x, e), v) −→ kclo1(ρ′′, e)

and the above two rules can be replaced with the following rules for app:

ρ � app(clo(x, v, ρ′), v2) −→ v

ρ′′ = update x v2 ρ′ ρ′′ � e −→ e′

ρ � app(clo(x, e, ρ′), v2) −→ app(clo(x, e′, ρ′), v2)

Another common type of constructs resulting in a recurring pattern of extra
auxiliary constructs are loops. For example, the “While” language listed in
Table 2 contains a while-loop with the following big-step rules:

〈eb, σ〉 ⇓ 〈false, σ′〉
〈while(eb, c), σ〉 ⇓ 〈skip, σ′〉

〈eb, σ〉 ⇓ 〈true, σ′〉 〈c, σ′〉 ⇓ 〈skip, σ′′〉 〈while(eb, c), σ
′′〉 ⇓ 〈v, σ′′′〉

〈while(eb, c), σ〉 ⇓ 〈v, σ′′′〉

226 F. Vesely and K. Fisher

The automatic transformation of these rules introduces two extra constructs,
kwhile1 and ktrue1. The former ensures the full evaluation of the condition
expression, keeping a copy of it together with the while’s body. The latter con-
struct ensures the full evaluation of while’s body, keeping a copy of the body
together with the condition expression.

〈while(eb, c), σ〉 −→ 〈kwhile1(c, eb, eb), σ〉

〈kwhile1(c, eb, true), σ〉 −→ 〈ktrue1(eb, c, c), σ〉

〈kwhile1(c, eb, false), σ〉 −→ 〈skip, σ〉
〈t, σ〉 −→ 〈t′, σ′〉

〈kwhile1(c, eb, t), σ〉 −→ 〈kwhile1(c, eb, t
′), σ′〉

〈ktrue1(eb, c, skip), σ〉 −→ 〈while(eb, c), σ〉
〈t, σ〉 −→ 〈t′, σ′〉

〈ktrue1(eb, c, t), σ〉 −→ 〈ktrue1(eb, c, t
′), σ′〉

We observe that in a language with a conditional and a sequencing construct
we can find terms corresponding to kwhile1 and ktrue1:

kwhile1(c, eb, e
′
b) ≈ if(e′

b, seq(c,while(eb, c)), skip)

ktrue1(eb, c, c
′) ≈ seq(c′,while(eb, c))

The small-step semantics of while could then be simplified to a single rule.

〈while(eb, c), σ〉 −→ 〈if(eb, seq(c,while(eb, c)), skip), σ〉

Our current, straightforward way of deriving term–continuation equivalents
is not capable of finding these equivalences. In future work, we want to explore
external tools, such as SMT solvers, to facilitate searching for translations from
continuations to terms. This search could be possibly limited to a specific term
depth.

Exceptions as Values. We tested our transformations with two ways of represent-
ing exceptions in big-step semantics currently supported by our input language:
as values and as state. Representing exceptions as values appears to be more
common and is used, for example, in the big-step specification of Standard ML
[24], or in [6] in connection with pretty big-step semantics. Given a big-step spec-
ification (or interpreter) in this style, the generated small-step semantics handles
exceptions correctly (based on our experiments). However, since exceptions are
just values, propagation to top-level is spread out across multiple steps – depend-
ing on the depth of the term which raised the exception. The following example
illustrates this behavior.

add(1, add(2, add(raise(3), raise(4)))) −→ add(1, add(2, add(exc(3), raise(4))))

−→ add(1, add(2, exc(3))) −→ add(1, exc(3)) −→ exc(3)

One Step at a Time 227

Since we expect the input semantics to be deterministic and the propagation
of exceptions in the resulting small-step follows the original big-step semantics,
this “slow” propagation is not a problem, even if it does not take advantage of
“fast” propagation via labels or state. A possible solution we are considering for
future work is to let the user flag values in the big-step semantics and translate
such values as labels on arrows or a state change to allow propagating them in
a single step.

Exceptions as State. Another approach to specifying exceptions is to use a flag
in the configuration. Rules may be specified so that they only apply if the incom-
ing state has no exception indicated. As with the exceptions-as-values approach,
propagation rules have to be written to terminate a computation early if a com-
putation of a subterm indicates an exception. Observe the exception propagation
rule for add and the exception handling rule for try.

〈e1, σ, ok〉 ⇓ 〈v1, σ′, ex〉
〈app(e1, e2), σ, ok〉 ⇓ 〈skip, σ′, ex〉

〈e1, σ, ok〉 ⇓ 〈v1, σ′, ex〉 〈e2, σ′, ok〉 ⇓ 〈v2, σ′′, ok〉
〈try(e1, e2), σ, ok〉 ⇓ 〈v2, σ′′, ok〉

Using state to propagate exceptions is mentioned in connection with small-
step SOS in [4]. While this approach has the potential advantage of manifesting
the currently raised exception immediately at the top-level, it also poses a prob-
lem of locality. If an exception is reinserted into the configuration, it might
become decoupled from the original site. This can result, for example, in the
wrong handler catching the exception in a following step. Our transformation
deals with this style of exceptions naturally by preserving more continuations
in the final interpreter. After being raised, an exception is inserted into the
state and propagated to top-level by congruence rules. However, it will only be
caught after the corresponding subterm has been evaluated, or rather, a value
has been propagated upwards to signal a completed computation. This behavior
corresponds to exception handling in big-step rules, only it is spread out over
multiple steps. Continuations are kept in the final language to correspond to
stages of computation and thus, to preserve the locality of a raised exception.
A handler will only handle an exception once the raising subterm has become a
value. Hence, the exception will be intercepted by the innermost handler – even
if the exception is visible at the top-level of a step.

Based on our experiments, the exception-as-state handling in the generated
small-step interpreters is a truthful unfolding of the big-step evaluation process.
This is further supported by our ad-hoc proofs of equivalence between input and
output interpreters. However, the generated semantics suffers from a blowup in
the number of rules and moves away from the usual small-step propagation and
exception handling in congruence rules. We see this as a shortcoming of the trans-
formation. To overcome this, we briefly experimented with a case-floating stage,

228 F. Vesely and K. Fisher

which would result in catching exceptions in the congruence cases of continu-
ations. Using such transformation, the resulting interpreter would more closely
mirror the standard small-step treatment of exceptions as signals. However, the
conditions when this transformations should be triggered need to be considered
carefully and we leave this for future work.

Limited Non-determinism. In the present work, our aim was to only consider
deterministic semantics implemented as an interpreter in a functional program-
ming language. However, since cases of the interpreter are considered indepen-
dently in the transformation, some forms of non-determinism in the input seman-
tics get translated correctly. For example, the following internal choice construct
(cf. CSP’s � operator [5,17]) gets transformed correctly. The straightforward
big-step rules are transformed into small-step rules as expected. Of course, one
has to keep in mind that these rules are interpreted as ordered, that is, the first
rule in both styles will always apply.

e1 ⇓ v1

choose(e1, e2) ⇓ v1 choose(e1, e2) −→ e1

e2 ⇓ v2

choose(e1, e2) ⇓ v2 choose(e1, e2) −→ e2

6 Related Work

In their short paper [18], the authors propose a direct syntactic way of deriving
small-step rules from big-step ones. Unlike our approach, based on manipulating
control flow in an interpreter, their transformation applies to a set of inference
rules. While axioms are copied over directly, for conditional rules a stack is
added to the configuration to keep track of evaluation. For each conditional big-
step rule, an auxiliary construct and 4 small-step rules are generated. Results of
“premise computations” are accumulated and side-conditions are only discharged
at the end of such a computation sequence. For this reason, we can view the
resulting semantics more as a “leap” semantics, which makes it less suitable for
a semantics-based interpreter or debugger. A further disadvantage is that the
resulting semantics is far removed from a typical small-step specification with a
higher potential for blow-up as 4 rules are introduced for each conditional rule.
On the other hand, the delayed unification of meta-variables and discharging of
side-conditions potentially makes the transformation applicable to a wider array
of languages, including those where control flow is not as explicit.

In [2], the author explores an approach to constructing abstract machines
from big-step (natural) specifications. It applies to a class of big-step specifica-
tions called L-attributed big-step semantics, which allows for sufficiently inter-
esting languages. The extracted abstract machines use a stack of evaluation
contexts to keep track of the stages of computations. In contrast, our trans-
formed interpreters rebuild the context via congruence rules in each step. While
this is less efficient as a computation strategy, the intermediate results of the

One Step at a Time 229

computation are visible in the context of the original program, in line with usual
SOS specifications.

A significant body of work has been developed on transformations that take
a form of small-step semantics (usually an interpreter) and produce a big-step-
style interpreter. The relation between semantic specifications, interpreters and
abstract machines has been thoroughly investigated, mainly in the context of
reduction semantics [10–13,26]. In particular, our work was inspired by and is
based on Danvy’s work on refocusing in reduction semantics [13] and on use of
CPS conversion and defunctionalization to convert between representations of
control in interpreters [11].

A more direct approach to deriving big-step semantics from small-step is
taken by authors of [4], where a small-step Modular SOS specification is trans-
formed into a pretty-big-step one. This is done by introducing reflexivity and
transitivity rules into a specification, along with a “refocus” rule which effectively
compresses a transition sequence into a single step. The original small-step rules
are then specialized with respect to these new rules, yielding refocused rules in
the style of pretty-big-step semantics [6]. A related approach is by Ciobâcă [7],
where big-step rules are generated for a small-step semantics. The big-step rules
are, again, close to a pretty-big-step style.

7 Conclusion and Future Work

We have presented a stepwise functional derivation of a small-step interpreter
from a big-step one. This derivation proceeds through a sequence of, mostly
basic, transformation steps. First, the big-step evaluation function is converted
into continuation-passing style to make control-flow explicit. Then, the contin-
uations are generalized (or lifted) to handle non-value inputs. The non-value
cases correspond to congruence rules in small-step semantics. After defunction-
alization, we remove self-recursive calls, effectively converting the recursive inter-
preter into a stepping function. The final major step of the transformation is to
decide which continuations will have to be introduced as new auxiliary terms
into the language. We have evaluated our approach on several languages cov-
ering different features. For most of these, the transformation yields small-step
semantics which are close to ones we would normally write by hand.

We see this work as an initial exploration of automatic transformations of big-
step semantics into small-step counterparts. We identified a few areas where the
current process could be significantly improved. These include applying better
equational reasoning to identify terms equivalent to continuations, or transform-
ing exceptions as state in a way that would avoid introducing many intermediate
terms and would better correspond to usual signal handling in small-step SOS.
Another research avenue is to fully verify the transformations in an interactive
theorem prover, with the possibility of extracting a correct transformer from the
proofs.

230 F. Vesely and K. Fisher

Acknowledgements. We would like to thank Jeanne-Marie Musca, Brian LaChance
and the anonymous referees for their useful comments and suggestions. This work was
supported in part by DARPA award FA8750-15-2-0033.

References

1. https://www.eecs.tufts.edu/∼fvesely/esop2019
2. Ager, M.S.: From natural semantics to abstract machines. In: Etalle, S. (ed.) LOP-

STR 2004. LNCS, vol. 3573, pp. 245–261. Springer, Heidelberg (2005). https://doi.
org/10.1007/11506676 16

3. Amin, N., Rompf, T.: Collapsing towers of interpreters. Proc. ACM Program. Lang.
2(POPL), 52:1–52:33 (2017). https://doi.org/10.1145/3158140

4. Bach Poulsen, C., Mosses, P.D.: Deriving pretty-big-step semantics from small-step
semantics. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 270–289. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 15

5. Brookes, S.D., Roscoe, A.W., Walker, D.J.: An operational semantics for CSP.
Technical report, Oxford University (1986)

6. Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37036-6 3

7. Ciobâcă, Ş.: From small-step semantics to big-step semantics, automatically. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 347–361. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-8 24

8. Danvy, O., Filinski, A.: Representing control: a study of the CPS transforma-
tion. Math. Struct. Comput. Sci. 2(4), 361–391 (1992). https://doi.org/10.1017/
S0960129500001535

9. Danvy, O.: On evaluation contexts, continuations, and the rest of computation.
In: Thielecke, H. (ed.) Workshop on Continuations, pp. 13–23, Technical report
CSR-04-1, Department of Computer Science, Queen Mary’s College, Venice, Italy,
January 2004

10. Danvy, O.: From reduction-based to reduction-free normalization. Electr. Notes
Theor. Comput. Sci. 124(2), 79–100 (2005). https://doi.org/10.1016/j.entcs.2005.
01.007

11. Danvy, O.: Defunctionalized interpreters for programming languages. In: ICFP
2008, pp. 131–142. ACM, New York (2008). https://doi.org/10.1145/1411204.
1411206

12. Danvy, O., Johannsen, J., Zerny, I.: A walk in the semantic park. In: PEPM 2011,
pp. 1–12. ACM, New York (2011). https://doi.org/10.1145/1929501.1929503

13. Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Technical report,
BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus,
November 2004

14. Ellison, C., Roşu, G.: An executable formal semantics of C with applications.
In: POPL 2012, pp. 533–544. ACM, New York (2012). https://doi.org/10.1145/
2103656.2103719

15. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex,
1st edn. The MIT Press, Cambridge (2009)

16. Fischbach, A., Hannan, J.: Specification and correctness of lambda lifting. J. Funct.
Program. 13(3), 509–543 (2003). https://doi.org/10.1017/S0956796802004604

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

https://www.eecs.tufts.edu/~fvesely/esop2019
https://doi.org/10.1007/11506676_16
https://doi.org/10.1007/11506676_16
https://doi.org/10.1145/3158140
https://doi.org/10.1007/978-3-642-54833-8_15
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-38613-8_24
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1016/j.entcs.2005.01.007
https://doi.org/10.1016/j.entcs.2005.01.007
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/1929501.1929503
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1017/S0956796802004604

One Step at a Time 231

18. Huizing, C., Koymans, R., Kuiper, R.: A small step for mankind. In: Dams, D.,
Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality, and Correct-
ness. LNCS, vol. 5930, pp. 66–73. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11512-7 5

19. Johnsson, T.: Lambda lifting: transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer, Hei-
delberg (1985). https://doi.org/10.1007/3-540-15975-4 37

20. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006).
https://doi.org/10.1145/1146809.1146811

21. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL 2014, pp. 179–191. ACM, New York (2014). https://doi.
org/10.1145/2535838.2535841

22. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput.
207(2), 284–304 (2009). https://doi.org/10.1016/j.ic.2007.12.004

23. Midtgaard, J., Ramsey, N., Larsen, B.: Engineering definitional interpreters. In:
PPDP 2013, pp. 121–132. ACM, New York (2013). https://doi.org/10.1145/
2505879.2505894

24. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge (1997)

25. Nielsen, L.R.: A selective CPS transformation. Electr. Notes Theor. Comput. Sci.
45, 311–331 (2001). https://doi.org/10.1016/S1571-0661(04)80969-1

26. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
High. Order Symbolic Comput. 11(4), 363–397 (1998). https://doi.org/10.1023/
A:1010027404223

27. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.
012

28. Strachey, C., Wadsworth, C.P.: Continuations: a mathematical semantics for han-
dling full jumps. High. Order Symbolic Comput. 13(1), 135–152 (2000). https://
doi.org/10.1023/A:1010026413531

29. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994). https://doi.org/10.1006/inco.1994.1093

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-11512-7_5
https://doi.org/10.1007/978-3-642-11512-7_5
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1145/2505879.2505894
https://doi.org/10.1145/2505879.2505894
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1023/A:1010026413531
https://doi.org/10.1023/A:1010026413531
https://doi.org/10.1006/inco.1994.1093
http://creativecommons.org/licenses/by/4.0/

Program Semantics

Extended Call-by-Push-Value:
Reasoning About Effectful Programs

and Evaluation Order

Dylan McDermott(B) and Alan Mycroft

Computer Laboratory, University of Cambridge, Cambridge, UK
{Dylan.McDermott,Alan.Mycroft}@cl.cam.ac.uk

Abstract. Traditionally, reasoning about programs under varying eval-
uation regimes (call-by-value, call-by-name etc.) was done at the meta-
level, treating them as term rewriting systems. Levy’s call-by-push-value
(CBPV) calculus provides a more powerful approach for reasoning, by
treating CBPV terms as a common intermediate language which captures
both call-by-value and call-by-name, and by allowing equational reason-
ing about changes to evaluation order between or within programs.

We extend CBPV to additionally deal with call-by-need, which is non-
trivial because of shared reductions. This allows the equational reasoning
to also support call-by-need. As an example, we then prove that call-
by-need and call-by-name are equivalent if nontermination is the only
side-effect in the source language.

We then show how to incorporate an effect system. This enables us to
exploit static knowledge of the potential effects of a given expression to
augment equational reasoning; thus a program fragment might be invari-
ant under change of evaluation regime only because of knowledge of its
effects.

Keywords: Evaluation order · Call-by-need · Call-by-push-value ·
Logical relations · Effect systems

1 Introduction

Programming languages based on the λ-calculus have different semantics
depending on the reduction strategy employed. Three common variants are call-
by-value, call-by-name and call-by-need (with the third sometimes also referred
to as “lazy evaluation” when data constructors defer evaluation of arguments
until the data structure is traversed). Reasoning about such programs and their
equivalence under varying reduction strategies can be difficult as we have to
reason about meta-level reduction strategies and not merely at the object level.

Levy [17] introduced call-by-push-value (CBPV) to improve the situation.
CBPV is a calculus with separated notions of value and computation. A charac-
teristic feature is that each CBPV program encodes its own evaluation order. It is

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 235–262, 2019.
https://doi.org/10.1007/978-3-030-17184-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_9&domain=pdf
http://orcid.org/0000-0002-6705-1449
http://orcid.org/0000-0001-7013-8572
https://doi.org/10.1007/978-3-030-17184-1_9

236 D. McDermott and A. Mycroft

best seen as an intermediate language into which lambda-calculus-based source-
language programs can be translated. Moreover, CBPV is powerful enough that
programs employing call-by-value or call-by-name (or even a mixture) can be
simply translated into it, giving an object-calculus way to reason about the
meta-level concept of reduction order.

However, CBPV does not enable us to reason about call-by-need evaluation.
An intuitive reason is that call-by-need has “action at a distance” in that reduc-
tion of one subterm causes reduction of all other subterms that originated as
copies during variable substitution. Indeed call-by-need is often framed using
mutable stores (graph reduction [32], or reducing a thunk which is accessed by
multiple pointers [16]). CBPV does not allow these to be encoded.

This work presents extended call-by-push-value (ECBPV), a calculus sim-
ilar to CBPV, but which can capture call-by-need reduction in addition to
call-by-value and call-by-name. Specifically, ECBPV adds an extra primitive
M needx.N which runs N , with M being evaluated the first time x is used. On
subsequent uses of x, the result of the first run is returned immediately. The term
M is evaluated at most once. We give the syntax and type system of ECBPV,
together with an equational theory that expresses when terms are considered
equal.

A key justification for an intermediate language that can express several
evaluation orders is that it enables equivalences between the evaluation orders
to be proved. If there are no (side-)effects at all in the source language, then
call-by-need, call-by-value and call-by-name should be semantically equivalent.
If the only effect is nondeterminism, then need and value (but not name) are
equivalent. If the only effect is nontermination then need and name (but not
value) are equivalent. We show that ECBPV can be used to prove such equiva-
lences by proving the latter using an argument based on Kripke logical relations
of varying arity [12].

These equivalences rely on the language being restricted to particular effects.
However, one may wish to switch evaluation order for subprograms restricted to
particular effects, even if the language itself does not have such a restriction.
To allow reasoning to be applied to these cases, we add an effect system [20] to
ECBPV, which allows the side-effects of subprograms to be statically estimated.
This allows us to determine which parts of a program are invariant under changes
in evaluation order. As we will see, support for call-by-need (and action at a
distance more generally) makes describing an effect system significantly more
difficult than for call-by-value.

Contributions. We make the following contributions:

– We describe extended call-by-push-value, a version of CBPV containing an
extra construct that adds support for call-by-need. We give its syntax, type
system, and equational theory (Sect. 2).

– We describe two translations from a lambda-calculus source language into
ECBPV: one for call-by-name and one for call-by-need (the first such transla-
tion) (Sect. 3). We then show that, if the source language has nontermination
as the only effect, call-by-name and call-by-need are equivalent.

Extended Call-by-Push-Value 237

– We refine the type system of ECBPV so that its types also carry effect infor-
mation (Sect. 4). This allows equivalences between evaluation orders to be
exploited, both at ECBPV and source level, when subprograms are statically
limited to particular effects.

2 Extended Call-by-Push-Value

We describe an extension to call-by-push-value with support for call-by-need.
The primary difference between ordinary CBPV and ECBPV is the addition
of a primitive that allows computations to be added to the environment, so
that they are evaluated only the first time they are used. Before describing this
change, we take a closer look at CBPV and how it supports call-by-value and
call-by-name.

CBPV stratifies terms into values, which do not have side-effects, and
computations, which might. Evaluation order is irrelevant for values, so we are
only concerned with how computations are sequenced. There is exactly one prim-
itive that causes the evaluation of more than one computation, which is the
computation M to x.N . This means run the computation M , bind the result to
x, and then run the computation N . (It is similar to M >>= \x -> N in Haskell.)
The evaluation order is fixed: M is always eagerly evaluated. This construct can
be used to implement call-by-value: to apply a function, eagerly evaluate the
argument and then evaluate the body of the function. No other constructs cause
the evaluation of more than one computation.

To allow more control over evaluation order, CBPV allows computations
to be thunked. The term thunkM is a value that contains the thunk of the
computation M . Thunks can be duplicated (to allow a single computation to be
evaluated more than once), and can be converted back into computations with
force V . This allows call-by-name to be implemented: arguments to functions
are thunked computations. Arguments are used by forcing them, so that the
computation is evaluated every time the argument is used. Effectively, there is
a construct M name x.N , which evaluates M each time the variable x is used
by N , rather than eagerly evaluating. (The variable x is underlined here to
indicate that it refers to a computation rather than a value: uses of it may have
side-effects.)

To support call-by-need, extended call-by-push-value adds another construct
M needx.N . This term runs the computation N , with the computation M being
evaluated the first time x is used. On subsequent uses of x, the result of the first
run is returned immediately. The computation M is evaluated at most once. This
new construct adds the “action at a distance” missing from ordinary CBPV.

We briefly mention that adding general mutable references to call-by-push-
value would allow call-by-need to be encoded. However, reasoning about evalu-
ation order would be difficult, and so we do not take this option.

238 D. McDermott and A. Mycroft

2.1 Syntax

The syntax of extended call-by-push-value is given in Fig. 1. The highlighted
parts are new here. The rest of the syntax is similar to CBPV.1

V, W ::= c | x | (V1, V2) | fstV | sndV | inlV | inr V

| caseV of {inlx. W1, inr y. W2} | thunkM

M, N ::= x | forceV | λ{i. Mi}i∈I | i‘M | λx. M | V ‘M | returnV

| M to x. N | M need x. N

A, B ::= unit | A1 × A2 | A1 + A2 | UC

C, D ::=
∏

i∈I Ci | A C | FrA

Γ ::= � | Γ, x : A | Γ, x : FrA

Fig. 1. Syntax of ECBPV

We assume two sets of variables: value variables x, y, . . . and computation
variables x, y, While ordinary CBPV does not include computation variables,
they do not of themselves add any expressive power to the calculus. The ability
to use call-by-need in ECBPV comes from the need construct used to bind the
variable.2

There are two kinds of terms, value terms V,W which do not have side-effects
(in particular, are strongly normalizing), and computation terms M,N which
might have side-effects. Value terms include constants c, and specifically the
constant () of type unit. There are no constant computation terms; value con-
stants suffice (see Sect. 3 for an example). The value term thunkM suspends the
computation M ; the computation term force V runs the suspended computation
V . Computation terms also include I-ary tuples λ{i.Mi}i∈I (where I ranges over
finite sets); the ith projection of a tuple M is i‘M . Functions send values to com-
putations, and are computations themselves. Application is written V ‘M , where
V is the argument and M is the function to apply. The term return V is a com-
putation that just returns the value V , without causing any side-effects. Eager
sequencing of computations is given byM to x.N , which evaluates M until it
returns a value, then places the result in x and evaluates N . For example, in
M to x. return (x, x), the term M is evaluated once, and the result is duplicated.
In M to x. return (), the term M is still evaluated once, but its result is never

1 The only difference is that eliminators of product and sum types are value terms
rather than computation terms (which makes value terms slightly more general).
Levy [17] calls this CBPV with complex values.

2 Computation variables are not strictly required to support call-by-need (since we can
use x : U (FrA) instead of x : FrA), but they simplify reasoning about evaluation
order, and therefore we choose to include them.

Extended Call-by-Push-Value 239

used. Syntactically, both to and need (explained below) are right-associative (so
M1 to x.M2 to y.M3 means M1 to x. (M2 to y.M3)).

The primary new construct is M need x.N . This term evaluates N . The first
time x is evaluated (due to a use of x inside N) it behaves the same as the
computation M . If M returns a value V , then subsequent uses of x behave the
same as return V . Hence only the first use of x will evaluate M . If x is not used
then M is not evaluated at all. The computation variable x bound inside the
term is primarily used by eagerly sequencing it with other computations. For
example,

M need x. x to y. x to z. return (y, z)

uses x twice: once where the result is bound to y, and once where the result is
bound to z. Only the first of these uses will evaluate M , so this term has the
same semantics as M to x. return(x, x). The term M need x. return () does not
evaluate M at all, and has the same semantics as return ().

With the addition of need it is not in general possible to determine the order
in which computations are executed statically. Uses of computation variables
are given statically, but not all of these actually evaluate the corresponding
computation dynamically. In general, the set of uses of computation variables
that actually cause effects depends on run-time behaviour. This will be important
when describing the effect system in Sect. 4.

The standard capture-avoiding substitution of value variables in value terms
is denoted V [x �→ W]. We similarly have substitutions of value variables in com-
putation terms, computation variables in value terms, and computation variables
in computation terms. Finally, we define the call-by-name construct mentioned
above as syntactic sugar for other CBPV primitives:

M name x.N := thunkM ‘ λy.N [x �→ force y]

where y is not free in N .
Types are stratified into value types A,B and computation types C,D. Value

types include the unit type, products and sum types. (It is easy to add further
base types; we omit Levy’s empty types for simplicity.) Value types also include
thunk types UC, which are introduced by thunkM and eliminated by force V .
Computation types include I-ary product types

∏
i∈I Ci for finite I, function

types A → C, and returner types FrA. The latter are introduced by return V ,
and are the only types of computation that can appear on the left of either
to or need (which are the eliminators of returner types). The type constructors
U and Fr form an adjunction in categorical models. Finally, contexts Γ map
value variables to value types, and computation variables to computation types
of the form FrA. This restriction is due to the fact that the only construct
that binds computation variables is need, which only sequences computations of
returner type. Allowing computation variables to be associated with other forms
of computation type in typing contexts is therefore unnecessary. Typing contexts
are ordered lists.

The syntax is parameterized by a signature, containing the constants c.

240 D. McDermott and A. Mycroft

Definition 1 (Signature). A signature K consists of a set KA of constants of
type A for each value type A. All signatures contain () ∈ Kunit.

2.2 Type System

The type system of extended call-by-push-value is a minor extension of the type
system of ordinary call-by-push-value. Assume a fixed signature K. There are
two typing judgements, one for value types and one for computation types. The
rules for the value typing judgement Γ �v V : A and the computation typing
judgement Γ � M : C are given in Fig. 2. Rules that add a new variable to
the typing context implicitly require that the variable does not already appear
in the context. The type system admits the usual weakening and substitution
properties for both value and computation variables.

Γ �v V : A

Γ �v x : A
if (x : A) ∈ Γ

Γ �v c : A
if c ∈ KA

Γ � M : C

Γ �v thunkM : UC

Γ �v V1 : A1 Γ �v V2 : A2

Γ �v (V1, V2) : A1 × A2

Γ �v V : A1 × A2

Γ �v fstV : A1

Γ �v V : A1 × A2

Γ �v sndV : A2

Γ �v V : A1

Γ �v inlV : A1 + A2

Γ �v V : A2

Γ �v inr V : A1 + A2

Γ �v V : A1 + A2 Γ, x : A1 �v W1 : B Γ, x : A2 �v W2 : B

Γ �v caseV of {inlx. W1, inr y. W2} : B

Γ � M : C

Γ � x : FrA
if (x : FrA) ∈ Γ

Γ �v V : A

Γ � returnV : FrA

Γ �v V : UC

Γ � forceV : C

(Γ � Mi : Ci)i∈I

Γ � λ{i. Mi}i∈I :
∏

i∈I Ci

Γ � M :
∏

i∈I Ci

Γ � i‘M : Ci

Γ, x : A � M : C

Γ � λx. M : A C

Γ �v V : A Γ � M : A C

Γ � V ‘M : C

Γ � M : FrA Γ, x : A � N : C

Γ � M to x. N : C

Γ � M : FrA Γ, x : FrA � N : C

Γ � M need x. N : C

Fig. 2. Typing rules for ECBPV

Extended Call-by-Push-Value 241

It should be clear that ECBPV is actually an extension of call-by-push-value.
CBPV terms embed as terms that never use the highlighted forms. We translate
call-by-need by encoding call-by-need functions as terms of the form

λx′. (force x′) need x.M

where x′ is not free in M . This is a call-by-push-value function that accepts a
thunk as an argument. The thunk is added to the context, and the body of the
function is executed. The first time the argument is used (via x), the computation
inside the thunk is evaluated. Subsequent uses do not run the computation again.
A translation based on this idea from a call-by-need source language is given in
detail in Sect. 3.2.

2.3 Equational Theory

In this section, we present the equational theory of extended call-by-push-value.
This is an extension of the equational theory for CBPV given by Levy [17] to
support our new constructs. It consists of two judgement forms, one for values
and one for computations:

Γ �v V ≡ W : A Γ � M ≡ N : C

These mean both terms are well typed, and are considered equal by the equa-
tional theory. We frequently omit the context and type when they are obvious
or unimportant.

The definition is given by the axioms in Fig. 3. Note that these axioms only
hold when the terms they mention have suitable types, and when suitable con-
straints on free variables are satisfied. For example, the second sequencing axiom
holds only if x is not free in N . These conditions are left implicit in the figure.
The judgements are additionally reflexive (assuming the typing holds), symmet-
ric and transitive. They are also closed under all possible congruence rules. There
are no restrictions on congruence related to evaluation order. None are neces-
sary because ECBPV terms make the evaluation order explicit: all sequencing of
computations uses to and need. Finally, note that enriching the signature with
additional constants will in general require additional axioms capturing their
behaviour; Sect. 3 exemplifies this for constants ⊥A representing nontermination.

For the equational theory to capture call-by-need, we might expect compu-
tation terms that are not of the form returnV to never be duplicated, since they
should not be evaluated more than once. There are two exceptions to this. Such
terms can be duplicated in the axioms that duplicate value terms (such as the β
laws for sum types). In this case, the syntax ensures such terms are thunked. This
is correct because we should allow these terms to be executed once in each sepa-
rate execution of a computation (and separate executions arise from duplication
of thunks). We are only concerned with duplication within a single computation.
Computation terms can also be duplicated across multiple elements of a tuple
λ{i.Mi} of computation terms. This is also correct, because only one component

242 D. McDermott and A. Mycroft

Fig. 3. Equational theory of ECBPV

Extended Call-by-Push-Value 243

of a tuple can be used within a single computation (without thunking), so the
effects still will not happen twice. (There is a similar consideration for functions,
which can only be applied once.) The remainder of the axioms never duplicate
need-bound terms that might have effects.

The majority of the axioms of the equational theory are standard. Only the
axioms involving need are new; these are highlighted. The first new sequencing
axiom (in Fig. 3c) is the crucial one. It states that if a computation will next
evaluate x, where x is a computation variable bound to M , then this is the same
as evaluating M , and then using the result for subsequent uses of x. In particular,
this axiom (together with the η law for Fr) implies that M need x. x ≡ M .

The second sequencing axiom does garbage collection [22]: if a computation
bound by need is not used (because the variable does not appear), then the
binding can be dropped. This equation implies, for example, that

M1 need x1.M2 need x2. · · · Mn need xn. return () ≡ return ()

The next four sequencing axioms (two from CBPV and two new) state that
binding a computation with to or need commutes with the remaining forms
of computation terms. These allow to and need to be moved to the outside of
other constructs except thunks. The final four axioms (one from CBPV and three
new) capture associativity and commutativity involving need and to; again these
parallel the existing simple associativity axiom for to.

Note that associativity between different evaluation orders is not necessarily
valid. In particular, we do not have

(M1 to x.M2) need y.M3 ≡ M1 to x. (M2 need x.M3)

(The first term might not evaluate M1, the second always does.) This is usually
the case when evaluation orders are mixed [26].

These final two groups allow computation terms to be placed in normal forms
where bindings of computations are on the outside. (Compare this with the
translation of source-language answers given in Sect. 3.2.) Finally, the β law
for need (in Fig. 3a) parallels the usual β law for to: it gives the behaviour of
computation terms that return values without having any effects.

The above equational theory induces a notion of contextual equivalence ∼=ctx

between ECBPV terms. Two terms are contextually equivalent when they have
no observable differences in behaviour. When we discuss equivalences between
evaluation orders in Sect. 3, ∼=ctx is the notion of equivalence between terms that
we consider.

Contextual equivalence is defined as follows. The ground types G are the
value types that do not contain thunks:

G ::=unit | G1 × G2 | G1 + G2

A value-term context C[−] is a computation term with a single hole (written
−), which occurs in a position where a value term is expected. We write C[V]
for the computation term that results from replacing the hole with V . Similarly,

244 D. McDermott and A. Mycroft

computation-term contexts C[−] are computation terms with a single hole where a
computation term is expected, and C[M] is the term in which the hole is replaced
by M . Contextual equivalence says that the terms cannot be distinguished by
closed computations that return ground types. (Recall that 	 is the empty typing
context.)

Definition 2 (Contextual equivalence). There are two judgement forms of
contextual equivalence.

1. Between value terms: Γ �v V ∼=ctx W : A if Γ �v V : A, Γ �v W : A, and for
all ground types G and value-term contexts C such that 	 � C[V] : FrG and
	 � C[W] : FrG we have

	 � C[V] ≡ C[W] : FrG

2. Between computation terms: Γ � M ∼=ctx N : C if Γ � M : C, Γ � N : C,
and for all ground types G and computation-term contexts C[−] such that
	 � C[M] : FrG and 	 � C[N] : FrG we have

	 � C[M] ≡ C[N] : FrG

3 Call-by-Name and Call-by-Need

Extended call-by-push-value can be used to prove equivalences between eval-
uation orders. In this section we prove a classic example: if the only effect
in the source language is nontermination, then call-by-name is equivalent to
call-by-need. We do this in two stages.

First, we show that call-by-name is equivalent to call-by-need within ECBPV
(Sect. 3.1). Specifically, we show that

M name x.N ∼=ctx M need x.N

(Recall that M name x.N is syntactic sugar for thunkM ‘ λy.N [x �→ force y].)
Second, an important corollary is that the meta-level reduction strategies are

equivalent (Sect. 3.2). We show this by describing a lambda-calculus-based source
language together with a call-by-name and a call-by-need operational semantics
and giving sound (see Theorem 2) call-by-name and call-by-need translations into
ECBPV. The former is based on the translation into the monadic metalanguage
given by Moggi [25] (we expect Levy’s translation [17] to work equally well).
The call-by-need translation is new here, and its existence shows that ECBPV
does indeed subsume call-by-need. We then show that given any source-language
expression, the two translations give contextually equivalent ECBPV terms.

To model non-termination being our sole source-language effect, we use the
ECBPV signature which contains a constant ⊥A : U (FrA) for each value type
A, representing a thunked diverging computation. It is likely that our proofs still
work if we have general fixed-point operators as constants, but for simplicity we

Extended Call-by-Push-Value 245

do not consider this here. The constants ⊥A enable us to define a diverging
computation ΩC for each computation type C:

ΩFrA := force ⊥A Ω∏
i∈ICi

:= λ{i. ΩCi
}i∈I ΩA→C := λx.ΩC

We characterise nontermination by augmenting the equational theory of Sect. 2.3
with the axiom

Γ � ΩFrA to x.M ≡ ΩC : C (Omega)

for each context Γ , value type A and computation type C. In other words, diverg-
ing as part of a larger computation causes the entire computation to diverge.
This is the only change to the equational theory we need to represent nontermi-
nation. In particular, we do not add additional axioms involving need.

3.1 The Equivalence at the Object (Internal) Level

In this section, we show our primary result that

M name x.N ∼=ctx M need x.N

As is usually the case for proofs of contextual equivalence, we use logical relations
to get a strong enough inductive hypothesis for the proof to go through. However,
unlike the usual case, it does not suffice to relate closed terms. To see why,
consider a closed term M of the form

ΩFrA need x.N1 to y.N2

If we relate only closed terms, then we do not learn anything about N1 itself
(since x may be free in it). We could attempt to proceed by considering the closed
term ΩFrA needx.N1. For example, if this returns a value V then x cannot have
been evaluated and M should have the same behaviour as ΩFrA need x.N2[y �→
V]. However, we get stuck when proving the last step. This is only a problem
because ΩFrA is a nonterminating computation: every terminating computation
of returner type has the form return V (up to ≡), and when these are bound
using need we can eliminate the binding using the equation

returnV need x.M ≡ M [x �→ return V]

The solution is to relate terms that may have free computation variables (we
do not need to consider free value variables). The free computation variables
should be thought of as referring to nonterminating computations (because we
can remove the bindings of variables that refer to terminating computations).
We relate open terms using Kripke logical relations of varying arity, which were
introduced by Jung and Tiuryn [12] to study lambda definability.

We need a number of definitions first. A context Γ ′ weakens another context
Γ , written Γ ′ � Γ , whenever Γ is a sublist of Γ ′. For example, (Γ, x : FrA) �
Γ . We define TermΓ

A as the set of equivalence classes (up to the equational

246 D. McDermott and A. Mycroft

theory ≡) of terms of value type A in context Γ , and similarly define TermΓ
D for

computation types:

TermΓ
A := {[V]≡ | Γ �v V : A} TermΓ

D := {[M]≡ | Γ � M : D}

Since weakening is admissible for both typing judgements, Γ ′ � Γ implies that
TermΓ

A ⊆ TermΓ ′
A and TermΓ

D ⊆ TermΓ ′
D (note the contravariance).

A computation context, ranged over by Δ, is a typing context that maps
variables to computation types (i.e. has the form x1 : FrA1, . . . , xn : FrAn).
Variables in computation contexts refer to nonterminating computations for the
proof of contextual equivalence. A Kripke relation is a family of binary relations
indexed by computation contexts that respects weakening of terms:

Definition 3 (Kripke relation). A Kripke relation R over a value type A
(respectively a computation type D) is a family of relations RΔ ⊆ TermΔ

A ×
TermΔ

A (respectively RΔ ⊆ TermΔ
D ×TermΔ

D) indexed by computation contexts Δ

such that whenever Δ′ � Δ we have RΔ ⊆ RΔ′
.

Note that we consider binary relations on equivalence classes of terms because
we want to relate pairs of terms up to ≡ (to prove contextual equivalence).
The relations we define are partial equivalence relations (i.e. symmetric and
transitive), though we do not explicitly use this fact.

We need the Kripke relations we define over computation terms to be
closed under sequencing with nonterminating computations. (For the rest of
this section, we omit the square brackets around equivalence classes.)

Definition 4. A Kripke relation R over a computation type C is closed under
sequencing if each of the following holds:

1. If (x : FrA) ∈ Δ and M,M ′ ∈ TermΔ,y:A
C then (x to y.M, x to y.M ′) ∈ RΔ.

2. The pair (ΩC , ΩC) is in RΔ.
3. For all (M,M ′) ∈ RΔ,y:FrA and N ∈ {ΩFrA} ∪ {x | (x : FrA) ∈ Δ}, all four

of the following pairs are in RΔ:

(N need y.M, N need y.M ′) (M [y �→ N], M ′[y �→ N])

(M [y �→ N], N need y.M ′) (N need y.M, M ′[y �→ N])

For the first case of the definition, recall that the computation variables in Δ
refer to nonterminating computations. Hence the behaviour of M and M ′ are
irrelevant (they are never evaluated), and we do not need to assume they are
related.3 The second case implies (using axiom Omega) that

(ΩFrA to y.M,ΩFrA to y.M ′) ∈ RΔ

3 This is why it suffices to consider only computation contexts. If we had to relate
M to M ′ then we would need to consider relations between terms with free value
variables.

Extended Call-by-Push-Value 247

Fig. 4. Definition of the logical relation

mirroring the first case. The third case is the most important. It is similar to the
first (it is there to ensure that the relation is closed under the primitives used to
combine computations). However, since we are showing that need is contextually
equivalent to substitution, we also want these to be related. We have to consider
computation variables in the definition (as possible terms N) only because of
our use of Kripke logical relations. For ordinary logical relations, there would be
no free variables to consider.

The key part of the proof of contextual equivalence is the definition of the
Kripke logical relation, which is a family of relations indexed by value and com-
putation types. It is defined in Fig. 4 by induction on the structure of the types.
In the figure, we again omit square brackets around equivalence classes.

The definition of the logical relation on ground types (unit, sum types and
product types) is standard. Since the only way to use a thunk is to force it,
the definition on thunk types just requires the two forced computations to be
related.

For returner types, we want any pair of computations that return related
values to be related. We also want the relation to be closed under sequencing,
in order to show the fundamental lemma (below) for to and need. We therefore
define RFrA as the smallest such Kripke relation. For products of computation
types the definition is similar to products of value types: we require that each of
the projections are related. For function types, we require as usual that related
arguments are sent to related results. For this to define a Kripke relation, we
have to quantify over all computation contexts Δ′ that weaken Δ, because of
the contravariance of the argument.

248 D. McDermott and A. Mycroft

The relations we define are Kripke relations. Using the sequencing axioms of
the equational theory, and the β and η laws for computation types, we can show
that RC is closed under sequencing for each computation type C. These facts
are important for the proof of the fundamental lemma.

Substitutions are given by the following grammar:

σ ::= 	 | σ, x �→V | σ, x �→M

We have a typing judgement Δ � σ : Γ for substitutions, meaning in the context
Δ the terms in σ have the types given in Γ . This is defined as follows:

Δ � 	 : 	
Δ � σ : Γ Δ �v V : A

Δ � (σ, x �→V) : (Γ, x : A)
Δ � σ : Γ Δ � M : FrA

Δ � (σ, x �→M) : (Γ, x : FrA)

We write V [σ] and M [σ] for the applications of the substitution σ to value terms
V and computation terms M . These are defined by induction on the structure
of the terms. The key property of the substitution typing judgement is that
if Δ � σ : Γ , then Γ �v V : A implies Δ �v V [σ] : A and Γ � M : C
implies Δ � M [σ] : C. The equational theory gives us an obvious pointwise
equivalence relation ≡ on well-typed substitutions. We define sets SubstΔ

Γ of
equivalence classes of substitutions, and extend the logical relation by defining
RΔ

Γ ⊆ SubstΔ
Γ × SubstΔ

Γ :

SubstΔ
Γ := {[σ]≡ | Δ � σ : Γ}

RΔ
� := {(,)}

RΔ
Γ,x:A := {((σ, x �→V), (σ′, x �→V ′)) | (σ, σ′) ∈ RΔ

Γ ∧ (V, V ′) ∈ RΔ
A}

RΔ
Γ,x:FrA := {((σ, x �→M), (σ′, x �→M ′)) | (σ, σ′) ∈ RΔ

Γ ∧ (M,M ′) ∈ RΔ
FrA}

As usual, the logical relations satisfy a fundamental lemma.

Lemma 1 (Fundamental)

1. For all value terms Γ �v V : A,

(σ, σ′) ∈ RΔ
Γ ⇒ (V [σ], V [σ′]) ∈ RΔ

A

2. For all computation terms Γ � M : C,

(σ, σ′) ∈ RΔ
Γ ⇒ (M [σ],M [σ′]) ∈ RΔ

C

The proof is by induction on the structure of the terms. We use the fact that
each RC is closed under sequencing for the to and need cases. For the latter, we
also use the fact that the relations respect weakening of terms.

We also have the following two facts about the logical relation. The first
roughly is that name is related to need by the logical relation, and is true
because of the additional pairs that are related in the definition of closed-under-
sequencing (Definition 4).

Extended Call-by-Push-Value 249

Lemma 2. For all computation terms Γ � M : FrA and Γ, x : FrA � N : C
we have

(σ, σ′) ∈ RΔ
Γ ⇒ ((N [x �→ M])[σ], (M need x.N)[σ′]) ∈ RΔ

C

The second fact is that related terms are contextually equivalent.

Lemma 3

1. For all value terms Γ �v V : A and Γ �v V ′ : A, if (V [σ], V ′[σ′]) ∈ RΔ
A for

all (σ, σ′) ∈ RΔ
Γ then

Γ �v V ∼=ctx V ′ : A

2. For all computation terms Γ � M : C and Γ � M ′ : C, if (M [σ],M ′[σ′]) ∈ RΔ
C

for all (σ, σ′) ∈ RΔ
Γ then

Γ � M ∼=ctx M ′ : C

This gives us enough to achieve the goal of this section.

Theorem 1. For all computation terms Γ � M : FrA and Γ, x : FrA � N : C,
we have

Γ � M name x.N ∼=ctx M need x.N : C

3.2 The Meta-level Equivalence

In this section, we show that the equivalence between call-by-name and call-
by-need also holds on the meta-level; this is a consequence of the object-level
theorem, rather than something that is proved from scratch as it would be in a
term rewriting system.

To do this, we describe a simple lambda-calculus-based source language with
divergence as the only side-effect and give it a call-by-name and a call-by-need
operational semantics. We then describe two translations from the source lan-
guage into ECBPV. The first is a call-by-name translation based on the embed-
ding of call-by-name in Moggi’s [25] monadic metalanguage. The second is a
call-by-need translation that uses our new constructs. The latter witnesses the
fact that ECBPV does actually support call-by-need. Finally, we show that the
two translations give contextually equivalent ECBPV terms.

The syntax, type system and operational semantics of the source language are
given in Fig. 5. Most of this is standard. We include only booleans and function
types for simplicity. In expressions, we include a constant divergeA for each type
A, representing a diverging computation. (As before, it should not be difficult to
replace these with general fixed-point operators.) In typing contexts, we assume
that all variables are distinct, and omit the required side-condition from the
figure. There is a single set of variables x, y, . . . ; we implicitly map these to
ECBPV value or computation variables as required.

250 D. McDermott and A. Mycroft

Fig. 5. The source language

The call-by-name operational semantics is straightforward; its small-step
reductions are written e

name� e′.

Extended Call-by-Push-Value 251

The call-by-need operational semantics is based on Ariola and Felleisen [2].
The only differences between the source language and Ariola and Felleisen’s
calculus are the addition of booleans, divergeA, and a type system. It is likely
that we can translate other call-by-need calculi, such as those of Launchbury [16]
and Maraist et al. [22]. Call-by-need small-step reductions are written e

need� e′.
The call-by-need semantics needs some auxiliary definitions. An evaluation

context E[−] is a source-language expression with a single hole, picked from
the grammar given in the figure. The hole in an evaluation context indicates
where reduction is currently taking place: it says which part of the expression is
currently needed. We write E[e] for the expression in which the hole is replaced
with e. A (source-language) value is the result of a computation (the word value
should not be confused with the value terms of extended call-by-push-value).
An answer is a value in some environment, which maps variables to expressions.
These can be thought of as closures. The environment is encoded in an answer
using application and lambda abstraction: the answer (λx. a) e means the answer
a where the environment maps x to e. Encoding environments in this way makes
the translation slightly simpler than if we had used a Launchbury-style [16] call-
by-need language with explicit environments. In the latter case, the translation
would need to encode the environments. Here they are already encoded inside
expressions. Answers are terminal computations: they do not reduce.

The first two reduction axioms (on the left) of the call-by-need semantics
(Fig. 5d) are obvious. The third axiom is the most important: it states that if
the subexpression currently being evaluated is a variable x, and the environment
maps x to a source-language value v, then that use of x can be replaced with
v. Note that E[v] may contain other uses of x; the replacement only occurs
when the value is actually needed. This axiom roughly corresponds to the first
sequencing axiom of the equational theory of ECBPV (in Fig. 3c). The fourth and
fifth axioms of the call-by-need operational semantics rearrange the environment
into a standard form. Both use a syntactic restriction to answers so that each
expression has at most one reduct (this restriction is not needed to ensure that
need� captures call-by-need). The rule on the right of the Fig. 5d states that the
reduction relation is a congruence (a needed subexpression can be reduced).

The two translations from the source language to ECBPV are given in Fig. 6.
The translation of types (Fig. 6a) is shared between call-by-name and call-by-
need. The two translations differ only for contexts and expressions. Types A are
translated into value types �A�. The type bool becomes the two-element sum
type unit+unit. The translation of a function type A → B is a thunked CBPV
function type. The argument is a thunk of a computation that returns an �A�,
and the result is a computation that returns a �B�.

For call-by-name (Fig. 6b), contexts Γ are translated into contexts �Γ �name

that contain thunks of computations. We could also have used contexts con-
taining computation variables (omitting the thunks), but choose to use thunks
to keep the translation as close as possible to previous translations into call-
by-push-value. A well-typed expression Γ � e : A is translated into a ECBPV
computation term �e�name that returns �A�, in context �Γ �name. The translation

252 D. McDermott and A. Mycroft

Fig. 6. Translation from the source language to ECBPV

of variables just forces the relevant variable in the context. The diverging com-
putations divergeA just use the diverging constants from our ECBPV signature.
The translations of true and false are simple: they are computations that imme-
diately return one of the elements of the sum type unit+unit. The translation
of if e1 then e2 else e3 first evaluates �e1�

name, then uses the result to choose
between �e2�

name and �e3�
name. Lambdas are translated into computations that

just return a thunked computation. Finally, application first evaluates the com-

Extended Call-by-Push-Value 253

putation that returns a thunk of a function, and then forces this function, passing
it a thunk of the argument.

For call-by-need (Fig. 6c), contexts Γ are translated into contexts �Γ �need,
containing computations that return values. The computations in the context
are all bound using need. An expression Γ � e : A is translated to a computation
�e�need that returns �A� in the context �Γ �need. The typing is therefore similar
to call-by-name. The key case is the translation of lambdas. These become com-
putations that immediately return a thunk of a function. The function places
the computation given as an argument onto the context using need, so that it is
evaluated at most once, before executing the body. The remainder of the cases
are similar to call-by-name.

Under the call-by-need translation, the expression (λx. e1) e2 is translated
into a term that executes the computation �e1�

need, and executes �e2�
need only

when needed. This is the case because, by the β rules for thunks, functions, and
returner types:

�(λx. e1) e2�
need ≡ �e2�

need need x. �e1�
need

As a consequence, translations of answers are particularly simple: they have the
following form (up to ≡):

M1 need x1.M2 need x2. · · · Mn need xn. return V

which intuitively means the value V in the environment mapping each xi to Mi.
It is easy to see that both translations produce terms with the correct types.

We prove that both translations are sound : if e
name� e′ then �e�name ≡ �e′�name,

and if e
need� e′ then �e�need ≡ �e′�need. To do this for call-by-need, we first look

at translations of evaluation contexts. The following lemma says the translation
captures the idea that the hole in an evaluation context corresponds to the term
being evaluated.

Lemma 4. Define, for each evaluation context E[−], the term Ey�E[−]�need by:

Ey�−�need := return y

Ey�if E[−] then e2 else e3�
need := E�E[−]�need to x. force(case x of

{inl z. thunk�e2�
need

, inr z. thunk�e3�
need})

Ey�E[−] e2�need := Ey�E[−]�need to z. thunk�e2�
need ‘ force z

Ey�(λx.E[x])E′[−]�need := Ey�E′[−]�need need x. �E[x]�need

Ey�(λx.E[−]) e2�
need := �e2�

need need x. Ey�E[−]�need

For each expression e we have:

�E[e]�need ≡ �e�need to y. Ey�E[−]�need

254 D. McDermott and A. Mycroft

This lemma omits the typing of expressions for presentational purposes. It is
easy to add suitable constraints on typing. Soundness is now easy to show:

Theorem 2 (Soundness). For any two well-typed source-language expressions
Γ � e : A and Γ � e′ : A:

1. If e
name� e′ then �e�name ≡ �e′�name.

2. If e
need� e′ then �e�need ≡ �e′�need.

Now that we have sound call-by-name and call-by-need translations, we can
state the meta-level equivalence formally. Suppose we are given a possibly open
source-language expression Γ � e : B. Recall that the call-by-need translation
uses a context containing computation variables (i.e. �Γ �need) and the call-by-
name translation uses a context containing value variables, which map to thunks
of computations. We have two ECBPV computation terms of type Fr �B� in
context �Γ �need: one is just �e�need, the other is �e�name with all of its variables
substituted with thunked computations. The theorem then states that these are
contextually equivalent.

Theorem 3 (Equivalence between call-by-name and call-by-need). For
all source-language expressions e satisfying x1 : A1, . . . , xn : An � e : B

�e�name[x1 �→ thunkx1, . . . , xn �→ thunkxn] ∼=ctx �e�need

Proof. The proof of this theorem is by induction on the typing derivation of e.
The interesting case is lambda abstraction, where we use the internal equivalence
between call-by-name and call-by-need (Theorem 1).

4 An Effect System for Extended Call-by-Push-Value

The equivalence between call-by-name and call-by-need in the previous section
is predicated on the only effect in the language being nontermination. However,
suppose the primitives of language have various effects (which means that in
general the equivalence fails) but a given subprogram may be statically shown
to have at most nontermination effects. In this case, we should be allowed to
exploit the equivalence on the subprogram, interchanging call-by-need and call-
by-name locally, even if the rest of the program uses other effects. In this section,
we describe an effect system [20] for ECBPV, which statically estimates the side-
effects of expressions, allowing us to exploit equivalences which hold only within
subprograms. Effect systems can also be used for other purposes, such as proving
the correctness of effect-dependent program transformations [7,29]. The ECBPV
effect system also allows these.

Call-by-need makes statically estimating effects difficult. Computation vari-
ables bound using need might have effects on their first use, but on subsequent
uses do not. Hence to precisely determine the effects of a term, we must track
which variables have been used. McDermott and Mycroft [23] show how to
achieve this for a call-by-need effect system; their technique can be adapted

Extended Call-by-Push-Value 255

to ECBPV. Here we take a simpler approach. By slightly restricting the effect
algebras we consider, we remove the need to track variable usage information,
while still ensuring the effect information is not an underestimate (an underesti-
mate would enable incorrect transformations). This can reduce the precision of
the effect information obtained, but for our use case (determining equivalences
between evaluation orders) this is not an issue, since we primarily care about
which effects are used (rather than e.g. how many times they are used).

4.1 Effects

The effect system is parameterized by an effect algebra, which specifies the infor-
mation that is tracked. Different effect algebras can be chosen for different appli-
cations. There are various forms of effect algebra. We follow Katsumata [15] and
use preordered monoids, which are the most general.

Definition 5 (Preordered monoid). A preordered monoid (F ,≤, ·, 1) con-
sists of a monoid (F , ·, 1) and a preorder ≤ on F , such that the binary operation
· is monotone in each argument separately.

Since we do not track variable usage information, we might misestimate the
effect of a call-by-need computation variable evaluated for a second time (whose
true effect is 1). To ensure this misestimate is an overestimate, we assume that
the effect algebra is pointed (which is the case for most applications).

Definition 6 (Pointed preordered monoid). A preordered monoid (F ,≤
, ·, 1) is pointed if for all f ∈ F we have 1 ≤ f .

The elements f of the set F are called effects. Each effect abstractly represents
some potential side-effecting behaviours. The order ≤ provides approximation of
effects. When f ≤ f ′ this means behaviours represented by f are included in
those represented by f ′. The binary operation · represents sequencing of effects,
and 1 is the effect of a side-effect-free expression.

Traditional (Gifford-style) effect systems have some set Σ of operations (for
example, Σ := {read,write}), and use the preordered monoid (PΣ,⊆,∪, ∅). In
these cases, an effect f is just a set of operations. If a computation has effect f
then f contains all of the operations the computation may perform. They can
therefore be used to enforce that computations do not use particular operations.
Another example is the preordered monoid (N+,≤,+, 1), which can be used to
count the number of possible results a nondeterministic computation can return
(or to count the number of times an operation is used).

In our example, where we wish to establish whether the effects of an expres-
sion are restricted to nontermination for our main example, we use the two-
element preorder {diveff ≤ �} with join for sequencing and diveff as the unit 1.
The effect diveff means side-effects restricted to (at most) nontermination, and �
means unrestricted side-effects. Thus we would enable the equivalence between
call-by-name and call-by-need when the effect is diveff, and not when it is �. All
of these examples are pointed. Others can be found in the literature.

256 D. McDermott and A. Mycroft

Fig. 7. Subtyping in the ECBPV effect system

4.2 Effect System and Signature

The effect system includes effects within types. Specifically, each computation of
returner type will have some side-effects when it is run, and hence each returner
type FrA is annotated with an element f of F . We write the annotated type
as 〈f〉A. Formally we replace the grammar of ECBPV computation types (and
similarly, the grammar of typing contexts) with

C,D ::=
∏

i∈I Ci | A → C | 〈f〉A
Γ ::= 	 | Γ, x : A | Γ, x : 〈f〉A

(The highlighted parts indicate the differences.) The grammar used for value
types is unchanged, except that it uses the new syntax of computation types.

The definition of ECBPV signature is similarly extended to contain the effect
algebra as well as the set of constants:

Definition 7 (Signature). A signature (F ,K) consists of a pointed preordered
monoid (F ,≤, ·, 1) of effects and, for each value type A, a set KA of constants
of type A, including () ∈ Kunit.

We assume a fixed effect system signature for the remainder of this section.
Since types contain effects, which have a notion of subeffecting, there is a

natural notion of subtyping. We define (in Fig. 7) two subtyping relations: A <:v
B for value types and C <: D for computation types.

We treat the type constructor 〈f〉 as an operation on computation types by
defining computation types 〈f〉C.

〈f〉
(∏

i∈I Ci

)
:=

∏
i∈I〈f〉Ci 〈f〉(A→C) :=A→〈f〉C 〈f〉(〈f ′〉A) :=〈f ·f ′〉A

This is an action of the preordered monoid on computation types. Its purpose
is to give the typing rule for sequencing of computations. The sequencing of a
computation with effect f with a computation of type C has type 〈f〉C.

Extended Call-by-Push-Value 257

Fig. 8. Effect system modifications to ECBPV

The typing judgements have exactly the same form as before (except for
the new syntax of types). The majority of the typing rules, including all of the
rules for value terms, are also unchanged. The only rules we change are those
for computation variables, return, to and need, which are replaced with the first
four rules in Fig. 8. We also add two subtyping rules, one for values and one for
computations. These are the last two rules of Fig. 8.

The equational theory does not need to be changed to use it with the new
effect system (except that the types appearing in each axiom now include effect
information). For each axiom of the equational theory, the two terms still have
the same type in the effect system. In particular, for the axiom

M need x. x to y.N ≡ M to y.N [x �→ return y]

if Γ � M : 〈f〉A and Γ, x : 〈f〉A, y : A � N : C then the left-hand side has type
〈f〉C. For the right-hand-side, we have Γ, y : A � N [x �→ return y] : C, because of
the assumption that the preordered monoid is pointed (which implies return y can
have any effect by subtyping, not just the unit effect 1). Hence the right-hand-
side also has type 〈f〉C. This axiom is the reason for our pointedness requirement.
In particular, if we drop need from the language, the pointedness requirement is
not required. Thus the rules we give also describe a fully general effect system
for CBPV in which the effect algebra can be any preordered monoid.

4.3 Exploiting Effect-Dependent Equivalences

Our primary goal in adding an effect system to ECBPV is to exploit (local, effect-
justified) equivalences between evaluation orders even without a whole-language
restriction on effects. We sketch how to do this for our example.

When proving the equivalence between call-by-name and call-by-need in
Sect. 3 we assumed that the only constants in the language were () and ⊥A :
U (FrA). To relax this restriction, we use the effect algebra with preorder
{diveff ≤ �} described above, and change the type of ⊥A from U (FrA) to
U (〈diveff〉A). We can include other effectful constants, and give them the effect
� (e.g. write : U (V → 〈�〉unit)).

258 D. McDermott and A. Mycroft

The statement of the internal (object-level) equivalence becomes:

if Γ � M : 〈diveff〉A and Γ, x : 〈diveff〉A � N : C then
Γ � M name x.N ∼=ctx M need x.N : C

The premise restricts the effect of M to diveff so that nontermination is its
only possible side-effect. To prove this equivalence, we need a logical relation for
the effect system, which means we have to define a Kripke relation R〈f〉A for
each effect f . For R〈diveff〉A we use the same definition as before (the definition
of RFrA). The definition of R〈
〉A depends on the specific other effects included.

To state and prove a meta-level equivalence for a source language that
includes other side-effects, we need to define an effect system for the source
language. This would use the same effect algebra as the ECBPV effect system,
and be such that the translation of source language expressions preserves effects.
To do this for the source language of Sect. 3, we replace the syntax of function

types with 〈f〉A f ′
−→ B, where f is the effect of the argument (required due to

lazy evaluation), and f ′ is the latent effect of the function (the effect it has after
application). The translation is then

�〈f〉A f ′
−→ B� := U (U (〈f〉�A�) → 〈f ′〉�B�)

Just as for the object-level equivalence, the statement of the meta-level equiva-
lence similarly requires the source-language expression to have the effect diveff.
We omit the details here.

5 Related Work

Metalanguages for Evaluation Order. Call-by-push-value is similar to Moggi’s
monadic metalanguage [25], except for the distinction between computations
and values. Both support several evaluation orders, but neither supports call-
by-need. Polarized type theories [34] also take the approach of stratifying types
into several kinds to capture multiple evaluation orders. Downen and Ariola [10]
recently described how to capture call-by-need using polarity. They take a dif-
ferent approach to ours, by splitting up terms according to their evaluation
order, rather than whether they might have effects. This means they have three
kinds of type, resulting in a more complex language than ours. They also do
not apply their language to reasoning about the differences between evaluation
orders, which was the primary motivation for ECBPV. It is not clear whether
their language can also be used for this purpose.

Multiple evaluation orders can also be captured in a Moggi-style language
by using joinads instead of monads [28]. It is possible that there is some joinad
structure implicit in extended call-by-push-value.

Extended Call-by-Push-Value 259

Reasoning About Call-by-Need. The majority of work on reasoning about call-
by-need source languages has concentrated on operational semantics based on
environments [16], graphs [30,32], and answers [2,3,9,22]. However, these do not
compare call-by-need with other evaluation orders. The only type-based analysis
of a lazy source language we know of apart from McDermott and Mycroft’s effect
system [23] is [31,33].

Logical Relations. Kripke logical relations have previously been applied to the
problems of lambda definability [12] and normalization [1,11]. Previous proofs
of contextual equivalence relate only closed terms. We were forced to relate open
terms because of the need construct.

Reasoning about effects using logical relations often runs into a difficulty
in ensuring the relations are closed under sequencing of computations. We are
able to work around this due to our specific choice of effects. It is possible that
considering other effects would require a technique such as Lindley and Stark’s
leapfrog method [18,19].

Effect Systems. Effect systems have a long history, starting with Gifford-style
effect systems [20]. We use preordered monoids as effect algebras following Kat-
sumata [15]. Almost all of the previous work on effect systems has concentrated
on call-by-value only. Kammar and Plotkin [13,14] describe a Gifford-style call-
by-push-value effect system, though their formulation does not generalise to
other effect algebras. Our effect system is the first general effect system for a
CBPV-like language. The only previous work on call-by-need effects is [23].

There has also been much work on reasoning about program transforma-
tions using effect systems, e.g. [4–8,29]. We expect it to be possible to recast
much of this in terms of extended call-by-push-value, and therefore apply these
transformations for various evaluation orders.

6 Conclusions and Future Work

We have described extended call-by-push-value, a calculus that can be used for
reasoning about several evaluation orders. In particular, ECBPV supports call-
by-need via the addition of the construct M need x.N . This allows us to prove
that call-by-name and call-by-need reduction are equivalent if nontermination is
the only effect in the source language, both inside the language itself, and on the
meta-level. We proved the latter by giving two translations of a source language
into ECBPV: one that captures call-by-name reduction, and one that captures
call-by-need reduction. We also defined an effect system for ECBPV. The effect
system statically bounds the side-effects of terms, allowing equivalences between
evaluation orders to be used without restricting the entire language to particular
effects. We close with a description of possible future work.

Other Equivalences Between Evaluation Orders. We have proved one example
of an equivalence between evaluation orders using ECBPV, but there are others

260 D. McDermott and A. Mycroft

that we might also expect to hold. For example, we would expect call-by-need
and call-by-value to be equivalent if the effects are restricted to nondeterminism,
allocating state, and reading from state (but not writing). It should be possible to
use ECBPV to prove these by defining suitable logical relations. More generally,
it might be possible to characterize when particular equivalences hold in terms
of the algebraic properties of the effects we restrict to.

Denotational Semantics. Using logical relations to prove contextual equivalence
between terms directly is difficult. Adequate denotational semantics would allow
us to reduce proofs of contextual equivalence to proofs of equalities in the model.
Composing the denotational semantics with the call-by-need translation would
also result in a call-by-need denotational semantics for the source language. Some
potential approaches to describing the denotational semantics of ECBPV are
Maraist et al.’s [21] translation into an affine calculus, combined with a semantics
of linear logic [24], and also continuation-passing-style translations [27]. None of
these consider side-effects however.

Acknowledgements. We gratefully acknowledge the support of an EPSRC stu-
dentship, and thank the anonymous reviewers for helpful comments.

References

1. Altenkirch, T., Hofmann, M., Streicher, T.: Categorical reconstruction of a reduc-
tion free normalization proof. In: Pitt, D., Rydeheard, D.E., Johnstone, P. (eds.)
CTCS 1995. LNCS, vol. 953, pp. 182–199. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60164-3 27

2. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

3. Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need
lambda calculus. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 233–246. ACM (1995). https://
doi.org/10.1145/199448.199507

4. Benton, N., Hofmann, M., Nigam, V.: Effect-dependent transformations for concur-
rent programs. In: Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, pp. 188–201. ACM (2016). https://doi.
org/10.1145/2967973.2968602

5. Benton, N., Kennedy, A.: Monads, effects and transformations. Electron. Notes
Theor. Comput. Sci. 26, 3–20 (1999). https://doi.org/10.1016/S1571-0661(05)
80280-4

6. Benton, N., Kennedy, A., Hofmann, M., Nigam, V.: Counting successes: effects
and transformations for non-deterministic programs. In: Lindley, S., McBride, C.,
Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change the World.
LNCS, vol. 9600, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-30936-1 3

7. Benton, N., Kennedy, A., Russell, G.: Compiling standard ML to Java bytecodes.
In: Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, pp. 129–140. ACM (1998). https://doi.org/10.1145/289423.
289435

https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1016/S1571-0661(05)80280-4
https://doi.org/10.1016/S1571-0661(05)80280-4
https://doi.org/10.1007/978-3-319-30936-1_3
https://doi.org/10.1007/978-3-319-30936-1_3
https://doi.org/10.1145/289423.289435
https://doi.org/10.1145/289423.289435

Extended Call-by-Push-Value 261

8. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In:
Cégielski, P., Durand, A. (eds.) 21st EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2012. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 16, pp. 107–121. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl
(2012). https://doi.org/10.4230/LIPIcs.CSL.2012.107

9. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28869-2 7

10. Downen, P., Ariola, Z.M.: Beyond polarity: towards a multi-discipline intermediate
language with sharing. In: 27th EACSL Annual Conference on Computer Science
Logic, CSL 2018, pp. 21:1–21:23 (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.
21

11. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calcu-
lus. In: Proceedings of the 4th ACM SIGPLAN International Conference on Prin-
ciples and Practice of Declarative Programming, pp. 26–37. ACM (2002). https://
doi.org/10.1145/571157.571161

12. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037110

13. Kammar, O.: Algebraic theory of type-and-effect systems. Ph.D. thesis, University
of Edinburgh, UK (2014)

14. Kammar, O., Plotkin, G.D.: Algebraic foundations for effect-dependent optimisa-
tions. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 349–360. ACM (2012). https://doi.
org/10.1145/2103656.2103698

15. Katsumata, S.: Parametric effect monads and semantics of effect systems. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 633–645. ACM (2014). https://doi.org/10.1145/
2535838.2535846

16. Launchbury, J.: A natural semantics for lazy evaluation. In: Proceedings of the 20th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 144–154. ACM (1993). https://doi.org/10.1145/158511.158618

17. Levy, P.B.: Call-by-push-value: a subsuming paradigm. In: Girard, J.-Y. (ed.)
TLCA 1999. LNCS, vol. 1581, pp. 228–243. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48959-2 17

18. Lindley, S.: Normalisation by evaluation in the compilation of typed functional
programming languages. Ph.D. thesis, University of Edinburgh, UK (2005)

19. Lindley, S., Stark, I.: Reducibility and ��-lifting for computation types. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg
(2005). https://doi.org/10.1007/11417170 20

20. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 47–57. ACM (1988). https://doi.org/10.1145/73560.73564

21. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need, and the linear lambda calculus. In: Proceedings of the Eleventh
Annual Mathematical Foundations of Programming Semantics Conference, pp.
370–392 (1995). https://doi.org/10.1016/S0304-3975(98)00358-2

22. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998). https://doi.org/10.1017/S0956796898003037

23. McDermott, D., Mycroft, A.: Call-by-need effects via coeffects. Open Comput. Sci.
8, 93–108 (2018). https://doi.org/10.1515/comp-2018-0009

https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.4230/LIPIcs.CSL.2018.21
https://doi.org/10.4230/LIPIcs.CSL.2018.21
https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/571157.571161
https://doi.org/10.1007/BFb0037110
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/158511.158618
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/11417170_20
https://doi.org/10.1145/73560.73564
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1017/S0956796898003037
https://doi.org/10.1515/comp-2018-0009

262 D. McDermott and A. Mycroft

24. Melliès, P.A.: Categorical semantics of linear logic. In: Interactive Models of
Computation and Program Behaviour, Panoramas et Synthèses 27, Société
Mathématique de France (2009)

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

26. Munch-Maccagnoni, G.: Models of a non-associative composition. In: Muscholl, A.
(ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 396–410. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54830-7 26

27. Okasaki, C., Lee, P., Tarditi, D.: Call-by-need and continuation-passing style. LISP
Symbolic Comput. 7(1), 57–81 (1994). https://doi.org/10.1007/BF01019945

28. Petricek, T., Syme, D.: Joinads: a retargetable control-flow construct for reactive,
parallel and concurrent programming. In: Rocha, R., Launchbury, J. (eds.) PADL
2011. LNCS, vol. 6539, pp. 205–219. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18378-2 17

29. Tolmach, A.: Optimizing ML using a hierarchy of monadic types. In: Leroy, X.,
Ohori, A. (eds.) TIC 1998. LNCS, vol. 1473, pp. 97–115. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055514

30. Turner, D.A.: A new implementation technique for applicative languages. Softw.
Pract. Experience 9(1), 31–49 (1979). https://doi.org/10.1002/spe.4380090105

31. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Proceedings of the Sev-
enth International Conference on Functional Programming Languages and Com-
puter Architecture, pp. 1–11. ACM (1995). https://doi.org/10.1145/224164.224168

32. Wadsworth, C.: Semantics and Pragmatics of the Lambda-Calculus. University of
Oxford (1971)

33. Wansbrough, K., Peyton Jones, S.: Once upon a polymorphic type. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 15–28. ACM (1999). https://doi.org/10.1145/292540.292545

34. Zeilberger, N.: The logical basis of evaluation order and pattern-matching. Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, PA, USA (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-642-54830-7_26
https://doi.org/10.1007/BF01019945
https://doi.org/10.1007/978-3-642-18378-2_17
https://doi.org/10.1007/978-3-642-18378-2_17
https://doi.org/10.1007/BFb0055514
https://doi.org/10.1002/spe.4380090105
https://doi.org/10.1145/224164.224168
https://doi.org/10.1145/292540.292545
http://creativecommons.org/licenses/by/4.0/

Effectful Normal Form Bisimulation

Ugo Dal Lago1,2(B) and Francesco Gavazzo1,2(B)

1 University of Bologna, Bologna, Italy
2 Inria Sophia Antipolis, Sophia Antipolis Cedex, France
ugo.dallago@unibo.it, francesco.gavazzo@gmail.com

Abstract. Normal form bisimulation, also known as open bisimulation,
is a coinductive technique for higher-order program equivalence in which
programs are compared by looking at their essentially infinitary tree-like
normal forms, i.e. at their Böhm or Lévy-Longo trees. The technique
has been shown to be useful not only when proving metatheorems about
λ-calculi and their semantics, but also when looking at concrete exam-
ples of terms. In this paper, we show that there is a way to generalise
normal form bisimulation to calculi with algebraic effects, à la Plotkin
and Power. We show that some mild conditions on monads and rela-
tors, which have already been shown to guarantee effectful applicative
bisimilarity to be a congruence relation, are enough to prove that the
obtained notion of bisimilarity, which we call effectful normal form bisim-
ilarity, is a congruence relation, and thus sound for contextual equiv-
alence. Additionally, contrary to applicative bisimilarity, normal form
bisimilarity allows for enhancements of the bisimulation proof method,
hence proving a powerful reasoning principle for effectful programming
languages.

1 Introduction

The study of program equivalence has always been one of the central tasks of
programming language theory: giving satisfactory definitions and methodologies
for it can be fruitful in contexts like program verification and compiler optimi-
sation design, but also helps in understanding the nature of the programming
language at hand. This is particularly true when dealing with higher-order lan-
guages, in which giving satisfactory notions of program equivalence is well-known
to be hard. Indeed, the problem has been approached in many different ways.
One can define program equivalence through denotational semantics, thus rely-
ing on a model. One could also proceed following the route traced by Morris [51],
and define programs to be contextually equivalent when they behave the same
in every context, this way taking program equivalence as the largest adequate
congruence.

Both these approaches have their drawbacks, the first one relying on the
existence of a (not too coarse) denotational model, the latter quantifying over
all contexts, and thus making concrete proofs of equivalence hard. Among the

Thanks to the ANR projects 14CE250005 ELICA and 16CE250011 REPAS.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 263–292, 2019.
https://doi.org/10.1007/978-3-030-17184-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_10

264 U. Dal Lago and F. Gavazzo

many alternative techniques the research community has been proposing along
the years, one can cite logical relations and applicative bisimilarity [1,4,8], both
based on the idea that equivalent higher-order terms should behave the same
when fed with any (pair of related) inputs. This way, terms are compared mim-
icking any possible action a discriminating context could possibly perform on
the tested terms. In other words, the universal quantification on all possible
contexts, although not explicitly present, is anyway implicitly captured by the
bisimulation or logical game.

Starting from the pioneering work by Böhm, another way of defining program
equivalence has been proved extremely useful not only when giving metatheo-
rems about λ-calculi and programming languages, but also when proving con-
crete programs to be (contextually) equivalent. What we are referring to, of
course, is the notion of a Böhm tree of a λ-term e (see [5] for a formal defini-
tion), which is a possibly infinite tree representing the head normal h form of
e, if e has one, but also analyzing the arguments to the head variable of h in
a coinductive way. The celebrated Böhm Theorem, also known as Separation
Theorem [11], stipulates that two terms are contextually equivalent if and only
if their respective (appropriately η-equated) Böhm trees are the same.

The notion of equivalence induced by Böhm trees can be characterised with-
out any reference to trees, by means of a suitable bisimilarity relation [37,65].
Additionally, Böhm trees can also be defined when λ-terms are not evaluated
to their head normal form, like in the classical theory of λ-calculus, but to their
weak head normal form (like in the call-by-name [37,65]), or to their eager nor-
mal form (like in the call-by-value λ-calculus [38]). In both cases, the notion of
program equivalence one obtains by comparing the syntactic structure of trees,
admits an elegant coinductive characterisation as a suitable bisimilarity relation.
The family of bisimilarity relations thus obtained goes under the generic name
of normal form bisimilarity.

Real world functional programming languages, however, come equipped not
only with higher-order functions, but also with computational effects, turning
them into impure languages in which functions cannot be seen merely as turn-
ing an input to an output. This requires switching to a new model, which can-
not be the usual, pure, λ-calculus. Indeed, program equivalence in effectful λ-
calculi [49,56] have been studied by way of denotational semantics [18,20,31],
logical relations [10,14], applicative bisimilarity [13,16,36], and normal form
bisimilarity [20,41]. While the denotational semantics, logical relation seman-
tics, and applicative bisimilarity of effectful calculi have been studied in the
abstract [15,25,30], the same cannot be said about normal form bisimilarity.
Particularly relevant for our purposes is [15], where a notion of applicative bisim-
ilarity for generic algebraic effects, called effectful applicative bisimilarity, based
on the (standard) notion of a monad, and on the (less standard) notion of a
relator [71] or lax extension [6,26], is introduced.

Intuitively, a relator is an abstraction axiomatising the structural prop-
erties of relation lifting operations. This way, relators allow for an abstract
description of the possible ways a relation between programs can be lifted to a

Effectful Normal Form Bisimulation 265

relation between (the results of) effectful computations, the latter being
described throughout monads and algebraic operations. Several concrete notions
of program equivalence, such as pure, nondeterministic and probabilistic applica-
tive bisimilarity [1,16,36,52] can be analysed using relators. Additionally, besides
their prime role in the study of effectful applicative bisimilarity, relators have
also been used to study logic-based equivalences [67] and applicative distances
[23] for languages with generic algebraic effects.

The main contribution of [15] consists in devising a set of axioms on monads
and relators (summarised in the notions of a Σ-continuous monad and a Σ-
continuous relator) which are both satisfied by many concrete examples, and
that abstractly guarantee that the associated notion of applicative bisimilarity
is a congruence.

In this paper, we show that an abstract notion of normal form (bi)simulation
can indeed be given for calculi with algebraic effects, thus defining a theory anal-
ogous to [15]. Remarkably, we show that the defining axioms of Σ-continuous
monads and Σ-continuous relators guarantee the resulting notion of normal form
(bi)similarity to be a (pre)congruence relation, thus enabling compositional rea-
soning about program equivalence and refinement. Given that these axioms have
already been shown to hold in many relevant examples of calculi with effects,
our work shows that there is a way to “cook up” notions of effectful normal
form bisimulation without having to reprove congruence of the obtained notion
of program equivalence: this comes somehow for free. Moreover, this holds both
when call-by-name and call-by-value program evaluation is considered, although
in this paper we will mostly focus on the latter, since the call-by-value reduction
strategy is more natural in presence of computational effects1.

Compared to (effectful) applicative bisimilarity, as well as to other standard
operational techniques—such as contextual and CIU equivalence [47,51], or log-
ical relations [55,61]—(effectful) normal form bisimilarity has the major advan-
tage of being an intensional program equivalence, equating programs according
to the syntactic structure of their (possibly infinitary) normal forms. As a conse-
quence, in order to deem two programs as normal form bisimilar, it is sufficient
to test them in isolation, i.e. independently of their interaction with the envi-
ronment. This way, we obtain easier proofs of equivalence between (effectful)
programs. Additionally, normal form bisimilarity allows for enhancements of the
bisimulation proof method [60], hence qualifying as a powerful and effective tool
for program equivalence.

Intensionality represents a major difference between normal form bisimilar-
ity and applicative bisimilarity, where the environment interacts with the tested
programs by passing them arbitrary input arguments (thus making applicative
bisimilarity an extensional notion of program equivalence). Testing programs in
isolation has, however, its drawbacks. In fact, although we prove effectful normal
form bisimilarity to be a sound proof technique for (effectful) applicative bisim-

1 Besides, as we will discuss in Sect. 6.4, the formal analysis of call-by-name normal
form bisimilarity strictly follows the corresponding (more challenging) analysis of
call-by-value normal form bisimilarity.

266 U. Dal Lago and F. Gavazzo

ilarity (and thus for contextual equivalence), full abstraction fails, as already
observed in the case of the pure λ-calculus [3,38] (nonetheless, it is worth men-
tioning that full abstraction results are known to hold for calculi with a rich
expressive power [65,68]).

In light of these observations, we devote some energy to studying some con-
crete examples which highlight the weaknesses of applicative bisimilarity, on the
one hand, and the strengths of normal form bisimilarity, on the other hand.

This paper is structured as follows. In Sect. 2 we informally discuss examples
of (pairs of) programs which are operational equivalent, but whose equivalence
cannot be readily established using standard operational methods. Through-
out this paper, we will show how effectful normal form bisimilarity allows for
handy proofs of such equivalences. Section 3 is dedicated to mathematical pre-
liminaries, with a special focus on (selected) examples of monads and algebraic
operations. In Sect. 4 we define our vehicle calculus ΛΣ , an untyped λ-calculus
enriched with algebraic operations, to which we give call-by-value monadic oper-
ational semantics. Section 5 introduces relators and their main properties. In
Sect. 6 we introduce effectful eager normal form (bi)similarity, the call-by-value
instantiation of effectful normal form (bi)similarity, and its main metatheoreti-
cal properties. In particular, we prove effectful eager normal form (bi)similarity
to be a (pre)congruence relation (Theorem 2) included in effectful applicative
(bi)similarity (Proposition 5). Additionally, we prove soundness of eager normal
bisimulation up-to context (Theorem 3), a powerful enhancement of the bisimu-
lation proof method that allows for handy proof of program equivalence. Finally,
in Sect. 6.4 we briefly discuss how to modify our theory to deal with call-by-name
calculi.

2 From Applicative to Normal Form Bisimilarity

In this section, some examples of (pairs of) programs which can be shown equiv-
alent by effectful normal form bisimilarity will be provided, giving evidence on
the flexibility and strength of the proposed technique. We will focus on examples
drawn from fixed point theory, simply because these, being infinitary in nature,
are quite hard to be dealt with “finitary” techniques like contextual equivalence
or applicative bisimilarity.

Example 1. Our first example comes from the ordinary theory of pure, untyped
λ-calculus. Let us consider Curry’s and Turing’s call-by-value fixed point com-
binators Y and Z:

Y � λy.ΔΔ, Z � ΘΘ, Δ � λx.y(λz.xxz), Θ � λx.λy.y(λz.xxyz).

It is well known that Y and Z are contextually equivalent, although proving such
an equivalence from first principles is doomed to be hard. For that reason, one
usually looks at proof techniques for contextual equivalence. Here we consider
applicative bisimilarity [1]. As in the pure λ-calculus applicative bisimilarity
coincides with the intersection of applicative similarity and its converse, for the

Effectful Normal Form Bisimulation 267

sake of the argument we discuss which difficulties one faces when trying to prove
Z to be applicatively similar to Y .

Let us try to construct an applicative simulation R relating Y and Z. Clearly
we need to have (Y ,Z) ∈ R. Since Y evaluates to λy.ΔΔ, and Z evaluates
to λy.y(λz.ΘΘyz), in order for R to be an applicative simulation, we need to
show that for any value v, (Δ[v/y]Δ[v/y], v(λz.ΘΘvz)) ∈ R. Since the result
of the evaluation of Δ[v/y]Δ[v/y] is the same of v(λz.Δ[v/y]Δ[v/y]z), we have
reached a point in which we are stuck: in order to ensure (Y ,Z) ∈ R, we need to
show that (v(λz.Δ[v/y]Δ[v/y]z), v(λz.ΘΘvz)) ∈ R. However, the value v being
provided by the environment, no information on it is available. That is, we have
no information on how v tests its input program. In particular, given any context
C[−], we can consider the value λx.C[x], meaning that proving Y and Z to be
applicatively bisimilar is almost as hard as proving them to be contextually
equivalent from first principles.

As we will see, proving Z to be normal form similar to Y is straightfor-
ward, since in order to test λy.ΔΔ and λy.y(λz.ΘΘyz), we simply test their
subterms ΔΔ and y(λz.ΘΘyz), thus not allowing the environment to influence
computations.

Example 2. Our next example is a refinement of Example 1 to a probabilistic
setting, as proposed in [66] (but in a call-by-name setting). We consider a varia-
tion of Turing’s call-by-value fixed point combinator which, at any iteration, can
probabilistically decide whether to start another iteration (following the pattern
of the standard Turing’s fixed point combinator) or to turn for good into Y ,
where Y and Δ are defined as in Example 1:

Z � ΘΘ, Θ � λx.λy.(y(λz.ΔΔz) or y(λz.xxyz)).

Notice that the constructor or behaves as a (fair) probabilistic choice operator,
hence acting as an effect producer. It is natural to ask whether these new ver-
sions of Y and Z are still equivalent. However, following insights from previous
example, it is not hard to see the equivalence between Y and Z cannot be readily
proved by means of standard operational methods such as probabilistic contex-
tual equivalence [16], probabilistic CIU equivalence and logical relations [10], and
probabilistic applicative bisimilarity [13,16]. All the aforementioned techniques
require to test programs in a given environment (such as a whole context or an
input argument), and are thus ineffective in handling fixed point combinators
such as Y and Z.

We will give an elementary proof of the equivalence between Y and Z
in Example 17, and a more elegant proof relying on a suitable up-to context
technique in Example 18. In [66], the call-by-name counterparts of Y and Z
are proved to be equivalent using probabilistic environmental bisimilarity. The
notion of an environmental bisimulation [63] involves both an environment stor-
ing pairs of terms played during the bisimulation game, and a clause universally
quantifying over pairs of terms in the evaluation context closure of such an

268 U. Dal Lago and F. Gavazzo

environment2, thus making environmental bisimilarity a rather heavy technique
to use. Our proof of the equivalence of Y and Z is simpler: in fact, our notion
of effectful normal form bisimulation does not involve any universal quantifica-
tion over all possible closed function arguments (like applicative bisimilarity),
or their evaluation context closure (like environmental bisimilarity), or closed
instantiation of uses (like CIU equivalence).

Example 3. Our third example concerns call-by-name calculi and shows how
our notion of normal form bisimilarity can handle even intricate recursion
schemes. We consider the following argument-switching probabilistic fixed point
combinators:

P � AA, A � λx.λy.λz.(y(xxyz) or z(xxzy)),

Q � BB, B � λx.λy.λz.(y(xxzy) or z(xxyz)).

We easily see that P and Q satisfy the following (informal) program equations:

Pef = e(Pef) or f(Pfe), Qef = e(Qfe) or f(Qef).

Again, proving the equivalence between P and Q using applicative bisimilarity
is problematic. In fact, testing the applicative behaviour of P and Q requires to
reason about the behaviour of e.g. e(Pef), which in turn requires to reason about
the (arbitrary) term e, on which no information is provided. The (essentially
infinitary) normal forms of P and Q, however, can be proved to be essentially
the same by reasoning about the syntactical structure of P and Q. Moreover, our
up-to context technique enables an elegant and concise proof of the equivalence
between P and Q (Sect. 6.4).

Example 4. Our last example discusses the use of the cost monad as an instru-
ment to facilitate a more intensional analysis of programs. In fact, we can use the
ticking operation tick to perform cost analysis. For instance, we can consider the
following variation of Curry’s and Turing’s fixed point combinator of Example 1,
obtained by adding the operation symbol tick after every λ-abstraction.

Y � λy.tick(ΔΔ), Δ � λx.tick(y(λz.tick(xxz))),

Z � ΘΘ, Θ � λx.tick(λy.tick(y(λz.tick(xxyz)))).

Every time a β-redex (λx.tick(e))v is reduced, the ticking operation tick
increases an imaginary cost counter of a unit. Using ticking, we can provide
a more intensional analysis of the relationship between Y and Z, along the lines
of Sands’ improvement theory [62].

2 Meaning that two terms e1, e2 are tested for their applicative behaviour against all
terms of the form E[e], E[e′], for any pair of terms (e, e′) stored in the environment.

Effectful Normal Form Bisimulation 269

3 Preliminaries: Monads and Algebraic Operations

In this section we recall some basic definitions and results needed in the rest
of the paper. Unfortunately, there is no hope to be comprehensive, and thus we
assume the reader to be familiar with basic domain theory [2] (in particular with
the notions of ω-complete (pointed) partial order—ω-cppo, for short—monotone,
and continuous functions), basic order theory [19], and basic category theory [46].
Additionally, we assume the reader to be acquainted with the notion of a Kleisli
triple [46] T = 〈T , η,−†〉. As it is customary, we use the notation f† : TX → TY
for the Kleisli extension of f : X → TY , and reserve the letter η to denote
the unit of T. Due to their equivalence, oftentimes we refer to Kleisli triples as
monads.

Concerning notation, we try to follow [46] and [2], with the only exception
that we use the notation (xn)n to denote an ω-chain x0 � · · · � xn � · · · in
a domain (X,�,⊥). The notation T = 〈T , η,−†〉 for an arbitrary Kleisli triple
is standard, but it is not very handy when dealing with multiple monads at
the same time. To fix this issue, we sometimes use the notation T = 〈T ,t,−T〉
to denote a Kleisli triple. Additionally, when unambiguous we omit subscripts.
Finally, we denote by Set the category of sets and functions, and by Rel the
category of sets and relations. We reserve the symbol 1 to denote the iden-
tity function. Unless explicitly stated, we assume functors (and monads) to be
functors (and monads) on Set. As a consequence, we write functors to refer to
endofunctors on Set.

We use monads to give operational semantics to our calculi. Following Moggi
[49,50], we model notions of computation as monads, meaning that we use mon-
ads as mathematical models of the kind of (side) effects computations may pro-
duce. The following are examples of monads modelling relevant notions of com-
putation. Due to space constraints, we omit several interesting examples such as
the output, the exception, and the nondeterministic/powerset monad, for which
the reader is referred to e.g. [50,73].

Example 5 (Partiality). Partial computations are modelled by the partiality
(also called maybe) monad M = 〈M ,m,−M〉. The carrier MX of M is defined
as {just x | x ∈ X} ∪ {⊥}, where ⊥ is a special symbol denoting divergence.
The unit and Kleisli extension of M are defined as follows:

m(x) � just x, fM(just x) � f(x), fM(⊥) � ⊥.

Example 6 (Probabilistic Nondeterminism). In this example we assume sets to
be countable3. The (discrete) distribution monad D = 〈D,d,−D〉 has carrier
DX � {μ : X → [0, 1] | ∑

x μ(x) = 1}, whereas the maps d and −D are defined
as follows (where y 	= x):

d(x)(x) � 1, d(x)(y) � 0, fD(μ)(y) �
∑

x∈Xμ(x) · f(x)(y).

3 Although this is not strictly necessary, for simplicity we work with distributions over
countable sets only, as the sets of values and normal forms are countable.

270 U. Dal Lago and F. Gavazzo

Oftentimes, we write a distribution μ as a weighted formal sum. That is, we write
μ as the sum4

∑
i∈I pi·xi such that μ(x) =

∑
xi=x pi. D models probabilistic total

computations, according to the rationale that a (total) probabilistic program
evaluates to a distribution over values, the latter describing the possible results
of the evaluation. Finally, we model probabilistic partial computations using the
monad DM = 〈DM ,dm,−DM〉. The carrier of DM is defined as DMX � D(MX),
whereas the unit dm is defined in the obvious way. For f : X → DMY , define:

fDM(μ)(y) �
∑

x∈Xμ(just x) · f(x)(y) + μ(⊥) · d(⊥)(y).

It is easy to see that DM is isomorphic to the subdistribution monad.

Example 7 (Cost). The cost (also known as ticking or improvement [62]) monad
C = 〈C,c,−C〉 has carrier CX � M(N× X). The unit of C is defined as c(x) �
just (0,x), whereas Kleisli extension is defined as follows:

fC(x) �
{

⊥ if x = ⊥, or x = just (n,x) and f(x) = ⊥
just (n + m, y) if x = just (n,x) and f(x) = just (m, y).

The cost monad is used to model the cost of (partial) computations. An element
of the form just (n,x) models the result of a computation outputting the value
x with cost n (the latter being an abstract notion that can be instantiated to e.g.
the number of reduction steps performed). Partiality is modelled as the element
⊥, according to the rationale that we can assume all divergent computations to
have the same cost, so that such information need not be explicitly written (for
instance, measuring the number of reduction steps performed, we would have
that divergent computations all have cost ∞).

Example 8 (Global states). Let L be a set of public location names. We assume
the content of locations to be encoded as families of values (such as numerals or
booleans) and denote the collection of such values as V. A store (or state) is a
function σ : L → V. We write S for the set of stores VL. The global state monad
G = 〈G,g,−G〉 has carrier GX � (X × S)S , whereas g and −G are defined by:

g(x)(σ) � (x,σ), fG(α)(σ) � f(x′)(σ′),

where α(σ) = (x′,σ′). It is straightforward to see that we can combine the global
state monad with the partiality monad, obtaining the monad M⊗G whose carrier
is (M ⊗ G)X � M(X × S)S . In a similar fashion, we see that we can combine
the global state monad with DM and C, as we are going to see in Remark 1.

Remark 1. The monads DM and M⊗G of Example 6 and Example 8, respectively,
are instances of two general constructions, namely the sum and tensor of effects
[28]. Although these operations are defined on Lawvere theories [29,40], here we
can rephrase them in terms of monads as follows.

4 For simplicity, we write only those pis such that pi > 0.

Effectful Normal Form Bisimulation 271

Proposition 1. Given a monad T = 〈T ,t,−T〉, define the sum TM of T and M
and the tensor T⊗ G of T and G, as the triples 〈TM ,tm,−TM〉 and 〈T ⊗ G,t⊗
g,−T⊗G〉, respectively. The carriers of the triples are defined as TMX � T (MX)
and (T ⊗ G)X � T (S × X)S, whereas the maps tm and t ⊗ g are defined as
tmX � tMX ◦ mX and (t ⊗ g)X � curry tS×X , respectively. Finally, define:

fTM � (fM)T, fT⊗G(α)(σ) � (uncurry f)T(α)(σ),

where, for a function f : X → TMY we define fM : MX → TMY as fM (⊥) �
tMX(⊥), fM (just x) � f(x), and curry and uncurry are defined as usual. Then
TM and T ⊗ G are monads.

Proving Proposition 1 is a straightforward exercise (the reader can also consult
[28]). We notice that tensoring G with DM we obtain a monad for probabilistic
imperative computations, whereas tensoring G with C we obtain a monad for
imperative computations with cost.

3.1 Algebraic Operations

Monads provide an elegant way to structure effectful computations. However,
they do not offer any actual effect constructor. Following Plotkin and Power
[56–58], we use algebraic operations as effect producers. From an operational
perspective, algebraic operations are those operations whose behaviour is inde-
pendent of their continuations or, equivalently, of the environment in which they
are evaluated. Intuitively, that means that e.g. E[e1ore2] is operationally equiv-
alent to E[e1] or E[e2], for any evaluation context E. Examples of algebraic
operations are given by (binary) nondeterministic and probabilistic choices as
well as primitives for rising exceptions and output operations.

Syntactically, algebraic operations are given via a signature Σ consisting of a
set of operation symbols (uninterpreted operations) together with their arity (i.e.
their number of operands). Semantically, operation symbols are interpreted as
algebraic operations on monads. To any n-ary operation symbol5 (op : n) ∈ Σ
and any set X we associate a map [[op]]X : (TX)n → TX (so that we equip
TX with a Σ-algebra structure [12]) such that f† is Σ-algebra morphism,
meaning that for any f : X → TY , and elements x1, . . . , xn ∈ TX we have
[[op]]Y (f†(x1), . . . , f†(xn)) = f†([[op]]X(x1, . . . , xn)).

Example 9. The partiality monad M usually comes with no operation, as the
possibility of divergence is an implicit feature of any Turing complete language.
However, it is sometimes useful to add an explicit divergence operation (for
instance, in strongly normalising calculi). For that, we consider the signature
ΣM � {Ω : 0}. Having arity zero, the operation Ω acts as a constant, and has
semantics [[Ω]] = ⊥. Since fM(⊥) = ⊥, we see that Ω in indeed an algebraic
operation on M.

5 Here op denotes the operation symbol, whereas n ≥ 0 denotes its arity.

272 U. Dal Lago and F. Gavazzo

For the distribution monad D we define the signature ΣD � {or : 2}. The
intended semantics of a program e1 or e2 is to evaluate to ei (i ∈ {1, 2}) with
probability 0.5. The interpretation of or is defined by [[or]](μ, ν)(x) � 0.5 ·μ(x)+
0.5 · ν(x). It is easy to see that or is an algebraic operation on D, and that it
trivially extends to DM.

Finally, for the cost monad C we define the signature ΣC � {tick : 1}. The
intended semantics of tick is to add a unit to the cost counter:

[[tick]](⊥) � ⊥, [[tick]](just (n,x)) � just (n + 1,x).

The framework we have just described works fine for modelling operations
with finite arity, but does not allow to handle operations with infinitary arity.
This is witnessed, for instance, by imperative calculi with global stores, where it
is natural to have operations of the form get�(x.k) with the following intended
semantics: get�(x.k) reads the content of the location �, say it is a value v, and
continue as k[v/x]. In order to take such operations into account, we follow [58]
and work with generalised operations.

A generalised operation (operation, for short) on a set X is a function ω :
P × XI → X. The set P is called the parameter set of the operation, whereas
the (index) set I is called the arity of the operation. A generalised operation
ω : P × XI → X thus takes as arguments a parameter p (such as a location
name) and a map κ : I → X giving for each index i ∈ I the argument κ(i)
to pass to ω. Syntactically, generalised operations are given via a signature Σ
consisting of a set of elements of the form op : P � I (the latter being nothing
but a notation denoting that the operation symbols op has parameter set P and
index set I). Semantically, an interpretation of an operation symbol op : P � I
on a monad T associates to any set X a map [[op]]X : P × (TX)I → TX such
that for any f : X → TY , p ∈ P , and κ : I → TX:

f†([[op]]X(p,κ)) = [[op]]Y (p, f† ◦ κ).

If T comes with an interpretation for operation symbols in Σ, we say that T is
Σ-algebraic.

It is easy to see by taking the one-element set 1 = {∗} as parameter set
and a finite set as arity set, generalised operations subsume finitary operations.
For simplicity, we use the notation op : n in place of op : 1 � n, and write
op(x1, . . . , xn) in place of op(∗,n �→ xn).

Example 10. For the global state monad we consider the signature ΣG � {set� :
V � 1,get� : 1 � V | � ∈ L}. From a computational perspective, such operations
are used to build programs of the form set�(v, e) and get�(x.e). The former stores
the value v in the location � and continues as e, whereas the latter reads the
content of the location �, say it is v, and continue as e[v/x]. Here e is used as
the description of a function κe from values to terms defined by κe(v) � e[v/x].
The interpretation of the new operations on G is standard:

[[set�]](v,α)(σ) = α(σ[� := v]), [[get�]](κ)(σ) = κ(σ(�))(σ).

Effectful Normal Form Bisimulation 273

Straightforward calculations show that indeed set� and get� are algebraic oper-
ations on G. Moreover, such operations can be easily extended to the partial
global state monad M ⊗ G as well as to the probabilistic (partial) global store
monad DM ⊗ G. These extensions share a common pattern, which is nothing
but an instance of the tensor of effects. In fact, given a ΣT-algebraic monad T
we can define the signature ΣT⊗G as ΣT ∪ ΣG, and observe that the T ⊗ G is
ΣT⊗G-algebraic. We refer the reader to [28] for details. Here we simply notice
that we can define the interpretation [[op]]T⊗G of op : P � V on T ⊗ G as
[[op]]T⊗G

X (p,κ)(σ) � [[op]]TS×X(p, v �→ κ(v)(σ)), where [[op]]T is the interpretation
of op on T (the interpretations of set� and get� are straightforward).

Monads and algebraic operations provide mathematical abstractions to struc-
ture and produce effectful computations. However, in order to give operational
semantics to, e.g., probabilistic calculi [17] we need monads to account for infini-
tary computational behaviours. We thus look at Σ-continuous monads.

Definition 1. A Σ-algebraic monad T = 〈T , η,−†〉 is Σ-continuous (cf. [24])
if to any set X is associated an order �X and an element ⊥X ∈ TX such that
〈TX,�X ,⊥X〉 is an ω-cppo, and for all (op : P � I) ∈ Σ, f , fn, g : X → TY ,
κ,κn, ν : I → TX, x , xn, y ∈ TX, we have f†(⊥) = ⊥ and:

κ � ν =⇒ [[op]](p,κ) � [[op]](p, ν) [[op]](p,
⊔

nκn) =
⊔

n[[op]](p,κn)

f � g =⇒ f† � g† (
⊔

nfn)† =
⊔

n f†
n

x � y =⇒ f†(x) � f†(y) f†(
⊔

nxn) =
⊔

n f†(xn).

When clear from the context, we will omit subscripts in ⊥X and �X .

Example 11. The monads M, DM, GM, and C are Σ-continuous. The order on
MX and C is the flat ordering � defined by x � y ⇐⇒� x = ⊥ or x = y,
whereas the order on DMX is defined by μ � ν ⇐⇒� ∀x ∈ X. μ(just x) ≤
ν(just x). Finally, the order on GMX is defined pointwise from the flat ordering
on M(X × S).

Having introduced the notion of a Σ-continuous monad, we can now define
our vehicle calculus ΛΣ and its monadic operational semantics.

4 A Computational Call-by-value Calculus
with Algebraic Operations

In this section we define the calculus ΛΣ . ΛΣ is an untyped λ-calculus
parametrised by a signature of operation symbols, and corresponds to the coarse-
grain [44] version of the calculus studied in [15]. Formally, terms of ΛΣ are defined
by the following grammar, where x ranges over a countably infinite set of vari-
ables and op is a generalised operation symbol in Σ.

e ::= x | λx.e | ee | op(p,x.e).

274 U. Dal Lago and F. Gavazzo

A value is either a variable or a λ-abstraction. We denote by Λ the collection
of terms and by V the collection of values of ΛΣ . For an operation symbol
op : P � I, we assume that set I to be encoded by some subset of V (using
e.g. Church’s encoding). In particular, in a term of the form op(p,x.e), e acts
as a function in the variable x that takes as input a value. Notice also how
parameters p ∈ P are part of the syntax. For simplicity, we ignore the specific
subset of values used to encode elements of I, and simply write op : P � V for
operation symbols in Σ.

We adopt standard syntactical conventions as in [5] (notably the so-called
variable convention). The notion of a free (resp. bound) variable is defined as
usual (notice that the variable x is bound in op(p,x.e)). As it is customary, we
identify terms up to renaming of bound variables and say that a term is closed if
it has no free variables (and that it is open, otherwise). Finally, we write f [e/x]
for the capture-free substitution of the term e for all free occurrences of x in f .
In particular, op(p,x′.f)[e/x] is defined as op(p,x′.f [e/x]).

Before giving ΛΣ call-by-value operational semantics, it is useful to remark a
couple of points. First of all, testing terms according to their (possibly infinitary)
normal forms obviously requires to work with open terms. Indeed, in order to
inspect the intensional behaviour of a value λx.e, one has to inspect the inten-
sional behaviour of e, which is an open term. As a consequence, contrary to the
usual practice, we give operational semantics to both open and closed terms.
Actually, the very distinction between open and closed terms is not that mean-
ingful in this context, and thus we simply speak of terms. Second, we notice that
values constitute a syntactic category defined independently of the operational
semantics of the calculus: values are just variables and λ-abstractions. However,
giving operational semantics to arbitrary terms we are interested in richer col-
lections of irreducible expressions, i.e. expressions that cannot be simplified any
further. Such collections will be different accordingly to the operational seman-
tics adopted. For instance, in a call-by-name setting it is natural to regard the
term x((λx.x)v) as a terminal expression (being it a head normal form), whereas
in a call-by-value setting x((λx.x)v) can be further simplified to xv, which in
turn should be regarded as a terminal expression.

We now give ΛΣ a monadic call-by-value operational semantics [15], post-
poning the definition of monadic call-by-name operational semantics to Sect. 6.4.
Recall that a (call-by-value) evaluation context [22] is a term with a single hole
[−] defined by the following grammar, where e ∈ Λ and v ∈ V:

E ::= [−] | Ee | vE.

We write E[e] for the term obtained by substituting the term e for the hole [−]
in E.

Following [38], we define a stuck term as a term of the form E[xv]. Intuitively,
a stuck term is an expression whose evaluation is stuck. For instance, the term
e � y(λx.x) is stuck. Obviously, e is not a value, but at the same time it cannot
be simplified any further, as y is a variable, and not a λ-abstraction. Following
this intuition, we define the collection E of eager normal forms (enfs hereafter)

Effectful Normal Form Bisimulation 275

as the collection of values and stuck terms. We let letters s, t, . . . range over
elements in E .

Lemma 1. Any term e is either a value v, or can be uniquely decomposed as
either E[vw] or E[op(p,x.f)].

Operational semantics of ΛΣ is defined with respect to a Σ-continuous monad
T = 〈T , η,−†〉 relying on Lemma 1. More precisely, we define a call-by-value
evaluation function [[−]] mapping each term to an element in TE . For instance,
evaluating a probabilistic term e we obtain a distribution over eager normal
forms (plus bottom), the latter being either values (meaning that the evaluation
of e terminates) or stuck terms (meaning that the evaluation of e went stuck at
some point).

Definition 2. Define the N-indexed family of maps [[−]]n : Λ → TE as follows:

[[e]]0 � ⊥,

[[v]]n+1 � η(v),

[[E[xv]]]n+1 � η(E[xv]),

[[E[(λx.e)v]]]n+1 � [[E[e[v/x]]]]n,

[[E[op(p,x.e)]]n+1 � [[op]]E(p, v �→ [[E[e[v/x]]]]n).

The monad T being Σ-continuous, we see that the sequence ([[e]]n)n forms
an ω-chain in TE , so that we can define [[e]] as

⊔
n[[e]]n. Moreover, exploiting

Σ-continuity of T we see that [[−]] is continuous.
We compare the behaviour of terms of ΛΣ relying on the notion of an

effectful eager normal form (bi)simulation, the extension of eager normal form
(bi)simulation [38] to calculi with algebraic effects. In order to account for effect-
ful behaviours, we follow [15] and parametrise our notions of equivalence and
refinement by relators [6,71].

5 Relators

The notion of a relator for a functor T (on Set) [71] (also called lax extension of T
[6]) is a construction lifting a relation R between two sets X and Y to a relation
ΓR between TX and TY . Besides their applications in categorical topology [6]
and coalgebra [71], relators have been recently used to study notions of applica-
tive bisimulation [15], logic-based equivalence [67], and bisimulation-based dis-
tances [23] for λ-calculi extended with algebraic effects. Moreover, several forms
of monadic lifting [25,32] resembling relators have been used to study abstract
notions of logical relations [55,61].

Before defining relators formally, it is useful to recall some background
notions on (binary) relations. The reader is referred to [26] for further details. We
denote by Rel the category of sets and relations, and use the notation R : X +→ Y
for a relation R between sets X and Y . Given relations R : X +→ Y and

276 U. Dal Lago and F. Gavazzo

S : Y +→ Z, we write S ◦ R : X +→ Z for their composition, and IX : X +→ X for
the identity relation on X. Finally, we recall that for all sets X,Y , the hom-set
Rel(X,Y) has a complete lattice structure, meaning that we can define relations
both inductively and coinductively.

Given a relation R : X +→ Y , we denote by R◦ : Y +→ X its dual (or
opposite) relations and by −◦ : Set → Rel the graph functor mapping each
function f : X → Y to its graph f◦ : X +→ Y . The functor −◦ being faithful, we
will often write f : X → Y in place of f◦ : X +→ Y . It is useful to keep in mind
the pointwise reading of relations of the form g◦ ◦S ◦f , for a relation S : Z +→ W
and functions f : X → Z, g : Y → W :

(g◦ ◦ S ◦ f)(x, y) = S(f(x), g(y)).

Given R : X +→ Y , we can thus express a generalised monotonicity condition in a
pointfree fashion using the inclusion R ⊆ g◦◦S◦f . Finally, since we are interested
in preorder and equivalence relations, we recall that a relation R : X +→ X is
reflexive if IX ⊆ R, transitive if R ◦ R ⊆ R, and symmetric if R ⊆ R◦. We can
now define relators formally.

Definition 3. A relator for a functor T (on Set) is a set-indexed family of maps
(R : X +→ Y) �→ (ΓR : TX +→ TY) satisfying conditions (rel 1)–(rel 4). We say
that Γ is conversive if it additionally satisfies condition (rel 5).

ITX ⊆ Γ (IX), (rel 1)
ΓS ◦ ΓR ⊆ Γ (S ◦ R), (rel 2)
Tf ⊆ Γf , (Tf)◦ ⊆ Γf◦, (rel 3)

R ⊆ S =⇒ ΓR ⊆ ΓS, (rel 4)
Γ (R◦) = (ΓR)◦. (rel 5)

Conditions (rel 1), (rel 2), and (rel 4) are rather standard6. As we will
see, condition (rel 4) makes the defining functional of (bi)simulation relations
monotone, whereas conditions (rel 1) and (rel 2) make notions of (bi)similarity
reflexive and transitive. Similarly, condition (rel 5) makes notions of bisimi-
larity symmetric. Condition (rel 3), which actually consists of two conditions,
states that relators behave as expected when acting on (graphs of) functions.
In [15,43] a kernel preservation condition is required in place of (rel 3). Such
a condition is also known as stability in [27]. Stability requires the equality
Γ (g◦ ◦ R ◦ f) = (Tg)◦ ◦ ΓR ◦ Tf to hold. It is easy to see that a relator always
satisfies stability (see Corollary III.1.4.4 in [26]).

Relators provide a powerful abstraction of notions of ‘relation lifting’, as
witnessed by the numerous examples of relators we are going to discuss. However,
before discussing such examples, we introduce the notion of a relator for a monad
or lax extension of a monad. In fact, since we modelled computational effects as
monads, it seems natural to define the notion of a relator for a monad (and not
just for a functor).
6 Notice that since I = (1)◦ we can derive condition (rel 1) from condition (rel 3).

Effectful Normal Form Bisimulation 277

Definition 4. Let T = 〈T , η,−†〉 be a monad, and Γ be a relator for T . We say
that Γ is a relator for T if it satisfies the following conditions:

R ⊆ η◦
Y ◦ ΓR ◦ ηX , (rel 7)

R ⊆ g◦ ◦ ΓS ◦ f =⇒ ΓR ⊆ (g†)◦ ◦ ΓS ◦ f†. (rel 8)

Finally, we observe that the collection of relators is closed under specific
operations (see [43]).

Proposition 2. Let T ,U be functors, and let UT denote their composition.
Moreover, let Γ ,Δ be relators for T and U , respectively, and {Γi}i∈I be a family
of relators for T . Then:

1. The map ΔΓ defined by ΔΓR � Δ(ΓR) is a relator for UT .
2. The maps

∧
i∈I Γi and Γ ◦ defined by (

∧
i∈I Γi)R �

⋂
i∈I ΓiR and Γ ◦R �

(ΓR◦)◦, respectively, are relators for T .
3. Additionally, if Γ is a relator for a monad T, then so are

∧
i∈I Γi and Γ ◦.

Example 12. For the partiality monad M we define the set-indexed family of
maps M̂ : Rel(X,Y) → Rel(MX,MY) as:

x M̂R y ⇐⇒� (x = ⊥) ∨ (∃x ∈ X. ∃y ∈ Y . x = just x ∧ y = just y ∧ x R y).

The mapping M̂ describes the structure of the usual simulation clause for par-
tial computations, whereas M◦ describes the corresponding co-simulation clause.
It is easy to see that M̂ is a relator for M. By Proposition 2, the map M̂∧ M̂◦ is a
conversive relator for M. It is immediate to see that the latter relator describes
the structure of the usual bisimulation clause for partial computations.

Example 13. For the distribution monad we define the relator D̂ relying on the
notion of a coupling and results from optimal transport [72]. Recall that a cou-
pling for μ ∈ D(X) and ν ∈ D(Y) a is a joint distribution ω ∈ D(X × Y)
such that: μ =

∑
y∈Y ω(−, y) and ν =

∑
x∈X ω(x,−). We denote the set of

couplings of μ and ν by Ω(μ, ν). Define the (set-indexed) map D̂ : Rel(X,Y) →
Rel(DX,DY) as follows:

μ D̂R ν ⇐⇒� (∃ω ∈ Ω(μ, ν). ∀x, y. ω(x, y) > 0 =⇒ x R y).

We can show that D̂ is a relator for D relying on Strassen’s Theorem [69], which
shows that D̂ can be characterised universally (i.e. using an universal quantifi-
cation).

Theorem 1 (Strassen’s Theorem [69]). For all μ ∈ DX, ν ∈ DY , and
R : X +→ Y , we have: μ D̂R ν ⇐⇒ ∀X ⊆ X. μ(X) ≤ ν(R[X]).

As a corollary of Theorem 1, we see that D̂ describes the defining clause of
Larsen-Skou bisimulation for Markov chains (based on full distributions) [34].
Finally, we observe that D̂M � D̂M̂ is a relator for DM.

278 U. Dal Lago and F. Gavazzo

Example 14. For relations R : X +→ Y , S : X ′ +→ Y ′, let R×S : X×X ′ +→ Y ×Y ′

be defined as (R×S)((x,x′), (y, y′)) ⇐⇒� R(x, y)∧S(x′, y′). We define the relator
Ĉ : Rel(X,Y) → Rel(CX,CY) for the cost monad C as ĈR � M̂(≥ × R), where
≥ denotes the opposite of the natural ordering on N. It is straightforward to see
that Ĉ is indeed a relator for C. The use of the opposite of the natural order
in the definition of Ĉ captures the idea that we use Ĉ to measure complexity.
Notice that Ĉ describes Sands’ simulation clause for program improvement [62].

Example 15. For the global state monad G we define the map Ĝ : Rel(X,Y) →
Rel(GX,GY) as α ĜR β ⇐⇒� ∀σ ∈ S. α(σ) (IS × R) β(σ). It is straightforward
to see that Ĝ is a relator for G.

It is not hard to see that we can extend Ĝ to relators for M⊗G, DM⊗G, and
C ⊗ G. In fact, Proposition 1 extends to relators.

Proposition 3. Given a monad T = 〈T ,t,−T〉 and a relator T̂ for T, define
the sum T̂M of T̂ and M̂ as T̂M̂. Additionally, define the tensor ̂T ⊗ G of T̂ and Ĝ

by α ̂(T ⊗ G)R β if an only if ∀σ. α(σ) T̂(IS × R) β(σ). Then T̂M is a relator for
TM, and ̂(T ⊗ G) is a relator for T ⊗ G.

Finally, we require relators to properly interact with the Σ-continuous structure
of monads.

Definition 5. Let T = 〈T , η,−†〉 be a Σ-continuous monad and Γ be relator for
T. We say that Γ is Σ-continuous if it satisfies the following clauses—called the
inductive conditions—for any ω-chain (xn)n in TX, element y ∈ TY , elements
x , x ′ ∈ TX, and relation R : X +→ Y .

⊥ ΓR y, x � x ′, x ′ ΓR y =⇒ x ΓR y, ∀n. xn ΓR y =⇒ ⊔
n xn ΓR y.

The relators M̂, D̂M, Ĉ, ̂M ⊗ G, ̂DM ⊗ G, ̂C ⊗ G are all Σ-continuous. The
reader might have noticed that we have not imposed any condition on how
relators should interact with algebraic operations. Nonetheless, it would be quite
natural to require a relator Γ to satisfy condition (rel 9) below, for all operation
symbol op : P � I ∈ Σ, maps κ, ν : I → TX, parameter p ∈ P , and relation R.

∀i ∈ I. κ(i) ΓR ν(i) =⇒ [[op]](p,κ) ΓR [[op]](p, ν) (rel 9)

Remarkably, if T is Σ-algebraic, then any relator for T satisfies (rel 9) (cf.
[15]).

Proposition 4. Let T = 〈T , η,−†〉 be a Σ-algebraic monad, and let Γ be a
relator for T. Then Γ satisfies condition (rel 9).

Having defined relators and their basic properties, we now introduce the
notion of an effectful eager normal form (bi)simulation.

Effectful Normal Form Bisimulation 279

6 Effectful Eager Normal Form (Bi)simulation

In this section we tacitly assume a Σ-continuous monad T = 〈T , η,−†〉 and a
Σ-continuous relator Γ for it be fixed. Σ-continuity of Γ is not required for
defining effectful eager normal form (bi)simulation, but it is crucial to prove
that the induced notion of similarity and bisimilarity are precongruence and
congruence relations, respectively.

Working with effectful calculi, it is important to distinguish between relations
over terms and relations over eager normal forms. For that reason we will work
with pairs of relations of the form (RΛ : Λ +→ Λ,RE : E +→ E), which we call
λ-term relations (or term relations, for short). We use letters R,S, . . . to denote
term relations. The collection of λ-term relations (i.e. Rel(Λ,Λ)×Rel(E , E)) inher-
its a complete lattice structure from Rel(Λ,Λ) and Rel(E , E) pointwise, hence
allowing λ-term relations to be defined both inductively and coinductively. We
use these properties to define our notion of effectful eager normal form similarity.

Definition 6. A term relation R = (RΛ : Λ +→ Λ,RE : E +→ E) is an effectful
eager normal form simulation with respect to Γ (hereafter enf-simulation, as Γ
will be clear from the context) if the following conditions hold, where in condition
(enf 4) z 	∈ FV (E) ∪ FV (E′).

e RΛ f =⇒ [[e]] ΓRE [[f]], (enf 1)

x RE s =⇒ s = x, (enf 2)

λx.e RE s =⇒ ∃f . s = λx.f ∧ e RΛ f , (enf 3)

E[xv] RE s =⇒ ∃E′, v′. s = E′[xv′] ∧ v RE v′ ∧ ∃z. E[z] RΛ E′[z]. (enf 4)

We say that relation R respects enfs if it satisfies conditions (enf 2)–(enf 4).

Definition 6 is quite standard. Clause (enf 1) is morally the same clause on
terms used to define effectful applicative similarity in [15]. Clauses (enf 2) and
(enf 3) state that whenever two enfs are related by RE , then they must have
the same outermost syntactic structure, and their subterms must be pairwise
related. For instance, if λx.e RE s holds, then s must the a λ-abstraction, i.e. an
expression of the form λx.f , and e and f must be related by RΛ.

Clause (enf 4) is the most interesting one. It states that whenever E[xv]RE s,
then s must be a stuck term E′[xv′], for some evaluation context E′ and value
v′. Notice that E[xv] and s must have the same ‘stuck variable’ x. Addition-
ally, v and v′ must be related by RE , and E and E′ must be properly related
too. The idea is that to see whether E and E′ are related, we replace the stuck
expressions xv, xv′ with a fresh variable z, and test E[z] and E′[z] (thus resum-
ing the evaluation process). We require E[z] RE E′[z] to hold, for some fresh
variable z. The choice of the variable does not really matter, provided it is fresh.
In fact, as we will see, effectful eager normal form similarity �E is substitutive
and reflexive. In particular, if E[z] �E

E E′[z] holds, then E[y] �E
E E′[y] holds as

well, for any variable y 	∈ FV (E) ∪ FV (E′).

280 U. Dal Lago and F. Gavazzo

Notice that Definition 6 does not involve any universal quantification. In
particular, enfs are tested by inspecting their syntactic structure, thus making
the definition of an enf-simulation somehow ‘local’: terms are tested in isolation
and not via their interaction with the environment. This is a major difference
with e.g. applicative (bi)simulation, where the environment interacts with λ-
abstractions by passing them arbitrary (closed) values as arguments.

Definition 6 induces a functional R �→ [R] on the complete lattice Rel(Λ,Λ)×
Rel(E , E), where [R] = ([R]Λ, [R]E) is defined as follows (here IX denotes the
identity relation on variables, i.e. the set of pairs of the form (x,x)):

[R]Λ � {(e, f) | [[e]] ΓRE [[f]]}
[R]E � IX ∪ {(λx.e,λx.f) | e RΛ f},

∪ {(E[xv],E′[xv′]) | v RE v′ ∧ ∃z 	∈ FV (E) ∪ FV (E′). E[z] RΛ E′[z]}.

It is easy to see that a term relation R is an enf-simulation if and only if
R ⊆ [R]. Notice also that although [R]E always contains the identity relation
on variables, RE does not have to: the empty relation (∅, ∅) is an enf-simulation.
Finally, since relators are monotone (condition (rel 4)), R �→ [R] is monotone
too. As a consequence, by Knaster-Tarski Theorem [70], it has a greatest fixed
point which we call effectful eager normal form similarity with respect to Γ
(hereafter enf-similarity) and denote by �E = (�E

Λ,�E
E). Enf-similarity is thus

the largest enf-simulation with respect to Γ . Moreover, �E being defined coin-
ductively, it comes with an associated coinduction proof principle stating that if
a term relation R is an enf-simulation, then it is contained in �E. Symbolically:
R ⊆ [R] =⇒ R ⊆ �E.

Example 16. We use the coinduction proof principle to show that �E contains the
β-rule, viz. (λx.e)v �E

Λ e[v/x]. For that, we simply observe that the term relation
({((λx.e)v, e[v/x])}, IE) is an enf-simulation. Indeed, [[(λx.e)v]] = [[e[v/x]]], so that
by (rel 1) we have [[(λx.e)v]] Γ IE [[e[v/x]]].

Finally, we define effectful eager normal form bisimilarity.

Definition 7. A term relation R is an effectful eager normal form bisimula-
tion with respect to Γ (enf-bisimulation, for short) if it is a symmetric enf-
simulation. Eager normal bisimilarity with respect to Γ (enf-bisimilarity, for
short) �E is the largest symmetric enf-simulation. In particular, enf-bisimilarity
(with respect to Γ) coincides with enf-similarity with respect to Γ ∧ Γ ◦.

Example 17. We show that the probabilistic call-by-value fixed point combina-
tors Y and Z of Example 2 are enf-bisimilar. In light of Proposition 5, this
allows us to conclude that Y and Z are applicatively bisimilar, and thus con-
textually equivalent [15]. Let us consider the relator D̂M for probabilistic partial

Effectful Normal Form Bisimulation 281

computations. We show Y �E
Λ Z by coinduction, proving that the symmetric clo-

sure of the term relation R = (RΛ,RE) defined as follows is an enf-simulation:

RΛ � {(Y ,Z), (ΔΔz,Zyz), (ΔΔ, y(λz.ΔΔz) or y(λz.Zyz))} ∪ IΛ

RE � {(y(λz.ΔΔz), y(λz.Zyz)), (λz.ΔΔz,λz.Zyz),
(λy.ΔΔ,λy.(y(λz.ΔΔz) or y(λz.Zyz))), (y(λz.ΔΔz)z, y(λz.Zyz)z)} ∪ IE .

The term relation R is obtained from the relation {(Y ,Z)} by progressively
adding terms and enfs according to clauses (enf 1)–(enf 4) in Definition 6. Check-
ing that R is an enf-simulation is straightforward. As an illustrative example,
we prove that ΔΔz RΛ Zyz implies [[ΔΔz]] D̂M(RE) [[Zyz]]. The latter amounts
to show:

(
1 · just y(λz.ΔΔz)z

)
D̂M(RE)

(1
2

· just y(λz.ΔΔz)z +
1
2

· just y(λz.Zyz)z
)
,

where, as usual, we write distributions as weighted formal sums. To prove the
latter, it is sufficient to find a suitable coupling of [[ΔΔz]] and [[Zyz]]. Define the
distribution ω ∈ D(ME × ME) as follows:

ω(just y(λz.ΔΔz)z, just y(λz.ΔΔz)z) =
1
2
,

ω(just y(λz.ΔΔz)z, just y(λz.Zyz)z) =
1
2
,

and assigning zero to all other pairs in ME × ME . Obviously ω is a coupling of
[[ΔΔz]] and [[Zyz]]. Additionally, we see that ω(x , y) implies x M̂RE y, since both
y(λz.ΔΔz)z RE y(λz.ΔΔz)z, and y(λz.ΔΔz)z RE y(λz.Zyz)z hold.

As already discussed in Example 2, the operational equivalence between
Y and Z is an example of an equivalence that cannot be readily established
using standard operational methods—such as CIU equivalence or applicative
bisimilarity—but whose proof is straightforward using enf-bisimilarity. Addi-
tionally, Theorem 3 will allow us to reduce the size of R, thus minimising the
task of checking that our relation is indeed an enf-bisimulation. To the best of
the authors’ knowledge, the probabilistic instance of enf-(bi)similarity is the first
example of a probabilistic eager normal form (bi)similarity in the literature.

6.1 Congruence and Precongruence Theorems

In order for �E and �E to qualify as good notions of program refinement
and equivalence, respectively, they have to allow for compositional reasoning.
Roughly speaking, a term relation R is compositional if the validity of the rela-
tionship C[e]RC[e′] between compound terms C[e], C[e′] follows from the validity
of the relationship eR e′ between the subterms e, e′. Mathematically, the notion
of compositionality is formalised throughout the notion of compatibility, which
directly leads to the notions of a precongruence and congruence relation. In this
section we prove that �E and �E are substitutive precongruence and congruence

282 U. Dal Lago and F. Gavazzo

Fig. 1. Compatible and substitutive closure construction.

relations, that is preorder and equivalence relations closed under term construc-
tors of ΛΣ and substitution, respectively. To prove such results, we generalise
Lassen’s relational construction for the pure call-by-name λ-calculus [37]. Such
a construction has been previously adapted to the pure call-by-value λ-calculus
(and its extension with delimited and abortive control operators) in [9], whereas
Lassen has proved compatibility of pure eager normal form bisimilarity via a
CPS translation [38]. Both those proofs rely on syntactical properties of the cal-
culus (mostly expressed using suitable small-step semantics), and thus seem to
be hardly adaptable to effectful calculi. On the contrary, our proofs rely on the
properties of relators, thereby making our results and techniques more modular
and thus valid for a large class of effects.

We begin proving precongruence of enf-similarity. The central tool we use to
prove the wished precongruence theorem is the so-called (substitutive) context
closure [37] RSC of a term relation R, which is inductively defined by the rules
in Fig. 1, where x ∈ {Λ, E}, i ∈ {1, 2}, and z 	∈ FV (E) ∪ FV (E′).

We easily see that RSC is the smallest term relation that contains R, it is
closed under language constructors of ΛΣ (a property known as compatibility
[5]), and it is closed under the substitution operation (a property known as
substitutivity [5]). As a consequence, we say that a term relation R is a substi-
tutive compatible relation if RSC ⊆ R (and thus R = RSC). If, additionally, R
is a preorder (resp. equivalence) relation, then we say that R is a substitutive
precongruence (resp. substitutive congruence) relation.

We are now going to prove that if R is an enf-simulation, then so is RSC. In
particular, we will infer that (�E)SC is a enf-simulation, and thus it is contained
in �E, by coinduction.

Lemma 2 (Main Lemma). If R be an enf-simulation, then so is RSC.

Proof (sketch). The proof is long and non-trivial. Due to space constraints here
we simply give some intuitions behind it. First, a routine proof by induction
shows that since R respects enfs, then so does RSC. Next, we wish to prove
that e RSC

Λ f implies [[e]] ΓRSC
E [[f]]. Since Γ is inductive, the latter follows if

Effectful Normal Form Bisimulation 283

for any n ≥ 0, e RSC
Λ f implies [[e]]n ΓRSC

E [[f]]. We prove the latter implication
by lexicographic induction on (1) the natural number n and (2) the derivation
e RSC

Λ f . The case for n = 0 is trivial (since Γ is inductive). The remaining
cases are nontrivial, and are handled observing that [[E[e]]] = (s �→ [[E[s]]])†[[e]]
and [[e[v/x]]]n � [[−[v/x]]]†n[[e]]n. Both these identities allow us to apply condition
(rel 8) to simplify proof obligations (usually relying on part (2) of the induction
hypothesis as well). This scheme is iterated until we reach either an enf (in which
case we are done by condition (rel 7)) or a pair of expressions on which we can
apply part (1) of the induction hypothesis.

Theorem 2. Enf-similarity (resp. bisimilarity) is a substitutive precongruence
(resp. congruence) relation.

Proof. We show that enf-similarity is a substitutive precongruence relation. By
Lemma 2, it is sufficient to show that �E is a preorder. This follows by coinduc-
tion, since the term relations I and �E ◦ �E are enf-simulations (the proofs make
use of conditions (rel 1) and (rel 2), as well as of substitutivity of �E).

Finally, we show that enf-bisimilarity is a substitutive congruence relation.
Obviously �E is an equivalence relation, so that it is sufficient to prove (�E)SC ⊆
�E. That directly follows by coinduction relying on Lemma 2, provided that
(�E)SC is symmetric. An easy inspection of the rules in Fig. 1 reveals that RSC is
symmetric, whenever R is.

6.2 Soundness for Effectful Applicative (Bi)similarity

Theorem 2 qualifies enf-bisimilarity and enf-similarity as good candidate notions
of program equivalence and refinement for ΛΣ , at least from a structural perspec-
tive. However, we gave motivations for such notions looking at specific examples
where effectful applicative (bi)similarity is ineffective. It is then natural to ask
whether enf-(bi)similarity can be used as a proof technique for effectful applica-
tive (bi)similarity.

Here we give a formal comparison between enf-(bi)similarity and effectful
applicative (bi)similarity, as defined in [15]. First of all, we rephrase the notion of
an effectful applicative (bi)simulation of [15] to our calculus ΛΣ . For that, we use
the following notational convention. Let Λ0,V0 denote the collections of closed
terms and closed values, respectively. We notice that if e ∈ Λ0, then [[e]] ∈ TV0.
As a consequence, [[−]] induces a closed evaluation function |−| : Λ0 → TV0

characterised by the identity [[−]] ◦ ι = Tι ◦ |−|, where ι : V0 ↪→ E is the obvious
inclusion map. We can thus phrase the definition of effectful applicative similarity
(with respect to a relator Γ) as follows.

Definition 8. A term relation R = (RΛ0 : Λ0 +→ Λ0,RV0 : V0 +→ V0) is
an effectful applicative simulation with respect to Γ (applicative simulation, for
short) if:

e RΛ0 f =⇒ |e| ΓRV0 |f |, (app 1)

λx.e RV0 λx.f =⇒ ∀v ∈ V0. e[v/x] RΛ0 f [v/x]. (app 2)

284 U. Dal Lago and F. Gavazzo

As usual, we can define effectful applicative similarity with respect to Γ (applica-
tive similarity, for short), denoted by �A

0 = (�A
Λ0

,�A
V0

), coinductively as the
largest applicative simulation. Its associated coinduction proof principle states
that if a relation is an applicative simulation, then it is contained in applica-
tive similarity. Finally, we extend �A

0 to arbitrary terms by defining the relation
�A = (�A

Λ,�A
V) as follows: let e, f ,w,u be terms and values with free variables

among x̄ = x1, . . . ,xn. We let v̄ range over n-ary sequences of closed values
v1, . . . , vn. Define:

e �A

Λ f ⇐⇒� ∀v̄. e[v̄/x̄] �A

Λ0
f [v̄/x̄], w �A

Λ u ⇐⇒� ∀v̄. w[v̄/x̄] �A

Λ0
u[v̄/x̄].

The following result states that enf-similarity is a sound proof technique for
applicative similarity.

Proposition 5. Enf-similarity �E is included in applicative similarity �A.

Proof. Let �c = (�c
Λ,�c

V) denote enf-similarity restricted to closed terms and
values. We first show that �c is an applicative simulation, from which follows, by
coinduction, that it is included in �A

0. It is easy to see that �c satisfies condition
(app 2). In order to prove that it also satisfies condition (app 1), we have to show
that for all e, f ∈ Λ◦, e �c

Λ f implies |e| Γ�c
V |f |. Since e �c

Λ f obviously implies
ι(e) �E

Λ ι(f), by (enf 1) we infer [[ι(e)]] Γ�E
V [[ι(f)]], and thus Tι|e| Γ�E

V Tι|f |.
By stability of Γ , the latter implies |e| Γ (ι◦ ◦ �E ◦ ι) |f |, and thus the wished
thesis, since ι◦ ◦ �E ◦ ι is nothing but �c

V . Finally, we show that for all terms
e, f , if e�E

Λ f , then e�A
Λ f (a similar result holds mutatis mutandis for values, so

that we can conclude �E ⊆ �A). Indeed, suppose FV (e) ∪ FV (f) ⊆ x̄, then by
substitutivity of �E we have that e �E

Λ f implies e[v̄/x̄] �E
Λ f [v̄/x̄], for all closed

values v̄ (notice that since we are substituting closed values, sequential and
simultaneous substitution coincide). That essentially means e[v̄/x̄] �c

Λ f [v̄/x̄],
and thus e[v̄/x̄] �A

Λ0
f [v̄/x̄]. We thus conclude e �A

Λ f .

Since in [15] it is shown that effectful applicative similarity (resp. bisimilarity) is
contained in effectful contextual approximation (resp. equivalence), Proposition
5 gives the following result.

Corollary 1. Enf-similarity and enf-bisimilarity are sound proof techniques for
contextual approximation and equivalence, respectively.

Although sound, enf-bisimilarity is not fully abstract for applicative bisimilar-
ity. In fact, as already observed in [38], in the pure λ-calculus enf-bisimilarity is
strictly finer than applicative bisimilarity (and thus strictly finer than contex-
tual equivalence too). For instance, the terms xv and (λy.xv)(xv) are obviously
applicatively bisimilar but not enf-bisimilar.

6.3 Eager Normal Form (Bi)simulation Up-to Context

The up-to context technique [37,60,64] is a refinement of the coinduction proof
principle of enf-(bi)similarity that allows for handier proofs of equivalence and

Effectful Normal Form Bisimulation 285

refinement between terms. When exhibiting a candidate enf-(bi)simulation rela-
tion R, it is desirable for R to be as small as possible, so to minimise the task
of verifying that R is indeed an enf-(bi)simulation.

The motivation behind such a technique can be easily seen looking at Exam-
ple 17, where we showed the equivalence between the probabilistic fixed point
combinators Y and Z working with relations containing several administrative
pairs of terms. The presence of such pairs was forced by Definition 7, although
they appear somehow unnecessary in order to convince that Y and Z exhibit
the same operational behaviour.

Enf-(bi)simulation up-to context is a refinement of enf-(bi)simulation that
allows to check that a relation R behaves as an enf-(bi)simulation relation up to
its substitutive and compatible closure.

Definition 9. A term relation R = (RΛ : Λ +→ Λ,RE : E +→ E) is an effectful
eager normal form simulation up-to context with respect to Γ (enf-simulation
up-to context, hereafter) if satisfies the following conditions, where in condition
(up-to 4) z 	∈ FV (E) ∪ FV (E′).

e RΛ f =⇒ [[e]] ΓRSC

E [[f]], (up-to 1)

x RE s =⇒ s = x, (up-to 2)

λx.e RE s =⇒ ∃f . s = λx.f ∧ e RSC

Λ f , (up-to 3)

E[xv] RE s =⇒ ∃E′, v′. s = E′[xv′] ∧ v RSC

E v′ ∧ ∃z. E[z] RSC

Λ E′[z]. (up-to 4)

In order for the up-to context technique to be sound, we need to show that
every enf-simulation up-to context is contained in enf-similarity. This is a direct
consequence of the following variation of Lemma 2.

Lemma 3. If R is a enf-simulation up-to context, then RSC is a enf-simulation.

Proof. The proof is structurally identical to the one of Lemma 2, where we simply
observe that wherever we use the assumption that R is an enf-simulation, we
can use the weaker assumption that R is an enf-simulation up-to context.

In particular, since by Lemma 2 we have that �E = (�E)SC, we see that enf-
similarity is an enf-simulation up-to context. Additionally, by Lemma 3 it is the
largest such. Since the same result holds for enf-bisimilarity and enf-bisimilarity
up-to context, we have the following theorem.

Theorem 3. Enf-similarity is the largest enf-simulation up-to context, and enf-
bisimilarity is the largest enf-bisimulation up-to context.

Example 18. We apply Theorem 3 to simplify the proof of the equivalence
between Y and Z given in Example 17. In fact, it is sufficient to show that
the symmetric closure of term relation R defined below is an enf-bisimulation
up-to context.

RΛ � {(Y ,Z), (ΔΔz,Zyz), (ΔΔ, y(λz.ΔΔz) or y(λz.Zyz))}, RE � IE .

286 U. Dal Lago and F. Gavazzo

Example 19. Recall the fixed point combinators with ticking operations Y and
Z of Example 4. Let us consider the relator Ĉ. It is not hard to see that Y and
Z are not enf-bisimilar (that is because the ticking operation is evaluated at
different moments, so to speak). Nonetheless, once we pass them a variable x0

as argument, we have Zx0�E
Λ Y x0. For, observe that the term relation R defined

below is an enf-simulation up-context.

RΛ � {(Y x0,Zx0), (tick(Δ[x0/y]Δ[x0/y]z), tick(ΘΘx0z))}, RE = ∅.

Intuitively, Y executes a tick first, and then proceeds iterating the evaluation
of Δ[x0/y]Δ[x0/y], the latter involving two tickings only. On the contrary, Z
proceeds by recursively call itself, hence involving three tickings at any iteration,
so to speak. Since �E is substitutive, for any value v we have Zv �E Y v.

Theorem 3 makes enf-(bi)similarity an extremely powerful proof technique for
program equivalence/refinement, especially because it is yet unknown whether
there exist sound up-to context techniques for applicative (bi)similarity [35].

6.4 Weak Head Normal Form (Bi)simulation

So far we have focused on call-by-value calculi, since in presence of effects the
call-by-value evaluation strategy seems the more natural one. Nonetheless, our
framework can be easily adapted to deal with call-by-name calculi too. In this last
section we spend some words on effectful weak head normal form (bi)similarity
(whnf-(bi)similarity, for short). The latter is nothing but the call-by-name coun-
terpart of enf-(bi)similarity. The main difference between enf-(bi)similarity and
whnf-(bi)similarity relies on the notion of an evaluation context (and thus of a
stuck term). In fact, in a call-by-name setting, ΛΣ evaluation contexts are expres-
sions of the form [−]e1 · · · en, which are somehow simpler than their call-by-value
counterparts. Such a simplicity is reflected in the definition of whnf-(bi)similarity,
which allows to prove mutatis mutandis all results proved for enf-(bi)similarity
(such results are, without much of a surprise, actually easier to prove).

We briefly expand on that. The collection of weak head normal forms (whnfs,
for short) W is defined as the union of V and the collection of stuck terms, the lat-
ter being expressions of the form xe1 · · · en. The evaluation function of Definition
2 now maps terms to elements in TW, and it is essentially obtained modifying
Definition 2 defining [[E[xe]]]n+1 � η(E[xe]) and [[E[(λx.f)e]]]n+1 � [[E[f [e/x]]]]n.
The notion of a whnf-(bi)simulation (and thus the notions of whnf-(bi)similarity)
is obtained modifying Definition 6 accordingly. In particular, clauses (enf 2)
and (enf 4) are replaced by the following clause, where we use the notation
R = (RΛ : Λ +→ Λ,RW : W +→ W) to denote a (call-by-name) λ-term relation.

xe0 · · · ek RW s =⇒ ∃f0, . . . , fk. s = xf0 · · · fk ∧ ∀i. ei RΛ fi.

A straightforward modifications of the rules in Fig. 1 allows to prove an anal-
ogous of Lemma 2 for whnf-simulations, and thus to conclude (pre)congruence

Effectful Normal Form Bisimulation 287

properties of whnf-(bi)similarity. Additionally, such results generalise to whnf-
(bi)simulation up to-context, the latter being defined according to Definition
9, so that we have an analogous of Theorem 3 as well. The latter allows
to infer the equivalence of the argument-switching fixed point combinators of
Example 3, simply by noticing that the symmetric closure of the term relation
R = ({(P ,Q), (Pyz,Qzy), (Pzy,Qyz)}, ∅) is a whnf-bisimulation up-to context.

Finally, it is straightforward to observe that whnf-(bi)similarity is included
in the call-by-name counterpart of effectful applicative (bi)similarity, but that
the inclusion is strict. In fact, the (pure λ-calculus) terms xx and x(λy.xy) are
applicatively bisimilar, but not whnf-bisimilar.

7 Related Work

Normal form (bi)similarity has been originally introduced for the call-by-name λ-
calculus in [65], where it was called open bisimilarity. Open bisimilarity provides
a coinductive characterisation of Lévy-Longo tree equivalence [42,45,53], and
has been shown to coincide with the equivalence (notably weak bisimilarity)
induced by Milner’s encoding of the λ-calculus into the π-calculus [48].

In [37] normal form bisimilarity relations characterising both Böhm and Lévy-
Longo tree equivalences have been studied by purely operational means, provid-
ing new congruence proofs of the aforementioned tree equivalences based on
suitable relational constructions. Such results have been extended to the call-
by-value λ-calculus in [38], where the so-called eager normal form bisimilarity is
introduced. The latter is shown to coincide with the Lévy-Longo tree equivalence
induced by a suitable CPS translation [54], and thus to be a congruence relation.
An elementary proof of congruence properties of eager normal form bisimilar-
ity is given in [9], where Lassen’s relational construction [37] is extended to the
call-by-value λ-calculus, as well as its extensions with delimited and abortive con-
trol operators. Finally, following [65], eager normal form bisimilarity has been
recently characterised as the equivalence induced by a suitable encoding of the
(call-by-value) λ-calculus in the π-calculus [21].

Concerning effectful extensions of normal form bisimilarity, our work seems
to be rather new. In fact, normal form bisimilarity has been studied for deter-
ministic extensions of the λ-calculus with specific non-algebraic effects, notably
control operators [9], as well as control and state [68] (where full abstraction of
the obtained notion of normal form bisimilarity is proved). The only extension
of normal form bisimilarity to an algebraic effect the authors are aware of, is
given in [39], where normal form bisimilarity is studied for a nondeterministic
call-by-name λ-calculus. However, we should mention that contrary to normal
form bisimilarity, both nondeterministic [20] and probabilistic [41] extensions of
Böhm tree equivalence have been investigated (although none of them employ,
to the best of the authors’ knowledge, coinductive techniques).

288 U. Dal Lago and F. Gavazzo

8 Conclusion

This paper shows that effectful normal form bisimulation is indeed a powerful
methodology for program equivalence. Interestingly, the proof of congruence for
normal form bisimilarity can be given just once, without the necessity of redoing
it for every distinct notion of algebraic effect considered. This relies on the fact
that the underlying monad and relator are Σ-continuous, something which has
already been proved for many distinct notions of effects [15].

Topics for further work are plentiful. First of all, a natural question is whether
the obtained notion of bisimilarity coincides with contextual equivalence. This
is known not to hold in the deterministic case [37,38], but to hold in presence of
control and state [68], which offer the environment the necessary discriminating
power. Is there any (sufficient) condition on effects guaranteeing full abstraction
of normal form bisimilarity? This is an intriguing question we are currently
investigating. In fact, contrary to applicative bisimilarity (which is known to
be unsound in presence of non-algebraic effects [33], such as local states), the
syntactic nature of normal form bisimilarity seems to be well-suited for languages
combining both algebraic and non-algebraic effects.

Another interesting topic for future research, is investigating whether normal
form bisimilarity can be extended to languages having both algebraic operations
and effect handlers [7,59].

References

1. Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in
Functional Programming, pp. 65–117. Addison Wesley, Boston (1990)

2. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, pp. 1–168. Clarendon Press (1994)

3. Abramsky, S., Ong, C.L.: Full abstraction in the lazy lambda calculus. Inf. Comput.
105(2), 159–267 (1993)

4. Appel, A., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (2001)

5. Barendregt, H.: The lambda calculus: its syntax and semantics. In: Studies in Logic
and the Foundations of Mathematics. North-Holland (1984)

6. Barr, M.: Relational algebras. Lect. Notes Math. 137, 39–55 (1970)
7. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.

Algebr. Meth. Program. 84(1), 108–123 (2015)
8. Benton, N., Kennedy, A., Beringer, L., Hofmann, M.: Relational semantics for

effect-based program transformations: higher-order store. In: Proceedings of PPDP
2009, pp. 301–312 (2009)

9. Biernacki, D., Lenglet, S., Polesiuk, P.: Proving soundness of extensional normal-
form bisimilarities. Electr. Notes Theor. Comput. Sci. 336, 41–56 (2018)

10. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46678-0 18

11. Böhm, C.: Alcune proprietà delle forme βη-normali del λk-calcolo. Pubblicazioni
dell’Istituto per le Applicazioni del Calcolo 696 (1968)

https://doi.org/10.1007/978-3-662-46678-0_18

Effectful Normal Form Bisimulation 289

12. Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Graduate Texts in
Mathematics. Springer, New York (1981)

13. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-Calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 12

14. Culpepper, R., Cobb, A.: Contextual equivalence for probabilistic programs with
continuous random variables and scoring. In: Yang, H. (ed.) ESOP 2017. LNCS,
vol. 10201, pp. 368–392. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54434-1 14

15. Dal Lago, U., Gavazzo, F., Levy, P.: Effectful applicative bisimilarity: monads,
relators, and Howe’s method. In: Proceedings of LICS 2017, pp. 1–12 (2017)

16. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: Proceedings of POPL 2014, pp. 297–
308 (2014)

17. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO - Theor. Inf. Appl. 46(3), 413–450 (2012)

18. Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. Comput. Logic
3(3), 359–382 (2002)

19. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (1990)

20. De Liguoro, U., Piperno, A.: Non deterministic extensions of untyped lambda-
calculus. Inf. Comput. 122(2), 149–177 (1995)

21. Durier, A., Hirschkoff, D., Sangiorgi, D.: Eager functions as processes. In: Proceed-
ings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, pp. 364–373 (2018)

22. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992)

23. Gavazzo, F.: Quantitative behavioural reasoning for higher-order effectful pro-
grams: applicative distances. In: Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford, UK, 09–12 July 2018,
pp. 452–461 (2018)

24. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-
tics and continuous algebras. J. ACM 24(1), 68–95 (1977)

25. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types.
Math. Struct. Comput. Sci. 18(6), 1169–1217 (2008)

26. Hofmann, D., Seal, G., Tholen, W. (eds.): Monoidal Topology. A Categorical App-
roach to Order, Metric, and Topology. No. 153 in Encyclopedia of Mathematics
and its Applications. Cambridge University Press (2014)

27. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1–2),
71–108 (2004)

28. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006)

29. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electr. Notes Theor. Comput. Sci. 172, 437–458
(2007)

30. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for alge-
braic effects. In: Proceedings of LICS 2010, pp. 209–218. IEEE Computer Society
(2010)

31. Jones, C.: Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh,
UK (1990)

https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1007/978-3-662-54434-1_14

290 U. Dal Lago and F. Gavazzo

32. Katsumata, S., Sato, T.: Preorders on monads and coalgebraic simulations.
In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 145–160. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 10

33. Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimula-
tion. Electr. Notes Theor. Comput. Sci. 276, 215–235 (2011)

34. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: Proceedings
of POPL 1989, pp. 344–352 (1989)

35. Lassen, S.: Relational reasoning about contexts. In: Gordon, A.D., Pitts, A.M.
(eds.) Higher Order Operational Techniques in Semantics, pp. 91–136 (1998)

36. Lassen, S.: Relational reasoning about functions and nondeterminism. Ph.D. thesis,
Department of Computer Science, University of Aarhus, May 1998

37. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimula-
tion up to context. Electr. Notes Theor. Comput. Sci. 20, 346–374 (1999)

38. Lassen, S.B.: Eager normal form bisimulation. In: Proceedings of LICS 2005, pp.
345–354 (2005)

39. Lassen, S.B.: Normal form simulation for McCarthy’s Amb. Electr. Notes Theor.
Comput. Sci. 155, 445–465 (2006)

40. Lawvere, W.F.: Functorial semantics of algebraic theories. Ph.D. thesis (2004)
41. Leventis, T.: Probabilistic Böhm trees and probabilistic separation. In: Proceedings

of LICS (2018)
42. Levy, J.-J.: An algebraic interpretation of the λβK-calculus and a labelled λ-

calculus. In: Böhm, C. (ed.) λ-Calculus and Computer Science Theory. LNCS, vol.
37, pp. 147–165. Springer, Heidelberg (1975). https://doi.org/10.1007/BFb0029523

43. Levy, P.B.: Similarity quotients as final coalgebras. In: Hofmann, M. (ed.) FoSSaCS
2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2 3

44. Levy, P., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Inf. Comput. 185(2), 182–210 (2003)

45. Longo, G.: Set-theoretical models of lambda calculus: theories, expansions, isomor-
phisms. Ann. Pure Appl. Logic 24, 153–188 (1983)

46. Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer,
New York (1971). https://doi.org/10.1007/978-1-4612-9839-7

47. Mason, I.A., Talcott, C.L.: Equivalence in functional languages with effects. J.
Funct. Program. 1(3), 287–327 (1991)

48. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992)

49. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of LICS
1989, pp. 14–23. IEEE Computer Society (1989)

50. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
51. Morris, J.: Lambda calculus models of programming languages. Ph.D. thesis, MIT

(1969)
52. Ong, C.L.: Non-determinism in a functional setting. In: Proceedings of LICS 1993,

pp. 275–286. IEEE Computer Society (1993)
53. Ong, C.: The lazy lambda calculus: an investigation into the foundations of func-

tional programming. University of London, Imperial College of Science and Tech-
nology (1988)

54. Plotkin, G.: Call-by-name, call-by-value and the lambda-calculus. Theoret. Com-
put. Sci. 1(2), 125–159 (1975)

55. Plotkin, G.: Lambda-definability and logical relations. Technical report SAI-RM-4.
University of Edinburgh, School of A.I. (1973)

https://doi.org/10.1007/978-3-642-37075-5_10
https://doi.org/10.1007/BFb0029523
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-1-4612-9839-7

Effectful Normal Form Bisimulation 291

56. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45315-6 1

57. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

58. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categor-
ical Struct. 11(1), 69–94 (2003)

59. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Logical Methods Comput.
Sci. 9(4), 1–36 (2013)

60. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: San-
giorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, New York (2012)

61. Reynolds, J.: Types, abstraction and parametric polymorphism. In: IFIP Congress,
pp. 513–523 (1983)

62. Sands, D.: Improvement theory and its applications. In: Gordon, A.D., Pitts, A.M.
(eds.) Higher Order Operational Techniques in Semantics, pp. 275–306. Publica-
tions of the Newton Institute, Cambridge University Press (1998)

63. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. ACM Trans. Program. Lang. Syst. 33(1), 5:1–5:69 (2011)

64. Sangiorgi, D.: A theory of bisimulation for the φ-calculus. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 127–142. Springer, Heidelberg (1993). https://doi.
org/10.1007/3-540-57208-2 10

65. Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. Inf. Comput.
111(1), 120–153 (1994)

66. Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Proceedings of POPL 2016, pp. 595–607 (2016)

67. Simpson, A., Voorneveld, N.: Behavioural equivalence via modalities for algebraic
effects. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 300–326. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 11

68. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential
control and state. In: Proceedings of POPL 2007, pp. 161–172 (2007)

69. Strassen, V.: The existence of probability measures with given marginals. Ann.
Math. Statist. 36(2), 423–439 (1965)

70. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5(2), 285–309 (1955)

71. Thijs, A.: Simulation and fixpoint semantics. Rijksuniversiteit Groningen (1996)
72. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen

Wissenschaften. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
71050-9

73. Wadler, P.: Monads for functional programming. In: Program Design Calculi, Pro-
ceedings of the NATO Advanced Study Institute on Program Design Calculi, Mark-
toberdorf, Germany, 28 July – 9 August 1992, pp. 233–264 (1992)

https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-57208-2_10
https://doi.org/10.1007/3-540-57208-2_10
https://doi.org/10.1007/978-3-319-89884-1_11
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9

292 U. Dal Lago and F. Gavazzo

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

On the Multi-Language Construction

Samuele Buro(B) and Isabella Mastroeni(B)

Department of Computer Science, University of Verona,
Strada le Grazie 15, 37134 Verona, Italy

{samuele.buro,isabella.mastroeni}@univr.it

Abstract. Modern software is no more developed in a single program-
ming language. Instead, programmers tend to exploit cross-language
interoperability mechanisms to combine code stemming from differ-
ent languages, and thus yielding fully-fledged multi-language programs.
Whilst this approach enables developers to benefit from the strengths of
each single-language, on the other hand it complicates the semantics of
such programs. Indeed, the resulting multi-language does not meet any of
the semantics of the combined languages. In this paper, we broaden the
boundary functions-based approach à la Matthews and Findler to pro-
pose an algebraic framework that provides a constructive mathematical
notion of multi-language able to determine its semantics. The aim of this
work is to overcome the lack of a formal method (resp., model) to design
(resp., represent) a multi-language, regardless of the inherent nature of
the underlying languages. We show that our construction ensures the
uniqueness of the semantic function (i.e., the multi-language semantics
induced by the combined languages) by proving the initiality of the term
model (i.e., the abstract syntax of the multi-language) in its category.

Keywords: Multi-language design · Program semantics ·
Interoperability

1 Introduction

Two elementary arguments lie at the heart of the multi-language paradigm: the
large availability of existing programming languages, along with a very high num-
ber of already written libraries, and software that, in general, needs to interoper-
ate. Although there is consensus in claiming that there is no best programming
language regardless of the context [4,8], it is equally true that many of them are
conceived and designed in order to excel for specific tasks. Such examples are R
for statistical and graphical computation, Perl for data wrangling, Assembly and
C for low-level memory management, etc. “Interoperability between languages has
been a problem since the second programming language was invented” [8], so it is
hardly surprising that developers have focused on the design of cross-language
interoperability mechanisms, enabling programmers to combine code written in
different languages. In this sense, we speak of multi-languages.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 293–321, 2019.
https://doi.org/10.1007/978-3-030-17184-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_11

294 S. Buro and I. Mastroeni

The field of cross-language interoperability has been driven more by practical
concerns than by theoretical questions. The current scenario sees several engines
and frameworks [13,28,29,44,47] (among others) to mix programming languages
but only [30] discusses the semantic issues related to the multi-language design
from a theoretical perspective. Moreover, the existing interoperability mech-
anisms differ considerably not only from the viewpoint of the combined lan-
guages, but also in terms of the approach used to provide the interoperation.
For instance, Nashorn [47] is a JavaScript interpreter written in Java to allow
embedding JavaScript in Java applications. Such engineering design works in a
similar fashion of embedded interpreters [40,41].1 On the contrary, Java Native
Interface (JNI) framework [29] enables the interoperation of Java with native
code written in C, C++, or Assembly through external procedure calls between
languages, mirroring the widespread mechanism of foreign function interfaces
(FFI) [14], whereas theoretical papers follow the more elegant approach of bound-
ary functions (or, for short, boundaries) in the style of Matthews and Findler’s
multi-language semantics [30]. Simply put, boundaries act as a gate between
single-languages. When a value needs to flow on the other language, they per-
form a conversion so that it complies to the other language specifications.

The major issue concerning this new paradigm is that multi-language pro-
grams do not obey any of the semantics of the combined languages. As a con-
sequence, any method of formal reasoning (such as static program analysis or
verification) is neutralized by the absence of a semantics specification. In this
paper, we propose an algebraic framework based on the mechanism of boundary
functions [30] that unambiguously yields the syntax and the semantics of the
multi-language regardless the combined languages.

The Lack of a Multi-Language Framework. The notion of multi-language is
employed naively in several works in literature [2,14,21,30,35–37,49] to indi-
cate the embedding of two programming languages into a new one, with its own
syntax and semantics.

The most recurring way to design a multi-language is to exploit a mechanism
(like embedded interpreters, FFI, or boundary functions) able to regulate both
control flow and value conversion between the underlying languages [30], thus
adequate to provide cross-language interoperability [8]. The full construction is
usually carried out manually by language designers, which define the multi-
language by reusing the formal specifications of the single-languages [2,30,36,
37] and by applying the selected mechanism for achieving the interoperation.
Inevitably, therefore, all these resulting multi-languages notably differ one from
another.

These different ways to achieve a cross-language interoperation are all
attributable to the lack of a formal description of multi-language that does not
provide neither a method for language designers to conceive new multi-languages
nor any guarantee on the correctness of such constructions.

1 Other popular engines that obey the embedded interpreters paradigm are
Jython [28], JScript [44], and Rhino [13].

On the Multi-Language Construction 295

The Proposed Framework: Roadmap and Contributions. Matthews and Find-
ler [30] propose boundary functions as a way to regulate the flow of values
between languages. They show their approach on different variants of the same
multi-language obtained by mixing ML [33] and Scheme [9], representing two
“syntactically sugared” versions of the simply-typed and untyped lambda cal-
culi, respectively.

Rather than showing the embedding of two fixed languages, we extend their
approach to the much broader class of order-sorted algebras [19] with the aim
of providing a framework that works regardless of the inherent nature of the
combined languages. There are a number of reasons to choose order-sorted alge-
bras as the underlying framework for generalizing the multi-language construc-
tion. From the first formulation of initial algebra semantics [17], the algebraic
approach to program semantics [16] has become a cornerstone in the theory of
programming languages [27]. Order-sorted algebras provide a mathematical tool
for representing formal systems as algebraic structures through a systematic
use of the notion of sort and subsort to model different forms of polymor-
phism [18,19], a key aspect when dealing with multi-languages sharing oper-
ators among the single-languages. They were initially proposed to ensure a
rigorous model-theoretic semantics for error handling, multiple inheritance,
retracts, selectors for multiple constructors, polymorphism, and overloading. In
the years, several uses [3,6,11,24,25,38,39,52] and different variants [38,43,45,
51] have been proposed for order-sorted algebras, making them a solid start-
ing point for the development of a new framework. In particular, results on
rewriting logic [32] extend easily to the order-sorted case [31], thus facilitat-
ing a future extension of this paper towards the operational semantics world.
Improvements of the order-sorted algebra framework have also been proposed
to model languages together with their type systems [10] and to extend order-
sorted specification with high-order functions [38] (see [48] and [18] for detailed
surveys).

In this paper, we propose three different multi-language constructions accord-
ing to the semantic properties of boundary functions. The first one models a gen-
eral notion of multi-language that do not require any constraints on boundaries
(Sect. 3). We argue that when such generality is superfluous, we can achieve a
neater approach where boundary functions do not need to be annotated with
sorts. Indeed, we show that when the cross-language conversion of a term does
not depend on the sort at which the term is considered (i.e., when boundaries
are subsort polymorphic) the framework is powerful enough to apply the correct
conversion (Sect. 4.1). This last construction is an improvement of the original
notion of boundaries in [30]. From a practical point of view, it allows program-
mers to avoid to explicitly deal with sorts when writing code, a non-trivial task
that could introduce type cast bugs in real world languages. Finally, we provide
a very specific notion of multi-language where no extra operator is added to the
syntax (Sect. 4.2). This approach is particularly useful to extend a language in a
modular fashion and ensuring the backward compatibility with “old” programs.
For each one of these variants we prove an initiality theorem, which in turn

296 S. Buro and I. Mastroeni

ensures the uniqueness of the multi-language semantics and thereby legitimat-
ing the proposed framework. Moreover, we show that the framework guarantees a
fundamental closure property on the construction: The resulting multi-language
admits an order-sorted representation, i.e., it falls within the same formal model
of the combined languages. Finally, we model the multi-language designed in [30]
in order to show an instantiation of the framework (Sect. 6).

2 Background

All the algebraic background of the paper is firstly stated in [15,17,19]. We
briefly introduce here the main definitions and results, and we illustrate them
on a simple running example.

Given a set of sorts S, an S-sorted set A is a family of sets indexed by S, i.e.,
A = {As | s ∈ S }. Similarly, an S-sorted function f : A → B is a family of
functions f = { fs : As → Bs | s ∈ S }. We stick to the convention of using s and
w as metavariables for sorts in S and S∗, respectively, and we use the blackboard
bold typeface to indicate a specific sort in S. In addition, if A is an S-sorted set
and w = s1 . . . sn ∈ S+, we denote by Aw the cartesian product As1 ×· · ·×Asn

.
Likewise, if f is an S-sorted function and ai ∈ Asi

for i = 1, . . . , n, then the
function fw : Aw → Bw is such that fw(a1, . . . , an) = (fs1(a1), . . . , fsn

(an)).
Given P ⊆ S, the restriction of an S-sorted function f to P is denoted by
f |P and it is the P -sorted function f |P = { fs | s ∈ P }. Finally, if g : A → B
is a function, we still use the symbol g to denote the direct image map of g
(also called the additive lift of g), i.e., the function g : ℘(A) → ℘(B) such that
g(X) = { g(a) ∈ B | a ∈ X }. Analogously, if ≤ is a binary relation on a set A
(with elements a ∈ A), we use the same relation symbol to denote its pointwise
extension, i.e., we write a1 . . . an ≤ a′

1 . . . a′
n for a1 ≤ a′

1, . . . , an ≤ a′
n.

The basic notions underpinning the order-sorted algebra framework are the def-
initions of signature, that models symbols forming terms of the language, and
algebra, that provides an algebraic meaning to symbols.

Definition 1 (Order-Sorted Signature). An order-sorted signature is a
triple 〈S,≤, Σ〉, where S is a set of sorts, ≤ is a binary relation on S, and
Σ is an S∗ ×S-sorted set Σ = {Σw,s | w ∈ S∗ ∧ s ∈ S }, satisfying the following
conditions:

(1os) 〈S,≤〉 is a poset; and
(2os) σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 imply s1 ≤ s2.

If σ ∈ Σw,s (or, σ : w → s and σ : s when w = ε, as shorthands), we call σ an
operator (symbol) or function symbol, w the arity, s the sort, and (w, s) the rank
of σ; if w = ε, we say that σ is a constant (symbol). We name ≤ the subsort
relation and Σ a signature when 〈S,≤〉 is clear from the context. We abuse
notation and write σ ∈ Σ when σ ∈

⋃
w,s Σw,s.

On the Multi-Language Construction 297

Definition 2 (Order-Sorted Algebra). An order-sorted 〈S,≤, Σ〉-algebra A
over an order-sorted signature 〈S,≤, Σ〉 is an S-sorted set A of interpretation
domains (or, carrier sets or semantic domains) A = {As | s ∈ S }, together with
interpretation functions �σ�

w,s
A : Aw → As (or, if w = ε, �σ�

ε,s
A ∈ As)2 for each

σ ∈ Σw,s, such that:

(1oa) s ≤ s′ implies As ⊆ As′ ; and
(2oa) σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 imply that �σ�

w1,s1
A (a) = �σ�

w2,s2
A (a)

for each a ∈ Aw1 .

An important property of signatures, related to polymorphism, is regularity. Its
relevance lies in the possibility of linking each term to a unique least sort (see
Proposition 2.10 in [19]).

Definition 3 (Regularity of an Order-Sorted Signature). An order-sorted
signature 〈S,≤, Σ〉 is regular if for each σ ∈ Σw̃,s̃ and for each lower bound
w0 ≤ w̃ the set { (w, s) | σ ∈ Σw,s ∧ w0 ≤ w } has minimum. This minimum is
called least rank of σ with respect to w0.

The freely generated algebra TΣ over a given signature S = 〈S,≤, Σ〉 provides
the notion of term with respect to S.

Definition 4 (Order-Sorted Term Algebra). Let 〈S,≤, Σ〉 be an order-
sorted signature. The order-sorted term 〈S,≤, Σ〉-algebra TΣ is an order-sorted
algebra such that:

– The S-sorted set TΣ = {TΣ,s | s ∈ S } is inductively defined as the least family
satisfying:

(1ot) Σε,s ⊆ TΣ,s;
(2ot) s ≤ s′ implies TΣ,s ⊆ TΣ,s′ ; and
(3ot) σ ∈ Σw,s, w = s1 . . . sn ∈ S+, and ti ∈ TΣ,si

for i = 1, . . . , n imply
σ(t1 . . . tn) ∈ TΣ,s.

– For each σ ∈ Σw,s the interpretation function �σ�
w,s
TΣ

: TΣ,w → TΣ,s is defined
as

(4ot) �σ�
ε,s
TΣ

= σ if σ ∈ Σε,s; and
(5ot) �σ�

w,s
TΣ

(t1, . . . , tn) = σ(t1 . . . tn) if σ ∈ Σw,s, w = s1 . . . sn ∈ S+, and
ti ∈ TΣ,si

for i = 1, . . . , n.

Homomorphisms between algebras capture the compositionality nature of seman-
tics: The meaning of a term is determined by the meanings of its constituents.
They are defined as order-sorted functions that preserve the interpretation of
operators.

2 To be pedantic, we should introduce the one-point domain Aε = { • } and then
define �σ�ε,s

A (•) ∈ As.

298 S. Buro and I. Mastroeni

Fig. 1. The BNF grammars of the running example languages.

Fig. 2. The two formal semantics of the running example languages.

Definition 5 (Order-Sorted Homomorphism). Let A and B be 〈S,≤, Σ〉-
algebras. An order-sorted 〈S,≤, Σ〉-homomorphism from A to B, denoted by h :
A → B, is an S-sorted function h : A → B = {hs : As → Bs | s ∈ S } such that:

(1oh) hs(�σ�
w,s
A (a)) = �σ�

w,s
B (hw(a)) for each σ ∈ Σw,s and a ∈ Aw; and

(2oh) s ≤ s′ implies hs(a) = hs′(a) for each a ∈ As.

The class of all the order-sorted 〈S,≤, Σ〉-algebras and the class of all order-
sorted 〈S,≤, Σ〉-homomorphisms form a category denote by OSAlg(S,≤, Σ).
Furthermore, the homomorphism definition determines the property of the term
algebra TΣ of being an initial object in its category whenever the signature is
regular. Since initiality is preserved by isomorphisms, it allows to identify TΣ

with the abstract syntax of the language. If TΣ is initial, the homomorphism
leaving TΣ and going to an algebra A is called the semantic function (with
respect to A).

Example. Let L1 and L2 be two formal languages (see Fig. 1). The former is a
language to construct simple mathematical expressions: n ∈ N is the metavari-
able for natural numbers, while e inductively generates all the possible additions
(Fig. 1a). The latter is a language to build strings over a finite alphabet of sym-
bols A = { a, b, . . . , z }: a ∈ A is the metavariable for atoms (or, characters),
whereas s concatenates them into strings (Fig. 1b). A term in L1 and L2 denotes
an element in the sets N and A∗, accordingly to equations in Fig. 2a and b,
respectively.

The syntax of the language L1 can be modeled by an order-sorted signature
S1 = 〈S1,≤1, Σ1〉 defined as follows: S1 = { e,n }, a set with sorts e (stands for
expressions) and n (stands for natural numbers); ≤1 is the reflexive relation on
S1 plus n ≤1 e (natural numbers are expressions); and the operators in Σ1 are
0, 1, 2, . . . : n and + : e e → e. Similarly, the signature S2 = 〈S2,≤2, Σ2〉 models
the syntax of the language L2: the set S2 = { s, a } carries the sort for strings

On the Multi-Language Construction 299

s and the sort for atomic symbols (or, characters) a; the subsort relation ≤2 is
the reflexive relation on S2 plus a ≤2 s (characters are one-symbol strings); and
the operator symbols in Σ2 are a, . . . , z : a, - : s, and + : s s → s. Semantics of L1

and L2 can be embodied by algebras A1 and A2 over the signatures S1 and S2,
respectively. We set the interpretation domains of A1 to A1

n = A1
e = N and those

of A2 to A2
a = A ⊆ A∗ = A2

s . Moreover, we define the interpretation functions
as follows (the juxtaposition of two or more strings denotes their concatenation,
and we use â as metavariable ranging over A∗):

{
�n�

ε,n
A1

= n

�+�e e,eA1
(n1, n2) = n1 + n2

⎧
⎪⎨

⎪⎩

�-�ε,s
A2

= ε

�a�
ε,a
A2

= a

�+�s s,sA2
(â1, â2) = â1â2

Since S1 and S2 are regular, then A1 and A2 induce the semantic functions
h1 : TΣ1 → A1 and h2 : TΣ2 → A2, providing semantics to the languages.

3 Combining Order-Sorted Theories

The first step towards a multi-language specification is the choice of which terms
of one language can be employed in the others [30,35,36]. For instance, a multi-
language requirement could demand to use ML expressions in place of Scheme
expressions and, possibly, but not necessarily, vice versa (such a multi-language is
designed in [30]). A multi-language signature is an amenable formalism to specify
the compatibility relation between syntactic categories across two languages.

Definition 6 (Multi-Language Signature). A multi-language signature is a
triple 〈S1,S2,≤〉, where S1 = 〈S1,≤1, Σ1〉 and S2 = 〈S2,≤2, Σ2〉 are order-
sorted signatures, and ≤ is a binary relation on S = S1 ∪ S2, such that satisfies
the following condition:

(1s) s, s′ ∈ Si implies s ≤ s′ if and only if s ≤i s′, for i = 1, 2.

To make the notation lighter, we introduce the following binary relations on S:
s�s′ if s ≤ s′ but neither s ≤1 s′ nor s ≤2 s′, and s � s′ if s ≤ s′ but not s�s′.

In the following, we always assume that the sets of sorts S1 and S2 of the order-
sorted signatures S1 and S2 are disjoint.3 Condition (1s) requires the multi-
language subsort relation ≤ to preserve the original subsort relations ≤1 and ≤2

(i.e., ≤ ∩ Si × Si = ≤i). The join relation � provides a compatibility relation
between sorts4 in S1 and S2. More precisely, Si � s � s′ ∈ Sj suggests that we
want to use terms in TΣi,s in place of terms in TΣj ,s′ , whereas the intra-language

3 This hypothesis is non-restrictive: We can always perform a renaming of the sorts.
4 Sorts may be understood as syntactic categories, in the sense of formal grammars.

Given a context-free grammar G, it is possible to define a many-sorted signature ΣG

where non-terminals become sorts and such that each term t in the term algebra
TΣG is isomorphic to the parse tree of t with respect to G (see [15] for details).

300 S. Buro and I. Mastroeni

subsort relation � shifts the standard notion of subsort from the order-sorted to
the multi-language world. In a nutshell, the relation ≤ = � ∪ � can only join
(through �) the underlying languages without introducing distortions (indeed,
� = ≤1 ∪ ≤2).

The role of an algebra is to provide an interpretation domain for each sort,
as well as the meaning of every operator symbol in a given signature. When
moving towards the multi-language context, the join relation � may add subsort
constraints between sorts belonging to different signatures. Consequently, if s�s′,
a multi-language algebra has to specify how values of sort s may be interpreted
as values of sort s′. These specifications are called boundary functions [30] and
provide an algebraic meaning to the subsort constraints added by �. Henceforth,
we define S = S1 ∪ S2, Σ = Σ1 ∪ Σ2, and, given (w, s) ∈ S∗

i × Si, we denote by
Σi

w,s the (w, s)-sorted component in Σi.

Definition 7 (Multi-Language Algebra). Let 〈S1,S2,≤〉 be a multi-
language signature. A multi-language 〈S1,S2,≤〉-algebra A is an S-sorted
set A of interpretation domains (or, carrier sets or semantic domains) A =
{As | s ∈ S }, together with interpretation functions �σ�

w,s
A : Aw → As for

each σ ∈ Σw,s, and with a �-sorted set α of boundary functions α =
{αs,s′ : As → As′ | s � s′ }, such that the following constraint holds:

(1a) the projected algebra Ai, where i = 1, 2, specified by the carrier set Ai =
{Ai

s = As | s ∈ Si } and interpretation functions �σ�
w,s
Ai

= �σ�
w,s
A for each

σ ∈ Σi
w,s, must be an order-sorted Si-algebra.

If M is an algebra, we adopt the convention of denoting by M (standard math
font) its carrier set and by μ (Greek math font) its boundary functions whenever
possible. Condition (1a) is the semantic counterpart of condition (1s): It requires
the multi-language to carry (i.e., preserve) the underlying languages order-sorted
algebras, whereas the boundary functions model how values can flow between
languages.

Given two multi-language 〈S1,S2,≤〉-algebras A and B we can define mor-
phisms between them that preserve the sorted structure of the underlying pro-
jected algebras.

Definition 8 (Multi-Language Homomorphism). Let A and B be multi-
language 〈S1,S2,≤〉-algebras with sets of boundary functions α and β, respec-
tively. A multi-language 〈S1,S2,≤〉-homomorphism h : A → B is an S-sorted
function h : A → B such that:

(1h) the restriction h|Si
is an order-sorted Si-homomorphism h|Si

: Ai → Bi,
for i = 1, 2; and

(2h) s � s′ implies hs′ ◦ αs,s′ = βs,s′ ◦ hs.

Conditions (1h) and (2h) are easily intelligible when the domain algebra is the
abstract syntax of the language [15]: Simply put, both conditions require the
semantics of a term to be a function of the meaning of its subterms, in the sense

On the Multi-Language Construction 301

of [15,46]. In particular, the second condition demands that boundary functions
act as operators.5

The identity homomorphism on a multi-language algebra A is denoted by
idA and it is the set-theoretic identity on the carrier set A of the algebra A.
The composition of two homomorphisms f : A → B and g : B → C is defined as
the sorted function composition g ◦ f : A → C, thus idA ◦f = f = f ◦ idB and
associativity follows easily by the definition of ◦.

Proposition 1. Multi-language homomorphisms are closed under composition.

Hence, as in the many-sorted and order-sorted case [15,19], we have immediately
the category of all the multi-language algebras over a multi-language signature:

Theorem 1. Let 〈S1,S2,≤〉 be a multi-language signature. The class of all
〈S1,S2,≤〉-algebras and the class of all 〈S1,S2,≤〉-homomorphisms form a cat-
egory denoted by Alg(S1,S2,≤).

3.1 The Initial Term Model

In this section, we introduce the concepts of (multi-language) term and
(multi-language) semantics in order to show how a multi-language algebra
yields a unique interpretation for any regular (see Definition 11) multi-language
specification.

Multi-language terms should comprise all of the underlying languages terms, plus
those obtained by the merging of the two languages according to the join relation
�. In particular, we aim for a construction where subterms of sort s′ may have
been replaced by terms of sort s, whenever s�s′ (we recall that s and s′ are two
syntactic categories of different languages due to Definition 6). Nonetheless, we
must be careful not to add ambiguities during this process: A term t may belong
to both S1 and S2 term algebras but with different meanings �t�A1

and �t�A2

(assuming that A1 and A2 are algebras over S1 and S2, respectively). When t is
included in the multi-language, we lose the information to determine which one
of the two interpretations choose, thus making the (multi-language) semantics of
t ambiguous. The same problem arises whenever an operator σ belongs to both
languages with different interpretation functions. The simplest solution to avoid
such issues is to add syntactical notations to make explicit the context of the
language in which we are operating.

Definition 9 (Associated Signature). The associated signature to the multi-
language signature 〈S1,S2,≤〉 is the ordered triple 〈S,�,Π〉, where S = S1∪S2,
� = ≤1 ∪ ≤2, and

Π = {σ1 : w → s | σ : w → s ∈ Σ1 }
∪ {σ2 : w → s | σ : w → s ∈ Σ2 }
∪ { ↪→s,s′ : s → s′ | s � s′ }

5 This is essential in order to generalize the concept of syntactical boundary functions
of [30] to semantic-only functions in Sect. 4.2.

302 S. Buro and I. Mastroeni

It is trivial to prove that an associated signature is indeed an order-sorted sig-
nature, thus admitting a term algebra TΠ . All the symbols forming terms in TΠ

carry the source language information as a subscript, and all the new opera-
tors ↪→s,s′ specify when a term of sort s is used in place of a term of sort s′.
Although TΠ seems a suitable definition for multi-language terms, it is not a
multi-language algebra according to Definition 7. However, we can exploit the
construction of TΠ in order to provide a fully-fledged multi-language algebra
able to generate multi-language terms.

Definition 10 (Multi-Language Term Algebra). The multi-language term
algebra T over a multi-language signature 〈S1,S2,≤〉 with boundary functions
τ is defined as follows:

(1t) s ∈ S implies Ts = TΠ,s;
(2t) σ ∈ Σi

w,s implies �σ�
w,s
T = �σi�

w,s
TΠ

for i = 1, 2; and

(3t) s � s′ implies τs,s′ = �↪→s,s′�
s,s′

TΠ
.

Proving that T satisfies Definition 7 is easy and omitted. T and TΠ share the
same carrier sets (condition (1t)), and each single-language operator σ ∈ Σi

w,s is
interpreted as its annotated version σi in TΠ (condition (2t)). Furthermore, the
multi-language operators ↪→s,s′ no longer belong to the signature (they do not
belong neither to S1 nor to S2) but their semantics is inherited by the boundary
functions τ (condition (3t)), while their syntactic values are still in the carrier
sets of the algebra (this construction is highly technical and very similar to the
freely generated Σ(X)-algebra over a set of variables X, see [15]).

Note that this is exactly the formalization of the ad hoc multi-language
specifications in [2,30,36,37]: [2,36,37] exploit distinct colors to disambiguate
the source language of the operators, whereas [30] use different font styles for
different languages. Moreover, boundary functions in [30] conceptually match
the introduced operators ↪→s,s′ .

The last step in order to finalize the framework is to provide semantics for each
term in T . As with the order-sorted case, we need a notion of regularity for
proving the initiality of the term algebra in its category, which in turn ensures
a single eligible (initial algebra) semantics.

Definition 11 (Regularity). A multi-language signature 〈S1,S2,≤〉 is regu-
lar if its associated signature 〈S,�,Π〉 is regular.

Proposition 2. The associated signature 〈S,�,Π〉 of a multi-language signa-
ture 〈S1,S2,≤〉 is regular if and only if S1 and S2 are regular.

The last proposition enables to avoid checking the multi-language regularity
whenever the regularity of the order-sorted signatures is known.

Theorem 2 (Initiality of T). The multi-language term algebra T over a reg-
ular multi-language signature 〈S1,S2,≤〉 is initial in the category Alg(S1,
S2,≤).

On the Multi-Language Construction 303

Initiality of T is essential to assign a unique mathematical meaning to each
term, as in the order-sorted case: Given a multi-language algebra A, there is
only one way of interpreting each term t ∈ T in A (satisfying the homomorphism
conditions).

Definition 12 ((Multi-Language) Semantics). Let A be a multi-language
algebra over a regular multi-language signature 〈S1,S2,≤〉. The (multi-
language) semantics of a (multi-language) term t ∈ T induced by A is defined as

�t�A = hls(t)(t)

The last equation is well-defined since h is the unique multi-language homomor-
phism h : T → A and for each t ∈ T there exists a least sort ls(t) ∈ S such that
t ∈ TΠ,ls(t) (see Prop. 2.10 in [19]).

Example. Suppose we are interested in a multi-language over the signatures
S1 and S2 specified in the example given in the background section such that
satisfies the following properties:

– Terms denoting natural numbers can be used in place of characters a ∈ A
according to the function chr : N → A that maps the natural number n to the
character symbol a(n mod |A|) (we are assuming a total lexicographical order
a(0), a(1), . . . , a(|A|−1) on A);

– Terms denoting strings can be used in place of natural numbers n ∈ N accord-
ing to the function ord: A → N, which is the inverse of chr restricted the initial
segment on natural numbers N<|A|.

In order to achieve such a multi-language specification, we can simply provide
a join relation � on S and a boundary function αs,s′ for each extra-language
subsort relation s � s′ introduced by �. We define the join relation and the
boundary functions as follows:

e � a ∧ n � a −→ αe,a(n) = αn,a(n) = chr(n)

s � n ∧ a � n −→

⎧
⎪⎨

⎪⎩

αa,n(a) = ord(a)

αs,n(a0 . . . an) =
n∑

k=0

αa,n(ak) · 10k

The multi-language 〈S1,S2,≤〉-algebra A can now be obtained by joining the
projected algebras A1 and A2 with the set of boundary functions α. The term
algebra T over 〈S1,S2,≤〉 provides all the multi-language terms, and Theorem 2
ensures a unique denotation of each t ∈ T in A. For instance, the term

t = ↪→s,n(+2(f2,

t2︷ ︸︸ ︷

+2(o2, ↪→e,a(

t4︷ ︸︸ ︷
+1(101, 51))

︸ ︷︷ ︸
t3

))

︸ ︷︷ ︸
t1

) (1)

304 S. Buro and I. Mastroeni

is syntactically equivalent to the following but with a less pedantic notation,
where language subscripts are replaced by colors (red for one, and blue for two)
and prefix notation is replaced by infix notation

↪→s,n(f + o + ↪→e,a(10 + 5))

and it denotes the natural numbers 765:

�t4�A = hls(t4)(t4) = he(t4) = �+�e e,eA (�10�A, �5�A) = �+�e e,eA (10, 5) = 15
�t3�A = hls(t3)(t3) = ha(t3) = �↪→e,a�

e,a
A (�t4�A) = �↪→e,a�

e,a
A (15) = o

�t2�A = hls(t2)(t2) = hs(t2) = �+�s s,sA (�o�A, �t3�A) = �+�s s,sA (o, o) = oo

�t1�A = hls(t1)(t1) = hs(t1) = �+�s s,sA (�f�A, �t2�A) = �+�s s,sA (f, oo) = foo

�t�A = hls(t)(t) = hn(t) = �↪→s,n�
s,n
A (�t1�A) = �↪→s,n�

s,n
A (foo) = 765

(see the proof of Prop. 2.10 in [19] to check how to compute the least sort of a
term).

4 Refining the Construction

The construction in Sect. 3 does not set any constraint on boundary functions,
thus giving a great deal of flexibility to language designers. For instance, they
can provide boundary functions that act differently with respect to the intra-
language subsort relation �: According to the previous example, it would have
been possible to define αn,a = αe,a to employ different value conversion specifica-
tions for terms in Tn, based on whether they are used as natural numbers (n) or
as expressions (e). However, when this amount of flexibility is not needed, we can
refine the previous construction by reducing the amount of syntax introduced
by the associated signature. In this section we examine

– the case where boundary functions satisfy the monotonicity conditions of
order-sorted algebra operators (Sect. 4.1); and

– the case where boundary functions commutes with the semantics of operator
symbols (Sect. 4.2).

In both cases, we prove that the introduced refinements do not affect the initiality
of the term algebra, thereby providing unambiguous semantics to the multi-
language.

4.1 Subsort Polymorphic Boundary Functions

In Sect. 3, the join relation constraints s � s′ are turned in syntactical operators
↪→s,s′ in the associated signature 〈S,�,Π〉. We now show how to handle all
the syntactical overhead introduced by � with a single polymorphic operator
↪→ whenever the boundary functions satisfy the monotonicity conditions of the
order-sorted algebras [19]. Such conditions require a subsort relation s1 ≤ s2
between the sorts of a polymorphic operator σ ∈ Σw1,s1 ∩Σw2,s2 , assuming that

On the Multi-Language Construction 305

w1 ≤ w2. In our case, σ =↪→, and thus we extend Definition 6 with the following
ad hoc constraint (2s∗):

Definition 6∗ (SP Multi-Language Signature). A subsort polymorphic
(SP) multi-language signature is a multi-language signature 〈S1,S2,≤〉 such
that

(2s∗) s1 � s′
1, s2 � s′

2, and s1 � s2 imply s′
1 � s′

2.

Furthermore, order-sorted algebras demand consistency of the interpretation
functions of a subsort polymorphic operator on the smaller domain, which
results in the following condition (2a∗) on boundary functions (that extends
Definition 7):

Definition 7∗ (SP Multi-Language Algebra). Let 〈S1,S2,≤〉 be a SP multi-
language signature. A subsort polymorphic (SP) multi-language 〈S1,S2,≤〉-
algebra is a multi-language 〈S1,S2,≤〉-algebra A such that

(2a∗) s1 � s′
1, s2 � s′

2, and s1 � s2 imply that αs1,s′
1
(a) = αs2,s′

2
(a) for each

a ∈ As1 .

The notion of homomorphism in this new context does not change (an homo-
morphism between two SP algebras is still an S-sorted function decomposable
in two order-sorted homomorphisms that commutes with boundaries), whereas
the associated signature to an SP multi-language signature merely differs from
Definition 9 for having a unique polymorphic operator ↪→ instead of a family of
parametrized symbols { ↪→s,s′ : s → s′ | s � s′ }.

Definition 9∗ (SP Associated Signature). The subsort polymorphic (SP)
associated signature to the SP multi-language signature 〈S1,S2,≤〉 is the
ordered triple 〈S,�,Π〉, where S = S1 ∪ S2, � = ≤1 ∪ ≤2, and

Π = {σ1 : w → s | σ : w → s ∈ Σ1 }
∪ {σ2 : w → s | σ : w → s ∈ Σ2 }
∪ { ↪→ : s → s′ | s � s′ }

Since the associated signature is the basis for the term algebra, we need to modify
the condition (3t) in Definition 9:

Definition 10∗ (SP Multi-Language Term Algebra). The subsort
polymorphic (SP) multi-language term algebra T over a SP multi-language sig-
nature 〈S1,S2,≤〉 with boundary functions τ is defined as follows:

(1t) s ∈ S implies Ts = TΠ,s;
(2t) σ ∈ Σi

w,s implies �σ�
w,s
T = �σi�

w,s
TΠ

for i = 1, 2; and
(3t∗) s � s′ implies τs,s′ = �↪→�

s,s′

TΠ
.

Signature regularity is still defined as in Definition 11 and Proposition 2 still
holds for the extended version developed in this section. As a result, the
SP multi-language term 〈S1,S2,≤〉-algebra T is still initial in the category
Alg∗(S1,S2,≤) of SP multi-language algebras over the SP multi-language sig-
nature 〈S1,S2,≤〉.

306 S. Buro and I. Mastroeni

Theorem 3. Let 〈S1,S2,≤〉 be a SP multi-language signature. The class of all
SP 〈S1,S2,≤〉-algebras and the class of all 〈S1,S2,≤〉-homomorphisms form a
category denoted by Alg∗(S1,S2,≤).

Theorem 4 (Initiality of T). The SP multi-language term algebra T over
a regular SP multi-language signature 〈S1,S2,≤〉 is initial in the category
Alg∗(S1,S2,≤).

The semantics of a term t induced by a SP multi-language algebra A is defined
in the same way of Definition 12, thanks to the initiality result: �t�A = hls(t)(t).
The main advantage of dealing with SP multi-language terms is that the frame-
work is able to determine the correct interpretation function of the operator
↪→, making the subscript notation developed in the previous section superflu-
ous. This also means that programmers are exempted from explicitly annotating
multi-language programs with sorts, a non-trivial task in the general case that
could introduce type cast bugs.

Example. The boundary functions of the previous example are subsort poly-
morphic: αa,n(a) = ord(a) = αs,n(a) for each character a ∈ A, and αn,a = αe,a by
definition. Thus, the equivalent of the term t (see Eq. 1) in the SP term algebra is

ṫ = ↪→(+2(f2, +2(o2, ↪→(+1(101, 51))))) (2)

or, according to the previous notation,

↪→(f + o + ↪→(10 + 5))

and denoting the same natural number 765.

4.2 Semantic-Only Boundary Functions

In the previous section, we have shown how to handle the flow of values across
different languages with a single polymorphic operator. Now, we present a new
multi-language construction where neither extra operators are added to the asso-
ciated signature, nor single-language operators have to be annotated with sub-
scripts indicating their original language. Thus, the resulting multi-language
syntax comprises only symbols in Σ1 ∪ Σ2. Such a construction is achieved by:

– Imposing commutativity conditions on algebras, making homomorphisms
transparently inherit the semantics of boundary functions. The framework
is therefore able to apply the correct value conversion function whenever is
necessary, without the need for an explicit syntactical operator ↪→.

– Requiring a new form of cross-language polymorphism able to cope with
shared operators among languages. The initiality of term algebras is pre-
served by modifying the notion of signature in a way that every operator
admits a least sort.

On the Multi-Language Construction 307

The variant of the framework presented in this section is particularly useful
when designing the extension of a language in a modular fashion. For instance,
if the signature S1 models the syntax of a simple functional language (for an
example, see [15, p. 77]) without an explicit encoding for string values, and S2

is a language for manipulating strings (similar to the language L2 of the running
example of this paper), we can exploit the construction presented below in order
to embed S2 into S1.

Signature. The main issue that can arise at this stage of multi-language signa-
ture is the presence of shared operators in Σ1 and Σ2. Contrary to the previous
cases where such ambiguity is solved by adding subscripts in the associated sig-
nature, the trade off here is requiring ad hoc or subsort polymorphism across
signatures.

Definition 6� (SO Multi-Language Signature). A semantic-only (SO)
multi-language signature is a multi-language signature 〈S1,S2,≤〉 such that

(2s�) 〈S,≤〉 is a poset ; and
(3s�) σ ∈ Σi

w1,s1
∩Σj

w2,s2
and w1 �w2 imply s1 �s2 with i, j = 1, 2 and i = j.

Condition (2s�) forces the subsort relation to be directed, avoiding sym-
metricity of syntactic categories (this is typical when modeling language exten-
sions), while condition (3s�) shifts the monotonicity condition of order-sorted
signature to syntactically equal operators in Σ1 ∩ Σ2.
The associated signature is defined without adding extra symbols in the signa-
ture, i.e., Π = Σ1 ∪ Σ2, and deliberately confounding the relations � and �
in ≤:

Definition 9� (SO Associated Signature). The SO associated signature to
the SO multi-language signature 〈S1,S2,≤〉 is the ordered triple 〈S,≤,Π〉, where
S = S1 ∪ S2, ≤ = � ∪ �, and Π = Σ1 ∪ Σ2.

The embedding of � in ≤ (i.e., � ⊆ ≤) in the associated signature enables the
order-sorted term algebra construction to automatically build multi-language
terms, without the need for an explicit operator ↪→ that acts as a bridge between
syntactic categories. It is easy to see that the term algebra over the associated
signature is precisely the symbols-free version of multi-language described at the
beginning.

Unfortunately, multi-language regularity does not follow anymore from
single-languages regularity and vice versa (see Figs. 3 and 4)6. More formally,
Proposition 2 does not hold in this new context:
6 An (horizontal) arrow from an arity symbol w to a sort s labelled with an operator

symbol σ is an alternative shorthand for σ : w → s. A (vertical) single line between
two sorts s below s′ labelled with a binary relation ≤ means that s ≤ s′ (if the
binary relation is the join relation � the line is doubled). A dotted rectangle around
operators is a graphical representation of the set of ranks (w, s) that must have a
minimum element (red arrows) in order for the signature to be regular.

308 S. Buro and I. Mastroeni

Fig. 3. A non-regular multi-language signature comprising two regular order-sorted
signatures.

Fig. 4. A regular multi-language signature comprising a non-regular order-sorted
signature.

– Suppose S1 = { w̃, s̃ }, S2 = {w0,w, s }, ≤1 and ≤2 to be the reflexive
relations on S1 and S2, respectively, plus w0 ≤2 w, and σ ∈ Σ1

w̃,̃s ∩ Σ2
w,s.

If the join relation � is defined as w0 � w̃ and s � s̃, the resulting
associated signature is no longer regular, although S1 and S2 are regular
(Fig. 3a). In Fig. 3b, it is easy to see that σ ∈ Σw̃,s̃ and w0 ≤ w, but the set
{ (w, s) | σ ∈ Σw,s ∧ w0 ≤ w } = { (w̃, s̃), (w, s) } does not have a least element
w.r.t. w0.

– On the other hand, let S1 = { w̃,w0,w1, s̃ }, S2 = {w2, s2 }, ≤1 and ≤2

be the reflexive relations on S1 and S2, respectively, plus w0 ≤1 w̃ and
w0 ≤1 w1, and σ ∈ Σ1

w̃,̃s ∩ Σ1
w1 ,̃s ∩ Σ2

w2,s2 . If the join relation � is defined
as w2 � w̃, w2 � w1, w0 � w2, and s2 � s̃, the resulting associated signa-
ture is regular (Fig. 4a), although S1 is not: given σ ∈ Σw̃,̃s and w0 ≤ w̃, the
set { (w, s) | σ ∈ Σw,s ∧ w0 ≤ w } = { (w̃, s̃), (w1, s̃), (w2, s2) } has least element
(w2, s2) w.r.t. w0 (Fig. 4b).

On the Multi-Language Construction 309

A positive result can be obtained by recalling that regularity is easier to check
when 〈S,≤〉 satisfies the descending chain condition (DCC):

Lemma 1 (Regularity over DCC poset [19]). An order-sorted signature Σ
over a DCC poset 〈S,≤〉 is regular if and only if whenever σ ∈ Σw1,s1 ∩ Σw2,s2

and there is some w0 ≤ w1, w2, then there is some w ≤ w1, w2 such that σ ∈ Σw,s

and w0 ≤ w.

At this point, we can relate the DCC of the poset 〈S,≤〉 in the associated signa-
ture of 〈S1,S2,≤〉 to the DCC of 〈S1,≤1〉 and 〈S2,≤2〉:

Proposition 3. Let 〈S,≤, Σ〉 be the associated signature of 〈S1,S2,≤〉. Then,
〈S,≤〉 is DCC if and only if 〈S1,≤1〉 and 〈S2,≤2〉 are DCC.

As a result, whenever we know that 〈S1,≤1〉 and 〈S2,≤2〉 are DCC, we can
check the regularity of 〈S1,S2,≤〉 by employing the Lemma 1 without checking
whether 〈S,≤〉 is DCC.

Algebra. In this multi-language construction, the boundary functions
behaviour is no more bounded to syntactical operators as in the previous sec-
tions, but it is inherited by homomorphisms. A necessary condition to accom-
plish this aim is the commutativity of interpretation functions with boundary
functions:

Definition 7� (SO Multi-Language Algebra). Let 〈S1,S2,≤〉 be an
SO multi-language signature. A semantic-only (SO) multi-language 〈S1,S2,≤〉-
algebra is an SP multi-language 〈S1,S2,≤〉-algebra A such that

(3a�) σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 � w2 imply that αs1,s2(�σ�
w1,s1
A (a)) =

�σ�
w2,s2
A (αw1,w2(a)) for each a ∈ Aw1 .

Note that σ ∈ Σw1,s1 ∩Σw2,s2 and w1 �w2 imply s1 �s2 by condition (3s�). The
notion of homomorphism remains unchanged from Definition 8 (to understand
how the homomorphisms inherit the boundary functions behaviour, see the proof
of Theorem 6).

The term algebra is defined similarly to Definition 10, except for boundary
functions:

Definition 10� (SO Multi-Language Term Algebra). The semantic-only
(SO) multi-language term algebra T over an SO multi-language signature
〈S1,S2,≤〉 with boundary functions τ is defined as follows:

(1t�) s ∈ S implies Ts = TΠ,s;
(2t�) σ ∈ Σw,s implies �σ�

w,s
T = �σ�

w,s
TΠ

; and
(3t�) s � s′ implies τs,s′ = idTs

.

Since the subsort relation ≤ includes the join relation �, s�s′ implies TΠ,s =
Ts ⊆ Ts′ = TΠ,s′ . Thus, the boundary function τs,s′ can be defined as the
identity on the smaller domain (note that it trivially satisfies the commutativity
condition (3a�)).

310 S. Buro and I. Mastroeni

Proposition 4. Let 〈S1,S2,≤〉 be an SO multi-language signature. Then,
the SO multi-language term 〈S1,S2,≤〉-algebra is a proper SO multi-language
algebra.

Theorem 5. Let 〈S1,S2,≤〉 be a SO multi-language signature. The class of all
SO 〈S1,S2,≤〉-algebras and the class of all 〈S1,S2,≤〉-homomorphisms form a
category denoted by Alg�(S1,S2,≤).

We can now prove the initiality of T in its category.

Theorem 6 (Initiality of T). Let 〈S1,S2,≤〉 be a regular multi-language
signature. Then, the term algebra T is an initial object in the category
Alg(S1,S2,≤).

Thanks to the initiality of the term algebra, the definition of term semantics is
the same of Definition 12.

Example. Let A1 and A2 be two order-sorted algebras over the signatures
S1 and S2, respectively, as formalized in the example in Sect. 3. Suppose we are
interested in a new multi-language A over S1 and S2 such that any string expres-
sions t of sort s in S2 can denote the natural number length(�t�A2

) when embed-
ded in S1 terms. For instance, we require that �10 + 5�A = �10 + 5�A1

= 15
and �f + o�A = �f + o�A2

= fo, but �(f + o) + (10 + 5)�A = �fo + 15�L =
17 (parentheses in the last term have only been used to disambiguate the parsing
result).

Since the requirements demand to use string expressions in place of natural
numbers, the join relation � shall define s � n and ensure transitivity, hence
s � e, a � n, and a � e.

The signatures S1 and S2 are trivially regular. However, by merging S1

and S2, we are causing subsort polymorphism on the symbol +, which is used
as sum operator in A1 and as concatenation operator in A2, and therefore we
have to check the regularity: Let w1 = e e, w2 = s s, s1 = e, and s2 = s. Given
+ ∈ Σw1,s1 ∩ Σw2,s2 and the lower bound w0 = a a ≤ w1, w2, then there exists
w = s s such that w ≤ w1, w2 and + ∈ Σw,s, where s = s ≤ s1, s2 (we have
employed Lemma 1 thanks to Proposition 3). Analogously, when w0 = w1, w2

the relative least rank is (s s, s).
The multi-language 〈S1,S2,≤〉-algebra A is now defined by joining the pro-

jected algebras A1 and A2 and by defining boundary functions as,s′ for each
s � s′ such that convert strings in naturals (their length) when strings are used
in place of naturals:

aa,n(a) = aa,e(a) = 1 as,n(â) = as,e(â) = length(â)

The above definition of boundary functions satisfy both conditions (2a∗)
and (3a�).

On the Multi-Language Construction 311

The initiality theorem yields the semantic homomorphism from T to A. For
instance, suppose we want to compute the semantics of the term

t = +(+(f, o)
︸ ︷︷ ︸

t1

,

t2︷ ︸︸ ︷
+(10, 5))

The least sorts of t, t1, and t2 are e, s, and e, respectively. The operator + belongs
to both Σe e,e and Σs s,s, and its least rank w.r.t. the lower bound ls(t1) ls(t2) = s e
is (e e, e). By Definition 12 we have

�t�A = he(t) = �+�e e,eA (he(t1), he(t2))

At this point, since ls(t1) = s and ls(f) = ls(o) = a, then the least rank of the
root symbol + of t1 w.r.t. the lower bound ls(f) ls(o) = a a is (s s, s), thus

he(t1) = as,e(hs(t1)) = as,e(�+�
s s,s
A (hs(f), hs(o))) = as,e(�+�

s s,s
A (f, o)) = as,e(fo) = 2

Similarly, ls(t2) = e and ls(10) = ls(5) = n. Then, the least rank of the root
symbol + of t2 w.r.t. the lower bound (n,n) is (e e, e) and therefore we have

he(t2) = �+�e e,eA (hn(10), hn(5)) = �+�e e,eA (10, 5) = 15

Finally,

�t�A = he(t) = �+�e e,eA (he(t1), he(t2)) = �+�e e,eA (2, 15) = 17

as desired.
We can observe that without any syntactical operator the framework is still

able to apply the correct boundary functions to move values across languages.

5 Reduction to Order-Sorted Algebra

The constructions in the previous sections beg the question whether a multi-
language algebra admits an equivalent order-sorted representation. Conceptually,
it would mean that being a multi-language is essentially a matter of perspective:
By forgetting how the multi-language has been constructed, what is left is simply
an ordinary language. Mathematically speaking, it requires us to exhibit a reduc-
tion functor F from the multi-language category to an order-sorted one, such
that there is an isomorphism φ between the carrier sets of the multi-language
term 〈S1,S2,≤〉-algebra T and F (T), and such that �t�A = �φ(t)�F (A) for each
t ∈ T and for each multi-language 〈S1,S2,≤〉-algebra A.

In the following, we denote the reduction functor by F , F ∗, and F � accord-
ingly whether its domain is the category Alg(S1,S2,≤), Alg∗(S1,S2,≤), and
Alg�(S1,S2,≤), respectively.

In the case of Alg(S1,S2,≤) and Alg∗(S1,S2,≤) categories, the construc-
tion of F and F ∗ is very simple, and we illustrate it only for the plain multi-
language algebras of Sect. 3: Let A be a multi-language 〈S1,S2,≤〉-algebra.
Then, we define the order-sorted 〈S,�,Π〉-algebra AΠ (called the associated
order-sorted algebra of A) by setting

312 S. Buro and I. Mastroeni

(1π) AΠ,s = As for each s ∈ S;
(2π) �σi�

w,s
AΠ

= �σ�
w,s
A for each σ ∈ Σi

w,s and i = 1, 2; and

(3π) �↪→s,s′�
s,s′

AΠ
= αs,s′ for each s � s′.

If A and B are multi-language 〈S1,S2,≤〉-algebras, and h is a multi-language
〈S1,S2,≤〉-homomorphism from A to B, the functor F maps A and B to their
associated order-sorted algebras AΠ and BΠ and the homomorphism h to itself.
Since AΠ = A, the isomorphism φ is the identity function.

Theorem 7. F : Alg(S1,S2,≤) → OSAlg(S1,S2,≤) is a functor for every
multi-language signature 〈S1,S2,≤〉. Moreover, �t�A = �t�F (A) for each t ∈ T
and for each multi-language 〈S1,S2,≤〉-algebra A.

If A is an SP multi-language 〈S1,S2,≤〉-algebra, the construction of the reduc-
tion functor F ∗ is similar to the definition of F . The only difference is the
equation in the condition (3π) that turns into

(3π∗) �↪→�
s,s′

AΠ
= αs,s′ for each s � s′.

Finally, the definition of F � starting from the category Alg�(S1,S2,≤) of
SO multi-language algebras is slightly different. We define F � as a map
from the multi-language category Alg�(S1,S2,≤) to the order-sorted category
OSAlg(S,�, Σ). We denote the reduction of a multi-language algebra A and
a homomorphism h : A → B as F (A) = A� and F (h) = h� : A� → B�. The
order-sorted algebra A� has the same carrier sets of the multi-language algebra
A, i.e., A� = A, and interpretation functions �σ�

w,s
A�

= �σ�
w,s
A . Furthermore, we

define h� = h. Intuitively, the algebra A� is formally defined simply by forgetting
about the boundary functions, while the homomorphism h� : A� → B� inherits
their semantics from h. Again, the isomorphism φ is the identity.

Theorem 8. F � : Alg�(S1,S2,≤) → OSAlg(S,�, Σ) is a functor for every
SO multi-language signature 〈S1,S2,≤〉. Moreover, �t�A = �t�F �(A) for each
t ∈ T and for each SO multi-language 〈S1,S2,≤〉-algebra A.

Unfortunately, even though T is an initial algebra in its category, F �(T) = T� is
not: Given two multi-language algebras A and A′ that differ only in the boundary
functions (we denote by α and α′ the families of boundary functions of A and
A′, respectively) they both get mapped by F � to the same order-sorted algebra
A�. Thus, if h : T → A and h′ : T → A′ are the unique homomorphisms going
from T to A and A′, the functor F maps them to two different order-sorted
homomorphisms h� : T� → A� and h′

� : T� → A� both leaving T� and going to
A�, hence losing the uniqueness property. However, this does not pose a problem
once fixed a family of boundary functions:

Theorem 9. Let T be the multi-language term 〈S1,S2,≤〉-algebra and A be
an order-sorted 〈S,�, Σ〉-algebra. Given a family of boundary functions α =
{αs,s′ | s � s′ } such that satisfies condition (3a�), there exists a unique order-
sorted 〈S,�, Σ〉-homomorphism hα : T� → A commuting with α, i.e., if s � s′,
then hα

s′(t) = αs,s′(hα
s (t)) for each t ∈ Ts.

On the Multi-Language Construction 313

The reduction theorems presented in this section have a strong consequence:
all the already known results for the order-sorted algebras can be lifted to the
multi-language world.

6 An Example of Multi-Language Construction

The first theoretical paper addressing the problem of multi-language construc-
tion is [30]. The authors study the so-called natural embedding (a more realistic
improvement of the lump embedding [7,30,34,40]), in which Scheme terms can
be converted to equivalent ML terms, and vice versa.7 The novelty in their app-
roach is how they succeed to define boundaries in order to translate values from
Scheme to ML. Indeed, the latter does not admit an equivalent representation
for each Scheme function. Their solution is to “represent a Scheme procedure
in ML at type τ1 → τ2 by a new procedure that takes an argument of type τ1,
converts it to a Scheme equivalent, runs the original Scheme procedure on that
value, and then converts the result back to ML at type τ2”.

Our goal here is not to discuss a fully explained presentation of ML and
Scheme languages in the form of order-sorted algebras, but rather to show how
we can model the natural embedding construction in our framework. Doing so,
we provide a sketchy formalization of Scheme and ML syntax and semantics,
and we redirect the reader to [30] for all the languages details.

To provide the semantics of Scheme, we follow the same approach of Goguen
et al. [15] where the denotational semantics of the simple applicative language
(SAL) introduced by Reynolds [42] is given by means of an algebra, exploiting
the initiality theorem. Such a language is a “syntactically sugared” version of
the untyped lambda calculus with the fixpoint operator, which in turn is very
similar to Scheme.

Let X = { x1, x2, . . . } be a set of variables and N� be the naturals lattice
with � and ⊥ adjoined. From [46], there exists a complete lattice V such that
satisfies the isomorphism φ : V ∼= N� + V �→ V , where + is the disjoint union
with minimum and maximum elements identified, and V �→ V is the complete
lattice of Scott-continuous functions from V to V . Given ξ ∈ {N�, V �→ V }, we
define the injections jξ : ξ → N� +V �→ V and iξ = φ−1 ◦ jξ, and the projection
πξ : V → ξ such that πξ(v) = (φ(v) ∈ ξ ? φ(v) : ⊥). The set of all Scheme
environments is the lattice of all total functions P = X → V with componentwise
ordering ρ � ρ′ if and only if ρ(x) � ρ′(x) in V for all x ∈ X. Furthermore, we
define auxiliary functions (see [15] for a more detailed explanation) in order to
provide the semantics of the language (in the following, x ∈ X and n ∈ N�):

– getx : P → V , getx(ρ) = ρ(x) (evaluation function);
– valn : P → V , valn(ρ) = n (n-constant function);

7 To be specific, the authors combine “an extended model of the untyped call-by-value
lambda calculus, which is used as a stand-in for Scheme, and an extended model of
the simply-typed lambda calculus, which is used as a stand-in for ML”.

314 S. Buro and I. Mastroeni

– putx : P×V → P, putx(ρ, v) = ρ[v/x], where ρ[v/x](x′) = (x = x′ ? v : ρ(x′))
(environment updating);

– app : V 2 → V , app(v1, v2) = (πV �→V (v1))(v2) (function application);
– nat? :V → V , nat?(v) = (v ∈ N� ? val0 : val1) (natural predicate);
– proc? : V → V , proc?(v) = (v ∈ V �→ V ? val0 : val1) (function predicate);
– given êi : P → V for 1 ≤ i ≤ k, then ⦉ê1, . . . , êk⦊ : P → V k is defined by

⦉ê1, . . . , êk⦊(ρ) = (ê1(ρ), . . . , êk(ρ)) (target-tupling); and
– given D, D′ and D′′, then abs : ((D × D′) �→ D′′) → (D �→ (D′ �→ D′′)) is

defined by ((abs(f))(x))(y) = f(x, y) (abstraction); and
– choice : V 3 → V (conditional function), add : V 2 → V (addition), and sub :

V 2 → V (subtraction)

choice(v1, v2, v3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� if v1 = �
v2 if v1 = 0
v3 if v1 = 0
⊥ otherwise

add(v1, v2) =

⎧
⎪⎨

⎪⎩

� if v1, v2 = �
v1 + v2 if v1, v2 ∈ N

⊥ otherwise

The definition of sub is analogous to the function add, with the only dif-
ference that, in the second case, sub(v1, v2) = v1 −N v2, where v1 −N v2 =
max { v1 − v2, 0 } for each v1, v2 ∈ N.

The semantics of the language is obtained by defining an algebra H over a
signature H,8 then the initiality yields the unique homomorphism from the term
algebra. A Scheme term denotes a continuous function in the semantic domain
He = P �→ V . The interpretation functions of the operators are defined by the
following equations:

�x�
ε,e
H = getx �λx�

e,e
H (ê) = iV �→V ◦ absP,V,V (ê ◦ putx)

�‚�e e,eH (ê1, ê2) = app ◦ ⦉ê1, ê2⦊ �proc?�e,eH (ê) = proc? ◦ ê

�n�
ε,e
H = valn �if0�e e e,eH (ê1, ê2, ê3) = choice ◦ ⦉ê1, ê2, ê3⦊

�+�e e,eH (ê1, ê2) = add ◦ ⦉ê1, ê2⦊ �nat?�e,eH (ê) = nat? ◦ ê

�-�e e,eH (ê1, ê2) = sub ◦ ⦉ê1, ê2⦊

For the sake of simplicity, we made a minor change to the language presented
in [30]. They have an extra operator wrong to print an error message in case of
an illegal operation, due to the lack of a type system. For instance, the sum of
two functions produces the error wrong "non-number". To avoid to add cases
almost everywhere in the definition of the interpretation functions, we let ill-
typed terms to denote the value ⊥ without an explicit encoding of the error
message. Furthermore, we denote by ‚ the function application.
8 We do not define H explicitly since it can be inferred by the algebra equations below.

On the Multi-Language Construction 315

The ML-like language defined in [30] is an extended version of the simply-typed
lambda calculus. As before, we provide its semantics by defining an algebra M
over an order-sorted signature M = 〈S2,≤2, Σ2〉.

Let I (should read ‘iota’) be a set of base types and K a I-sorted set of
base values K = {Kι | ι ∈ I }. We inductively define the set of simple types
T: If ι is a base type, then it is a simple type; If τ, τ ′ are simple types, then
(τ) → (τ ′) is a simple type (henceforth we omit the parentheses). We abuse
notation and extend K to the T-sorted set of simple values K = {Kτ | τ ∈ T }
where Kτ→τ ′ = Kτ → Kτ ′ .

The set of all ML environments is defined as the set of all total functions
Δ = Y → K, where Y = { y1, y2, . . . } is a set of variables disjoint from X
(this assumption comes from [30]) and K =

⋃
τ∈T Kτ . We instantiate I = {n }

and Kn = N. The poset 〈S2,≤2〉 carries all the simple types (i.e., T ⊆ S2) and
the sort t; ≤2 is the reflexive relation on S2 plus τ ≤2 t for each τ ∈ T. An
ML term of type τ denotes a total function in Mτ = Δ → Kτ , and we define
Mt = Δ → K. Due to the Turing-incompleteness of such a language, we do not
need all the mathematical machinery of [15,46] to formalize its semantics.

�y�
ε,t
M = δ �→ δ(y) �λyτ �

τ ′,τ→τ ′

M (t̂) = δ �→ kτ �→ t̂(δ[kτ/y])

�n�
ε,n
M = δ �→ n �‚�τ→τ ′ τ,τ ′

M (t̂1, t̂2) = δ �→ (t̂1(δ))(t̂2(δ))
�+�n n,n

M (n̂1, n̂2) = δ �→ n̂1(δ) + n̂2(δ) �-�n n,n
M (n̂1, n̂2) = δ �→ n̂1(δ) −N n̂2(δ)

�if0�n τ τ,τ
M (n̂, t̂1, t̂2) = δ �→

(n̂(δ) = 0 ? t̂1(δ) : t̂2(δ))

Until now, we have just formalized the single-languages. The multi-language A
that combines Scheme and ML is obtained by requiring e� τ and τ � e in order
to use ML terms in place of Scheme terms and vice versa. However, in the sim-
plest version of the natural embedding, “the system has stuck states, since a
boundary might receive a value of an inappropriate shape” [30]. They restore
the type-soundness by first employing dynamic checks, and then by decoupling
error-handling from the value conversion through the use of higher-order con-
tracts [12]. We limit ourselves here to describe the first version; the subsequent
refinements can be embodied by further complicating the semantics of the bound-
ary functions (we do not have forced any constraints on them).

Since we need a value representing the notion of stuck state in ML, we have
to extend the algebra M. This is particularly easy by exploiting the underlying
framework: We make M⊥ into an order-sorted M-algebra by defining M⊥

τ =
Δ⊥ → K⊥

τ , where Δ⊥ = Y → K⊥, K⊥ =
⋃

τ∈T K⊥
τ , and K⊥

τ = Kτ ∪ { ⊥ }, and
the T-sorted injection φ from Mτ to M⊥

τ such that ϕ(t̂) = t̂. Now, M⊥ becomes
an algebra by letting ϕ to be an order-sorted M-homomorphism (this in turn
forces �−�

w,s
M⊥ = �−�

w,s
M) and letting the interpretation functions to denote the

value ⊥ in the remaining non-yet defined cases (namely, they compute the value
⊥ whenever one of their arguments is ⊥).

316 S. Buro and I. Mastroeni

The boundary function αe,τ (ê) moves the Scheme value ê : P �→ V in Mτ :

αe,τ (ê) =

{
αN�
e,τ (ê) if ê = valn for some n ∈ N�

αV �→V
e,τ (ê) otherwise

where αN�
e,τ (valn) = (τ = n ∧ n ∈ N ? δ �→ n : ⊥) and

αV �→V
e,τ (ê) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ �→ k′
τ �→ �λyτ ′

�
τ ′′,τ ′→τ ′′

M⊥ (αe,τ ′′(ê′ ◦ putx(⊥, ατ ′,e(kτ ′))))
if τ = τ ′ → τ ′′ and ê = iV �→V ◦ absP,V,V (ê′ ◦ putx)

for some x ∈ X and ê′ ∈ V �→ V

⊥
otherwise

Vice versa, ατ,e(t̂) moves values from ML to Scheme. Its definition is analo-
gous to the previous case: αn,e(n̂) = valn where n̂ = δ �→ n, and

ατ→τ ′,e = ρ �→ v �→ �λx�
e,e
H (ατ ′,e(t̂(⊥[αe,τ (v)/y])))

These definitions adhere the conversion approach of the natural embedding
in [30]: If ê is the value denoted by a natural number in Scheme, then it is
converted—aside from cases deriving from ill-typed terms—by αN�

e,n to the corre-
sponding constant function denoting the same natural value in ML. Otherwise,
if ê is the value denoted by a Scheme function, then it is mapped by αV �→V

e,τ→τ ′ to
the ML function with variable x at type τ → τ ′ such that converts its argument
of type τ to the Scheme equivalent by its conversion through ατ,e to x. Then it
runs the original procedure ê on it and convert back the result by αe,τ ′ .

Since the given boundary functions are subsort polymorphic, we can improve
the construction and handle all the value conversions with a single polymorphic
operator as explained in Sect. 4.1.

7 Concluding Remarks

In this paper, we have addressed the problem of providing a formal semantics to
the combination of programming languages, the so-called multi-languages. We
have introduced a new algebraic framework for modeling this new paradigm, and
we have constructively shown how to attain a multi-language specification by
only stipulate (1) how the syntactic categories of the single-languages have to
be combined and (2) how the values may flow from one language to the other.
We have proved the suitability of the framework to unambiguously yield the
algebraic semantics of each multi-language term, while simultaneously preserving
the single-languages semantics. We have also proved that combining languages
is a close operation, i.e., that every multi-language admits an equivalent order-
sorted representation. In particular, we have focused our study on the semantic

On the Multi-Language Construction 317

properties of boundary functions in order to provide three different notions of
multi-language designed to suit both general and specific cases.

To the best of our knowledge, this is the first attempt to provide a formal
semantics of a multi-language independently from the combined languages.

Related Works. Cross-language interoperability is a well-researched area both
from theoretical and practical points of view. The most related work to our app-
roach is undoubtedly [30], which provides operational semantics to a combined
language obtained by embedding a Scheme-like language into an ML-like lan-
guage. Such an outcome is achieved by introducing boundaries, syntactic con-
structs that model the flow of values from one language to the other. Ours
boundary functions draw heavily from their work. Nonetheless, we shift them to
a semantic level, in order to several variants of multi-language constructions.

[7,21,36,40,53] take a similar line and combine typed and untyped languages
(Lua and ML [40], Java and PLT Scheme [21], or Assembly and a typed func-
tional language [36]), focusing on typing issues and values exchanging techniques.
Instead of focusing on a particular problem, we adopt a rather general framework
to model languages. This choice abstracts away many low-level details, allowing
us to reason on semantic concerns in more general terms, without having to fix
any particular pair of languages.

A lot of work has been done on multi-language runtime mechanisms: [20] pro-
vides a type system for a fragment of Microsoft Intermediate Language (IL) used
by the .NET framework, that allows programmers to write components in sev-
eral languages (C#, Visual Basic, VBScript, . . .) which are then translated to IL.
[22] proposes a virtual machine that can execute the composition of dynamically
typed programming languages (Ruby and JavaScript) and statically typed one
(C). [4,5] describes a multi-language runtime mechanism achieved by combining
single-language interpreters of (different versions of) Python and Prolog.

Future Works. From our perspective, the research presented in this paper opens
up on three directions. Firstly, future works should aim to provide an operational
semantics to the formalization of multi-languages. Rewriting logic seems the
most reasonable approach to unifying the denotational world, presented in this
paper, to the operational one [31]. This line of research is particularly useful in
order to move towards an implementation of an automatic tool able to combine
languages such that the resulting multi-language guarantees the results proved
in the paper.

Secondly, future research applies to use the multi-language model in order to
study the problem of analyzing multi-language programs. In particular, we aim
at investigating how it is possible to obtain analyses of multi-language programs
by merging already existing analyses of the single combined languages.

Finally, further studies should investigate the problem of compiling multi-
languages. Current compilers are closed tools, non-parametric on language con-
structs (for instance, we cannot compile a single if-then-else term of a stan-
dard language like C or Java unless it is plugged into a valid program). Several
works on typing [1,20,26], compiling [2,37], and running [23,50] multi-language

318 S. Buro and I. Mastroeni

programs already exist, but without providing a formal notion of multi-language.
It would be beneficial to study how their approaches can be applied to the formal
framework developed in this paper.

References

1. Abadi, M., Cardelli, L., Pierce, B.C., Plotkin, G.D.: Dynamic typing in a statically
typed language. ACM Trans. Program. Lang. Syst. 13(2), 237–268 (1991)

2. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-
language semantics. SIGPLAN Not. 46(9), 431–444 (2011)

3. Alencar, A.J., Goguen, J.A.: Object-oriented specification case studies. In: Lano,
K., Haughton, H. (eds.) Specification in OOZE with Examples, pp. 158–183. Pren-
tice Hall International (UK) Ltd., Hertfordshire (1994)

4. Barrett, E., Bolz, C.F., Tratt, L.: Unipycation: a case study in cross-language trac-
ing. In: Proceedings of the 7th ACM Workshop on Virtual Machines and Interme-
diate Languages, pp. 31–40. ACM, New York (2013)

5. Barrett, E., Bolz, C.F., Tratt, L.: Approaches to interpreter composition. Comput.
Lang. Syst. Struct. 44, 199–217 (2015)

6. Beierle, C., Meyer, G.: Run-time type computations in the Warren abstract
machine. J. Log. Program. 18(2), 123–148 (1994)

7. Benton, N.: Embedded interpreters. J. Funct. Program. 15(4), 503–542 (2005)
8. Chisnall, D.: The challenge of cross-language interoperability. Commun. ACM

56(12), 50–56 (2013)
9. Dybvig, R.K.: The Scheme Programming Language, 4th edn. The MIT Press,

Cambridge (2009)
10. Erwig, M.: Specifying type systems with multi-level order-sorted algebra. In: Nivat,

M., Rattray, C., Rus, T., Scollo, G. (eds.) Algebraic Methodology and Soft-
ware Technology (AMAST 1993). WORKSHOPS COMP., pp. 177–184. Springer,
London (1994). https://doi.org/10.1007/978-1-4471-3227-1 17

11. Erwig, M., Güting, R.H.: Explicit graphs in a functional model for spatial
databases. IEEE Trans. Knowl. Data Eng. 6(5), 787–804 (1994)

12. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2002, pp. 48–59. ACM, New York (2002)

13. Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly Media Inc., Sebastopol
(2006)

14. Furr, M., Foster, J.S.: Checking type safety of foreign function calls. SIGPLAN
Not. 40(6), 62–72 (2005)

15. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-
tics and continuous algebras. J. ACM 24(1), 68–95 (1977)

16. Goguen, J.: Tossing algebraic flowers down the great divide (1999)
17. Goguen, J.A.: Semantics of computation. In: Manes, E.G. (ed.) Category The-

ory Applied to Computation and Control. LNCS, vol. 25, pp. 151–163. Springer,
Heidelberg (1975). https://doi.org/10.1007/3-540-07142-3 75

18. Goguen, J.A., Diaconescu, R.: An oxford survey of order sorted algebra. Math.
Struct. Comput. Sci. 4(3), 363–392 (1994)

19. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

https://doi.org/10.1007/978-1-4471-3227-1_17
https://doi.org/10.1007/3-540-07142-3_75

On the Multi-Language Construction 319

20. Gordon, A.D., Syme, D.: Typing a multi-language intermediate code. In: Con-
ference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, London, UK, 17–19 January 2001, pp.
248–260. ACM, New York (2001)

21. Gray, K.E.: Safe cross-language inheritance. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 52–75. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70592-5 4

22. Grimmer, M., Schatz, R., Seaton, C., Würthinger, T., Luján, M.: Cross-language
interoperability in a multi-language runtime. ACM Trans. Program. Lang. Syst.
40(2), 8:1–8:43 (2018)

23. Grimmer, M., Seaton, C., Schatz, R., Würthinger, T., Mössenböck, H.: High-
performance cross-language interoperability in a multi-language runtime. In: Pro-
ceedings of the 11th Symposium on Dynamic Languages, DLS 2015, Part of
SPLASH 2015, Pittsburgh, PA, USA, 25–30 October 2015, pp. 78–90. ACM, New
York (2015)

24. Haxthausen, A.E.: Order-sorted algebraic specifications with higher-order func-
tions. Theor. Comput. Sci. 183(2), 157–185 (1997)

25. Hearn, A.C., Schrüfer, E.: A computer algebra system based on order-sorted alge-
bra. J. Symb. Comput. 19(1), 65–77 (1995)

26. Henglein, F., Rehof, J.: Safe polymorphic type inference for scheme: translating
scheme to ML. In: Proceedings of the Seventh International Conference on Func-
tional Programming Languages and Computer Architecture, FPCA 1995, La Jolla,
California, USA, 25–28 June 1995, pp. 192–203. ACM, New York (1995)

27. Johann, P., Ghani, N.: Initial algebra semantics is enough!. In: Della Rocca, S.R.
(ed.) TLCA 2007. LNCS, vol. 4583, pp. 207–222. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73228-0 16

28. Juneau, J., Baker, J., Wierzbicki, F., Soto, L., Ng, V.: The Definitive Guide to
Jython: Python for the Java Platform, 1st edn. Apress, Berkely (2010)

29. Liang, S.: Java Native Interface: Programmer’s Guide and Reference, 1st edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

30. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
SIGPLAN Not. 42(1), 3–10 (2007)

31. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Electr. Notes Theor.
Comput. Sci. 156(1), 27–56 (2006)

32. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

33. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge (1997)

34. Ohori, A., Kato, K.: Semantics for communication primitives in a polymorphic
language. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 1993, pp. 99–112. ACM, New York
(1993)

35. Osera, P.M., Sjöberg, V., Zdancewic, S.: Dependent interoperability. In: Proceed-
ings of the Sixth Workshop on Programming Languages Meets Program Verifica-
tion, PLPV 2012, pp. 3–14. ACM, New York (2012)

36. Patterson, D., Perconti, J., Dimoulas, C., Ahmed, A.: FunTAL: reasonably mixing
a functional language with assembly. SIGPLAN Not. 52(6), 495–509 (2017)

37. Perconti, J.T., Ahmed, A.: Verifying an open compiler using multi-language seman-
tics. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 128–148. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 8

https://doi.org/10.1007/978-3-540-70592-5_4
https://doi.org/10.1007/978-3-540-70592-5_4
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-642-54833-8_8

320 S. Buro and I. Mastroeni

38. Poigné, A.: Parametrization for order-sorted algebraic specification. J. Comput.
Syst. Sci. 40(2), 229–268 (1990)

39. Qian, Z.: Another look at parameterization for order-sorted algebraic specifications.
J. Comput. Syst. Sci. 49(3), 620–666 (1994)

40. Ramsey, N.: Embedding an interpreted language using higher-order functions and
types. In: Proceedings of the 2003 Workshop on Interpreters, Virtual Machines and
Emulators, IVME 2003, pp. 6–14. ACM, New York (2003)

41. Ramsey, N.: ML module mania: a type-safe, separately compiled, extensible inter-
preter. Electron. Notes Theor. Comput. Sci. 148(2), 181–209 (2006)

42. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference - Volume 2, ACM 1972, pp. 717–
740. ACM, New York (1972)

43. Robinson, E.: Variations on algebra: monadicity and generalisations of equational
therories. Form. Asp. Comput. 13(3), 308–326 (2002)

44. Rogers, J.: Microsoft JScript.Net Programming. Sams, Indianapolis (2001)
45. Schmidt-Schauß, M. (ed.): Computational Aspects of an Order-Sorted Logic with

Term Declarations. LNCS, vol. 395. Springer, Heidelberg (1989). https://doi.org/
10.1007/BFb0024065

46. Scott, D.S., Strachey, C.: Toward a Mathematical Semantics for Computer Lan-
guages, vol. 1. Oxford University Computing Laboratory, Programming Research
Group, Oxford (1971)

47. Sharan, K.: Scripting in Java: Integrating with Groovy and JavaScript, 1st edn.
Apress, Berkely (2014)

48. Stell, J.G.: A framework for order-sorted algebra. In: Kirchner, H., Ringeissen, C.
(eds.) AMAST 2002. LNCS, vol. 2422, pp. 396–411. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45719-4 27

49. Tan, G., Morrisett, G.: Ilea: Inter-language analysis across Java and C. SIGPLAN
Not. 42(10), 39–56 (2007)

50. Trifonov, V., Shao, Z.: Safe and principled language interoperation. In: Swierstra,
S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 128–146. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-49099-X 9

51. Waldmann, U.: Semantics of order-sorted specifications. Theor. Comput. Sci.
94(1), 1–35 (1992)

52. Wieringa, R.J.: A formalization of objects using equational dynamic logic. In:
Delobel, C., Kifer, M., Masunaga, Y. (eds.) DOOD 1991. LNCS, vol. 566, pp.
431–452. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-55015-1 23

53. Wrigstad, T., Nardelli, F.Z., Lebresne, S., Östlund, J., Vitek, J.: Integrating typed
and untyped code in a scripting language. In: Hermenegildo, M.V., Palsberg, J.
(eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, 17–23 January 2010, pp.
377–388. ACM (2010)

https://doi.org/10.1007/BFb0024065
https://doi.org/10.1007/BFb0024065
https://doi.org/10.1007/3-540-45719-4_27
https://doi.org/10.1007/3-540-49099-X_9
https://doi.org/10.1007/3-540-55015-1_23

On the Multi-Language Construction 321

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Probabilistic Programming Inference
via Intensional Semantics

Simon Castellan1 and Hugo Paquet2(B)

1 Imperial College London, London, UK
simon.castellan@phis.me

2 University of Cambridge, Cambridge, UK
hugo.paquet@cl.cam.ac.uk

Abstract. We define a new denotational semantics for a first-order
probabilistic programming language in terms of probabilistic event struc-
tures. This semantics is intensional, meaning that the interpretation of
a program contains information about its behaviour throughout execu-
tion, rather than a simple distribution on return values. In particular,
occurrences of sampling and conditioning are recorded as explicit events,
partially ordered according to the data dependencies between the corre-
sponding statements in the program.

This interpretation is adequate: we show that the usual measure-
theoretic semantics of a program can be recovered from its event struc-
ture representation. Moreover it can be leveraged for MCMC inference:
we prove correct a version of single-site Metropolis-Hastings with incre-
mental recomputation, in which the proposal kernel takes into account
the semantic information in order to avoid performing some of the redun-
dant sampling.

Keywords: Probabilistic programming · Denotational semantics ·
Event structures · Bayesian inference

1 Introduction

Probabilistic programming languages [8] were put forward as promising tools
for practitioners of Bayesian statistics. By extending traditional programming
languages with primitives for sampling and conditioning, they allow the user
to express a wide class of statistical models, and provide a simple interface for
encoding inference problems. Although the subject of active research, it is still
notoriously difficult to design inference methods for probabilistic programs which
perform well for the full class of expressible models.

One popular inference technique, proposed by Wingate et al. [21], involves
adapting well-known Monte-Carlo Markov chain methods from statistics to
probabilistic programs, by manipulating program traces. One such method is
the Metropolis-Hastings algorithm, which relies on a key proposal step: given a
program trace x (a sequence x1, . . . , xn of random choices with their likelihood),
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 322–349, 2019.
https://doi.org/10.1007/978-3-030-17184-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_12

Probabilistic Programming Inference via Intensional Semantics 323

a proposal for the next trace sample is generated by choosing i ∈ {1, . . . , n}
uniformly, resampling xi, and then continuing to execute the program, only per-
forming additional sampling for those random choices not appearing in x. The
variables already present in x are not resampled: only their likelihood is updated
according to the new value of xi. Likewise, some conditioning statements must
be re-evaluated in case the corresponding weight is affected by the change to xi.

Observe that there is some redundancy in this process, since the updat-
ing process above will only affect variables and observations when their density
directly depends on the value of xi. This may significantly affect performance: to
solve an inference problem one must usually perform a large number of proposal
steps. To overcome this problem, some recent implementations, notably [12,25],
make use of incremental recomputation, whereby some of the redundancy can be
avoided via a form of static analysis. However, as pointed out by Kiselyov [13],
establishing the correctness of such implementations is tricky.

Here we address this by introducing a theoretical framework in which to
reason about data dependencies in probabilistic programs. Specifically, our first
contribution is to define a denotational semantics for a first-order probabilis-
tic language, in terms of graph-like structures called event structures [22]. In
event structures, computational events are partially ordered according to the
dependencies between them; additionally they can be equipped with quantita-
tive information to represent probabilistic processes [16,23]. This semantics is
intensional, unlike most existing semantics for probabilistic programs, in which
the interpretation of a program resembles a probability distribution on output
values. We relate our approach to a measure-theoretic semantics [18] through an
adequacy result.

Our second contribution is the design of a Metropolis-Hastings algorithm
which exploits the event structure representation of the program at hand. Some
of the redundancy in the proposal step of the algorithm is avoided by taking into
account the extra dependency information given by the semantics. We provide a
proof of correctness for this algorithm, and argue that an implementation is real-
istically achievable: we show in particular that all graph structures involved and
the associated quantitative information admit a finite, concrete representation.

Outline of the Paper. In Sect. 2 we give a short introduction to probabilistic
programming. We define our main language of study and its measure-theoretic
semantics. In Sect. 3.1, we introduce MCMC methods and the Metropolis-
Hastings algorithm in the context of probabilistic programming. We then moti-
vate the need for intensional semantics in order to capture data dependency. In
Sect. 4 we define our interpretation of programs and prove adequacy. In Sect. 5
we define an updated version of the algorithm, and prove its correctness. We
conclude in Sect. 6.

The proofs of the statements are detailed in the technical report [4].

324 S. Castellan and H. Paquet

2 Probabilistic Programming

In this section we motivate the need for capturing data dependency in probabilis-
tic programs. Let us start with a brief introduction to probabilistic programming
– a more comprehensive account can be found in [8].

2.1 Conditioning and Posterior Distribution

Let us introduce the problem of inference in probabilistic programming from the
point of view of programming language theory.

We consider a first-order programming language enriched with a real num-
ber type R and a primitive sample for drawing random values from a given
family of standard probability distributions. The language is idealised—but it
is assumed that an implementation of the language comprises built-in sampling
procedures for those standard distributions. Thus, repeatedly running the pro-
gram sample Uniform (0, 1) returns a sequence of values approaching the true
uniform distribution on [0, 1].

Via other constructs in the language, standard distributions can be combined,
as shown in the following example program of type R:

let x = sample Uniform(0, 1) in
let y = sample Gaussian(x, 2) in
x + y

Here the output will follow a probability distribution built out of the usual
uniform and Gaussian distributions. Many probabilistic programming languages
will offer more general programming constructs: conditionals, recursion, higher-
order functions, data types, etc., enabling a wide range of distributions to be
expressed in this way. Such a program is sometimes called a generative model.

Conditioning. The process of conditioning involves rescaling the distribution
associated with a generative model, so as to reflect some bias. Going back to the
example above, say we have made some external measurement indicating that
y = 0, but we would like to account for possible noise in the measurement using
another Gaussian. To express this we modify the program as follows:

let x = sample Uniform (0, 1) in
let y = sample Gaussian (x, 2) in
observe y (Gaussian (0, 0.01));
x + y;

The purpose of the observe statement is to increase the occurrence of executions
in which y is close to 0; the original distribution, known as the prior, must be
updated accordingly. The probabilistic weight of each execution is multiplied
by an appropriate score, namely the likelihood of the current value of y in
the Gaussian distribution with parameters (0, 0.01). (This is known as a soft
constraint. Conditioning via hard constraints, i.e. only giving a nonzero score to
executions where y is exactly 0, is not practically feasible.)

Probabilistic Programming Inference via Intensional Semantics 325

The language studied here does not have an observe construct, but instead
an explicit score primitive; this appears already in [18,19]. So the third line
in the program above would instead be score(pdf-Gaussian (0, 0.01) (y))
where pdf-Gaussian (0, 0.01) is the density function of the Gaussian distri-
bution. The resulting distribution is not necessarily normalised. We obtain the
posterior distribution by computing the normalising constant, following Bayes’
rule:

posterior ∝ likelihood × prior.

This process is known as Bayesian inference and has ubiquitous applications. The
difficulty lies in computing the normalising constant, which is usually obtained
as an integral. Below we discuss approximate methods for sampling from the
posterior distribution; they do not rely on this normalising step.

Measure Theory. Because this work makes heavy use of probability theory, we
start with a brief account of measure theory. A standard textbook for this is [1].
Recall that a measurable space is a set X equipped with a σ-algebra ΣX : a
set of subsets of X containing ∅ and closed under complements and countable
unions. Elements of ΣX are called measurable sets. A measure on X is a
function μ : ΣX → [0,∞], such that μ(∅) = 0 and, for any countable family
{Ui}i∈I of measurable sets, μ(

⋃
i∈I Ui) =

∑
i∈I μ(Ui).

An important example is that of the set R of real numbers, whose σ-algebra
ΣR is generated by the intervals [a, b), for a, b ∈ R (in other words, it is the small-
est σ-algebra containing those intervals). The Lebesgue measure on (R, ΣR)
is the (unique) measure λ assigning b − a to every interval [a, b) (with a ≤ b).

Given measurable spaces (X,ΣX) and (Y,ΣY), a function f : X → Y is
measurable if for every U ∈ ΣY , f−1U ∈ ΣX . A measurable function f : X →
[0,∞] can be integrated : given U ∈ ΣX the integral

∫
U

f dλ is a well-defined
element of [0,∞]; indeed the map μ : U �→

∫
U

fdλ is a measure on X, and f is
said to be a density for μ. The precise definition of the integral is standard but
slightly more involved; we omit it.

We identify the following important classes of measures: a measure μ on
(X,ΣX) is a probability measure if μ(X) = 1. It is finite if μ(X) < ∞, and
it is s-finite if μ =

∑
i∈I μi, a pointwise, countable sum of finite measures.

We recall the usual product and coproduct constructions for measurable
spaces and measures. If {Xi}i∈I is a countable family of measurable spaces,
their product

∏
i∈I Xi and coproduct

∐
i∈I Xi =

⋃
i∈I{i} × Xi as sets can be

turned into measurable spaces, where:

– Σ∏
i∈I Xi

is generated by {
∏

i∈I Ui | Ui ∈ ΣXi
for all i}, and

– Σ∐
i∈I Xi

is generated by {{i} × Ui | i ∈ I and Ui ∈ ΣXi
}.

The measurable spaces in this paper all belong to a well-behaved subclass:
call (X,ΣX) a standard Borel space if it either countable and discrete (i.e.
all U ⊆ X are in ΣX), or measurably isomorphic to (R, ΣR). Note that standard
Borel spaces are closed under countable products and coproducts, and that in a
standard Borel space all singletons are measurable.

326 S. Castellan and H. Paquet

2.2 A First-Order Probabilistic Programming Language

We consider a first-order, call-by-value language L with types

A,B :: = 1 | R |
∐

i∈I

Ai |
∏

i∈I

Ai

where I ranges over nonempty countable sets. The types denote measurable
spaces in a natural way: �1� is the singleton space, and �R� = (R, ΣR). Products
and coproducts are interpreted via the corresponding measure-theoretic con-
structions: �

∏
i∈I Ai� =

∏
i∈I�Ai� and �

∐
i∈I Ai� =

∐
i∈I�Ai� =

⋃
i∈I{i} × �Ai�.

Moreover, each measurable space �A� has a canonical measure μ�A� : Σ�A� → R,
induced from the Lebesgue measure on R and the Dirac measure on �1� via
standard product and coproduct measure constructions.

The terms of L are given by the following grammar:

M,N :: = () | M ;N | f | let a = M in N | x

| (Mi)i∈I | case M of {(i, x) ⇒ Ni}i∈I

| sample d (M) | score M

and we use standard syntactic sugar to manipulate integers and booleans:
B = 1 + 1, N =

∑
i∈ω 1, and constants are given by the appropriate

injections. Conditionals and sequencing can be expressed in the usual way:
if M then N1 else N2 = case M of {(i,) ⇒ Ni}i∈{1,2}, and M ;N =
let a = M in N , where a does not occur in N . In the grammar above:

– f ranges over measurable functions �A� → �B�, where A and B are types;
– d ranges over a family of parametric distributions over the reals, i.e. measur-

able functions R
n × R → R, for some n ∈ N, such that for every r ∈ R

n,∫
d(r,−) = 1. For the purposes of this paper we ignore all issues related to

invalid parameters, arising from e.g. a call to gaussian with standard devia-
tion σ = 0. (An implementation could, say, choose to behave according to an
alternative distribution in this case.)

The typing rules are as follows:

Γ � M : A Γ, a : A � N : B

Γ � let a = M in N : B

Γ � M : Rn d : Rn × R → R

Γ � sample d (M) : R

Γ � M : R
Γ � score M : 1 Γ, a : A � a : A Γ � () : 1

Γ � M :
∑

i∈I Ai Γ, x : Ai � Ni : C

Γ � case M of {(i, x) ⇒ Ni}i∈I : C

Γ � Mi : Ai

Γ � (Mi)i∈I :
∏

i∈I Ai

f : �A� → �B� measurable Γ � M : A

Γ � f M : B

Probabilistic Programming Inference via Intensional Semantics 327

Among the measurable functions f , we point out the following of interest:

– The usual product projections πi : �
∏

i∈I Ai� → �Ai� and coproduct injections
ιi : �Ai� → �

∐
i∈I Ai�;

– The operators +,× : R2 → R,
– The tests, eg. ≥ 0 : �R� → �B�,
– The constant functions 1 → A of the form () �→ a for some a ∈ �A�.

Examples for d include uniform : R2 × R → R, gaussian : R2 × R → R, ...

2.3 Measure-Theoretic Semantics of Programs

We now define a semantics of probabilistic programs using the measure-theoretic
concept of kernel, which we define shortly. The content of this section is not new:
using kernels as semantics for probabilistic was originally proposed in [14], while
the (more recent) treatment of conditioning (score) via s-finite kernels is due
to Staton [18]. Intuitively, kernels provide a semantics of open terms Γ � M : A
as measures on �A� varying according to the values of variables in Γ .

Formally, a kernel from (X,ΣX) to (Y,ΣY) is a function k : X×ΣY → [0,∞]
such that for each x ∈ X, k(x,−) is a measure, and for each U ∈ ΣY , k(−, U) is
measurable. (Here the σ-algebra Σ[0,∞] is the restriction of that of R+{∞}.) We
say k is finite (resp. probabilistic) if each k(x,−) is a finite (resp. probability)
measure, and it s-finite if it is a countable pointwise sum

∑
i∈I ki of finite

kernels. We write k : X � Y when k is an s-finite kernel from X to Y .
A term Γ � M : A will denote an s-finite kernel �M� : �Γ � � �A�, where

the context Γ = x1 : A1, . . . , xn : An denotes the product of its components:
�Γ � = �A1� × · · · × �An�.

Notice that any measurable function f : X → Y can be seen as a determinis-
tic kernel f† : X � Y . Given two s-finite kernels k : A � B and l : A × B � C,
we define their composition l ◦ k : A � C:

(l ◦ k)(a,X) =
∫

b∈B

l((a, b), C) × k(a,db).

Staton [18] proved that l ◦ k is a s-finite kernel.
The interpretation of terms is defined by induction:

– �()� is the lifting of �Γ � → 1 : x �→ ().
– �let a = M in N� is �N� ◦ �M�
– �f M� = f† ◦ �M�
– �a�(x,X) = δx(X), the Dirac distribution δx(X) = 1 if x ∈ X and zero

otherwise.
– �sample d (M)� = sam◦�M� where samd : Rn � R is given by samd(r,X) =∫

x∈X
d(r, x)dx.

– �score M� = sco ◦ �M� where sco : �R� → �1� is sco(r,X) = r · δ()(X).
– �(Mi)i∈I�(γ,

∏
i∈I Xi) =

∏
i∈I�Mi�(γ,Xi): this is well-defined since the

∏
Xi

generate the measurable sets of the product space.

328 S. Castellan and H. Paquet

– �case M of {(i, x) ⇒ Ni}i∈I� = coprod ◦ �M� where coprod : Γ ×
�
∐

i∈I Ai� � �B� maps (γ, {i} × X) to �Ni�(γ,X).

We observe that when M is a program making no use of conditioning (i.e. a
generative model), the kernel �M� is probabilistic:
Lemma 1. For Γ � M : A without scores, �M�(γ, �A�) = 1 for each γ ∈ �Γ �.

2.4 Exact Inference

Note that a kernel 1 � �A� is the same as a measure on �A�. Given a closed
program � M : A, the measure �M� is a combination of the prior (occurrences of
sample) and the likelihood (score). Because score can be called on arbitrary
arguments, it may be the case that the measure of the total space (that is, the
coefficient �M�(�A�), often called the model evidence) is 0 or ∞.

Whenever this is not the case, �M� can be normalised to a probability mea-
sure, the posterior distribution. For every U ∈ Σ�A�,

norm�M�(U) =
�M�(U)

�M�(�A�)
.

However, in many cases, this computation is intractable. Thus the goal of approx-
imate inference is to approach norm�M�, the true posterior, using a well-chosen
sequence of samples.

3 Approximate Inference via Intensional Semantics

3.1 An Introduction to Approximate Inference

In this section we describe the Metropolis-Hastings (MH) algorithm for approxi-
mate inference in the context of probabilistic programming. Metropolis-Hastings
is a generic algorithm to sample from a probability distribution D on a mea-
surable state space X, of which we know the density d : X → R up to some
normalising constant.

MH is part of a family of inference algorithms called Monte-Carlo Markov
chain, in which the posterior distribution is approximated by a series of samples
generated using a Markov chain.

Formally, the MH algorithm defines a Markov chain M on the state space X,
that is a probabilistic kernel M : X � X. The correctness of the MH algorithm
is expressed in terms of convergence. It says that for almost all x ∈ X, the
distribution Mn(x, ·) converges to D as n goes to infinity, where Mn is the n-
iteration of M : M ◦ . . . ◦ M . Intuitively, this means that iterated sampling from
M gets closer to D with the number of iterations.

The MH algorithm is itself parametrised by a Markov chain, referred to as
the proposal kernel P : X � X: for each sampled value x ∈ X, a proposed
value for the next sample is drawn according to P (x, ·). Note that correctness
only holds under certain assumptions on P .

The MH algorithm assumes that we know how to sample from P , and that
its density is known, ie. there is a function p : X2 → R such that p(x, ·) is the
density of the distribution P (x, ·),

Probabilistic Programming Inference via Intensional Semantics 329

The MH Algorithm. On an input state x, the MH algorithm samples from P (x, ·)
and gets a new sample x′. It then compares the likelihood of x and x′ by com-
puting an acceptance ratio α(x, x′) which says whether the return state is x′ or
x. In pseudo-code, for an input state x ∈ X:

1. Sample a new state x′ from the distribution P (x, ·)
2. Compute the acceptance ratio of x′ with respect to x:

α(x, x′) = min
(

1,
d(x′) × p(x, x′)
d(x) × p(x′, x)

)

3. With probability α(x, x′), return the new sample x′, otherwise return the
input state x.

The formula for α(x, x′) is known as the Hastings acceptance ratio and is key to
the correctness of the algorithm.

Very little is assumed of P , which makes the algorithm very flexible; but of
course the convergence rate may vary depending on the choice of P . We give a
more formal description of MH in Sect. 5.2.

Single-Site MH and Incremental Recomputation. To apply this algorithm to
probabilistic programming, we need a proposal kernel. Given a program M , the
execution traces of M form a measurable set XM . In this setting the proposal is
given by a kernel XM � XM .

A widely adopted choice of proposal is the single-site proposal kernel which,
given a trace x ∈ XM , generates a new trace x′ as follows:

1. Select uniformly one of the random choices s encountered in x.
2. Sample a new value for this instruction.
3. Re-execute the program M from that point onwards and with this new value

for s, only ever resampling a variable when the corresponding instruction did
not already appear in x.

Observe that there is some redundancy in this process: in the final step,
the entire program has to be explored even though only a subset of the random
choices will be re-evaluated. Some implementations of Trace MH for probabilistic
programming make use of incremental recomputation.

We propose in this paper to statically compile a program M to an event struc-
ture GM which makes explicit the probabilistic dependences between events, thus
avoiding unnecessary sampling.

3.2 Capturing Probabilistic Dependencies Using Event Structures

Consider the program depicted in Fig. 1 in which we are interested in learning
the parameters μ and σ of a Gaussian distribution from which we have observed
two data points, say v1 and v2. For i = 1, 2 the function fi : R → R expresses a
soft constraint; it can be understood as indicating how much the sampled value
of xi matches the observed value vi.

330 S. Castellan and H. Paquet

A trace of this program will be of the form

Sam μ · Sam σ · Sam x1 · Sam x2 · Sco (f1 x1) · Sco (f2 x2) · Rtn (μ, σ),

for some μ, σ, x1, and x2 ∈ R corresponding to sampled values for variables mu,
sigma, x1 and x2.

let mu = sample uniform (150, 200) in

let sigma = sample uniform (1, 50) in

let x1 = sample gaussian (mu, sigma) in

let x2 = sample gaussian (mu, sigma) in

score (f1 x1); score (f2 x2);

(mu, sigma)

Fig. 1. A simple probabilistic program

A proposal step following the single-site kernel may choose to resample μ;
then it must run through the entire trace, checking for potential dependencies
to μ, though in this case none of the other variables need to be resampled.

So we argue that viewing a program as tree of traces is not most appropriate
in this context: we propose instead to compile a program into a partially ordered
structure reflecting the probabilistic dependencies.

With our approach, the example above would yield the partial order displayed
below on the right-hand side. The nodes on the first line corresponds to the
sample for μ and σ, and those on the second line to x1 and x2. This provides an
accurate account of the probabilistic dependencies: whenever e ≤ e′ (where ≤ is
the reflexive, transitive closure of �), it is the case that e′ depends on e.

According to this representation of the program, a trace is no longer a lin-
ear order, but instead another partial order, similar to the previous one only
annotated with a specific value for each variable. This is displayed below, on the
left-hand side; note that the order ≤ is drawn top to bottom. There is an obvious
erasure map from the trace (left) to the graph (right); this will be important
later on.

Samσ Sam μ Sam Sam

Samx1 Sam x2 Sam Sam

Sco (f1 x1) Sco (f2 x2) Sco Sco

Rtn (μ, σ) Rtn

Conflict and Control Flow. We have seen that a partial order can be used
to faithfully represent the data dependency in the program; it is however not

Probabilistic Programming Inference via Intensional Semantics 331

sufficient to accurately describe the control flow. In particular, computational
events may live in different branches of a conditional statement, as in the fol-
lowing example:

let x = sample uniform (0, 5) in

if x ≥ 2 then sample gaussian (3, 1)

else sample uniform (2, 4)

Sam

Sam Sam

Rtn Rtn

The last two samples are independent, but also incom-
patible: in any given trace only one of them will occur. An
example of a trace for this program is Sam 1 · Sam 3 · Rtn 3.

We represent this information by enriching the partial
order with a conflict relation, indicating when two actions
are in different branches of a conditional statement. The resulting structure is
depicted on the right. Combining partial order and conflict in this way can be
conveniently formalised using event structures [22]:

Definition 1. An event structure is a tuple (E,≤,#) where (E,≤) is a par-
tially ordered set and # is an irreflexive, binary relation on E such that

– for every e ∈ E, the set [e] = {e′ ∈ E | e′ ≤ e} is finite, and
– if e#e′ and e′ ≤ e′′, then e#e′′.

From the partial order ≤, we extract immediate causality �: e � e′ when
e < e′ with no events in between; and from the conflict relation, we extract
minimal conflict ���� : e ���� e′ when e#e′ and there are no other conflicts in
[e] ∪ [e′]. In pictures we draw � and ���� rather than ≤ and #.

A subset x ⊆ E is a configuration of E if it is down-closed (if e′ ≤ e ∈ x
then e′ ∈ x) and conflict-free (if e, e′ ∈ x then ¬(e#e′)). So in this framework,
configurations correspond to exactly to partial executions traces of E.

The configuration [e] is the causal history of e; we also write [e) for [e]\{e}.
We write C (E) for the set of all finite configurations of E, a partial order under
inclusion. A configuration x is maximal if it is maximal in C (E): for every

x′ ∈ C (E), if x ⊆ x′ then x = x′. We use the notation x
e

−−⊂ x′ when x′ = x∪{e},
and in that case we say x′ covers x.

An event structure is confusion-free if minimal conflict is transitive, and if
any two events e, e′ in minimal conflict satisfy [e) = [e′).

Compositionality. In order to give semantics to the language in a compositional
manner, we must consider arbitrary open programs, i.e. with free parameters.
Therefore we also represent each call to a parameter a as a read event, marked
Rd a . For instance the program x + y with two real parameters will become the
event structure

Rdx Rd y

Rtn

332 S. Castellan and H. Paquet

Note that the read actions on x and y are independent in the program (no order
is specified), and the event structure respects this independence.

Our dependency graphs are event structures where each event carries infor-
mation about the syntactic operation it comes from, a label, which depends on
the typing context of the program:

L static
Γ�B :: = Rd a | Rtn | Sam | Sco ,

where a ranges over variables a : A in Γ .

Definition 2. A dependency graph over Γ � B is an event structure G along
with a labelling map lbl : G → L static

Γ�B where any two events s, s′ ∈ G labelled
Rtn are in conflict, and all maximal configurations of G are of the form [r] for
r ∈ G a return event.

The condition on return events ensures that in any configuration of G there is
at most one return event. Events of G are called static events.

We use dependency graphs as a causal representation of programs, reflect-
ing the dependency between different parts of the program. In what follows we
enrich this representation with runtime information in order to keep track of
the dataflow of the program (in Sect. 3.3), and the associated distributions (in
Sect. 3.4).

3.3 Runtime Values and Dataflow Graphs

We have seen how data dependency can be captured by representing a program
P as a dependency graph GP . But observe that this graph does not give any
runtime information about the data in P ; every event s ∈ GP only carries a
label lbl(s) indicating the class of action it belongs to. (For an event labelled
Rd a , G does not specify the value at a; whereas at runtime this will be filled by
an element of �A� where A is the type of a.)

To each label, we can associate a measurable space of possible runtime values:

Q(Rd b) = �Γ (b)� Q(Rtn) = �A� Q(Sam) = (R, ΣR) Q(Sco) = (R, ΣR).

Then, in a particular execution, an event s ∈ GP has a value in Q(lbl(s)),
and can be instead labelled by the following expanded set:

L run
Γ�B:: = Rd a v | Rtn v | Sam r | Sco r

where r ranges over real numbers; in Rd a v, a : A ∈ Γ and v ∈ �A�; and in
Rtn v, v ranges over elements of �B�. Notice that there is an obvious forgetful
map α : L run

Γ�A → L static
Γ�A , discarding the runtime value. This runtime value can

be extracted from a label in L run
Γ�B as follows:

q(Rd b v) = v q(Rtn v) = v q(Sam r) = r q(Sco r) = r.

In particular, we have q(�) ∈ Q(α(�)).

Probabilistic Programming Inference via Intensional Semantics 333

Rd a tt Rd aff

Rtn 2 Rtn 3

Such runtime events organise themselves in an event
structure EP , labelled over L run

Γ�B, the runtime graph
of P . Runtime graphs are in general uncountable, and so
difficult to represent pictorially. It can be done in some
simple, finite cases: the graph for if a then 2 else 3 is depicted on the right.
Recall that in dependency graphs conflict was used to represent conditional
branches; here instead conflict is used to keep disjoint the possible outcomes of
the same static event. (Necessarily, this static event must be a sample or a read,
since other actions (return, score) are deterministic.)

Intuitively one can project runtime events to static events by erasing the run-
time information; this suggests the existence of a function πP : EP → GP . This
function will turn out to satisfy the axioms of a rigid map of event structures:

Definition 3. Given event structures (E,≤E ,#E) and (G,≤G,#G) a function
π : E → G is a rigid map if

– it preserves configurations: for every x ∈ C (E), πx ∈ C (G)
– it is locally injective: for every x ∈ C (E) and e, e′ ∈ x, if π(e) = π(e′) then

e = e′.
– it preserves dependency: if e ≤E e′ then π(e) ≤G π(e′).

In general π is not injective, since many runtime events may correspond to the
same static event – in that case however the axioms will require them to be in
conflict. The last condition in the definition ensures that all causal dependencies
come from G.

Given x ∈ C (GP) we define the possible runtime values for x as the set
Q(x) of functions mapping s ∈ x to a runtime value in Q(lbl(s)); in other words
Q(x) =

∏
s∈x Q(lbl(s)). A configuration x′ of EP can be viewed as a trace over

πP x′; hence π−1
P {x} := {x′ ∈ C (EP) | πP x′ = x} is the set of traces of P over

x. We can now define dataflow graphs:

Definition 4. A dataflow graph on Γ � B is a triple S = (ES , GS , πS : ES →
GS) with GS a dependency graph and ES a runtime graph, such that:

– πS is a rigid map and lbl ◦ πS = α ◦ lbl : ES → L static
Γ�B

– for each x ∈ C (GS), the following function is injective

qx : π−1
S {x} → Q(x)

x′ �→ (s �→ q(lbl(s)))

– if e, e′ ∈ ES with e ���� e′ then πe = πe′, and moreover e and e′ are either
both sample or both read events.

As mentioned above, maximal configurations of EP correspond to total traces
of P , and will be the states of the Markov chain in Sect. 5. By the second axiom,
they can be seen as pairs (x ∈ C (GS), q ∈ Q(x)). Because of the third axiom,
ES is always confusion-free.

334 S. Castellan and H. Paquet

Measurable Fibres. Rigid maps are convenient in this context because, they
allow for reasoning about program traces by organising them as fibres. The key
property we rely on is the following:

Lemma 2. If π : E → G is a rigid map of event structures, then the induced
map π : C (E) → C (G) is a discrete fibration: that is, for every y ∈ C (E), if
x ⊆ πy for some x ∈ C (G), then there is a unique y′ ∈ C (E) such that y′ ⊆ y
and πy′ = x.

This enables an essential feature of our approach: given a configuration x of
the dataflow graph G, the fibre π−1{x} over it contains all the (possibly partial)
program traces over x, i.e. those whose path through the program corresponds
to that of x. Additionally the lemma implies that every pair of configurations
x, x′ ∈ C (G) such that x ⊆ x′ induces a restriction map rx,x′ : π−1{x′} →
π−1{x}, whose action on a program trace over x′ is to return its prefix over x.

Although there is no measure-theoretic structure in the definition of dataflow
graphs, we can recover it: for every x ∈ C (GS), the fibre π−1

S {x} can be equipped
with the σ-algebra induced from ΣQ(x) via qx; it is generated by sets q−1

x U for
U ∈ ΣQ(x).

It is easy to check that this makes the restriction map rx,x′ : π−1
S {x′} →

π−1
S {x} measurable for each pair x, x′ of configurations with x ⊆ x′. (Note that

this makes S a measurable event structure in the sense of [16].) Moreover, the
map qx,s : π−1

S {x} → Q(lbl(s)) for s ∈ x ∈ C (GS), mapping x′ ∈ π−1
S {x} to

q(lbl(s′)) for s′ the unique antecedent by πS of s in x′, is also measurable.
We will also make use of the following result:

Lemma 3. Consider a dataflow S and x, y, z ∈ C (GS) with x ⊆ y, x ⊆ z, and
y ∪ z ∈ C (GS). If y ∩ z = x, then the space π−1

S {y ∪ z} is isomorphic to the set

{(uy, uz) ∈ π−1
S {y} × π−1

S {z} | rx,y(uy) = rx,z(uz)},

with σ-algebra generated by sets of the form {(uy, uz) ∈ Xy × Xz | Xy ∈
Σπ−1

S {y},Xz ∈ Σπ−1
S {z} and rx,y(uy) = rx,z(uz)}.

(For the reader with knowledge of category theory, this says exactly that the
diagram

π−1
S {y ∪ z} π−1

S {y}

π−1
S {z} π−1

S {x}

ry,y∪z

rz,y∪z rx,y

rx,z

is a pullback in the category of measurable spaces.)

3.4 Quantitative Dataflow Graphs

We can finally introduce the last bit of information we need about programs in
order to perform inference: the probabilistic information. So far, in a dataflow

Probabilistic Programming Inference via Intensional Semantics 335

graph, we know when the program is sampling, but not from which distribution.
This is resolved by adding for each sample event s in the dependency graph
a kernel ks : π−1{[s)} � π−1{[s]}. Given a trace x over [s), ks specifies a
probability distribution according to which x will be extended to a trace over
[s]. This distribution must of course have support contained in the set r−1

[s),[s]{x}
of traces over [s] of which x is a prefix; this is the meaning of the technical
condition in the definition below.

Definition 5. A quantitative dataflow graph is a tuple S = (ES , GS , π :
ES → GS , (kS

s)) where for each sample event s ∈ GS, kS
s is a kernel π−1{[s)} �

π−1{[s]} satisfying for all x ∈ π−1{[s)},

kS
s (x, π−1{[s]} \ r−1

[s),[s]{x}) = 0.

This axiom stipulates that any extension x′ ∈ π−1
S {[s]} of x ∈ π−1

S {[s)}
drawn by ks must contain x; in effect ks only samples the runtime value for s.

From Graphs to Kernels. We show how to collapse a quantitative dataflow graph
S on Γ � B to a kernel �Γ � � �B�. First, we extend the kernel family on sampling
events (kS

s : π−1{[s)} � π−1{[s]}) to a family (kS[γ]
s : π−1{[s)} � π−1{[s]})

defined on all events s ∈ S, parametrised by the value of the environment
γ ∈ �Γ �. To define k

S[γ]
s (x, ·) it is enough to specify its value on the generating

set for Σπ−1{[s]}. As we have seen this contains elements of the form q−1
[s] (U) with

U ∈ ΣQ([s]). We distinguish the following cases corresponding to the nature of s:

– If s is a sample event, k
S[γ]
s = kS

s

– If s is a read on a : A, any x ∈ π−1[s) has runtime information q[s)(x) in
Q([s)) which can be extended to Q([s]) by mapping s to γ(a):

kS[γ]
s (x, q−1

[s] U) = δq[s)(x)[s:=γ(a)](U)

– If s is a return or a score event: any x ∈ π−1{[s)} has at most one extension
to o(x) ∈ π−1{[s]} (because return and score events cannot be involved in a
minimal conflict): k

S[γ]
s (x, q−1

[s] (U)) = δq[s](o(x))(U). If o(x) does not exist, we

let k
S[γ]
s (x,X) = 0.

We can now define a kernel k
S[γ]
x,s : π−1{x} � π−1{x′} for every atomic extension

x
s

−−⊂ x′ in GS , ie. when x′ \ x = {s}, as follows:

kS[γ]
x,s (y, U) = ks(r[s),x(y), {w ∈ π−1

S {[s]} | (y, w) ∈ U}).

The second argument to ks above is always measurable, by a standard measure-
theoretic argument based on Lemma 3, as x ∩ [s] = [s).

From this definition we derive:

Lemma 4. If x
s1−−⊂x1 and x

s2−−⊂x2 are concurrent extensions of x (i.e. s1 and
s2 are not in conflict), then k

S[γ]
x1,s2 ◦ k

S[γ]
x,s1 = k

S[γ]
x2,s1 ◦ k

S[γ]
x,s2 .

336 S. Castellan and H. Paquet

Given a configuration x ∈ C (GS) and a covering chain ∅
s1−−⊂x1 . . .

sn−−⊂xn =
x, we can finally define a measure on π−1{x}:

μS[γ]
x = kS[γ]

xn−1,sn
◦ . . . ◦ k

S[γ]
∅,s1

(∗, ·),

where ∗ is the only trace over ∅. The particular covering chain used does not mat-
ter by the previous lemma. Using this, we can define the kernel of a quantitative
dataflow graph S as follows:

kernel(S)(γ,X) =
∑

r∈GS ,lbl(r)=Rtn

μ
S[γ]
[r] (q−1

[r],r(X)),

where the measurable map q[r],r : π−1{r} → �B� looks up the runtime value of
r in an element of the fibre over [r] (defined in Sect. 3.3).

Lemma 5. kernel(S) is an s-finite kernel �Γ � � �B�.

4 Programs as Labelled Event Structures

We now detail our interpretation of programs as quantitative dataflow graphs.
Our interpretation is given by induction, similarly to the measure-theoretic inter-
pretation given in Sect. 2.3, in which composition of kernels plays a central role.
In Sect. 4.1, we discuss how to compose quantitative dataflow graphs, and in
Sect. 4.2, we define our interpretation.

4.1 Composition of Probablistic Event Structures

Consider two quantitative dataflow graphs, S on Γ � A, and T on Γ, a : A � B
where a does not occur in Γ . In what follows we show how they can be composed
to form a quantitative dataflow graph T �a S on Γ � B.

Unlike in the kernel model of Sect. 2.3, we will need two notions of composi-
tion. The first one is akin to the usual sequential composition: actions in T must
wait on S to return before they can proceed. The second is closer to parallel
composition: actions on T which do not depend on a read of the variable a can
be executed in parallel with S. The latter composition is used to interpret the let
construct. In let a = M in N , we want all the probabilistic actions or reads
on other variables which do not depend on the value of a to be in parallel with
M . However, in a program such as case M of {(i, x) ⇒ Ni}i∈I we do not want
any actions of Ni to start before the selected branch is known, i.e. before the
return value of M is known.

By way of illustration, consider the following simple example, in which we
only consider runtime graphs, ignoring the rest of the structure for now. Suppose
S and T are given by

S =
Rd b tt Rd b ff

Rtn ff Rtn tt

T =
Sam r Rd a tt Rd aff

Rtn ((), tt) Rtn ((),ff)

Probabilistic Programming Inference via Intensional Semantics 337

The graph S can be seen to correspond to the program if b then ff else tt
and T to the pairing (sample d (0), a) for any d. Here S is a runtime graph on
b : B � B and T on a : B, b : B � B.

Both notions of compositions are displayed in the diagram below. The sequen-
tial composition (left) corresponds to

if b then (sample d (0),ff) else (sample d (0), tt)

and the parallel composition to (sample d (0), if b then ff else tt):

T �a
seq S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Rd b tt Rd b ff

Sam r Sam r

Rtn ff Rtn tt

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T �a
par S =

⎛

⎜
⎜
⎝

Sam r Rd b tt Rd b ff

Rtn ff Rtn tt

⎞

⎟
⎟
⎠

Composition of Runtime and Dependency Graphs. Let us now define both com-
position operators at the level of the event structures. Through the bijection
L static

Γ�B � L run
Γ ′�1 where Γ ′(a) = 1 for all a ∈ dom(Γ), we will see dependency

graphs and runtime graphs as the same kind of objects, event structures labelled
over L run

Γ�A.
The two compositions S �a

par T and S �a
seq T are two instances of the same

construction, parametrised by a set of labels D ⊆ L run
Γ,a:A�B. Informally, D spec-

ifies which events of T are to depend on the return value of S in the resulting
composition graph. It is natural to assume in particular that D contains all reads
on a, and all return events.

Sequential and parallel composition are instances of this construction where
D is set to one of the following:

DΓ,a:A�B
seq = L run

Γ,a:A�B DΓ,a:A�B
par = {Rd a v,Rtn v ∈ L run

Γ,a:A�B}.

We proceed to describe the construction for an abstract D. Let T be an
event structure labelled by L run

Γ,a:A�B and S labelled by L run
Γ�A. A configuration

x ∈ C (S) is a justification of y ∈ C (T) when

1. if lbl(y) intersects D, then x contains a return event
2. for all t ∈ y with label Rd a v, there exists an event s ∈ x labelled Rtn v.

In particular if lbl(y) does not intersect D, then any configuration of S is a
justification of y. A minimal justification of y is a justification that admits no
proper subset which is also a justification of y. We now define the event structure
S ·D T as follows:

– Events: S ∪ {(x, t) | x ∈ C (S), t ∈ T, x minimal justification for [t]};
– Causality : ≤S ∪ {(x, t), (x′, t′) | x ⊆ x′ ∧ t ≤ t′} ∪ {s, (x, t) | s ∈ x};
– Conflict : the symmetric closure of

#S ∪ {(x, t), (x′, t′) | x ∪ x′ �∈ C (T) ∨ t#Bt′}
∪ {s, (x, t) | {s} ∪ x �∈ C (S)}.

338 S. Castellan and H. Paquet

Lemma 6. S ·D T is an event structure, and the following is an order-
isomorphism:

〈·, ·〉 : {(x, y) ∈ C (S) × C (T) | x is a justification of y} ∼= C (S ·D T).

This event structure is not quite what we want, since it still contains return
events from S and reads on a from T . To remove them, we use the following
general construction. Given a Σ-labelled event structure E and V ⊆ E a set of
visible events, its projection E ↓ V has events V and causality, conflict and
labelling inherited from E. Thus the composition of S and T is:

S �a
D T := S ·D T ↓ ({s ∈ S | s not a return} ∪ {(x, t) | t not a read on a}).

As a result S �a
D T is labelled over L run

Γ�B as needed.

Dataflow Information. We now explain how this construction lifts to dataflow
graphs. Consider dataflow graphs S = (ES , GS , πS : ES → GS) on Γ � A and
T = (ET , GT , πT : ET → ET) on Γ, a : A � B. Given D ⊆ L static

Γ,a:A�B we define

ES·DT = ES ·α−1D ET GS·DT = GS ·D GT

ES	a
DT = ES �a

α−1D ET GS	a
DT = GS �a

D GT

Lemma 7. The maps πS and πT extend to rigid maps

πS·DT : ES·α−1DT → GS·DT

πS	a
DT : ES	a

α−1D
T → GS	a

DT

Moreover, if 〈x, y〉 ∈ C (ES·DT), 〈πS x, πT y〉 is a well-defined configura-
tion of GS·DT . As a result, for 〈x, y〉 ∈ C (GS·DT), we have a injection ϕx,y :
π−1{〈x, y〉} → π−1{x} × π−1{y} making the following diagram commute:

π−1{〈x, y〉} π−1{x} × π−1{y}

Q(〈x, y〉) Q(x) × Q(y)

ϕx,y

q〈x,y〉

∼=

qx × qy

In particular, ϕx,y is measurable and induces the σ-algebra on π−1{〈x, y〉}. We
write ϕx for the map ϕx,∅, an isomorphism.

Adding Probability. At this point we have defined all the components of dataflow
graphs S �a

D T and S ·D T . We proceed to make them quantitative.
Observe first that each sampling event of GS·DT (or equivalently of GS	a

DT

– sampling events are never hidden) corresponds either to a sampling event of
GS , or to an event (x, t) where t is a sampling event of GT . We consider both
cases to define a family of kernels (kS·DT

s) between the fibres of S ·D T . This will
in turn induce a family (kS	a

DT
s) on S �a

D T .

Probabilistic Programming Inference via Intensional Semantics 339

– If s is a sample event of GS , we use the isomorphisms ϕ[s) and ϕ[s] of Lemma 7
to define:

k
S	a

DT
s (v,X) = kS

s (ϕ−1
[s) v, ϕ−1

[s] X).

– If s corresponds to (x, t) for t a sample event of GT , then for every Xx ∈
Σπ−1

S {x} and Xt ∈ Σπ−1
T {[t)} we define

k
S	a

DT

(x,t) (〈x′, y′〉, ϕ−1
x,[t](Xx × Xt)) = δx′(Xx) × kT

t (y′,Xt).

By Lemma 7, the sets ϕ−1
x,[t](Xx × Xt) form a basis for Σπ−1{〈x,[t)}, so that

this definition determines the entire kernel.

So we have defined a kernel kS·DT
s for each sample event s of GS·DT . We move

to the composition (S �a
D T). Recall that the causal history of a configuration

z ∈ C (GS	a
DT) is the set [z], a configuration of GS·DT . We see that hiding does

not affect the fibre structure:

Lemma 8. For any z ∈ C (GS	a
DT), there is a measurable isomorphism ψz :

π−1
S	a

DT {z} ∼= π−1
S·DT {[z]}.

Using this result and the fact that GS	a
DT ⊆ GS·DT , we may define for each

s:
k

S	a
DT

s (v,X) = kS·DT
s (ψ[s)(v), ψ[s]X).

We conclude:

Lemma 9. S �a
D T := (GS	a

DT , ES	a
DT , πS	a

DT , (kS	a
DT

s)) is a quantitative
dataflow graph on Γ � B.

Multicomposition. By chaining this composition, we can compose on several
variables at once. Given quantitative dataflow graphs Si on Γ � Ai and T on
Γ, a1 : A1, . . . , an : An � A we define

(Si) �(ai)
par T := S1 �a1

par (. . . �an
par T)

(Si) �(ai)
seq T := S1 �a1

seq (. . . �an
seq T)

4.2 Interpretation of Programs

We now describe how to interpret programs of our language using quantita-
tive dataflow graphs. To do so we follow the same pattern as for the measure-
theoretical interpretation given in Sect. 2.3.

Interpretation of Functions. Given a measurable function f : �A� → �B�, we
define the quantitative dataflow graph

Sa
f =

⎛

⎜
⎜
⎝

∑

v∈�A�

Rd a v

Rtn (f v)
→

Rd a

Rtn

⎞

⎟
⎟
⎠ .

We then define �f M�G as �M�G �a
par Sa

f where a is chosen so as not to occur
free in M .

340 S. Castellan and H. Paquet

Probablistic Actions. In order to interpret scoring and sampling primitives, we
need the following two quantitative dataflow graphs:

score =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
r∈R

Rd a r

Sco r

Rtn ()

→
Rd a

Sco

Rtn

⎞
⎟⎟⎟⎟⎟⎟⎠

sampled =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
r∈Rn

Rd a r

Sam s

Rtn ()

→
Rd a

Sam

Rtn

, kSam

⎞
⎟⎟⎟⎟⎟⎟⎠

and we define kSam by integrating the density function d; here we identify
Q({Rd a ,Sam}) and π−1{{Rd a ,Sam}}:

kSam({Rd a r}, U) =
∫

q∈U,q(Rd a)=r

d(r, q(Sam))dλ.

We can now interpret scoring and sampling constructs:

�score M�G = �M�G �a
par score �sample d (M)�G = �M�G �a

par sampled.

Interpretation of Tuples and Variables. Given a family (ai)i∈I , we define the
dataflow graph tuple(ai:Ai)

on a1 : A1, . . . , an : An � A1 × . . . × An as follows.
Its set of events is the disjoint union

⋃

i∈I,v∈�Ai�

Rd ai v +
⋃

v∈�A1×...×An�

Rtnv

where the conflict is induced by Rd ai v ���� Rd ai v′ for v �= v′; and causality
contains all the pairs Rd ai v � Rtn (v1, . . . , vn) where vi = v. Then we form a
quantitative dataflow graph Tuple(ai:Ai)

, whose dependency graph is tuple(ai:1)

(up to the bijection L run
Γ�A � L static

Γ ′�1 where Γ ′(a) = 1 for a ∈ dom(Γ)); and the
runtime graph is tuple(ai:Ai)

, along with the obvious rigid map between them.
We then define the semantics of (M1, . . . , Mn):

�(M1, . . . , Mn)�G = (�Mi�G)i �(ai)
par Tupleai:Ai ,

where the ai are chosen free in all of the Mj . This construction is also useful to
interpret variables:

�a�G = Tuplea:A where Γ � a : A.

Interpretation of Pattern Matching. Consider now a term of the form caseM of
{(i, a) ⇒ Ni}i∈i. By induction, we have that �Ni�G is a quantitative dataflow
graph on Γ, a : Ai � B. Let us write �Ni�

∗
G for the quantitative dataflow graph

on Γ, a : (
∑

i∈I Ai) � B obtained by relabelling events of the form Rd a v to
Rd a (i, v), and sequentially precomposing with Tuplea:

∑
i∈I Ai

. This ensures that

Probabilistic Programming Inference via Intensional Semantics 341

minimal events in �Ni�
∗
G are reads on a. We then build the quantitative dataflow

graph
∑

i∈I�Ni�
∗
G on Γ, a :

∑
i∈I Ai � B. This can be composed with �M�G :

�case M of {(i, a) ⇒ Ni}i∈I�G = �M�G �a
seq

(
∑

i∈I

�Ni�
∗
G

)

.

It is crucial here that one uses sequential composition: none of the branches must
be evaluated until the outcome of M is known.

Adequacy of Composition. We now prove that our interpretation is adequate
with respect to the measure-theoretic semantics described in Sect. 2.3. Given
any subset D ⊆ L static

Γ,a:A�B containing returns and reads on a, we show that the
composition S �a

D T does implement the composition of kernels:

Theorem 1. For S a quantitative dataflow graph on Γ � A and T on Γ, a : A �
B, we have

kernel(S �a
D T) = kernel(T) ◦ kernel(S) : �Γ � → �B�.

From this result, we can deduce that the semantics in terms of quantitative
dataflow graphs is adequate with respect to the measure-theoretic semantics:

Theorem 2. For every term Γ � M : A, kernel(�M�G) = �M�.

5 An Inference Algorithm

In this section, we exploit the intensional semantics defined above and define
a Metropolis-Hastings inference algorithm. We start, in Sect. 5.1, by giving a
concrete presentation of those quantitative dataflow graphs arising as the inter-
pretation of probabilistic programs; we argue this makes them well-suited for
manipulation by an algorithm. Then, in Sect. 5.2, we give a more formal intro-
duction to the Metropolis-Hastings sampling methods than that given in Sect. 3.
Finally, in Sect. 5.3, we build the proposal kernel on which our implementation
relies, and conclude.

5.1 A Concrete Presentation of Probabilistic Dataflow Graphs

Quantitative dataflow graphs as presented in the previous sections are not easy
to handle inside of an algorithm: among other things, the runtime graph has an
uncountable set of events. In this section we show that some dataflow graphs, in
particular those needed for modelling programs, admit a finite representation.

Recovering Fibres. Consider a dataflow graph S = (ES , GS , πS) on Γ � B. It
follows from Lemma 3 that the fibre structure of S is completely determined
by the spaces π−1

S {[s]}, for s ∈ GS , so we focus on trying to give a simplified
representation for those spaces.

342 S. Castellan and H. Paquet

First, let us notice that if s is a return or score event, given x ∈ π−1{x}, the
value qx(s) is determined by q|[s). In other words the map π−1{[s]} → Q([s)) is
an injection. This is due to the fact that minimal conflict in ES cannot involve
return or score events. As a result, ES induces a partial function oS

s : Q([s)) ⇀
Q(lbl(s)), called the outcome function. It is defined as follows:

oS
s (q) =

{
q[s](x′)(s) if there exists x′ ∈ π−1{x′}, q[s](x′)|[s) = q,

undefined otherwise.

Note that x′ must be unique by the remark above since its projection to
Q([s)) is determined by q. The function oS is partial, because it might be the
case that the event s occurs conditionally on the runtime value on [s).

In fact this structure is all we need in order to describe a dataflow graph:

Lemma 10. Given GS a dependency graph on Γ � B, and partial functions
(os) : Q([s)) ⇀ Q(lbl(s)) for score and return events of S. There exists a
dataflow graph (ES , GS , πS : ES → GS) whose outcome functions coincide with
the os. Moreover, there is an order-isomorphism

C (ES) ∼= {(x, q) | x ∈ C (GS), q ∈ Q(x),∀s ∈ x, os(q|[s)) = q(s)}.

Adding Probabilities. To add probabilities, we simply equip each sample event s
of GS with a density function ds : Q([s)) × R ⇀ R.

Definition 6. A concrete quantitative dataflow graph is a tuple (GS , (os :
Q([s)) ⇀ Q(lbl(s))), (ds : Q([s)) × R ⇀ R)s∈sample(GS)) where ds(x, ·) is
normalised.

Lemma 11. Any concrete quantitative dataflow graph S unfolds to a quantita-
tive dataflow graph unfold S.

We see now that the quantitative dataflow graphs arising as the interpretation
of a program must be the unfolding of a concrete quantitative dataflow graph:

Lemma 12. For any concrete quantitative dataflow graphs S on Γ � A and
T on Γ, a : A � B, unfold S �a

D Tunfold T is the unfolding of a concrete
quantitative dataflow graph. It follows that for any program Γ � M : B, �M�G
is the unfolding of a concrete quantitative dataflow graph.

5.2 Metropolis-Hastings

Recall that the Metropolis-Hastings algorithm is used to sample from a density
function d : A → R which may not be normalised. Here A is a measurable state
space, equipped with a measure λ. The algorithm works by building a Markov
chain whose stationary distribution is D, the probability distribution obtained
from d after normalisation:

∀X ∈ ΣA,D(X) =

∫
x∈X

d(x)
∫

x∈A
d(x)

.

Our presentation and reasoning in the rest of this section are inspired by the
work of Borgström et al. [2].

Probabilistic Programming Inference via Intensional Semantics 343

Preliminaries on Markov Chains. A Markov chain on a measurable state space
A is a probability kernel k : A � A, viewed as a transition function: given a state
x ∈ A, the distribution k(x, ·) is the distribution from which a next sample state
will be drawn. Usually, each k(x, ·) comes with a procedure for sampling: we
will treat this as a probabilistic program M(x) whose output is the next state.
Given an initial state x ∈ A and a natural number n ∈ N, we have a distribution
kn(x, ·) on A obtained by iterating k n times. We say that the Markov chain k
has limit the distribution μ on A when

lim
n→∞ ||kn(x, ·) − μ|| = 0 where ||μ1 − μ2|| = sup

A∈ΣA

μ1(A) − μ2(A).

For the purposes of this paper, we call a Markov chain k : A → A com-
putable when there exists a type A such that �A� = A (up to iso) and an
expression without scores x : A � K : A such that �K� = k. (Recall that pro-
grams without conditioning denote probabilistic kernels, and are easily sampled
from, since all standard distributions in the language are assumed to come with
a built-in sampler.)

We will use terms of our language to describe computable Markov chains
language, taking mild liberties with syntax. We assume in particular that pro-
grams may call each other as subroutines (this can be done via substitutions),
and that manipulating finite structures is computable and thus representable in
the language.

The Metropolis-Hastings Algorithm. Recall that we wish to sample from a dis-
tribution with un-normalised density d : A → R; d is assumed to be computable.
The Markov chain defined by the Metropolis-Hastings algorithm has two param-
eters: a computable Markov chain x : A � P : A, the proposal kernel, and a
measurable, computable function p : A2 → R representing the kernel �P �, i.e.

�P �(x,X ′) =
∫

x′∈X′
p(x, x′) dλ(x′).

The Markov-chain MH(P, p, d) is defined as

MH(P, p, d)(x) := let x′ = P (x) in

let α = min
(

1,
d(x′) × p(x, x′)
d(x) × p(x′, x)

)

in

let u = sample uniform (0, 1) in

if u < α then x′ else x

In words, the Markov chain works as follows: given a start state x, it generates
a proposal for the next state x′ using P . It then computes an acceptance ratio α,
which is the probability with which the new sample will be accepted : the return
state will then either be the original x or x′, accordingly.

344 S. Castellan and H. Paquet

Assuming P and p satisfy a number of conditions, the algorithm is correct:

Theorem 3. Assume that P and p satisfies the following properties:

1. Strong irreducibility: There exists n ∈ N such that for all x ∈ A and
X ∈ ΣA such that D(X) �= ∅ and d(x) > 0, there exists n ∈ N such that
�P �n(x,X) > 0.

2. �P �(x,X ′) =
∫

x′∈X′ p(x, x′).
3. If d(x) > 0 and p(x, y) > 0 then d(y) > 0.
4. If d(x) > 0 and d(y) > 0, then p(x, y) > 0 iff p(y, x) > 0.

Then, the limit of MH(P, p, d) for any initial state x ∈ A with d(x) > 0 is equal
to D, the distribution obtained after normalising d.

5.3 Our Proposal Kernel

Consider a closed program � M : A in which every measurable function is a com-
putable one. Then, its interpretation as a concrete quantitative dataflow graph is
computable, and we write S for the quantitative dataflow graph whose unfolding
is �M�G . Moreover, because M is closed, its measure-theoretic semantics gives a
measure �M� on �A�. Assume that norm(�M�) is well-defined: it is a probabil-
ity distribution on �A�. We describe how a Metropolis-Hastings algorithm may
be used to sample from it, by reducing this problem to that of sampling from
configurations of ES according to the following density:

dS(x, q) :=

⎛

⎝
∏

s∈sample(x)

ds(q(s))

⎞

⎠

⎛

⎝
∏

s∈score(x)

q(s)

⎞

⎠ .

Lemma 10 induces a natural measure on C (ES). We have:

Lemma 13. For all X ∈ ΣC (ES), μS(X) =
∫

y∈X

dS(y)dy.

Note that dS(x, q) is easy to compute, but it is not normalised. Computing
the normalising factor is in general intractable, but the Metropolis-Hastings
algorithm does not require the density to be normalised.

Let us write μS
norm(X) = μS(X)

μS(C (ES))
for the normalised distribution. By ade-

quacy, we have for all X ∈ Σ�A�:

norm�M�(X) = μS
norm(result−1(X)).

where result : maxC (ES) ⇀ �A� maps a maximal configuration of ES to its
return value, if any. This says that sampling from norm�M� amounts to sampling
from μS

norm and only keeping the return value.
Accordingly, we focus on designing a Metropolis-Hastings algorithm for sam-

pling values in C (ES) following the (unnormalised) density dS . We start by
defining a proposal kernel for this algorithm.

Probabilistic Programming Inference via Intensional Semantics 345

To avoid overburdening the notation, we will no longer distinguish between
a type and its denotation. Since GS is finite, it can be represented by a type,
and so can C (GS). Moreover, C (ES) is a subset of

∑
x∈C (GS) Q(x) which is also

representable as the type of pairs (x ∈ C (GS), q ∈ Q(x)). Operations on GS and
related objects are all computable and measurable so we can directly use them in
the syntax. In particular, we will make use of the function ext : C (ES) → GS +1

which for each configuration (x, q) ∈ C (ES) returns (1, s) if there exists x
s

−−⊂
with os(q|[s)) defined, and (2, ∗) if (x, q) is maximal.

Informally, for (x, q) ∈ C (ES), the algorithm is:

– Pick a sample event s ∈ x, randomly over the set of sample events of x.
– Construct x0 := x \ {s′ ∈ x | s′ ≥ s} ∪ {s} ∈ C (GS).
– Return a maximal extension (x′, q′) of (x0, q|x0) by only resampling the sam-

ple events of x′ which are not in x.

The last step follows the single-site MH principle: sample events in x ∩ x′ have
already been evaluated in x, and are not updated. However, events which are in
x′ \ x belong to conditional branches not explored in x; they must be sampled.

We start by formalising the last step of the algorithm. We give a probabilistic
program complete which has three parameters: the original configuration (x, q),
the current modification (x0, q0) and returns a possible maximal extension:

complete(x, q, x0, q0) = case ext(x0, q0) of

(2, ()) ⇒ (x0, q0)
(1, s) ⇒
if s is a return or a score event then

complete(x, v, x0 ∪ {s}, q0[s := os(q0)])
else if s ∈ x

complete(x, q, x0 ∪ {s}, q0[s := q(s)])
else

complete(x, q, x0 ∪ {s}, q0[s := sample d (q0)])

The program starts by trying to extend (x0, q0) by calling ext. If (x0, q0) is
already maximal, we directly return it. Otherwise, we get an event s. To extend
the quantitative information, there are three cases:

– if s is not a sample event, ie. since S is closed it must be a return or a score
event, we use the function os.

– if s is a sample event occurring in x, we use the value in q
– if s is a sample event not occurring in x, we sample a value for it.

346 S. Castellan and H. Paquet

This program is recursive, but because GS is finite, there is a static bound on
the number of recursive calls; thus this program can be unfolded to a program
expressible in our language. We can now define the proposal kernel:

PS(x, q) =
let s = sample uniformly over sample events in x in

let r = sample ds (q|[s)) in

let x0 = x \ {s′ ≥ s | s′ ∈ x} in

complete(x, q, x0, q[s := r])

We now need to compute the density for PS to be able to apply Metropolis-
Hastings. Given (x, q), (x′, q′) ∈ C (ES), we define:

pS((x, q), (x′, q′)) =
∑

s∈sample(x)

⎛

⎝
qs(v′|[s))

|sample(x)| ×
∏

s′∈sample(x′\x)

qs′(v|[s′))

⎞

⎠ .

Theorem 4. The Markov chain PS and density p satisfy the hypothe-
sis of Theorem3, as a result for any (x, q) ∈ C (ES) the distribution
�MH(dS , PS , pS)n

�((x, q), ·) tends to μP
norm as n goes to infinity.

One can thus sample from norm(�M�) using the algorithm above, keeping
only the return value of the obtained configuration.

Let us re-state the key advantage of our approach: having access to the data
dependency information, complete requires fewer steps in general, because at
each proposal step only a portion of the graph needs exploring.

6 Conclusion

Related Work. There are numerous approaches to the semantics of programs
with random choice. Among those concerned with statistical applications of
probabilistic programming are Staton et al. [18,19], Ehrhard et al. [7], and
Dahlqvist et al. [6]. A game semantics model was announced in [15].

The work of Scibior et al. [17] was influential in suggesting a denotational
approach for proving correctness of inference, in the framework of quasi-Borel
spaces [9]. It is not clear however how one could reason about data dependencies
in this framework, because of the absence of explicit causal information.

Hur et al. [11] gives a proof of correctness for Trace MCMC using new forms
of operational semantics for probabilistic programs. This method is extended to
higher-order programs with soft constraints in Borgström et al. [2]. However,
these approaches do not consider incremental recomputation.

To the best of our knowledge, this is the first work addressing formal cor-
rectness of incremental recomputation in MCMC. However, methods exist which
take advantage of data dependency information to improve the performance of
each proposal step in “naive” Trace MCMC. We mention in particular the work

Probabilistic Programming Inference via Intensional Semantics 347

on slicing by Hur et al. [10]; other approaches include [5,24]. In the present work
we claim no immediate improvement in performance over these techniques, but
only a mathematical framework for reasoning about the structures involved.

It is worth remarking that our event structure representation is reminiscent
of graphical model representation made explicit in some languages. Indeed, for a
first-order language such as the one of this paper, Bayesian networks can directly
be used as a semantics, see [20]. We claim that the alternative view offered by
event structures will allow for an easier extension to higher-order programs, using
ideas from game semantics.

Perspectives. This is the start of an investigation into intensional semantics for
probabilistic programs. Note that the framework of event structures is very flex-
ible and the semantics presented here is by no means the only possible one.
Additionally, though the present work only treats the case of a first-order lan-
guage, we believe that building on recent advances in probabilistic concurrent
game semantics [3,16] (from which the present work draws much inspiration), we
can extend the techniques of this paper to arbitrary higher-order probabilistic
programs with recursion.

Acknowledgements. We thank the anonymous referees for helpful comments and
suggestions. We also thank Ohad Kammar for suggesting the idea of using causal
structures for reasoning about data dependency in this context. This work has
been partially sponsored by: EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1,
EP/N027833/1, EP/N028201/1, and an EPSRC PhD studentship.

References

1. Billingsley, P.: Probability and Measure. John Wiley & Sons, New York (2008)
2. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-

dation for universal probabilistic programming. In: ACM SIGPLAN Notices, vol.
51, pp. 33–46. ACM (2016)

3. Castellan, S., Clairambault, P., Paquet, H., Winskel, G.: The concurrent game
semantics of probabilistic PCF. In: 2018 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). ACM/IEEE (2018)

4. Castellan, S., Paquet, H.: Probabilistic programming inference via intensional
semantics. Technical report (2019). http://iso.mor.phis.me/publis/esop19.pdf

5. Chen, Y., Mansinghka, V., Ghahramani, Z.: Sublinear approximate inference for
probabilistic programs. stat, 1050:6 (2014)

6. Dahlqvist, F., Danos, V., Garnier, I., Silva, A.: Borel kernels and their approxima-
tion, categorically. arXiv preprint arXiv:1803.02651 (2018)

7. Ehrhard, T., Pagani, M., Tasson, C.: Measurable cones and stable, measurable
functions: a model for probabilistic higher-order programming, vol. 2, pp. 59:1–
59:28 (2018)

8. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of the on Future of Software Engineering, pp. 167–181.
ACM (2014)

9. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. In: LICS 2017, Reykjavik, pp. 1–12 (2017)

http://iso.mor.phis.me/publis/esop19.pdf
http://arxiv.org/abs/1803.02651

348 S. Castellan and H. Paquet

10. Hur, C.-K., Nori, A.V., Rajamani, S.K., Samuel, S. Slicing probabilistic programs.
In: ACM SIGPLAN Notices, vol. 49, pp. 133–144. ACM (2014)

11. Hur, C.-K., Nori, A.V., Rajamani, S.K., Samuel, S.: A provably correct sampler
for probabilistic programs. In: LIPIcs-Leibniz International Proceedings in Infor-
matics, vol. 45. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

12. Kiselyov, O.: Probabilistic programming language and its incremental evaluation.
In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 357–376. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47958-3 19

13. Kiselyov, O.: Problems of the lightweight implementation of probabilistic pro-
gramming. In: Proceedings of Workshop on Probabilistic Programming Semantics
(2016)

14. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

15. Ong, L., Vákár, M.: S-finite kernels and game semantics for probabilistic program-
ming. In: POPL 2018 Workshop on Probabilistic Programming Semantics (PPS)
(2018)

16. Paquet, H., Winskel, G.: Continuous probability distributions in concurrent games.
Electr. Notes Theor. Comput. Sci. 341, 321–344 (2018)

17. Ścibior, A., et al.: Denotational validation of higher-order Bayesian inference. In:
Proceedings of the ACM on Programming Languages, vol. 2(POPL), p. 60 (2017)

18. Staton, S.: Commutative semantics for probabilistic programming. In: Yang, H.
(ed.) ESOP 2017. LNCS, vol. 10201, pp. 855–879. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 32

19. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of LICS 2016, New York, NY, USA, July 5–8, 2016,
pp. 525–534 (2016)

20. van de Meent, J.-W., Paige, B., Yang, H., Wood, F.: An introduction to proba-
bilistic programming. arXiv preprint arXiv:1809.10756 (2018)

21. Wingate, D., Stuhlmüller, A., Goodman, N.: Lightweight implementations of prob-
abilistic programming languages via transformational compilation. In: Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pp. 770–778 (2011)

22. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

23. Winskel, G.: Distributed probabilistic and quantum strategies. Electr. Notes Theor.
Comput. Sci. 298, 403–425 (2013)

24. Wu, Y., Li, L., Russell, S., Bodik, R.: Swift: compiled inference for probabilistic
programming languages. arXiv preprint arXiv:1606.09242 (2016)

25. Yang, L., Hanrahan, P., Goodman, N.: Generating efficient MCMC kernels from
probabilistic programs. In: Artificial Intelligence and Statistics, pp. 1068–1076
(2014)

https://doi.org/10.1007/978-3-319-47958-3_19
https://doi.org/10.1007/978-3-662-54434-1_32
http://arxiv.org/abs/1809.10756
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
http://arxiv.org/abs/1606.09242

Probabilistic Programming Inference via Intensional Semantics 349

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Types

Handling Polymorphic Algebraic Effects

Taro Sekiyama1(B) and Atsushi Igarashi2(B)

1 National Institute of Informatics, Tokyo, Japan
tsekiyama@acm.org

2 Kyoto University, Kyoto, Japan
igarashi@kuis.kyoto-u.ac.jp

Abstract. Algebraic effects and handlers are a powerful abstraction
mechanism to represent and implement control effects. In this work,
we study their extension with parametric polymorphism that allows
abstracting not only expressions but also effects and handlers. Although
polymorphism makes it possible to reuse and reason about effect imple-
mentations more effectively, it has long been known that a naive combi-
nation of polymorphic effects and let-polymorphism breaks type safety.
Although type safety can often be gained by restricting let-bound
expressions—e.g., by adopting value restriction or weak polymorphism—
we propose a complementary approach that restricts handlers instead of
let-bound expressions. Our key observation is that, informally speaking, a
handler is safe if resumptions from the handler do not interfere with each
other. To formalize our idea, we define a call-by-value lambda calculus
λlet

eff that supports let-polymorphism and polymorphic algebraic effects
and handlers, design a type system that rejects interfering handlers, and
prove type safety of our calculus.

1 Introduction

Algebraic effects [20] and handlers [21] are a powerful abstraction mechanism
to represent and implement control effects, such as exceptions, interactive I/O,
mutable states, and nondeterminism. They are growing in popularity, thanks to
their success in achieving modularity of effects, especially the clear separation
between their interfaces and their implementations. An interface of effects is
given as a set of operations—e.g., an interface of mutable states consists of two
operations, namely, put and get—with their signatures. An implementation is
given by a handler H , which provides a set of interpretations of the operations
(called operation clauses), and a handle–with expression handleM withH asso-
ciates effects invoked during the computation of M with handler H . Algebraic
effects and handlers work as resumable exceptions: when an effect operation is
invoked, the run-time system tries to find the nearest handler that handles the
invoked operation; if it is found, the corresponding operation clause is evaluated
by using the argument to the operation invocation and the continuation up to
the handler. The continuation gives the ability to resume the computation from
the point where the operation was invoked, using the result from the operation
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 353–380, 2019.
https://doi.org/10.1007/978-3-030-17184-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_13&domain=pdf
http://orcid.org/0000-0001-9286-230X
http://orcid.org/0000-0002-5143-9764
https://doi.org/10.1007/978-3-030-17184-1_13

354 T. Sekiyama and A. Igarashi

clause. Another modularity that algebraic effects provide is flexible composition:
multiple algebraic effects can be combined freely [13].

In this work, we study an extension of algebraic effects and handlers with
another type-based abstraction mechanism—parametric polymorphism [22]. In
general, parametric polymorphism is a basis of generic programming and enhance
code reusability by abstracting expressions over types. This work allows abstract-
ing not only expressions but also effect operations and handlers, which makes it
possible to reuse and reason about effect implementations that are independent
of concrete type representations. Like in many functional languages, we intro-
duce polymorphism in the form of let-polymorphism for its practically desirable
properties such as decidable typechecking and type inference.

As is well known, however, a naive combination of polymorphic effects and
let-polymorphism breaks type safety [11,23]. Many researchers have attacked this
classical problem [1,2,10,12,14,17,23,24], and their common idea is to restrict
the form of let-bound expressions. For example, value restriction [23,24], which
is the standard way to make ML-like languages with imperative features and
let-polymorphism type safe, allows only syntactic values to be polymorphic.

In this work, we propose a new approach to achieving type safety in a lan-
guage with let-polymorphic and polymorphic effects and handlers: the idea is
to restrict handlers instead of let-bound expressions. Since a handler gives an
implementation of an effect, our work can be viewed as giving a criterion that
suggests what effects can cooperate safely with (unrestricted) let-polymorphism
and what effects cannot. Our key observation for type safety is that, informally
speaking, an invocation of a polymorphic effect in a let-bound expression is safe
if resumptions in the corresponding operation clause do not interfere with each
other. We formalize this discipline into a type system and show that typeable
programs do not get stuck.

Our contributions are summarized as follows.

– We introduce a call-by-value, statically typed lambda calculus λlet
eff that sup-

ports let-polymorphism and polymorphic algebraic effects and handlers. The
type system of λlet

eff allows any let-bound expressions involving effects to be
polymorphic, but, instead, disallows handlers where resumptions interfere
with each other.

– To give the semantics of λlet
eff , we formalize an intermediate language λΛ

eff

wherein type information is made explicit and define a formal elaboration
from λlet

eff to λΛ
eff.

– We prove type safety of λlet
eff by type preservation of the elaboration and type

soundness of λΛ
eff.

We believe that our approach is complementary to the usual approach of restrict-
ing let-bound expressions: for handlers that are considered unsafe by our crite-
rion, the value restriction can still be used.

The rest of this paper is organized as follows. Section 2 provides an overview
of our work, giving motivating examples of polymorphic effects and handlers,
a problem in naive combination of polymorphic effects and let-polymorphism,

Handling Polymorphic Algebraic Effects 355

and our solution to gain type safety with those features. Section 3 defines the
surface language λlet

eff , and Sect. 4 defines the intermediate language λΛ
eff and

the elaboration from λlet
eff to λΛ

eff. We also state that the elaboration is type-
preserving and that λΛ

eff is type sound in Sect. 4. Finally, we discuss related work
in Sect. 5 and conclude in Sect. 6. The proofs of the stated properties and the
full definition of the elaboration are given in the full version at https://arxiv.
org/abs/1811.07332.

2 Overview

We start with reviewing how monomorphic algebraic effects and handlers work
through examples and then extend them to a polymorphic version. We also
explain why polymorphic effects are inconsistent with let-polymorphism, if
naively combined, and how we resolve it.

2.1 Monomorphic Algebraic Effects and Handlers

Exception. Our first example is exception handling, shown in an ML-like lan-
guage below.

1 effect fail : unit ↪→ unit
2
3 let div100 (x:int) : int =
4 if x = 0 then (#fail(); -1)
5 else 100 / x
6
7 let f (y:int) : int option =
8 handle (div_100 y) with
9 return z → Some z

10 fail z → None

Some and None are constructors of datatype α option. Line 1 declares an effect
operation fail, which signals that an anomaly happens, with its signature
unit ↪→ unit, which means that the operation is invoked with the unit value (),
causes some effect, and may return the unit value. The function div100, defined
in Lines 3–5, is an example that uses fail; it returns the number obtained by
dividing 100 by argument x if x is not zero; otherwise, if x is zero, it raises
an exception by calling effect operation fail.1 In general, we write #op(M)
for invoking effect operation op with argument M . The function f (Lines 7–10)
calls div 100 inside a handle–with expression, which returns Some n if div 100
returns integer n normally and returns None if it invokes fail.

An expression of the form handle M with H handles effect operations
invoked in M (which we call handled expression) according to the effect inter-
pretations given by handler H . A handler H consists of two parts: a single return
1 Here, “; -1” is necessary to make the types of both branches the same; it becomes

unnecessary when we introduce polymorphic effects.

https://arxiv.org/abs/1811.07332
https://arxiv.org/abs/1811.07332

356 T. Sekiyama and A. Igarashi

clause and zero or more operation clauses. A return clause return x → M ′ will
be executed if the evaluation of M results in a value v . Then, the value of M ′

(where x is bound to v) will be the value of the entire handle–with expression.
For example, in the program above, if a nonzero number n is passed to f, the
handle–with expression would return Some (100/n) because div100 n returns
100/n. An operation clause op x → M ′ defines an implementation of effect op:
if the evaluation of handled expression M invokes effect op with argument v ,
expression M ′ will be evaluated after substituting v for x and the value of M ′

will be the value of the entire handle–with expression. In the program example
above, if zero is given to f, then None will be returned because div100 0 invokes
fail.

As shown above, algebraic effect handling is similar to exception handling.
However, a distinctive feature of algebraic effect handling is that it allows
resumption of the computation from the point where an effect operation was
invoked. The next example demonstrates such an ability of algebraic effect
handlers.

Choice. The next example is effect choose, which returns one of the given two
arguments.

1 effect choose : int × int ↪→ int
2
3 handle (#choose(1,2) + #choose(10,20)) with
4 return x → x
5 choose x → resume (fst x)

As usual, A1 × A2 is a product type, (M1,M2) is a pair expression, and fst
is the first projection function. The first line declares that effect choose is for
choosing integers. The handled expression #choose(1,2) + #choose(10,20)
intuitively suggests that there would be four possible results—11, 21, 12, and
22—depending on which value each invocation of choose returns. The handler
in this example always chooses the first element of a given pair2 and returns
it by using a resume expression, and, as a result, the expression in Lines 3–5
evaluates to 11.

A resumption expression resume M in an operation clause makes it possible
to return a value of M to the point where an effect operation was invoked. This
behavior is realized by constructing a delimited continuation from the point of
the effect invocation up to the handle–with expression that deals with the effect
and passing the value of M to the continuation. We illustrate it by using the pro-
gram above. When the handled expression #choose(1,2) + #choose(10,20)

is evaluated, continuation c
def= [] + #choose(10,20) is constructed. Then, the

body resume (fst x) of the operation clause is evaluated after binding x to the
invocation argument (1,2). Receiving the value 1 of fst (1,2), the resumption

2 We can think of more practical implementations, which choose one of the two argu-
ments by other means, say, random values.

Handling Polymorphic Algebraic Effects 357

expression passes it to the continuation c and c[1] = 1 + #choose(10,20) is eval-
uated under the same handler. Next, choose is invoked with argument (10,20).
Similarly, continuation c′ def= 1 + [] is constructed and the operation clause for
choose is executed again. Since fst (10,20) evaluates to 10, c′[10] = 1 + 10
is evaluated under the same handler. Since the return clause returns what it
receives, the entire expression evaluates to 11.

Finally, we briefly review how an operation clause involving resump-
tion expressions is typechecked [3,13,16]. Let us consider operation clause
op(x) → M for op of type signature A ↪→ B. The typechecking is performed
as follows. First, argument x is assigned the domain type A of the signature as
it will be bound to an argument of an effect invocation. Second, for resumption
expression resume M ′ in M , (1) M ′ is required to have the codomain type B of
the signature because its value will be passed to the continuation as the result
of the invocation and (2) the resumption expression is assigned the same type as
the return clause. Third, the type of the body M has to be the same as that of
the return clause because the value of M is the result of the entire handle–with
expression. For example, the above operation clause for choose is typechecked
as follows: first, argument x is assigned type int × int; second, it is checked
whether the argument fst x of the resumption expression has int, the codomain
type of choose; third, it is checked whether the body resume (fst x) of the
clause has the same type as the return clause, i.e., int. If all the requirements
are satisfied, the clause is well typed.

2.2 Polymorphic Algebraic Effects and Handlers

This section discusses motivation for polymorphism in algebraic effects and han-
dlers. There are two ways to introduce polymorphism: by parameterized effects
and by polymorphic effects.

The former is used to parameterize the declaration of an effect by types. For
example, one might declare:

effect α choose : α × α ↪→ α

An invocation #choose involves a parameterized effect of the form A choose
(where A denotes a type), according to the type of arguments: For example,
#choose(true,false) has the effect bool choose and #choose(1,-1) has int
choose. Handlers are required for each effect A choose.

The latter is used to give a polymorphic type to an effect. For example, one
may declare

effect choose : ∀α. α × α ↪→ α

In this case, the effect can be invoked with different types, but all invocations
have the same effect choose. One can implement a single operation clause that
can handle all invocations of choose, regardless of argument types. Koka sup-
ports both styles [16] (with the value restriction); we focus, however, on the
latter in this paper. A type system for parameterized effects lifting the value
restriction is studied by Kammar and Pretnar [14] (see Sect. 5 for comparison).

358 T. Sekiyama and A. Igarashi

In what follows, we show a polymorphic version of the examples we have
seen, along with brief discussions on how polymorphic effects help with reasoning
about effect implementations. Other practical examples of polymorphic effects
can be found in Leijen’s work [16].

Polymorphic Exception. First, we extend the exception effect fail with poly-
morphism.

1 effect fail∀ : ∀α. unit ↪→ α
2
3 let div100∀ (x:int) : int =

4 if x = 0 then #fail∀()
5 else 100 / x

The polymorphic type signature of effect fail∀, given in Line 1, means that the
codomain type α can be any. Thus, we do not need to append the dummy value
-1 to the invocation of fail∀ by instantiating the bound type variable α with
int (the shaded part).

Choice. Next, let us make choose polymorphic.

1 effect choose∀ : ∀α. α × α ↪→ α
2
3 let rec random_walk (x:int) : int =

4 let b = #choose∀(true,false) in

5 if b then random_walk (x + #choose∀(1,-1))
6 else x
7
8 let f (s:int) =
9 handle random_walk s with

10 return x → x

11 choose∀ y → if rand() < 0.0 then resume (fst y)
12 else resume (snd y)

The function random walk implements random walk; it takes the current coor-
dinate x, chooses whether it stops, and, if it decides to continue, recursively calls
itself with a new coordinate. In the definition, choose∀ is used twice with dif-
ferent types: bool and int. Lines 11–12 give choose∀ an interpretation, which
calls rand to obtain a random float,3 and returns either the first or the second
element of y.

Typechecking of operation clauses could be extended in a straightforward
manner. That is, an operation clause op(x) → M for an effect operation of
signature ∀α.A ↪→ B would be typechecked as follows: first, α is locally bound
in the clause and x is assigned type A; second, an argument of a resumption

3 One might implement rand as another effect operation.

Handling Polymorphic Algebraic Effects 359

expression must have type B (which may contain type variable α); third, M
must have the same type as that of the return clause (its type cannot contain α
as α is local) under the assumption that resumption expressions have the same
type as the return clause. For example, let us consider typechecking of the above
operation clause for choose∀. First, the typechecking algorithm allocates a local
type variable α and assigns type α × α to y. The body has two resumption
expressions, and it is checked whether the arguments fst y and snd y have
the codomain type α of the signature. Finally, it is checked whether the body
is typed at int assuming that the resumption expressions have type int. The
operation clause meets all the requirements, and, therefore, it would be well
typed.

An obvious advantage of polymorphic effects is reusability. Without poly-
morphism, one has to declare many versions of choose for different types.

Another pleasant effect of polymorphic effects is that, thanks to parametric-
ity, inappropriate implementations for an effect operation can be excluded. For
example, it is not possible for an implementation of choose∀ to resume with
values other than the first or second element of y. In the monomorphic ver-
sion, however, it is possible to resume with any integer, as opposed to what the
name of the operation suggests. A similar argument applies to fail∀; since the
codomain type is α, which does not appear in the domain type, it is not pos-
sible to resume! In other words, the signature ∀α. unit ↪→ α enforces that no
invocation of fail∀ will return.

2.3 Problem in Naive Combination with Let-Polymorphism

Although polymorphic effects and handlers provide an ability to abstract and
restrict effect implementations, one may easily expect that their unrestricted
use with naive let-polymorphism, which allows any let-bound expressions to be
polymorphic, breaks type safety. Indeed, it does.

We develop a counterexample, inspired by Harper and Lillibridge [11], below.

effect get_id : ∀α. unit ↪→ (α → α)

let f () : int =
let g = #get_id() in (* g : ∀α. α → α *)

if (g true) then ((g 0) + 1) else 2

The function f first binds g to the invocation result of op. The expression
#get id() is given type α → α and the naive let-polymorphism would assign
type scheme ∀α.α → α to g, which makes both g true and g 0 (and thus the
definition of f) well typed.

An intended use of f is as follows:

handle f () with
return x → x
get_id y → resume (λz. z)

360 T. Sekiyama and A. Igarashi

The operation clause for get id resumes with the identity function λz.z. It
would be well typed under the typechecking procedure described in Sect. 2.2
and it safely returns 1.

However, the following strange expression

handle f () with
return x → x
get_id y → resume (λz1. (resume (λz2. z1)); z1)

will get stuck, although this expression would be well typed: both λz1. · · · ;z1
and λz2. z1 could be given type α → α by assigning both z1 and z2 type α,
which is the type variable local to this clause. Let us see how the evaluation gets
stuck in detail. When the handled expression f () invokes effect get id, the
following continuation will be constructed:

c
def= let g = [] in if (g true) then ((g 0) + 1) else 2 .

Next, the body of the operation clause get id is evaluated. It immediately
resumes and reduces to

c′[(λz1. c′[(λz2.z1)]; z1)]

where

c′ def=
handle c with

return x → x
get id y → resume (λz1. (resume (λz2.z1)); z1) ,

which is the continuation c under the same handler. The evaluation proceeds as
follows (here, k

def= λz1. c′[(λz2.z1)]; z1):

c′[(λz1. c′[(λz2.z1)]; z1)]
= handle let g = k in if (g true) then ((g 0) + 1) else 2 with . . .

−→ handle if (k true) then ((k 0) + 1) else 2 with . . .
−→ handle if c′[(λz2.true)]; true then ((k 0) + 1) else 2 with . . .

Here, the hole in c′ is filled by function (λz2.true), which returns a Boolean
value, though the hole is supposed to be filled by a function of ∀α. α → α. This
weird gap triggers a run-time error:

c′[(λz2.true)]

handle
= let g = λz2.true in if (g true) then ((g 0) + 1) else 2

with . . .

−→∗ handle if true then (((λz2.true) 0) + 1) else 2 with . . .
−→ handle ((λz2.true) 0) + 1 with . . .
−→ handle true + 1 with . . .

We stop here because true + 1 cannot reduce.

Handling Polymorphic Algebraic Effects 361

2.4 Our Solution

A standard approach to this problem is to restrict the form of let-bound expres-
sions by some means such as the (relaxed) value restriction [10,23,24] or weak
polymorphism [1,12]. This approach amounts to restricting how effect operations
can be used.

In this paper, we seek for a complementary approach, which is to restrict
how effect operations can be implemented.4 More concretely, we develop a type
system such that let-bound expressions are polymorphic as long as they invoke
only “safe” polymorphic effects and the notion of safe polymorphic effects is
formalized in terms of typing rules (for handlers).

To see what are “safe” effects, let us examine the above counterexample to
type safety. The crux of the counterexample is that

1. continuation c uses g polymorphically, namely, as bool → bool in g true
and as int → int in g 1;

2. c is invoked twice; and
3. the use of g as bool → bool in the first invocation of c—where g is bound to

λz1.· · · ; z1—“alters” the type of λz2. z1 (passed to resume) from α → α
to α → bool, contradicting the second use of g as int → int in the second
invocation of c.

The last point is crucial—if λz2.z1 were, say, λz2.z2, there would be no influence
from the first invocation of c and the evaluation would succeed. The problem we
see here is that the naive type system mistakenly allows interference between
the arguments to the two resumptions by assuming that z1 and z2 share the
same type.

Based on this observation, the typing rule for resumption is revised to disallow
interference between different resumptions by separating their types: for each
resume M in the operation clause for op : ∀α1 · · · αn.A ↪→ B, M has to have
type B′ obtained by renaming all type variables αi in B with fresh type variables
α′

i. In the case of get id, the two resumptions should be called with β → β and
γ → γ for fresh β and γ; for the first resume to be well typed, z1 has to be of
type β, although it means that the return type of λz2.z1 (given to the second
resumption) is β, making the entire clause ill typed, as we expect. If a clause
does not have interfering resumptions like

get id y → resume (λz1.z1)

or

get id y → resume (λz1. (resume (λz2.z2)); z1),

it will be well typed.

4 We compare our approach with the standard approaches in Sect. 5 in detail.

362 T. Sekiyama and A. Igarashi

3 Surface Language: λlet
eff

We define a lambda calculus λlet
eff that supports let-polymorphism, polymorphic

algebraic effects, and handlers without interfering resumptions. This section
introduces the syntax and the type system of λlet

eff . The semantics is given by
a formal elaboration to intermediate calculus λΛ

eff, which will be introduced in
Sect. 4.

Effect operations op Type variables α, β, γ

Effects ε ::= sets of effect operations
Base types ι ::= bool | int | ...

Types A,B ,C ,D ::= α | ι | A ε B

Type schemes σ ::= A | ∀ α.σ

Constants c ::= true | false | 0 | + | ...

Terms M ::= x | c | λx .M | M1 M2 | let x = M1 inM2 |
#op(M) | handleM withH | resumeM

Handlers H ::= return x → M | H ; op(x) → M

Typing contexts Γ ::= ∅ | Γ, x : σ | Γ, α

Fig. 1. Syntax of λlet
eff .

3.1 Syntax

The syntax of λlet
eff is given in Fig. 1. Effect operations are denoted by op and

type variables by α, β, and γ. An effect, denoted by ε, is a finite set of effect
operations. We write 〈〉 for the empty effect set. A type, denoted by A, B , C , and
D , is a type variable; a base type ι, which includes, e.g., bool and int; or a function
type A →ε B , which is given to functions that take an argument of type A and
compute a value of type B possibly with effect ε. A type scheme σ is obtained by
abstracting type variables. Terms, denoted by M , consist of variables; constants
(including primitive operations); lambda abstractions λx .M , which bind x in M ;
function applications; let-expressions let x = M1 inM2, which bind x in M2; effect
invocations #op(M); handle–with expressions handleM withH ; and resumption
expressions resumeM . All type information in λlet

eff is implicit; thus the terms
have no type annotations. A handler H has a single return clause return x → M ,
where x is bound in M , and zero or more operation clauses of the form op(x) →
M , where x is bound in M . A typing context Γ binds a sequence of variable
declarations x : σ and type variable declarations α.

We introduce the following notations used throughout this paper. We write
∀αi∈I .A for ∀α1....∀ αn .A where I = {1, ..., n}. We often omit indices (i and
j) and index sets (I and J) if they are not important: e.g., we often abbreviate
∀αi∈I .A to ∀ αI .A or even to ∀α.A. Similarly, we use a bold font for other
sequences (Ai∈I for a sequence of types, v i∈I for a sequence of values, etc.).

Handling Polymorphic Algebraic Effects 363

We sometimes write {α} to view the sequence α as a set by ignoring the order.
Free type variables ftv(σ) in a type scheme σ and type substitution B [A/α] of
A for type variables α in B are defined as usual (with the understanding that
the omitted index sets for A and α are the same).

We suppose that each constant c is assigned a first-order closed type ty(c)
of the form ι1 → 〈〉 · · · → 〈〉 ιn and that each effect operation op is assigned
a signature of the form ∀α.A ↪→ B , which means that an invocation of op
with type instantiation C takes an argument of A[C/α] and returns a value of
B [C/α]. We also assume that, for ty (op) = ∀α.A ↪→ B , ftv(A) ⊆ {α} and
ftv(B) ⊆ {α}.

3.2 Type System

The type system of λlet
eff consists of four judgments: well-formedness of typing

contexts � Γ ; well formedness of type schemes Γ � σ; term typing judgment
Γ ;R � M : A | ε, which means that M computes a value of A possibly with
effect ε under typing context Γ and resumption type R (discussed below); and
handler typing judgment Γ ;R � H : A | ε ⇒ B | ε′, which means that H handles
a computation that produces a value of A with effect ε and that the clauses in
H compute a value of B possibly with effect ε′ under Γ and R.

A resumption type R contains type information for resumption.

Definition 1 (Resumption type). Resumption types in λlet
eff, denoted by R,

are defined as follows:

R ::= none | (α,A,B →ε C)
(if ftv(A) ∪ ftv(B) ⊆ {α} and ftv(C) ∩ {α} = ∅)

If M is not a subterm of an operation clause, it is typechecked under R = none,
which means that M cannot contain resumption expressions. Otherwise, suppose
that M is a subterm of an operation clause op(x) → M ′ that handles effect op
of signature ∀α.A ↪→ B and computes a value of C possibly with effect ε. Then,
M is typechecked under R = (α, x :A,B → ε C), which means that argument
x to the operation clause has type A and that resumptions in M are effectful
functions from B to C with effect ε. Note that type variables α occur free only
in A and B but not in C .

Figure 2 shows the inference rules of the judgments (except for Γ � σ, which
is defined by: Γ � σ if and only if all free type variables in σ are bound by Γ).
For a sequence of type schemes σ, we write Γ � σ if and only if every type
scheme in σ is well formed under Γ .

Well-formedness rules for typing contexts, shown at the top of Fig. 2, are
standard. A typing context is well formed if it is empty (WF Empty) or a
variable in the typing context is associated with a type scheme that is well formed
in the remaining typing context (WF Var) and a type variable in the typing
context is not declared (WF TVar). For typing context Γ , dom(Γ) denotes the
set of type and term variables declared in Γ .

364 T. Sekiyama and A. Igarashi

Fig. 2. Typing rules.

Handling Polymorphic Algebraic Effects 365

Typing rules for terms are given in the middle of Fig. 2. The first six rules are
standard for the lambda calculus with let-polymorphism and a type-and-effect
system. If a variable x is introduced by a let-expression and has type scheme
∀α.A in Γ , it is given type A[B/α], obtained by instantiating type variables α
with well-formed types B . If x is bound by other constructors (e.g., a lambda
abstraction), x is always bound to a monomorphic type and both α and B are the
empty sequence. Note that (TS Var) gives any effect ε to the typing judgment
for x . In general, ε in judgment Γ ;R � M : A | ε means that the evaluation of
M may invoke effect operations in ε. Since a reference to a variable involves
no effect, it is given any effect; for the same reason, value constructors are also
given any effect. The rule (TS Const) means that the type of a constant is
given by (meta-level) function ty . The typing rules for lambda abstractions and
function applications are standard in the lambda calculus equipped with a type-
and-effect system. The rule (TS Abs) gives lambda abstraction λx .M function
type A → ε′ B if M computes a value of B possibly with effect ε′ by using x of
type A. The rule (TS App) requires that (1) the argument type of function part
M1 be equivalent to the type of actual argument M2 and (2) effect ε′ invoked
by function M1 be contained in the whole effect ε. The rule (TS Weak) allows
weakening of effects.

The next two rules are mostly standard for algebraic effects and handlers.
The rule (TS Op) is applied to effect invocations. Since λlet

eff supports implicit
polymorphism, an invocation #op(M) of polymorphic effect op of signature
∀α.A ↪→ B also accompanies implicit type substitution of well-formed types
C for α. Thus, the type of argument M has to be A[C/α] and the result of the
invocation is given type B [C/α]. In addition, effect ε contains op. The typeabil-
ity of handle–with expressions depends on the typing of handlers (TS Handle),
which will be explained below shortly.

The last typing rule (TS Resume) is the key to gaining type safety in this
work. Suppose that we are given resumption type (α, x :A,B →ε C). Intuitively,
B →ε C is the type of the continuation for resumption and, therefore, argument
M to resume is required to have type B . As we have discussed in Sect. 2, we avoid
interference between different resumptions by renaming α, the type parameters
to the effect operation, to fresh type variables β, in typechecking M . Freshness
of β will be ensured when well-formedness of typing contexts Γ1, Γ2,β, . . . is
checked at the leaves of the type derivation. The type variables α in the type
of x , the parameter to the operation, are also renamed for x to be useful in M .
To see why this renaming is useful, let us consider an extension of the calculus
with pairs and typechecking of an operation clause for choose∀ of signature
∀α.α × α ↪→ α:

choose∀(x) → resume (fst x)

Variable x is assigned product type α×α for fresh type variable α and the body
resume (fst x) is typechecked under the resumption type (α, x : α × α, α → ε A)
for some ε and A (see the typing rules for handlers for details). To typecheck
resume (fst x), the argument fst x is required to have type β, freshly generated
for this resume. Without applying renaming also to x , the clause would not

366 T. Sekiyama and A. Igarashi

typecheck. Finally, (TS Resume) also requires that (1) the typing context con-
tains α, which should have been declared at an application of the typing rule
for the operation clause that surrounds this resume and (2) effect ε, which may
be invoked by resumption of a continuation, be contained in the whole effect ε′.
The binding x :D in the conclusion means that parameter x to the operation
clause is declared outside the resumption expression.

The typing rules for handlers are standard [3,13,16]. The rule (THS Return)
for a return clause return x → M checks that the body M is given a type under
the assumption that argument x has type A, which is the type of the handled
expression. The effect ε stands for effects that are not handled by the operation
clauses that follow the return clause and it must be a subset of the effect ε′ that
M may cause.5 A handler having operation clauses is typechecked by (THS Op),
which checks that the body of the operation clause op(x) → M for op of signature
∀α.C ↪→ D is typed at the result type B , which is the same as the type of the return
clause, under the typing context extended with fresh assigned type variables α and
argument x of typeC , together with the resumption type (α, x :C ,D →ε′ B). The
effect ε � {op} in the conclusion means that the effect operation op is handled by
this clause and no other clauses (in the present handler) handle it. Our semantics
adopts deep handlers [13], i.e., when a handled expression invokes an effect oper-
ation, the continuation, which passed to the operation clause, is wrapped by the
same handler. Thus, resumption may invoke the same effect ε′ as the one possibly
invoked by the clauses of the handler, hence D →ε′ B in the resumption type.

Finally, we show how the type system rejects the counterexample given in
Sect. 2. The problem is in the following operation clause.

op(y) → resumeλz1.(resumeλz2.z1); z1

where op has effect signature ∀α.unit ↪→ (α →〈〉 α). This clause is typechecked
under resumption type (α, y : unit, α → ε α) for some ε. By (TS Resume), the
two resumption expressions are assigned two different type variables γ1 and
γ2, and the arguments λz1.(resumeλz2.z1); z1 and λz2.z1 are required to have
γ1 → ε γ1 and γ2 → ε γ2, respectively. However, λz2.z1 cannot because z1 is
associated with γ1 but not with γ2.

Remark. The rule (TS Resume) allows only the type of the argument to an
operation clause to be renamed. Thus, other variables bound by, e.g., lambda
abstractions and let-expressions outside the resumption expression cannot be
used as such a type. As a result, more care may be required as to where to
introduce a new variable. For example, let us consider the following operation
clause (which is a variant of the example of choose∀ above).

choose∀(x) → let y = fst x in resume y

The variable x is assigned α ×α first and the resumption requires y to be typed
at fresh type variable β. This clause would be rejected in the current type system
5 Thus, handlers in λlet

eff are open [13] in the sense that a handle–with expression does
not have to handle all effects caused by the handled expression.

Handling Polymorphic Algebraic Effects 367

because fst x appears outside resume and, therefore, y is given type α, not β.
This inconvenience may be addressed by moving down the let-binding in some
cases: e.g., resume (let y = fst x in y) is well typed.

4 Intermediate Language: λΛ
eff

The semantics of λlet
eff is given by a formal elaboration to an intermediate lan-

guage λΛ
eff, wherein type abstraction and type application appear explicitly. We

define the syntax, operational semantics, and type system of λlet
eff and the for-

mal elaboration from λlet
eff to λΛ

eff. Finally, we show type safety of λlet
eff via type

preservation of the elaboration and type soundness of λΛ
eff.

Fig. 3. Syntax of λΛ
eff.

4.1 Syntax

The syntax of λΛ
eff is shown in Fig. 3. Values, denoted by v , consist of con-

stants and lambda abstractions. Polymorphic values, denoted by w , are values
abstracted over types. Terms, denoted by e, and handlers, denoted by h, are the
same as those of λlet

eff except for the following three points. First, type abstrac-
tion and type arguments are explicit in λΛ

eff: variables and effect invocations
are accompanied by a sequence of types and let-bound expressions, resumption
expressions, and operation clauses bind type variables. Second, a new term con-
structor of the form #op(σ,w ,E) is added. It represents an intermediate state in
which an effect invocation is capturing the continuation up to the closest han-
dler for op. Here, E is an evaluation context [6] and denotes a continuation to
be resumed by an operation clause handling op. In the operational semantics,
an operation invocation #op(A, v) is first transformed to #op(A, v , []) (where []
denotes the empty context or the identity continuation) and then it bubbles up
by capturing its context and pushing it onto the third argument. Note that σ
and w of #op(σ,w ,E) become polymorphic when it bubbles up from the body
of a type abstraction. Third, each resumption expression resumeα x .e declares
distinct (type) variables α and x to denote the (type) argument to an operation

368 T. Sekiyama and A. Igarashi

Reduction rules e1 � e2

c1 c2 � ζ(c1, c2) (R Const) (λx .e) v � e[v/x] (R Beta)

let x = Λα.v in e � e[Λα.v/x] (R Let)
handle v with h � e[v/x] (R Return)

(where h return = return x e)

#op(A, v) � #op(A, v , []) (R Op)

#op(σ,w ,E) e2 � #op(σ,w ,E e2) (R OpApp1)

v1 #op(σ,w ,E) � #op(σ,w , v1 E) (R OpApp2)

#op′(AI , #op(σJ ,w ,E)) � #op(σJ ,w , #op′(AI ,E)) (R OpOp)

handle #op(σ,w ,E)with h � #op(σ,w , handleE with h)
(R OpHandle)

(where op �∈ ops(h))

let x = ΛαI .#op(σJ ,w ,E) in e2 �
(R OpLet)

#op(∀ αI .σJ , ΛαI .w , let x = ΛαI .E in e2)

handle #op(∀ βJ .AI , ΛβJ .v ,EβJ
)with h �

e[handleEβJ
with h/resume]∀ βJ .AI

ΛβJ .v [AI [⊥/βJ]/αI][v [⊥/βJ]/x] (R Handle)
(where hop = ΛαI .op(x) e)

Evaluation rules e1 e2

e1 � e2

E [e1] E [e2]
E Eval

Fig. 4. Semantics of λΛ
eff.

clause, whereas a single variable declared at op(x) → M and implicit type vari-
ables are used for the same purpose in λlet

eff . For example, the λlet
eff operation clause

choose∀(x) → resume (fst x) is translated to Λα.choose∀(x) → resumeβ y .(fst y).
This change simplifies the semantics.

Evaluation contexts, denoted by Eα , are standard for the lambda calculus
with call-by-value, left-to-right evaluation except for two points. First, they con-
tain the form let x = Λα.Eβ in e2, which allows the body of a type abstrac-
tion to be evaluated. Second, the metavariable E for evaluation contexts is
indexed by type variables α, meaning that the hole in the context appears under
type abstractions binding α. For example, let x = Λα.let y = Λβ.[] in e2 in e1

is denoted by Eα,β and, more generally, let x = ΛβJ1 .Eγ J2
in e is denoted by

EβJ1 ,γ J2 . (Here, βJ1 ,γJ2 stands for the concatenation of the two sequences βJ1

and γJ2 .) If α is not important, we simply write E for Eα . We often use the term
“continuation” to mean “evaluation context,” especially when it is expected to
be resumed.

Handling Polymorphic Algebraic Effects 369

As usual, substitution e[w/x] of w for x in e is defined in a capture-avoiding
manner. Since variables come along with type arguments, the case for variables
is defined as follows:

(x A)[Λα.v/x] def= v [A/α]

Application of substitution [ΛαI .v/x] to x AJ , where I = J , is undefined. We
define free type variables ftv(e) and ftv(E) in e and E , respectively, as usual.

4.2 Semantics

The semantics of λΛ
eff is given in the small-step style and consists of two relations:

the reduction relation �, which is for basic computation, and the evaluation
relation −→, which is for top-level execution. Figure 4 shows the rules for these
relations. In what follows, we write h return for the return clause of handler h,
ops(h) for the set of effect operations handled by h, and hop for the operation
clause for op in h.

Most of the reduction rules are standard [13,16]. A constant application
c1 c2 reduces to ζ(c1, c2) (R Const), where function ζ maps a pair of con-
stants to another constant. A function application (λx .e) v and a let-expression
let x = Λα.v in e reduce to e[v/x] (R Beta) and e[Λα.v/x] (R Let), respec-
tively. If a handled expression is a value v , the handle–with expression reduces
to the body of the return clause where v is substituted for the parameter
x (R Return). An effect invocation #op(A, v) reduces to #op(A, v , []) with
the identity continuation, as explained above (R Op); the process of captur-
ing its evaluation context is expressed by the rules (R OpApp1), (R OpApp2),
(R OpOp), (R OpHandle), and (R OpLet). The rule (R OpHandle) can be
applied only if the handler h does not handle op. The rule (R OpLet) is applied
to a let-expression where #op(σJ ,w ,E) appears under a type abstraction with
bound type variables αI . Since σJ and w may refer to αI , the reduction result
binds αI in both σJ and w . We write ∀ αI .σJ for a sequence ∀ αI .σj1 , . . . ,
∀αI .σjn of type schemes (where J = {j1, . . . , jn}).

The crux of the semantics is (R Handle): it is applied when #op(σI ,w ,E)
reaches the handler h that handles op. Since the handled term #op(σI ,w ,E) is
constructed from an effect invocation #op(AI , v), if the captured continuation
E binds type variables βJ , the same type variables βJ should have been added
to AI and v along the capture. Thus, the handled expression on the left-hand
side of the rule takes the form #op(∀ βJ .AI , ΛβJ .v ,EβJ

) (with the same type
variables βJ).

The right-hand side of (R Handle) involves three types of substitution:
continuation substitution [handleEβJ

with h/resume]∀ βJ .AI

ΛβJ .v
for resumptions, type

substitution for αI , and value substitution for x . We explain them one by one
below. In the following, let hop = ΛαI .op(x) → e and E ′βJ

= handleEβJ

with h.

370 T. Sekiyama and A. Igarashi

Continuation Substitution. Let us start with a simple case where the sequence βJ

is empty. Intuitively, continuation substitution [E ′/resume]A
I

v replaces a resump-
tion expression resumeγI z .e ′ in the body e with E ′[v ′], where v ′ is the value
of e ′, and substitutes AI and v (arguments to the invocation of op) for γI and
z , respectively. Therefore, assuming resume does not appear in e ′, we define
(resumeγI z .e ′)[E ′/resume]A

I

v to be let y = e ′[AI /γI][v/z] inE ′[y] (for fresh y).
Note that the evaluation of e ′ takes place outside of E so that an invocation of
an effect in e ′ is not handled by handlers in E . When βJ is not empty,

(resumeγI z .e ′)[EβJ

/resume]∀ βJ .AI

ΛβJ .v

def=

let y = ΛβJ .e ′[AI /γI][v/z] inEβJ

[y βJ] .

(The differences from the simple case are shaded.) The idea is to bind βJ that
appear free in AI and v by type abstraction at let and to instantiate with the
same variables at y βJ , where βJ are bound by type abstractions in EβJ

.
Continuation substitution is formally defined as follows:

Definition 2 (Continuation substitution). Substitution of continuation
EβJ

for resumptions in e, written e[EβJ

/resume]∀ βJ .AI

ΛβJ .v
, is defined in a capture-

avoiding manner, as follows (we describe only the important cases):

(resumeγI z .e)[EβJ

/resume]∀ βJ .AI

ΛβJ .v

def=

let y = ΛβJ .e[EβJ

/resume]∀ βJ .AI

ΛβJ .v
[AI /γI][v/z] inEβJ

[y βJ]

(if (ftv(e) ∪ ftv(EβJ

)) ∩ {βJ} = ∅ and y is fresh)

(return x → e)[E/resume]σw
def= return x → e[E/resume]σw

(h ′;ΛγJ .op(x) → e)[E/resume]σ
I

w
def= h ′[E/resume]σ

I

w ;ΛγJ .op(x) → e

The second and third clauses (for a handler) mean that continuation substitution
is applied only to return clauses.

Type and Value Substitution. The type and value substitutions AI [⊥J/βJ] and
v [⊥J/βJ], respectively, in (R Handle) are for (type) parameters in hop =
ΛαI .op(x) → e. The basic idea is to substitute AI for βI and v for x—similarly
to continuation substitution. We erase free type variables βJ in AI and v by
substituting the designated base type ⊥ for all of them. (We write AI [⊥J/βJ]
and v [⊥J/βJ] for the types and value, respectively, after the erasure.)

The evaluation rule is ordinary: Evaluation of a term proceeds by reducing
a subterm under an evaluation context.

4.3 Type System

The type system of λΛ
eff is similar to that of λlet

eff and has five judgments: well-
formedness of typing contexts � Γ ; well formedness of type schemes Γ � σ; term

Handling Polymorphic Algebraic Effects 371

typing judgment Γ ; r � e : A | ε; handler typing judgment Γ ; r � h : A | ε ⇒
B | ε′; and continuation typing judgment Γ � E : ∀α.A � B | ε. The first two
are defined in the same way as those of λlet

eff . The last judgment means that a
term obtained by filling the hole of E with a term having A under Γ,α is typed
at B under Γ and possibly involves effect ε. A resumption type r is similar to
R but does not contain an argument variable.

Definition 3 (Resumption type). Resumption types in λΛ
eff, denoted by r,

are defined as follows:

r ::= none | (α,A,B →ε C)
(if ftv(A) ∪ ftv(B) ⊆ {α} and ftv(C) ∩ {α} = ∅)

Typing rules

Γ ; r � e : A | ε

� Γ x : ∀ α.A ∈ Γ Γ � B

Γ ; r � x B : A[B/α] | ε T Var
� Γ

Γ ; r � c : ty(c) | ε T Const

Γ, x :A; r � e : B | ε′

Γ ; r � λx .e : A →ε′ B | ε T Abs

Γ ; r � e1 : A →ε′ B | ε Γ ; r � e2 : A | ε ε′ ⊆ ε

Γ ; r � e1 e2 : B | ε T App

ty (op) = ∀α.A ↪→ B op ∈ ε Γ ; r � e : A[C/α] | ε Γ � C

Γ ; r � #op(C , e) : B [C/α] | ε T Op

ty (op) = ∀αI .A ↪→ B op ∈ ε Γ � ∀ βJ .C I

Γ, βJ ; r � v : A[C I /αI] | ε Γ � EβJ
: ∀ βJ .(B [C I /αI]) � D | ε

Γ ; r � #op(∀ βJ .C I , ΛβJ .v ,EβJ) : D | ε T OpCont

Γ ; r � e : A | ε′ ε′ ⊆ ε

Γ ; r � e : A | ε T Weak

Γ ; r � e : A | ε Γ ; r � h : A | ε ⇒ B | ε′

Γ ; r � handle e with h : B | ε′ T Handle

Γ, α; r � e1 : A | ε Γ, x : ∀ α.A; r � e2 : B | ε
Γ ; r � let x = Λα.e1 in e2 : B | ε T Let

α ∈ Γ Γ, β, x :A[β/α]; (α,A,B →ε C) � e : B [β/α] | ε′ ε ⊆ ε′

Γ ; (α,A,B ε C) � resumeβ x .e : C | ε′ T Resume

Fig. 5. Typing rules for terms in λΛ
eff.

372 T. Sekiyama and A. Igarashi

The typing rules for terms, shown in Fig. 5, and handlers, shown in the upper
half of Fig. 6, are similar to those of λlet

eff except for a new rule (T OpCont),
which is applied to an effect invocation #op(∀ βJ .C I , ΛβJ .v ,EβJ

) with a con-
tinuation. Let ty (op) = ∀αI .A ↪→ B . Since op should have been invoked with
C I and v under type abstractions with bound type variables βJ , the argument
v has type A[C I /αI] under the typing context extended with βJ . Similarly, the
hole of EβJ

expects to be filled with the result of the invocation, i.e., a value of
B [C I /αI]. Since the continuation denotes the context before the evaluation, its
result type matches with the type of the whole term.

The typing rules for continuations are shown in the lower half of Fig. 6. They
are similar to the corresponding typing rules for terms except that a subterm is
replaced with a continuation. In (TE Let), the continuation let x = Λα.E in e
has type ∀α.σ � B because the hole of E appears inside the scope of α.

Γ ; r � h : A | ε ⇒ B | ε′

Γ, x :A; r � e : B | ε′ ε ⊆ ε′

Γ ; r � return x e : A | ε ⇒ B | ε′ TH Return

Γ ; r � h : A | ε ⇒ B | ε′

ty (op) = ∀α.C ↪→ D Γ, α, x :C ; (α,C ,D ε′ B) � e : B | ε′

Γ ; r � h; Λα.op(x) e : A | ε
 {op} ⇒ B | ε′ TH Op

Γ � E : σ � A | ε

Γ � [] : A � A | ε TE Hole

Γ � E : σ � (A ε′ B) | ε Γ ; none � e2 : A | ε ε′ ⊆ ε

Γ � E e2 : σ � B | ε TE App1

Γ ; none � v1 : (A ε′ B) | ε Γ � E : σ � A | ε ε′ ⊆ ε

Γ � v1 E : σ � B | ε TE App2

ty (op) = ∀α.A ↪ B op ∈ ε Γ � E : σ � A[C/α] | ε Γ � C

Γ � #op(C ,E) : σ � B [C/α] | ε TE Op

Γ � E : σ � A | ε Γ ; none � h : A | ε ⇒ B | ε′

Γ � handleE with h : σ � B | ε′ TE Handle

Γ � E : σ � A | ε′ ε′ ⊆ ε

Γ � E : σ � A | ε TE Weak

Γ, α � E : σ � A | ε Γ, x : ∀ α.A; none � e : B | ε
Γ � let x = Λα.E in e : ∀ α.σ � B | ε TE Let

Fig. 6. Typing rules for handlers and continuations in λΛ
eff.

Handling Polymorphic Algebraic Effects 373

4.4 Elaboration

This section defines the elaboration from λlet
eff to λΛ

eff. The important difference
between the two languages from the viewpoint of elaboration is that, whereas
the parameter of an operation clause is referred to by a single variable in λlet

eff ,
it is done by one or more variables in λΛ

eff. Therefore, one variable in λlet
eff is

represented by multiple variables (required for each resume) in λΛ
eff. We use S ,

a mapping from variables to variables, to make the correspondence between
variable names. We write S ◦ {x �→ y} for the same mapping as S except that x
is mapped to y .

Elaboration is defined by two judgments: term elaboration judgment Γ ;R �
M : A | ε �S e, which denotes elaboration from a typing derivation of judg-
ment Γ ;R � M : A | ε to e with S , and handler elaboration judgment Γ ;R �
H : A | ε ⇒ B | ε′ �S h, which denotes elaboration from a typing derivation of
judgment Γ ;R � H : A | ε ⇒ B | ε′ to h with S .

Fig. 7. Elaboration rules (excerpt).

374 T. Sekiyama and A. Igarashi

Selected elaboration rules are shown in Fig. 7; the complete set of the rules is
found in the full version of the paper. The elaboration rules are straightforward
except for the use of S . A variable x is translated to S (x) (Elab Var) and,
every time a new variable is introduced, S is extended: see the rules other than
(Elab Var) and (Elab Handle).

4.5 Properties

We show type safety of λlet
eff , i.e., a well-typed program in λlet

eff does not get stuck,
by proving (1) type preservation of the elaboration from λlet

eff to λΛ
eff and (2)

type soundness of λΛ
eff. Term M is a well-typed program of A if and only if

∅; none � M : A | 〈〉.
The first can be shown easily. We write ∅ also for the identity mapping for

variables.

Theorem 1 (Elaboration is type-preserving). If M is a well-typed program
of A, then ∅; none � M : A | 〈〉 �∅ e and ∅; none � e : A | 〈〉 for some e.

We show the second—type soundness of λΛ
eff—via progress and subject reduc-

tion [25]. We write Δ for a typing context that consists only of type variables.
Progress can be shown as usual.

Lemma 1 (Progress). If Δ; none � e : A | ε, then (1) e −→ e ′ for some e ′,
(2) e is a value, or (3) e = #op(σ,w ,E) for some op ∈ ε, σ, w, and E.

A key lemma to show subject reduction is type preservation of continuation
substitution.

Lemma 2 (Continuation substitution). Suppose that Γ � ∀βJ .C I and
Γ � EβJ

: ∀ βJ .(B [C I /αI]) � D | ε and Γ,βJ � v : A[C I /αI].

1. If Γ ; (αI ,A,B → ε D) � e : D ′ | ε′, then Γ ; none � e[EβJ

/resume]∀ βJ .C I

ΛβJ .v
:

D ′ | ε′.
2. If Γ ; (αI ,A,B → ε D) � h : D1 | ε1 ⇒ D2 | ε2, then Γ ; none �

h[EβJ

/resume]∀ βJ .C I

ΛβJ .v
: D1 | ε1 ⇒ D2 | ε2.

Using the continuation substitution lemma as well as other lemmas, we show
subject reduction.

Lemma 3 (Subject reduction)

1. If Δ; none � e1 : A | ε and e1 � e2, then Δ; none � e2 : A | ε.
2. If Δ; none � e1 : A | ε and e1 −→ e2, then Δ; none � e2 : A | ε.

We write e −→ if and only if e cannot evaluate further. Moreover, −→∗

denotes the reflexive and transitive closure of the evaluation relation −→.

Handling Polymorphic Algebraic Effects 375

Theorem 2 (Type soundness of λΛ
eff). If Δ; none � e : A | ε and e −→∗ e ′

and e ′ −→, then (1) e ′ is a value or (2) e ′ = #op(σ,w ,E) for some op ∈ ε, σ,
w, and E.

Now, type safety of λlet
eff is obtained as a corollary of Theorems 1 and 2.

Corollary 1 (Type safety of λlet
eff). If M is a well-typed program of A, there

exists some e such that ∅; none � M : A | 〈〉 �∅ e and e does not get stuck.

5 Related Work

5.1 Polymorphic Effects and Let-Polymorphism

Many researchers have attacked the problem of combining effects—not necessar-
ily algebraic—and let-polymorphism so far [1,2,10,12,14,17,23,24]. In particu-
lar, most of them have focused on ML-style polymorphic references. The alge-
braic effect handlers dealt with in this paper seem to be unable to implement
general ML-style references—i.e., give an appropriate implementation to a set of
effect operations new with the signature ∀α.α ↪→ α ref, get with ∀α.α ref ↪→ α,
and put with ∀α.α × α ref ↪→ unit for abstract datatype α ref—even without the
restriction on handlers because each operation clause in a handler assigns type
variables locally and it is impossible to share such type variables between oper-
ation clauses.6 Nevertheless, their approaches would be applicable to algebraic
effects and handlers.

A common idea in the literature is to restrict the form of expressions bound
by polymorphic let. Thus, they are complementary to our approach in that they
restrict how effect operations are used whereas we restrict how effect operations
are implemented.

Value restriction [23,24], a standard way adopted in ML-like languages,
restricts polymorphic let-bound expressions to syntactic values. Garrigue [10]
relaxes the value restriction so that, if a let-bound expression is not a syntactic
value, type variables that appear only at positive positions in the type of the
expression can be generalized. Although the (relaxed) value restriction is a quite
clear criterion that indicates what let-bound expressions can be polymorphic
safely and it even accepts interfering handlers, it is too restrictive in some cases.
We give an example for such a case below.

effect choose∀ : ∀α. α × α ↪→ α

let f1 () =

let g = #choose∀(fst, snd) in
if g (true,false) then g (-1,1) else g (1,-1)

6 One possible approach to dealing with ML-style references is to extend algebraic
effects and handlers so that a handler for parameterized effects can be connected
with dynamic resources [3].

376 T. Sekiyama and A. Igarashi

In the definition of function f1, variable g is used polymorphically. Execution
of this function under an appropriate handler would succeed, and in fact our
calculus accepts it. By contrast, the (relaxed) value restriction rejects it because
the let-bound expression #choose∀(fst,snd) is not a syntactic value and the
type variable appear in both positive and negative positions, and so g is assigned
a monomorphic type. A workaround for this problem is to make a function
wrapper that calls either of fst or snd depending on the Boolean value chosen
by choose∀:

let f2 () =

let b = #choose∀(true,false) in
let g = λx. if b then (fst x) else (snd x) in
if g (true,false) then g (-1,1) else g (1,-1)

However, this workaround makes the program complicated and incurs additional
run-time cost for the branching and an extra call to the wrapper function.

Asai and Kameyama [2] study a combination of let-polymorphism with delim-
ited control operators shift/reset [4]. They allow a let-bound expression to be
polymorphic if it invokes no control operation. Thus, the function f1 above would
be rejected in their approach.

Another research line to restrict the use of effects is to allow only type vari-
ables unrelated to effect invocations to be generalized. Tofte [23] distinguishes
between applicative type variables, which cannot be used for effect invocations,
and imperative ones, which can be used, and proposes a type system that enforces
restrictions that (1) type variables of imperative operations can be instantiated
only with types wherein all type variables are imperative and (2) if a let-bound
expression is not a syntactic value, only applicative type variables can be gener-
alized. Leroy and Weis [17] allow generalization only of type variables that do not
appear in a parameter type to the reference type in the type of a let-expression.
To detect the hidden use of references, their type system gives a term not only
a type but also the types of free variables used in the term. Standard ML of
New Jersey (before ML97) adopted weak polymorphism [1], which was later
formalized and investigated deeply by Hoang et al. [12]. Weak polymorphism
equips a type variable with the number of function calls after which a value of a
type containing the type variable will be passed to an imperative operation. The
type system ensures that type variables with positive numbers are not related to
imperative constructs, and so such type variables can be generalized safely. In
this line of research, the function f1 above would not typecheck because general-
ized type variables are used to instantiate those of the effect signature, although
it could be rewritten to an acceptable one by taking care not to involve type
variables in effect invocation.

let f3 () =

let g = if #choose∀(true,false) then fst then snd in
if g (true,false) then g (-1,1) else g (1,-1)

More recently, Kammar and Pretnar [14] show that parameterized algebraic
effects and handlers do not need the value restriction if the type variables used

Handling Polymorphic Algebraic Effects 377

in an effect invocation are not generalized. Thus, as the other work that restricts
generalized type variables, their approach would reject function f1 but would
accept f3.

5.2 Algebraic Effects and Handlers

Algebraic effects [20] are a way to represent the denotation of an effect by giv-
ing a set of operations and an equational theory that capture their properties.
Algebraic effect handlers, introduced by Plotkin and Pretnar [21], make it pos-
sible to provide user-defined effects. Algebraic effect handlers have been gaining
popularity owing to their flexibility and have been made available as libraries
[13,15,26] or as primitive features of languages, such as Eff [3], Koka [16], Frank
[18], and Multicore OCaml [5]. In these languages, let-bound expressions that
can be polymorphic are restricted to values or pure expressions.

Recently, Forster et al. [9] investigate the relationships between algebraic
effect handlers and other mechanisms for user-defined effects—delimited control
shift0 [19] and monadic reflection [7,8]—conjecturing that there would be no
type-preserving translation from a language with delimited control or monadic
reflection to one with algebraic effect handlers. It would be an interesting direc-
tion to export our idea to delimited control and monadic reflection.

6 Conclusion

There has been a long history of collaboration between effects and let-
polymorphism. This work focuses on polymorphic algebraic effects and handlers,
wherein the type signature of an effect operation can be polymorphic and an
operation clause has a type binder, and shows that a naive combination of poly-
morphic effects and let-polymorphism breaks type safety. Our novel observation
to address this problem is that any let-bound expression can be polymorphic
safely if resumptions from a handler do not interfere with each other. We for-
malized this idea by developing a type system that requires the argument of
each resumption expression to have a type obtained by renaming the type vari-
ables assigned in the operation clause to those assigned in the resumption. We
have proven that a well-typed program in our type system does not get stuck
via elaboration to an intermediate language wherein type information appears
explicitly.

There are many directions for future work. The first is to address the prob-
lem, described at the end of Sect. 3, that renaming the type variables assigned in
an operation clause to those assigned in a resumption expression is allowed for
the argument of the clause but not for variables bound by lambda abstractions
and let-expressions outside the resumption expression. Second, we are interested
in incorporating other features from the literature on algebraic effect handlers,
such as dynamic resources [3] and parameterized algebraic effects, and restriction
techniques that have been developed for type-safe imperative programming with
let-polymorphism such as (relaxed) value restriction [10,23,24]. For example, we

378 T. Sekiyama and A. Igarashi

would like to develop a type system that enforces the non-interfering restriction
only to handlers implementing effect operations invoked in polymorphic compu-
tation. We also expect that it is possible to determine whether implementations
of an effect operation have no interfering resumption from the type signature of
the operation, as relaxed value restriction makes it possible to find safely gener-
alizable type variables from the type of a let-bound expression [10]. Finally, we
are also interested in implementing our idea for a language with effect handlers
such as Koka [16] and in applying the idea of analyzing handlers to other settings
such as dependent typing.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments. This work was supported in part by ERATO HASUO Metamathe-
matics for Systems Design Project (No. JPMJER1603), JST (Sekiyama), and JSPS
KAKENHI Grant Number JP15H05706 (Igarashi).

References

1. Appel, A.W., MacQueen, D.B.: Standard ML of New Jersey. In: Maluszyński, J.,
Wirsing, M. (eds.) PLILP 1991. LNCS, vol. 528, pp. 1–13. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-54444-5 83

2. Asai, K., Kameyama, Y.: Polymorphic delimited continuations. In: Shao, Z. (ed.)
APLAS 2007. LNCS, vol. 4807, pp. 239–254. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-76637-7 16

3. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J.
Log. Algebr. Methods Program. 84(1), 108–123 (2015). https://doi.org/10.1016/j.
jlamp.2014.02.001

4. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Program-
ming, pp. 151–160 (1990). https://doi.org/10.1145/91556.91622

5. Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakrishnan,
K.C., White, L.: Concurrent system programming with effect handlers. In: Wang,
M., Owens, S. (eds.) TFP 2017. LNCS, vol. 10788, pp. 98–117. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89719-6 6

6. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992). https://doi.org/
10.1016/0304-3975(92)90014-7

7. Filinski, A.: Representing monads. In: Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 446–457
(1994). https://doi.org/10.1145/174675.178047

8. Filinski, A.: Monads in action. In: Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2010, pp.
483–494 (2010). https://doi.org/10.1145/1706299.1706354

9. Forster, Y., Kammar, O., Lindley, S., Pretnar, M.: On the expressive power of user-
defined effects: effect handlers, monadic reflection, delimited control. PACMPL
1(ICFP), 13:1–13:29 (2017). https://doi.org/10.1145/3110257

10. Garrigue, J.: Relaxing the value restriction. In: Kameyama, Y., Stuckey, P.J. (eds.)
FLOPS 2004. LNCS, vol. 2998, pp. 196–213. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24754-8 15

11. Harper, R., Lillibridge, M.: Polymorphic type assignment and CPS conversion.
Lisp Symb. Comput. 6(3–4), 361–380 (1993)

https://doi.org/10.1007/3-540-54444-5_83
https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/91556.91622
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/1706299.1706354
https://doi.org/10.1145/3110257
https://doi.org/10.1007/978-3-540-24754-8_15
https://doi.org/10.1007/978-3-540-24754-8_15

Handling Polymorphic Algebraic Effects 379

12. Hoang, M., Mitchell, J.C., Viswanathan, R.: Standard ML-NJ weak polymorphism
and imperative constructs. In: Proceedings of the Eighth Annual Symposium on
Logic in Computer Science, LICS 1993 (1993)

13. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2013, pp. 145–158 (2013).
https://doi.org/10.1145/2500365.2500590

14. Kammar, O., Pretnar, M.: No value restriction is needed for algebraic effects
and handlers. J. Funct. Program. 27, e7 (2017). https://doi.org/10.1017/
S0956796816000320

15. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. In: Proceedings of
the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, pp. 94–105 (2015).
https://doi.org/10.1145/2804302.2804319

16. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2017, pp. 486–499 (2017). http://dl.acm.org/citation.cfm?
id=3009872

17. Leroy, X., Weis, P.: Polymorphic type inference and assignment. In: Proceedings
of the 18th Annual ACM Symposium on Principles of Programming Languages,
pp. 291–302 (1991). https://doi.org/10.1145/99583.99622

18. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pp. 500–514 (2017). http://dl.acm.org/citation.cfm?id=3009897

19. Materzok, M., Biernacki, D.: A dynamic interpretation of the CPS hierarchy. In:
Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 296–311. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2 21

20. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categ.
Struct. 11(1), 69–94 (2003). https://doi.org/10.1023/A:1023064908962

21. Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00590-9 7

22. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

23. Tofte, M.: Type inference for polymorphic references. Inf. Comput. 89(1), 1–34
(1990). https://doi.org/10.1016/0890-5401(90)90018-D

24. Wright, A.K.: Simple imperative polymorphism. Lisp Symb. Comput. 8(4), 343–
355 (1995)

25. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994). https://doi.org/10.1006/inco.1994.1093

26. Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Proceedings of
the 2014 ACM SIGPLAN Symposium on Haskell, Haskell 2014, pp. 1–12 (2014).
https://doi.org/10.1145/2633357.2633358

https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1017/S0956796816000320
https://doi.org/10.1017/S0956796816000320
https://doi.org/10.1145/2804302.2804319
http://dl.acm.org/citation.cfm?id=3009872
http://dl.acm.org/citation.cfm?id=3009872
https://doi.org/10.1145/99583.99622
http://dl.acm.org/citation.cfm?id=3009897
https://doi.org/10.1007/978-3-642-35182-2_21
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2633357.2633358

380 T. Sekiyama and A. Igarashi

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Distributive Disjoint Polymorphism
for Compositional Programming

Xuan Bi1(B), Ningning Xie1, Bruno C. d. S. Oliveira1, and Tom Schrijvers2

1 The University of Hong Kong, Hong Kong, China
{xbi,nnxie,bruno}@cs.hku.hk
2 KU Leuven, Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract. Popular programming techniques such as shallow embeddings
of Domain Specific Languages (DSLs), finally tagless or object algebras
are built on the principle of compositionality. However, existing program-
ming languages only support simple compositional designs well, and have
limited support for more sophisticated ones.

This paper presents the F+
i calculus, which supports highly modular

and compositional designs that improve on existing techniques. These
improvements are due to the combination of three features: disjoint inter-
section types with a merge operator ; parametric (disjoint) polymorphism;
and BCD-style distributive subtyping. The main technical challenge is
F+

i ’s proof of coherence. A naive adaptation of ideas used in System F’s
parametricity to canonicity (the logical relation used by F+

i to prove
coherence) results in an ill-founded logical relation. To solve the problem
our canonicity relation employs a different technique based on immedi-
ate substitutions and a restriction to predicative instantiations. Besides
coherence, we show several other important meta-theoretical results, such
as type-safety, sound and complete algorithmic subtyping, and decidabil-
ity of the type system. Remarkably, unlike F<:’s bounded polymorphism,
disjoint polymorphism in F+

i supports decidable type-checking.

1 Introduction

Compositionality is a desirable property in programming designs. Broadly
defined, it is the principle that a system should be built by composing smaller
subsystems. For instance, in the area of programming languages, composition-
ality is a key aspect of denotational semantics [48,49], where the denotation
of a program is constructed from the denotations of its parts. Compositional
definitions have many benefits. One is ease of reasoning: since compositional
definitions are recursively defined over smaller elements they can typically be
reasoned about using induction. Another benefit is that compositional defini-
tions are easy to extend, without modifying previous definitions.

Programming techniques that support compositional definitions include:
shallow embeddings of Domain Specific Languages (DSLs) [20], finally tag-
less [11], polymorphic embeddings [26] or object algebras [35]. These techniques
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 381–409, 2019.
https://doi.org/10.1007/978-3-030-17184-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_14

382 X. Bi et al.

allow us to create compositional definitions, which are easy to extend with-
out modifications. Moreover, when modeling semantics, both finally tagless and
object algebras support multiple interpretations (or denotations) of syntax, thus
offering a solution to the well-known Expression Problem [53]. Because of these
benefits these techniques have become popular both in the functional and object-
oriented programming communities.

However, programming languages often only support simple compositional
designs well, while support for more sophisticated compositional designs is lack-
ing. For instance, once we have multiple interpretations of syntax, we may wish
to compose them. Particularly useful is a merge combinator, which composes
two interpretations [35,37,42] to form a new interpretation that, when executed,
returns the results of both interpretations.

The merge combinator can be manually defined in existing programming
languages, and be used in combination with techniques such as finally tagless or
object algebras. Moreover variants of the merge combinator are useful to model
more complex combinations of interpretations. A good example are so-called
dependent interpretations, where an interpretation does not depend only on
itself, but also on a different interpretation. These definitions with dependencies
are quite common in practice, and, although they are not orthogonal to the
interpretation they depend on, we would like to model them (and also mutually
dependent interpretations) in a modular and compositional style.

Defining the merge combinator in existing programming languages is verbose
and cumbersome, requiring code for every new kind of syntax. Yet, that code
is essentially mechanical and ought to be automated. While using advanced
meta-programming techniques enables automating the merge combinator to a
large extent in existing programming languages [37,42], those techniques have
several problems: error messages can be problematic, type-unsafe reflection is
needed in some approaches [37] and advanced type-level features are required
in others [42]. An alternative to the merge combinator that supports modular
multiple interpretations and works in OO languages with support for some form
of multiple inheritance and covariant type-refinement of fields has also been
recently proposed [55]. While this approach is relatively simple, it still requires
a lot of manual boilerplate code for composition of interpretations.

This paper presents a calculus and polymorphic type system with (disjoint)
intersection types [36], called F+

i . F+
i supports our broader notion of compo-

sitional designs, and enables the development of highly modular and reusable
programs. F+

i has a built-in merge operator and a powerful subtyping relation
that are used to automate the composition of multiple (possibly dependent)
interpretations. In F+

i subtyping is coercive and enables the automatic gener-
ation of coercions in a type-directed fashion. This process is similar to that of
other type-directed code generation mechanisms such as type classes [52], which
eliminate boilerplate code associated to the dictionary translation [52].

F+
i continues a line of research on disjoint intersection types. Previous work on

disjoint polymorphism (the Fi calculus) [2] studied the combination of parametric
polymorphism and disjoint intersection types, but its subtyping relation does

Distributive Disjoint Polymorphism 383

not support BCD-style distributivity rules [3] and the type system also prevents
unrestricted intersections [16]. More recently the NeColus calculus (or λ+

i) [5]
introduced a system with disjoint intersection types and BCD-style distributivity
rules, but did not account for parametric polymorphism. F+

i is unique in that it
combines all three features in a single calculus: disjoint intersection types and a
merge operator ; parametric (disjoint) polymorphism; and a BCD-style subtyping
relation with distributivity rules. The three features together allow us to improve
upon the finally tagless and object algebra approaches and support advanced
compositional designs. Moreover previous work on disjoint intersection types
has shown various other applications that are also possible in F+

i , including:
first-class traits and dynamic inheritance [4], extensible records and dynamic
mixins [2], and nested composition and family polymorphism [5].

Unfortunately the combination of the three features has non-trivial compli-
cations. The main technical challenge (like for most other calculi with disjoint
intersection types) is the proof of coherence for F+

i . Because of the presence
of BCD-style distributivity rules, our coherence proof is based on the recent
approach employed in λ+

i [5], which uses a heterogeneous logical relation called
canonicity. To account for polymorphism, which λ+

i ’s canonicity does not sup-
port, we originally wanted to incorporate the relevant parts of System F’s logical
relation [43]. However, due to a mismatch between the two relations, this did
not work. The parametricity relation has been carefully set up with a delayed
type substitution to avoid ill-foundedness due to its impredicative polymorphism.
Unfortunately, canonicity is a heterogeneous relation and needs to account for
cases that cannot be expressed with the delayed substitution setup of the homo-
geneous parametricity relation. Therefore, to handle those heterogeneous cases,
we resorted to immediate substitutions and predicative instantiations. We do not
believe that predicativity is a severe restriction in practice, since many source
languages (e.g., those based on the Hindley-Milner type system like Haskell and
OCaml) are themselves predicative and do not require the full generality of an
impredicative core language. Should impredicative instantiation be required, we
expect that step-indexing [1] can be used to recover well-foundedness, though at
the cost of a much more complicated coherence proof.

The formalization and metatheory of F+
i are a significant advance over that

of Fi. Besides the support for distributive subtyping, F+
i removes several restric-

tions imposed by the syntactic coherence proof in Fi. In particular F+
i supports

unrestricted intersections, which are forbidden in Fi. Unrestricted intersections
enable, for example, encoding certain forms of bounded quantification [39]. More-
over the new proof method is more robust with respect to language extensions.
For instance, F+

i supports the bottom type without significant complications in
the proofs, while it was a challenging open problem in Fi. A final interesting
aspect is that F+

i ’s type-checking is decidable. In the design space of languages
with polymorphism and subtyping, similar mechanisms have been known to
lead to undecidability. Pierce’s seminal paper “Bounded quantification is unde-
cidable” [40] shows that the contravariant subtyping rule for bounded quantifi-
cation in F<: leads to undecidability of subtyping. In F+

i the contravariant rule

384 X. Bi et al.

for disjoint quantification retains decidability. Since with unrestricted intersec-
tions F+

i can express several use cases of bounded quantification, F+
i could be

an interesting and decidable alternative to F<:.
In summary the contributions of this paper are:

– The F+
i calculus, which is the first calculus to combine disjoint intersection

types, BCD-style distributive subtyping and disjoint polymorphism. We show
several meta-theoretical results, such as type-safety, sound and complete algo-
rithmic subtyping, coherence and decidability of the type system. F+

i includes
the bottom type, which was considered to be a significant challenge in previous
work on disjoint polymorphism [2].

– An extension of the canonicity relation with polymorphism, which
enables the proof of coherence of F+

i . We show that the ideas of System F’s
parametricity cannot be ported to F+

i . To overcome the problem we use a
technique based on immediate substitutions and a predicativity restriction.

– Improved compositional designs: We show that F+
i ’s combination of fea-

tures enables improved compositional programming designs and supports
automated composition of interpretations in programming techniques like
object algebras and finally tagless.

– Implementation and proofs: All of the metatheory of this paper, except
some manual proofs of decidability, has been mechanically formalized in Coq.
Furthermore, F+

i is implemented and all code presented in the paper is avail-
able. The implementation, Coq proofs and extended version with appendices
can be found in https://github.com/bixuanzju/ESOP2019-artifact.

2 Compositional Programming

To demonstrate the compositional properties of F+
i we use Gibbons and Wu’s

shallow embeddings of parallel prefix circuits [20]. By means of several different
shallow embeddings, we first illustrate the short-comings of a state-of-the-art
compositional approach, popularly known as a finally tagless encoding [11], in
Haskell. Next we show how parametric polymorphism and distributive intersec-
tion types provide a more elegant and compact solution in SEDEL [4], a source
language built on top of our F+

i calculus.

2.1 A Finally Tagless Encoding in Haskell

The circuit DSL represents networks that map a number of inputs (known as the
width) of some type A onto the same number of outputs of the same type. The
outputs combine (with repetitions) one or more inputs using a binary associative
operator ⊕ : A × A → A. A particularly interesting class of circuits that can be
expressed in the DSL are parallel prefix circuits. These represent computations
that take n > 0 inputs x1, . . . , xn and produce n outputs y1, . . . , yn, where
yi = x1 ⊕ x2 ⊕ . . . ⊕ xi.

The DSL features 5 language primitives: two basic circuit constructors and
three circuit combinators. These are captured in the Haskell type class Circuit:

https://github.com/bixuanzju/ESOP2019-artifact

Distributive Disjoint Polymorphism 385

data Width = W { width :: Int }
instance Circuit Width where

identity n = W n
fan n = W n
beside c1 c2 =

W (width c1 + width c2)
above c1 c2 = c1
stretch ws c = W (sum ws)

(a) Width embedding

data Depth = D { depth :: Int }
instance Circuit Depth where

identity n = D 0
fan n = D 1
beside c1 c2 =

D (max (depth c1) (depth c2))
above c1 c2 = D (depth c1 + depth c2)
stretch ws c = c

(b) Depth embedding

Fig. 1. Two finally tagless embeddings of circuits.

class Circuit c where
identity :: Int → c

fan :: Int → c

beside :: c → c → c

above :: c → c → c

stretch :: [Int] → c → c

An identity circuit with n inputs xi, has n outputs yi = xi. A fan circuit
has n inputs xi and n outputs yi, where y1 = x1 and yj = x1 ⊕ xj (j > 1).
The binary beside combinator puts two circuits in parallel; the combined circuit
takes the inputs of both circuits to the outputs of both circuits. The binary above

combinator connects the outputs of the first circuit to the inputs of the second;
the width of both circuits has to be same. Finally, stretch ws c interleaves the
wires of circuit c with bundles of additional wires that map their input straight
on their output. The ws parameter specifies the width of the consecutive bundles;
the ith wire of c is preceded by a bundle of width wsi − 1.

Basic width and depth embeddings. Figure 1 shows two simple shallow embed-
dings, which represent a circuit respectively in terms of its width and its depth.
The former denotes the number of inputs/outputs of a circuit, while the latter
is the maximal number of ⊕ operators between any input and output. Both
definitions follow the same setup: a new Haskell datatype (Width/Depth) wraps
the primitive result value and provides an instance of the Circuit type class
that interprets the 5 DSL primitives accordingly. The following code creates a
so-called Brent-Kung parallel prefix circuit [9]:

e1 :: Width

e1 = above (beside (fan 2) (fan 2))

(above (stretch [2, 2] (fan 2))

(beside (beside (identity 1) (fan 2)) (identity 1)))

Here e1 evaluates to W {width = 4}. If we want to know the depth of the circuit,
we have to change type signature to Depth.

386 X. Bi et al.

Interpreting multiple ways. Fortunately, with the help of polymorphism we can
define a type of circuits that support multiple interpretations at once.

type DCircuit = forall c. Circuit c ⇒ c

This way we can provide a single Brent-Kung parallel prefix circuit definition
that can be reused for different interpretations.

brentKung :: DCircuit

brentKung = above (beside (fan 2) (fan 2))

(above (stretch [2, 2] (fan 2))

(beside (beside (identity 1) (fan 2)) (identity 1)))

A type annotation then selects the desired interpretation. For instance,
brentKung :: Width yields the width and brentKung :: Depth the depth.

Composition of embeddings. What is not ideal in the above code is that the
same brentKung circuit is processed twice, if we want to execute both interpre-
tations. We can do better by processing the circuit only once, computing both
interpretations simultaneously. The finally tagless encoding achieves this with a
boilerplate instance for tuples of interpretations.

instance (Circuit c1, Circuit c2) ⇒ Circuit (c1, c2) where
identity n = (identity n, identity n)

fan n = (fan n, fan n)

beside c1 c2 = (beside (fst c1) (fst c2), beside (snd c1) (snd c2))

above c1 c2 = (above (fst c1) (fst c2), above (snd c1) (snd c2))

stretch ws c = (stretch ws (fst c), stretch ws (snd c))

Now we can get both embeddings simultaneously as follows:

e12 :: (Width, Depth)

e12 = brentKung

This evaluates to (W {width = 4}, D {depth = 2}).

Composition of dependent interpretations. The composition above is easy
because the two embeddings are orthogonal. In contrast, the composition of
dependent interpretations is rather cumbersome in the standard finally tagless
setup. An example of the latter is the interpretation of circuits as their well-
sizedness, which captures whether circuits are well-formed. This interpretation
depends on the interpretation of circuits as their width.1

data WellSized = WS { wS :: Bool, ox :: Width }

instance Circuit WellSized where
identity n = WS True (identity n)

fan n = WS True (fan n)

beside c1 c2 = WS (wS c1 && wS c2) (beside (ox c1) (ox c2))

1 Dependent recursion schemes are also known as zygomorphism [18] after the ancient

Greek word for yoke. We have labeled the Width field with ox because it is
pulling the yoke.

Distributive Disjoint Polymorphism 387

above c1 c2 = WS (wS c1 && wS c2 && width (ox c1) == width (ox c2))

(above (ox c1) (ox c2))

stretch ws c = WS (wS c && length ws==width (ox c)) (stretch ws (ox c))

The WellSized datatype represents the well-sizedness of a circuit with a Boolean,
and also keeps track of the circuit’s width. The 5 primitives compute the well-
sizedness in terms of both the width and well-sizedness of the subcomponents.
What makes the code cumbersome is that it has to explicitly delegate to the
Width interpretation to collect this additional information.

With the help of a substantially more complicated setup that features a
dozen Haskell language extensions, and advanced programming techniques, we
can make the explicit delegation implicit (see the appendix). Nevertheless, that
approach still requires a lot of boilerplate that needs to be repeated for each
DSL, as well as explicit projections that need to be written in each interpreta-
tion. Another alternative Haskell encoding that also enables multiple dependent
interpretations is proposed by Zhang and Oliveira [55], but it does not elimi-
nate the explicit delegation and still requires substantial amounts of boilerplate.
A final remark is that adding new primitives (e.g., a “right stretch” rstretch

combinator [25]) can also be easily achieved [46].

2.2 The SEDEL Encoding

SEDEL is a source language that elaborates to F+
i , adding a few convenient

source level constructs. The SEDEL setup of the circuit DSL is similar to the
finally tagless approach. Instead of a Circuit c type class, there is a Circuit[C]

type that gathers the 5 circuit primitives in a record. Like in Haskell, the type
parameter C expresses that the interpretation of circuits is a parameter.

type Circuit[C] = {

identity : Int → C, fan : Int → C, beside : C → C → C,

above : C → C → C, stretch : List[Int] → C → C };

As a side note if a new constructor (e.g., rstretch) is needed, then this is done
by means of intersection types (& creates an intersection type) in SEDEL:

type NCircuit[C] = Circuit[C] & { rstretch : List[Int] → C → C };

Figure 2 shows the two basic shallow embeddings for width and depth. In both
cases, a named SEDEL definition replaces the corresponding unnamed Haskell
type class instance in providing the implementations of the 5 language primitives
for a particular interpretation.

The use of the SEDEL embeddings is different from that of their Haskell coun-
terparts. Where Haskell implicitly selects the appropriate type class instance
based on the available type information, in SEDEL the programmer explicitly
selects the implementation following the style used by object algebras. The fol-
lowing code does this by building a circuit with l1 (short for language1).

l1 = language1;

e1 = l1.above (l1.beside (l1.fan 2) (l1.fan 2))

388 X. Bi et al.

type Width = { width : Int };
language1 : Circuit[Width] = {

identity (n : Int) = { width = n },
fan (n : Int) = { width = n },
beside (c1 : Width) (c2 : Width) = { width = c1.width + c2.width },
above (c1 : Width) (c2 : Width) = { width = c1.width },
stretch (ws : List[Int]) (c : Width) = { width = sum ws } };

type Depth = { depth : Int };
language2 : Circuit[Depth] = {

identity (n : Int) = { depth = 0 },
fan (n : Int) = { depth = 1 },
beside (c1 : Depth) (c2 : Depth) = { depth = max c1.depth c2.depth},
above (c1 : Depth) (c2 : Depth) = { depth = c1.depth + c2.depth},
stretch (ws : List[Int]) (c : Depth) = { depth = c.depth } };

Fig. 2. Two SEDEL embeddings of circuits.

(l1.above (l1.stretch (cons 2 (cons 2 nil)) (l1.fan 2))

(l1.beside (l1.beside (l1.identity 1) (l1.fan 2)) (l1.identity 1)));

Here e1 evaluates to {width = 4}. If we want to know the depth of the circuit,
we have to replicate the code with language2.

Dynamically reusable circuits. Just like in Haskell, we can use polymorphism to
define a type of circuits that can be interpreted with different languages.

type DCircuit = { accept : forall C. Circuit[C] → C };

In contrast to the Haskell solution, this implementation explicitly accepts the
implementation.

brentKung : DCircuit = {

accept C l = l.above (l.beside (l.fan 2) (l.fan 2))

(l.above (l.stretch (cons 2 (cons 2 nil)) (l.fan 2))

(l.beside (l.beside (l.identity 1) (l.fan 2)) (l.identity 1))) };

e1 = brentKung.accept Width language1;

e2 = brentKung.accept Depth language2;

Automatic composition of languages. Of course, like in Haskell we can also com-
pute both results simultaneously. However, unlike in Haskell, the composition of
the two interpretation requires no boilerplate whatsoever—in particular, there
is no SEDEL counterpart of the Circuit (c1, c2) instance. Instead, we can just
compose the two interpretations with the term-level merge operator (,,) and
specify the desired type Circuit[Width & Depth].

language3 : Circuit[Width & Depth] = language1 ,, language2;

e3 = brentKung.accept (Width & Depth) language3;

Distributive Disjoint Polymorphism 389

Here the use of the merge operator creates a term with the intersection type
Circuit[Width] & Circuit[Depth]. Implicitly, the SEDEL type system takes care
of the details, turning this intersection type into Circuit[Width & Depth]. This
is possible because intersection (&) distributes over function and record types (a
distinctive feature of BCD-style subtyping).

Composition of dependent interpretations. In SEDEL the composition scales
nicely to dependent interpretations. For instance, the well-sizedness interpre-
tation can be expressed without explicit projections.

type WellSized = { wS : Bool };

language4 = {

identity (n : Int) = { wS = true },

fan (n : Int) = { wS = true },

above (c1 : WellSized & Width) (c2 : WellSized & Width) =

{ wS = c1.wS && c2.wS && c1.width == c2.width },

beside (c1 : WellSized) (c2 : WellSized) = { wS = c1.wS && c2.wS },

stretch (ws : List[Int]) (c : WellSized & Width) =

{ wS = c.wS && length ws == c.width } };

Here the WellSized & Width type in the above and stretch cases expresses that
both the well-sizedness and width of subcircuits must be given, and that the
width implementation is left as a dependency—when language4 is used, then
the width implementation must be provided. Again, the distributive properties
of & in the type system take care of merging the two interpretations.

e4 = brentKung.accept (WellSized & Width) (language1 ,, language4);

main = e4.wS -- Output: true

Disjoint polymorphism and dynamic merges. While it may seem from the above
examples that definitions have to be merged statically, SEDEL in fact supports
dynamic merges. For instance, we can encapsulate the merge operator in the
combine function while abstracting over the two components x and y that are
merged as well as over their types A and B.

combine A [B * A] (x : A) (y : B) = x ,, y;

This way the components x and y are only known at runtime and thus the merge
can only happen at that time. The types A and B cannot be chosen entirely freely.
For instance, if both components would contribute an implementation for the
same method, which implementation is provided by the combination would be
ambiguous. To avoid this problem the two types A and B have to be disjoint.
This is expressed in the disjointness constraint * A on the quantifier of the type
variable B. If a quantifier mentions no disjointness constraint, like that of A, it
defaults to the trivial * � constraint which implies no restriction.

3 Semantics of the F+
i Calculus

This section gives a formal account of F+
i , the first typed calculus combining dis-

joint polymorphism [2] (and disjoint intersection types) with BCD subtyping [3].

390 X. Bi et al.

Types A,B ,C ::= Int | � | ⊥ | A → B | A&B | {l : A} | α | ∀(α ∗ A).B
Expressions E ::= x | i | � | λx .E | E1 E2 | E1 , , E2 | E : A | {l = E} | E .l

| Λ(α ∗ A).E | E A
Term contexts Γ ::= • | Γ, x : A
Type contexts Δ ::= • | Δ, α ∗ A

Fig. 3. Syntax of F+
i

The main differences to Fi are in the subtyping, well-formedness and disjointness
relations. F+

i adds BCD subtyping and unrestricted intersections, and also closes
an open problem of Fi by including the bottom type. The dynamic semantics
of F+

i is given by elaboration to the target calculus Fco—a variant of System F
extended with products and explicit coercions.

3.1 Syntax and Semantics

Figure 3 shows the syntax of F+
i . Metavariables A,B ,C range over types. Types

include standard constructs from prior work [2,36]: integers Int, the top type �,
arrows A → B , intersections A&B , single-field record types {l : A} and disjoint
quantification ∀(α ∗ A).B . One novelty in F+

i is the addition of the uninhabited
bottom type ⊥. Metavariable E ranges over expressions. Expressions are integer
literals i, the top value �, lambda abstractions λx .E , applications E1 E2, merges
E1 , , E2, annotated terms E : A, single-field records {l = E}, record projections
E .l , type abstractions Λ(α ∗ A).E and type applications E A.

Well-formedness and unrestricted intersections. F+
i ’s well-formedness judgment

of types Δ � A is standard, and only enforces well-scoping. This is one of the key
differences from Fi, which uses well-formedness to also ensure that all intersection
types are disjoint. In other words, while in Fi all valid intersection types must
be disjoint, in F+

i unrestricted intersection types such as Int& Int are allowed.
More specifically, the well-formedness of intersection types in F+

i and Fi is:

Δ � A Δ � B

Δ � A&B
wf-F+

i

Δ � A Δ � B Δ � A ∗ B

Δ � A&B
wf-Fi

Notice that Fi has an extra disjointness condition Δ � A∗B in the premise. This
is crucial for Fi’s syntactic method for proving coherence, but also burdens the
calculus with various syntactic restrictions and complicates its metatheory. For
example, it requires extra effort to show that Fi only produces disjoint intersec-
tion types. As a consequence, Fi features a weaker substitution lemma (note the
gray part in Proposition 1) than F+

i (Lemma 1).

Proposition 1 (Type substitution in Fi). If Δ � A, Δ � B, (α ∗ C) ∈ Δ,
Δ � B ∗ C and well-formed context [B/α]Δ, then [B/α]Δ � [B/α]A.

Lemma 1 (Type substitution in F+
i). If Δ � A, Δ � B, (α ∗ C) ∈ Δ and

well-formed context [B/α]Δ, then [B/α]Δ � [B/α]A.

Distributive Disjoint Polymorphism 391

A <: B � co (Declarative subtyping)

S-refl

A <: A � id

S-trans
A2 <: A3 � co1 A1 <: A2 � co2

A1 <: A3 � co1 ◦ co2

S-top

A <: � � top

S-rcd
A <: B � co

{l : A} <: {l : B} � co

S-andl

A1 &A2 <: A1 � π1

S-andr

A1 &A2 <: A2 � π2

S-arr
B1 <: A1 � co1 A2 <: B2 � co2

A1 → A2 <: B1 → B2 � co1 → co2

S-and
A1 <: A2 � co1 A1 <: A3 � co2

A1 <: A2 &A3 � 〈co1, co2〉

S-distArr

(A1 → A2)& (A1 → A3) <: A1 → A2 &A3 � dist→

S-topArr

� <: � → � � top→

S-distRcd

{l : A}& {l : B} <: {l : A&B} � id

S-topRcd

� <: {l : �} � id

S-bot

⊥ <: A � bot

S-forall
B1 <: B2 � co A2 <: A1

∀(α ∗ A1).B1 <: ∀(α ∗ A2).B2 � co∀

S-topAll

� <: ∀(α ∗ �). � � top∀

S-distAll

(∀(α ∗ A).B1)& (∀(α ∗ A).B2) <: ∀(α ∗ A).B1 &B2 � dist∀

Fig. 4. Declarative subtyping

Declarative subtyping. F+
i ’s subtyping judgment is another major difference to

Fi, because it features BCD-style subtyping and a rule for the bottom type.
The full set of subtyping rules are shown in Fig. 4. The reader is advised to
ignore the gray parts for now. Our subtyping rules extend the BCD-style sub-
typing rules from λ+

i [5] with a rule for parametric (disjoint) polymorphism (rule
S-forall). Moreover, we have three new rules: rule S-bot for the bottom type,
and rules S-distAll and S-topAll for distributivity of disjoint quantification.
The subtyping relation is a partial order (rules S-refl and S-trans). Most
of the rules are quite standard. ⊥ is a subtype of all types (rule S-bot). Sub-
typing of disjoint quantification is covariant in its body, and contravariant in
its disjointness constraints (rule S-forall). Of particular interest are those so-
called “distributivity” rules: rule S-distArr says intersections distribute over
arrows; rule S-distRcd says intersections distribute over records. Similarly, rule
S-distAll dictates that intersections may distribute over disjoint quantifiers.

392 X. Bi et al.

Δ;Γ
 E ⇒ A � e (Inference)

T-top

 Δ Δ
 Γ

Δ;Γ
 � ⇒ � � 〈〉

T-nat

 Δ Δ
 Γ

Δ;Γ
 i ⇒ Int � i

T-var

 Δ Δ
 Γ (x : A) ∈ Γ

Δ;Γ
 x ⇒ A � x

T-app
Δ;Γ
 E1 ⇒ A1 → A2 � e1

Δ;Γ
 E2 ⇐ A1 � e2

Δ;Γ
 E1 E2 ⇒ A2 � e1 e2

T-merge
Δ;Γ
 E1 ⇒ A1 � e1

Δ;Γ
 E2 ⇒ A2 � e2 Δ
 A1 ∗ A2

Δ;Γ
 E1 , , E2 ⇒ A1 &A2 � 〈e1, e2〉

T-anno
Δ;Γ
 E ⇐ A � e

Δ;Γ
 E : A ⇒ A � e

T-rcd
Δ;Γ
 E ⇒ A � e

Δ;Γ
 {l = E} ⇒ {l : A} � e

T-proj
Δ;Γ
 E ⇒ {l : A} � e

Δ;Γ
 E .l ⇒ A � e

T-tabs
Δ, α ∗ A;Γ
 E ⇒ B � e Δ
 A Δ
 Γ

Δ;Γ
 Λ(α ∗ A).E ⇒ ∀(α ∗ A).B � Λα. e

T-tapp
Δ;Γ
 E ⇒ ∀(α ∗ B).C � e Δ
 A ∗ B

Δ;Γ
 E A ⇒ [A/α]C � e |A|

Δ;Γ
 E ⇐ A � e (Checking)

T-abs
Δ
 A Δ;Γ, x : A
 E ⇐ B � e

Δ;Γ
 λx .E ⇐ A → B � λx . e

T-sub
Δ;Γ
 E ⇒ B � e B <: A � co

Δ;Γ
 E ⇐ A � co e

Fig. 5. Bidirectional type system

Typing rules. F+
i features a bidirectional type system inherited from Fi. The

full set of typing rules are shown in Fig. 5. Again we ignore the gray parts
and explain them in Sect. 3.3. The inference judgment Δ;Γ � E ⇒ A says
that we can synthesize the type A under the contexts Δ and Γ . The checking
judgment Δ;Γ � E ⇐ A asserts that E checks against the type A under
the contexts Δ and Γ . Most of the rules are quite standard in the literature.
The merge expression E1 , , E2 is well-typed if both sub-expressions are well-
typed, and their types are disjoint (rule T-merge). The disjointness relation
will be explained in Sect. 3.2. To infer a type abstraction (rule T-tabs), we
add disjointness constraints to the type context. For a type application (rule
T-tapp), we check that the type argument satisfies the disjointness constraints.
Rules T-merge and T-tapp are the only rules checking disjointness.

Distributive Disjoint Polymorphism 393

�A� (Top-like types)

TL-top

���

TL-and
�A� �B�

�A&B�

TL-arr
�B�

�A → B�

TL-rcd
�A�

�{l : A}�

TL-all
�B�

�∀(α ∗ A).B�

Δ
 A ∗ B (Disjointness)

D-topL
�A�

Δ
 A ∗ B

D-topR
�B�

Δ
 A ∗ B

D-arr
Δ
 A2 ∗ B2

Δ
 A1 → A2 ∗ B1 → B2

D-andL
Δ
 A1 ∗ B Δ
 A2 ∗ B

Δ
 A1 &A2 ∗ B

D-andR
Δ
 A ∗ B1 Δ
 A ∗ B2

Δ
 A ∗ B1 &B2

D-rcdEq
Δ
 A ∗ B

Δ
 {l : A} ∗ {l : B}

D-rcdNeq
l1 �= l2

Δ
 {l1 : A} ∗ {l2 : B}

D-tvarL
(α ∗ A) ∈ Δ A <: B

Δ
 α ∗ B

D-tvarR
(α ∗ A) ∈ Δ A <: B

Δ
 B ∗ α

D-forall
Δ, α ∗ A1 &A2
 B1 ∗ B2

Δ
 ∀(α ∗ A1).B1 ∗ ∀(α ∗ A2).B2

D-ax
A ∗ax B

Δ
 A ∗ B

Fig. 6. Selected rules for disjointness

3.2 Disjointness

We now turn to another core judgment of F+
i —the disjointness relation, shown

in Fig. 6. The disjointness rules are mostly inherited from Fi [2], but the new
bottom type requires a notable change regarding disjointness with top-like types.

Top-like types. Top-like types are all types that are isomorphic to � (i.e., simulta-
neously sub- and supertypes of �). Hence, they are inhabited by a single value,
isomorphic to the � value. Figure 6 captures this notion in a syntax-directed
fashion in the �A predicate. As a historical note, the concept of top-like types
was already known by Barendregt et al. [3]. The λi calculus [36] re-discovered it
and coined the term “top-like types”; the Fi calculus [2] extended it with univer-
sal quantifiers. Note that in both calculi, top-like types are solely employed for
enabling a syntactic method of proving coherence, and due to the lack of BCD
subtyping, they do not have a type-theoretic interpretation of top-like types.

Disjointness rules. The disjointness judgment Δ � A ∗ B is helpful to check
whether the merge of two expressions of type A and B preserves coherence.
Incoherence arises when both expressions produce distinct values for the same
type, either directly when they are both of that same type, or through implicit

394 X. Bi et al.

Types τ ::= Int | 〈〉 | τ1 → τ2 | τ1 × τ2 | α | ∀α. τ
Terms e ::= x | i | 〈〉 | λx . e | e1 e2 | 〈e1, e2〉 | Λα. e | e τ | co e
Coercions co ::= id | co1 ◦ co2 | top | bot | co1 → co2 | 〈co1, co2〉 | π1 | π2

| co∀ | dist→ | top→ | top∀ | dist∀
Values v ::= i | 〈〉 | λx . e | 〈v1, v2〉 | Λα. e | (co1 → co2) v | co∀ v

| dist→ v | top→ v | top∀ v | dist∀ v
Term contexts Ψ ::= • | Ψ, x : τ
Type contexts Φ ::= • | Φ, α
Evaluation contexts E ::= [·] | E e | v E | 〈E , e〉 | 〈v , E〉 | co E | E τ

Fig. 7. Syntax of Fco

upcasting to a common supertype. Of course we can safely disregard top-like
types in this matter because they do not have two distinct values. In short, it
suffices to check that the two types have only top-like supertypes in common.

Because ⊥ and any another type A always have A as a common supertype,
it follows that ⊥ is only disjoint to A when A is top-like. More generally, if A is
a top-like type, then A is disjoint to any type. This is the rationale behind the
two rules D-topL and D-topR, which generalize and subsume Δ � � ∗ A and
Δ � A ∗ � from Fi, and also cater to the bottom type. Two other interesting
rules are D-tvarL and D-tvarR, which dictate that a type variable α is disjoint
with some type B if its disjointness constraints A is a subtype of B . Disjointness
axioms A∗axB (appearing in rule D-ax) take care of two types with different type
constructors (e.g., Int and records). Axiom rules can be found in the appendix.
Finally we note that the disjointness relation is symmetric.

3.3 Elaboration and Type Safety

The dynamic semantics of F+
i is given by elaboration into a target calculus.

The target calculus Fco is the standard call-by-value System F extended with
products and coercions. The syntax of Fco is shown in Fig. 7.

Type translation. Definition 1 defines the type translation function | · | from
F+

i types A to Fco types τ . Most cases are straightforward. For example, ⊥
is mapped to an uninhabited type ∀α. α; disjoint quantification is mapped to
universal quantification, dropping the disjointness constraints. | · | is naturally
extended to work on contexts as well.

Definition 1. Type translation | · | is defined as follows:

|Int| = Int |�| = 〈〉 |A → B | = |A| → |B |
|A&B | = |A| × |B | |{l : A}| = |A| |α| = α

|⊥| = ∀α. α |∀(α ∗ A).B | = ∀α. |B |

Distributive Disjoint Polymorphism 395

e −→ e ′ (Single-step reduction)

r-forall

(co∀ v) τ −→ co (v τ)

r-topAll

(top∀ 〈〉) τ −→ 〈〉
r-distAll

(dist∀ 〈v1, v2〉) τ −→ 〈v1 τ, v2 τ〉

r-tapp

(Λα. e) τ −→ [τ/α]e

r-app

(λx . e) v −→ [v/x]e

r-ctxt
e −→ e ′

E [e] −→ E [e ′]

Fig. 8. Selected reduction rules

Coercions and coercive subtyping. We follow prior work [5,6] by having a syntac-
tic category for coercions [22]. In Fig. 7, we have several new coercions: bot, co∀,
dist∀ and top∀ due to the addition of polymorphism and bottom type. As seen
in Fig. 4 the coercive subtyping judgment has the form A <: B � co, which says
that the subtyping derivation for A <: B produces a coercion co that converts
terms of type |A| to |B |.
Fco static semantics. The typing rules of Fco are quite standard. We have one
rule t-capp regarding coercion application, which uses the judgment co::τ � τ ′

to type coercions. We show two representative rules ct-forall and ct-bot.

t-capp
Φ;Ψ
 e : τ co :: τ � τ ′

Φ;Ψ
 co e : τ ′

ct-forall
co :: τ1 � τ2

co∀ :: ∀α. τ1 � ∀α. τ2

ct-bot

bot :: ∀α. α � τ

Fco dynamic semantics. The dynamic semantics of Fco is mostly unremarkable.
We write e −→ e ′ to mean one-step reduction. Figure 8 shows selected reduction
rules. The first line shows three representative rules regarding coercion reduc-
tions. They do not contribute to computation but merely rearrange coercions.
Our coercion reduction rules are quite standard but not efficient in terms of
space. Nevertheless, there is existing work on space-efficient coercions [23,50],
which should be applicable to our work as well. Rule r-app is the usual β-rule
that performs actual computation, and rule r-ctxt handles reduction under an
evaluation context. As usual, −→∗ is the reflexive, transitive closure of −→. Now
we can show that Fco is type safe:

Theorem 1 (Preservation). If •; • � e : τ and e −→ e ′, then •; • � e ′ : τ .

Theorem 2 (Progress). If •; • � e : τ , either e is a value, or ∃e ′. e −→ e ′.

Elaboration. Now consider the translation parts in Fig. 5. The key idea of the
translation follows the prior work [2,5,16,36]: merges are elaborated to pairs (rule
T-merge); disjoint quantification and disjoint type applications (rules T-tabs
and T-tapp)) are elaborated to regular universal quantification and type appli-
cations, respectively. Finally, the following lemma connects F+

i to Fco:

396 X. Bi et al.

Lemma 2 (Elaboration soundness). We have that:

– If A <: B � co, then co :: |A| � |B |.
– If Δ;Γ � E ⇒ A � e, then |Δ|; |Γ | � e : |A|.
– If Δ;Γ � E ⇐ A � e, then |Δ|; |Γ | � e : |A|.

4 Algorithmic System and Decidability

The subtyping relation in Fig. 4 is highly non-algorithmic due to the presence of
a transitivity rule. This section presents an alternative algorithmic formulation.
Our algorithm extends that of λ+

i , which itself was inspired by Pierce’s decision
procedure [38], to handle disjoint quantifiers and the bottom type. We then prove
that the algorithm is sound and complete with respect to declarative subtyping.

Additionally we prove that the subtyping and disjointness relations are decid-
able. Although the proofs of this fact are fairly straightforward, it is nonetheless
remarkable since it contrasts with the subtyping relation for (full) F<: [10], which
is undecidable [40]. Thus while bounded quantification is infamous for its unde-
cidability, disjoint quantification has the nicer property of being decidable.

4.1 Algorithmic Subtyping Rules

While Fig. 4 is a fine specification of how subtyping should behave, it cannot be
read directly as a subtyping algorithm for two reasons: (1) the conclusions of
rules S-refl and S-trans overlap with the other rules, and (2) the premises
of rule S-trans mention a type that does not appear in the conclusion. Simply
dropping the two offending rules from the system is not possible without losing
expressivity [29]. Thus we need a different approach. Following λ+

i , we intend
the algorithmic judgment Q � A <: B to be equivalent to A <: Q ⇒ B , where Q
is a queue used to track record labels, domain types and disjointness constraints.
The full rules of the algorithmic subtyping of F+

i are shown Fig. 9.

Definition 2 (Q ::= [] | l ,Q | B ,Q | α ∗ B ,Q). Q ⇒ A is defined as follows:

[] ⇒ A = A (B ,Q) ⇒ A = B → (Q ⇒ A)
(l ,Q) ⇒ A = {l : Q ⇒ A} (α ∗ B ,Q) ⇒ A = ∀(α ∗ B).Q ⇒ A

For brevity of the algorithm, we use metavariable c to mean type constants:

Type Constants c ::= Int | ⊥ | α

The basic idea of Q � A <: B is to perform a case analysis on B until it reaches
type constants. We explain new rules regarding disjoint quantification and the
bottom type. When a quantifier is encountered in B , rule A-forall pushes the
type variables with its disjointness constraints onto Q and continue with the
body. Correspondingly, in rule A-allConst, when a quantifier is encountered
in A, and the head of Q is a type variable, this variable is popped out and we
continue with the body. Rule A-bot is similar to its declarative counterpart.
Two meta-functions �Q�

� and �Q�
& are meant to generate correct forms of

coercions, and their definitions are shown in the appendix. For other algorithmic
rules, we refer to λ+

i [5] for detailed explanations.

Distributive Disjoint Polymorphism 397

Fig. 9. Algorithmic subtyping

Correctness of the algorithm. We prove that the algorithm is sound and complete
with respect to the specification. We refer the reader to our Coq formalization
for more details. We only show the two major theorems:

Theorem 3 (Soundness). If Q � A <: B � co then A <: Q ⇒ B � co.

Theorem 4 (Completeness). If A <: B � co, then ∃co′. [] � A <: B � co′.

4.2 Decidability

Moreover, we prove that our algorithmic type system is decidable. To see this,
first notice that the bidirectional type system is syntax-directed, so we only need
to show decidability of algorithmic subtyping and disjointness. The full (manual)
proofs for decidability can be found in the appendix.

Lemma 3 (Decidability of algorithmic subtyping). Given Q, A and B, it
is decidable whether there exists co, such that Q � A <: B � co.

Lemma 4 (Decidability of disjointness checking). Given Δ, A and B, it
is decidable whether Δ � A ∗ B.

One interesting observation here is that although our disjointness quantifi-
cation has a similar shape to bounded quantification ∀(α <: A).B in F<: [10],

398 X. Bi et al.

subtyping for F<: is undecidable [40]. In F<:, the subtyping relation between
bounded quantification is:

Δ
 A2 <: A1 Δ, α <: A2
 B1 <: B2

Δ
 ∀(α <: A1).B1 <: ∀(α <: A2).B2

fsub-forall

Compared with rule S-forall, both rules are contravariant on bounded/dis-
joint types, and covariant on the body. However, with bounded quantification it
is fundamental to track the bounds in the environment, which complicates the
design of the rules and makes subtyping undecidable with rule fsub-forall.
Decidability can be recovered by employing an invariant rule for bounded quan-
tification (that is by forcing A1 and A2 to be identical). Disjoint quantification
does not require such invariant rule for decidability.

5 Establishing Coherence for F+
i

In this section, we establish the coherence property for F+
i . The proof strat-

egy mostly follows that of λ+
i , but the construction of the heterogeneous logical

relation is significantly more complicated. Firstly in Sect. 5.1 we discuss why
adding BCD subtyping to disjoint polymorphism introduces significant compli-
cations. In Sect. 5.2, we discuss why a natural extension of System F’s logical
relation to deal with disjoint polymorphism fails. The technical difficulty is well-
foundedness, stemming from the interaction between impredicativity and dis-
jointness. Finally in Sect. 5.3, we present our (predicative) logical relation that
is specially crafted to prove coherence for F+

i .

5.1 The Challenge

Before we tackle the coherence of F+
i , let us first consider how Fi (and its prede-

cessor λi) enforces coherence. Its essentially syntactic approach is to make sure
that there is at most one subtyping derivation for any two types. As an immedi-
ate consequence, the produced coercions are uniquely determined and thus the
calculus is clearly coherent. Key to this approach is the invariant that the type
system only produces disjoint intersection types. As we mentioned in Sect. 3,
this invariant complicates the calculus and its metatheory, and leads to a weaker
substitution lemma. Moreover, the syntactic coherence approach is incompat-
ible with BCD subtyping, which leads to multiple subtyping derivations with
different coercions and requires a more general substitution lemma. To accom-
modate BCD into λi, Bi et al. [5] have created the λ+

i calculus and developed a
semantically-founded proof method based on logical relations. Because λ+

i does
not feature polymorphism, the problem at hand is to incorporate support for
polymorphism in this semantic approach to coherence, which turns out to be
more challenging than is apparent.

Distributive Disjoint Polymorphism 399

Fig. 10. Selected cases from λ+
i ’s canonicity relation

5.2 Impredicativity and Disjointness at Odds

Figure 10 shows selected cases of canonicity, which is λ+
i ’s (heterogeneous) logical

relation used in the coherence proof. The definition captures that two values v1
and v2 of types τ1 and τ2 are in V�τ1; τ2� iff either the types are disjoint or
the types are equal and the values are semantically equivalent. Because both
alternatives entail coherence, canonicity is key to λ+

i ’s coherence proof.

Well-foundedness issues. For F+
i , we need to extend canonicity with additional

cases to account for universally quantified types. For reasons that will become
clear in Sect. 5.3, the type indices become source types (rather than target types
as in Fig. 10). A naive formulation of one case rule is:

(v1, v2) ∈ V�∀(α ∗ A1).B1; ∀(α ∗ A2).B2� �
∀C1 ∗ A1,C2 ∗ A2. (v1 |C1|, v2 |C2|) ∈ E�[C1/α]B1; [C2/α]B2�

This case is problematic because it destroys the well-foundedness of λ+
i ’s logical

relation, which is based on structural induction on the type indices. Indeed, the
type [C1/α]B1 may well be larger than ∀(α ∗ A1).B1.

However, System F’s well-known parametricity logical relation [43] provides
us with a means to avoid this problem. Rather than performing the type sub-
stitution immediately as in the above rule, we can defer it to a later point by
adding it to an extra parameter ρ of the relation, which accumulates the deferred
substitutions. This yields a modified rule where the type indices in the recursive
occurrences are indeed smaller:

(v1, v2) ∈ V�∀(α ∗ A1).B1; ∀(α ∗ A2).B2�ρ �
∀C1 ∗ A1,C2 ∗ A2.(v1 |C1|, v2 |C2|) ∈ E�B1;B2�ρ[α�→(C1,C2)]

Of course, the deferred substitution has to be performed eventually, to be precise
when the type indices are type variables.

(v1, v2) ∈ V�α;α�ρ � (v1, v2) ∈ V�ρ1(α); ρ2(α)�∅

Unfortunately, this way we have not only moved the type substitution to the
type variable case, but also the ill-foundedness problem. Indeed, this problem is
also present in System F. The standard solution is to not fix the relation R by
which values at type α are related to V�ρ1(α); ρ2(α)�, but instead to make it a

400 X. Bi et al.

parameter that is tracked by ρ. This yields the following two rules for disjoint
quantification and type variables:

(v1, v2) ∈ V�∀(α ∗ A1).B1; ∀(α ∗ A2).B2�ρ � ∀C1 ∗ A1,C2 ∗ A2,R ⊆ C1 × C2.

(v1 |C1|, v2 |C2|) ∈ E�B1;B2�ρ[α�→(C1,C2,R)]

(v1, v2) ∈ V�α; α�ρ � (v1, v2) ∈ ρR(α)

Now we have finally recovered the well-foundedness of the relation. It is again
structurally inductive on the size of the type indexes.

Heterogeneous issues. We have not yet accounted for one major difference
between the parametricity relation, from which we have borrowed ideas, and
the canonicity relation, to which we have been adding. The former is homoge-
neous (i.e., the types of the two values is the same) and therefore has one type
index, while the latter is heterogeneous (i.e., the two values may have different
types) and therefore has two type indices. Thus we must also consider cases like
V�α; Int�. A definition that seems to handle this case appropriately is:

(v1, v2) ∈ V�α; Int�ρ � (v1, v2) ∈ V�ρ1(α); Int�∅ (1)

Here is an example to motivate it. Let E = Λ(α∗�). ((λx . x) : α & Int → α & Int).
We expect that E Int 1 evaluates to 〈1, 1〉. To prove that, we need to show (1, 1) ∈
V�α; Int�[α�→(Int,Int,R)]. According to Eq. (1), this is indeed the case. However, we
run into ill-foundedness issue again, because ρ1(α) could be larger than α. Alas,
this time the parametricity relation has no solution for us.

5.3 The Canonicity Relation for F+
i

In light of the fact that substitution in the logical relation seems unavoidable
in our setting, and that impredicativity is at odds with substitution, we turn to
predicativity : we change rule T-tapp to its predicative version:

Δ;Γ
 E ⇒ ∀(α ∗ B).C � e Δ
 t ∗ B

Δ;Γ
 E t ⇒ [t/α]C � e |t | T-tappMono

where metavariable t ranges over monotypes (types minus disjoint quantifica-
tion). We do not believe that predicativity is a severe restriction in practice,
since many source languages (e.g., those based on the Hindley-Milner type sys-
tem [24,32] like Haskell and OCaml) are themselves predicative and do not
require the full generality of an impredicative core language.

Luckily, substitution with monotypes does not prevent well-foundedness.
Figure 11 defines the canonicity relation for F+

i . The canonicity relation is a
family of binary relations over Fco values that are heterogeneous, i.e., indexed
by two F+

i types. Two points are worth mentioning. (1) An apparent difference
from λ+

i ’s logical relation is that our relation is now indexed by source types. The

Distributive Disjoint Polymorphism 401

Fig. 11. The canonicity relation for F+
i

reason is that the type translation function (Definition 1) discards disjointness
constraints, which are crucial in our setting, whereas λ+

i ’s type translation does
not have information loss. (2) Heterogeneity allows relating values of different
types, and in particular values whose types are disjoint. The rationale behind
the canonicity relation is to combine equality checking from traditional (homo-
geneous) logical relations with disjointness checking. It consists of two relations:
the value relation V�A;B� relates closed values; and the expression relation
E�A;B�—defined in terms of the value relation—relates closed expressions.

The relation V�A;B� is defined by induction on the structures of A and B .
For integers, it requires the two values to be literally the same. For two records to
behave the same, their fields must behave the same. For two functions to behave
the same, they are required to produce outputs related at B1 and B2 when given
related inputs at A1 and A2. For the next two cases regarding intersection types,
the relation distributes over intersection constructor & . Of particular interest is
the case for disjoint quantification. Notice that it does not quantify over arbitrary
relations, but directly substitutes α with monotype t in B1 and B2. This means
that our canonicity relation does not entail parametricity. However, it suffices
for our purposes to prove coherence. Another noticeable thing is that we keep
the invariant that A and B are closed types throughout the relation, so we no
longer need to consider type variables. This simplifies things a lot. Note that
when one type is ⊥, two values are vacuously related because there simply are
no values of type ⊥. We need to show that the relation is indeed well-founded:

Lemma 5 (Well-foundedness). The canonicity relation of F+
i is well-

founded.

Proof. Let |·|∀ and |·|s be the number of ∀-quantifies and the size of types, respec-
tively. Consider the measure 〈| · |∀, | · |s〉, where 〈. . . 〉 denotes lexicographic order.
For the case of disjoint quantification, the number of ∀-quantifiers decreases. For
the other cases, the measure of | · |∀ does not increase, and the measure of | · |s
strictly decreases. ��

402 X. Bi et al.

5.4 Establishing Coherence

Logical equivalence. The canonicity relation can be lifted to open expressions in
the standard way, i.e., by considering all possible interpretations of free type and
term variables. The logical interpretations of type and term contexts are found
in the bottom half of Fig. 11.

Definition 3 (Logical equivalence �log)

Δ;Γ � e1 �log e2 : A;B � |Δ|; |Γ | � e1 : |A| ∧ |Δ|; |Γ | � e2 : |B | ∧
(∀ρ, γ1, γ2. ρ ∈ D�Δ� ∧ (γ1, γ2) ∈ G�Γ �ρ =⇒ (γ1(ρ1(e1)), γ2(ρ2(e2))) ∈ E�ρ(A); ρ(B)�)

For conciseness, we write Δ;Γ � e1 �log e2 : A to mean Δ;Γ � e1 �log e2 : A;A.

Contextual equivalence. Following λ+
i , the notion of coherence is based on contex-

tual equivalence. The intuition is that two programs are equivalent if we cannot
tell them apart in any context. As usual, contextual equivalence is expressed
using expression contexts (C and D denote F+

i and Fco expression contexts,
respectively), Due to the bidirectional nature of the type system, the typing
judgment of C features 4 different forms (full rules are in the appendix), e.g.,
C : (Δ;Γ ⇒ A) �→ (Δ′;Γ ′ ⇒ A′) � D reads if Δ;Γ � E ⇒ A then
Δ′;Γ ′ � C{E} ⇒ A′. The judgment also generates a well-typed Fco context
D. The following two definitions capture the notion of contextual equivalence:

Definition 4 (Kleene Equality �). Two complete programs (i.e., closed
terms of type Int), e and e ′, are Kleene equal, written e � e ′, iff there exists an
integer i such that e −→∗ i and e ′ −→∗ i.

Definition 5 (Contextual Equivalence �ctx)

Δ; Γ � E1 �ctx E2 : A � ∀e1, e2. Δ; Γ � E1 ⇒ A � e1 ∧ Δ; Γ � E2 ⇒ A � e2 ∧
(∀C , D. C : (Δ; Γ ⇒ A) �→ (•; • ⇒ Int) � D =⇒ D{e1} � D{e2})

Coherence. For space reasons, we directly show the coherence statement of F+
i .

We need several technical lemmas such as compatibility lemmas, fundamental
property, etc. The interested reader can refer to our Coq formalization.

Theorem 5 (Coherence). We have that

– If Δ;Γ � E ⇒ A then Δ;Γ � E �ctx E : A.
– If Δ;Γ � E ⇐ A then Δ;Γ � E �ctx E : A.

That is, coherence is a special case of Definition 5 where E1 and E2 are the same.
At first glance, this appears underwhelming: of course E behaves the same as
itself! The tricky part is that, if we expand it according to Definition 5, it is not
E itself but all its translations e1 and e2 that behave the same!

Distributive Disjoint Polymorphism 403

6 Related Work

Coherence. In calculi featuring coercive subtyping, a semantics that interprets
the subtyping judgment by introducing explicit coercions is typically defined on
typing derivations rather than on typing judgments. A natural question that
arises for such systems is whether the semantics is coherent, i.e., distinct typ-
ing derivations of the same typing judgment possess the same meaning. Since
Reynolds [45] proved the coherence of a calculus with intersection types, many
researchers have studied the problem of coherence in a variety of typed calculi.
Two approaches are commonly found in the literature. The first approach is to
find a normal form for a representation of the derivation and show that normal
forms are unique for a given typing judgment [8,15,47]. However, this approach
cannot be directly applied to Curry-style calculi (where the lambda abstractions
are not type annotated). Biernacki and Polesiuk [6] considered the coherence
problem of coercion semantics. Their criterion for coherence of the translation
is contextual equivalence in the target calculus. Inspired by this approach, Bi
et al. [5] proposed the canonicity relation to prove coherence for a calculus with
disjoint intersection types and BCD subtyping. As we have shown in Sect. 5,
constructing a suitable logical relation for F+

i is challenging. On the one hand,
the original approach by Alpuim et al. [2] in Fi does not work any more due to
the addition of BCD subtyping. On the other hand, simply combining System
F’s logical relation with λ+

i ’s canonicity relation does not work as expected, due
to the issue of well-foundedness. To solve the problem, we employ immediate
substitutions and a restriction to predicative instantiations.

BCD subtyping and decidability. The BCD type system was first introduced
by Barendregt et al. [3] to characterize exactly the strongly normalizing terms.
The BCD type system features a powerful subtyping relation, which serves as
a base for our subtyping relation. The decidability of BCD subtyping has been
shown in several works [27,38,41,51]. Laurent [28] formalized the relation in
Coq in order to eliminate transitivity cuts from it, but his formalization does
not deliver an algorithm. Only recently, Laurent [30] presented a general way
of defining a BCD-like subtyping relation extended with generic contravariant/-
covariant type constructors that enjoys the “sub-formula property”. Our Coq
formalization extends the approach used in λ+

i , which follows a different idea
based on Pierce’s decision procedure [38], with parametric (disjoint) polymor-
phism and corresponding distributivity rules. More recently, Muehlboeck and
Tate [34] presented a decidable algorithmic system (proved in Coq) with union
and intersection types. Similar to F+

i , their system also has distributive subtyping
rules. They also discussed the addition of polymorphism, but left a Coq formal-
ization for future work. In their work they regard intersections of disjoint types
(e.g., String& Int) as uninhabitable, which is different from our interpretation.
As a consequence, coherence is a non-issue for them.

Intersection types, the merge operator and polymorphism. Forsythe [44] has inter-
section types and a merge-like operator. However to ensure coherence, various

404 X. Bi et al.

λ,, [16] λi [36] λ∨
∧ [7] λ+

i [5] Fi [2] F+
i

Disjointness
Unrestricted intersections
BCD subtyping
Polymorphism
Coherence
Bottom type

Fig. 12. Summary of intersection calculi (= yes, = no, = syntactic coherence)

restrictions were added to limit the use of merges. In Forsythe merges cannot
contain more than one function. Castagna et al. [12] proposed a coherent cal-
culus λ& to study overloaded functions. λ& has a special merge operator that
works on functions only. Dunfield proposed a calculus [16] (which we call λ,,)
that shows significant expressiveness of type systems with unrestricted intersec-
tion types and an (unrestricted) merge operator. However, because of his unre-
stricted merge operator (allowing 1 , , 2), his calculus lacks coherence. Blaauw-
broek’s λ∨

∧ [7] enriched λ,, with BCD subtyping and computational effects, but
he did not address coherence. The coherence issue for a calculus similar to λ,,

was first addressed in λi [36] with the notion of disjointness, but at the cost
of dropping unrestricted intersections, and a strict notion of coherence (based
on α-equivalence). Later Bi et al. [5] improved calculi with disjoint intersection
types by removing several restrictions, adopted BCD subtyping and a semantic
notion of coherence (based on contextual equivalence) proved using canonicity.
The combination of intersection types, a merge operator and parametric poly-
morphism, while achieving coherence was first studied in Fi [2], which serves as
a foundation for F+

i . However, Fi suffered the same problems as λi. Additionally
in Fi a bottom type is problematic due to interactions with disjoint polymor-
phism and the lack of unrestricted intersections. The issues can be illustrated
with the well-typed F+

i expression Λ(α ∗ ⊥). λx : α. x , , x . In this expression the
type of x , , x is α &α. Such a merge does not violate disjointness because the
only types that α can be instantiated with are top-like, and top-like types do not
introduce incoherence. In Fi a type variable α can never be disjoint to another
type that contains α, but (as the previous expression shows) the addition of a
bottom type allows expressions where such (strict) condition does not hold. In
this work, we removed those restrictions, extended BCD subtyping with poly-
morphism, and proposed a more powerful logical relation for proving coherence.
Figure 12 summarizes the main differences between the aforementioned calculi.

There are also several other calculi with intersections and polymorphism.
Pierce proposed F∧ [39], a calculus combining intersection types and bounded
quantification. Pierce translates F∧ to System F extended with products, but
he left coherence as a conjecture. More recently, Castagna et al. [14] proposed a
polymorphic calculus with set-theoretic type connectives (intersections, unions,
negations). But their calculus does not include a merge operator. Castagna and

Distributive Disjoint Polymorphism 405

Lanvin also proposed a gradual type system [13] with intersection and union
types, but also without a merge operator.

Row polymorphism and bounded polymorphism. Row polymorphism was origi-
nally proposed by Wand [54] as a mechanism to enable type inference for a sim-
ple object-oriented language based on recursive records. These ideas were later
adopted into type systems for extensible records [19,21,31]. Our merge operator
can be seen as a generalization of record extension/concatenation, and selection
is also built-in. In contrast to most record calculi, restriction is not a primitive
operation in F+

i , but can be simulated via subtyping. Disjoint quantification can
simulate the lacks predicate often present in systems with row polymorphism.
Recently Morris and McKinna presented a typed language [33], generalizing
and abstracting existing systems of row types and row polymorphism. Alpuim
et al. [2] informally studied the relationship between row polymorphism and dis-
joint polymorphism, but it would be interesting to study such relationship more
formally. The work of Morris and McKinna may be interesting for such study in
that it gives a general framework for row type systems.

Bounded quantification is currently the dominant mechanism in major main-
stream object-oriented languages supporting both subtyping and polymorphism.
F<: [10] provides a simple model for bounded quantification, but type-checking
in full F<: is proved to be undecidable [40]. Pierce’s thesis [39] discussed the rela-
tionship between calculi with simple polymorphism and intersection types and
bounded quantification. He observed that there is a way to “encode” many forms
of bounded quantification in a system with intersections and pure (unbounded)
second-order polymorphism. That encoding can be easily adapted to F+

i :

∀(α <: A).B � ∀(α ∗ �). ([A& α/α]B)

The idea is to replace bounded quantification by (unrestricted) universal quan-
tification and all occurrences of α by A&α in the body. Such an encoding seems
to indicate that F+

i could be used as a decidable alternative to (full) F<:. It
is worthwhile to note that this encoding does not work in Fi because A&α is
not well-formed (α is not disjoint to A). In other words, the encoding requires
unrestricted intersections.

7 Conclusion and Future Work

We have proposed F+
i , a type-safe and coherent calculus with disjoint intersection

types, BCD subtyping and parametric polymorphism. F+
i improves the state-of-

art of compositional designs, and enables the development of highly modular and
reusable programs. One interesting and useful further extension would be implicit
polymorphism. For that we want to combine Dunfield and Krishnaswami’s app-
roach [17] with our bidirectional type system. We would also like to study the
parametricity of F+

i . As we have seen in Sect. 5.2, it is not at all obvious how to
extend the standard logical relation of System F to account for disjointness, and
avoid potential circularity due to impredicativity. A promising solution is to use
step-indexed logical relations [1].

406 X. Bi et al.

Acknowledgments. We thank the anonymous reviewers and Yaoda Zhou for their
helpful comments. This work has been sponsored by the Hong Kong Research Grant
Council projects number 17210617 and 17258816, and by the Research Foundation -
Flanders.

References

1. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified
types. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 69–83. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693024 6

2. Alpuim, J., Oliveira, B.C.d.S., Shi, Z.: Disjoint polymorphism. In: Yang, H. (ed.)
ESOP 2017. LNCS, vol. 10201, pp. 1–28. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54434-1 1

3. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. J. Symb. Logic 48(04), 931–940 (1983)

4. Bi, X., Oliveira, B.C.d.S.: Typed first-class traits. In: European Conference on
Object-Oriented Programming (ECOOP) (2018)

5. Bi, X., Oliveira, B.C.d.S., Schrijvers, T.: The essence of nested composition. In:
European Conference on Object-Oriented Programming (ECOOP) (2018)

6. Biernacki, D., Polesiuk, P.: Logical relations for coherence of effect subtyping.
In: International Conference on Typed Lambda Calculi and Applications (TLCA)
(2015)

7. Blaauwbroek, L.: On the interaction between unrestricted union and intersection
types and computational effects. Master’s thesis, Technical University Eindhoven
(2017)

8. Breazu-Tannen, V., Coquand, T., Gunter, C.A., Scedrov, A.: Inheritance as
implicit coercion. Inf. Comput. 93(1), 172–221 (1991)

9. Brent, R.P., Kung, H.T.: The chip complexity of binary arithmetic. In: Proceedings
of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 190–200
(1980)

10. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv. 17(4), 471–523 (1985)

11. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(05), 509
(2009)

12. Castagna, G., Ghelli, G., Longo, G.: A calculus for overloaded functions with sub-
typing. In: Conference on LISP and Functional Programming (1992)

13. Castagna, G., Lanvin, V.: Gradual typing with union and intersection types. In:
Proceedings of the ACM on Programming Languages, vol. 1, no. (ICFP), pp. 1–28
(2017)

14. Castagna, G., Nguyen, K., Xu, Z., Im, H., Lenglet, S., Padovani, L.: Polymorphic
functions with set-theoretic types: part 1: syntax, semantics, and evaluation. In:
Principles of Programming Languages (POPL) (2014)

15. Curien, P.L., Ghelli, G.: Coherence of subsumption, minimum typing and type-
checking in f≤. Math. Struct. Comput. Sci. (MSCS) 2(01), 55 (1992)

16. Dunfield, J.: Elaborating intersection and union types. J. Funct. Program. (JFP)
24(2–3), 133–165 (2014)

17. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking
for higher-rank polymorphism. In: International Conference on Functional Pro-
gramming (ICFP) (2013)

https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.1007/978-3-662-54434-1_1

Distributive Disjoint Polymorphism 407

18. Fokkinga, M.M.: Tupling and mutumorphisms. Squiggolist 1(4) (1989)
19. Gaster, B.R., Jones, M.P.: A polymorphic type system for extensible records and

variants. Technical report, University of Nottingham (1996)
20. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-

dings (functional pearl). In: ICFP, pp. 339–347. ACM (2014)
21. Harper, R., Pierce, B.: A record calculus based on symmetric concatenation. In:

Principles of Programming Languages (POPL) (1991)
22. Henglein, F.: Dynamic typing: syntax and proof theory. Sci. Comput. Program.

22(3), 197–230 (1994)
23. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. High.-Order

Symb. Comput. 23(2), 167 (2010)
24. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans.

Am. Math. Soc. 146, 29–60 (1969)
25. Hinze, R.: An algebra of scans. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp.

186–210. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27764-
4 11

26. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic embedding of DSLs.
In: International Conference on Generative Programming and Component Engi-
neering (GPCE) (2008)

27. Kurata, T., Takahashi, M.: Decidable properties of intersection type systems. In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 297–
311. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014060

28. Laurent, O.: Intersection types with subtyping by means of cut elimination. Fun-
dam. Inf. 121(1–4), 203–226 (2012)

29. Laurent, O.: A syntactic introduction to intersection types (2012, unpublished
note)

30. Laurent, O.: Intersection subtyping with constructors. In: Proceedings of the Ninth
Workshop on Intersection Types and Related Systems (2018)

31. Leijen, D.: Extensible records with scoped labels. Trends Funct. Program. 5, 297–
312 (2005)

32. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978)

33. Morris, J.G., McKinna, J.: Abstracting extensible data types. In: Principles of
Programming Languages (POPL) (2019)

34. Muehlboeck, F., Tate, R.: Empowering union and intersection types with integrated
subtyping. In: OOPSLA (2018)

35. Oliveira, B.C.d.S., Cook, W.R.: Extensibility for the masses. In: Noble, J. (ed.)
ECOOP 2012. LNCS, vol. 7313, pp. 2–27. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31057-7 2

36. Oliveira, B.C.d.S., Shi, Z., Alpuim, J.: Disjoint intersection types. In: International
Conference on Functional Programming (ICFP) (2016)

37. Oliveira, B.C.d.S., van der Storm, T., Loh, A., Cook, W.R.: Feature-oriented pro-
gramming with object algebras. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol.
7920, pp. 27–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39038-8 2

38. Pierce, B.C.: A decision procedure for the subtype relation on intersection types
with bounded variables. Technical report, Carnegie Mellon University (1989)

39. Pierce, B.C.: Programming with intersection types and bounded polymorphism.
Ph.D. thesis, University of Pennsylvania (1991)

40. Pierce, B.C.: Bounded quantification is undecidable. Inf. Comput. 112(1), 131–165
(1994)

https://doi.org/10.1007/978-3-540-27764-4_11
https://doi.org/10.1007/978-3-540-27764-4_11
https://doi.org/10.1007/BFb0014060
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-39038-8_2
https://doi.org/10.1007/978-3-642-39038-8_2

408 X. Bi et al.

41. Rehof, J., Urzyczyn, P.: Finite combinatory logic with intersection types. In: Ong,
L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 169–183. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21691-6 15

42. Rendel, T., Brachthäuser, J.I., Ostermann, K.: From object algebras to attribute
grammars. In: Object-Oriented Programming, Systems Languages and Applica-
tions (OOPSLA) (2014)

43. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Proceedings
of the IFIP 9th World Computer Congress (1983)

44. Reynolds, J.C.: Preliminary design of the programming language Forsythe. Tech-
nical report, Carnegie Mellon University (1988)

45. Reynolds, J.C.: The coherence of languages with intersection types. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 675–700. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-54415-1 70

46. Oliveira, B.C.d.S., Hinze, R., Löh, A.: Extensible and modular generics for the
masses. In: Revised Selected Papers from the Seventh Symposium on Trends in
Functional Programming, TFP 2006, Nottingham, United Kingdom, 19–21 April
2006, pp. 199–216 (2006)

47. Schwinghammer, J.: Coherence of subsumption for monadic types. J. Funct. Pro-
gram. (JFP) 19(02), 157 (2008)

48. Scott, D.: Outline of a mathematical theory of computation. Oxford University
Computing Laboratory, Programming Research Group (1970)

49. Scott, D.S., Strachey, C.: Toward a Mathematical Semantics for Computer Lan-
guages, vol. 1. Oxford University Computing Laboratory, Programming Research
Group (1971)

50. Siek, J., Thiemann, P., Wadler, P.: Blame and coercion: together again for the
first time. In: Conference on Programming Language Design and Implementation
(PLDI) (2015)

51. Statman, R.: A finite model property for intersection types. Electron. Proc. Theor.
Comput. Sci. 177, 1–9 (2015)

52. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1989 (1989)

53. Wadler, P.: The expression problem. Java-Genericity Mailing List (1998)
54. Wand, M.: Complete type inference for simple objects. In: Symposium on Logic in

Computer Science (LICS) (1987)
55. Zhang, W., Oliveira, B.C.d.S: Shallow EDLs and object-oriented programming.

Program. J. (2019, to appear)

https://doi.org/10.1007/978-3-642-21691-6_15
https://doi.org/10.1007/3-540-54415-1_70

Distributive Disjoint Polymorphism 409

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Types by Need

Beniamino Accattoli1, Giulio Guerrieri2(B) , and Maico Leberle1

1 Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France
{beniamino.accattoli,maico-carlos.leberle}@inria.fr

2 Department of Computer Science, University di Bath, Bath, UK
g.guerrieri@bath.ac.uk

Abstract. A cornerstone of the theory of λ-calculus is that intersection
types characterise termination properties. They are a flexible tool that
can be adapted to various notions of termination, and that also induces
adequate denotational models.

Since the seminal work of de Carvalho in 2007, it is known that multi
types (i.e. non-idempotent intersection types) refine intersection types
with quantitative information and a strong connection to linear logic.
Typically, type derivations provide bounds for evaluation lengths, and
minimal type derivations provide exact bounds.

De Carvalho studied call-by-name evaluation, and Kesner used his
system to show the termination equivalence of call-by-need and call-by-
name. De Carvalho’s system, however, cannot provide exact bounds on
call-by-need evaluation lengths.

In this paper we develop a new multi type system for call-by-need. Our
system produces exact bounds and induces a denotational model of call-
by-need, providing the first tight quantitative semantics of call-by-need.

1 Introduction

Duplications and erasures have always been considered as key phenomena in
the λ-calculus—the λI-calculus, where erasures are forbidden, is an example of
this. The advent of linear logic [38] gave them a new, prominent logical status.
Forbidding erasure and duplication enables single-use resources, i.e. linearity,
but limits expressivity, as every computation terminates in linear time. Their
controlled reintroduction via the non-linear modality ! recovers the full expressive
power of cut-elimination and allows a fine analysis of resource consumption.
Duplication and erasure are therefore the key ingredients for logical expressivity,
and—via Curry-Howard—for the expressivity of the λ-calculus. They are also
essential to understand evaluation strategies.

In a λ-term there can be many β-redexes, that is, places where β-
reduction can be applied. In this sense, the λ-calculus is non-deterministic. Non-
determinism does not affect the result of evaluation, if any, but it affects whether
evaluation terminates, and in how many steps. There are two natural determin-
istic evaluation strategies, call-by-name (shortened to CbN) and call-by-value
(CbV), which have dual behaviour with respect to duplication and erasure.
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 410–439, 2019.
https://doi.org/10.1007/978-3-030-17184-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_15&domain=pdf
http://orcid.org/0000-0002-0469-4279
https://doi.org/10.1007/978-3-030-17184-1_15

Types by Need 411

Call-by-Name = Silly Duplication + Wise Erasure. CbN never evaluates argu-
ments of β-redexes before the redexes themselves. As a consequence, it never
evaluates in subterms that will be erased. This is wise, and makes CbN a nor-
malising strategy, that is, a strategy that reaches a result whenever one exists1.
A second consequence is that if the argument of the redex is duplicated then it
may be evaluated more than once. This is silly, as it repeats work already done.

Call-by-Value = Wise Duplication + Silly Erasure. CbV, on the other
hand, always evaluates arguments of β-redexes before the redexes themselves.
Consequently, arguments are not re-evaluated—this is wise with respect to
duplication—but they are also evaluated when they are going to be erased. For
instance, on t := (λx.λy.y)Ω, where Ω is the famous looping λ-term, CbV evalu-
ation diverges (it keeps evaluating Ω) while CbN converges in one β-step (simply
erasing Ω). This CbV treatment of erasure is clearly as silly as the duplicated
work of CbN.

Call-by-Need = Wise Duplication + Wise Erasure. It is natural to try to combine
the advantages of both CbN and CbV. The strategy that is wise with respect
to both duplications and erasures is usually called call-by-need (CbNeed), it was
introduced by Wadsworth [57], and dates back to the ’70s. Despite being at the
core of Haskell, one of the most-used functional programming languages, and—
in its strong variant—being at work in the kernel of Coq as designed by Barras
[16], the theory of CbNeed is much less developed than that of CbN or CbV.

One of the reasons for this is that it cannot be defined inside the λ-calculus
without some hacking. Manageable presentations of CbNeed indeed require first-
class sharing and micro-step operational semantics where variable occurrences
are replaced one at a time (when needed), and not all at once as in the λ-calculus.
Another reason is the less natural logical interpretation.

Linear Logic, Names, Values, and Needs. CbN and CbV have neat interpreta-
tions in linear logic. They correspond to two different representations of intuition-
istic logic in linear logic, based on two different representations of implication2.

The logical interpretation of CbNeed—studied by Maraist et al. in [47]—is
less neat than those of CbN and CbV. Within linear logic, CbNeed is usually
understood as corresponding to the CbV representation where erasures are gen-
eralised to all terms, not only those under the scope of a ! modality. So, it is seen
as a sort of affine CbV. Such an interpretation however is unusual, because it
does not match exactly with cut-elimination in linear logic, as for CbN and CbV.

Call-by-Need, Abstractly. The main theorem of the theory of CbNeed is that it is
termination equivalent to CbN, that is, on a fixed term, CbNeed evaluation ter-
minates if and only if CbN evaluation terminates, and, moreover, they essentially

1 If a term t admits both converging and diverging evaluation sequences then the
diverging sequences occur in erasable subterms of t, which is why CbN avoids them.

2 The CbN translation maps A ⇒ B to (!ACbN) � BCbN, while the CbV maps it to
!ACbV � !BCbV, or equivalently to !(ACbV � BCbV).

412 B. Accattoli et al.

produce the same result (up to some technical details that are irrelevant here).
This is due to the fact that both strategies avoid silly divergent sequences such
as that of (λx.λy.y)Ω. Termination equivalence is an abstract theorem stating
that CbNeed erases as wisely as CbN. Curiously, in the literature there are no
abstract theorems reflecting the dual fact that CbNeed duplicates as wisely as
CbV—we provide one, as a side contribution of this paper.

Call-by-Need and Denotational Semantics. CbNeed is then usually considered
as a CbV optimisation of CbN. In particular, every denotational model of CbN
is also a model of CbNeed, and adequacy—that is the fact that the denotation of
t is not degenerated if and only if t terminates—transfers from CbN to CbNeed.

Denotational semantics is invariant by evaluation, and so is insensitive
to evaluation lengths by definition. It then seems that denotational seman-
tics cannot distinguish between CbN and CbNeed. The aim of this paper is,
somewhat counter-intuitively, to separate CbN and CbNeed semantically. We
develop a type system whose type judgements induce a model—this is typ-
ical of intersection type systems—and whose type derivations provide exact
bounds for CbNeed evaluation—this is usually obtained via non-idempotent
intersection types. Unsurprisingly, the design of the type system requires a del-
icate mix of erasure and duplication and builds on the linear logic understand-
ing of CbN and CbV.

Multi Types. Our typing framework is given by multi types, which is an alterna-
tive name for non-idempotent intersection types3. Multi types characterise termi-
nation properties exactly as intersection types, having moreover the advantages
that they are closely related to (the relational semantics of) linear logic, their
type derivations provide quantitative information about evaluation lengths, and
the proof techniques are simpler—no need for the reducibility method.

The seminal work of de Carvalho [23] (appeared in 2007 but unpublished until
2018, see also [22]) showed how to use multi types to obtain exact bounds on
evaluation lengths in CbN. Ehrhard adapted multi types to CbV [34], and very
recently Accattoli and Guerrieri adapted de Carvalho’s study of exact bounds to
Ehrhard’s system and CbV evaluation [8]. Kesner used de Carvalho’s CbN multi
types to obtain a simple proof that CbNeed is termination equivalent to CbN
[40] (first proved with other techniques by Maraist, Odersky, and Wadler [48]
and Ariola and Felleisen [11] in the nineties), and then Kesner and coauthors
continued exploring the theory of CbNeed via CbN multi types [14,15,42].

Kesner’s use of CbN multi types to study CbNeed is qualitative, as it deals
with termination and not with exact bounds. For a quantitative study of CbNeed,
de Carvalho’s CbN system cannot really be informative: CbN multi types provide
bounds for CbNeed which cannot be exact because they already provide exact
bounds for CbN, which generally takes more steps than CbNeed.

3 The new terminology is due to the fact that a non-idempotent intersection A ∧ A ∧
B ∧ C can be seen as a multi-set [A, A, B, C].

Types by Need 413

Multi Types by Need. In this paper we provide the first multi type system charac-
terising CbNeed termination and whose minimal type derivations provide exact
bounds for CbNeed evaluation lengths. The design of the type system is delicate,
as we explain in Sect. 6. One of the key points is that, in contrast to Ehrhard’s
system for CbV [34], multi types for CbNeed cannot be directly extracted by
the relational semantics of linear logic, given that CbNeed does not have a clean
representation in it. A by-product of our work is a new denotational semantics
of CbNeed, the first one to precisely reflect its quantitative properties.

Beyond the result itself, the paper tries to stress how the key ingredients of
our type system are taken from those for CbN and CbV and combined together.
To this aim, we first present multi types for CbN and CbV, and only then we
proceed to build the CbNeed system and prove its properties.

Along the way, we also prove the missing fundamental property of CbNeed,
that is, that it duplicates as efficiently as CbV. The result dualizes the termi-
nation equivalence of CbN and CbNeed, which shows that CbNeed erases as
wisely as CbN. Careful : the CbV system is correct but of course not complete
with respect to CbNeed, because CbNeed may normalise when CbV diverges.
The proof of the result is straightforward, because of our presentations of CbV
and CbNeed. We adopt a liberal, non-deterministic formulation of CbV, and
assuming (without loss of generality, see [1]) that garbage collection is always
postponed. These two ingredients turn CbNeed into a fragment of CbV, obtain-
ing the new fundamental result as a corollary of correctness of CbV multi types
for CbV evaluation.

Technical Development. The paper is extremely uniform, technically speaking.
The three evaluations are presented as strategies of Accattoli and Kesner’s Linear
Substitution Calculus (shortened to LSC) [1,6], a calculus with a simple but
expressive form of explicit sharing. The LSC is strongly related to linear logic
[2], and provides a neat and manageable presentation of CbNeed, introduced
by Accattoli, Barenbaum, and Mazza in [3], and further developed by various
authors in [4,5,10,14,15,40,42]. Our type systems count evaluation steps by
annotating typing rules in the exact same way, and the proofs of correctness
and completeness all follow the exact same structure. While the results for CbN
are very minor variations with respect to those in the literature [7,23], those for
CbV are the first ones with respect to a presentation of CbV with sharing.

As it is standard for CbNeed, we restrict our study to closed terms and
weak evaluation (that is, out of abstractions). The main consequence of this fact
is that normal forms are particularly simple (sometimes called answers in the
literature). Compared with other recent works dealing with exact bounds such
as Accattoli, Graham-Lengrand, and Kesner [7] and Accattoli and Guerrieri [8]
the main difference is that the size of normal forms is not taken into account by
type derivations. This is because of the simple notions of normal forms in the
closed and weak case, and not because the type systems are not accurate.

Related Work About CbNeed. Call-by-need was introduced by Wadsworth [57]
in the ’70s. In the ’90s, it was first reformulated as operational semantics by

414 B. Accattoli et al.

Launchbury [46], Maraist, Odersky, and Wadler [48], and Ariola and Felleisen
[11,12], and then implemented by Sestoft [55] and further studied by Kutzner
and Schmidt-Schauß [45]. More recent papers are Garcia, Lumsdaine, and Sabry
[36], Ariola, Herbelin, and Saurin [13], Chang and Felleisen [26], Danvy and
Zerny [29], Downen et al. [33], Pédrot and Saurin [53], and Balabonski et al. [14].

Related Work About Multi Types. Intersection types are a standard tool to study
λ-calculi—see Coppo and Dezani [27,28], Pottinger [54], and Krivine [44]. Non-
idempotent intersection types, i.e. multi types, were first considered by Gardner
[37], and then by Kfoury [43], Neergaard and Mairson [50], and de Carvalho
[23]—a survey is Bucciarelli, Kesner, and Ventura [20].

Many recent works rely on multi types or relational semantics to study prop-
erties of programs and proofs. Beyond the cited ones, Diaz-Caro, Manzonetto,
and Pagani [32], Carraro and Guerrieri [21], Ehrhard and Guerrieri [35], and
Guerrieri [39] deal with CbV, while Bernadet and Lengrand [17], de Carvalho,
Pagani, and Tortora de Falco [24] provide exact bounds. Further related work is
by Bucciarelli, Ehrhard, and Manzonetto [18], de Carvalho and Tortora de Falco
[25], Tsukada and Ong [56], Kesner and Vial [41], Piccolo, Paolini and Ronchi
Della Rocca [52], Ong [51], Mazza, Pellissier, and Vial [49], Bucciarelli, Kesner
and Ronchi Della Rocca [19]—this list is not exhaustive.

Proofs. Proofs are omitted. They can be found in the technical report [9].

2 Closed λ-Calculi

In this section we define the CbN, CbV, and CbNeed evaluation strategies. We
present them in the context of the Accattoli and Kesner’s linear substitution cal-
culus (LSC) [1,6]. We mainly follow the uniform presentation of these strategies
given by Accattoli, Barenbaum, and Mazza [3]. The only difference is that we
adopt a non-deterministic presentation of CbV, subsuming both the left-to-right
and the right-to-left strategies in [3], that makes our results slightly more gen-
eral. Such a non-determinism is harmless: not only CbV evaluation is confluent,
it even has the diamond property, so that all evaluations have the same length.
Moreover, the non-deterministic presentation, together with the postponement
of erasing steps discussed below, allows us to see CbNeed as a fragment of CbV,
which shall provide a free proof that CbNeed duplicates as wisely as CbV.

Terms and Contexts. The set of terms Λlsc of the LSC is given by the grammar
below, where t[x←s] is an explicit substitution (shortened to ES), that is a more
compact notation for let x = s in t (intuitively, “t where x will be substituted
by s”). Both λx.t and t[x←s] bind x in t, with the usual notion of α-equivalence.

LSC Terms t, s, u ::= x | v | ts | t[x←s] LSC Values v ::= λx.t

The set fv(t) of free variables of a term t is defined as expected, in particular,
fv(t[x←s]) := (fv(t)\{x})∪fv(s). A term t is closed if fv(t) = ∅, open otherwise.
As usual, terms are identified up to α-equivalence.

Types by Need 415

Contexts are terms with exactly one occurrence of the hole 〈·〉, an additional
constant. We shall use many different contexts. The most general ones are weak
contexts W (i.e. not under abstractions). The (evaluation) contexts C, V and
E—used to define CbN, CbV and CbNeed evaluation strategies, respectively—
are special cases of weak contexts (in fact, CbV contexts coincide with weak
contexts, the consequences of that are discussed on p. 8). To define evaluation
strategies, substitution contexts (i.e. lists of explicit substitutions) also play a
role.

Weak contexts W ::= 〈·〉 | Wt | W [x←t] | tW | t[x←W]
Substitution contexts S ::= 〈·〉 | S[x←t]

CbN contexts C ::= 〈·〉 | Ct | C[x←t]
CbV contexts V ::= W

CbNeed contexts E ::= 〈·〉 | Et | E[x←t] | E〈〈x〉〉[x←E′]

We write W 〈t〉 for the term obtained by replacing the hole 〈·〉 in context
W by the term t. This plugging operation, as usual with contexts, can capture
variables—for instance ((〈·〉t)[x←s])〈x〉 = (xt)[x←s]. We write W 〈〈t〉〉 when we
want to stress that the context W does not capture the free variables of t.

Micro-step Semantics. The rewriting rules decompose the usual small-step
semantics for λ-calculi, by substituting linearly one variable occurrence at the
time, and only when such an occurrence is in evaluation position. We empha-
sise this fact saying that we adopt a micro-step semantics. We now give the
definitions, examples of evaluation sequences follow right next.

Formally, a micro-step semantics is defined by first giving its root-steps and
then taking the closure of root-steps under suitable contexts.

Multiplicative root-step S〈λx.t〉s �→m S〈t[x←s]〉
Exponential CbN root-step C〈〈x〉〉[x←t] �→ecbn C〈〈t〉〉[x←t]
Exponential CbV root-step V 〈〈x〉〉[x←S〈v〉] �→ecbv S〈V 〈〈v〉〉[x←v]〉

Exponential CbNeed root-step E〈〈x〉〉[x←S〈v〉] �→eneed S〈E〈〈v〉〉[x←v]〉

where, in the root-step �→m (resp. �→ecbv ; �→eneed), if S := [y1←s1] . . . [yn←sn]
for some n ∈ N, then fv(s) (resp. fv(V 〈〈x〉〉); fv(E〈〈x〉〉)) and {y1, . . . , yn} are
disjoint. This condition can always be fulfilled by α-equivalence.

The evaluation strategies −→cbn for CbN, −→cbv for CbV, and −→need for
CbNeed, are defined as the closure of root-steps under CbN, CbV and CbNeed
evaluation contexts, respectively (so, all evaluation strategies do not reduce
under abstractions, since all such contexts are weak):

416 B. Accattoli et al.

CbN CbV CbNeed
−→mcbn

:= C〈�→m〉
−→ecbn

:= C〈�→ecbn〉
−→cbn := C〈�→m∪ �→ecbn〉

−→mcbv
:= V 〈�→m〉

−→ecbv
:= V 〈�→ecbv〉

−→cbv := V 〈�→m∪ �→ecbv〉

−→mneed
:= E〈�→m〉

−→eneed
:= E〈�→eneed〉

−→need := E〈�→m∪ �→eneed〉

where the notation −→ := W 〈�→〉 means that, given a root-step �→, the evaluation
−→ is defined as follows: t −→s if and only if there are terms t′ and s′ and a context
W such that t = W 〈t′〉 and s = W 〈s′〉 and t′ �→ s′.

Note that evaluations −→cbn, −→cbv and −→need can equivalently be defined
as −→mcbn

∪ −→ecbn
, −→mcbn

∪ −→ecbv
and −→mneed

∪ −→eneed
, respectively.

Given an evaluation sequence d : t −→∗
cbns we note with |d| the length of d,

and with |d|m and |d|e the number of multiplicative and exponential steps in d,
respectively—and similarly for −→cbv and −→need.

Erasing Steps. The reader may be surprised by our evaluation strategies, as none
of them includes erasing steps, despite the absolute relevance of erasures pointed
out in the introduction. There are no contradictions: in the LSC—in contrast to
the λ-calculus—erasing steps can always be postponed (see [1]), and so they are
often simply omitted. This is actually close to programming language practice,
as the garbage collector acts asynchronously with respect to the evaluation flow.
For the sake of clarity let us spell out the erasing rules—they shall nonetheless
be ignored in the rest of the paper. In CbN and CbNeed every term is erasable,
so the root erasing step takes the following form

t[x←s] �→gc t if x /∈ fv(t)

and it is then closed by weak evaluation contexts.
In CbV only values are erasable; so, the root erasing step in CbV is:

t[x←S〈v〉] �→gc S〈t〉 if x /∈ fv(t)

and it is then closed by weak evaluation contexts.

Example 1. A good example to observe the differences between CbN, CbV, and
CbNeed is given by the term t := ((λx.λy.xx)(II))(II) where I := λz.z is
the identity combinator. In CbN, it evaluates with 5 multiplicative steps and 5
exponential steps, as follows:

t −→mcbn(λy.xx)[x←II](II) −→mcbn(xx)[y←II][x←II]

−→ecbn((II)x)[y←II][x←II] −→mcbn(z[z←I]x)[y←II][x←II]

−→ecbn(I[z←I]x)[y←II][x←II] −→mcbnw[w←x][z←I][y←II][x←II]

−→ecbnx[w←x][z←I][y←II][x←II] −→ecbn(II)[w←x][z←I][y←II][x←II]

−→mcbnx′[x′←I][w←x][z←I][y←II][x←II] −→ecbnI[x′←I][w←x][z←I][y←II][x←II]

In CbV, t evaluates with 5 multiplicative steps and 5 exponential steps, for
instance from right to left, as follows:

Types by Need 417

t −→mcbv (λx.λy.xx)(II)(z[z←I]) −→ecbv (λx.λy.xx)(II)(I[z←I])

−→mcbv (λx.λy.xx)(w[w←I])(I[z←I]) −→ecbv (λx.λy.xx)(I[w←I])(I[z←I])

−→mcbv (λy.xx)[x←I[w←I]](I[z←I]) −→mcbv (xx)[y←I[z←I]][x←I[w←I]]

−→ecbv (xI)[y←I[z←I]][x←I][w←I] −→ecbv (II)[y←I[z←I]][x←I][w←I]

−→mcbvx′[x′←I][y←I[z←I]][x←I][w←I] −→ecbvI[x′←I][y←I[z←I]][x←I][w←I]

Note that the fact that CbN and CbV take the same number of steps is by
chance, as they reduce different redexes: CbN never reduce the unneeded redex
II associated to y, but it reduces twice the needed II redex associated to x,
while CbV reduces both, but each one only once.

In CbNeed, t evaluates in 4 multiplicative steps and 4 exponential steps.

t −→mneed(λy.xx)[x←II](II) −→mneed(xx)[y←II][x←II]

−→mneed(xx)[y←II][x←z[z←I]] −→eneed(xx)[y←II][x←I[z←I]]

−→eneed(Ix)[y←II][x←I][z←I] −→mneed(w[w←x])[y←II][x←I][z←I]

−→eneedw[w←I][y←II][x←I][z←I] −→eneedI[w←I][y←II][x←I][z←I]

CbV Diamond Property. CbV contexts coincide with weak ones. As a conse-
quence, our presentation of CbV is non-deterministic, as for instance one can
have

x[x←I](y[y←I]) mcbv← (II)(y[y←I]) −→ecbv
(II)(I[y←I])

but it is easily seen that diagrams can be closed in exactly one step (if the two
reducts are different). For instance,

x[x←I](y[y←I]) −→ecbv
x[x←I](I[y←I]) mcbv← (II)(I[y←I])

Moreover, the kind of steps is preserved, as the example illustrates. This is an
instance of the strong form of confluence called diamond property. A consequence
is that either all evaluation sequences normalise or all diverge, and if they nor-
malise they have all the same length and the same number of steps of each
kind. Roughly, the diamond property is a form of relaxed determinism. In par-
ticular, it makes sense to talk about the number of multiplicative/exponential
steps to normal form, independently of the evaluation sequence. The proof of
the property is an omitted routine check of diagrams.

Normal Forms. We use two predicates to characterise normal forms, one for
both CbN and CbNeed normal forms, for which ES can contain whatever term,
and one for CbV normal forms, where ES can only contain normal terms:

normal(λx.t)
normal(t)

normal(t[x←s]) normalcbv(λx.t)
normalcbv(t) normalcbv(s)

normalcbv(t[x←s])

418 B. Accattoli et al.

Proposition 1 (Syntactic characterization of closed normal forms).
Let t be a closed term.
1. CbN and CbNeed: For r ∈ {cbn,need}, t is r-normal if and only if normal(t).
2. CbV: t is cbv-normal if and only if normalcbv(t).

The simple structure of normal forms is the main point where the restriction
to closed calculi plays a role in this paper.

From the syntactic characterization of normal forms (Proposition 1) it follows
immediately that among closed terms, normal forms for CbN and CbNeed coin-
cide, while normal forms for CbV are a subset of them. Such a subset is proper
since the closed term I[x←δδ] (where I := λz.z and δ := λy.yy) is normal for
CbN and CbNeed but not for CbV (and it cannot normalise in CbV).

3 Preliminaries About Multi Types

In this section we define basic notions about multi types, type contexts, and
(type) judgements that are shared by the three typing systems of the paper.

Multi-sets. The type systems are based on two layers of types, defined in a
mutually recursive way, linear types L and finite multi-sets M of linear types.
The intuition is that a linear type L corresponds to a single use of a term, and
that an argument t is typed with a multi-set M of n linear types if it is going
to end up (at most) n times in evaluation position, with respect to the strategy
associated with the type system. The three systems differ on the definition of
linear types, that is therefore not specified here, while all adopt the same notion
of finite multi-set M of linear types (named multi type), that we now introduce:

Multi types M,N ::= [Li]i∈J (for any finite set J)

where [. . .] denotes the multi-set constructor. The empty multi-set [] (the multi
type obtained for J = ∅) is called empty (multi) type and denoted by the special
symbol 0. An example of multi-set is [L,L,L′], that contains two occurrences of
L and one occurrence of L′. Multi-set union is noted
.

Type Contexts. A type context Γ is a (total) map from variables to multi types
such that only finitely many variables are not mapped to 0. The domain of Γ is
the set dom(Γ) := {x | Γ (x) �= 0}. The type context Γ is empty if dom(Γ) = ∅.

Multi-set union
 is extended to type contexts point-wise, i.e. (Γ
Π)(x) :=
Γ (x)
 Π(x) for each variable x. This notion is extended to a finite family
of type contexts as expected, so that

⊎
i∈J Γi denotes a finite union of type

contexts—it stands for the empty context when J = ∅. A type context Γ is
denoted by x1 : M1, . . . , xn : Mn (for some n ∈ N) if dom(Γ) ⊆ {x1, . . . , xn} and
Γ (xi) = Mi for all 1 ≤ i ≤ n. Given two type contexts Γ and Π such that
dom(Γ) ∩ dom(Π) = ∅, the type context Γ,Π is defined by (Γ,Π)(x) := Γ (x) if
x ∈ dom(Γ), (Γ,Π)(x) := Π(x) if x ∈ dom(Π), and (Γ,Π)(x) := 0 otherwise.

Types by Need 419

x : [L] ���(0,1)x :L
ax

���(0,0)λx.t : normal
normal

Γ, x :M ���(m,e)t :L

Γ ���(m,e)λx.t :M � L
fun

(Πi ���(mi,ei)t :Li)i∈J
⊎

i∈J Πi ���(
∑

i∈Jmi,
∑

i∈Jei)t : [Li]i∈J

many

Γ ���(m,e)t :M � L Π ���(m′,e′)s :M

Γ � Π ���(m+m′+1,e+e′)ts :L
app

Γ, x :M ���(m,e)t :L Π ���(m′,e′)s :M

Γ � Π ���(m+m′,e+e′)t[x←s] :L
ES

Fig. 1. Type system for CbN evaluation

Judgements. Type judgements are of the form Γ ���(m,e)t : L or Γ ���(m,e)t : M
(noted also ���(m,e)t : L and ���(m,e)t : M , respectively, when Γ is the empty con-
text), where the indices m and e are natural numbers whose intended meaning
is that t evaluates to normal form in m multiplicative steps and e exponential
steps, with respect to the evaluation strategy associated with the type system.

To make clear in which type systems the judgement is derived, we write
Φ�cbn Γ ���(m,e)t : L if Φ is a derivation in the CbN system ending in the judgement
Γ ���(m,e)t : L, and similarly for CbV and CbNeed.

4 Types by Name

In this section we introduce the CbN multi type system, together with intuitions
about multi types. We also prove that derivations provide exact bounds on CbN
evaluation sequences, and define the induced denotational model.

CbN Types. The system is essentially a reformulation of de Carvalho’s system
R [23], itself being a type-based presentation of the relational model of the CbN
λ-calculus induced by relational model of linear logic via the CbN translation of
λ-calculus into linear logic. Definitions:
– CbN linear types are given by the following grammar:

CbN linear types L,L′ ::= normal | M � L

Multi(-sets) types are defined as in Sect. 3, relatively to CbN linear types.
Note the linear constant normal (used to type abstractions, which are normal
terms): it plays a crucial role in our quantitative analysis of CbN evaluation.

– The CbN typing rules are in Fig. 1.
– The many rule: it has as many premises as the elements in the (possibly

empty) set of indices J . When J = ∅, the rule has no premises, and it types
t with the empty multi type 0. The many rule is needed to derive the right
premises of the rules app and ES, that have a multi type M on their right-
hand side. Essentially, it corresponds to the promotion rule of linear logic,
that, in the CbN representation of the λ-calculus, is indeed used for typing
the right subterm of applications and the content of explicit substitutions.

420 B. Accattoli et al.

– The size of a derivation Φ �cbn Γ ���(m,e)t : L is the sum m + e of the indices.
A quick look to the typing rules shows that indices on typing judgements are
not needed, as m can be recovered as the number of app rules, and e as the
number of ax rules. It is however handy to note them explicitly.

Subtleties and Easy Facts. Let us overview some facts about our presentation of
the type system.
1. Introduction and destruction of multi-sets: multi-set are introduced on the

right by the many rule and on the left by ax. Moreover, on the left they are
summed by app and ES.

2. Vacuous abstractions: the abstraction rule fun can always abstract a variable
x; note that if M = 0, then Γ, x : M is equal to Γ .

3. Relevance: No weakening is allowed in axioms. An easy induction on type
derivations shows that

Lemma 1 (Type contexts and variable occurrences for CbN). Let Φ�cbn
Γ ���(m,e)t : L be a derivation. If x �∈ fv(t) then x /∈ dom(Γ).

Lemma 1 implies that derivations of closed terms have empty type context. Note
that there can be free variables of t not in dom(Γ): the ones only occurring in
subterms not touched by the evaluation strategy.

Key Ingredients. Two key points of the CbN system that play a role in the
design of the CbNeed one in Sect. 6 are:
1. Erasable terms and 0: the empty multi type 0 is the type of erasable terms.

Indeed, abstractions that erase their argument—whose paradigmatic example
is λx.y—can only be typed with 0 � L, because of Lemma 1. Note that in
CbN every term—even diverging ones—can be typed with 0 by rule many
(taking 0 premises), because, correctly, in CbN every term can be erased.

2. Adequacy and linear types: all CbN typing rules but many assign linear types.
And many is used only as right premise of the rules app and ES, to derive M .
It is with respect to linear types, in fact, that the adequacy of the system is
going to be proved: a term is CbN normalising if and only if it is typable with
a linear type, given by Theorems 1 and 2 below.

Tight Derivations. A term may have several derivations, indexed by different
pairs (m, e). They always provide upper bounds on CbN evaluation lengths. The
interesting aspect of our type systems, however, is that there is a simple descrip-
tion of a class of derivations that provide exact bounds for these quantities, as
we shall show. Their definition relies on the normal type constant.

Definition 1 (Tight derivations for CbN). A derivation Φ�cbn Γ ���(m,e)t:L
is tight (for CbN) if L = normal and Γ is empty.

Example 2. Let us return to the term t := ((λx.λy.xx)(II))(II) used in Exam-
ple 1 for explaining the difference in reduction lengths among the different strate-
gies. We now give a derivation for it in the CbN type system.

Types by Need 421

First, let us shorten normal to n. Then, we define Φ as the following derivation
for the subterm λx.λy.xx of t:

x : [[n] � n] �(0,1) x : [n] � n
ax

x : [n] �(0,1) x : n
ax

x : [n] �(0,1) x : [n]
many

x : [n, [n] � n] �(1,2) xx : n
app

x : [n, [n] � n] �(1,2) λy.xx :0 � n
fun

�(1,2) λx.λy.xx : [n, [n] � n] � (0 � n)
fun

Now, we need two derivations for II, one of type n, given by Ψ as follows

z : [n] �(0,1) z : n
ax

�(0,1) λz.z : [n] � n
fun

�(0,0) λw.w : n
normal

�(0,0) λw.w : [n]
many

�(1,1) II : n
app

and one of type [n] � n, given by Ξ as follows

z : [[n] � n] �(0,1) z : [n] � n
ax

�(0,1) λz.z : [[n] � n] � ([n] � n)
fun

w : [n] �(0,1) w : n
ax

�(0,1) λw.w : [n] � n
fun

�(0,1) λw.w : [[n] � n]
many

�(1,2) II : [n] � n
app

Finally, we put Φ, Ψ and Ξ together in the following derivation Θ for t =
(s(II))(II), where s := λx.λy.xx and n[n] := [n] � n

.... Φ

���(1,2)s : [n, n[n]] � (0 � n)

.... Ψ

�(1,1) II : n

.... Ξ

�(1,2) II : n[n] many
�(2,3) II : [n, n[n]]

app
�(4,5) s(II) :0 � n

many
�(0,0) II :0

app
�(5,5) (s(II))(II) : n

Note that Θ is a tight derivation and the indices (5, 5) correspond to the number
of mcbn-steps and ecbn-steps, respectively, from t to its cbn-normal form, as shown
in Example 1. Theorem 1 below shows that this is not by chance: tight derivations
for CbN are minimal and provide exact bounds to evaluation lengths in CbN.

The next two subsections prove the two halves of the properties of the CbN
type system, namely correctness and completeness.

422 B. Accattoli et al.

4.1 CbN Correctness

Correctness is the fact that every typable term is CbN normalising. In our setting
it comes with additional quantitative information: the indices m and e of a
derivation Φ �cbn Γ ���(m,e)t : L provide upper bounds on the length of the CbN
evaluation of t, that are exact when the derivation is tight.

The proof technique is standard. Moreover, the correctness theorems for CbV
and CbNeed in the next sections follow exactly the same structure. The proof
relies on a quantitative subject reduction property showing that m decreases
by exactly one at each mcbn-step, and similarly for e and ecbn-steps. In turn,
subject reduction relies on a linear substitution lemma. Last, correctness for
tight derivations requires a further property of normal forms.

Let us point out that correctness is stated with respect to closed terms only,
but the auxiliary results have to deal with open terms, since they are proved by
inductions (over predicates defined by induction) over the structure of terms.

Linear Substitution. The linear substitution lemma states that substituting over
a variable occurrence as in the exponential rule consumes exactly one linear type
and decreases of one the exponential index e.

Lemma 2 (CbN linear substitution). If Φ �cbn Γ, x : M ���(m,e)C〈〈x〉〉 : L
then there is a splitting M = [L′]
 N such that for every derivation Ψ �cbn

Π ���(m′,e′)t : L′ there is a derivation Φ′ �cbn Γ
 Π,x : N ���(m+m′,e+e′−1)C〈〈t〉〉 : L.

The proof is by induction over CbN evaluation contexts.

Quantitative Subject Reduction. A key point of multi types is that the size of type
derivations shrinks after every evaluation step, which is what allows to bound
evaluation lengths. Remarkably, the size (defined as the sum of the indices)
shrinks by exactly 1 at every evaluation step.

Proposition 2 (Quantitative subject reduction for CbN). Let Φ �cbn
Γ ���(m,e)t : L be a derivation.
1. Multiplicative: if t −→mcbn

s then m ≥ 1 and there exists a derivation Ψ �cbn

Γ ���(m−1,e)s : L.
2. Exponential: if t −→ecbn

s then e ≥ 1 and there exists a derivation Ψ �cbn

Γ ���(m,e−1)s : L.

The proof is by induction on t −→mcbn
s and t −→ecbn

s, using the linear substi-
tution lemma for the root exponential step.

Tightness and Normal Forms. Since the indices are always non-negative, quan-
titative subject reduction (Proposition 2) implies that they bound evaluation
lengths. The bound is not necessarily exact, as derivations of normal forms can
have strictly positive indices. If they are tight, however, they are indexed by
(0, 0), as we now show. The proof of this fact (by induction on the predicate
normal) requires a slightly different statement, for the induction to go through.

Types by Need 423

Proposition 3 (normal typing of normal forms for CbN). Let t be such
that normal(t), and Φ �cbn Γ ���(m,e)t : normal be a derivation. Then Γ is empty,
and so Φ is tight, and m = e = 0.

The Tight Correctness Theorem. The theorem is then proved by a straightfor-
ward induction on the evaluation length relying on quantitative subject reduc-
tion (Proposition 2) for the inductive case, and the properties of tight typings
for normal forms (Proposition 3) for the base case.

Theorem 1 (CbN tight correctness). Let t be a closed term. If Φ �cbn
���(m,e)t : L then there is s such that d : t −→∗

cbns, with normal(s), |d|m ≤ m and
|d|e ≤ e. Moreover, if Φ is tight then |d|m = m and |d|e = e.

Note that Theorem 1 implicitly states that tight derivations have minimal
size among derivations.

4.2 CbN Completeness

Completeness is the fact that every CbN normalising term has a (tight) type
derivation. As for correctness, the completeness theorem is always obtained via
three intermediate steps, dual to those for correctness.

Normal Forms. The first step is to prove (by induction on the predicate normal)
that every normal form is typable, and is actually typable with a tight derivation.

Proposition 4 (Normal forms are tightly typable for CbN). Let t be
such that normal(t). Then there is tight derivation Φ �cbn ���(0,0)t : normal.

Linear Removal. In order to prove subject expansion, we have to first show
that typability can also be pulled back along substitutions, via a linear removal
lemma dual to the linear substitution lemma.

Lemma 3 (Linear removal for CbN). Let Φ �cbn Γ, x : M ���(m,e)C〈〈s〉〉 : L,
where x /∈ fv(s). Then there exist
– a linear type L′ and two type contexts Γ ′ and Π,
– a derivation Φ′ �cbn Γ ′ ���(m′,e′)s : L′, and
– a derivation Ψ �cbn Π,x : M
 [L′] ���(m′′,e′′)C〈〈x〉〉 : L
such that
– Type contexts: Γ = Γ ′
 Π.
– Indices: (m, e) = (m′ + m′′, e′ + e′′ − 1).

Quantitative Subject Expansion. This property is the dual of subject reduction.

Proposition 5 (Quantitative subject expansion for CbN). Let Φ �cbn
Γ ���(m,e)s : L be a derivation.
1. Multiplicative: if t −→mcbn

s then there is a derivation Ψ �cbn Γ ���(m+1,e)t : L.
2. Exponential: if t −→ecbn

s then there is a derivation Ψ �cbn Γ ���(m,e+1)t : L.

The proof is by induction on t −→mcbn
s and t −→ecbn

s, using the linear removal
lemma for the root exponential step.

424 B. Accattoli et al.

The Tight Completeness Theorem. The theorem is proved by a straightforward
induction on the evaluation length relying on quantitative subject expansion
(Proposition 5) in the inductive case, and the existence of tight typings for
normal forms (Proposition 4) in the base case.

Theorem 2 (CbN tight completeness). Let t be a closed term. If d : t−→∗
cbns

and normal(s) then there is a tight derivation Φ �cbn ���(|d|m,|d|e)t : normal.

Back to Erasing Steps. Our system can be easily adapted to measure also garbage
collection steps (the CbN erasing rule is just before Example 1). First, a new,
third index g on judgements is necessary. Second, one needs to distinguish the
erasing and non-erasing cases of the app and ES rules, discriminated by the 0
type. For instance, the ES rules are (the app rules are similar):

Γ �(m,e,g) t :L Γ (x) = 0

Γ �(m,e,g+1) t[x←s] :L
ESgc

Γ, x :M �(m,e,g) t :L Π �(m′,e′,g′) s :M M �= 0

Γ � Π �(m+m′,e+e′,g+g′) t[x←s] :L
ES

The right premise of rule ESgc has been removed because the only way to intro-
duce 0 is via a many rule with no premises. The index g bounds to the number
of erasing steps. In the closed case, however, the bound cannot be, in general,
exact. Variables typed with 0 by Γ do not exactly match variables not appearing
in the typed term (that is the condition triggering the erasing step), because a
variable typed with 0 may appear in the body of abstractions typed with the
normal rule, as such bodies are not typed.

It is reasonable to assume that exact bounds for erasing steps can only by
provided by a type system characterising strong evaluation, whose typing rules
have to inspect abstraction bodies. These erasing typing rules are nonetheless
going to play a role in the design of the CbNeed system in Sect. 6.

4.3 CbN Model

The idea to build the denotational model from the multi type system is that the
interpretation (or semantics) of a term is simply the set of its type assignments,
i.e. the set of its derivable types together with their type contexts. More precisely,
let t be a term and x1, . . . , xn (with n ≥ 0) be pairwise distinct variables. If
fv(t) ⊆ {x1, . . . , xn}, we say that the list �x = (x1, . . . , xn) is suitable for t. If
�x = (x1, . . . , xn) is suitable for t, the (relational) semantics of t for �x is

[[t]]CbN
�x := {((M1, . . . ,Mn), L) | ∃Φ �cbn x1 : M1, . . . , xn : Mn ���(m,e)t : L} .

Subject reduction (Proposition 2) and expansion (Proposition 5) guarantee
that the semantics [[t]]CbN

�x of t (for any term t, possibly open) is invariant by CbN
evaluation. Correctness (Theorem 1) and completeness (Theorem 2) guarantee
that, given a closed term t, its interpretation [[t]]CbN

�x is non-empty if and only if
t is CbN normalisable, that is, they imply that relational semantics is adequate.

Types by Need 425

x :M ���(0,1)x :M
ax

Γ ���(m,e)t : [N � M] Π ���(m′,e′)s :N

Γ � Π ���(m+m′+1,e+e′)ts :M
app

Γ, x :N ���(m,e)t :M

Γ ���(m,e)λx.t :N � M
fun

(Πi ���(mi,ei)λx.t :Li)i∈J
⊎

i∈J Πi ���(
∑

i∈Jmi,
∑

i∈Jei)λx.t : [Li]i∈J

many

Γ, x :N ���(m,e)t :M Π ���(m′,e′)s :N

Γ � Π ���(m+m′,e+e′)t[x←s] :M
ES

Fig. 2. Type system for CbV evaluation.

In fact, adequacy also holds with respect to open terms. The issue in that
case is that the characterisation of tight derivations is more involved, see Accat-
toli, Graham-Lengrand and Kesner’s [7]. Said differently, weaker correctness and
completeness theorems without exact bounds also hold in the open case. The
same is true for the CbV and CbNeed systems of the next sections.

5 Types by Value

Here we introduce Ehrhard’s CbV multi type system [34] adapted to our presen-
tation of CbV in the LSC, and prove its properties. The system is similar, and
yet in many aspects dual, to the CbN one, in particular the grammar of types
is different. Linear types for CbV are defined by:

CbV linear types L,L′ ::= M � N

Multi(-sets) types are defined as in Sect. 3, relatively to CbV linear types. Note
that linear types now have a multi type both as source and as target, and that
the normal constant is absent—in CbV, its role is played by 0.

The typing rules are in Fig. 2. It is a type-based presentation of the relational
model of the CbV λ-calculus induced by relational model of linear logic via the
CbV translation of λ-calculus into linear logic. Some remarks:
– Right-hand types : all rules but fun assign a multi type to the term on the

right-hand side, and not a linear type as in CbN.
– Abstractions and many: the many rule has a restricted form with respect to

the CbN one, it can only be applied to abstractions, that in turn are the only
terms that can be typed with a linear type.

– Indices: note as the indices are however incremented (on ax and app) and
summed (in many and ES) exactly as in the CbN system.

Intuitions: The Empty Type 0. The empty multi-set type 0 plays a special role
in CbV. As in CbN, it is the type of terms that can be erased, but, in contrast
to CbN, not every term is erasable in CbV.

426 B. Accattoli et al.

In the CbN multi type system every term, even a diverging one, is typable
with 0. On the one hand, this is correct, because in CbN every term can be
erased, and erased terms can also be divergent, because they are never evaluated.
On the other hand, adequacy is formulated with respect to non-empty types: a
term terminates if and only if it is typable with a non-empty type.

In CbV, instead, terms have to be evaluated before being erased; and, of
course, their evaluation has to terminate. Thus, terminating terms and erasable
terms coincide. Since the multi type system is meant to characterise terminating
terms, in CbV a term is typable if and only if it is typable with 0, as we shall
prove in this section. Then the empty type is not a degenerate type excluded for
adequacy from the interesting types of a term, as in CbN, it rather is the type,
characterising (adequate) typability altogether. And this is also the reason for
the absence of the constant normal—one way to see it is that in CbV normal = 0.

Note that, in particular, in a type judgement Γ � t : M the type context Γ
may give the empty type to a variable x occurring in t, as for instance in the
axiom x :0 � x :0—this may seem very strange to people familiar with CbN
multi types. We hope that instead, according to the provided intuition that 0 is
the type of termination, it would rather seem natural.

Definition 2 (Tight derivation for CbV). A derivation Φ�cbv Γ ���(m,e)t : M
is tight (for CbV) if M = 0 and Γ is empty.

Example 3. Let’s consider again the term t := ((λx.λy.xx)(II))(II) of Exam-
ple 1 (where I := λz.z), for which a CbN tight derivation was given in Example 2,
and let us type it in the CbV system with a tight derivation.

We define the following derivation Φ1 for the subterm s := λx.λy.xx of t

x : [0 � 0] �(0,1) x : [0 � 0]
ax

x : 0 �(0,1) x :0
ax

x : [0 � 0] �(1,2) xx :0
app

x : [0 � 0] �(1,2) λy.xx :0 � 0
fun

x : [0 � 0] �(1,2) λy.xx : [0 � 0]
many

�(1,2) s : [0 � 0] � [0 � 0]
fun

�(1,2) s : [[0 � 0] � [0 � 0]]
many

Note that [0 � 0]
 0 = [0 � 0], which explains the shape of the type context
in the conclusion of the app rule. Next, we define the derivation Φ2 as follows

z : [0 � 0] �(0,1) z : [0 � 0]
ax

�(0,1) λz.z : [0 � 0] � [0 � 0]
fun

�(0,1) λz.z : [[0 � 0] � [0 � 0]]
many

w : 0 �(0,1) w :0
ax

�(0,1) λw.w :0 � 0
fun

�(0,1) λw.w : [0 � 0]
many

�(1,2) II : [0 � 0]
app

Types by Need 427

and the derivation Φ3 as follows

x′ : 0 �(0,1) x′ :0
ax

�(0,1) λx′.x′ :0 � 0
fun

�(0,1) λx′.x′ : [0 � 0]
many

�(0,0) I :0
many

�(1,1) II :0
app

Finally, we put Φ1, Φ2 and Φ3 together in the following derivation Φ for t
..... Φ1

�(1,2) s : [[0 � 0] � [0 � 0]]

..... Φ2

�(1,2) II : [0 � 0]
app

�(3,4) (λx.λy.xx)(II) : [0 � 0]

..... Φ3

�(1,1) II :0
app

�(5,5) ((λx.λy.xx)(II))(II) :0
Note that Φ is a tight derivation and the indices (5, 5) correspond to the number
of mcbv-steps and ecbv-steps, respectively, from t to its cbv-normal form, as shown
in Example 1. Theorem 3 below shows that this is not by chance: tight derivations
for CbV are minimal and provide exact bounds to evaluation lengths in CbV.

Correctness (i.e. typability implies normalisability) and completeness (i.e.
normalisability implies typability) of the CbV type system with respect to CbV
evaluation (together with quantitative information about evaluation lengths)
follow exactly the same pattern of the CbN case, mutatis mutandis.

5.1 CbV Correctness

Lemma 4 (CbV linear substitution). Let Φ �cbv Γ, x :M ���(m,e)V 〈〈x〉〉 : N
and v be a value. There is a splitting M = O
 P such that,
for any derivation Ψ �cbv Π ���(m′,e′)v : O, there is a derivation Φ′ �cbv

Γ
 Π,x : P ���(m+m′,e+e′−1)V 〈〈v〉〉 : N .

Proposition 6 (Quantitative subject reduction for CbV). Let Φ �cbv
Γ ���(m,e)t : M be a derivation.
1. Multiplicative: if t −→mcbv

t′ then m ≥ 1 and there exists a derivation Φ′ �cbv

Γ ���(m−1,e)t′ : M .
2. Exponential: if t −→ecbv

t′ then e ≥ 1 and there exists a derivation Φ′ �cbv

Γ ���(m,e−1)t′ : M .

Proposition 7 (Tight typings for normal forms for CbV). Let Φ �cbv
Γ ���(m,e)t :0 be a derivation, with normalcbv(t). Then Γ is empty, and so Φ is
tight, and m = e = 0.

Theorem 3 (CbV tight correctness). Let t be a closed term. If Φ �cbv
Γ ���(m,e)t : M then there is s such that d : t −→∗

cbvs, with normalcbv(s), |d|m ≤ m
and |d|e ≤ e. Moreover, if Φ is tight then |d|m = m and |d|e = e.

428 B. Accattoli et al.

5.2 CbV Completeness

Proposition 8 (Normal forms are tightly typable for CbV). Let t be
such that normalcbv(t). Then there exists a tight derivation Φ �cbv ���(0,0)t :0.

Lemma 5 (Linear removal for CbV). Let Φ �cbv Γ, x : M ���(m,e)V 〈〈v〉〉 : N
and v be a value, where x /∈ fv(v). Then, there exist
– a multi type M ′ and two type contexts Γ ′ and Π,
– a derivation Φ′ �cbv Γ ′ ���(m′,e′)v : M ′ and
– a derivation Ψ �cbv Π,x : M
 M ′ ���(m′′,e′′)V 〈〈x〉〉 :N
such that
– Type contexts: Γ = Γ ′
 Π,
– Indices: (m, e) = (m′ + m′′, e′ + e′′ − 1).

Proposition 9 (Quantitative subject expansion for CbV). Let Φ′ �cbv
Γ ���(m,e)t′ : M be a derivation.
1. Multiplicative: if t −→mcbv

t′ then there is a derivation Φ �cbv Γ ���(m+1,e)t : M .
2. Exponential: if t −→ecbv

t′ then there is a derivation Φ �cbv Γ ���(m,e+1)t : M .

Theorem 4 (CbV tight completeness). Let t be a closed term. If d : t −→∗
cbvs

with normalcbv(s), then there is a tight derivation Φ �cbv ���(|d|m,|d|e)t :0.

CbV Model. The interpretation of terms with respect to the CbV system is
defined as follows (where �x = (x1, . . . , xn) is a list of variables suitable for t):

[[t]]CbV
�x := {((M1, . . . ,Mn), N) | ∃Φ �cbv x1 : M1, . . . , xn : Mn ���(m,e)t : N} .

Note that rule fun assigns a linear type but the interpretation considers only
multi types. The invariance and the adequacy of [[t]]CbV

�x with respect to CbV
evaluation are obtained exactly as for the CbN case.

6 Types by Need

CbNeed as a Blend of CbN and CbV. The multi type system for CbNeed is
obtained by carefully blending ingredients from the CbN and CbV ones:
– Wise erasures from CbN : in CbN wise erasures are induced by the fact that

the empty multi type 0 (the type of erasable terms) and the linear type normal
(the type of normalisable terms) are distinct and every term is typable with
0 by using the many rule with 0 premises. Adequacy is then formulated with
respect to (non-empty) linear types.

– Wise duplications from CbV : in CbV wise duplications are due to two
aspects. First, only abstractions can be collected in multi-sets by rule many.
This fact accounts for the evaluation of arguments to normal form—that is,
abstractions—before being substituted. Second, terms are typed with multi
types instead of linear types. Roughly, this second fact allows the first one to
actually work because the argument is reduced once for a whole multi set of
types, and not once for each element of the multi set, as in CbN.

Types by Need 429

x :M ���(0,1)x :M
ax

Γ ���(m,e)t : [N � M] Π ���(m′,e′)s :N

Γ � Π ���(m+m′+1,e+e′)ts :M
app

���(0,0)t :0
many0

(Πi ���(mi,ei)λx.t :Li)i∈J J �= ∅
⊎

i∈J Πi ���(
∑

i∈Jmi,
∑

i∈Jei)λx.t : [Li]i∈J

many>0

Γ, x :N ���(m,e)t :M

Γ ���(m,e)λx.t :N � M
fun

Γ, x :N ���(m,e)t :M Π ���(m′,e′)s :N

Γ � Π ���(m+m′,e+e′)t[x←s] :M
ES

�(0,0) λx.t : normal
normal

Fig. 3. Näıve type system for CbNeed evaluation.

It seems then that a type system for CbNeed can easily be obtained by basically
adopting the CbV system plus
– separating 0 and normal, that is, adding normal to the system;
– modifying the many rule by distinguishing two cases: with 0 premises it can

assign 0 to whatever term—as in CbN—otherwise it is forced to work on
abstractions, as in CbV;

– restricting adequacy to non-empty types.
Therefore, the grammar of linear types is:

CbNeed linear types L,L′ ::= normal | M � N

Multi(-sets) types are defined as in Sect. 3, relatively to CbNeed linear types.
The rules of this näıve system for CbNeed are in Fig. 3.

Issue with the Näıve System. Unfortunately, the näıve system does not work:
tight derivations—defined as expected: empty type context and the term typed
with [normal]—do not provide exact bounds. The problem is that the näıve
blend of ingredients allows derivations of 0 with strictly positive indices m and
e. Instead, derivations of 0 should always have 0 in both indices—as is the
case when they are derived with a many0 rule with 0 premises—because they
correspond to terms to be erased, that are not evaluated in CbNeed. For any
term t, indeed, one can for instance derive the following derivation Φ:

�(0,0) x :0
many0

�(0,0) λx.x :0 � 0
fun

�(0,0) λx.x : [0 � 0]
many>0 �(0,0) t :0

many0

�(1,0) (λx.x)t :0
app

430 B. Accattoli et al.

Note that introducing �(0,1) x :0 with rule ax rather than via many0 (the typing
context x :0 is equivalent to the empty type context) would give a derivation
with final judgement �(1,1) (λx.x)t :0—thus, the system messes up both indices.

Such bad derivations of 0 are not a problem per se, because in CbNeed one
expects correctness and completeness to hold only for derivations of non-empty
multi types. However, they do mess up also derivations of non-empty multi types
because they can still appear inside tight derivations, as sub-derivations of sub-
terms to be erased; consider for instance:

normal
�(0,0) I : normal

many>0�(0,0) I : [normal]
fun

�(0,0) λy.I :0 � [normal]
many>0�(0,0) λy.I : [0 � [normal]]

.... Φ

�(1,0) (λx.x)t :0
app

�(2,0) (λy.I)((λx.x)t) : [normal]
The term normalises in just 1 mneed-step to I[y←(λx.x)t] but the multiplicative
index of the derivation is 2. The mismatch is due to a bad derivation of 0 used
as right premise of an app rule. Similarly, the induced typing of I[y←(λx.x)t] is
an example of a bad derivation used as right premise of a rule ES:

normal
�(0,0) I : normal

many>0�(0,0) I : [normal]

.... Φ

�(1,0) (λx.x)t :0
ES

�(1,0) I[y←(λx.x)t] : [normal]

The Actual Type System. Our solution to such an issue is to modify the system
as to avoid derivations of 0 to appear as right premises of rules app and ES.
We follow the schema of the rules for counting erasing steps given right after
Theorem 2.

Therefore, we add two dedicated rules appgc and ESgc, and constrain the
right premise of rules app and ES to have a non-empty type. The system is in
Fig. 4 and it is based on the same grammar of types of the näıve system. Note
that rules many and ax can still introduce 0. These 0s, however, can no longer
mess up the indices of tight derivations, as we are going to show.

Note that the indices m and e are incremented and summed exactly as in
the CbN and CbV type systems.

Definition 3 (Tight derivations for CbNeed). A derivation Φ �need
Γ �(m,e) t : M is tight (for CbNeed) if M = [normal] and Γ is empty.

Example 4. We return to the term t := ((λx.λy.xx)(II))(II) used in Example 1
and we give it a tight derivation in the CbNeed type system.

Again, we shorten normal to n. Then, we define Ψ as follows

Types by Need 431

x :M �(0,1) x :M
ax

�(0,0) λx.t : normal
normal

Γ, x :N �(m,e) t :M

Γ �(m,e) λx.t :N � M
fun

(Γi �(mi,ei) λx.t :Li)i∈J
⊎

i∈J Γi �(
∑

i∈Jmi,
∑

i∈Jei) λx.t : [Li]i∈J

many

Γ �(m,e) t : [0 � M]

Γ �(m+1,e) ts :M
appgc

Γ �(m,e) t : [N � M] Π �(m′,e′) s :N N �= 0

Γ � Π �(m+m′+1,e+e′) ts :M
app

Γ �(m,e) t :M Γ (x) = 0

Γ �(m,e) t[x←s] :M
ESgc

Γ, x :N �(m,e) t :M Π �(m′,e′) s :N N �= 0

Γ � Π �(m+m′,e+e′) t[x←s] :M
ES

Fig. 4. Type system for CbNeed evaluation.

x : [[n] � [n]] �(0,1) x : [[n] � [n]]
ax

x : [n] �(0,1) x : [n]
ax

x : [n, [n] � [n]] �(1,2) xx : [n]
app

x : [n, [n] � [n]] �(1,2) λy.xx :0 � [n]
fun

x : [n, [n] � [n]] �(1,2) λy.xx : [0 � [n]]
many

�(1,2) λx.λy.xx : [n, [n] � [n]] � [0 � [n]]
fun

�(1,2) λx.λy.xx : [[n, [n] � [n]] � [0 � [n]]]
many

and, shortening [n] � [n] to [n][n], we define Θ as follows

ax
z : [n, [n][n]] �(0,1) z : [n, [n][n]]

fun
�(0,1)λz.z : [n, [n][n]] � [n, [n][n]]

many
�(0,1)λz.z : [[n, [n][n]] � [n, [n][n]]]

normal
�(0,0)λw.w : n

ax
w : [n] �(0,1)w : [n]

fun
�(0,1)λw.w : [n][n]

many
�(0,1)λw.w : [n, [n][n]]

app
�(1,2) II : [n, [n][n]]

Finally, we put Ψ and Θ together in the following derivation Φ for t

.... Ψ

�(1,2) λx.λy.xx : [[n, [n][n]] � [0 � [n]]]

.... Θ

�(1,2) II : [n, [n][n]]
app

�(3,4) (λx.λy.xx)(II) : [0 � [n]]
appgc�(4,4) ((λx.λy.xx)(II))(II) : [n]

Note that the indices (4, 4) correspond exactly to the number of mneed-steps and
eneed-steps, respectively, from t to its need-normal form—as shown in Exam-
ple 1—and that Φ is a tight derivation. Forthcoming Theorem 5 shows once
again that this is not by chance: tight derivations for CbNeed are minimal and
provides exact bounds to evaluation lengths in CbNeed.

432 B. Accattoli et al.

Remarkably, the technical development to prove correctness and complete-
ness of the CbNeed type system with respect to CbNeed evaluation follows
smoothly along the same lines of the two other systems, mutatis mutandis.

6.1 CbNeed Correctness

Lemma 6 (CbNeed linear substitution). Let Φ�need Γ, x:M �(m,e)E〈〈x〉〉:N
and v be a value. There is a splitting M = O
 P such that for any derivation
Ψ�need Π �(m′,e′) v : O there exists Φ′�need Γ
 Π,x : P �(m+m′,e+e′−1) E〈〈v〉〉 : N .

Proposition 10 (Quantitative subject reduction for CbNeed). Let
Φ �need Γ �(m,e) t : M be a derivation such that M �= 0.
– Multiplicative: if t −→mneed

s then m ≥ 1 and there is a derivation Φ′ �need
Γ �(m−1,e) t : M .

– Exponential: if t −→eneed
s then e ≥ 1 and there exists a derivation Φ′ �need

Γ �(m,e−1) t : M .

Note the condition M �= 0 in the statement of subject reduction, that is
in contrast to the CbV system but akin to the CbN one. It is due to the way
multi types are used as arguments, via rules ESgc and appgc. The restriction is
necessary: the CbNeed type system derives �(0,1) x[x←δδ] :0, but x[x←δδ] is
not normalising for CbNeed evaluation. And it is expected, as it amounts to
the fact that adequacy holds only with respect to non-empty types, as for CbN,
and as stressed when introducing the CbNeed type system. The same restriction
appears in Theorem 5, Proposition 13 and Theorem 6 below, for the same reason.

Proposition 11 ([normal] typings for normal forms for CbNeed). Let
Φ �need Γ �(m,e) t : [normal] be a derivation, with normal(t). Then Γ is empty,
and so Φ is tight, and m = e = 0.

Theorem 5 (CbNeed tight correctness). Let t be a closed term. If Φ �need
�(m,e) t : M where M �= 0, then there is s such that d : t −→∗

needs, with normal(s),
|d|m ≤ m and |d|e ≤ e. Moreover, if Φ is tight then |d|m = m and |d|e = e.

6.2 CbNeed Completeness

Proposition 12 (Normal forms are tightly typable for CbNeed). Let t
be such that normal(t). Then there is a tight derivation Φ�need �(0,0) t : [normal].

Lemma 7 (Linear removal for CbNeed). Let Φ �need Γ, x : M �(m,e)

E〈〈v〉〉 : N be a derivation and v be a value, with x /∈ fv(v). Then there exist
– a multi type M ′ and two type contexts Γ ′ and Π,
– a derivation Φ′ �need Γ ′ �(m′,e′) v : M ′, and
– a derivation Ψ �need Π,x : M
 M ′ �(m′′,e′′) E〈〈x〉〉 : N
such that
– Type contexts: Γ = Π
 Γ ′.
– Indices: (m, e) = (m′ + m′′, e′ + e′′ − 1).

Types by Need 433

Proposition 13 (Quantitative subject expansion for CbNeed). Let
Φ �need Γ �(m,e) s : M be a derivation such that M �= 0. Then,
– Multiplicative: if t −→mneed

s then there is a derivation Φ′�need Γ �(m+1,e) t : M ,
– Exponential: if t −→eneed

s then there is a derivation Φ′ �need Γ �(m,e+1) t : M .

Theorem 6 (CbNeed tight completeness). Let t be a closed term. If
d : t −→∗

needs and normal(s) then there exists a tight derivation Φ �need �(|d|m,|d|e)

t : [normal].

CbNeed Model. The interpretation [[t]]CbNeed
�x with respect to the CbNeed system

is defined as the set (where �x = (x1, . . . , xn) is a list of variables suitable for t):

{((M1, . . . ,Mn), N) | ∃Φ �need x1 :M1, . . . , xn : Mn ���(m,e)t : N and N �= 0} .

Note that the right multi type is required to be non-empty. The invariance
and the adequacy of [[t]]CbNeed

�x with respect to CbNeed evaluation are obtained
exactly as for the CbN and CbV cases.

7 A New Fundamental Theorem for Call-by-Need

CbNeed Erases Wisely. In the literature, the theorem about CbNeed is the fact
that it is operationally equivalent to CbN. This result was first proven inde-
pendently by two groups, Maraist, Odersky, and Wadler [48], and Ariola and
Felleisen [11], in the nineties, using heavy rewriting techniques.

Recently, Kesner gave a much simpler proof via CbN multi types [40]. She
uses multi types to first show termination equivalence of CbN and CbNeed, from
which she then infers operational equivalence. Termination equivalence means
that a given term terminates in CbN if and only if terminates in CbNeed, and
it is a consequence of our slogan that CbN and CbNeed both erase wisely.

With our terminology and notations, Kesner’s result takes the following form.

Theorem 7 (Kesner [40]). Let t be a closed term.
1. Correctness: if Φ �cbn ���(m,e)t : L then there exists s such that d : t −→∗

needs,
normal(s), |d|m ≤ m and |d|e ≤ e.

2. Completeness: if d : t−→∗
needs and normal(s) then there is Φ�cbn ���(m,e)t:normal.

Note that, with respect to the other similar theorems in this paper, the result
does not cover tight derivations and it does not provide exact bounds. In fact, the
CbN system cannot provide exact bounds for CbNeed, because it does provide
them for CbN evaluation, that in general is slower than CbNeed. Consider for
instance the term t in Example 1 and its CbN tight derivation in Example 2:
the derivation provides indices (5, 5) for t (and so t evaluates in 10 CbN steps),
but t evaluates in 8 CbNeed steps. Closing such a gap is the main motivation
behind this paper, achieved by the CbNeed multi type system in Sect. 6.

434 B. Accattoli et al.

CbNeed Duplicates Wisely. Curiously, in the literature there are no dual results
showing that CbNeed duplicates as wisely as CbV. One of the reasons is that
it is a theorem that does not admit a simple formulation such as operational
or termination equivalence, because CbNeed and CbV are not in such relation-
ships. Morally, this is subsumed by the logical interpretation according to which
CbNeed corresponds to an affine variant of the linear logic representation of
CbV. Yet, it would be nice to have a precise, formal statement establishing that
CbNeed duplicates as wisely as CbV —we provide it here.

Our result is that the CbV multi type system is correct with respect
to CbNeed evaluation. In particular, the indices (m, e) provided by a CbV
type derivation provide bounds for CbNeed evaluation lengths. Two important
remarks before we proceed with the formal statement:
– Bounds are not exact : the indices of a CbV derivation do not generally provide

exacts bounds for CbNeed, not even in the case of tight derivations. The
reason is that CbNeed does not evaluate unneeded subterms (i.e. those typed
with 0), while CbV does. Consider again the term t of Example 1, for instance,
whose CbV tight derivation has indices (5, 5) (and so t evaluates in 10 CbV
steps) but it CbNeed evaluates in 8 steps.

– Completeness cannot hold : we prove correctness but not completeness simply
because the CbV system is not complete with respect to CbNeed evaluation.
Consider for instance (λx.I)Ω: it is CbV untypable by Theorem 4, because
it is CbV divergent, and yet it is CbNeed normalisable.

CbV Correctness with Respect to CbNeed. Pleasantly, our presentations of CbV
and CbNeed make the proof of the result straightforward. It is enough to
observe that, since we do not consider garbage collection and we adopt a non-
deterministic formulation of CbV, CbNeed is a subsystem of CbV. Formally, if
t −→needs then t −→cbvs, as it is easily seen from the definitions (CbNeed reduces
only some subterms of applications and ES, while CbV reduces all such sub-
terms). The result is then a corollary of the correctness theorem for CbV.

Corollary 1 (CbV correctness w.r.t. CbNeed). Let t be a closed term and
Φ �cbv ���(m,e)t : M be a derivation. Then there exists s such that d : t −→∗

needs
and normal(s), with |d|m ≤ m and |d|e ≤ e.

Since the CbNeed system provides exact bounds (Theorem 5), we obtain that
CbNeed duplicates as wisely as CbV, when the comparison makes sense, that is,
on CbV normalisable terms.

Corollary 2 (CbNeed duplicates as wisely as CbV). Let d : t −→∗
cbvu with

normalcbv(u). Then there is d′ : t −→∗
needs with normal(s) and |d′|m ≤ |d|m and

|d′|e ≤ |d|e.

8 Conclusions

Contributions. This paper introduces a multi type system for CbNeed evalua-
tion, carefully blending ingredients from multi type systems for CbN and CbV

Types by Need 435

evaluation in the literature. Notably, it is the first type system whose mini-
mal derivations—explicitly characterised—provide exact bounds for evaluation
lengths. It also characterises CbNeed termination, and thus its judgements pro-
vide an adequate relational semantics.

The technical development is simple, and uniform with respect to those of
CbN and CbV multi type systems. The typing rules count evaluation steps fol-
lowing exactly the same schema of the CbN and CbV rules. The proofs of cor-
rectness and completeness also follow exactly the same structure.

A further side contribution of the paper is a new fundamental result of
CbNeed, formally stating that it duplicates as wisely as CbV. More precisely, the
CbV multi type system is (quantitatively) correct with respect to CbNeed eval-
uation. Pleasantly, our presentations of CbV and CbNeed provide the result for
free. This result dualizes the other fundamental theorem stating that CbNeed
erases as wisely as CbN, usually formulated as termination equivalence, and
recently re-proved by Kesner using CbN multi types [40].

Future Work. Recently, Barenbaum et al. extended CbNeed to strong evaluation
[14], and it is natural to try to extend our type system as well. The definition
of the system, in particular the extension of tight derivations to that setting,
seems however far from being evident. Barembaum, Bonelli, and Mohamed also
apply CbN multi types to a CbNeed calculus extended with pattern matching
and fixpoints [15], that might be interesting to refine along the lines of our work.

An orthogonal direction is the study of the denotational models of CbNeed.
It would be interesting to have a categorical semantics of CbNeed, as well as a
categorical way of discriminating our quantitative precise model from the quanti-
tatively lax one given by CbN multi types. It would also be interesting to obtain
game semantics of CbNeed, hopefully satisfying a strong correspondence with
our multi types in the style of what happens in CbN [30,31,51,56].

A further, unconventional direction is to dualise the inception of the CbNeed
type system trying to mix silly duplication from CbN and silly erasure from CbV,
obtaining—presumably—a multi types system measuring a perpetual strategy.

Acknowledgements. This work has been partially funded by the ANR JCJC grant
COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1
“Typed Lambda-Calculi with Sharing and Unsharing”.

References

1. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: 23rd
International Conference on Rewriting Techniques and Applications (RTA 2012).
LIPIcs, vol. 15, pp. 6–21 (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.6

2. Accattoli, B.: Proof nets and the linear substitution calculus. In: Fischer, B.,
Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 37–61. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02508-3 3

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Proceed-
ings of the 19th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2014), pp. 363–376 (2014). https://doi.org/10.1145/2628136.2628154

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1007/978-3-030-02508-3_3
https://doi.org/10.1145/2628136.2628154

436 B. Accattoli et al.

4. Accattoli, B., Barras, B.: Environments and the complexity of abstract machines.
In: Proceedings of the 19th International Symposium on Principles and Practice of
Declarative Programming (PPDP 2017), pp. 4–16. ACM (2017). https://doi.org/
10.1145/3131851.3131855

5. Accattoli, B., Barras, B.: The negligible and yet subtle cost of pattern matching.
In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 426–447. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71237-6 21

6. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardiza-
tion theorem. In: The 41st Annual Symposium on Principles of Programming Lan-
guages (POPL 2014), pp. 659–670. ACM (2014). https://doi.org/10.1145/2535838.
2535886

7. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds.
PACMPL 2(ICFP), 94:1–94:30 (2018). https://doi.org/10.1145/3236789

8. Accattoli, B., Guerrieri, G.: Types of fireballs. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 45–66. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1 3

9. Accattoli, B., Guerrieri, G., Leberle, M.: Types by Need (Extended Version). CoRR
abs/1902.05945 (2019)

10. Accattoli, B., Sacerdoti Coen, C.: On the value of variables. Inf. Comput. 255,
224–242 (2017). https://doi.org/10.1016/j.ic.2017.01.003

11. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

12. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-
need lambda calculus. In: Conference Record of POPL 1995: 22nd Symposium on
Principles of Programming Languages, pp. 233–246. ACM Press (1995). https://
doi.org/10.1145/199448.199507

13. Ariola, Z.M., Herbelin, H., Saurin, A.: Classical call-by-need and duality. In: Ong,
L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 27–44. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21691-6 6

14. Balabonski, T., Barenbaum, P., Bonelli, E., Kesner, D.: Foundations of strong call
by need. PACMPL 1(ICFP), 20:1–20:29 (2017). https://doi.org/10.1145/3110264

15. Barenbaum, P., Bonelli, E., Mohamed, K.: Pattern matching and fixed points:
resource types and strong call-by-need: extended abstract. In: Proceedings of the
20th International Symposium on Principles and Practice of Declarative Program-
ming (PPDP 2018), pp. 6:1–6:12. ACM (2018). https://doi.org/10.1145/3236950.
3236972

16. Barras, B.: Auto-validation d’un système de preuves avec familles inductives. Ph.D.
thesis, Université Paris 7 (1999)

17. Bernadet, A., Graham-Lengrand, S.: Non-idempotent intersection types and strong
normalisation. Logical Methods Comput. Sci. 9(4) (2013). https://doi.org/10.
2168/LMCS-9(4:3)2013

18. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: A relational semantics for parallelism
and non-determinism in a functional setting. Ann. Pure Appl. Logic 163(7), 918–
934 (2012). https://doi.org/10.1016/j.apal.2011.09.008

19. Bucciarelli, A., Kesner, D., Ronchi Della Rocca, S.: Inhabitation for non-
idempotent intersection types. Logical Methods Comput. Sci. 14(3) (2018).
https://doi.org/10.23638/LMCS-14(3:7)2018

20. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Logic J. IGPL 25(4), 431–464 (2017). https://doi.org/10.1093/
jigpal/jzx018

https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1007/978-3-319-71237-6_21
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/3236789
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507
https://doi.org/10.1007/978-3-642-21691-6_6
https://doi.org/10.1145/3110264
https://doi.org/10.1145/3236950.3236972
https://doi.org/10.1145/3236950.3236972
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.1016/j.apal.2011.09.008
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018

Types by Need 437

21. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 103–118.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 7

22. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. Ph.D. thesis,
Université Aix-Marseille II (2007)

23. de Carvalho, D.: Execution time of λ-terms via denotational semantics and inter-
section types. Math. Struct. Comput. Sci. 28(7), 1169–1203 (2018). https://doi.
org/10.1017/S0960129516000396

24. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theoret. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

25. de Carvalho, D., Tortora de Falco, L.: A semantic account of strong normalization
in linear logic. Inf. Comput. 248, 104–129 (2016). https://doi.org/10.1016/j.ic.
2015.12.010

26. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl,
H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28869-2 7

27. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for λ-terms. Arch.
Math. Log. 19(1), 139–156 (1978). https://doi.org/10.1007/BF02011875

28. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693 (1980). https://
doi.org/10.1305/ndjfl/1093883253

29. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation. In:
15th International Symposium on Principles and Practice of Declarative Program-
ming (PPDP 2013), pp. 97–108. ACM (2013). https://doi.org/10.1145/2505879.
2505898

30. Di Gianantonio, P., Honsell, F., Lenisa, M.: A type assignment system for game
semantics. Theor. Comput. Sci. 398(1–3), 150–169 (2008). https://doi.org/10.
1016/j.tcs.2008.01.023

31. Di Gianantonio, P., Lenisa, M.: Innocent game semantics via intersection type
assignment systems. In: Computer Science Logic 2013 (CSL 2013). LIPIcs, vol. 23,
pp. 231–247 (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.231

32. Dı́az-Caro, A., Manzonetto, G., Pagani, M.: Call-by-value non-determinism in a
linear logic type discipline. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS,
vol. 7734, pp. 164–178. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35722-0 12

33. Downen, P., Maurer, L., Ariola, Z.M., Varacca, D.: Continuations, processes, and
sharing. In: Proceedings of the 16th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2014), pp. 69–80. ACM (2014).
https://doi.org/10.1145/2643135.2643155

34. Ehrhard, T.: Collapsing non-idempotent intersection types. In: Computer Science
Logic (CSL 2012) - 26th International Workshop/21st Annual Conference of the
EACSL. LIPIcs, vol. 16, pp. 259–273 (2012). https://doi.org/10.4230/LIPIcs.CSL.
2012.259

35. Ehrhard, T., Guerrieri, G.: The bang calculus: an untyped lambda-calculus gen-
eralizing call-by-name and call-by-value. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2016),
pp. 174–187. ACM (2016). https://doi.org/10.1145/2967973.2968608

https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.1007/978-3-642-28869-2_7
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1145/2505879.2505898
https://doi.org/10.1145/2505879.2505898
https://doi.org/10.1016/j.tcs.2008.01.023
https://doi.org/10.1016/j.tcs.2008.01.023
https://doi.org/10.4230/LIPIcs.CSL.2013.231
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1007/978-3-642-35722-0_12
https://doi.org/10.1145/2643135.2643155
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1145/2967973.2968608

438 B. Accattoli et al.

36. Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control.
In: Proceedings of the 36th Symposium on Principles of Programming Lan-
guages (POPL 2009), pp. 153–164. ACM (2009). https://doi.org/10.1145/1480881.
1480903

37. Gardner, P.: Discovering needed reductions using type theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 555–574. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 115

38. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

39. Guerrieri, G.: Towards a semantic measure of the execution time in call-by-value
lambda-calculus. In: Proceedings of ITRS 2018 (2018, to appear)

40. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49630-5 25

41. Kesner, D., Vial, P.: Types as resources for classical natural deduction. In: 2nd
International Conference on Formal Structures for Computation and Deduction
(FSCD 2017). LIPIcs, vol. 84, pp. 24:1–24:17 (2017). https://doi.org/10.4230/
LIPIcs.FSCD.2017.24

42. Kesner, D., Ŕıos, A., Viso, A.: Call-by-need, neededness and all that. In: Baier,
C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 241–257. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 13

43. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Logic
Comput. 10(3), 411–436 (2000). https://doi.org/10.1093/logcom/10.3.411

44. Krivine, J.L.: Lambda-Calculus, Types and Models. Ellis Horwood Series in Com-
puters and Their Applications. Ellis Horwood, Upper Saddle River, NJ, USA
(1993)

45. Kutzner, A., Schmidt-Schauß, M.: A non-deterministic call-by-need lambda calcu-
lus. In: Proceedings of the Third International Conference on Functional Program-
ming (ICFP 1998), pp. 324–335. ACM (1998). https://doi.org/10.1145/289423.
289462

46. Launchbury, J.: A natural semantics for lazy evaluation. In: Conference Record
of the Twentieth Annual Symposium on Principles of Programming Languages
(POPL 1993), pp. 144–154. ACM Press (1993). https://doi.org/10.1145/158511.
158618

47. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Theor. Comput. Sci. 228(1–2), 175–
210 (1999). https://doi.org/10.1016/S0304-3975(98)00358-2

48. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

49. Mazza, D., Pellissier, L., Vial, P.: Polyadic approximations, fibrations and intersec-
tion types. PACMPL 2(POPL), 6:1–6:28 (2018). https://doi.org/10.1145/3158094

50. Neergaard, P.M., Mairson, H.G.: Types, potency, and idempotency: why nonlin-
earity and amnesia make a type system work. In: Proceedings of the Ninth Inter-
national Conference on Functional Programming (ICFP 2004), pp. 138–149. ACM
(2004). https://doi.org/10.1145/1016850.1016871

51. Ong, C.L.: Quantitative semantics of the lambda calculus: some generalisations of
the relational model. In: 32nd Annual Symposium on Logic in Computer Science
(LICS 2017), pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/
LICS.2017.8005064

https://doi.org/10.1145/1480881.1480903
https://doi.org/10.1145/1480881.1480903
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-662-49630-5_25
https://doi.org/10.4230/LIPIcs.FSCD.2017.24
https://doi.org/10.4230/LIPIcs.FSCD.2017.24
https://doi.org/10.1007/978-3-319-89366-2_13
https://doi.org/10.1093/logcom/10.3.411
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/158511.158618
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1145/3158094
https://doi.org/10.1145/1016850.1016871
https://doi.org/10.1109/LICS.2017.8005064
https://doi.org/10.1109/LICS.2017.8005064

Types by Need 439

52. Paolini, L., Piccolo, M., Ronchi Della Rocca, S.: Essential and relational mod-
els. Math. Struct. Comput. Sci. 27(5), 626–650 (2017). https://doi.org/10.1017/
S0960129515000316

53. Pédrot, P.-M., Saurin, A.: Classical by-need. In: Thiemann, P. (ed.) ESOP 2016.
LNCS, vol. 9632, pp. 616–643. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49498-1 24

54. Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: Seldin,
J., Hindley, J. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Cal-
culus and Formalism, pp. 561–578. Academic Press, Cambridge (1980)

55. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

56. Tsukada, T., Ong, C.L.: Plays as resource terms via non-idempotent intersection
types. In: Proceedings of the 31st Annual Symposium on Logic in Computer Science
(LICS 2016), pp. 237–246. ACM (2016). https://doi.org/10.1145/2933575.2934553

57. Wadsworth, C.P.: Semantics and pragmatics of the lambda-calculus. Ph.D. thesis,
University of Oxford (1971). Chapter 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1007/978-3-662-49498-1_24
https://doi.org/10.1007/978-3-662-49498-1_24
https://doi.org/10.1145/2933575.2934553
http://creativecommons.org/licenses/by/4.0/

Verifiable Certificates for Predicate
Subtyping

Frederic Gilbert(B)

Inria, Cachan, France
frederic.a.gilbert@inria.fr

Abstract. Adding predicate subtyping to higher-order logic yields a very
expressive language in which type-checking is undecidable, making the
definition of a system of verifiable certificates challenging. This work
presents a solution to this issue with a minimal formalization of pred-
icate subtyping, named PVS-Core, together with a system of verifiable
certificates for PVS-Core, named PVS-Cert. PVS-Cert is based on the
introduction of proof terms and explicit coercions. Its design is similar to
that of PTSs with dependent pairs, with the exception of the definition
of conversion, which is based on a specific notion of reduction →β∗, cor-
responding to β-reduction combined with the erasure of coercions. The
use of this reduction instead of the more standard reduction →βσ allows
to establish a simple correspondence between PVS-Core and PVS-Cert.
On the other hand, a type-checking algorithm is designed for PVS-Cert,
built on proofs of type preservation of →βσ and strong normalization
of both →βσ and →β∗. Combining these results, PVS-Cert judgements
are used as verifiable certificates for predicate subtyping. In addition, the
reduction →βσ is used to define a cut elimination procedure for predicate
subtyping. This definition provides a new tool to study the properties of
predicate subtyping, as illustrated with a proof of consistency.

Keywords: Higher-order logic · Predicate subtyping · Type theory ·
Proof theory

1 Introduction

Extending higher-order logic with predicate subtyping yields a very expressive
type system, used notably at the core of the proof system PVS [17]. However,
proof judgements and typing judgements become entangled in the presence of
predicate subtyping, making type-checking undecidable. As a consequence, defin-
ing a language of verifiable proofs for predicate subtyping becomes challenging.
In pure higher-order logic, complete judgement derivations are too heavy to be
used in practice as certificates, but lighter certificates can be produced by remov-
ing typing rules, recording deduction rules only: as this approach requires the
decidability of type-checking, it doesn’t apply directly to predicate subtyping.

This paper presents a new formal language, PVS-Cert, designed to be used
as a language of verifiable certificates for predicate subtyping. PVS-Cert is built
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 440–466, 2019.
https://doi.org/10.1007/978-3-030-17184-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_16

Verifiable Certificates for Predicate Subtyping 441

starting from a minimal formalization of predicate subtyping named PVS-Core,
by adding explicit proofs and coercions. PVS-Cert is also equipped with a notion
of cut elimination, which can be used directly to study both PVS-Cert and PVS-
Core meta-theoretical properties.

1.1 Extending Higher-Order Logic with Predicate Subtyping

Higher-order logic is characterized by the coexistence of types and predicates as two
radically different kinds of attributes to mathematical expressions. For instance,
the mathematical expression 1 + 1 can be assigned a type Nat expressing that it
is a natural number, or a predicate Even expressing that it is divisible by two. The
assignment of types remains very simple: in particular, type-checking is decidable
in higher-order logic. In return, most attributes of mathematical expressions for-
mulated as predicates cannot be formulated as types: for instance, being a natural
number different from 0 is expressible as a predicate, but not as a type.

Predicate subtyping allows to recover a symmetrical situation between the
expressivity of types and predicates. It is defined as the addition of new types,
referred to as predicate subtypes. Given a predicate P defined on a domain A (e.g.
Even, defined on the domainNat), the predicate subtype {x : A | P (x)} is defined.
An expression t can be assigned this type if and only if it can be assigned the type A
and P (t) is provable. For instance, ifNonzero is a predicate of domainNat express-
ing the difference of a natural number from 0, proving Nonzero(1) allows to con-
clude that 1 admits the type {x : Nat | Nonzero(x)}.

This augmented expressivity of the language of types permits to exclude many
unwanted expressions from reasoning. For instance, defining the denominators
domain of Euclidean division as {x : Nat | Nonzero(x)}, all divisions in which
the denominator is not provably different from zero become ill-typed.

As expressions may have several types, predicate subtyping induces a form
of subtyping: for instance, as any expression of type {x : Nat |Nonzero(x)} also
admits the type Nat , the former can be considered as a subtype of the latter.

As previously mentioned, a major counterpart of this extension of higher-order
logic is the fact that typing judgements and proof judgements become entangled.
For instance, proving the equality (1/1) = 1 requires that 1 can be assigned the
type {x : Nat |Nonzero(x)}, which, in turn, requires to prove Nonzero(1). As a
direct consequence, type-checking is not decidable in the presence of predicate sub-
typing.

1.2 Contributions

PVS-Core. Higher-order logic, as well as its extension with predicate subtyp-
ing, can be defined in various ways. The first contribution of this paper is the for-
malization, in Sect. 2, of a minimal system for predicate subtyping, denoted PVS-
Core. Besides its minimality, the main design choice for this system is the use of
β-equivalence as a conversion relation (or definitional equality).

442 F. Gilbert

PVS-Cert and Its Basic Properties. Starting from PVS-Core, the second
contribution of this work is the formalization, in Sect. 3, of a language of veri-
fiable proofs for PVS-Core. This new language, denoted PVS-Cert, is designed
from PVS-Core with the addition of explicit proof terms, formalized as λ-terms,
as well as the addition, at the level of expressions, of explicit coercions based on
these proof terms. The addition of explicit proof terms follows the Curry-Howard
isomorphism in the sense that PVS-Cert proofs terms are typed by their corre-
sponding formulas.

PVS-Cert is an extension of the Pure Type System (PTS) λ-HOL (see for
instance [4], where λ-HOL as well as the general notion of PTS are defined). More
precisely, PVS-Cert is designed to extend λ-HOL in the same way that PVS-Core
extends higher-order logic (denoted HOL in the following). This situation is illus-
trated in this diagram, where vertical arrows represent extensions and horizontal
arrows represent the introduction of explicit proofs (and, in the case of PVS-Core
and PVS-Cert, of explicit coercions).

HOL

PVS-Core PVS-Cert

λ-HOL

This choice of a PTS-like system is well-suited to describe reasoning modulo
β: all steps of β-reduction or β-expansion are kept implicit in proof terms, which
allows to keep them compact. As detailed in Sect. 3.3, PVS-Cert is comparable to
the formalism of PTSs with dependent pairs. However, conversion in PVS-Cert
is neither defined as ≡β nor as its extension ≡βσ (see for instance [16]) used in
PTSs with dependent pairs: instead, it uses a new conversion relation ≡β∗ corre-
sponding to syntactical equality modulo β-reduction and coercion erasure (defined
in Sect. 3.1). This distinctive definition allows to define a simple correspondence
between PVS-Core and PVS-Cert – presented later in Sect. 9.

Basic properties of PVS-Cert are presented in Sect. 4, containing notably the
Church-Rosser property for the reduction →β∗ underlying the conversion ≡β∗, as
well as the uniqueness of types: contrary to the case of PVS-Core, a well-typed
term admits a unique type up to ≡β∗.

As in λ-HOL, well-typed terms are organized according to a stratification, pre-
sented in Sect. 5, which includes a class of types, a class of expressions (containing
notably propositions), and a class of proof terms. This stratification is at the core
of the correspondence between PVS-Cert and PVS-Core.

Type Preservation and Strong Normalization. In contrast to the case of
the reduction →βσ in PTSs with dependent pairs, →β∗ is not a type preserving
reduction in PVS-Cert. We prove however in Sect. 6 that →βσ is a type preserving
reduction in PVS-Cert (Theorem 6).

In Sect. 7, we present the main ideas leading to a proof of strong normalization
for both →β∗ and →βσ (Theorem 7) – the details of the proof can be found in the

Verifiable Certificates for Predicate Subtyping 443

author’s PhD dissertation [1]. Moreover, the strong normalization of the type pre-
serving reduction →βσ defines a cut elimination theorem (Theorem 8). This theo-
rem is used in the remainder of this section to prove the consistency of PVS-Cert.
This result is used in turn at the very end of this work to conclude the consistency
of PVS-Core, illustrating how cut elimination in PVS-Cert can be used to study
the meta-theoretical properties of predicate subtyping.

Type-Checking in PVS-Cert. We present in Sect. 8 the design of a type-
checking algorithm for PVS-Cert, showing that, contrary to the case of PVS-Core,
type-checking is decidable in PVS-Cert. This algorithm is based on the type preser-
vation of →βσ as well as the strong normalization of →β∗ and →βσ.

Using PVS-Cert as a System of Verifiable Certificates for PVS-Core.
The connection between PVS-Core and PVS-Cert is formalized in Sect. 9. On the
one hand, a translation from PVS-Cert to PVS-Core is defined through the era-
sure of coercions. On the other hand, the choice of conversion ≡β∗ in PVS-Cert
allows to define a very simple translation from PVS-Core derivations to PVS-Cert
derivable judgements (Definition 7 and Theorem 11).

These translations are used in Sect. 10 together with the PVS-Cert type-
checking algorithm to define how to use PVS-Cert judgements as verifiable cer-
tificates for PVS-Core, reaching the first purpose of this paper. Such certificates
are much lighter than the PVS-Core derivations represented through them, as they
only require to record one single judgement.

Last, the translations between PVS-Core and PVS-Cert are exploited to trans-
pose the consistency property, established in PVS-Cert using cut elimination, to
PVS-Core. This illustrates how the PVS-Cert cut elimination theorem can be used
to study both PVS-Cert and PVS-Core meta-theoretical properties.

1.3 Related Works

The most important related work is the author’s PhD dissertation [1], which con-
tains detailed versions of all proofs presented in this paper.

The introduction of predicate subtyping can be traced back to the first-order
language OBJ2 [9] and its sort constraints, allowing to restrict some typing rela-
tions to the satisfaction of a predicate. This idea was later refined and combined
with higher-order logic in the proof system PVS, which is one of the most impor-
tant systems based on predicate subtyping. Overviews of the PVS specification
language and its use of predicate subtyping are given for instance in [17] and [20].

In the present work, the issue of the undecidability of predicate subtyping is
handled with the introduction of an alternative system, PVS-Cert. An alternative
approach to this issue is to weaken the definition of predicate subtyping sufficiently
to obtain systems in which type-checking remains decidable. This approach has
been followed in [13,19]. A intermediary situation is followed in [15], in which pred-
icate subtyping is weakened sufficiently to allow for run-time type-checking veri-
fications. However, contrary to the case of PVS, predicate subtyping is not fully
represented in these different systems.

444 F. Gilbert

As mentioned in the previous section, PVS-Cert is an adaptation of the formal-
ism of Pure Type Systems (PTSs) – sometimes also referred to as Generalized Type
Systems (GTSs) –, presented for instance in [4]. The definition of PTSs is itself the
result of several successive works, including notably [3,7,11,24–26]. More specif-
ically, PVS-Cert is derived from the notion of PTSs with dependent pairs, which
has its roots in the system ECC [16]. A subsystem of PVS-Cert, named PVS-Cert−

and presented in Sect. 3, corresponds directly to a fragment of ECC (PVS-Cert− is
the system obtained from PVS-Cert by replacing ≡β∗ by the standard conversion
≡βσ of PTSs with dependent pairs). PVS-Cert− is also comparable to the notion
of subset types in Coq [5]. However, contrary to PVS-Cert, PVS-Cert− and sub-
set types are not well-suited to reflect predicate subtyping, as conversion in these
systems does not reflect conversion in PVS-Core – more precisely, Proposition 5
doesn’t hold with ≡βσ.

Another important related work is [8], in which two systems are presented:
ICCΣ , a type system with implicit type constructions, and AICCΣ , a system
obtained from ICCΣ by adding explicit coercions. ICCΣ contains several advanced
features, including a generalization of predicate subtypes. The construction of
PVS-Cert from PVS-Core follows the same idea as the construction of AICCΣ

from ICCΣ : adding the missing information explicitly in the terms of the language
to recover the decidability of type-checking. The main difference between the two
approaches lies in the complexity of the respective languages. ICCΣ is a very rich
and complex language, making its analysis difficult – in particular, strong normal-
ization in ICCΣ is kept as a conjecture, on which the decidability of type-checking
itself relies. Conversely, PVS-Core is designed as a minimal language including
predicate subtyping, making its analysis simpler.

A variant of predicate subtyping was also formalized as an extension of the cal-
culus of constructions in [22]. As in the present work, this presentation contains
two systems connected with each other. On the one hand, it includes one system,
named Russell, which is comparable to a weakened version of PVS-Core in which
a term t of type A admits the type {x : A | P} even when P [t/x] is not provable.
In this variant of predicate subtyping named subset equivalence, type-checking is
decidable. On the other hand, this work includes a system with explicit coercions
which is comparable to PVS-Cert. Contrary to PVS-Core, Russell derivations are
not intended to contain all information necessary to build complete terms with
explicit coercions: instead, a translation producing incomplete terms in the sys-
tem with explicit coercions is presented. This system allows to write programs and
specifications together in Russell, and to prove their correctness in a second step
by filling all proof holes produced through the translation, in a way which is similar
to the functioning of PVS.

Contrary to the case of PVS-Core and Russell, PVS-Cert and the counterpart
of Russell with explicit coercions have similar characteristics. Although its theo-
retical properties are not formalized, this latter system is presented as a simple
extension of the proof-irrelevant type theory presented in [27]. There exists indeed
a tight connection between proof irrelevance and PVS-Cert: if one considers for
instance the usual predicate Even on natural numbers expressing divisibility by
two, the predicate subtype even = {x : Nat | Even(x)}, and two expressions
with explicit coercions 〈2, p〉even and 〈2, q〉even of this type with p and q two proofs

Verifiable Certificates for Predicate Subtyping 445

of Even(2), then the hypothesis of proof irrelevance ensures that the expressions
〈2, p〉even and 〈2, q〉even are convertible, as does the choice of conversion relation
≡β∗ in PVS-Cert.

This relation between proof irrelevance and predicate subtyping is explored
further in [27]. Besides the fact that this work is based on the calculus of construc-
tions and besides some technical differences in the precise definition of conversion
between the system presented in this paper and PVS-Cert, analyzing the strong
relation between these two systems appears as a very interesting future work. In
particular, it would provide a possible strategy for building a proof of strong nor-
malization for this system from the proof of strong normalization presented in
Sect. 7. Also following the relation between proof irrelevance and predicate sub-
typing, the system IITT presented in [2], which is equipped with explicit occur-
rences of irrelevant terms, also admits some similarities with PVS-Cert. However,
it is restricted to predicative type theory, in which higher-order reasoning cannot
be expressed.

Another important work carried out on predicate subtyping is the presenta-
tion of a formal semantics for PVS in [18]. This work defines, for some fragment
of the PVS language including predicate subtyping but also other features such
as parametric theories, set-theoretical interpretations of types and expressions.
These interpretations are limited to standard interpretations: the interpretation of
a function type is the set of all functions from the interpretation of the domain to
the interpretation of the co-domain, and the interpretation of the type of propo-
sitions is a set containing exactly two elements, distinguishing true propositions
from false ones. Such an approach is complementary to the presented paper, which
is only focused on the distinction between provable propositions and unprovable
ones. As a possible future work, it would be interesting to adapt the work presented
in [18] to obtain a notion of standard model for PVS-Core.

2 PVS-Core: AMinimal Extension of HOLwith Predicate
Subtyping

This section is dedicated to the first contribution of this work: the formalization
of a minimal system for predicate subtyping. This system is named PVS-Core,
in reference to PVS [17]. The main distinctive design choice for PVS-Core is the
introduction of a conversion relation (or definitional equality), corresponding to
β-equivalence.

2.1 Definitions

Variables and Terms. We first define a set of variables V as the disjoint union
of two infinite countable sets of symbols Vexpressions and Vtypes. We introduce the
generic notation v or w to refer to a variable in general, as well as the following
specific notations:

– The notation X or Y refers to variables in Vtypes.
– The notation x or y refers to variables in Vexpressions.

446 F. Gilbert

Then, we define a set of terms as the disjoint union of the three following sets.
The last two are defined together recursively.

– The first set contains a unique symbol: Type.
– The second set is the set of types. It is given with the following grammar:

A,B := X | Prop | Πx : A.B | {x : A | P}
– The last set is the set of expressions. It is given with the following grammar:

t, u, P,Q := x | ∀x : A.P | P ⇒ Q | λx : A.t | tu

Remark 1. There is no formal distinction between the expressions denoted t or u
and the expressions denoted P or Q, as all of them refer to expressions in general.
Yet, in the following, the notations P and Q will be often used to refer to expres-
sions admitting the type Prop, also referred to as formulas or propositions.

Declarations, Contexts, Judgements. We define:

– Three kinds of declarations:
X : Type | x : A | P

– Contexts, denoted Γ , as lists of declarations:
Γ := ∅ | Γ,X : Type | Γ, x : A | Γ, P

– Four kinds of judgements:
Γ � WF | Γ � A : Type | Γ � t : A | Γ � P

We use the notation DV (Γ) to refer to the set of variables declared in a context
Γ : for instance, DV (P, x : A,X : Type) = {x,X}.

Reduction. We equip PVS-Core terms with the usual β-reduction. In the fol-
lowing, we use the notation �β for the reduction of a β-redex, →β for the context
closure of �β , �β for the reflexive transitive closure of →β , and ≡β for the sym-
metric closure of �β , i.e. β-conversion.

Derivation Rules. The rules of PVS-Core are the following:

Well-formed contexts

Empty
∅ � WF

Γ � WF X ∈ Vtypes\DV (Γ) TypeDecl
Γ, X : Type � WF

Γ � P : Prop
Assumption

Γ, P � WF

Γ � A : Type
x ∈ Vexpressions\DV (Γ) EltDecl

Γ, x : A � WF

Well-formed types

Γ � WF (X : Type) ∈ Γ TypeVar
Γ � X : Type

Γ � WF
Prop

Γ � Prop : Type

Γ, x : A � B : Type
Pi

Γ � Πx : A.B : Type

Γ, x : A � P : Prop
Subtype

Γ � {x : A | P} : Type

Verifiable Certificates for Predicate Subtyping 447

Well-typed expressions

Γ � WF (x : A) ∈ Γ EltVar
Γ � x : A

Γ � t : {x : A | P}
SubtypeElim1

Γ � t : A

Γ, x : A � t : B
Lam

Γ � λx : A.t : Πx : A.B

Γ � t : Πx : A.B Γ � u : A
App

Γ � tu : B[u/x]

Γ, x : A � P : Prop
Forall

Γ � ∀x : A.P : Prop

Γ, P � Q : Prop
Imply

Γ � P ⇒ Q : Prop

Γ � t : A Γ � P [t/x] Γ � {x : A | P} : Type
SubtypeIntro

Γ � t : {x : A | P}

Γ � t : A Γ � B : Type
A ≡β B TypeConversion

Γ � t : B

Deductions

Γ � WF
P ∈ Γ Axiom

Γ � P

Γ � P Γ � Q : Prop
P ≡β Q PropConversion

Γ � Q

Γ, P � Q
ImplyIntro

Γ � P ⇒ Q

Γ � P ⇒ Q Γ � P
ImplyElim

Γ � Q

Γ, x : A � P
ForallIntro

Γ � ∀x : A.P

Γ � ∀x : A.P Γ � t : A
ForallElim

Γ � P [t/x]

Γ � t : {x : A | P}
SubtypeElim2

Γ � P [t/x]

2.2 A Minimal System Expressing Predicate Subtyping

Predicate subtyping is expressed in PVS-Core with the term construction {x : A |
P} and the following rules:

– Subtype, the rule of formation of predicate subtypes.
– SubtypeIntro, which is a rule of introduction.
– SubtypeElim1 and SubtypeElim2, which are rules of elimination.

The system obtained from PVS-Core by removing the construction {x : A | P}
and these four rules is a formulation of constructive higher-order logic. In partic-
ular, the types of this subsystem correspond to the expected simple types: for any
type of the form Πx : A.B in this subsystem, x cannot appear free in B, hence this
type is a non-dependent function type. As a consequence, the rule TypeConver-
sion can be safely removed from this subsystem to obtain a simpler but equivalent
formulation of higher-order logic.

PVS-Core is a minimal constructive system, which can be extended with clas-
sical reasoning or extensionality principles through the addition of axioms.

The rule PropConversion allows to consider reasoning modulo β, which will
be useful in the definition of PVS-Core to keep proof terms compact. The rule

448 F. Gilbert

TypeConversion is its counterpart at the level of types, allowing to consider
typing modulo β as well.

3 PVS-Cert: Verifiable Certificates for PVS-Core

This section is dedicated to the presentation of an alternative system, PVS-Cert,
which will be used to achieve the purpose of the work: defining a language of veri-
fiable certificates for predicate subtyping.

At first glance, there is no need to introduce any new system to design PVS-
Core certificates: the language of PVS-Core derivations itself is a language of veri-
fiable proofs for PVS-Core. However, this language is heavy as many parts of PVS-
Core derivations contain unnecessary or redundant information. As a comparison,
in higher-order logic, as type-checking is decidable, only the deduction rules need
to be recorded.

The main idea in the definition of PVS-Cert as a language of certificates for
predicate subtyping is to formalize proofs as new kinds of terms, in addition to
the types and expressions which are already present in PVS-Core, and to intro-
duce explicit coercions based on these proof terms in order to ensure the decidabil-
ity of type-checking. As a consequence, a complete certificate is simply the typing
judgement of someproof termwith its corresponding theorem. Such certificates are
much lighter than PVS-core derivations, as only one single judgement is recorded.

Moreover, PVS-Cert will be equipped (in Sect. 7) with a definition of cut elim-
ination, defined as a computation rule on proof terms.

3.1 Definitions

As detailed further in Sect. 3.2, the definition of PVS-Cert is strongly related to
the formalism of PTSs, presented for instance in [4].

Terms. We define:

– Sorts S = {Prop, Type,Kind}
We use the notation s to refer to a sort.

– Axioms A = {(Prop, Type), (Type,Kind)}
– Rules R = {(Prop, Prop, Prop), (Type, Type, Type), (Type, Prop, Prop)}
– VariablesThe set of variables V is the disjoint union of three infinite countable

sets of symbols Vproofs, Vexpressions, and Vtypes. The sets Vexpressions and Vtypes

refer to their respective definitions in PVS-Core, while the set Vproofs is new.
We use the notation v to refer to a variable and s(v) to refer to the unique sort
s such that v ∈ Vs.

– Terms T is given by the following grammar:
M,N, T, U := s | v | λv : T.M | MN | Πv : T.U | {v : T | U} | 〈M,N〉T |
π1(M) | π2(M)

Verifiable Certificates for Predicate Subtyping 449

Contexts, Judgements. We define:

– Contexts Γ := ∅ | Γ, v : T
– Judgements Γ � WF | Γ � M : T

As in PVS-Core, set of variables declared in a context Γ is denoted DV (Γ).

Reduction. The main specificity of PVS-Cert is the use of a distinctive notion
of reduction and conversion. In addition to the usual β-redex reduction (λv :
T.M)N �β M [N/v], we introduce a new reduction relation �∗, defined with the
following rules:

– 〈M1,M2〉T �∗ M1

– π1(M) �∗ M

We denote the union of �β and �∗ as �β∗. As in the definition of PVS-Core, we use
the notation →β∗ for the context closure of �β∗, �β∗ for the reflexive transitive
closure of →β∗, and ≡β∗ for the symmetric closure of �β∗.

The new relation �∗, which can be interpreted as the elimination of a coercion
at the head of a term, allows the expression of predicate subtyping in PVS-
Cert. More detailed motivations and justifications for this definition are given in
Sect. 3.3.

Derivation Rules. The rules of PVS-Cert are defined as follows:
Empty

∅ � WF
Γ � T : s v ∈ Vs\DV (Γ) Decl

Γ, v : T � WF

Γ � WF (v : T) ∈ Γ Var
Γ � v : T

Γ � M : T Γ � U : s T ≡β∗ U Conversion
Γ � M : U

Γ � WF (s1, s2) ∈ A Sort
Γ � s1 : s2

Γ � T : s1 Γ, v : T � U : s2
(s1, s2, s3) ∈ R Prod

Γ � Πv : T.U : s3

Γ, v : T � M : U Γ � Πv : T.U : s
Lam

Γ � λv : T.M : Πv : T.U

Γ � M : Πv : T.U Γ � N : T
App

Γ � MN : U [N/v]

Γ � T : Type Γ, v : T � U : Prop
Subtype

Γ � {v : T | U} : Type

Γ � M : T Γ � N : U [M/v] Γ � {v : T | U} : Type
Pair

Γ � 〈M, N〉{v:T |U} : {v : T | U}

Γ � M : {v : T | U}
Proj1

Γ � π1(M) : T

Γ � M : {v : T | U}
Proj2

Γ � π2(M) : U [π1(M)/v]

450 F. Gilbert

3.2 An Extension of λ-HOL

PVS-Cert is an extension of the PTS λ-HOL (see for instance [4]). More precisely,
λ-HOL can be obtained from PVS-Cert by removing the term constructions {v :
T | U}, πi(M), and 〈M,N〉T , removing the rules Subtype, Pair, Proj1, and
Proj2, and replacing ≡β∗ by ≡β in the Conversion rule.

As PTS-like systems, the formalism of PVS-Cert allows to describe reasoning
modulo β: all steps of β-reduction or β-expansion in reasoning are kept implicit,
which allows to keep proof terms compact, making PVS-Cert more scalable. More-
over, the choice of formalization of PVS-Cert as a PTS-like system allows to trans-
pose some PTS properties to PVS-Cert, such as the thinning property and the
substitution property mentioned in the next section. It also allows to describe this
system using a small number of rules in comparison with PVS-Core, making the
proof of certain expected properties of PVS-Cert lighter.

The well-typed terms of PVS-Cert are classified into the same classes as in the
case of λ-HOL, involving a class of types, a class of expressions, and a class of proof
terms. This property is presented in Sect. 5, and referred to as stratification.

3.3 Expressing Predicate Subtyping

The expression of predicate subtyping in PVS-Cert is enlightened through the
stratification: indeed, in any derivable judgement,

– terms of the form {v : T | U} are types, expressing predicate subtypes
– terms of the form 〈M,N〉T or π1(M) are expressions, and correspond respec-

tively to explicit coercions going from a type to one of its predicate subtypes
and back

– terms of the form π2(M) are proofs, expressing the PVS-Core deduction rule
SubtypeElim2.

As mentioned in the introduction, this formalism used to express predicate sub-
typing is very similar to the formalism of dependent pairs, used for instance in
the type system ECC [16]. More precisely, the terms {v : T | U} are compara-
ble with types of dependent pairs (usually denoted Σv : T.U), the terms 〈M,N〉T

are comparable with dependent pairs, and the terms πi(M) are comparable with
projections.

The only difference between PVS-Cert and the formalism of dependent pairs
lies in the choice of conversion ≡β∗: in the case of a system with dependent pairs,
≡β∗ is replaced by the more standard conversion ≡βσ. This conversion is defined
from the usual reduction πi〈M1,M2〉T �σ Mi. We define the relations �βσ, →βσ,
�βσ, and ≡βσ in a similar way to the definitions of �β∗, →β∗, �β∗, and ≡β∗.

Applied to types or expressions, the conversion ≡β∗ includes the more standard
conversion ≡βσ (this property is a direct consequence of Theorem 5 together with
the Church-Rosser property of →βσ). However, this inclusion is strict: for instance,
it is not difficult to find two well-typed terms 〈M,N1〉T and 〈M,N2〉T which are
not convertible using ≡βσ, although they are convertible using ≡β∗.

Verifiable Certificates for Predicate Subtyping 451

As adirect consequence of this property, PVS-Cert is an extension of the system
obtained from it by replacing ≡β∗ by ≡βσ, and this extension is strict. In this paper,
this subsystem will be referred to as PVS-Cert−. It is a PTS with dependent pairs,
and corresponds more precisely to the system obtained from the PTS λ-HOL by
adding the single dependent pair rule (Type, Prop, Type). It is strictly included in
the type system ECC presented in [16].

An mentioned in the introduction, this choice of a strictly more flexible con-
version allows to define a very simple translation from PVS-Core derivations to
PVS-Cert derivable judgements. Indeed, using ≡β∗ ensures that two PVS-Cert
types (resp. expressions) are convertible as long as the corresponding types (resp.
expressions) in PVS-Core are also convertible, which allows to define a very simple
translation from PVS-Core derivations to PVS-Cert derivable judgements (Defi-
nition 7 and Theorem 11).

The reduction →β∗ underlying conversion does not preserve typing: for
instance, the judgement x : Prop, h : x � 〈x, h〉T : T with T = {y : Prop | y}
is derivable, and 〈x, h〉T →β∗ x, but x : Prop, h : x � x : T is not derivable.
However, as presented in Sect. 6, the reduction →βσ is type preserving, and will
be used both as a definition of cut elimination for PVS-Cert proofs (Sect. 7) and
in the definition of a type checking-algorithm (Sect. 8).

4 Properties of PVS-Cert

One of the most important properties satisfied by PVS-Cert is the Church-Rosser
property.

Theorem 1 (Church-Rosser for →β∗).Whenever M1 ≡β∗ M2, there exists N
such that M1 �β∗ N and M2 �β∗ N .

Proof. T equipped with →β∗ is an orthogonal combinatory reduction system (as
defined in [14]), as rules are left-linear and non-overlapping. As proved in [14], such
a system admits the Church-Rosser property.

In the case of PTSs, the Church-Rosser property of →β is at the core of the
type preservation of →β . In the case of PVS-Cert, the situation is different, as
→β∗ is not a type preserving reduction. However, in a first step, the Church-Rosser
property of →β∗ will be used to establish the expected stratification theorem, pre-
sented in Sect. 5. In a second step, the Church-Rosser property of →β∗ will be used
again together with the stratification theorem to establish the type preservation of
an alternative reduction, →βσ, used both as a definition of cut elimination (Sect. 7)
and at the core of the definition of a type-checking algorithm (Sect. 8).

Another important property of PVS-Cert used to design a type-checking algo-
rithm is the uniqueness of types modulo conversion. As presented in Sect. 8, this
property allows – together with the decidability of ≡β∗ on well-typed terms – to
reduce the problem of type-checking to a problem of type inference. This property
also underlines the fact that, even though PVS-Cert is designed to reflect predicate
subtyping, it doesn’t admit any subtyping itself. The proof of type uniqueness is
standard, and does not involve any specific difficulty.

452 F. Gilbert

Theorem 2 (Uniqueness of types). If two judgements Γ � M : T0 and Γ �
M : T1 are derivable, then T0 ≡β∗ T1.

PVS-Cert also satisfies several other standard properties expected from PTSs
and PTSs extended with dependent pairs, among which thinning and substitution,
described for instance in [4], as well as context conversion, described for instance in
[21], which is based on the extension of conversion to contexts. In these three cases,
the corresponding proofs are straightforwardly adapted from the case of PTS.

We end this section with the following important theorem, which also holds in
λ-HOL. The proof is adapted from the case of λ-HOL and does not involve any
specific difficulty.

Theorem 3. If Γ � M : T is derivable and T
= Kind, there exists a sort s such
that Γ � T : s.

5 Stratification in PVS-Cert

The stratification of terms in PVS-Cert reveals a strong link between PVS-Cert
and PVS-Core (defined in Sect. 9), in the same way that the stratification of terms
in λ-HOL reveals its link with higher-order logic. The property of stratification
holds for several other systems, such as the injective PTSs presented in [11] – in this
paper, PTSs are referred to as GTSs, and this result is referred to as classification.

The main lemma used to establish such a result is the fact that, whenever the
rule of conversion is used in some derivation, the two terms involved in the con-
version belong to the same class of terms. The simplest way to prove this result is
to choose classes of terms that are stable under reduction and to conclude using
the Church-Rosser theorem. In the case of injective PTSs, these classes are specific
classes of well-typed terms, and the stability under reduction follows from the type
preservation of →β .

However, as mentioned in Sect. 3.3, type preservation does not hold for →β∗ in
PVS-Cert. For this reason, we will choose a relaxed definition of stratified terms,
where the different classes are not restricted to well-typed terms. Using this relaxed
definition, it will be possible to prove, even in the absence of type preservation for
→β∗, that most classes of stratified terms are stable by reduction with →β∗.

We first present three classes of terms: types, expressions, and proofs. The
expected property of stability by reduction will only be proved for types and
expressions (Proposition 1), which is not problematic as the conversion rules are
never directly applied to proofs in valid derivations.

Definition 1 (Variables stratification). We introduce the notations:

– X,Y,Z for variables in Vtypes

– x, y, z for variables in Vexpressions

– h for variables in Vproofs

Verifiable Certificates for Predicate Subtyping 453

Definition 2 (Stratified terms). We define stratified terms as follows.

– Types A,B := X | Prop | Πx : A.B | {x : A | P}
– Expressions

t, u, P,Q := x | Πx : A.P | Πh : P.Q | λx : A.t | t u | 〈t,M〉A | π1(t)
– Proofs p, q := h | λh : P.p | λx : A.p | p q | p t | π2(t)

Remark 2. As in the case of PVS-Core (Remark 1), there is no formal distinction
between the notations t, u, P , and Q although, in the following, the notations of
expressions P,Q will be preferred for expressions of type Prop.

The most important remark on the definition of stratified terms is the fact that
any pair 〈t,M〉A (where t is an expression and A is a type) is accepted as a cor-
rect expression: the term M used in it can be arbitrary, and in particular it is not
required to be a proof term. This choice is due to the fact that proofs are not sta-
ble by →β∗: for instance, (λh : x.h)y is a proof, but y is not. Hence, compared to
the alternative of restricting pairs to terms of the form 〈t, p〉A, the present relaxed
definition is necessary to ensure the stability of types and expressions under →β∗,
which is formalized in the following proposition – the proof does not involve any
specific difficulty, as the definitions of types and expressions are designed to satisfy
this property.

Proposition 1. Whenever M →β∗ N and M is a type (resp. an expression), so
is N .

Beyond its use in the proof of the stratification theorem (Theorem 4), this sta-
bility property is also directly useful in the proof of the strong normalization the-
orem for →β∗ and →βσ, as briefly mentioned in Sect. 7.

Finally, we present the expected stratification theorem, based on the following
definitions.

Definition 3 (Stratified contexts, stratified judgements). We define

– stratified contexts as contexts in which all declarations have the form X :
Type, x : A (for some type A), or h : P (for some expression P).

– stratified judgements as judgements of one of the following forms, in which
Γ is a stratified context:

Γ � WF Γ � Type : Kind
Γ � A : Type Γ � t : A
Γ � p : P

Theorem 4 (Stratification). Any derivable judgement is stratified.

Proof. The proof is straightforward by induction on the derivation. In the case
of Conversion, Proposition 1 and the Church-Rosser property of →β∗ are used
together to conclude that the two convertible terms are either both expressions,
both types, both Type, or both Kind. Basic stability properties of types and
expressions under substitution are also involved in the casesProj2 andApp. They
are proved directly by induction.

454 F. Gilbert

6 AType Preserving Reduction

Contrary to the case of PTSs (resp. PTSs with dependent pairs), in which →β

(resp. →βσ) is a type preserving reduction, →β∗ is not a type preserving reduc-
tion in PVS-Cert. Instead, we present in this section the type preservation of the
reduction →βσ in PVS-Cert. This reduction will be used both as a definition of
cut elimination for PVS-Cert proofs (Sect. 7) and in the type-checking algorithm
(Sect. 8).

The specificity of this proof of type preservation compared to similar results
for PTSs lies in the fact that M →βσ N does not imply M ≡β∗ N in general.
However, this implication always holds if M is either a type or an expression – the
corresponding proof involves no particular difficulty.

Theorem 5. Whenever M →βσ N and M is a type (resp. an expression), so is
N , and M ≡β∗ N .

Finally, the type preservation theorem for →βσ is the following.

Theorem 6. Given a derivable judgement Γ � M : T , and N such that M →βσ

N , the judgement Γ � N : T is derivable.

Proof. The proof is done by induction on the derivation. The situations where
M
�βσ N and the cases where M �βσ N are separated. We present here one case
for each situation – the full proof can be found in the author’s PhD dissertation [1].

– We illustrate the situation where M
�βσ N with the case of the rule Prod,
which involves Theorem 5. Discarding the notations of the original statement,
we describe the last inference step with the following new notations:

Γ � T : s1 Γ, v : T � U : s2
(s1, s2, s3) ∈ R Prod

Γ � Πv : T.U : s3

If the reduction occurs in U , we conclude directly by induction hypothesis. If the
reduction occurs in T , we write T →βσ T ′. By induction hypothesis, Γ � T ′ : s1
is derivable. By the stratification theorem, v ∈ Vs1 , hence Γ, v : T ′ � WF is
derivable using the Decl rule. By the stratification theorem and Theorem 5,
T ≡β∗ T ′. Hence, using the second premise and context conversion (mentioned
in Sect. 4), Γ, v : T ′ � U : s2 is derivable. Finally, using Prod, Γ � Πv : T ′.U :
s3 is derivable.

– We illustrate the situation where M �βσ N with the case of the rule Proj1. As
M is a first projection and M �βσ N , M is a σ-redex. We replace the notation
M and T of the original statement by π1〈M,N〉T �βσ M and T ′. In this setting,
the last inference step has the following form:

Γ � 〈M,N〉T : {v : T ′ | U ′}
Proj1

Γ � π1〈M,N〉T : T ′

Analyzing the derivation of the premise (and more precisely the last rule differ-
ent from Conversion used in it, which is necessarily Pair), we conclude that
T has the form {v : T ′′ | U ′′} where {v : T ′ | U ′} ≡β∗ {v : T ′′ | U ′′} and

Verifiable Certificates for Predicate Subtyping 455

Γ � 〈M,N〉T : {v : T ′′ | U ′′} admits a derivation ending with an inference step
of the form
Γ � M : T ′′ Γ � N : U ′′[M/v] Γ � {v : T ′′ | U ′′} : Type

Pair
Γ � 〈M,N〉T : {v : T ′′ | U ′′}

We derive the expected judgement Γ � M : T ′ from the first premise of this
latter derivation using conversion. For this, we need to prove T ′′ ≡β∗ T ′ and
to derive Γ � T ′ : s for some s. These two requirements are proved as follows.
On the one hand, we establish T ′′ ≡β∗ T ′ from {v : T ′′ | U ′′} ≡β∗ {v : T ′ |
U ′} using the Church-Rosser property (Theorem 1). On the other hand, by the
stratification theorem, T ′
= Kind, hence we can use Theorem 3 on the original
conclusion to establish that Γ � T ′ : s is derivable for some sort s, as expected.

7 Strong Normalization and Cut Elimination

This section is dedicated to the strong normalization of both →βσ and →β∗ on well-
typed PVS-Cert terms. These two reductions will be used separately in Sect. 8 to
define a type-checking algorithm for PVS-Cert: more precisely, the reduction →β∗
is used to decide whether two well-typed terms are convertible with ≡β∗, while
the type preserving reduction →βσ will be used in the type-checking of applica-
tions. Moreover, the strong normalization of →βσ combined with its type preser-
vation property provides a cut elimination theorem, which is a powerful tool to
study properties of both PVS-Cert and PVS-Core. Its use is illustrated in a proof
of consistency of PVS-Cert (Theorem 9), used in turn to establish the consistency
of PVS-Core (Theorem 12) at the end of this paper.

7.1 Strong Normalization

A direct approach to prove the strong normalization of →βσ and →β∗ for well-
typed terms would be to prove the strong normalization for well-typed terms of
their union, referred to as →βσ∗. Unfortunately, this reduction is not strongly ter-
minating on well-typed terms, as shown in the following proposition.

Proposition 2. There exists a well-typed term admitting an infinite reduction
using →βσ∗.

Proof. We first define two well-typed terms M and N such that MN admits an
infinite reduction. It is simple to find two such terms, using the fact that PVS-Cert
is an extension of System F [12]. For instance:

– We take � = ΠP : Prop.Πh : P.P together with M = λh : �.h � h and
N = λh′ : �.λh : �.h � h

– M admits the type Πh : �.� and N admits the type Πh′ : �.Πh : �.�.
– MN admits an infinite reduction MN →βσ∗ N � N →βσ∗ MN →βσ∗ ...

Using these terms, we build the expected counter-example of normalization of
→βσ∗ as follows:

456 F. Gilbert

– We define N ′ = λP : Prop.λh : P.h, T = {x : Prop | Πh′ : �.Πh : �.�}, and
U = {y : T | �}.

– It is straightforward to show that M π2〈〈�, N〉T , N ′〉U admits the type �.
– M π2〈〈�, N〉T , N ′〉U �βσ∗ MN , hence it admits an infinite reduction.

Because of Proposition 2, we keep the expected strong normalization theorem
in PVS-Cert formulated as follows.

Theorem 7 (Strong normalization). For any derivable judgement Γ � M : T ,
M is strongly normalizing under both →βσ and →β∗:

– any reduction sequence starting from M and using →β∗ terminates
– any reduction sequence starting from M and using →βσ terminates

The proof of this theorem is left out of the scope of this paper. It is detailed in
the author’s PhD dissertation [1]. We simply highlight here some of its specifici-
ties, which illustrate the consequences of the choice, in PVS-Cert, of a conversion
relation which is not based on a type-preserving reduction.

– The proof uses Tait’s approach based on saturated sets (see for instance [23]).
However, only one single notion of saturated set is used: saturated sets are
defined here as specific subsets of the set of terms which are both strongly nor-
malizing under →βσ and strongly normalizing under →β∗. As a consequence,
compatibility properties for such saturated sets must be proved with respect to
both reductions.

– Following Tait’s approach, an interpretation function is defined in order to
prove that, whenever term M admits a type T , it belongs to the interpretation
of T , which is the main theorem established to conclude strong normalization.
The definition of this function is inspired from the definitions of Girard in [12]
for the strong normalization of Fω – which corresponds to λ-HOL without type
declarations –, but several ideas are also taken from [10], which presents, among
other things, a proof of strong normalization of an extension of the calculus of
constructions with dependent pairs.

– As the interpretation function is expected to be stable under →β∗, its domain
cannot be restricted to well-typed terms only, as well-typed terms are not stable
under →β∗. For this reason, it is chosen to define this interpretation function on
the classes of types and expressions, as presented in the definition of stratified
terms (Definition 3): indeed, this specific definition, which uses arbitrary terms
instead of proof terms in the construction 〈t,M〉A, is designed to ensure the
stability of types and expressions under →β∗.

7.2 Cut Elimination in PVS-Cert

The following cut elimination theorem is a direct corollary of the strong normal-
ization theorem and the type preservation of →βσ.

Theorem 8 (Cut elimination). Whenever some PVS-Cert judgement of the
form Γ � p : P is derivable for some proposition P and some proof p, p can
be reduced using the reduction →βσ to a normal form q such that the judgement
Γ � q : P is derivable.

Verifiable Certificates for Predicate Subtyping 457

Proof. By the strong normalization theorem, p can be reduced to a normal form
q using the reduction →βσ. By the type preservation theorem (Theorem 6), the
judgement Γ � q : P is derivable.

We conclude this section showing how the cut elimination theorem can be used
together with the properties of terms in normal form with respect to →βσ as a tool
to analyze some meta-theoretical properties of PVS-Cert. As presented at the end
of this work, this approach will also allow to use cut elimination in PVS-Cert to
analyze some meta-theoretical properties of PVS-Core. This use of cut elimination
is illustrated with the following proof of consistency.

Theorem 9. PVS-Cert is consistent: there exists no proof term p such that � p :
Πx : Prop.x is derivable.

We use the following notion of elimination context in the proof:

Definition 4 (Elimination contexts).Wedefine the set of elimination contexts
E with the grammar e := • | πi(e) | e M .

For any term N we define the instantiation e[N] by

•[N] = N πi(e)[N] = πi(e[N]) (eM)[N] = (e[N])M

Proof (Theorem 9). We suppose that there exists a proof p such that the judge-
ment � p : Πx : Prop.x admits some derivation, and find a contradiction in the
following way. Using the thinning property (mentioned in Sect. 4), x : Prop � p :
Πx : Prop.x is also derivable. Hence, applying the rule Lam followed by the rule
App, � λx : Prop.(px) : Πx : Prop.x is derivable.

By the cut elimination Theorem8, λx : Prop.(px) admits a normal form λx :
Prop.q with respect to �βσ, which is such that the judgement � λx : Prop.q :
Πx : Prop.x is derivable.

Considering the last rule different from Conversion used in such a deriva-
tion (which is necessarily Lam), and using the stratification theorem, there exists
a derivable judgement x : Prop � q : t for some expression t ≡β∗ x. Hence, using
Conversion, x : Prop � q : x is also derivable. We consider D a possible deriva-
tion of this judgement.

As q is a proof and is in normal form with respect to �βσ, we conclude from
a careful case analysis that q has one of the following forms: λv : T.M or e[v].
We discard the first possibility as follows. If q = λv : T.M , considering the last
rule different fromConversion used in D (which is necessarily Lam), there exists
some term of the form Πv′ : T ′.U ′ such that Πv′ : T ′.U ′ ≡β∗ x. By the Church-
Rosser property (Theorem 1), this conversion cannot hold. As a consequence, q
has the form e[v] for some elimination context e and some variable v.

Considering the last rule different from Conversion, Proj1, Proj2, or App
used in D (which is necessarily Var), some judgement of the form x : Prop � v : T
is derivable, and v = x. As q is a proof, e[x] = q
= x. Hence, D admits some
subderivation of a judgement of the form x : Prop � xt′ : T ′ or x : Prop � πi(x) :
T ′. Considering the last rule different from Conversion in such a derivation, and
using the uniqueness of types (Theorem 2), this implies that there exists a term U

458 F. Gilbert

of the form Πv′ : T1.T2 or {v′ : T1 | T2} such that U ≡β∗ Prop. By the Church-
Rosser property (Theorem 1), this conversion cannot hold. As a consequence, there
exists no proof term p such that the judgement � p : Πx : Prop.x is derivable.

8 Type-Checking in PVS-Cert

The purpose of this section is to present the main ideas leading to the definition of
a type-checking algorithm for PVS-Cert. The decidability of type-checking is one
of the most important results expected for PVS-Cert. In particular, it will be used
in Sect. 10 together with the translation from PVS-Core derivations to PVS-Cert
established in Sect. 9 to show that PVS-Cert judgements can be used as verifiable
certificates for PVS-Core.

This algorithm is mainly based on the type preservation Theorem 6 and the
strong normalization Theorem 7 presented in the previous sections. In this section,
we will only focus on the main specificities of the algorithm. Its precise definition,
as well as the proofs of its soundness, termination, and completeness can be found
in the author’s PhD dissertation [1].

The algorithm is comparable to the algorithm presented in [6] for the general
case of injective PTSs (which applies to λ-HOL). Besides the fact that our algo-
rithm is extended to handle predicate subtypes, coercions 〈M,N〉T andprojections
πi(M), the main difference between the two is the use of both reductions →β∗ and
→βσ in the case of PVS-Cert, while only →β is used for injective PTSs.

On the one hand, →β∗-normalization is used to check ≡β∗-conversion on well-
typed terms: by the Church-Rosser property and strong normalization, two well-
typed terms are ≡β∗-equivalent if and only if they admit the same normal form,
which is unique. As in [6], this decision procedure for conversion on well-typed
terms is used in turn together with the uniqueness of types (Theorem 2) to define
type-checking from type inference, which is itself defined recursively.

Remark 3. In order to avoid redundant context well-formedness verifications in
the multiple recursive calls of the type inference algorithm, we choose here to check
the well-formedness of a context Γ beforehand when inferring a type for some term
M in Γ . For this reason, type inference and type-checking are defined in two steps.
First, we define auxiliary type inference and type-checking algorithms which are
only ensured to operate soundly with well-formed contexts. Then, we use these
auxiliary functions to define context well-formedness verification as well as com-
plete type inference and type-checking algorithms, which operate soundly with any
context.

On the other hand, →βσ is used in type inference to handle applications:

Γ � M : Πv : T1.T2 Γ � N : T1
App

Γ � MN : T2[N/v]

In this situation, the recursive call on the first premise may produce a term
U such that Γ � M : U is derivable, but U is not ensured to have the form
Πv : U1.U2 – counterexamples can be easily found when M is a proof and U is

Verifiable Certificates for Predicate Subtyping 459

a proposition. The usual solution to this issue, used e.g. in [6], is to reduce U using
the reduction underlying conversion (or more specifically its restriction to weak
head reduction, which is more economic): indeed, using the uniqueness of types as
well as strong normalization, type preservation, and the Church-Rosser property,
it can be proved that a term U ′ will be obtained, that M admits the type U ′, and
that U ′ has the form Πv : U1.U2 if M admits a type of this form.

However, in the case of PVS-Cert, this approach cannot be followed directly,
as the reduction underlying conversion, which is →β∗, is not type preserving: U ′

is not necessary a valid type for M . For this reason, we use instead the type pre-
serving reduction →βσ (again, we use more specifically its restriction to weak head
reduction, which is more economic). Using the strong normalization theorem, this
operation terminates and yields some term U ′′. As a direct corollary of type preser-
vation (based on Theorems 3 and 5), M admits the type U ′′. What is left is to prove
that U ′′ has the form Πv : U1.U2 if M admits a type of this form, which is done
as follows. If M admits a type of the form Πv : T1.T2, then U ′′ ≡β∗ Πv : T1.T2

by the uniqueness of types. Hence, analyzing the possible forms of the weak head
normal form U ′′ and using the Church-Rosser property, we conclude that U ′′ has
the form Πv : U1.U2, as expected.

Compared to [6], new cases must be added for predicate subtypes, coercions
〈M,N〉T , and projections πi(M). These cases are handled in a similar way as in the
case of PTSs with dependent pairs (see for instance ECC [16]), and don’t involve
any specific difficulty. Instead, a more distinctive specificity of the algorithm lies
in the case of λ-abstraction:

Γ, v : T � M : U Γ � Πv : T.U : s
Lam

Γ � λv : T.M : Πv : T.U

As in the case of injective PTSs studied in [6], applying a recursive call on this
second premise would be problematic. On the one hand, it would make the algo-
rithm slower. On the other hand, it would break the simplicity of the proof of termi-
nation, based on the fact that recursive calls of type inference are done on subterms
exclusively.

A general solution for this issue, applicable to any injective PTSs, is presented
in [6] using some classification of terms to avoid this unwanted recursive call. The
solution selected for PVS-Cert follows the same approach, adapted to the strati-
fied terms of PVS-Cert. It relies on a classifying algorithmLevel(·), which ensures
that whenever M is either an expression, a type, Type, or Kind, then Level(M)
is either 1, 2, 3, or 4 respectively. As it is specifically suited to PVS-Cert, this def-
inition is simpler than the classification presented in [6], which is intended to be
applicable to a wide family of type systems. The algorithm is defined as follows:

Definition 5. We define the algorithm Level(·) by recursion on its argument.
The possible cases are the following.

– Level(Kind) = 4, Level(Type) = 3, Level(Prop) = 2
– Level(Πv : T.U) = Level(U), Level({v : T | U}) = 2, Level(X) = 2
– In all other cases, Level(M) = 1

460 F. Gilbert

9 Expressing PVS-Core in PVS-Cert

The final purpose of PVS-Cert is to encode PVS-Core derivations as PVS-Cert
judgements, and to use the type-checking algorithm presented in Sect. 8 to use
these judgements as verifiable certificates. In this perspective, we define a corre-
spondence betweenPVS-Core andPVS-Cert. This correspondence reflects the fact
that, even though these two systems are very different at the level of terms and
judgements, they are almost identical at the level of derivations.

9.1 An Erasing Function from PVS-Cert to PVS-Core

We begin the description of this correspondence with a translation from PVS-Cert
to PVS-Core, referred to as erasing. This translation mainly consists in the erasure
of PVS-Cert explicit coercions 〈·,M〉A and π1(·).

Definition 6. We define an erasure function �·� from PVS-Cert expressions,
types, and Type to PVS-Core terms recursively as follows.

�Type� = Type �x� = x �〈t,M〉A� = �t�
�Prop� = Prop �λx : A.t� = λx : �A�.�t� �π1(t)� = �t�
�X� = X �t u� = �t��u�
�Πx : A.B� = Πx : �A�.�B� �Πx : A.P � = ∀x : �A�.�P �
�{x : A | P}� = {x : �A� | �P �} �Πh : P.Q� = �P � ⇒ �Q�

Then, we extend straightforwardly �·� fromPVS-Cert stratified contexts toPVS-
Core contexts: for instance, �P, x : A,X : Type� = �P �, x : �A�,X : Type.

Last, we extend straightforwardly �·� from all PVS-Cert stratified judgements
except those of the form Γ � Type : Kind to PVS-Core judgements. For instance,
�x : A,X : Type � p : P � = x : �A�,X : Type � �P �. The PVS-Cert judgements
of the form Γ � Type : Kind are not translated.

By the stratification theorem in PVS-Cert, all PVS-Cert derivable judgements
are stratified judgements. Hence, unless they have the form Γ � Type : Kind,
their erasure in PVS-Core is well-defined. We will prove in Theorem 10 that they
are derivable in PVS-Core. This theorem relies in particular on the fact that con-
version in PVS-Cert and PVS-Core are related through the erasure function �·�,
established in the following proposition. The corresponding proof does not involve
any specific difficulty.

Proposition 3. For all terms M and N which are either expressions, types, or
Type, whenever M ≡β∗ N , then �M� ≡β �N�.

Using the two previous propositions and the stratification theorem in PVS-
Cert, we conclude the following theorem, which allows to map PVS-Cert deriva-
tions to PVS-Core derivations.

Verifiable Certificates for Predicate Subtyping 461

Theorem 10. Every derivable PVS-Cert judgement either has the form Γ �
Type : Kind or admits an image through �·�. In the latter case, this image is deriv-
able in PVS-Core.

Proof. The first part of the proof is a direct consequence of the stratification theo-
rem. The second part is proved by induction on the height of PVS-Cert derivations.
All cases are straightforward, using the stratification theorem when necessary to
establish a correspondence between stratified versions of PVS-Cert rules and PVS-
Core rules. For instance:

– Decl corresponds either to TypeDecl, EltDecl, or Assumption
– Sort corresponds to Prop only (judgements of the form Γ � Type : Kind are

not translated)
– Prod corresponds either to Pi, Forall, or Imply

9.2 Expressing PVS-Core Derivations as PVS-Cert Judgements

Theorem 10 shows that a PVS-Cert derivable judgement can testify to the PVS-
Core derivability of another judgement: its erasure. In this section, we show con-
versely that, given any PVS-Core derivation, we can build such a PVS-Cert judge-
ment. For this purpose, we first present an algorithm Certificate, which trans-
lates a PVS-Core derivation into a PVS-Cert judgement. In a second step, we will
prove that such PVS-Cert judgements are always derivable in PVS-Cert.

Definition 7. For any PVS-Core derivation D, we define recursively the PVS-
Cert stratified judgement Certificate(D) such that �Certificate(D)� corre-
sponds to the conclusion of D.

In this definition, we use an injective function h(·) mapping natural numbers to
PVS-Cert proof variables, which can be chosen arbitrarily. We present two cases:
Assumption, which shows how h(·) is used, and ImplyElim. This latter case (as
well as ForallElim) is more complex than others as it involves the computation
of a normal form with respect to �∗, i.e. the erasure of coercions at the head of a
term. The other cases are detailed in the author’s PhD dissertation [1].

–
Γ � P : Prop

Assumption
Γ, P � WF

We consider D1 the derivation of Γ � P : Prop. Certificate(D1) has the
form Γ1 � P1 : Prop. We consider n the number of declarations of the form
(h : Q) in Γ1, and we define Certificate(D) = Γ1, h(n) : P1 � WF.

–
Γ � P ⇒ Q Γ � P

ImplyElim
Γ � Q

We consider D1 and D2 the respective derivations of Γ � P ⇒ Q and Γ � P .
Certificate(D2) has the form Γ2 � p2 : P2 and Certificate(D1) has the
form Γ1 � p1 : Q′

1. As �Q′
1� = (P ⇒ Q), its normal form with respect to �∗

has the form Πh : P1.Q1. We defineCertificate(D) = Γ1 � p1p2 : Q1[p2/h].
As all proof terms are deleted through the erasure function, �Q1[p2/h]� = �Q1�.
On the other hand, by induction hypothesis, �Q1� = Q, hence the erasure of this
judgement is Γ � Q, as expected.

462 F. Gilbert

9.3 Relating Conversion in PVS-Core and PVS-Cert

In order to prove that the outputs of the algorithm Certificate are derivable in
PVS-Cert (presented in Theorem 11), the main required lemma is the fact that is
the converse of Proposition 3: for any terms M and N which are either expressions,
types, or Type and which verify �M� ≡β �N�, then M ≡β∗ N . More precisely, this
property will be used in the proof of Theorem 11 to handle the cases of conversion
rules TypeConversion and PropConversion.

We first establish a modified version of this expected result, using equality and
≡∗ instead of ≡β and ≡β∗ respectively. The proof is straightforward by induction
on the two involved terms.

Proposition 4. For all terms M and N which are either expressions, types, or
Type, whenever �M� = �N�, then M ≡∗ N .

Then, we establish the expected converse of Proposition 3 as follows.

Proposition 5. For all terms M and N which are either expressions, types, or
Type, whenever �M� ≡β �N�, then M ≡β∗ N .

Proof. We present a proof based on the definition of a simple translation of PVS-
Core terms as PVS-Cert expressions, types, or Type, which does not introduce any
explicit coercion: for instance,

– [Πx : A.B] = Πx : [A].[B]
– [P ⇒ Q] = Πh : [P].[Q] for an arbitrary proof variable h

We first show straightforwardly that the respective images through [·] of two
terms related by ≡β are also related by ≡β . As a consequence, [�M�] ≡β [�N�].

On the other hand, it is straightforward to show that [·] is a right inverse of the
erasure function �·�. Hence, �[�M�]� = �M�. By Proposition 4, we conclude that
[�M�] ≡∗ M . Following the same reasoning, [�N�] ≡∗ N .

As a consequence, M ≡β∗ [�M�] ≡β∗ [�N�] ≡β∗ N .

9.4 Soundness of the Synthesis of Certificates

The last proposition needed to prove the soundness of the algorithmCertificate
is the following. It shows that the operation of normalization through �∗ (which
erases the coercions π1(·) and 〈·,M〉T at the head of a term) is safely used in the
definition of Certificate.

Proposition 6. For any derivable PVS-Cert judgement of the form Γ � t :
{xn...{x1 : Prop | Q1}... | Qn}, if t admits a normal form with respect to �∗ which
has the form Πv : M.T , then Γ � Πv : M.T : Prop is derivable.

Verifiable Certificates for Predicate Subtyping 463

In fact, only the specific case n = 0 is used in the proof of soundness of
Certificate, but this generalization is preferred as it admits a direct proof by
induction on t, which does not involve any specific difficulty.

Last, we present the expected soundness property for Certificate:

Theorem 11. For any PVS-Core derivation D, Certificate(D) is derivable in
PVS-Cert.

Proof. The proof is done by induction on D. Most cases are proved without any
specific difficulty. In particular, the cases of conversion rules TypeConversion
and PropConversion are straightforward using Proposition 5.

The most complex cases correspond to the rules ImplyElim andForallElim
which involve, by definition of Certificate, some normalization with respect to
�∗. In such cases, Proposition 6 is used to handle the specific difficulties related to
this normalization. We present the case ImplyElim:

Γ � P ⇒ Q Γ � P
ImplyElim

Γ � Q

We consider D1 and D2 the respective derivations of Γ � P ⇒ Q and Γ � P .
Certificate(D2) has the form Γ2 � p2 : P2 and Certificate(D1) has the form
Γ1 � p1 : Q′

1. As �Q′
1� = (P ⇒ Q), its normal form with respect to �∗ has the

form Πh : P1.Q1. In this setting, Certificate(D) = Γ1 � p1p2 : Q1[p2/h].
By induction hypothesis, Γ1 � p1 : Q′

1 and Γ2 � p2 : P2 are derivable in PVS-
Cert. By Proposition 3 and the stratification theorem, Γ1 � Q′

1 : Prop is derivable
in PVS-Cert. Hence, by Proposition 6, Γ1 � Πh : P1.Q1 : Prop is derivable as
well. As Q′

1 ≡β∗ Πh : P1.Q1, we conclude applying the Conversion rule that
Γ1 � p1 : Πh : P1.Q1 is derivable.

On the other hand, using Proposition 4, we can conclude from �Γ1� = Γ = �Γ2�
that Γ1 ≡∗ Γ2 as long as both contexts admit the list of declared proof variables,
in the same order. This is the case as, by straightforward induction on PVS-Core
derivations, this list is h(1), h(2), ..., h(n), where h(·) is the injective function used
in the definition ofCertificate and n is the number of proof variable declarations
in Γ1 and Γ2. Hence, Γ1 ≡∗ Γ2.

As Γ1 � p1 : Πh : P1.Q1 is derivable, by Theorem 3 and the stratification the-
orem, Γ1 � Πh : P1.Q1 : Prop is derivable. Hence, considering the last rule differ-
ent from Conversion used in such a derivation (which is necessarily Prod), and
using the stratification theorem, Γ1 � P1 : Prop is derivable as well. As a conse-
quence, using context conversion (mentioned in Sect. 4), Γ1 � p2 : P1 is derivable
in PVS-Cert. Hence, applying the rule App, Γ1 � p1p2 : Q1[p2/h] is derivable, as
expected.

464 F. Gilbert

10 Using PVS-Cert as a System of Verifiable Certificates
for PVS-Core

This final section shows how to use the different results presented in this paper to
answer to the main question addressed in the current work: defining a system of
verifiable certificates for PVS-Core.

A PVS-Cert judgement Γ � p : P can be used as a certificate for its PVS-
Core erasure �Γ � � �P � (Definition 6), which is verifiable using the type-checking
algorithm presented in Sect. 8. On the one hand, this approach is sound: whenever
the type-checking algorithm succeeds, Γ � p : P is derivable in PVS-Cert, hence
�Γ � � �P � is derivable in PVS-Core by Theorem 10.

On the other hand, valid certificates can be generated for arbitrary PVS-Core
theorems in the following way. Given some PVS-Core judgement Δ � Q deriv-
able through some derivation D, the PVS-Cert judgement Certificate(D) can
be used as a certificate of Δ � Q. Indeed, using the notations Γ � p : P for
Certificate(D), the following statements hold.

– By definition of Certificate, �Γ � = Δ and �P � = Q, hence this judgement is
a certificate for Δ � Q.

– By Theorem 11, Γ � p : P is derivable, hence the execution of the type-checking
algorithm on this judgement succeeds: this certificate is valid.

These PVS-Cert certificates represent PVS-Core derivations in a very com-
pact way. As each of the different constructions of types, expressions, and proofs in
PVS-Cert corresponds to some PVS-Core derivation rule, the size of a PVS-Cert
certificate is comparable, as a rough estimation, with the size of a corresponding
PVS-Core derivation in which all PVS-Core judgements are deleted.

We finally show that, through the construction of certificates, the PVS-Cert
cut elimination theorem can be used to study meta-theoretical properties of PVS-
Core. This possible use is illustrated with the case of consistency, proved in PVS-
Cert in Theorem 9 using cut elimination.

Theorem 12. The system PVS-Core is consistent: the judgement � ∀x : Prop.x
is not derivable.

Proof. If the judgement � ∀x : Prop.x admits a PVS-Core derivation D, we con-
sider � p : P = Certificate(D). By definition, �P � = ∀x : Prop.x = �Πx :
Prop.x�. Hence, by Proposition 5, P ≡β∗ Πx : Prop.x. As � Πx : Prop.x : Prop
is derivable in PVS-Cert, we can apply the conversion rule to conclude that � p :
Πx : Prop.x is derivable in PVS-Cert, which is impossible by Theorem 9.

References

1. Gilbert, F.: Extending higher-order logic with predicate subtyping: application to
PVS. Ph.D. dissertation, Sorbonne Paris Cité, Inria, CEA LIST (2018)

2. Abel, A., Scherer, G.: On irrelevance and algorithmic equality in predicative type
theory. arXiv preprint arXiv:1203.4716 (2012)

http://arxiv.org/abs/1203.4716

Verifiable Certificates for Predicate Subtyping 465

3. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2),
125–154 (1991)

4. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. ii. Oxford
University Press, Oxford (1992)

5. Barras, B., et al.: The Coq proof assistant reference manual: Version 6.1 (1997)
6. Barthe, G.: Type-checking injective pure type systems. J. Funct. Program. 9(06),

675–698 (1999)
7. Berardi, S.: Towards a mathematical analysis of the Coquand-Huet calculus of con-

structions and the other systems in Barendregt’s cube. Technical report, Carnegie-
Mellon University, USA and Universita di Torino, Italy (1988)

8. Bernardo, B.: An implicit calculus of constructions with dependent sums and decid-
able type inference. Ph.D. thesis, École polytechnique, October 2015

9. Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2.
In: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 52–66. ACM (1985)

10. Geuvers, H.: A short and flexible proof of strong normalization for the calculus of con-
structions. In: Dybjer, P., Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol.
996, pp. 14–38. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60579-
7 2

11. Geuvers, H., Nederhof, M.-J.: Modular proof of strong normalization for the calculus
of constructions. J. Funct. Program. 1(02), 155–189 (1991)

12. Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)

13. Kent, A.M., Kempe, D., Tobin-Hochstadt, S.: Occurrence typing modulo theories.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, vol. 51, pp. 296–309. ACM (2016)

14. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:
introduction and survey. Theoret. Comput. Sci. 121(1), 279–308 (1993)

15. Knowles, K., Flanagan, C.: Hybrid type checking. ACMTrans. Program. Lang. Syst.
(TOPLAS) 32(2), 6 (2010)

16. Luo, Z.: ECC, an extended calculus of constructions. In: Proceedings of Fourth
Annual Symposium on Logic in Computer Science. LICS 1989, pp. 386–395. IEEE
(1989)

17. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

18. Owre, S., Shankar, N.: The formal semantics of PVS (1999)
19. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: ACM SIGPLAN Notices,

vol. 43, pp. 159–169. ACM (2008)
20. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: predicate subtyping

in PVS. IEEE Trans. Softw. Eng. 24(9), 709–720 (1998)
21. Siles, V., Herbelin, H.: Pure type system conversion is always typable. J. Funct. Pro-

gram. 22(2), 153–180 (2012)
22. Sozeau, M.: Subset coercions in Coq. In: Altenkirch, T., McBride, C. (eds.) TYPES

2006. LNCS, vol. 4502, pp. 237–252. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74464-1 16

23. Tait,W.W.: A realizability interpretation of the theory of species. In: Parikh, R. (ed.)
Logic Colloquium, vol. 453, pp. 240–251. Springer, Heidelberg (1975). https://doi.
org/10.1007/BFb0064875

https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/BFb0064875
https://doi.org/10.1007/BFb0064875

466 F. Gilbert

24. Terlouw, J.: Een nadere bewijstheoretische analyse van GSTT’s. Manuscript (in
Dutch) (1989)

25. Terlouw, J.: Sterke normalisatie in C a la Tait. In: Notes of a Talk Held at the Inter-
city Seminar on Typed Lambda Calculus, Nijmegen, Netherlands (1989)

26. Terlouw, J.: Strong normalization in type systems: a model theoretical approach.
Ann. Pure Appl. Logic 73(1), 53–78 (1995)

27. Werner, B.: On the strength of proof-irrelevant type theories. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 604–618. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771 49

OpenAccess This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11814771_49
http://creativecommons.org/licenses/by/4.0/

Security and Incremental Computation

Robustly Safe Compilation

Marco Patrignani1,2(B) and Deepak Garg3

1 Stanford University, Stanford, USA
mp@cs.stanford.edu

2 CISPA Helmholz Center for Information Security, Saarbrücken, Germany
3 Max Planck Institute for Software Systems, Saarbrücken, Germany

Abstract. Secure compilers generate compiled code that withstands
many target-level attacks such as alteration of control flow, data leaks
or memory corruption. Many existing secure compilers are proven to
be fully abstract, meaning that they reflect and preserve observational
equivalence. Fully abstract compilation is strong and useful but, in cer-
tain cases, comes at the cost of requiring expensive runtime constructs in
compiled code. These constructs may have no relevance for security, but
are needed to accommodate differences between the source and target
languages that fully abstract compilation necessarily needs.

As an alternative to fully abstract compilation, this paper explores a
different criterion for secure compilation called robustly safe compilation
or RSC. Briefly, this criterion means that the compiled code preserves
relevant safety properties of the source program against all adversarial
contexts interacting with the compiled program. We show that RSC can
be proved more easily than fully abstract compilation and also often
results in more efficient code. We also develop two illustrative robustly-
safe compilers and, through them, illustrate two different proof tech-
niques for establishing that a compiler attains RSC. Based on these, we
argue that proving RSC can be simpler than proving fully abstraction.

To better explain and clarify notions, this paper uses colours. For a
better experience, please print or view this paper in colours.1

1 Introduction

Low-level adversaries, such as those written in C or assembly can attack co-
linked code written in a high-level language in ways that may not be feasible in
the high-level language itself. For example, such an adversary may manipulate
or hijack control flow, cause buffer overflows, or directly access private memory,

1 Specifically, in this paper we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black , italic font for elements com-
mon to both languages (to avoid repeating similar definitions twice). Thus, C is a
source-level component, C is a target-level component and C is generic notation for
either a source-level or a target-level component.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 469–498, 2019.
https://doi.org/10.1007/978-3-030-17184-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_17

470 M. Patrignani and D. Garg

all in contravention to the abstractions of the high-level language. Specific coun-
termeasures such as Control Flow Integrity [3] or Code Pointer Integrity [41]
have been devised to address some of these attacks individually. An alterna-
tive approach is to devise a secure compiler, which seeks to defend against
entire classes of such attacks. Secure compilers often achieve security by relying
on different protection mechanisms, e.g., cryptographic primitives [4,5,22,26],
types [10,11], address space layout randomisation [6,37], protected module archi-
tectures [9,53,57,59] (also know as enclaves [46]), tagged architectures [7,39], etc.
Once designed, the question researchers face is how to formalise that such a com-
piler is indeed secure, and how to prove this. Basically, we want a criterion that
specifies secure compilation. A widely-used criterion for compiler security is fully
abstract compilation (FAC) [2,35,52], which has been shown to preserve many
interesting security properties like confidentiality, integrity, invariant definitions,
well-bracketed control flow and hiding of local state [9,37,53,54].

Informally, a compiler is fully abstract if it preserves and reflects observa-
tional equivalence of source-level components (i.e., partial programs) in their
compiled counterparts. Most existing work instantiates observational equivalence
with contextual equivalence: co-divergence of two components in any larger con-
text they interact with. Fully abstract compilation is a very strong property,
which preserves all source-level abstractions.

Unfortunately, preserving all source-level abstractions also has downsides. In
fact, while FAC preserves many relevant security properties, it also preserves a
plethora of other non-security ones, and the latter may force inefficient checks in
the compiled code. For example, when the target is assembly, two observationally
equivalent components must compile to code of the same size [9,53], else full
abstraction is trivially violated. This requirement is security-irrelevant in most
cases. Additionally, FAC is not well-suited for source languages with undefined
behaviour (e.g., C and LLVM) [39] and, if used naïvely, it can fail to preserve even
simple safety properties [60] (though, fortunately, no existing work falls prey to
this naïvety).

Motivated by this, recent work started investigating alternative secure com-
pilation criteria that overcome these limitations. These security-focussed criteria
take the form of preservation of hyperproperties or classes of hyperproperties,
such as hypersafety properties or safety properties [8,33]. This paper investigates
one of these criteria, namely, Robustly Safe Compilation (RSC) which has clear
security guarantees and can often be attained more efficiently than FAC.

Informally, a compiler attains RSC if it is correct and it preserves robust
safety of source components in the target components it produces. Robust safety
is an important security notion that has been widely adopted to formalize secu-
rity, e.g., of communication protocols [14,17,34]. Before explaining RSC, we
explain robust safety as a language property.

Robust Safety as a Language Property. Informally, a program property is a safety
property if it encodes that “bad” sequences of events do not happen when the
program executes [13,63]. A program is robustly safe if it has relevant (specified)

Robustly Safe Compilation 471

safety properties despite active attacks from adversaries. As the name suggests,
robust safety relies on the notions of safety and robustness which we now explain.

Safety. As mentioned, safety asserts that “no bad sequence of events happens”,
so we can specify a safety property by the set of finite observations which char-
acterise all bad sequences of events. A whole program has a safety property if
its behaviours exclude these bad observations. Many security properties can be
encoded as safety, including integrity, weak secrecy and functional correctness.

Example 1 (Integrity). Integrity ensures that an attacker does not tamper with
code invariants on state. For example, consider the function charge_account(n)
which deducts amount n from an account as part of an electronic card payment. A
card PIN is required if n is larger than 10 euros. So the function checks whether n
> 10, requests the PIN if this is the case, and then changes the account balance.
We expect this function to have a safety (integrity) property in the account
balance: A reduction of more than 10 euros in the account balance must be
preceded by a call to request_pin(). Here, the relevant observation is a trace
(sequence) of account balances and calls to request_pin(). Bad observations for
this safety property are those where an account balance is at least 10 euros less
than the previous one, without a call to request_pin() in between. Note that
this function seems to have this safety property, but it may not have the safety
property robustly : a target-level adversary may transfer control directly to the
“else” branch of the check n > 10 after setting n to more than 10, to violate the
safety property. �

Example 2 (Weak Secrecy). Weak secrecy asserts that a program secret never
flows explicitly to the attacker. For example, consider code that manages
network_h, a handler (socket descriptor) for a sensitive network interface. This
code does not expose network_h directly to external code but it provides an
API to use it. This API makes some security checks internally. If the handler
is directly accessible to outer code, then it can be misused in insecure ways
(since the security checks may not be made). If the code has weak secrecy wrt
network_h then we know that the handler is never passed to an attacker. In
this case we can define bad observations as those where network_h is passed to
external code (e.g., as a parameter, as a return value on or on the heap). �

Example 3 (Correctness). Program correctness can also be formalized as a safety
property. Consider a program that computes the nth Fibonacci number. The
program reads n from an input source and writes its output to an output source.
Correctness of this program is a safety property. Our observations are pairs of an
input (read by the program) and the corresponding output. A bad observation
is one where the input is n (for some n) but the output is different from the nth
Fibonacci number. �

These examples not only illustrate the expressiveness of safety properties, but
also show that safety properties are quite coarse-grained : they are only concerned
with (sequences of) relevant events like calls to specific functions, changes to

472 M. Patrignani and D. Garg

specific heap variables, inputs, and outputs. They do not specify or constrain how
the program computes between these events, leaving the programmer and the
compiler considerable flexibility in optimizations. However, safety properties are
not a panacea for security, and there are security properties that are not safety.
For example, noninterference [70,72], the standard information flow property,
is not safety. Nonetheless, many interesting security properties are safety. In
fact, many non-safety properties including noninterference can be conservatively
approximated as safety properties [20]. Hence, safety properties are a meaningful
goal to pursue for secure compilation.

Robustness. We often want to reason about properties of a component of inter-
est that hold irrespective of any other components the component interacts with.
These other components may be the libraries the component is linked against,
or the language runtime. Often, these surrounding components are modelled as
the program context whose hole the component of interest fills. From a security
perspective the context represents the attacker in the threat model. When the
component of interest links to a context, we have a whole program that can run.
A property holds robustly for a component if it holds in any context that the
component of interest can be linked to.

Robust Safety Preservation as a Compiler Property. A compiler attains robustly
safe compilation or RSC if it maps any source component that has a safety
property robustly to a compiled component that has the same safety property
robustly. Thus, safety has to hold robustly in the target language, which often
does not have the powerful abstractions (e.g., typing) that the source language
has. Hence, the compiler must insert enough defensive runtime checks into the
compiled code to prevent the more powerful target contexts from launching
attacks (violations of safety properties) that source contexts could not launch.
This is unlike correct compilation, which either considers only those target con-
texts that behave like source contexts [40,49,65] or considers only whole pro-
grams [43].

As mentioned, safety properties are usually quite coarse-grained. This means
that RSC still allows the compiler to optimise code internally, as long as the
sequence of observable events is not affected. For example, when compiling the
fibonacci function of Example 3, the compiler can do any internal optimisation
such as caching intermediate results, as long as the end result is correct. Cru-
cially, however, these intermediate results must be protected from tampering by
a (target-level) attacker, else the output can be incorrect, breaking RSC .

A RSC -attaining compiler focuses only on preserving security (as captured
by robust safety) instead of contextual equivalence (typically captured by full
abstraction). So, such a compiler can produce code that is more efficient than
code compiled with a fully abstract compiler as it does not have to preserve all
source abstractions (we illustrate this later).

Finally, robust safety scales naturally to thread-based concurrency [1,34,58].
Thus RSC also scales naturally to thread-based concurrency (we demonstrate

Robustly Safe Compilation 473

this too). This is unlike FAC, where thread-based concurrency can introduce
additional undesired abstractions that also need to be preserved.

RSC is a very recently proposed criterion for secure compilers. Recent
work [8,33] define RSC abstractly in terms of preservation of program
behaviours, but their development is limited to the definition only. Our goal
in this paper is to examine how RSC can be realized and established, and to
show that in certain cases it leads to compiled code that is more efficient than
what FAC leads to. To this end, we consider a specific setting where observa-
tions are values in specific (sensitive) heap locations at cross-component calls.
We define robust safety and RSC for this specific setting (Sect. 2). Unlike pre-
vious work [8,33] which assumed that the domain of traces (behaviours) is the
same in the source and target languages, our RSC definition allows for different
trace domains in the source and target languages, as long as they can be suit-
ably related. The second contribution of our paper is two proof techniques to
establish RSC.

– The first technique is an adaption of trace-based backtranslation, an existing
technique for proving FAC [7,9,59]. To illustrate this technique, we build a
compiler from an untyped source language to an untyped target language with
support for fine-grained memory protection via so-called capabilities [23,71]
(Sect. 3). Here, we guarantee that if a source program is robustly safe, then
so is its compilation.

– The second proof technique shows that if source programs are verified for
robust safety, then one can simplify the proof of RSC so that no backtrans-
lation is needed. In this case, we develop a compiler from a typed source
language where the types already enforce robust safety, to a target language
similar to that of the first compiler (Sect. 4). In this instance, both languages
also support shared-memory concurrency. Here, we guarantee that all com-
piled target programs are robustly safe.

To argue that RSC is general and is not limited to compilation targets based
on capabilities, we also develop a third compiler. This compiler starts from the
same source language as our second compiler but targets an untyped concurrent
language with support for coarse-grained memory isolation, modelling recent
hardware extensions such as Intel’s SGX [46]. Due to space constraints, we report
this result only in the companion technical report [61].

The final contribution of this paper is a comparison between RSC and FAC.
For this, we describe changes that would be needed to attain FAC for the first
compiler and argue that these changes make generated code inefficient and also
complicate the backtranslation proof significantly (Sect. 5).

Due to space constraints, we elide some technical details and limit proofs to
sketches. These are fully resolved in the companion technical report [61].

474 M. Patrignani and D. Garg

2 Robustly Safe Compilation

This section first discusses robust safety as a language (not a compiler) property
(Sect. 2.1) and then presents RSC as a compiler property along with an informal
discussion of techniques to prove it (Sect. 2.2).

2.1 Safety and Robust Safety

To explain robust safety, we first describe a general imperative programming
model that we use. Programmers write components on which they want to
enforce safety properties robustly. A component is a list of function definitions
that can be linked with other components (the context) in order to have a
runnable whole program (functions in “other” components are like extern func-
tions in C). Additionally, every component declares a set of “sensitive” locations
that contain all the data that is safety-relevant. For instance, in Example 1 this
set may contain the account balance and in Example 3 it may contain the I/O
buffers. We explain the relevance of this set after we define safety properties.

We want safety properties to specify that a component never executes a “bad”
sequence of events. For this, we first need to fix a notion of events. We have
several choices here, e.g., our events could be inputs and outputs, all syscalls,
all changes to the heap (as in CompCert [44]), etc. Here, we make a specific
choice motivated by our interest in robustness: We define events as calls/re-
turns that cross a component boundary, together with the state of the heap
at that point. Consequently, our safety properties can constrain the contents of
the heap at component boundaries. This choice of component boundaries as the
point of observation is meaningful because, in our programming model, control
transfers to/from an adversary happen only at component boundaries (more pre-
cisely, they happen at cross-component function call and returns). This allows
the compiler complete flexibility in optimizing code within a component, while
not reducing the ability of safety properties to constrain observations of the
adversary.

Concretely, a component behaviour is a trace, i.e., a sequence of actions
recording component boundary interactions and, in particular, the heap at these
points. Actions, the items on a trace, have the following grammar:

Actions α ::= call f v H ? | call f v H ! | ret H ! | ret H ?

These actions respectively capture call and callback to a function f with param-
eter v when the heap is H as well as return and returnback with a certain
heap H.2 We use ? and ! decorations to indicate whether the control flow of the
action goes from the context to the component (?) or from the component to the
context (!). Well-formed traces have alternations of ? and ! decorated actions,

2 A callback is a call from the component to the context, so it generates label
call f v H !. A returnback is a return from such a callback, i.e., the context returning
to the component, and it generates the label ret H ?.

Robustly Safe Compilation 475

starting with ? since execution starts in the context. For a sequence of actions
α, relevant(α) is the list of heaps H mentioned in the actions of α.

Next, we need a representation of safety properties. Generally, properties are
sets of traces, but safety properties specifically can be specified as automata (or
monitors in the sequel) [63]. We choose this representation since monitors are
less abstract than sets of traces and they are closer to enforcement mechanisms
used for safety properties, e.g., runtime monitors. Briefly, a safety property is a
monitor that transitions states in response to events of the program trace. At
any point, the monitor may refuse to transition (it gets stuck), which encodes
property violation. While a monitor can transition, the property has not been
violated. Schneider [63] argues that all properties codable this way are safety
properties and that all enforceable safety properties can be coded this way.

Formally, a monitor M in our setting consists of a set of abstract states
{σ · · · }, the transition relation �, an initial state σ0 , the set of heap locations
that matter for the monitor, {l · · · }, and the current state σc (we indicate a set of
elements of class e as {e · · · }). The transition relation � is a set of triples of the
form (σs ,H , σf) consisting of a starting state σs , a final state σf and a heap H .
The transition (σs ,H , σf) is interpreted as “state σs transitions to σf when the
heap is H ”. When determining the monitor transition in response to a program
action, we restrict the program’s heap to the location set {l · · · }, i.e., to the set
of locations the monitor cares about. This heap restriction is written H

∣
∣
{l··· }.

We assume determinism of the transition relation: for any σs and (restricted
heap) H , there is at most one σf such that (σs ,H , σf) ∈ �.

Given the behaviour of a program as a trace α and a monitor M specifying
a safety property, M � α denotes that the trace satisfies the safety property.
Intuitively, to satisfy a safety property, the sequence of heaps in the actions of
a trace must never get the monitor stuck (Rule Valid trace). Every single heap
must allow the monitor to step according to its transition relation (Rule Monitor
Step). Note that we overload the � notation here to also denote an auxiliary
relation, the monitor small-step semantics (Rule Monitor Step-base and Rule
Monitor Step-ind).

M ; relevant(α) � M ′

M � α M ;∅ � M
M ;H � M ′′ M ′′;H � M ′

M ;H · H � M ′

(σc ,H
∣∣
{l··· }, σf) ∈ �

({σ · · · } , �, σ0 , {l · · · } , σc);H � ({σ · · · } , �, σ0 , {l · · · } , σf)

With this setup in place, we can formalise safety, attackers and robust safety.
In defining (robust) safety for a component, we only admit monitors (safety
properties) whose {l · · · } agrees with the sensitive locations declared by the
component. Making the set of safety-relevant locations explicit in the compo-
nent and the monitor gives the compiler more flexibility by telling it precisely
which locations need to be protected against target-level attacks (the compiler
may choose to not protect the rest). At the same time, it allows for expressive
modelling. For instance, in Example 3 the safety-relevant locations could be the

476 M. Patrignani and D. Garg

I/O buffers from which the program performs inputs and outputs, and the safety
property can constrain the input and output buffers at corresponding call and
return actions involving the Fibonacci function.

Definition 1 (Safety, attacker and robust safety).

M � C : safe def= if � C : whole then if Ω0 (C) α==⇒ _ then M � α

C � A : atk def= C = {l · · · } ,F and {l · · · } ∩ fn(A) = ∅

M � C : rs def= ∀A. if M �C and C � A : atk then M � A [C] : safe

A whole program C is safe for a monitor M , written M � C : safe, if the monitor
accepts any trace the program generates from its initial state (Ω0 (C)).

An attacker A is valid for a component C , written C � A : atk , if A’s free
names (denoted fn(A)) do not refer to the locations that the component cares
about. This is a basic sanity check: if we allow an attacker to mention heap
locations that the component cares about, the attacker will be able to modify
those locations, causing all but trivial safety properties to not hold robustly.

A component C is robustly safe wrt monitor M , written M � C : rs, if
C composed with any attacker is safe wrt M . As mentioned, for this setup to
make sense, the monitor and the component must agree on the locations that
are safety-relevant. This agreement is denoted M �C .

2.2 Robustly Safe Compilation

Robustly-safe compilation ensures that robust safety properties and their mean-
ings are preserved across compilation. But what does it means to preserve mean-
ings across languages? If a source safety property says never write 3 to a location,
and we compile to an assembly language by mapping numbers to binary, the
corresponding target property should say never write 0x11 to an address.

In order to relate properties across languages, we assume a relation ≈ :
v × v between source and target values that is total, so it maps any source
value v to a target value v : ∀v.∃v.v ≈v. This value relation is used to define
a relation between heaps: H ≈H, which intuitively holds when related locations
point to related values. This is then used to define a relation between actions:
α ≈α, which holds when the two actions are the “same” modulo this relation,
i.e., call · · · ? only relates to call · · · ? and the arguments of the action
(values and heap) are related. Next, we require a relation M ≈M between source
and target monitors, which means that the source monitor M and the target
monitor M code the same safety property, modulo the relation ≈ on values
assumed above. The precise definition of this relation depends on the source and
target languages; specific instances are shown in Sects. 3.3 and 4.3.3

3 Accounting for the difference in the representation of safety properties sets us apart
from recent work [8,33], which assumes that the source and target languages have
the same trace alphabet. The latter works only in some settings.

Robustly Safe Compilation 477

We denote a compiler from language S to language T by �·�S
T. A compiler

�·�S
T attains RSC, if it maps any component C that is robustly safe wrt M to a

component C that is robustly safe wrt M, provided that M ≈M.

Definition 2 (Robustly Safe Compilation).

� �·�S
T : RSC def= ∀C,M,M. if M � C : rs and M ≈M then M � �C�

S
T : rs

A consequence of the universal quantification over monitors here is that the
compiler cannot be property-sensitive. A robustly-safe compiler preserves all
robust safety properties, not just a specific one, e.g., it does not just enforce
that fibonacci is correct. This seemingly strong goal is sensible as compiler
writers will likely not know what safety properties individual programmers will
want to preserve.

Remark. Some readers may wonder why we do not follow existing work and
specify safety as “programmer-written assertions never fail” [31,34,45,68]. Unfor-
tunately, this approach does not yield a meaningful criterion for specifying a
compiler, since assertions in the compiled program (if any) are generated by the
compiler itself. Thus a compiler could just erase all assertions and the compiled
code it generates would be trivially (robustly) safe – no assertion can fail if there
are no assertions in the first place!

Proving RSC . Proving that a compiler attains RSC can be done either by
proving that a compiler satisfies Definition 2 or by proving something equivalent.
To this end, Definition 3 below presents an alternative, equivalent formulation of
RSC. We call this characterisation property-free as it does not mention monitors
explicitly (it mentions the relevant(·) function for reasons we explain below).

Definition 3 (Property-Free RSC).

� �·�S
T : PF -RSC def= ∀C,A, α.

if �C�
S
T � A : atk and � A

[

�C�
S
T

]

: whole and Ω0

(

A
[

�C�
S
T

])
α==⇒ _

then ∃A, α. C � A : atk and � A [C] : whole and Ω0 (A [C]) α==⇒ _
and relevant(α)≈ relevant(α)

Specifically, PF -RSC states that the compiled code produces behaviours that
refine source level behaviours robustly (taking contexts into account).

PF -RSC and RSC should, in general, be equivalent (Proposition 1).

Proposition 1 (PF -RSC and RSC are equivalent).

∀�·�S
T,� �·�S

T : PF -RSC ⇐⇒ � �·�S
T : RSC

Informally, a property is safety if and only if it implies programs not having any
trace prefix from a given set of bad prefixes (i.e., finite traces). Hence, not having

478 M. Patrignani and D. Garg

a safety property robustly amounts to some context being able to induce a bad
prefix. Consequently, preserving all robust safety properties (RSC) amounts to
ensuring that all target prefixes can be generated (by some context) in the source
too (PF -RSC). Formally, since Definition 2 relies on the monitor relation, we
can prove Proposition 1 only after such a relation is finalised. We give such a
monitor relation and proof in Sect. 3.3 (see Theorem 3). However, in general this
result should hold for any cross-language monitor relation that correctly relates
safety properties. If the proposition does not hold, then the relation does not
capture how safety in one language is represented in the other.

Assuming Proposition 1, we can prove PF -RSC for a compiler in place of
RSC. PF -RSC can be proved with a backtranslation technique. This technique
has been often used to prove full abstraction [7–9,33,39,50,53,54,59] and it aims
at building a source context starting from a target one. In fact PF -RSC , leads
directly to a backtranslation-based proof technique since it can be rewritten
(eliding irrelevant details) as:

If ∃A, α.Ω0

(

A
[

�C�
S
T

])
α==⇒ _

then ∃A, α.Ω0 (A [C]) α==⇒ _ and relevant(α)≈ relevant(α)

Essentially, given a target context A, a compiled program �C�
S
T and a target

trace α that A causes �C�
S
T to have, we need to construct, or backtranslate to,

a source context A that will cause the source program C to simulate α. Such
backtranslation based proofs can be quite difficult, depending on the features of
the languages and the compiler. However, backtranslation for RSC (as we show
in Sect. 3.3) is not as complex as backtranslation for FAC (Sect. 5.2).

A simpler proof strategy is also viable for RSC when we compile only those
source programs that have been verified to be robustly safe (e.g., using a type
system). The idea is this: from the verification of the source program, we can find
an invariant which is always maintained by the target code, and which, in turn,
implies the robust safety of the target code. For example, if the safety property
is that values in the heap always have their expected types, then the invariant
can simply be that values in the target heap are always related to the source
ones (which have their expected types). This is tantamount to proving type
preservation in the target in the presence of an active adversary. This is harder
than standard type preservation (because of the active adversary) but is still
much easier than backtranslation as there is no need to map target constructs
to source contexts syntactically. We illustrate this proof technique in Sect. 4.

RSC Implies Compiler Correctness. As stated in Sect. 1, RSC implies (a
form of) compiler correctness. While this may not be apparent from Definition 2,
it is more apparent from its equivalent characterization in Definition 3. We elab-
orate this here.

Whether concerned with whole programs or partial programs, compiler cor-
rectness states that the behaviour of compiled programs refines the behaviour
of source programs [18,36,40,44,49,65]. So, if {α · · · } and {α · · · } are the sets of

Robustly Safe Compilation 479

compiled and source behaviours, then a compiler should force {α · · · }⊂∼ {α · · · },
where ⊂∼ is the composition of ⊆ and of the relation ≈−1.

If we consider a source component C that is whole, then it can only link
against empty contexts, both in the source and in the target. Hence, in this
special case, PF -RSC simplifies to standard refinement of traces, i.e., whole
program compiler correctness. Hence, assuming that the correctness criterion for
a compiler is concerned with the same observations as safety properties (values in
safety-relevant heap locations at component crossings in our illustrative setting),
PF -RSC implies whole program compiler correctness.

However, PF -RSC (or, equivalently, RSC) does not imply, nor is implied by,
any form of compositional compiler correctness (CCC) [40,49,65]. CCC requires
that the behaviours produced by a compiled component linked against a target
context that is related (in behaviour) to a source context can also be produced
by the source component linked against the related source context. In contrast,
PF -RSC allows picking any source context to simulate the behaviours. Hence,
PF -RSC does not imply CCC. On the other hand, PF -RSC universally quan-
tifies over all target contexts, while CCC only quantifies over target contexts
related to a source context, so CCC does not imply PF -RSC either. Hence,
compositional compiler correctness, if desirable, must be imposed in addition to
PF -RSC . Note that this lack of implications is unsurprising: PF -RSC and CCC
capture two very different aspects of compilation: security (against all contexts)
and compositional preservation of behaviour (against well-behaved contexts).

3 RSC via Trace-Based Backtranslation

This section illustrates how to prove that a compiler attains RSC by means of a
trace-based backtranslation technique [7,53,59]. To present such a proof, we first
introduce our source language LU, an untyped, first-order imperative language
with abstract references and hidden local state (Sect. 3.1). Then, we present
our target language LP, an untyped imperative target language with a concrete
heap, whose locations are natural numbers that the context can compute. LP

provides hidden local state via a fine-grained capability mechanism on heap
accesses (Sect. 3.2). Finally, we present the compiler �·�LU

LP and prove that it
attains RSC (Sect. 3.3) by means of a trace-based backtranslation. The section
conclude with an example detailing why RSC preserves security (Example 4).

To avoid focussing on mundane details, we deliberately use source and tar-
get languages that are fairly similar. However, they differ substantially in one
key point: the heap model. This affords the target-level adversary attacks like
guessing private locations and writing to them that do not obviously exist in the
source (and makes our proofs nontrivial). We believe that (with due effort) the
ideas here will generalize to languages with larger gaps and more features.

3.1 The Source Language LU

LU is an untyped imperative while language [51]. Components C are triples
of function definitions, interfaces and a special location written �root, so C ::=

480 M. Patrignani and D. Garg

�root;F; I. Each function definition maps a function name and a formal argument
to a body s: F ::= f(x) → s; return;. An interface is a list of functions that the
component relies on the context to provide (similar to C’s extern declarations).
The special location �root defines the locations that are monitored for safety, as
explained below. Attackers A (program contexts) are function definitions that
represent untrusted code that a component interacts with. A function’s body is a
statement, s. Statements are rather standard, so we omit a formal syntax. Briefly,
they can manipulate the heap (location creation let x = new e in s, assignment
x := e), do recursive function calls (call f e), condition (if-then-else), define local
variables (let-in) and loop. Statements use effect-free expressions, e, which con-
tain standard boolean expressions (e ⊗ e), arithmetic expressions (e ⊕ e), pairing
(〈e, e〉) and projections, and location dereference (!e). Heaps H are maps from
abstract locations � to values v.

As explained in Sect. 2.1, safety properties are specified by monitors. LU’s
monitors have the form: M ::= ({σ · · · } ,�, σ0, �root, σc). Note that in place of
the set {l · · · } of safety-relevant locations, the description of a monitor here (as
well as a component above) contains a single location �root. The interpretation is
that any location reachable in the heap starting from �root is relevant for safety.
This set of locations can change as the program executes, and hence this is more
flexible than statically specifying all of {l · · · } upfront. This representation of
the set by a single location is made explicit in the following monitor rule:

(LU-Monitor Step)
M = ({σ · · · } , �, σ0, �root, σc) M′ = ({σ · · · } , �, σ0, �root, σf)
(σc,H

′, σf) ∈ � H′ ⊆ H dom(H′) = reach(�root,H)

M;H � M′

Other than this small point, monitors, safety, robust safety and RSC are
defined as in Sect. 2. In particular, a monitor and a component agree if they
mention the same �root: M � C

def= (M = ({σ · · · } ,�, σ0, �root, σc)) and (C =
(�root;F; I))

A program state C,H � (s)f (denoted with Ω) includes the function bodies C,
the heap H, a statement s being executed and a stack of function calls f (often
omitted in the rules for simplicity). The latter is used to populate judgements of
the form I � f, f′ : internal/in/out. These determine whether calls and returns are
internal (within the attacker or within the component), directed from the attacker
to the component (in) or directed from the component to the attacker (out). This
information is used to determine whether the semantics should generate a label,
as in Rules ELU-return to ELU-retback, or no label, as in Rules ELU-ret-internal
and ELU-call-internal since internal calls should not be observable. LU has a big-
step semantics for expressions (H � e ↪→→ v) that relies on evaluation contexts, a
small-step semantics for statements (Ω λ−−→ Ω′) that has labels λ ::= ε | α and
a semantics that accumulates labels in traces (Ω α==⇒ Ω′) by omitting silent
actions ε and concatenating the rest. Unlike existing work on compositional
compiler correctness which only rely on having the component [40], the semantics
relies on having both the component and the context.

Robustly Safe Compilation 481

(ELU-alloc)
H � e ↪→→ v � /∈ dom(H)

C,H � let x = new e in s −→
C,H; � �→ v � s[� / x]

(ELU-return)

f′ = f′′; f′ C.intfs � f, f′ : out

C,H � (return;)f′;f
ret H!−−−−−→

C,H � (skip)f′
(ELU-call)

f′ = f′′; f′ f(x) �→ s; return; ∈ C.funs

C.intfs � f′, f : in H � e ↪→→ v

C,H � (call f e)f′
call f v H?−−−−−−−−−→

C,H � (s; return;[v / x])f′;f

(ELU-callback)

f′ = f′′; f′ f(x) �→ s; return; ∈ F

C.intfs � f′, f : out H � e ↪→→ v

C,H � (call f e)f′
call f v H!−−−−−−−−−→

C,H � (s; return;[v / x])f′;f
(ELU-retback)

f′ = f′′; f′ C.intfs � f, f′ : in

C,H � (return;)f′;f
ret H?−−−−−→

C,H � (skip)f′

(ELU-ret-internal)

f′ = f′′; f′ C.intfs � f, f′ : internal

C,H � (return;)f′;f
ε−−→

C,H � (skip)f′

(ELU-call-internal)

C.intfs � f, f′ : internal f′ = f′′; f′ f(x) �→ s; return; ∈ C.funs H � e ↪→→ v

C,H � (call f e)f′
ε−−→ C,H � (s; return;[v / x])f′;f

3.2 The Target Language LP

LP is an untyped, imperative language that follows the structure of LU and it
has similar expressions and statements. However, there are critical differences
(that make the compiler interesting). The main difference is that heap loca-
tions in LP are concrete natural numbers. Upfront, an adversarial context can
guess locations used as private state by a component and clobber them. To sup-
port hidden local state, a location can be “hidden” explicitly via the statement
let x = hide e in s, which allocates a new capability k, an abstract token that
grants access to the location n to which e points [64]. Subsequently, all reads and
writes to n must be authenticated with the capability, so reading and writing
a location take another parameter as follows: !e with e and x := e with e. In
both cases, the e after the with is the capability. Unlike locations, capabilities
cannot be guessed. To make a location private, the compiler can make the capa-
bility of the location private. To bootstrap this hiding process, we assume that
a component has one location that can only be accessed by it, a priori in the
semantics (in our formalization, we always focus on only one component and we
assume that, for this component, this special location is at address 0).

In detail, LP heaps H are maps from natural numbers (locations) n to values
v and a tag η as well as capabilities, so H ::= ∅ | H;n → v : η | H;k. The
tag η can be ⊥, which means that n is globally available (not protected) or a
capability k, which protects n. A globally available location can be freely read
and written but one that is protected by a capability requires the capability to
be supplied at the time of read/write (Rule ELP-assign, Rule ELP-deref).

LP also has a big-step semantics for expressions, a labelled small-step seman-
tics and a semantics that accumulates traces analogous to that of LU.

482 M. Patrignani and D. Garg

(ELP-deref)
n �→ v : η ∈ H (η = ⊥) or (η = k and v′ = k)

H � !n with v′ ↪→→ H � v
(ELP-new)

H = H1;n �→ (v, η) H � e ↪→→ v H′ = H;n+ 1 �→ v : ⊥
C,H � let x = new e in s −→ C,H′ � s[n+ 1 / x]

(ELP-hide)
H � e ↪→→ n k /∈ dom(H) H = H1;n �→ v : ⊥;H2 H′ = H1;n �→ v : k;H2;k

C,H � let x = hide e in s −→ C,H′ � s[k / x]

(ELP-assign)
H � e ↪→→ v H = H1;n �→ _ : η;H2 H′ = H1;n �→ v : η;H2

(η = ⊥) or (η = k and v′ = k)

C,H � n := e with v′ −→ C,H′ � skip

A second difference between LP and LU is that LP has no booleans, while
LU has them. This makes the compiler and the related proofs interesting, as
discussed in the proof of Theorem 1.

In LP, the locations of interest to a monitor are all those that can be reached
from the address 0. 0 itself is protected with a capability kroot that is assumed
to occur only in the code of the component in focus, so a component is defined
as C ::= kroot;F; I. We can now give a precise definition of component-monitor
agreement for LP as well as a precise definition of attacker, which must care
about the kroot capability.

M�C def= (M = ({σ · · · } ,�, σ0,kroot, σc)) and (C = (kroot;F; I))

C � A : atk def= C = (kroot;F; I),A = F′,kroot /∈ fn(F′)

3.3 Compiler from LU to LP

We now present �·�LU

LP , the compiler from LU to LP, detailing how it uses the
capabilities of LP to achieve RSC. Then, we prove that �·�LU

LP attains RSC.
Compiler �·�LU

LP takes as input a LU component C and returns a LP component
(excerpts of the translation are shown below). The compiler performs a simple
pass on the structure of functions, expressions and statements. Each LU location
is encoded as a pair of a LP location and the capability to access the location;
location update and dereference are compiled accordingly. The compiler codes
source booleans true to 0 and false to 1, and the source number n to the target
counterpart n.

�
�root;F; I

�LU

LP
= kroot;

�
F
�LU

LP
;
�
I
�LU

LP

�!e�LU

LP = !�e�LU

LP .1 with �e�LU

LP .2

�
let x = new e

in s

�LU

LP

=
let xloc = new �e�LU

LP in let xcap = hide xloc in

let x = 〈xloc,xcap〉 in �s�LU

LP

�
x := e′	LU

LP = let xloc = x.1 in let xcap = x.2 in xloc :=
�
e′	LU

LP with xcap

Robustly Safe Compilation 483

This compiler solely relies on the capability abstraction of the target lan-
guage as a defence mechanism to attain RSC. Unlike existing secure compilers,
�·�LU

LP needs neither dynamic checks nor other constructs that introduce runtime
overhead to attain RSC [9,32,39,53,59].

Proof of RSC . Compiler �·�LU

LP attains RSC (Theorem 1). In order to set up this
theorem, we need to instantiate the cross-language relation for values, which we
write as ≈β here. The relation is parametrised by a partial bijection β : �×n×η
from source heap locations to target heap locations which determines when a
source location and a target location (and its capability) are related. On values,
≈β is defined as follows: true≈β 0; false ≈β n when n �= 0; n ≈β n; �≈β 〈n,k〉
if (�,n,k) ∈ β; � ≈β 〈n,_〉 if (�,n,⊥) ∈ β; 〈v1, v2〉 ≈β 〈v1,v2〉 if v1 ≈β v1 and
v2 ≈β v2. This relation is then used to define the heap, monitor state and action
relations. Heaps are related, written H ≈β H, when locations related in β point
to related values. States are related, written Ω ≈β Ω, when they have related
heaps. The action relation (α ≈β α) is defined as in Sect. 2.2.

Monitor Relation. In Sect. 2.2, we left the monitor relation abstract. Here, we
define it for our two languages. Two monitors are related when they can sim-
ulate each other on related heaps. Given a monitor-specific relation σ ≈σ on
monitor states, we say that a relation R on source and target monitors is a
bisimulation if the following hold whenever M = ({σ · · · } ,�, σ0, �root, σc) and
M = ({σ · · · } ,�, σ0,kroot, σc) are related by R:

1. σ0 ≈σ0, and σc ≈ σc, and
2. For all β containing (�root,0,kroot) and all H,H with H ≈β H:

(a) (σc,H,_) ∈ � iff (σc,H,_) ∈ �, and
(b) (σc,H, σ′) ∈ � and (σc,H, σ′) ∈ � imply

({σ · · · } ,�, σ0, �root, σ
′)R({σ · · · } ,�, σ0,kroot, σ

′).

In words, R is a bisimulation only if MRM implies that M and M simulate each
other on heaps related by any β that relates �root to 0. In particular, this means
that neither M nor M can be sensitive to the specific addresses allocated during
the run of the program. However, they can be sensitive to the “shape” of the heap
or the values stored in the heap. Note that the union of any two bisimulations
is a bisimulation. Hence, there is a largest bisimulation, which we denote as ≈.
Intuitively, M ≈M implies that M and M encode the same safety property (up to
the aforementioned relation on values ≈β). With all the boilerplate for RSC in
place, we state our main theorem.

Theorem 1 (�·�LU

LP attains RSC). � �·�LU

LP : RSC

We outline our proof of Theorem 1, which relies on a backtranslation 〈〈·〉〉LP

LU .
Intuitively, 〈〈·〉〉LP

LU takes a target trace α and builds a set of source contexts such
that one of them when linked with C, produces a related trace α in the source
(Theorem 2). In prior work, backtranslations return a single context [10,11,21,

484 M. Patrignani and D. Garg

(1) call f 0 (
︷ ︸︸ ︷
1 �→ 4 : ⊥,

︷ ︸︸ ︷
2 �→ 3 : ⊥)?

(2) ret (1 �→ 4 : ⊥,2 �→ 〈3,k〉 : ⊥,
︷ ︸︸ ︷
3 �→ 11 : k)!

(3) call f 2 (1 �→ 55 : ⊥︸ ︷︷ ︸,2 �→ 〈3,k〉 : ⊥,3 �→ 15 : k︸ ︷︷ ︸)?

main(z) �→
let x = new 4 in L :: 〈x, 1〉 ;
let x = new 3 in L :: 〈x, 2〉 ;
call f 0;

⎤
⎥⎦ (1)

let x =!L(2) in L :: 〈x, 3〉 ;] (2)
let x = new L(1) in x := 55;

let x = new L(3) in x := 15;

call f 2;

⎤
⎥⎦ (3)

Fig. 1. Example of a trace and its backtranslated code.

28,50,53,59]. This is because they all, explicitly or implicitly, assume that ≈ is
injective from source to target. Under this assumption, the backtranslation is
unique: a target value v will be related to at most one source value v. We do
away with this assumption (e.g., the target value 0 is related to both source
values 0 and true) and thus there can be multiple source values related to any
given target value. This results in a set of backtranslated contexts, of which at
least one will reproduce the trace as we need it.

We bypass the lengthy technical setup for this proof and provide an informal
description of why the backtranslation achieves what it is supposed to. As an
example, Fig. 1 contains a trace α and the the output of 〈〈α〉〉LP

LU .
〈〈·〉〉LP

LU first generates empty method bodies for all context methods called
by the compiled component. Then it backtranslates each action on the given
trace, generating code blocks that mimic that action and places that code inside
the appropriate method body. Figure 1 shows the code blocks generated for each
action. Backtranslated code maintains a support data structure at runtime, a
list of locations denoted L where locations are added (::) and they are looked up
(L(n)) based on their second field n, which is their target-level address. In order
to backtranslate the first call, we need to set up the heap with the right values
and then perform the call. In the diagram, dotted lines describe which source
statement generates which part of the heap. The return only generates code that
will update the list L to ensure that the context has access to all the locations
it knows in the target too. In order to backtranslate the last call we lookup the
locations to be updated in L so we can ensure that when the call f 2 statement
is executed, the heap is in the right state.

For the backtranslation to be used in the proof we need to prove its correct-
ness, i.e., that 〈〈α〉〉LP

LU generates a context A that, together with C, generates a
trace α related to the given target trace α.

Theorem 2 (〈〈·〉〉LP

LU is correct)

if A
[

�C�
LU

LP

]
α==⇒ Ω then ∃A ∈ 〈〈α〉〉LP

LU .A [C] α==⇒ Ω and α ≈β α and Ω ≈β Ω.

Robustly Safe Compilation 485

This theorem immediately implies that � �·�LU

LP : PF -RSC , which, by Theorem
3 below, implies that � �·�LU

LP : RSC .

Theorem 3 (PF -RSC and RSC are equivalent for �·�LU

LP).

� �·�LU

LP : PF -RSC ⇐⇒ � �·�LU

LP : RSC

Example 4 (Compiling a secure program). To illustrate RSC at work, let us
consider the following source component Ca, which manages an account whose
balance is security-relevant. Accordingly, the balance is stored in a location (�root

that is tracked by the monitor. Ca provides functions to deposit to the account
as well as to print the account balance.

deposit(x) → let q=abs(x) in let amt = !�root in �root := amt + q

balance() → !�root

Ca never leaks any sensitive location (�root) to an attacker. Additionally, an
attacker has no way to decrement the amount of the balance since deposit only
adds the absolute value abs(x) of its input x to the existing balance.

By compiling Ca with �·�LU

LP , we obtain the following target program.

deposit(x) → let q=abs(x) in

let amt=!0 with kroot in 0 := amt + q with kroot

balance() → !0 with kroot

Recall that location �root is mapped to location 0 and protected by the kroot

capability. In the compiled code, while location 0 is freely computable by a
target attacker, capability kroot is not. Since that capability is not leaked to
an attacker, an attacker will not be able to tamper with the balance stored in
location 0. �

4 RSC via Bisimulation

If the source language has a verification system that enforces robust safety,
proving that a compiler attains RSC can be simpler than that of Sect. 3—it
may not require a back translation. To demonstrate this, we consider a specific
class of monitors, namely those that enforce type invariants on a specific set of
locations. Our source language, Lτ , is similar to LU but it has a type system
that accepts only those source programs whose traces the source monitor never
rejects. Our compiler �·�Lτ

Lπ is directed by typing derivations, and its proof of RSC
establishes a specific cross-language invariant on program execution, rather than
a backtranslation. A second, independent goal of this section is to show that RSC
is compatible with concurrency. Consequently, our source and target languages
include constructs for forking threads.

486 M. Patrignani and D. Garg

4.1 The Source Language Lτ

Lτ extends LU with concurrency, so it has a fork statement (‖ s), processes and
process soups [19]. Components define a set of safety-relevant locations Δ, so
C ::= Δ;F; I and heaps carry type information, so H ::= ∅ | H; � → v : τ . Δ also
specifies a type for each safety-relevant location, so Δ ::= ∅ | Δ; (� : τ).

Lτ has an unconventional type system that enforces robust type safety [1,14,
31,34,45,58], which means that no context can cause the static types of sen-
sitive heap locations to be violated at runtime. Using a special type UN that
is described below, a program component statically partitions heap locations it
deals with into those it cares about (sensitive or “trusted” locations) and those
it does not care about (“untrusted” locations). Call a value shareable if only
untrusted locations can be extracted from it using the language’s elimination
constructs. The type system then ensures that a program component only ever
shares shareable values with the context. This ensures that the context cannot
violate any invariants (including static types) of the trusted locations, since it
can never gets direct access to them.

Technically, the type system considers the types τ ::= Bool | Nat | τ × τ |
Ref τ | UN and the following typing judgements (Γ maps variables to types).

Type UN stands for “untrusted” or “shareable” and contains all values that can
be passed to the context. Every type that is not a subtype of UN is implicitly
trusted and cannot be passed to the context. Untrusted locations are explic-
itly marked UN at their allocation points in the program. Other types are
deemed shareable via subtyping. Intuitively, a type is safe if values in it can only
yield locations of type UN by the language elimination constructs. For example,
UN × UN is a subtype of UN. We write τ � ◦ to mean that τ is a subtype of UN.

Further, Lτ contains an endorsement statement (endorse x = e as ϕ in s) that
dynamically checks the top-level constructor of a value of type UN and gives it
a more precise superficial type ϕ ::= Bool | Nat | UN × UN | Ref UN [24]. This
allows a program to safely inspect values coming from the context. It is similar
to existing type casts [48] but it only inspects one structural layer of the value
(this simplifies the compilation).

The operational semantics of Lτ updates that of LU to deal with concurrency
and endorsement. The latter performs a runtime check on the endorsed value [62].

Monitors M ::= ({σ · · · } ,�, σ0,Δ, σc) check at runtime that the set of
trusted heap locations Δ have values of their intended static types. Accord-
ingly, the description of the monitor includes a list of trusted locations and their
expected types (in the form of an environment Δ). The type τ of any location
in Δ must be trusted, so τ �� ◦. To facilitate checks of the monitor, every heap

Robustly Safe Compilation 487

location carries a type at runtime (in addition to a value). The monitor transi-
tions should therefore be of the form (σ,Δ, σ), but since Δ never changes, we
write the transitions as (σ, σ).

A monitor and a component agree if they have the same Δ: M � C
def=

({σ · · · } ,�, σ0,Δ, σc)�(Δ;F; I). Other definitions (safety, robust safety and
actions) are as in Sect. 2. Importantly, a well-typed component generates traces
that are always accepted, so every component typed at UN is robustly safe.

Theorem 4 (Typability Implies Robust Safety in Lτ)

If � C : UN and C� M then M � C : rs

Richer Source Monitors. In Lτ , source language monitors only enforce the prop-
erty of type safety on specific memory locations (robustly). This can be general-
ized substantially to enforce arbitrary invariants other than types on locations.
The only requirement is to find a type system (e.g., based on refinements or
Hoare logics) that can enforce robust safety in the source (cf. [68]). Our com-
pilation and proof strategy should work with little modification. Another easy
generalization is allowing the set of locations considered by the monitor to grow
over time, as in Sect. 3.

4.2 The Target Language Lπ

Our target language, Lπ, extends the previous target language LP,
with support for concurrency (forking, processes and process soups),
atomic co-creation of a protected location and its protecting capability
(let x = newhide e in s) and for examining the top-level construct of a value
(destruct x = e as B in s or s′) according to a pattern (B ::= nat | pair).

(ELπ-destruct-nat)
H � e ↪→→ n

C,H � destruct x = e as nat in s or s′ −→ C,H � s[n / x]
(ELπ-new)

H = H1;n �→ (v, η) H � e ↪→→ v k /∈ dom(H) s′ = s[〈n+ 1,k〉 / x]

C,H � let x = newhide e in s −→ C,H;n+ 1 �→ v : k;k � s′

Monitors are also updated to consider a fixed set of locations (a heap H0), so
M ::= ({σ · · · } ,�, σ0,H0, σc). The atomic creation of capabilities is provided
to match modern security architectures such as Cheri [71] (which implement
capabilities at the hardware level). This atomicity is not strictly necessary and
we prove that RSC is attained both by a compiler relying on it and by one that
allocates a location and then protects it non-atomically. The former compiler
(with this atomicity in the target) is a bit easier to describe, so for space reasons,
we only describe that here and defer the other one to the companion report [61].

488 M. Patrignani and D. Garg

4.3 Compiler from Lτ to Lπ

The high-level structure of the compiler, �·�Lτ

Lπ , is similar to that of our earlier
compiler �·�LU

LP (Sect. 3.3). However, �·�Lτ

Lπ is defined by induction on the type
derivation of the component to be compiled. The case for allocation (presented
below) explicitly uses type information to achieve security efficiently, protecting
only those locations whose type is not UN.

�

�

Δ, Γ � e : τ

C, Δ, Γ; x : Ref τ � s

C, Δ, Γ �
let x = newτ e in s

�

�

Lτ

Lπ

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

let xo = new �Δ, Γ � e : τ�
Lτ

Lπ

in let x = 〈xo,0〉
in �C,Δ, Γ; x : Ref τ � s�Lτ

Lπ

if τ = UN

let x = newhide �Δ, Γ � e : τ�
Lτ

Lπ

in �C,Δ, Γ; x : Ref τ � s�Lτ

Lπ

otherwise

New Monitor Relation. As monitors have changed, we also need a new monitor
relation M ≈M. Informally, a source and a target monitor are related if the target
monitor can always step whenever the target heap satisfies the types specified
in the source monitor (up to renaming by the partial bijection β).

We write � H : Δ to mean that for each location � ∈ Δ, � H(�) : Δ(�). Given
a partial bijection β from source to target locations, we say that a target monitor
M = ({σ · · · } ,�, σ0,H0, σc) is good, written � M : β,Δ, if for all σ ∈ {σ · · · }
and all H ≈β H such that � H : Δ, there is a σ′ such that (σ,H, σ′) ∈ �. For
a fixed partial bijection β0 between the domains of Δ and H0, we say that
the source monitor M and the target monitor M are related, written M ≈M, if
� M : β0,Δ for the Δ in M. With this setup, we define RSC as in Sect. 2.

Theorem 5 (Compiler �·�Lτ

Lπ attains RSC). � �·�Lτ

Lπ : RSC

To prove that �·�Lτ

Lπ attains RSC we do not rely on a backtranslation. Here,
we know statically which locations can be monitor-sensitive: they must all be
trusted, i.e., must have a type τ satisfying τ � ◦. Using this, we set up a simple
cross-language relation and show it to be an invariant on runs of source and
compiled target components. The relation captures the following:

– Heaps (both source and target) can be partitioned into two parts, a trusted
part and an untrusted part;

– The trusted source heap contains only locations whose type is trusted (τ � ◦);
– The trusted target heap contains only locations related to trusted source

locations and these point to related values; more importantly, every trusted
target location is protected by a capability;

– In the target, any capability protecting a trusted location does not occur in
attacker code, nor is it stored in an untrusted heap location.

Robustly Safe Compilation 489

We need to prove that this relation is preserved by reductions both in com-
piled and in attacker code. The former follows from source robust safety (Theo-
rem 4). The latter is simple since all trusted locations are protected with capabil-
ities, attackers have no access to trusted locations, and capabilities are unforge-
able and unguessable (by the semantics of Lπ). At this point, knowing that mon-
itors are related, and that source traces are always accepted by source monitors,
we can conclude that target traces are always accepted by target monitors too.
Note that this kind of an argument requires all compilable source programs to be
robustly safe and is, therefore, impossible for our first compiler �·�LU

LP . Avoiding
the backtranslation results in a proof much simpler than that of Sect. 3.

5 Fully Abstract Compilation

Our next goal is to compare RSC to FAC at an intuitive level. We first define
fully abstract compilation or FAC (Sect. 5.1). Then, we present an example of
how FAC may result in inefficient compiled code and use that to present in
Sect. 5.2 what would be needed to write a fully abstract compiler from LU to
LP (the languages of our first compiler). We use this example to compare RSC
and FAC concretely, showing that, at least on this example, RSC permits more
efficient code and affords simpler proofs that FAC .

However, this does not imply that one should always prefer RSC to FAC
blindly. In some cases, one may want to establish full abstraction for reasons
other than security. Also, when the target language is typed [10,11,21,50] or has
abstractions similar to those of the source, full abstraction may have no down-
sides (in terms of efficiency of compiled code and simplicity of proofs) relative to
RSC. However, in many settings, including those we consider, target languages
are not typed, and often differ significantly from the source in their abstractions.
In such cases, RSC is a worthy alternative.

5.1 Formalising Fully Abstract Compilation

As stated in Sect. 1, FAC requires the preservation and reflection of observa-
tional equivalence, and most existing work instantiates observational equivalence
with contextual equivalence (�ctx). Contextual equivalence and FAC are defined
below. Informally, two components C1 and C2 are contextually equivalent if no
context A interacting with them can tell them apart, i.e., they are indistinguish-
able. Contextual equivalence can encode security properties such as confidential-
ity, integrity, invariant maintenance and non-interference [6,9,53,60]. We do not
explain this well-known observation here, but refer the interested reader to the
survey of Patrignani et al. [54]. Informally, a compiler �·�S

T is fully abstract if it
translates (only) contextually-equivalent source components into contextually-
equivalent target ones.

490 M. Patrignani and D. Garg

Definition 4 (Contextual equivalence and fully abstract compilation).

C1 �ctx C2
def= ∀A.A [C1]⇑ ⇐⇒ A [C2]⇑, where ⇑ means execution divergence

� �·�S
T : FAC def= ∀C1,C2.C1 �ctx C2 ⇐⇒ �C1�

S
T �ctx �C2�

S
T

The security-relevant part of FAC is the ⇒ implication [29]. This part is
security-relevant because the proof thesis concerns target contextual equivalence
(�ctx). Unfolding the definition of �ctx on the right of the implication yields
a universal quantification over all possible target contexts A, which captures
malicious attackers. In fact, there may be target contexts A that can interact
with compiled code in ways that are impossible in the source language. Compilers
that attain FAC with untyped target languages often insert checks in compiled
code that detect such interactions and respond to them securely [60], often by
halting the execution [6,9,29,37,39,42,53,54]. These checks are often inefficient,
but must be performed even if the interactions are not security-relevant. We now
present an example of this.

Example 5 (Wrappers for heap resources). Consider a password manager written
in an object-oriented language that is compiled to an assembly-like language. The
password manager defines a private List object where it stores the passwords
locally. Shown below are two implementations of the newList method inside
List which we call Cone and Ctwo. The only difference between Cone and Ctwo is
that Ctwo allocates two lists internally; one of these (shadow) is used for internal
purposes only.

1 public newList(): List{
2

3 ell = new List();
4 return ell;
5 }

1 public newList(): List{
2 shadow = new List(); // diff
3 ell = new List();
4 return ell;
5 }

Cone and Ctwo are equivalent in a source language that does not allow pointer
comparison (like our source languages). To attain FAC when the target allows
pointer comparisons (as in our target languages), the pointers returned by
newList in the two implementations must be the same, but this is very diffi-
cult to ensure since the second implementation does more allocations. A sim-
ple solution to this problem is to wrap ell in a proxy object and return the
proxy [9,47,53,59]. Compiled code needs to maintain a lookup table mapping
the proxy to the original object and proxies must have allocation-independent
addresses. Proxies work but they are inefficient due to the need to look up the
table on every object access. �

In this example, FAC forces all privately allocated locations to be wrapped
in proxies. However, RSC does not require this. Our target languages LP and
Lπ support address comparison (addresses are natural numbers in their heaps)
but �·�LU

LP and �·�Lτ

Lπ just use capabilities to attain security efficiently while �·�Lτ

LI

relies on memory isolation. On the other hand, for attaining FAC, capabilities
alone would be insufficient since they do not hide addresses. We explain this in
detail in the next subsection.

Robustly Safe Compilation 491

Remarks. Our technical report lists many other cases of FAC forcing security-
irrelevant inefficiency in compiled code [61]. All of these can be avoided by just
replacing contextual equivalence with a different notion of equivalence in the
statement of FAC. However, it is not clear how this can be done generally for
any given kind of inefficiency, and what the security consequences of such instan-
tiations of the statement of FAC are. On the other hand, RSC is uniform and
it does not induce any of these inefficiencies.

A security issue that cannot be addressed just by tweaking equivalences
is information leaks on side channels, as side channels are, by definition, not
expressible in the language. Neither FAC nor RSC deals with side channels.

5.2 Towards a Fully Abstract Compiler from LU to LP

To further compare FAC and RSC, we now sketch what would be needed to
construct a fully abstract compiler from LU to LP. In particular, this compiler
should not suffer from the “attack” described in Example 5.

Inefficiency. We denote with
	 ·
LU

LP a (hypothetical) new compiler from LU

to LP that attains FAC. We describe informally what code generated by this
compiler would have to do. We know that fully abstract compilation preserves all
source abstractions in the target language. One abstraction that distinguishes
LP from LU is that locations are abstract in LP, but concrete natural numbers in
LU. Thus, locations allocated by compiled code must not be passed directly to the
context as this would reveal the allocation order. Instead of passing the location
〈n,k〉 to the context, the compiler arranges for an opaque handle 〈n′,kcom〉 (that
cannot be used to access any location directly) to be passed. Such an opaque
handle is often called a mask or seal in the literature [66].

To ensure that masking is done properly,
	 ·
LU

LP can insert code at entry
and exit points of compiled code, wrapping the compiled code in a way that
enforces masking [32,59]. The wrapper keeps a list L of component-allocated
locations that are shared with the context in order to know their masks. When a
component-allocated location is shared, it is added to the list L. The mask of a
location is its index in this list. If the same location is shared again it is not added
again but its previous index is used. To implement lookup in L we must compare
capabilities too, so we need to add that expression to the target language. To
ensure capabilities do not leak to the context, the second field of the pair is a
constant capability kcom which compiled code does not use otherwise. Clearly,
this wrapping can increase the cost of all cross-component calls and returns.

However, this wrapping is not sufficient to attain FAC. A component-
allocated location could be passed to the context on the heap, so before passing
control to the context the compiled code needs to scan the whole heap where
a location can be passed and mask all found component-allocated locations.
Dually, when receiving control the compiled code must scan the heap to unmask
any masked location so it can use the location. The problem now is determining
what parts of the heap to scan and how. Specifically, the compiled code needs to

492 M. Patrignani and D. Garg

keep track of all the locations (and related capabilities) that are shared, i.e., (i)
passed from the context to the component and (ii) passed from the component
to the context. Both keeping track of these locations as well as scanning them
on every cross-component control transfer is likely to be very expensive.

Finally, masked locations cannot be used directly by the context to be read
and written. Thus, compiled code must provide a read and a write function that
implement reading and writing to masked locations. The additional unmasking
in these functions (as opposed to native reads and writes) adds to the inefficiency.

It should be clear as opposed to the RSC compiler �·�LU

LP (Sect. 3), the FAC

compiler
	 ·
LU

LP just sketched is likely to generate far more inefficient code.

Proof Difficulty. Proving that
	 ·
LU

LP attains FAC can only be done by back-
translating traces, not contexts alone, since the newly-added target expressions
cannot be directly backtranslated to valid source ones [7,9,59]. For this, we need
a trace semantics that captures all information available to the context. This
is often called a fully abstract trace semantics [38,55,56]. However, the trace
semantics we defined for LP is not fully abstract, as its actions record the entire
heap in every action, including private parts of the heap. Hence, we cannot use
this trace semantics for proving FAC and so we design a new one. Building a
fully abstract trace semantics for LP is challenging because we have to keep
track of locations that have been shared with the context in the past. This sub-
stantially complicates both the definition of traces and the proofs that build on
the definition.

Finally, the source context that the backtranslation constructs from a target
trace must simulate the shared part of the heap at every context switch. Since
locations in the target may be masked, the source context has to maintain a
map from the source locations to the corresponding masked target ones, which
complicates the backtranslation and the proof substantially.

To summarize, it should be clear that the proof of FAC for
	 ·
LU

LP would be

much harder than the proof of RSC for �·�LU

LP , even though the source and target
languages are the same and so is the broad proof technique (backtranslation).

6 Related Work

Recent work [8,33] presents new criteria for secure compilation that ensure
preservation of subclasses of hyperproperties. Hyperproperties [25] are a for-
mal representation of predicates on programs, i.e., they are predicates on sets of
traces. Hyperproperties capture many security-relevant properties including not
just conventional safety and liveness, which are predicates on traces, but also
properties like non-interference, which is a predicate on pairs of traces. Modulo
technical differences, our definition of RSC coincides with the criterion of “robust
safety property preservation” in [8,33]. We show, through concrete instances,
that this criterion can be easily realized by compilers, and develop two proof

Robustly Safe Compilation 493

techniques for establishing it. We further show that the criterion leads to more
efficient compiled code than does FAC. Additionally, the criteria in [8,33] assume
that behaviours in the source and target are represented using the same alpha-
bet. Hence, the definitions (somewhat unrealistically or ideally) do not require
a translation of source properties to target properties. In contrast, we consider
differences in the representation of behaviour in the source and in the target and
this is accounted for in our monitor relation M ≈M. A slightly different account
of this difference is presented by Patrignani and Garg [60] in the context of
reactive black-box programs.

Abate et al. [7] define a variant of robustly-safe compilation called RSCC
specifically tailored to the case where (source) components can perform unde-
fined behaviour. RSCC does not consider attacks from arbitrary target contexts
but from compiled components that can become compromised and behave in
arbitrary ways. To demonstrate RSCC, Abate et al. [7] rely on two backends
for their compiler: software fault isolation and tag-based monitors. On the other
hand, we rely on capability machines and memory isolation (the latter in the
companion report). RSCC also preserves (a form of) safety properties and can
be achieved by relying on a trace-based backtranslation; it is unclear whether
proofs can be simplified when the source is verified and concurrent, as in our
second compiler.

ASLR [6,37], protected module architectures [9,42,53,59], tagged architec-
tures [39], capability machines [69] and cryptographic primitives [4,5,22,26] have
been used as targets for FAC. We believe all of these can also be used as targets
of RSC -attaining compilers. In fact, some targets such as capability machines
seem to be better suited to RSC than FAC, as we demonstrated.

Ahmed et al. prove full abstraction for several compilers between typed lan-
guages [10,11,50]. As compiler intermediate languages are often typed, and as
these types often serve as the basis for complex static analyses, full abstraction
seems like a reasonable goal for (fully typed) intermediate compilation steps.
In the last few steps of compilation, where the target languages are unlikely to
be typed, one could establish robust safety preservation and combine the two
properties (vertically) to get an end-to-end security guarantee.

There are three other criteria for secure compilation that we would like to
mention: securely compartmentalised compilation (SCC) [39], trace-preserving
compilation (TPC) [60] and non-interference-preserving compilation (NIPC) [12,
15,16,27]. SCC is a re-statement of the “hard” part of full abstraction (the for-
ward implication), but adapted to languages with undefined behaviour and a
strict notion of components. Thus, SCC suffers from much of the same efficiency
drawbacks as FAC. TPC is a stronger criterion than FAC, that most existing
fully abstract compilers also attain. Again, compilers attaining TPC also suffer
from the drawbacks of compilers attaining FAC.

NIPC preserves a single property: noninterference (NI). However, this line of
work does not consider active target-level adversaries yet. Instead, the focus is
on compiling whole programs. Since noninterference is not a safety property, it
is difficult to compare NIPC to RSC directly. However, noninterference can also

494 M. Patrignani and D. Garg

be approximated as a safety property [20]. So, in principle, RSC (with adequate
massaging of observations) can be applied to stronger end-goals than NIPC.

Swamy et al. [67] embed an F∗ model of a gradually and robustly typed
variant of JavaScript into an F∗ model of JavaScript. Gradual typing supports
constructs similar to our endorsement construct in Lτ . Their type-directed com-
piler is proven to attain memory isolation as well as static and dynamic memory
safety. However, they do not consider general safety properties, nor a specific,
general criterion for compiler security.

Two of our target languages rely on capabilities for restricting access to sensi-
tive locations from the context. Although capabilities are not mainstream in any
processor, fully functional research prototypes such as Cheri exist [71]. Capa-
bility machines have previously been advocated as a target for efficient secure
compilation [30] and preliminary work on compiling C-like languages to them
exists, but the criterion applied is FAC [69].

7 Conclusion

This paper has examined robustly safe compilation (RSC), a soundness criterion
for compilers with direct relevance to security. We have shown that the criterion
is easily realizable and may lead to more efficient code than does fully abstract
compilation wrt contextual equivalence. We have also presented two techniques
for establishing that a compiler attains RSC. One is an adaptation of an existing
technique, backtranslation, and the other is based on inductive invariants.

Acknowledgements. The authors would like to thank Dominique Devriese, Akram
El-Korashy, Cătălin Hriţcu, Frank Piessens, David Swasey and the anonymous review-
ers for useful feedback and discussions on an earlier draft.

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) through funding for the CISPA-Stanford Center for Cyberse-
curity (FKZ: 13N1S0762).

References

1. Abadi, M.: Secrecy by typing in security protocols. In: Abadi, M., Ito, T. (eds.)
TACS 1997. LNCS, vol. 1281, pp. 611–638. Springer, Heidelberg (1997). https://
doi.org/10.1007/BFb0014571

2. Abadi, M.: Protection in programming-language translations. In: Vitek, J., Jensen,
C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603, pp. 19–34. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48749-2_2

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40
(2009)

4. Abadi, M., Fournet, C., Gonthier, G.: Authentication primitives and their com-
pilation. In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2000, pp. 302–315. ACM, New York
(2000)

https://doi.org/10.1007/BFb0014571
https://doi.org/10.1007/BFb0014571
https://doi.org/10.1007/3-540-48749-2_2

Robustly Safe Compilation 495

5. Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstrac-
tions. Inf. Comput. 174, 37–83 (2002)

6. Abadi, M., Plotkin, G.D.: On protection by layout randomization. ACM Trans.
Inf. Syst. Secur. 15, 8:1–8:29 (2012)

7. Abate, C., et al.: When good components go bad: formally secure compilation
despite dynamic compromise. In: CCS 2018 (2018)

8. Abate, C., Blanco, R., Garg, D., Hriţcu, C., Patrignani, M., Thibault, J.: Journey
beyond full abstraction: exploring robust property preservation for secure compi-
lation. arXiv:1807.04603, July 2018

9. Agten, P., Strackx, R., Jacobs, B., Piessens, F.: Secure compilation to modern
processors. In: 2012 IEEE 25th Computer Security Foundations Symposium, CSF
2012, pp. 171–185. IEEE (2012)

10. Ahmed, A., Blume, M.: Typed closure conversion preserves observational equiv-
alence. In: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2008, pp. 157–168. ACM, New York (2008)

11. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-
language semantics. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2011, pp. 431–444. ACM, New York
(2011)

12. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In:
ACM Conference on Computer and Communications Security, pp. 1807–1823.
ACM (2017)

13. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

14. Backes, M., Hritcu, C., Maffei, M.: Union, intersection and refinement types and
reasoning about type disjointness for secure protocol implementations. J. Comput.
Secur. 22(2), 301–353 (2014)

15. Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel counter-
measures: the case of cryptographic “constant-time”. In: CSF 2018 (2018)

16. Barthe, G., Rezk, T., Basu, A.: Security types preserving compilation. Comput.
Lang. Syst. Struct. 33, 35–59 (2007)

17. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8:1–
8:45 (2011)

18. Benton, N., Hur, C.-K.: Realizability and compositional compiler correctness for a
polymorphic language. Technical report, MSR (2010)

19. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

20. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-01465-9_2

21. Bowman, W.J., Ahmed, A.: Noninterference for free. In: Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
2015. ACM, New York (2015)

22. Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions. In:
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2007, pp. 251–262. ACM, New York (2007)

23. Carter, N.P., Keckler, S.W., Dally, W.J.: Hardware support for fast capability-
based addressing. SIGPLAN Not. 29, 319–327 (1994)

24. Chong, S.: Expressive and enforceable information security policies. Ph.D. thesis,
Cornell University, August 2008

http://arxiv.org/abs/1807.04603
https://doi.org/10.1007/978-3-642-01465-9_2

496 M. Patrignani and D. Garg

25. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

26. Corin, R., Deniélou, P.-M., Fournet, C., Bhargavan, K., Leifer, J.: A secure compiler
for session abstractions. J. Comput. Secur. 16, 573–636 (2008)

27. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow security
for C and assembly programs. In: PLDI, pp. 648–664. ACM (2016)

28. Devriese, D., Patrignani, M., Keuchel, S., Piessens, F.: Modular, fully-abstract
compilation by approximate back-translation. Log. Methods Comput. Sci. 13(4)
(2017). https://lmcs.episciences.org/4011

29. Devriese, D., Patrignani, M., Piessens, F.: Secure compilation by approximate back-
translation. In: POPL 2016 (2016)

30. El-Korashy, A.: A formal model for capability machines - an illustrative case study
towards secure compilation to CHERI. Master’s thesis, Universitat des Saarlandes
(2016)

31. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies.
ACM Trans. Program. Lang. Syst. 29(5), 141–156 (2007)

32. Fournet, C., Swamy, N., Chen, J., Dagand, P.-E., Strub, P.-Y., Livshits, B.: Fully
abstract compilation to JavaScript. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2013, pp. 371–384. ACM, New York (2013)

33. Garg, D., Hritcu, C., Patrignani, M., Stronati, M., Swasey, D.: Robust hyper-
property preservation for secure compilation (extended abstract). ArXiv e-prints,
October 2017

34. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. J. Comput.
Secur. 11(4), 451–519 (2003)

35. Gorla, D., Nestman, U.: Full abstraction for expressiveness: history, myths and
facts. Math. Struct. Comput. Sci. 26(4), 639–654 (2016)

36. Hur, C.-K., Dreyer, D.: A Kripke logical relation between ML and assembly. SIG-
PLAN Not. 46, 133–146 (2011)

37. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: Proceedings of the 2011 IEEE 24th Computer Security Founda-
tions Symposium, CSF 2011, Washington, DC, USA, pp. 161–174. IEEE Computer
Society (2011)

38. Jeffrey, A., Rathke, J.: Java JR: fully abstract trace semantics for a core Java
language. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_29

39. Juglaret, Y., Hriţcu, C., de Amorim, A.A., Pierce, B.C.: Beyond good and evil: for-
malizing the security guarantees of compartmentalizing compilation. In: 29th IEEE
Symposium on Computer Security Foundations (CSF). IEEE Computer Society
Press, July 2016. To appear

40. Kang, J., Kim, Y., Hur, C.-K., Dreyer, D., Vafeiadis, V.: Lightweight verification
of separate compilation. In: POPL 2016, pp. 178–190 (2016)

41. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2014, Berkeley, CA, USA, pp. 147–163.
USENIX Association (2014)

42. Larmuseau, A., Patrignani, M., Clarke, D.: A secure compiler for ML modules.
In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 29–48. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26529-2_3

43. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL, pp. 42–54 (2006)

https://lmcs.episciences.org/4011
https://doi.org/10.1007/978-3-540-31987-0_29
https://doi.org/10.1007/978-3-319-26529-2_3

Robustly Safe Compilation 497

44. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

45. Maffeis, S., Abadi, M., Fournet, C., Gordon, A.D.: Code-carrying authorization.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 563–579.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_36

46. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP 2013, pp. 10:1–10:1. ACM (2013)

47. Morris Jr., J.H.: Protection in programming languages. Commun. ACM 16, 15–21
(1973)

48. Neis, G., Dreyer, D., Rossberg, A.: Non-parametric parametricity. SIGPLAN Not.
44(9), 135–148 (2009)

49. Neis, G., Hur, C.-K., Kaiser, J.-O., McLaughlin, C., Dreyer, D., Vafeiadis, V.: Pil-
sner: a compositionally verified compiler for a higher-order imperative language. In:
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pp. 166–178. ACM (2015)

50. New, M.S., Bowman, W.J., Ahmed, A.: Fully abstract compilation via universal
embedding. In: Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, pp. 103–116. ACM, New York (2016)

51. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999). https://doi.org/10.1007/978-3-662-03811-6

52. Parrow, J.: General conditions for full abstraction. Math. Struct. Comput. Sci.
26(4), 655–657 (2014)

53. Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst.
37, 6:1–6:50 (2015)

54. Patrignani, M., Ahmed, A., Clarke, D.: Formal approaches to secure compilation a
survey of fully abstract compilation and related work. ACM Comput. Surv. 51(6),
125:1–125:36 (2019)

55. Patrignani, M., Clarke, D.: Fully abstract trace semantics of low-level isolation
mechanisms. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC 2014, pp. 1562–1569. ACM (2014)

56. Patrignani, M., Clarke, D.: Fully abstract trace semantics for protected module
architectures. Comput. Lang. Syst. Struct. 42(0), 22–45 (2015)

57. Patrignani, M., Clarke, D., Piessens, F.: Secure compilation of object-oriented com-
ponents to protected module architectures. In: Shan, C. (ed.) APLAS 2013. LNCS,
vol. 8301, pp. 176–191. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03542-0_13

58. Patrignani, M., Clarke, D., Sangiorgi, D.: Ownership types for the join calculus.
In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp.
289–303. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-
5_19

59. Patrignani, M., Devriese, D., Piessens, F.: On modular and fully abstract compi-
lation. In: Proceedings of the 29th IEEE Computer Security Foundations Sympo-
sium, CSF 2016 (2016)

60. Patrignani, M., Garg, D.: Secure compilation and hyperproperties preservation. In:
Proceedings of the 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, USA (2017)

61. Patrignani, M., Garg, D.: Robustly safe compilation or, efficient, provably secure
compilation. CoRR, abs/1804.00489 (2018)

62. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

https://doi.org/10.1007/978-3-540-88313-5_36
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1007/978-3-319-03542-0_13
https://doi.org/10.1007/978-3-642-21461-5_19
https://doi.org/10.1007/978-3-642-21461-5_19

498 M. Patrignani and D. Garg

63. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

64. Stark, I.: Names and higher-order functions. Ph.D. thesis, University of Cambridge,
December 1994. Also available as Technical Report 363, University of Cambridge
Computer Laboratory

65. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional compcert. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2015, pp. 275–287. ACM, New York (2015)

66. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. In: Principles of Pro-
gramming Languages, pp. 161–172 (2004)

67. Swamy, N., Fournet, C., Rastogi, A., Bhargavan, K., Chen, J., Strub, P.-Y., Bier-
man, G.: Gradual typing embedded securely in Javascript. SIGPLAN Not. 49(1),
425–437 (2014)

68. Swasey, D., Garg, D., Dreyer, D.: Robust and compositional verification of object
capability patterns. In: Proceedings of the 2017 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2017, 22–27 October 2017 (2017)

69. Tsampas, S., El-Korashy, A., Patrignani, M., Devriese, D., Garg, D., Piessens, F.:
Towards automatic compartmentalization of C programs on capability machines.
In: 2017 Workshop on Foundations of Computer Security, FCS 2017, 21 August
2017 (2017)

70. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4, 167–187 (1996)

71. Woodruff, J., et al.: The CHERI capability model: revisiting RISC in an age of
risk. In: Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA 2014, Piscataway, NJ, USA, pp. 457–468. IEEE Press (2014)

72. Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis,
Cornell University (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Compiling Sandboxes: Formally Verified
Software Fault Isolation

Frédéric Besson1(B) , Sandrine Blazy1 , Alexandre Dang1, Thomas Jensen1,
and Pierre Wilke2

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France
frederic.besson@inria.fr

2 CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. Software Fault Isolation (SFI) is a security-enhancing pro-
gram transformation for instrumenting an untrusted binary module so
that it runs inside a dedicated isolated address space, called a sandbox.
To ensure that the untrusted module cannot escape its sandbox, exist-
ing approaches such as Google’s Native Client rely on a binary verifier
to check that all memory accesses are within the sandbox. Instead of
relying on a posteriori verification, we design, implement and prove cor-
rect a program instrumentation phase as part of the formally verified
compiler CompCert that enforces a sandboxing security property a pri-
ori. This eliminates the need for a binary verifier and, instead, leverages
the soundness proof of the compiler to prove the security of the sand-
boxing transformation. The technical contributions are a novel sandbox-
ing transformation that has a well-defined C semantics and which sup-
ports arbitrary function pointers, and a formally verified C compiler that
implements SFI. Experiments show that our formally verified technique
is a competitive way of implementing SFI.

1 Introduction

Isolating programs with various levels of trustworthiness is a fundamental secu-
rity concern, be it on a cloud computing platform running untrusted code pro-
vided by customers, or in a web browser running untrusted code coming from
different origins. In these contexts, it is of the utmost importance to provide
adequate isolation mechanisms so that a faulty or malicious computation can-
not compromise the host or neighbouring computations.

There exists a number of mechanisms for enforcing isolation that intervene at
various levels, from the hardware up to the operating system. Hypervisors [10],
virtual machines [2] but also system processes [17] can ensure strong isolation
properties, at the expense of costly context switches and limited flexibility in
the interaction between components. Language-based techniques such as strong
typing offer alternative techniques for ensuring memory safety, upon which access
control policies and isolation can be implemented. This approach is implemented
e.g. by the Java language for which it provides isolation guarantees, as proved
by Leroy and Rouaix [21]. The isolation is fined-grained and very flexible but
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 499–524, 2019.
https://doi.org/10.1007/978-3-030-17184-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_18&domain=pdf
http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0189-0223
http://orcid.org/0000-0001-9681-644X
https://doi.org/10.1007/978-3-030-17184-1_18

500 F. Besson et al.

the security mechanisms, e.g. stack inspection, may be hard to reason about [7].
In the web browser realm, JavaScript is dynamically typed and also ensures
memory safety upon which access control can be implemented [29].

1.1 Software Fault Isolation

Software Fault Isolation (SFI) is an alternative for unsafe languages, e.g. C,
where memory safety is not granted but needs to be enforced at runtime by
program instrumentation. Pioneered by Wahbe et al. [35] and popularised by
Google’s Native Client [30,37,38], SFI is a program transformation which con-
fines a software component to a memory sandbox. This is done by pre-fixing
every memory access with a carefully designed code sequence which efficiently
ensures that the memory access occurs within the sandbox. In practice, the sand-
box is aligned and the sandbox addresses are thus of the form 0xY Z where Y is a
fixed bit-pattern and Z is an arbitrary bit-pattern i.e., Z ∈ [0x0 . . . 0, 0xF . . . F].
Hence, enforcing that memory accesses are within the sandbox range of addresses
can be efficiently implemented by a masking operation which exploits the binary
representation of pointers: it retains the lowest bits Z and sets the highest bits
to the bit-pattern Y .

Traditionally, the SFI transformation is performed at the binary level and
is followed by an a posteriori verification by a trusted SFI verifier [23,31,35].
Because the verifier can assume that the code has undergone the SFI transforma-
tion, it can be kept simple (almost syntactic), thereby reducing both verification
time and the Trusted Computing Base (TCB). This approach to SFI can be
viewed as a simple instance of Proof Carrying Code [25] where the compiler is
untrusted and the binary verifier is either trusted or verified.

Traditional SFI is well suited for executing binary code from an untrusted
origin that must, for an adequate user experience, start running as soon as
possible. Google’s Native Client [30,37] is a state-of-the-art SFI implementation
which has been deployed in the Chrome web browser for isolating binary code in
untrusted pages. ARMor [39] features the first fully verified SFI implementation
where the TCB is reduced to the formal ARM semantics in the HOL proof-
assistant [9]. RockSalt [24] is a formally verified implementation of an SFI verifier
for the x86 architecture, demonstrating that an efficient binary verifier can be
obtained from a machine-checked specification.

1.2 Software Fault Isolation Through Compilation

A downside of the traditional SFI approach is that it hinders most compiler opti-
misations because the optimised code no longer respects the simple properties
that the SFI verifier is capable of checking. For example, the SFI verifier expects
that every memory access is immediately preceded by a specific syntactic code
pattern that implements the sandboxing operation. A semantically equivalent
but syntactically different code sequence would be rejected. An alternative to
the a posteriori binary verifier approach is Portable Software Fault Isolation
(PSFI), proposed by Kroll et al. [16]. In this methodology, there is no verifier

Compiling Sandboxes: Formally Verified Software Fault Isolation 501

to trust. Instead isolation is obtained by compilation with a machine-checked
compiler, such as CompCert [18]. Portability comes from the fact that PSFI
can reuse existing compiler back-ends and therefore target all the architectures
supported by the compiler without additional effort.

PSFI is applicable in scenarios where the source code is available or the
binary code is provided by a trusted third-party that controls the build process.
For example, the original motivation for Proof Carrying Code [25] was to pro-
vide safe kernel extensions [26] as binary code to replace scripts written in an
interpreted language. This falls within the scope of PSFI. Another PSFI scenario
is when the binary code is produced in a controlled environment and/or by a
trusted party. In this case, the primary goal is not to protect against an attacker
trying to insert malicious code but to prevent honest parties from exposing a
host platform to exploitable bugs. This is the case e.g. in the avionics industry,
where software from different third-parties is integrated on the same host that
needs to ensure strong isolation properties between tasks whose levels of criti-
cality differ. In those cases, PSFI can deliver both security and a performance
advantage. In Sect. 8, we provide experimental evidence that PSFI is competitive
and sometimes outperforms SFI in terms of efficiency of the binary code.

1.3 Challenges in Formally Verified SFI

PSFI inserts the masking operations during compilation and does away with
the a posteriori SFI verifier. The challenge is then to ensure that the security,
enforced at an intermediate representation of the code, still holds for the run-
ning code. Indeed, compiler optimisation often breaks such security [33]. The
insight of Kroll et al. is that a safety theorem of the compiled code (i.e., that its
behaviour is well-defined) can be exploited to obtain a security theorem for that
same compiled code, guaranteeing that it makes no memory accesses outside its
sandbox. We explain this in more detail in Sect. 2.2.

One challenge we face with this approach is that it is far from evident that
the sandboxing operations and hence the transformed program have well-defined
behaviour. An unsafe language such as C admits undefined behaviours (e.g. bit-
wise operations on pointers), which means that it is possible for the observational
behaviour of a program to differ depending on the level of optimisation. This is
not a compiler bug: compilers only guarantee semantics preservation if the code
to compile has a well-defined semantics [36]. Therefore, our SFI transformation
must turn any program into a program with a well-defined semantics.

The seminal paper of Kroll et al. emphasises that the absence of unde-
fined behaviour is a prerequisite but they do not provide a transformation that
enforces this property. More precisely, their transformation may produce a pro-
gram with undefined behaviours (e.g. because the input program had unde-
fined behaviours). This fact was one of the motivation for the present work, and
explains the need for a new PSFI technique. One difficulty is to remove unde-
fined behaviours due to restrictions on pointer arithmetic. For example, bitwise
operators on pointers have undefined C semantics, but traditional masking oper-
ations of SFI rely heavily on these operators. Another difficulty is to deal with

502 F. Besson et al.

indirect function calls and ensure that, as prescribed by the C standard, they
are resolved to valid function pointers. To tackle these problems, we propose an
original sandboxing transformation which unlike previous proposals is compliant
with the C standard [13] and therefore has well-defined behaviour.

1.4 Contributions

We have developed and proved correct CompCertSfi, the first full-fledged, fully
verified implementation of SFI inside a C compiler. The SFI transformation is
performed early in the compilation chain, thereby permitting the generated code
to benefit from existing optimisations that are performed by the back-end. The
technical contributions behind CompCertSfi can be summarised as follows.

– An original design and implementation of the SFI transformation based on
well-defined pointer arithmetic and which supports function pointers. This
novel design of the SFI transformation is necessary for the safety proof.

– A machine-checked proof of the security and safety of the SFI transforma-
tion. Our formal development is available online [1].

– A small, lightweight runtime system for managing the sandbox, built using a
standard program loader and configured by compiler-generated information.

– Experimental evidence demonstrating that the portable SFI approach is com-
petitive and sometimes even outperforms traditional SFI, in particular state-
of-the-art implementations of (P)Native Client.

The rest of the paper is organised as follows. In Sect. 2, we present background
information about the CompCert compiler (Sect. 2.1) and the PSFI approach
(Sect. 2.2). Section 3 provides an overview of the layout of the sandbox and the
masking operations implementing our SFI. In Sect. 4 we explain how to overcome
the problem with undefined pointer arithmetic and define masking operations
with a well-defined C semantics. Section 5 describes how control-flow integrity in
the presence of function pointers can be achieved by a sligthly more flexible SFI
policy which allows reads in well-defined areas outside the sandbox. Section 6
specifies the SFI policy in more detail, and describes the formal Coq proofs
of safety and security. Section 7 presents the design of our runtime library and
how it exploits compiler support. Experimental results are detailed in Sect. 8.
Section 9 presents related work and Sect. 10 concludes.

2 Background

This section presents background information about the CompCert compiler
[18] and the Portable Software Fault Isolation proposed by Kroll et al. [16].

2.1 CompCert

The CompCert compiler [18] is a machine-checked compiler programmed and
proved correct using the Coq proof-assistant [22]. It compiles C programs down

Compiling Sandboxes: Formally Verified Software Fault Isolation 503

Fig. 1. Cminor syntax

to assembly code through a succession of compiler passes which are shown to be
semantics preserving. CompCert features an architecture independent front-
end. The back-end supports four main architectures: x86, ARM, PowerPC and
RiscV. To target all the back-ends without additional effort, our secure trans-
formation is performed in the compiler front-end, at the level of the Cminor
language that is the last architecture-independent language of the CompCert
compiler chain. Our transformation can obviously be applied on C programs by
first compiling them into Cminor, and then applying the transformation itself.

The Cminor language is a minimal imperative language with explicit stack
allocation of certain local variables [19]. Its syntax is given in Fig. 1. Constants
range over 32-bit and 64-bit integers but also IEEE floating-point numbers.
It is possible to get the address of a global variable gl or the address of the
stack allocated local variables (i.e., stk denotes the address of the current stack
frame). In CompCert parlance, a memory chunk κ specifies how many bytes
need to be read (resp. written) from (resp. to) memory and whether the result
should be interpreted as a signed or unsigned quantity. For instance, the memory
chunk is16 denotes a 16-bit signed integer and f64 denotes a 64-bit floating-
point number. In Cminor, memory accesses, written [e]κ, are annotated with the
relevant memory chunk κ. Expressions are built from pseudo-registers, constants,
unary (�) and binary (�) operators. CompCert features the relevant unary and
binary operators needed to encode the semantics of C. Expressions are side-effect
free but may contain memory reads.

Instructions are fairly standard. Similarly to a memory read, a memory store
[e1]κ = e2 is annotated by a memory chunk κ. In Cminor, a function call such
as e(e1 . . . , en)σ represents an indirect function call through a function pointer
denoted by the expression e, σ is the signature of the function and e1 . . . , en are
the arguments. A direct call is a special case where the expression e is a constant
(function) pointer. Cminor is a structured language and features a conditional,
a block construct {s} and an infinite loop loop s. Exiting the nth enclosing loop
or block can be done using an exit n instruction. Cminor is structured but
gotos towards a symbolic label lb are also possible. Returning from a function is
done by a return instruction. Cminor is equipped with a small-step operational
semantics. The intra-procedural and inter-procedural control flows are modelled
using an explicit continuation which therefore contains a call stack.

CompCert Soundness Theorem. Each compiler pass is proved to be
semantics preserving using a simulation argument. Theorem 1 states semantics
preservation.

504 F. Besson et al.

Theorem 1 (Semantics Preservation). If the compilation of program p suc-
ceeds and generates a target program tp, then for any behaviour beh of program
tp there exists a behaviour of p, beh ′, such that beh improves beh ′.

In this statement, a behaviour is a trace of observable events that are typi-
cally generated when performing external function calls. CompCert classifies
behaviours depending on whether the program terminates normally, diverges or
goes wrong. A goes wrong behaviour corresponds to a situation where the pro-
gram semantics gets stuck (i.e., has an undefined behaviour). In this situation,
the compiler has the liberty to generate a program with an improved behaviour
i.e., the semantics of the transformed program may be more defined (i.e., it may
not get stuck at all or may get stuck later on).

The consequence is that Theorem 1 is not sufficient to preserve a safety prop-
erty because the target program tp may have behaviours that are not accounted
for in the program p and could therefore violate the property. Corollary 1 states
that in the absence of going-wrong behaviour, the behaviours of the target pro-
gram are a subset of the behaviours of the source program.

Corollary 1 (Safety preservation). Let p be a program and tp be a target
program. Consider that none of the behaviours of p is a going-wrong behaviour.
If the compilation of p succeeds and generates a target program tp, then any
behaviour of program tp is a behaviour of p.

As a consequence, any (safety) property of the behaviours of p is preserved by
the target program tp. In Sect. 2.2, we show how the PSFI approach leverages
Corollary 1 to transfer an isolation property obtained at the Cminor level to
the assembly code.

Going-wrong behaviours in CompCert. As safety is an essential property
of our PSFI transformation, we give below a detailed account of the going-wrong
behaviours of the CompCert languages with a focus on Cminor.

Undefined evaluation of expressions. CompCert’s runtime values are dynami-
cally typed and defined below:

values � v ::= undef | int(i32) | long(i64) | single(f32) | float(f64) | ptr(b, o)
Values are built from numeric values (32-bit and 64-bit integers and floating point
numbers), the undef value representing an indeterminate value, and pointer
values made of a pair (b, o) where b is a memory block identifier and o is an
offset which, depending on the architecture, is either a 32-bit or a 64-bit integer.

For Cminor, like all languages of CompCert, the unary (�) and binary
(�) operators are not total. They may directly produce going-wrong behaviours
e.g. in case of division by int(0). They may also return undef if (i) the argu-
ments are not in the right range e.g. the left-shift int(i) << int(32); or (ii)
the arguments are not well-typed e.g. int(i) +int float(f). Pointer arithmetic
is strictly conforming to the C standard [13] and any pointer operation that is
implementation-defined according to the standard returns undef .

Compiling Sandboxes: Formally Verified Software Fault Isolation 505

Fig. 2. Pointer arithmetic in CompCert

The precise semantics of pointer operations is given in Fig. 2. For simplicity,
we provide the semantics for a 64-bit architecture. Pointer operations are often
only defined provided that the pointers are valid, written V , or weakly valid,
written W . This validity condition requires that the offset o of a pointer ptr(b, o)
is strictly within the bounds of the block b. The weakly valid condition refers
to a pointer whose offset is either valid or one-past-the-end of the block b. Any
pointer arithmetic operation that is not listed in Fig. 2 returns undef . This is
in particular the case for bitwise operations which are typically used for the
masking operation needed to implement SFI.

The indeterminate value undef is not per se a going-wrong behaviour. Yet,
branching over a test evaluating to undef , performing a memory access over an
undef address and returning undef from the main function are going-wrong
behaviours.

Memory accesses are ruled by a unified memory model [20] that is used through-
out the whole compiler. The memory is made of a collection of separated blocks.
For a given block, each offset o below the block size is given a permission
p ∈ {r,w, . . . } and contains a memory value

mval � mv ::= undef | byte(b) | [ptr(b, o)]n

where b is a concrete byte value and [ptr(b, o)]n represents the nth byte of the
pointer ptr(b, o) for n ∈ {1 . . . 8}. A memory write storev(κ,m, a, v) is only
defined if the address a is a pointer ptr(b, o) to an existing block b such that
the memory locations (b, o), . . . , (b, o+ | κ | −1) have the permission w and the
offset o satisfies the alignment constraint of κ. A memory read loadv(κ,m, a)
is only defined under similar conditions with the additional restriction that not
reading all the consecutive fragments of a pointer returns undef .

Control-flow transfers may go-wrong if the target of the control-flow transfer is
not well-defined. Hence, a goto lb instruction goes wrong if, in the current func-
tion, there is no statement labelled by lb; and an exit n instruction goes wrong
if there are less than n enclosing blocks around the statement containing the
exit instruction. A conditional if e then s1 else s2 goes wrong if the expression
e does not evaluate to int(i) for some i. Also, the execution goes wrong if the

506 F. Besson et al.

last statement of a function is not a return instruction. Last but not least, a
function call x := e(e1 . . . , en)σ goes wrong if the expression e does not evaluate
to a pointer ptr(b, 0) where b is a function pointer with signature σ.

We show in Sect. 4 how our transformation ensures that pointer arithmetic
and memory accesses are always well-defined. Section 5 shows how we make sure
indirect calls are always correctly resolved. Section 6 shows that, together with
other statically checkable verifications, our PSFI transformation rules out all
possible going-wrong behaviours.

2.2 Portable Software Fault Isolation

Kroll, Stewart and Appel have pioneered the concept of Portable Software Fault
Isolation (PSFI) [16] whereby SFI is enforced by a pass of the compiler front-end
that is architecture independent. The main expected advantage is that isolation
is implemented, once and for all, for any target architecture. Moreover, the gen-
erated code is optimised by the back-end passes of the compiler. Compared to
traditional SFI, there is no architecture-specific binary verifier but instead the
compiler enters the TCB. The key insight of Kroll et al. is to leverage a formally
verified compiler, namely CompCert, to transfer a security proof of isolation
obtained at the Cminor level through the compiler back-end, with minimal
proof effort. In the following, we recall the only basic properties that a Cminor
SFI transformation needs to satisfy so that isolation holds at assembly level.

In CompCert’s terms, the sandbox is identified by a dedicated memory
block sb. A Cminor program is secure (Property 1) under the condition that all
its memory accesses are performed within the sandbox.

Property 1 (Program security). A Cminor program p is secure if all its memory
accesses are within the sandbox block sb.

After compilation, the assembly code is secure if its observable behaviours are
the same as the observable behaviours of the Cminor program. In order to
apply CompCert’s semantics preservation theorem (more precisely Corollary 1),
it remains to ensure that the Cminor program has a well-defined semantics
(Property 2).

Property 2 (Program safety). A Cminor program p is safe if all its behaviours
are well-defined, i.e., not wrong.

Kroll et al. state Property 1 by means of an instrumented Cminor seman-
tics which gets stuck in case of memory accesses outside the sandbox. They
prove formally that the additional semantic safeguards are never triggered for a
transformed program.

Kroll et al. also sketch some necessary steps to prove the Property 2 of safety
but do not propose a formal proof. This leaves open a number of challenging
issues such as whether it is feasible to define a masking operation that has a
defined Cminor semantics and how to deal with indirect function calls through
function pointers, More generally, the work leaves open whether a formal proof

Compiling Sandboxes: Formally Verified Software Fault Isolation 507

of Property 2 on safety is possible given the restrictions of CompCert’s semantics
(notably pointer arithmetic) and without relying on axioms asserting properties
of an external masking primitive. One of the central contributions of this work
is to provide a positive answer to this question and propose solutions to these
issues where neither the sandboxing of memory accesses nor the sandboxing
of function pointers is part of a TCB. The transformation that circumvents
the limitations imposed by pointer arithmetic is original and, we surmise, is
a necessary component to transfer security down to assembly. For a precise
comparison with Kroll et al. see Sect. 9).

3 A Thread-Aware Sandbox

The memory address space of a C program is partitioned into a runtime stack
of frames, a heap and a dedicated space for global variables. The address space
of a sandboxed program is re-organised to fit into a single global variable, sb,
where the global variables, the heap and the stack frames are relocated. Figure 3a
depicts the memory layout of the program after our SFI transformation. Each
global variable is relocated and allocated in the sandbox at a given offset, and
each global memory access of the program is translated into a memory access in
the sandbox. For managing the heap it suffices to use a sandbox-aware malloc
implementation that allocates memory inside the sandbox.

To prevent buffer overflows, a standard approach consists in introducing a so-called
shadow stack that is used to store the function stack frames. Our implementation
supports multi-threaded applications and therefore there are as many shadow stacks
as there are threads. Upon thread creation, we allocate a novel shadow stack in the
sandbox. The shadow-stack pointer is passed as an additional argument to each function
call. This is efficient when arguments are passed by register, with the only drawback
of reserving an additional register. Frames are allocated by incrementing the shadow-
stack pointer at function entry. All accesses to the original stack are then translated into
accesses to the sandbox shadow stack. The following Example 1 and the code snippet
in Fig. 3 illustrate the essence of the transformation.

Fig. 3. Sandbox transformation

508 F. Besson et al.

Example 1. The Cminor program of Fig. 3b declares a global variable g initialised to
the 64-bit integer 5. The function foo allocates a stack frame of 8 bytes that will be
used to store a 64-bit local variable. By convention, the current stack frame is called
stk. The function foo calls the function bar with as arguments the value of g and the
address of the local variable stk; and returns the value, presumably updated by bar,
of the local variable.

Syntactically, the program of Fig. 3c only performs memory accesses on the global
sandbox sb variable. The size of sb variable is 2k for some predefined k. At thread
creation, a shadow stack is allocated by our sandbox-aware malloc in the sandbox after
the statically allocated global variables. For our program, the unique global variable g
is stored at offset 0 and spans over 8 bytes. Therefore, the initial value of the shadow-
stack pointer sp is 8. After the transformation, the function foo reserves the space
for the local variable stk by incrementing the pseudo-register sp. The function bar
is called with the incremented shadow-stack pointer sp1, the value stored at offset 0
in the sandbox (i.e., the value of the global variable g) and the address of the local
variable stk which is given by the value of the stack pointer sp. At function exit, the
value of the local variable stk is returned by dereferencing the shadow-stack pointer sp.

Our SFI transformation enforces the isolation security policy stipulating that all
memory accesses are performed within the sandbox sb—at the Cminor level. However,
this holds because the semantics gets stuck (i.e., the semantics goes wrong) whenever
the program performs an access outside the bounds of the sandbox. As explained earlier,
the compiler is free to translate this into an insecure program that would escape the
sandbox at runtime. To get a formal security guarantee, it is necessary to transform
further the Cminor program to rule out any behaviour that goes wrong i.e., ensure
Property 2. Given the numerous undefined behaviours of the C language, ruling out any
going-wrong behaviour may seem a daunting task. In general, this requires to ensure
both memory safety and control-flow integrity. The following two sections describe how
we can exploit the SFI transformation and the knowledge that all memory accesses are
inside the sandbox to ensure both memory safety and control-flow integrity.

4 Memory-Safe Masking

For SFI, memory safety is obtained by making sure that every memory access is per-
formed inside the sandbox. Starting from an analysis of the standard SFI solution, we
present our own design which satisfies the additional requirements of being compliant
with the semantic restrictions of CompCert and with a strict interpretation of the C
standard.

4.1 Standard SFI Masking of Addresses

Standard SFI transformations ensure memory safety by masking memory accesses. The
gist of it is to allocate a sandbox sb of size 2k at a 2k aligned memory address, say &sb =
tag × 2k. Under those constraints, enforcing that an address A is within the bounds
of the sandbox can essentially be done by replacing the high-address bits by those of
tag . Using bitwise operations, this can be done by the expression (A&(2k−1))|tag×2k,
where & is the bitwise and and | is the bitwise or. More visually, this can be written
(A&1 · · · 1

︸ ︷︷ ︸

k

)|tag 0 · · · 0
︸ ︷︷ ︸

k

.

Compiling Sandboxes: Formally Verified Software Fault Isolation 509

At binary level, this masking transformation is defined and the cost is modest: two
bitwise operations. However, this masking operation has no well-defined C semantics.
This is also the case for the semantics of CompCert and in particular for the Cminor
language. The reason is twofold: bitwise operations over pointer values return undef
and concrete addresses (e.g. tag × 2 k) are not pointers for CompCert where they are
represented by a block and an offset (see Fig. 2).

4.2 Specialised Masking for 32-Bit Sandboxes

For 32-bit sandboxes, there exists a variant of the sandboxing primitive which has the
advantages (1) that the sandbox address does not need to be aligned; (2) that the cost
of masking may be reduced to a single instruction. In its simplest form, the masking
primitive is defined by

&sb + (A − &sb)64→32→64

where &sb is the symbolic address of the sandbox. The subtraction of &sb extracts
the offset of the pointer and the double (unsigned) cast 64 → 32 → 64 has the effect
of truncating the offset to a 32-bit quantity that is therefore within the bounds of a
32-bit sandbox. At first sight, this masking is less efficient than the standard masking
but it is efficient for typical address computations which require both displacement and
scaling (e.g. A = t + k + k′ ∗ i32→64 where t is a 64-bit address, k and k′ are constants
and i is a 32-bit integer). Assuming that each cast or arithmetic operation is mapped
to a single instruction1, the masked address A can be computed using 8 instructions:
4 instructions for computing the address A and 4 more for the sandboxing primitive.
Using simple properties of modular arithmetic, it is possible to distribute the 64 → 32
cast over addition and multiplication to obtain the following equivalent formulation of
the sandboxed address:

&sb + A′
32→64 with A′ = t64→32 + c1 + c2 ∗ i

where c1 and c2 are compile-time constants: c1 = (k − &sb)64→32 and c2 = k′
64→32.

Using this formulation, the address A′ still requires 4 instructions but the cost of the
sandboxing is reduced to 2 instructions making it on par with the standard sandboxing.
On x86, 32-bit registers are just zero-extended 64-bit registers. Therefore, the cast
A′

32→64 is actually redundant and the overhead induced by the sandboxing is reduced
to a single instruction. Our experiments (see Sect. 8.2) validate the practical advantage
of this encoding.

Still, as for the standard sandboxing, this sanboxing primitive has no semantics
in CompCert due to the limitations of pointer arithmetic. As a consequence, the
solution of Kroll et al. [16] does not give actual code for the masking primitive, but
rather axiomatise its behaviour as an external function. This prevents optimisations
such as common subexpression elimination or function inlining from happening and
induces the cost of a function call for each memory access.

4.3 Towards Well-Defined Pointer Arithmetic

To illustrate the limitations of pointer arithmetic, we examine the semantic behaviour
of the standard sandboxing primitive (the specialised sandboxing primitive has similar

1 Some architecture have rich addressing modes allowing for more compact encodings.

510 F. Besson et al.

issues). The standard sandboxing primitive can be written (A&(2k−1)) |&sb where &sb
is the address of the sandbox variable. If sb is allocated at runtime at address tag × 2 k

for some tag, this formulation is equivalent at binary level. Again, this heavily relies
on pointer arithmetic that is undefined and on information about where the sandbox
is linked at runtime.

Consider the alternative formulation (A&(2 k−1)) + &sb where the bitwise | is
replaced by a +. This formulation has the advantage that incrementing a pointer,
here sb, is well-defined (see Fig. 2). As on modern hardware, both addition and bitwise
operations take a single cycle, the difference in efficiency should be negligible. Moreover,
at least for x86, the addition can be compiled into the addressing mode.

Still, this does not solve our issue. To understand this, suppose that A is a pointer.
In this case, the bitwise &, whose purpose is to extract the pointer offset, is still unde-
fined. Therefore, the whole expression (A&(2k−1)) + &sb is undefined. Because deref-
erencing an undefined expression is a going-wrong behaviour, the compiled program
may have an arbitrary runtime behaviour and escape the sandbox. A prerequisite for
our masking primitive is therefore to ensure that the evaluation is defined i.e., different
from undef . As all the semantic operators of CompCert are strict in undef (if any
argument is undef , so is the result), a necessary condition is that A is not undef . As
A can be obtained from any expression, a challenge is to ensure that every expression
evaluates to a defined value. A particular difficulty is that the many undefined pointer
operations (see Fig. 2) cannot be detected by runtime checks.

4.4 Arithmetisation of the Heap

To tackle this challenge and ensure that every computation is defined, we propose
an original and radical approach which ensures syntactically that pointers are neither
stored in memory nor in local variables. As a result, the program is only manipulating
integer values and memory addresses are only constructed by the sandboxing primi-
tives. This approach implies, as a side-effect, that our previously undefined masking
primitives are defined. Let asb be the runtime address of the symbolic address &sb of
the sandbox. The masking of an address A can be written

A′ +&sb

where A′ is either defined by A′ = A&(2k−1) or A′ = (A − asb)64→32→64 . As A is
necessarily an integer, A′ is necessarily a defined integer and therefore A′+&sb returns
a defined pointer ptr(sb, o) that is necessarily inside the sandbox.

An additional subtlety is that memory accesses are indexed by a memory chunk κ
which mandates an alignment constraint (e.g. the chunk i64 mandates an 8-byte aligned
address). As a result, the masking primitive is parameterised by the chunk κ and the
masking primitive for i64 is A′&mski64 +&sb where mski64 = (2 k−3−1) × 2 3 .

Only computing over numeric values is facilitated by the fact that the sandboxed
program is only manipulating pointers relative to a single object, the sandbox. There-
fore, a solution could be to only compute with pointer offsets. This is not totally
satisfactory because the null pointer (i.e., 0) would be undistinguishable from the base
pointer ptr(sb, 0). Instead, we use the integer asb that is the integer runtime address
of the sandbox (i.e., we have asb = &sb) and perform the following transformation t
over program expressions.

Compiling Sandboxes: Formally Verified Software Fault Isolation 511

t(&sb) = asb
t(c) = c for c ∈ {i32 , i64 , f32 , f64}
t(�e) = � t(e)
t(e1�e2) = t(e1)� t(e2)
t([e]κ) = [mskκ(t(e))]

The operators � and � ensure that, if the expressions are well-typed, they never return
the undef value. Typical examples include division, modulus, and bitwise shifts. We
transform expressions so that they evaluate to an arbitrary value when their original
semantics is undefined. For example, we transform the left-shift operations on 32-bit
integers so that the resulting expression always has a shift amount less than 32:

Similarly, we transform divisions and modulus in the following way, to rule out the
undefined cases of division by zero and signed division of MIN_SIGNED by -1:

a/b � (a+(a==MIN_SIGNED & b==-1))/(b+(b==0)).

We can prove that the resulting division expression is always defined. Most of the other
expressions are always defined and do not need further transformations.

5 Enforcement of Control-Flow Integrity

Correct sandboxing of code requires some degree of control-flow integrity. Existing
SFI implementations enforce a weak form of control-flow integrity which only ensures
that jumps are aligned and within a sandbox of code. This is achieved by inserting a
masking operation before indirect jumps, that will mask the target address to ensure
that the jump is within the sandbox. Additional padding with no-ops is inserted to
ensure that all the instructions are indeed aligned [30,37,38]. We enforce a stronger,
more traditional, form of control-flow integrity where any control-flow transfer has a
well-defined Cminor semantics.

5.1 Relaxation of the Cminor SFI Property

Intraprocedural control-flow integrity is ensured by simple syntactic checks. For
instance, they ensure that a goto lb has a corresponding label lb and that an exit n
has at least n enclosing blocks. The semantics of Cminor prescribes that function calls
and returns necessarily match. For this to still hold at the assembly level where the
return address is explicitly stored in the stack frame, it is sufficient to prove that the
Cminor program has no going-wrong behaviour. To ensure control-flow integrity, the
only remaining issue is due to indirect calls through function pointers. Our control-flow
integrity counter-measure implements software trampolines and ensures that an indi-
rect call with signature σ can only be resolved by a function pointer towards a function
with signature σ.

For this purpose, the existing Cminor SFI security policy i.e., Property 1, which
rules out any memory access outside the sandbox is too restrictive. As we shall see,
the implementation of trampolines necessitates controlled memory reads, outside the
sandbox, within compiler-generated variables. To accommodate for this extension, we
propose a slightly relaxed SFI security property which, in addition to memory accesses
inside the sandbox, authorises other memory reads in read-only regions.

512 F. Besson et al.

Property 3. A Cminor program is secure if all its memory accesses are within either
the sandbox block sb or some read-only memory.

This relaxed property still ensures the integrity of the runtime because all memory
writes are confined to the sandbox. Note that Property 3 and Property 1 are equivalent
if the trusted runtime library has no read-only memory. This can be achieved at modest
cost by modifying slightly the source code and remove the C type qualifier const which
instructs the compiler that the memory is read-only.

5.2 Control-Flow Integrity of Indirect Calls

In Sect. 4, we have eluded the presence of function pointers. They actually perfectly
fit our strategy of encoding pointers by integers. In this case, each function pointer is
encoded as an index and the trampoline code translates the index into a valid function
pointer.

Consider a function f of signature σ and suppose that the function pointer &f
is compiled into the index i. The reverse mapping from indexes to function point-
ers is obtained from a compiler-generated array variable Aσ such that Aσ[i] = &f .
The array variable Aσ is made of all the function pointers with signature σ. The
array variable is also padded with a default function pointer such that its length
is a power of two. At the call site, the instruction e(e1 . . . , en)σ is transformed into
[te&mskσ +&Aσ](te1 , . . . , ten)σ where te, te1 . . . , ten are transformed expressions such
that all memory accesses are masked and mskσ is the binary mask ensuring that the
index te is within the bounds of the variable Aσ. In our actual implementation, we opti-
mise direct calls and in this case bypass the trampoline. Therefore, when the expression
e is a constant pointer &f to an existing function with signature σ, we generate directly
(&f)(te1 . . . , ten). As a result, only C code using indirect calls goes through the tram-
poline code.

Though our implementation only exploits the relaxation of Property 3 for the sake of
trampolines, a more aggressive implementation could sometimes avoid to relocate read-
only memory inside the sandbox. This could have a positive impact on optimisations
which exploit the immutability of read-only memory.

6 Safety and Security Proofs

We next give an overview of our fully verified Coq proof of security and safety.

6.1 Security Proof

Property 3 is an informal formulation of our security property that is formally stated as
a Cminor instrumented semantics. This semantics mimics the Cminor semantics with
the exception that memory accesses are restricted: a memory read is either performed
within the sandbox or in a read-only memory region; a memory write is necessarily
performed within the sandbox.

The goal of the security proof is to show that all the memory accesses abide by
the restrictions of the instrumented semantics. This is stated by Theorem 2 which
establishes that for a transformed program tp, no behaviour of the standard Cminor
semantics gets stuck for the instrumented Cminor semantics.

Compiling Sandboxes: Formally Verified Software Fault Isolation 513

Theorem 2 (Security). For any transformed program tp, every behaviour of tp in the
standard semantics of Cminor is also a behaviour of tp in the instrumented semantics.

The proof is based on the standard technique of forward simulation that is used in
CompCert to ensure the preservation of semantics by compiler passes. Here, the for-
ward simulation has the distinctive feature of relating the same (transformed) program
equipped with a standard and an instrumented semantics. Since the only difference
between the two semantics is that memory accesses must be secure, the crux of the
proof lies in the correctness of the masking primitive, as stated in the following lemma.

Lemma 1. For any masked expression e, if e evaluates to some pointer ptr(b, o), then
b is the block of the sandbox i.e., sb.

The proof relies on the definition of the masking primitive: a masked expression e is
of the form e′ + &sb. Since &sb evaluates to the pointer ptr(sb, 0), then if the whole
expression evaluates to a pointer ptr(b, o), necessarily b = sb.

6.2 Safety Proof
In order to benefit from CompCert’s semantic preservation theorem and transport
our security proof to the compiled assembly program, we must also prove that the
sandboxed program is safe, i.e., it never gets stuck. We address all the going-wrong
behaviours that we enumerated in Sect. 2.1. The well-formedness properties of a pro-
gram (calling only defined functions, accessing only defined variables, jumping only
to defined labels, exiting from no more blocks than currently enclosed in) are checked
statically and make the transformation fail if they are violated. Next, the memory
accesses require the addresses to be valid and adequately aligned: our masking oper-
ation ensures that this is always the case. Then, the evaluation of expressions must
always be defined: this has mostly been dealt with the arithmetisation of the memory
(Sect. 4.4). Finally, function calls should always be performed with the appropriate
number of well-typed arguments. This is easy to check statically for direct function
calls, but requires trampolines (as described in Sect. 5.2) for indirect function calls.
The following sandbox invariant encapsulates all these conditions.

Definition 1 (Sandbox Invariant). A state S of program P satisfies the sandbox
invariant if the following conditions are satisfied:

1. indirect control-flow transfers are well-defined in P (e.g. goto instructions in the
functions of P only jump to defined labels);

2. every function of P ends with an explicit return;
3. every function of P is well-typed;
4. every function of P starts by explicitly initialising its local variables;
5. the global array Aσ for signature σ contains function pointers to functions of sig-

nature σ;
6. the environment for local variables and the memory in S only contain properly

initialised, numerical values.

Properties 1, 2, 3 are ensured by a set of syntactic checks over the bodies of all the
functions of the program. Property 4 is enforced by our function transformation which
inserts assignments that explicitly initialise all declared local variables. Property 5 is
ensured by construction of the arrays for function pointers. All these properties can
be established solely on the program body and do not change during the execution of
the program. By contrast, Property 6 cannot be checked statically and depends on the
state of the program at each point.

514 F. Besson et al.

Safe Evaluation of Expressions. A necessary condition for the safe evaluation of
expressions is that the program is well typed. CompCert does not generate these type
guarantees so we have integrated a verified (simple) type-inference algorithm for Cmi-
nor programs. Type-checking alone is not sufficient to rule out undefined behaviours
of C operators, but together with the transformations explained in Sect. 4.4, we prove
the following lemma about the evaluation of transformed expressions.

Lemma 2 (Safe evaluation of expressions). In a memory state and a well-typed
environment for local variables containing only defined numerical values, the transfor-
mation of any well-typed expression e evaluates to a defined numerical value.

Lemma 2 follows directly from the properties of our expression transformation.

Safety of Calls through Trampolines. As mentioned in Sect. 5, we implement
software trampolines to secure function calls through function pointers. To ensure the
safety of indirect function calls, we maintain a map smap from function signatures
to the corresponding array identifier and the length of this array. The proof of safety
relies on the fact that for every function f of signature σ present in a program, we
have smap(σ) = (Aσ, lσ) such that all offsets lower than lσ in Aσ contain a pointer
to a function of signature σ. The safety proof of indirect calls itself is not hard, but
we need to set up this signature map and establish invariants relating it to the global
environment of the program.

Safety Theorem. Considering the invariants defined in Definition 1, we prove
Lemma 3 which is our main technical result.

Lemma 3 (Safety). For any Cminor program state S that satisfies the invariants,
either S is a final state or there exists a sequence of steps from S to some S′ such that
S′ also satisfies the invariants.

A subtlety of the proof is that at function entry, the local variables carry the value
undef and therefore the sandbox invariant only holds after they have been initialised
by a sequence of assignments (see Property 4 of Definition 1).

Using Lemma 3, we can show Property 2, in the form of Theorem 3.

Theorem 3 (Safety of the transformation). All behaviours of the transformed
program are well-defined, i.e., not wrong.

Proof. A going-wrong behaviour occurs precisely when a state is reached, from which
no further step can be taken, though it is not a final state. Lemma3, together with a
proof that the initial state of the transformed prorgam satisfies the invariants, tells us
that no such reachable state exists, concluding the proof. ��

As a result, we benefit from CompCert’s semantic preservation theorem and can
transport the security proof down to the assembly program.

Theorem 4 (Security of the compiled program). Let p be a transformed Cminor
program. If p compiles into the assembly program tp, then tp is secure.

The proof uses Corollary 1 and Theorem 2 to conclude that the behaviours of tp are
the same as those of p, and hence secure.

Compiling Sandboxes: Formally Verified Software Fault Isolation 515

7 SFI Runtime and Library

Our modified CompCert compiler, CompCertSfi, takes as input a C program unit in
the form of a list of C files. Each C file is first compiled down to the Cminor language
using the existing passes of the CompCert compiler. Then, all the Cminor programs
are syntactically linked [14] together to form the program unit to be isolated inside the
sandbox. CompCertSfi comes with a lightweight runtime and a generic support for
interfacing with a trusted library (e.g. a libC). An originality of our approach is that
the runtime is using a standard program loader. Moreover, the runtime gets some of
its configuration through compiler-generated variables.

7.1 Loading the SFI Application

The sandboxed code is linked with our runtime library by a linker script which specifies
where to load at runtime the sb variable, viewed as the data segment. The compiler
also emits a sandbox configuration map which contains the symbolic address of the
sandbox, its numeric value at runtime, the total size of the sandbox and the range of
addresses reserved for global variables.

Our runtime code is executed before starting the sandboxed main function. It first
checks that the sandbox is properly linked according to the sandbox configuration map,
sets the shadow-stack pointer and initialises the sandbox heap using our sandbox-aware
implementation of malloc based on ptmalloc32.

By construction, our runtime stack is free of buffer overruns. Yet, if the recursion
is too deep, the stack may overflow. Therefore, the runtime inserts an unmapped page
guard at the bottom of the stack and intercepts the segmentation fault. This protection
suffices provided that the size of each function stack frame does not exceed a page;
which can be checked at compile-time. Eventually, after copying its arguments inside
the sandbox, the runtime calls the main function of the sandboxed application.

7.2 Monitoring Calls to the Runtime Library

The runtime library is trusted and therefore part of the TCB. To ensure isolation, each
call towards the runtime library is monitored to check the validity of the arguments.
For this purpose, a call to a library function, say foo, is renamed in the object file into a
call to a function sb_foo which sanitises its arguments before really calling the function
foo. The verifications are library specific but usually straightforward to implement. For
stdio, the FILE structures are allocated by the runtime outside of the sandbox. Hence,
the returned FILE* cannot be dereferenced to corrupt the FILE structure. To prevent
the sandboxed program to forge FILE* pointers, the runtime maintains at all time the
set of valid FILE*. For variadic functions e.g., printf, we statically compile the format
into a sequence of safe primitive calls. (We reject programs using formats computed
at runtime). For functions in string, we check beforehand that the range of memory
accesses is within the range of the sandbox. We also allow callbacks and therefore a
runtime function may take a function pointer as argument. To ensure that the function
is valid, the runtime is using the trampoline programming pattern presented in Sect. 5.2.

2 http://www.malloc.de/malloc/ptmalloc3-current.tar.gz.

http://www.malloc.de/malloc/ptmalloc3-current.tar.gz

516 F. Besson et al.

7.3 Communication via Global Variables

Programs may not only communicate via function calls but also directly via global
variables. For the libC, this includes e.g. stdout or errno. To ensure isolation, Com-
pCertSfi relocates those variables inside the sandbox but also generates a global
variable map which is an array variable of the form

{&n1, o1, . . . ,&ni, oi, . . . ,&nm, om}
where &ni is the symbolic address of a global variable and oi is its offset in the sandbox.
Using this information, the runtime has the ability to synchronise the values of the
variables inside and outside the sandbox. For example, at program startup, the value
of stdout (a stream pointer) is copied inside the sandbox at the relevant offset. This
allows the sandboxed program to call stdio functions but protects the integrity of the
stream. For errno, it is the responsibility of each runtime library call to synchronise
the value of errno in the sandbox.

8 Experiments

We have evaluated our PSFI approach over the CompCert benchmark suite and a port
of Quake. All the experiments have been carried over a quad-core Intel 6600U laptop
at 2.6 GHz with 16 GB of RAM running Linux Fedora 27. For Quake, we explain
how to adapt the code to our runtime library and verify the absence of noticeable
slowdown. For the other benchmarks, we make a more detailed performance evaluation
and compare CompCertSfi with CompCert, gcc, clang but also the state-of-the-
art (P)NaCl implementation of SFI. In our experiments, all the benchmarks are ordered
by increasing running time. Moreover, for computing a runtime overhead, the running
time is obtained by taking the harmonic mean of 3 consecutive runs.

8.1 Porting Quake

Quake engines come in various flavours and we use the tyr-quake3 implementation
linking with Xlib. The port requires the addition of several functions to our runtime
library from Xlib and the libC. Most of them are not problematic and require no or
little modification. For instance, the getopt function which is used to parse command-
line options is using the global variables optarg, optind, opterr, and optopt. As
explained in Sect. 7.3, the runtime library copies the values of these variables at reserved
places inside the sandbox.

Other functions, e.g. gethostbyname, allocate memory on their own and return a
pointer to this piece of data which is therefore not accessible to the sandboxed code. For
the specific case of gethostbyname, the library provides the function gethostbyname_r
which, instead of allocating memory, takes as argument a data-structure that is filled
by the function. In our case, we pass as argument a sandbox allocated piece of memory.
This does not solve our problem entirely as inner pointers may still point outside the
sandbox. To cope with this issue, we perform a deep copy of the relevant piece of data
inside the sandbox.

A last issue is that the video memory is shared between the application and the X
server using the system call shmat. Fortunately, the libC provides the relevant flags to

3 https://disenchant.net/git/tyrquake.git.

https://disenchant.net/git/tyrquake.git

Compiling Sandboxes: Formally Verified Software Fault Isolation 517

bind shared memory at a specific address. Hence, we were able to allocate it inside the
sandbox thus allowing a seamless communication with the X server. After these mod-
ifications, the sandboxed Quake runs without noticeable slowdown which is encour-
aging and an indication of the good overall performance of our sandboxing technique.
In the following, we complement this with a more precise runtime evaluation for the
CompCert benchmarks.

8.2 PSFI Overhead: Impact of Sandboxing Primitives

Next, we compare the efficiency of a standard masking primitive (Sect. 4.1) with a
specialised version for 32-bit sandboxes (Sect. 4.2).

Figure 4 shows the overhead of the standard sandboxing primitive with respect to
the specialised sandboxing primitive. There are 6 benchmarks for which the overhead
incurred by the standard sandboxing is above 10% reaching 40% for 2 benchmarks.
These cases illustrate the significant performance advantage that is sometime obtained
by the specialised sandboxing. For some benchmarks, the standard sandboxing outper-
forms our optimised sandboxing. Yet when it does it is by a very small margin (below
3%). Overall, for the vast majority of our benchmarks, the specialised sandboxing
primitive is very competitive.

In Sect. 4.1, we gave theoretical arguments for the advantage of the specialised
sandboxing. Another argument comes from the fact that the specialised sandboxing
is easier to optimise. First, note that the standard and the specialised sandboxing
primitives are both using a bitwise mask but for different purposes. For the standard
primitive, it is used to enforce that the pointer is within the sandbox bounds but
also to enforce alignment constraints. For the specialised primitive, it is only used to
enforce alignment constraints. Using the existing CompCert dataflow framework, we
have implemented an alignment analysis that is quite effective at removing redundant
alignment masks. To enable more optimisations, we explicit alignment constraints in
the Cminor code program (e.g. by specifying that function arguments of a pointer
type are necessarily aligned). Thus, our experimental results are explained by both the
theoretical advantages given in Sect. 4.2 and the effectiveness of our alignment analysis.

Fig. 4. Overhead of standard w.r.t specialised sandboxing

518 F. Besson et al.

8.3 PSFI Overhead: Impact of Compiler Back-End

As a second experiment, we evaluate the overhead of our PSFI transformation for various
compilers: CompCert, gcc and clang. CompCert is a moderately optimising com-
piler and the benchmarks run significantly faster using gcc and clang. In Fig. 5, the
baseline is given by the minimum of the execution times of the three compilers without
PSFI instrumentation. The black bar is the overhead of a compiler (e.g. CompCert),
with respect to the baseline and the grey bar is the overhead of the same compiler but
with the PSFI transformation (e.g. CompCertSfi). In order to use gcc and clang, we
implement a trusted decompiler from our securedCminor programs toClight, a subset
of C in CompCert. These Clight programs are then compiled with gcc or clang.

For a fair comparison, we should compare programs for which we actually have
a reasonable security guarantee. We have a formal proof of security and safety (see
Sect. 6) for the sandboxed Cminor program, and we are confident that our syntax-
directed decompiler preserves this property. For CompCert, this would suffice to pre-
serve the security of the compiled Clight code, but this is not the case for gcc and
clang because of semantic discrepancies between the compilers. To limit this risk,
we have set the compiler flags to instruct gcc and clang to adhere to the speci-
ficity of CompCert semantics: signed integer arithmetic is defined and so are wraps
around (flag -fwrapv), strict aliasing is irrelevant (flag -fno-strict-aliasing), and
floating-point arithmetic is strictly IEEE 754 compliant (flags -frounding-math and
-fsignaling-nans). We also instruct the compilers to ignore any knowledge about the
C library (-fno-builtin).

Our experimental results are shown in Fig. 5. In Fig. 5a, we have the overhead of
CompCert and CompCertSfi. The overhead of CompCert over gcc and clang is
expected and corroborates existing results4. For 10% of the benchmarks, the overhead
CompCertSfi over CompCert is negligible and sometimes the PSFI transformation
even improves performance. Those are programs for which the PSFI transformation
introduces few masking operations, if any. For 41% of the benchmarks, the overhead is
below 10% and can be considered, for most applications, a reasonable efficiency/security
trade-off. For all the other benchmarks except binarytrees and vmach, the overhead is
below 25%. The two remaining benchmarks have a significant overhead reaching 82%
for binarytrees. This corresponds to programs which are memory intensive and where
sandboxing cannot be optimised.

In Fig. 5b and c, we perform the same experiments but with gcc and clang. The
results have some similarities but also have visible differences. For about 60% of the
benchmarks the overhead is below 20%. Moreover, for both compilers, the average over-
head is similar: 22% for gccSfi and 24% for clangSfi. Yet, on average gccSfi makes
a better job at optimising our benchmarks and best clangSfi for about 75% of the
benchmarks. For the rest of the benchmarks, we observe a significant overhead, up to
20%, indicating that the PSFI transformation hinders certain aggressive optimisations.
The results also seem to indicate that optimisations are fragile as the overhead is not
always consistent across compilers. The case of the integr benchmark is particularly
striking because it runs with negligible overhead for clangSfi but exhibits the worst
case overhead for gccSfi. The integr program is using a function pointer inside a loop
and we suspect that gccSfi, unlike clangSfi, fails to optimise the program due to the
inserted trampoline code. Though less striking, the benchmarks fftw and raytracer
follow the opposite trend; these are programs where the overhead of clangSfi is much
higher than gccSfi.
4 http://compcert.inria.fr/compcert-C.html#perfs.

http://compcert.inria.fr/compcert-C.html#perfs

Compiling Sandboxes: Formally Verified Software Fault Isolation 519

Fig. 5. Overhead of PSFI:CompCert, clang, gcc, (P)NaCl

8.4 PSFI Versus (P)NaCl

We also compare our compiler-based SFI approach with (P)NaCl [30], which to our
knowledge is one of the most mature implementations of SFI. Figure 5d shows the
overhead of CompCertSfi, gccSfi, clangSfi with respect to (P)NaCl. The baseline
is given by the best among NaCl and PNaCl. The best of clangSfi and gccSfi is
given in dark gray and CompCertSfi is given in light grey.

We first analyse the results of CompCertSfi. Our benchmarks are ordered by
increasing runtime. The first 5 benchmarks have a runtime below one second. They are
not representative of the performance of both approaches but only illustrate the fact
that (P)NaCl has a startup penalty due to the verification of the binary and the setup
of the sandbox. The overhead peaks above 75% for two programs (i.e., fib and integr).
As the PSFI transformation keeps fib unmodified and only inserts a trampoline call in
integr, these programs only highlight the limited optimisations performed by Com-
pCert. Of the remaining benchmarks, 40% of them run faster or have similar speed
with CompCertSfi. For those benchmarks, the average overhead of CompCertSfi
w.r.t (P)NaCl is around 9%. Except for a few programs whose overhead skyrockets
due to CompCert not being specialised for speed, we can say that CompCertSfi
performance is comparable to (P)NaCl, having programs with better speed in both
sides and a large number having similar results.

520 F. Besson et al.

We also matched gccSfi/clangSfi against (P)NaCl to compare the impact on
performance of more aggressive optimisations. Here 60% of the programs are faster
with gccSfi/clangSfi. Among the remaining programs, lzw and chomp are programs
for which the (P)NaCl code runs faster than the optimised gcc clang code without
the PSFI transformation. As (P)NaCl is based on clang, more investigation is needed
to understand this paradox that may be explained by code running outside the sand-
box i.e. the trusted runtime library. Among the remaining benchmarks, binarytrees
and lists still show a noticeable overhead. Those are recursive micro-benchmarks for
which our PSFI is costly (see Fig. 5). For lists, 99% of the time is spent in a tight loop
where only a single address is masked. For binarytrees, 70% of the time is spent in the
runtime code of malloc and free and therefore this highlights the fact that our imple-
mentation is less efficient than the (P)NaCl counterpart. Overall these results indicate
that our implementation of SFI is competitive with (P)NaCl, given similar compilers.
Furthermore speed can be improved with more sandbox-dedicated optimisations; these
would be harder for (P)NaCl to check.

9 Related Work

Since Wahbe et al. [35] proposed their initial technique for SFI, there has been a number
of proposals for efficiently confining untrusted software to a memory sandbox (see [23,
24,31,32,34,37,39]). One of the most prominent is Google’s Native Client (NaCl) [37],
which provides an infrastructure for executing untrusted native code in a web browser.
NaCl was specifically targeted at executing computation-intensive applications without
incurring a performance penalty. Certain features (in particular self-modifying code)
were ruled out. These restrictions were addressed in a subsequent work [3].

RockSalt [24] is an SFI verifier for x86 code which has been developed and formally
verified with the proof assistant Coq. The major contribution of RockSalt is to provide a
formal model of the x86 architecture, from which it is possible to extract a decoder for a
subset of the very rich set of x86 instructions, and build a verifier for the NaCl sandbox
policy. Their experiments show that the formally verified checker performs marginally
better than the NaCl verifier. In comparison, our approach avoids the complexities of
the x86 instruction set by relying on the CompCert compiler back-end to produce
binaries whose adherence to the sandbox policy is guaranteed by a combination of
a sandbox verification at a higher level (Cminor) and the CompCert’s correctness
theorem.

ARMor [39] is using the binary rewriter Diablo [28] to implement SFI for ARM
processors. Using an untrusted program analysis, a proof of SFI safety is automatically
constructed using the HOL theorem prover. ARMor was tested with some programs
of the MiBench benchmark [11], namely BitCount and StringSearch. These programs
required 2.5 and 8 h respectively to prove the memory safety and control-flow integrity
of the executables, which means that the approach is not practically viable as it is.

Kroll et al. [16] proposed PSFI as an alternative methodology to the standard,
verification-based SFI. In PSFI, the sandbox is built by inserting the necessary mask-
ing instructions during compilation. This means that the correctness of the transfor-
mation can be argued at an intermediate stage in the compilation where the program
representation retains a high-level structure. Our work extends the seminal proposal in
a number of ways that we detail below. Unlike Kroll et al., we exclude from the TCB
the masking primitive and the trampoline mechanism for calling external functions.
In our implementation, these crucial components are written entirely in Cminor and

Compiling Sandboxes: Formally Verified Software Fault Isolation 521

proved correct without introducing trusted, unproved, code. Kroll et al. sketch a proof
of safety but do not identify the issue of pointer arithmetic. To sidestep the semantics
limitation of pointer arithmetic, we introduce a compile-time encoding of pointer as
integers. This transformation is instrumental for our Coq verified proof of safety, which
itself is mandatory to transfer security down to assembly.

Since the seminal work of Norrish [27], several works propose formal semantics of
the C language [8,12,15]. All these share the limitations of CompCert with respect to
pointer arithmetic. Recent works specifically aim at providing a more defined semantics
for pointers. The proposal of Besson et al. [4] is able to cope with most existing low-level
pointer manipulations and has been ported to CompCert [5,6]. Yet, it has nonetheless
limitations and the design of our PSFI transformation would not benefit from the
increased expressiveness. The semantics of Kang et al. [14] is more permissive because,
after a cast, a pointer is indistinguishable from an integer value. To our knowledge, their
semantics has not been ported to the CompCert compiler. Our SFI transformation
has the advantage of being compatible with the existing semantics of CompCert with
the caveat that pointers needs to be explicitly compiled into integers.

10 Conclusion

We have presented CompCertSfi, a formally verified implementation of Software Fault
Isolation based on the CompCert compiler. Our approach provides security guaran-
tees at runtime when the source code may be malicious or has security vulnerabilities
but the build process is trusted. This is typically the case when a final product is built
using code originating from multiple third parties. Our work shows that it is possible
to perform security-enhancing compilation that is both formally verified and competi-
tive with existing approaches in terms of efficiency. CompCertSfi does not rely on a
posteriori binary verification for guaranteeing security, and hence has a reduced TCB
compared to traditional SFI solutions. The reduction in TCB is obtained through a
formal, machine-checked proof of the fact that the security guaranteed by our SFI trans-
formation in the compiler front-end, still holds at the assembly level. Key to achieving
this property has been to fine-tune the transformation (and in particular its pointer
manipulations) to ensure that the secured program has a well-defined semantics.

The impact of SFI has been evaluated on a series of benchmarks, showing that the
transformed code can in a few cases be more efficient, and that the average runtime
overhead incurred is about 9%. We have evaluated the impact of back-end optimi-
sation on the transformed code on three different compilers. The gains vary, with
clang being more efficient than CompCert and gcc, and CompCert being slightly
more efficient than gcc. The experiments show that CompCertSfi combined with an
aggressive back-end optimiser can sometimes achieve performances superior to Native
Client implementations. In addition, there is still room for further optimisation of the
generated code. We have observed that existing optimisations are sometimes hindered
by our SFI transformation, so we gain by having more optimisation before the SFI
transformation. We also intend to investigate optimisations for removing redundant
sandboxing operations and in particular hoisting sandboxing outside loops.

522 F. Besson et al.

References

1. Supplementary material. https://www.irisa.fr/celtique/ext/compcertsfi
2. Andronick, J., Chetali, B., Ly, O.: Using Coq to verify Java CardTM applet isolation

properties. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 335–
351. Springer, Heidelberg (2003). https://doi.org/10.1007/10930755_22

3. Ansel, J., et al.: Language-independent sandboxing of just-in-time compilation and
self-modifying code. In: PLDI, pp. 355–366 (2011)

4. Besson, F., Blazy, S., Wilke, P.: A precise and abstract memory model for C using
symbolic values. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 449–468.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1_24

5. Besson, F., Blazy, S., Wilke, P.: CompCertS: a memory-aware verified C compiler
using pointer as integer semantics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 81–97. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_6

6. Besson, F., Blazy, S., Wilke, P.: A verified CompCert front-end for a memory model
supporting pointer arithmetic and uninitialised data. J. Autom. Reasoning (2018,
accepted for publication)

7. Besson, F., de Grenier de Latour, T., Jensen, T.P.: Interfaces for stack inspection.
J. Funct. Program. 15(2), 179–217 (2005)

8. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
POPL. ACM (2012)

9. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5_18

10. Guanciale, R., Nemati, H., Dam, M., Baumann, C.: Provably secure memory iso-
lation for Linux on ARM. J. Comput. Secur. 24(6), 793–837 (2016)

11. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
MiBench: a free, commercially representative embedded benchmark suite, pp. 3–14.
Institute of Electrical and Electronics Engineers Inc., United States (2001)

12. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: PLDI,
pp. 336–345. ACM, June 2015

13. ISO: ISO C Standard 1999. Technical report (1999)
14. Kang, J., Kim, Y., Hur, C., Dreyer, D., Vafeiadis, V.: Lightweight verification of

separate compilation. In: POPL, pp. 178–190. ACM (2016)
15. Krebbers, R.: An operational and axiomatic semantics for non-determinism and

sequence points in C. In: POPL. ACM (2014)
16. Kroll, J.A., Stewart, G., Appel, A.W.: Portable software fault isolation. In: CSF,

pp. 18–32. IEEE (2014)
17. Larus, J.R., Hunt, G.C.: The singularity system. Commun. ACM 53(8), 72–79

(2010)
18. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–

115 (2009)
19. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446

(2009)
20. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In:

Program Logics for Certified Compilers. Cambridge University Press (2014)

https://www.irisa.fr/celtique/ext/compcertsfi
https://doi.org/10.1007/10930755_22
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18

Compiling Sandboxes: Formally Verified Software Fault Isolation 523

21. Leroy, X., Rouaix, F.: Security properties of typed applets. In: Vitek, J., Jensen,
C.D. (eds.) Secure Internet Programming, Security Issues for Mobile and Dis-
tributed Objects. LNCS, vol. 1603, pp. 147–182. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48749-2_7

22. The Coq development team: The Coq proof assistant reference manual (2017).
http://coq.inria.fr, version 8.7

23. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: Proceed-
ings of the 15th Conference on USENIX Security Symposium, USENIX-SS 2006,
vol. 15. USENIX Association (2006)

24. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: better,
faster, stronger SFI for the x86. In: PLDI, pp. 395–404. ACM (2012)

25. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM Press (1997)
26. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: OSDI,

pp. 229–243. ACM (1996)
27. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
28. Put, L.V., Chanet, D., Bus, B.D., Sutter, B.D., Bosschere, K.D.: DIABLO: a reli-

able, retargetable and extensible link-time rewriting framework. In: In IEEE Inter-
national Symposium On Signal Processing And Information Technology (2005)

29. Richards, G., Hammer, C., Nardelli, F.Z., Jagannathan, S., Vitek, J.: Flexible
access control for JavaScript. In: OOPSLA, pp. 305–322. ACM (2013)

30. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: 19th USENIX Security Symposium, pp. 1–12. USENIX Association
(2010)

31. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: Proceedings of the 19th USENIX Conference on Security, USENIX
Security 2010, p. 1. USENIX Association (2010)

32. Shu, R., et al.: A study of security isolation techniques. ACM Comput. Surv. 49(3),
50:1–50:37 (2016)

33. Simon, L., Chisnall, D., Anderson, R.J.: What you get is what you C: controlling
side effects in mainstream C compilers. In: EuroS&P, pp. 1–15. IEEE (2018)

34. Sinha, R., et al.: A design and verification methodology for secure isolated regions.
In: PLDI, pp. 665–681. ACM (2016)

35. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: SOSP, pp. 203–216. ACM (1993)

36. Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., Kaashoek, M.: Undefined
behavior: what happened to my code? In: APSYS (2012)

37. Yee, B., et al.: Native client: a sandbox for portable, untrusted x86 native code.
In: S&P, pp. 79–93. IEEE (2009)

38. Yee, B., et al.: Native client: a sandbox for portable, untrusted x86 native code.
Commun. ACM 53(1), 91–99 (2010)

39. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: fully verified software fault
isolation. In: EMSOFT, pp. 289–298. ACM (2011)

https://doi.org/10.1007/3-540-48749-2_7
http://coq.inria.fr

524 F. Besson et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Fixing Incremental Computation

Derivatives of Fixpoints, and the Recursive Semantics
of Datalog

Mario Alvarez-Picallo1(B), Alex Eyers-Taylor2, Michael Peyton Jones2(B),
and C.-H. Luke Ong1

1 University of Oxford, Oxford, UK
{mario.alvarez-picallo,luke.ong}@cs.ox.ac.uk

2 Semmle Ltd., Oxford, UK
alexet@semmle.com, me@michaelpj.com

Abstract. Incremental computation has recently been studied using the
concepts of change structures and derivatives of programs, where the
derivative of a function allows updating the output of the function based
on a change to its input. We generalise change structures to change
actions, and study their algebraic properties. We develop change actions
for common structures in computer science, including directed-complete
partial orders and Boolean algebras. We then show how to compute
derivatives of fixpoints. This allows us to perform incremental evaluation
and maintenance of recursively defined functions with particular applica-
tion generalised Datalog programs. Moreover, unlike previous results, our
techniques are modular in that they are easy to apply both to variants
of Datalog and to other programming languages.

Keywords: Incremental computation · Datalog · Semantics ·
Fixpoints

1 Introduction

Consider the following classic Datalog program1, which computes the transitive
closure of an edge relation e:

tc(x, y) ← e(x, y)
tc(x, y) ← e(x, z) ∧ tc(z, y)

The semantics of Datalog tells us that the denotation of this program is
the least fixpoint of the rule tc. Kleene’s fixpoint Theorem tells us that we can
compute this fixpoint by repeatedly applying the rule until the output stops
changing, starting from the empty relation. For example, supposing that e =
{(1, 2), (2, 3), (3, 4)}, we get the following evaluation trace:

1 See [1, part D] for an introduction to Datalog.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 525–552, 2019.
https://doi.org/10.1007/978-3-030-17184-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_19

526 M. Alvarez-Picallo et al.

Iteration Newly deduced facts Accumulated data in tc
0 {} {}
1 {(1, 2), (2, 3), (3, 4)} {(1, 2), (2, 3), (3, 4)}
2 {(1, 2), (2, 3), (3, 4),

(1, 3), (2, 4)}
{(1, 2), (2, 3), (3, 4),
(1, 3), (2, 4)}

3 {(1, 2), (2, 3), (3, 4),
(1, 3), (2, 4), (1, 4), (1, 4)}

{(1, 2), (2, 3), (3, 4),
(1, 3), (2, 4), (1, 4)}

4 (as above) (as above)

At this point we have reached a fixpoint, and so we are done.
However, this process is quite wasteful. We deduced the fact (1, 2) at every

iteration, even though we had already deduced it in the first iteration. Indeed,
for a chain of n such edges we will deduce O(n2) facts along the way.

The standard improvement to this evaluation strategy is known as “semi-
naive” evaluation (see [1, section 13.1]), where we transform the program into a
delta program with two parts:

– A delta rule that computes the new facts at each iteration.
– An accumulator rule that accumulates the delta at each iteration to compute

the final result.

In this case our delta rule is simple: we only get new transitive edges at iteration
n + 1 if we can deduce them from transitive edges we deduced at iteration n.

Δtc0(x, y) ← e(x, y)
Δtci+1(x, y) ← e(x, z) ∧ Δtci(z, y)

tc0(x, y) ← Δtc0(x, y)
tci+1(x, y) ← tci(x, y) ∨ Δtci+1(x, y)

Iteration Δtci tci

0 {(1, 2), (2, 3), (3, 4)} {(1, 2), (2, 3), (3, 4)}
1 {(1, 3), (2, 4)} {(1, 2), (2, 3), (3, 4),

(1, 3), (2, 4)}
2 {(1, 4)} {(1, 2), (2, 3), (3, 4),

(1, 3), (2, 4), (1, 4)}
3 {} (as above)

This is much better—we have turned a quadratic computation into a linear
one. The delta transformation is a kind of incremental computation: at each stage
we compute the changes in the rule given the previous changes to its inputs.

But the delta rule translation works only for traditional Datalog. It is com-
mon to liberalise the formula syntax with additional features, such as disjunc-
tion, existential quantification, negation, and aggregation.2 This allows us to
2 See, for example, LogiQL [26,32], Datomic [18], Souffle [38,42], and DES [36], which

between them have all of these features and more. We do not here explore supporting
extensions to the syntax of rule heads, although as long as this can be given a
denotational semantics in a similar style our techniques should be applicable.

Fixing Incremental Computation 527

write programs like the following, where we compute whether all the nodes in a
subtree given by child have some property p:

treeP (x) ← p(x) ∧ ¬∃y.(child(x, y) ∧ ¬treeP (y))

The body of this predicate amounts to recursion through an universal quan-
tifier (encoded as ¬∃¬). We would like to be able to use semi-naive evaluation
for this rule too, but the standard definition of semi-naive transformation is not
well defined for the extended program syntax, and it is unclear how to extend it
(and the correctness proof) to handle such cases.

It is possible, however, to write a delta program for treeP by hand; indeed,
here is a definition for the delta predicate (the accumulator is as before):3

Δi+1treeP (x) ←p(x)
∧ ∃y.(child(x, y) ∧ ΔitreeP (y))
∧ ¬∃y.(child(x, y) ∧ ¬treePi(y))

This is a correct delta program (in that using it to iteratively compute treeP
gives the right answer), but it is not precise because it derives some facts repeat-
edly. We will show how to construct correct delta programs generally using a
program transformation, and show how we have some freedom to optimize within
a range of possible alternatives to improve precision or ease evaluation.

Handling extended Datalog is of more than theoretical interest—the research
in this paper was carried out at Semmle, which makes heavy use of a commercial
Datalog implementation to implement large-scale static program analysis [7,37,
39,40]. Semmle’s implementation includes parity-stratified negation4, recursive
aggregates [34], and other non-standard features, so we are faced with a dilemma:
either abandon the new language features, or abandon incremental computation.

We can tell a similar story about maintenance of Datalog programs. Main-
tenance means updating the results of the program when its inputs change, for
example, updating the value of tc given a change to e. Again, this is a kind of
incremental computation, and there are known solutions for traditional Datalog
[25], but these break down when the language is extended.

There is a piece of folkloric knowledge in the Datalog community that hints
at a solution: the semi-naive translation of a rule corresponds to the derivative
of that rule [8,9, section 3.2.2]. The idea of performing incremental computation
using derivatives has been studied recently by Cai et al. [14], who give an account
using change structures. They use this to provide a framework for incrementally
evaluating lambda calculus programs.

3 This rule should be read as: we can newly deduce that x is in treeP if x satisfies the
predicate, and we have newly deduced that one of its children is in treeP , and we
currently believe that all of its children are in treeP .

4 Parity-stratified negation means that recursive calls must appear under an even
number of negations. This ensures that the rule remains monotone, so the least
fixpoint still exists.

528 M. Alvarez-Picallo et al.

However, Cai et al.’s work isn’t directly applicable to Datalog: the tricky part
of Datalog’s semantics are recursive definitions and the need for the fixpoints, so
we need some additional theory to tell us how to handle incremental evaluation
and maintenance of fixpoint computations.

This paper aims to bridge that gap by providing a solid semantic foundation
for the incremental computation of Datalog, and other recursive programs, in
terms of changes and differentiable functions.

Contributions. We start by generalizing change structures to change actions
(Sect. 2). Change actions are simpler and weaker than change structures, while
still providing enough structure to handle incremental computation, and have
fruitful interactions with a variety of structures (Sects. 3 and 6.1).

We then show how change actions can be used to perform incremental eval-
uation and maintenance of non-recursive program semantics, using the formula
semantics of generalized Datalog as our primary example (Sect. 4). Moreover, the
structure of the approach is modular, and can accommodate arbitrary additional
formula constructs (Sect. 4.3).

We also provide a method of incrementally computing and maintaining fix-
points (Sect. 6.2). We use this to perform incremental evaluation and mainte-
nance of recursive program semantics, including generalized recursive Datalog
(Sect. 7). This provides, to the best of our knowledge, the world’s first incremen-
tal evaluation and maintenance mechanism for Datalog that can handle negation,
disjunction, and existential quantification.

We have omitted the proofs from this paper. Most of the results have rou-
tine proofs, but the proofs of the more substantial results (especially those in
Sect. 6.2) are included in an extended report [3], along with some extended
worked examples, and additional material on the precision of derivatives.

2 Change Actions and Derivatives

Incremental computation requires understanding how values change. For exam-
ple, we can change an integer by adding a natural to it. Abstractly, we have a
set of values (the integers), and a set of changes (the naturals) which we can
“apply” to a value (by addition) to get a new value.

This kind of structure is well-known—it is a set action. It is also very natural
to want to combine changes sequentially, and if we do this then we find ourselves
with a monoid action.

Using monoid actions for changes gives us a reason to think that change
actions are an adequate representation of changes: any subset of A → A which
is closed under composition can be represented as a monoid action on A, so we
are able to capture all of these as change actions.

2.1 Change Actions

Definition 1. A change action is a tuple:

Â := (A,ΔA,⊕A)

Fixing Incremental Computation 529

where A is a set, ΔA is a monoid, and ⊕A : A × ΔA → A is a monoid action
on A.5

We will call A the base set, and ΔA the change set of the change action. We
will use · for the monoid operation of ΔA, and 0 for its identity element. When
there is no risk of confusion, we will simply write ⊕ for ⊕A.

Examples. A typical example of a change action is (A∗, A∗,++) where A∗ is the
set of finite words (or lists) of A. Here we represent changes to a word made by
concatenating another word onto it. The changes themselves can be combined
using ++ as the monoid operation with the empty word as the identity, and this
is a monoid action: (a ++ b) ++ c = a ++ (b ++ c).

This is a very common case: any monoid (A, ·,0) can be seen as a change
action (A, (A, ·,0), ·). Many practical change actions can be constructed in this
way. In particular, for any change action (A,ΔA,⊕), (ΔA,ΔA, ·) is also a change
action. This means that we do not have to do any extra work to talk about
changes to changes—we can always take ΔΔA = ΔA (although there may be
other change actions available).

Three examples of change actions are of particular interest to us. First, when-
ever L is a Boolean algebra, we can give it the change actions (L,L,∨) and
(L,L,∧), as well as a combination of these (see Sect. 3.2). Second, the natural
numbers with addition have a change action N̂ := (N, N,+), which will prove
useful during inductive proofs.

Another interesting example of change actions is semiautomata. A semiau-
tomaton is a triple (Q,Σ, T), where Q is a set of states, Σ is a (non-empty) finite
input alphabet and T : Q×Σ → Q is a transition function. Every semiautomaton
corresponds to a change action (Q,Σ∗, T ∗) on the free monoid over Σ∗, with T ∗

being the free extension of T . Conversely, every change action Â whose change
set ΔA is freely generated by a finite set corresponds to a semiautomaton.

Other recurring examples of change actions are:

– Â⊥ := (A,M, λ(a, δa).a), where M is any monoid, which we call the empty
change action on any base set, since it induces no changes at all.

– Â� := (A,A → A, ev), where A is an arbitrary set, A → A denotes the set
of all functions from A into itself, considered as a monoid under composition
and ev is the usual evaluation map. We will call this the “full” change action
on A since it contains every possible non-redundant change.

These are particularly relevant because they are, in a sense, the “smallest” and
“largest” change actions that can be imposed on an arbitrary set A.

Many other notions in computer science can be understood naturally in terms
of change actions, e.g. databases and database updates, files and diffs, Git repos-
itories and commits, even video compression algorithms that encode a frame as
a series of changes to the previous frame.
5 Why not just work with monoid actions? The reason is that while the category of

monoid actions and the category of change actions have the same objects, they have
different morphisms. See Sect. 8.1 for further discussion.

530 M. Alvarez-Picallo et al.

2.2 Derivatives

When we do incremental computation we are usually trying to save ourselves
some work. We have an expensive function f : A → B, which we’ve evaluated
at some point a. Now we are interested in evaluating f after some change δa to
a, but ideally we want to avoid actually computing f(a ⊕ δa) directly.

A solution to this problem is a function f ′ : A × ΔA → ΔB, which given a
and δa tells us how to change f(a) to f(a ⊕ δa). We call this a derivative of a
function.

Definition 2. Let Â and B̂ be change actions. A derivative of a function f :
A → B is a function f ′ : A × ΔA → ΔB such that

f(a ⊕A δa) = f(a) ⊕B f ′(a, δa)

A function which has a derivative is differentiable, and we will write Â → B̂ for
the set of differentiable functions between A and B.6

Derivatives need not be unique in general, so we will speak of “a” derivative.
Functions into “thin” change actions—where a ⊕ δa = a ⊕ δb implies δa = δb—
have unique derivatives, but many change actions are not thin. For example,
(P(N),P(N),∩) is not thin because {0} ∩ {1} = {0} ∩ {2}.

Derivatives capture the structure of incremental computation, but there are
important operational considerations that affect whether using them for compu-
tation actually saves us any work. As we will see in a moment (Proposition 1), for
many change actions we will have the option of picking the “worst” derivative,
which merely computes f(a ⊕ δa) directly and then works out the change that
maps f(a) to this new value. While this is formally a derivative, using it cer-
tainly does not save us any work! We will be concerned with both the possibility
of constructing correct derivatives (Sects. 3.2 and 6.2 in particular), and also in
giving ourselves a range of derivatives to choose from so that we can soundly
optimize for operational value.

For our Datalog case study, we aim to cash out the folkloric idea that incre-
mental computation functions via a derivative. We will construct a derivative
of the semantics of Datalog in stages: first the non-recursive formula semantics
(Sect. 4); and later the full, recursive, semantics (Sect. 7).

2.3 Useful Facts About Change Actions and Derivatives

The Chain Rule. The derivative of a function can be computed composition-
ally, because derivatives satisfy the standard chain rule.

6 Note that we do not require that f ′(a, δa · δb) = f ′(a, δa) · f ′(a ⊕ δa, δb) nor that
f ′(a,0) = 0. These are natural conditions, and all the derivatives we have studied
also satisfy them, but none of the results on this paper require them to hold.

Fixing Incremental Computation 531

Theorem 1 (The Chain Rule). Let f : Â → B̂, g : B̂ → Ĉ be differentiable
functions. Then g ◦ f is also differentiable, with a derivative given by

(g ◦ f)′(x, δx) = g′ (f(x), f ′(x, δx))

or, in curried form
(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x)

Complete change actions and minus operators. Complete change actions
are an important class of change actions, because they have changes between
any two values in the base set.

Definition 3. A change action is complete if for any a, b ∈ A, there is a change
δa ∈ ΔA such that a ⊕ δa = b.

Complete change actions have convenient “minus operators” that allow us to
compute the difference between two values.

Definition 4. A minus operator is a function � : A × A → ΔA such that
a ⊕ (b � a) = b for all a, b ∈ A.

Proposition 1. Given a minus operator �, and a function f , let

f ′
�(a, δa) := f(a ⊕ δa) � f(a)

Then f ′
� is a derivative for f .

Proposition 2. Let Â be a change action. Then the following are equivalent:

– Â is complete.
– There is a minus operator on Â.
– For any change action B̂ all functions f : B → A are differentiable.

This last property is of the utmost importance, since we are often concerned
with the differentiability of functions.

Products and sums. Given change actions on sets A and B, the question
immediately arises of whether there are change actions on their Cartesian prod-
uct A × B or disjoint union A + B. While there are many candidates, there is a
clear “natural” choice for both.

Proposition 3 (Products). Let Â = (A,ΔA,⊕A) and B̂ = (B,ΔB,⊕B) be
change actions.

Then Â × B̂ := (A × B,ΔA × ΔB,⊕×) is a change action, where ⊕× is
defined by:

(a, b) ⊕A×B (δa, δb) := (a ⊕A δa, b ⊕B δb)

532 M. Alvarez-Picallo et al.

The projection maps π1,π2 are differentiable with respect to it. Furthermore,
a function f : A × B → C is differentiable from Â × B̂ into Ĉ if and only if, for
every fixed a ∈ A and b ∈ B, the partially applied functions

f(a, ·) : B → C

f(·, b) : A → C

are differentiable.

Whenever f : A×B → C is differentiable, we will sometimes use ∂1f and ∂2f
to refer to derivatives of the partially applied versions, i.e. if f ′

a : B ×ΔB → ΔC
and f ′

b : A × ΔA → ΔC refer to derivatives for f(a, ·), f(·, b) respectively, then

∂1f : A × ΔA × B → ΔC

∂1f(a, δa, b) := f ′
b(a, δa)

∂2f : A × B × ΔB → ΔC

∂2f(a, b, δb) := f ′
a(b, δb)

Proposition 4 (Disjoint unions). Let Â = (A,ΔA,⊕A) and B̂ =
(B,ΔB,⊕B) be change actions.

Then Â + B̂ := (A + B,ΔA × ΔB,⊕+) is a change action, where ⊕+ is
defined as:

ι1a ⊕+ (δa, δb) := ι1(a ⊕A δa)
ι2b ⊕+ (δa, δb) := ι2(b ⊕B δb)

The injection maps ι1, ι2 are differentiable with respect to Â+B̂. Furthermore,
whenever Ĉ is a change action and f : A → C, g : B → C are differentiable,
then so is [f, g].

2.4 Comparing Change Actions

Much like topological spaces, we can compare change actions on the same base set
according to coarseness. This is useful since differentiability of functions between
change actions is characterized entirely by the coarseness of the actions.

Definition 5. Let Â1 and Â2 be change actions on A. We say that Â1 is coarser
than Â2 (or that Â2 is finer than Â1) whenever for every x ∈ A and change
δa1 ∈ ΔA1, there is a change δa2 ∈ ΔA2 such that x ⊕A1 δa1 = x ⊕A2 δa2.

We will write Â1 ≤ Â2 whenever Â1 is coarser than Â2. If Â1 is both finer
and coarser than Â2, we will say that Â1 and Â2 are equivalent.

The relation ≤ defines a preorder (but not a partial order) on the set of all
change actions over a fixed set A. Least and greatest elements do exist up to
equivalence, and correspond respectively to the empty change action Â⊥ and any
complete change action, such as the full change action Â�, defined in Sect. 2.1.

Fixing Incremental Computation 533

Proposition 5. Let Â2 ≤ Â1, B̂1 ≤ B̂2 be change actions, and suppose the
function f : A → B is differentiable as a function from Â1 into B̂1. Then f is
differentiable as a function from Â2 into B̂2.

A consequence of this fact is that whenever two change actions are equivalent
they can be used interchangeably without affecting which functions are differen-
tiable. One last parallel with topology is the following result, which establishes
a simple criterion for when a change action is coarser than another:

Proposition 6. Let Â1, Â2 be change actions on A. Then Â1 is coarser than
Â2 if and only if the identity function id : A → A is differentiable from Â1 to Â2.

3 Posets and Boolean Algebras

The semantic domain of Datalog is a complete Boolean algebra, and so our next
step is to construct a good change action for Boolean algebras. Along the way, we
will consider change actions over posets, which give us the ability to approximate
derivatives, which will turn out to be very important in practice.

3.1 Posets

Ordered sets give us a constrained class of functions: monotone functions. We
can define ordered change actions, which are those that are well-behaved with
respect to the order on the underlying set.7

Definition 6. A change action Â is ordered if

– A and ΔA are posets.
– ⊕ is monotone as a map from A × ΔA → A
– · is monotone as a map from ΔA × ΔA → ΔA

In fact, any change action whose base set is a poset induces a partial order
on the corresponding change set:

Definition 7. δa ≤Δ δb iff for all a ∈ A it is the case that a ⊕ δa ≤ a ⊕ δb.

Proposition 7. Let Â be a change action on a set A equipped with a partial
order ≤ such that ⊕ is monotone in its first argument. Then Â is an ordered
change action when ΔA is equipped with the partial order ≤Δ.

In what follows, we will extend the partial order ≤Δ on some change set
ΔB pointwise to functions from some A into ΔB. This pointwise order interacts
nicely with derivatives, in that it gives us the following lemma:

7 If we were giving a presentation that was generic in the base category, then this
would simply be the definition of being a change action in the category of posets
and monotone maps.

534 M. Alvarez-Picallo et al.

Theorem 2 (Sandwich lemma). Let Â be a change action, and B̂ be an
ordered change action, and let f : A → B and g : A × ΔA → ΔB be function. If
f↑ and f↓ are derivatives for f such that

f↓ ≤Δ g ≤Δ f↑

then g is a derivative for f .

If unique minimal and maximal derivatives exist, then this gives us a char-
acterisation of all the derivatives for a function.

Theorem 3. Let Â and B̂ be change actions, with B̂ ordered, and let f : A → B
be a function. If there exist f↓↓ and f↑↑ which are unique minimal and maximal
derivatives of f , respectively, then the derivatives of f are precisely the functions
f ′ such that

f↓↓ ≤Δ f ′ ≤Δ f↑↑

This theorem gives us the leeway that we need when trying to pick a deriva-
tive: we can pick out the bounds, and that tells us how much “wiggle room” we
have above and below.

3.2 Boolean Algebras

Complete Boolean algebras are a particularly nice domain for change actions
because they have a negation operator. This is very helpful for computing dif-
ferences, and indeed Boolean algebras have a complete change action.

Proposition 8 (Boolean algebra change actions). Let L be a complete
Boolean algebra. Define

L̂�� := (L,L 	
 L,⊕��)

where

L 	
 L := {(a, b) ∈ L × L | a ∧ b = ⊥}
a ⊕�� (p, q) := (a ∨ p) ∧ ¬q

(p, q) · (r, s) := ((p ∧ ¬s) ∨ r, (q ∧ ¬r) ∨ s)

with identity element (⊥,⊥).
Then L̂�� is a complete change action on L.

We can think of L̂�� as tracking changes as pairs of “upwards” and “down-
wards” changes, where the monoid action simply applies one after the other, with
an adjustment to make sure that the components remain disjoint.8 For example,

8 The intuition that L̂�� is made up of an “upwards” and a “downwards” change action
glued together can in fact be made precise, but the specifics are outside the scope
of this paper.

Fixing Incremental Computation 535

in the powerset Boolean algebra P(N), a change to {1, 2} might consist of adding
{3} and removing {1}, producing {2, 3}. In P(N)�� this would be represented as
({1, 2}) ⊕ ({3}, {1}) = {2, 3}.

Boolean algebras also have unique maximal and minimal derivatives, under
the usual partial order based on implication. The change set is, as usual, given
the change partial order, which in this case corresponds to the natural order on
L × Lop.

Proposition 9. Let L be a complete Boolean algebra with the L̂�� change action,
and f : A → L be a function. Then, the following are minus operators:

a �⊥ b = (a ∧ ¬b,¬a)
a �� b = (a, b ∧ ¬a)

Additionally, f ′
�⊥ and f ′

�� define unique least and greatest derivatives for f .

Theorem 3 then gives us bounds for all the derivatives on Boolean algebras:

Corollary 1. Let L be a complete Boolean algebra with the corresponding
change action L̂��, Â be an arbitrary change action, and f : A → L be a func-
tion. Then the derivatives of f are precisely those functions f ′ : A × ΔA → ΔA
such that

f ′
�⊥ ≤Δ f ′ ≤Δ f ′

��

This makes Theorem 3 actually usable in practice, since we have concrete
definitions for our bounds (which we will make use of in Sect. 4.2).

4 Derivatives for Non-recursive Datalog

We now want to apply the theory we have developed to the specific case of the
semantics of Datalog. Giving a differentiable semantics for Datalog will lead us
to a strategy for performing incremental evaluation and maintenance of Datalog
programs. To begin with, we will restrict ourselves to the non-recursive fragment
of the language—the formulae that make up the right hand sides of Datalog rules.
We will tackle the full program semantics in a later section, once we know how
to handle fixpoints.

Although the techniques we are using should work for any language, Datalog
provides a non-trivial case study where the need for incremental computation is
real and pressing, as we saw in Sect. 1.

4.1 Semantics of Datalog Formulae

Datalog is usually given a logical semantics where formulae are interpreted as
first-order logic predicates and the semantics of a program is the set of models of
its constituent predicates. We will instead give a simple denotational semantics
(as is typical when working with fixpoints, see e.g. [17]) that treats a Datalog
formula as directly denoting a relation, i.e. a set of named tuples, with variables
ranging over a finite schema.

536 M. Alvarez-Picallo et al.

Definition 8. A schema Γ is a finite set of names. A named tuple over Γ is
an assignment of a value vi for each name xi in Γ . Given disjoint schemata
Γ = {x1, . . . , xn} and Σ = {y1, . . . , ym}, the selection function σΓ is defined as

σΓ ({x1 �→ v1, . . . , xn �→ vn, y1 �→ w1, . . . , ym �→ wm}) := {x1 �→ v1, . . . , xn �→ vn}

i.e. σΓ restricts a named tuple over Γ ∪ Σ into a tuple over Γ with the same
values for the names in Γ . We denote the elementwise extension of σΓ to sets
of tuples also as σΓ .

We will adopt the usual closed-world assumption to give a denotation to
negation.

Definition 9. For any schema Γ , there exists a universal relation UΓ . Negation
on relations can then be defined as

¬R := UΓ \ R

This makes RelΓ , the set of all subsets of UΓ , a complete Boolean algebra.

Definition 10. A Datalog formula T whose free term variables are contained
in Γ denotes a function from RelnΓ to RelΓ .

� �Γ : Formula → RelnΓ → RelΓ

If R = (R1, . . . ,Rn) is a choice of a relation Ri for each of the variables Ri,
�T �(R) is inductively defined according to the rules in Fig. 1.

Fig. 1. Formula semantics for Datalog

Since RelΓ is a complete Boolean algebra, and so is RelnΓ , �T �Γ is a function
between complete Boolean algebras. For brevity, we will often leave the schema
implicit, as it is clear from the context.

4.2 Differentiability of Datalog Formula Semantics

In order to actually perform our incremental computation, we first need to pro-
vide a concrete derivative for the semantics of Datalog formulae. Of course, since
�T �Γ is a function between the complete Boolean algebras RelnΓ and RelΓ , and

Fixing Incremental Computation 537

Fig. 2. Upwards and downwards formula derivatives for Datalog

we know that the corresponding change actions ̂RelnΓ �� and ̂RelΓ �� are complete,
this guarantees the existence of a derivative for �T �.

Unfortunately, this does not necessarily provide us with an efficient derivative
for �T �. The derivatives that we know how to compute (Corollary 1) rely on
computing f(a ⊕ δa) itself, which is the very thing we were trying to avoid
computing!

Of course, given a concrete definition of a derivative we can simplify this
expression and hopefully make it easier to compute. But we also know from
Corollary 1 that any function bounded by f ′

�⊥ and f ′
�� is a valid derivative,

and we can therefore optimize anywhere within that range to make a trade-off
between ease of computation and precision.9

There is also the question of how to compute the derivative. Since the change
set for ̂Rel�� is a subset of Rel × Rel, it is possible and indeed very natural
to compute the two components via a pair of Datalog formulae, which allows
us to reuse an existing Datalog formula evaluator. Indeed, if this process is
occurring in an optimizing compiler, the derivative formulae can themselves be
optimized. This is very beneficial in practice, since the initial formulae may be
quite complex.

This does give us additional constraints that the derivative formulae must
satisfy: for example, we need to be able to evaluate them; and we may wish to
pick formulae that will be easy or cheap for our evaluation engine to compute,
even if they compute a less precise derivative.

The upshot of these considerations is that the optimal choice of derivatives
is likely to be quite dependent on the precise variant of Datalog being evaluated,
and the specifics of the evaluation engine. Here is one possibility, which is the
one used at Semmle.

9 The idea of using an approximation to the precise derivative, and a soundness con-
dition, appears in Bancilhon [9].

538 M. Alvarez-Picallo et al.

A concrete Datalog formula derivative. In Fig. 2, we define a “symbolic”
derivative operator as a pair of mutually recursive functions, Δ and ∇, which
turn a Datalog formula T into new formulae that compute the upwards and
downwards parts of the derivative, respectively. Our definition uses an auxiliary
function, X, which computes the “neXt” value of a term by applying the upwards
and downwards derivatives. As is typical for a derivative, the new formulae will
have additional free relation variables for the upwards and downwards deriva-
tives of the free relation variables of T , denoted as ΔR and ∇R respectively.
Evaluating the formula as a derivative means evaluating it as a normal Datalog
formula with the new relation variables set to the input relation changes.

While the definitions mostly exhibit the dualities we would expect between
corresponding operators, there are a few asymmetries to explain.

The asymmetry between the cases for Δ(T ∨ U) and ∇(T ∧ U) is for opera-
tional reasons. The symmetrical version of Δ(T ∨U) is (Δ(T)∧¬U)∨(Δ(U)∧¬T)
(which is also precise). The reason we omit the negated conjuncts is simply that
they are costly to compute and not especially helpful to our evaluation engine.

The asymmetry between the cases for ∃ is because our dialect of Datalog
does not have a primitive universal quantifier. If we did have one, the cases for
∃ would be dual to the corresponding cases for ∀.

Theorem 4 (Concrete Datalog formula derivatives). Let Δ, ∇, X :
Formula → Formula be mutually recursive functions defined by structural induc-
tion as in Fig. 2.

Then Δ(T) and ∇(T) are disjoint, and for any schema Γ and any Dat-
alog formula T whose free term variables are contained in Γ , �T �′

Γ :=
(�Δ(T)�Γ , �∇(T)�Γ) is a derivative for �T �Γ .

We can give a derivative for our treeP predicate by mechanically applying
the recursive functions defined in Fig. 2.

Δ(treeP (x))
= p(x) ∧ ∃y.(child(x, y) ∧ Δ(treeP (y))) ∧ ¬∃y.(child(x, y) ∧ ¬X(treeP (y)))

∇(treeP (x))
= p(x) ∧ ∃y.(child(x, y) ∧ ∇(treeP (y)))

The upwards difference in particular is not especially easy to compute. If we
naively compute it, the third conjunct requires us to recompute the whole of the
recursive part. However, the second conjunct gives us a guard: if it is empty we
then the whole formula will be, so we only need to evaluate the third conjunct
if the second conjunct is non-empty, i.e if there is some change in the body of
the existential.

This shows that our derivatives aren’t a panacea: it is simply hard to compute
downwards differences for ∃ (and, equivalently, upwards differences for ∀) because
we must check that there is no other way of deriving the same facts.10 However,
10 The “support” data structures introduced by [25] are an attempt to avoid this issue

by tracking the number of derivations of each tuple.

Fixing Incremental Computation 539

we can still avoid the re-evaluation in many cases, and the inefficiency is local
to this subformula.

4.3 Extensions to Datalog

Our formulation of Datalog formula semantics and derivatives is generic and
modular, so it is easy to extend the language with new formula constructs: all
we need to do is add cases for Δ and ∇.

In fact, because we are using a complete change action, we can always do
this by using the maximal or minimal derivative. This justifies our claim that
we can support arbitrary additional formula constructs: although the maximal
and minimal derivatives are likely to be impractical, having them available as
options means that we will never be completely stymied.

This is important in practice: here is a real example from Semmle’s variant
of Datalog. This includes a kind of aggregates which have well-defined recursive
semantics. Aggregates have the form

r = agg(p)(vs | T | U)

where agg refers to an aggregation function (such as “sum” or “min”), vs is a
sequence of variables, p and r are variables, T is a formula possibly mentioning
vs, and U is a formula possibly mentioning vs and p. The full details can been
found in Moor and Baars [34], but for example this allows us to write

height(n, h) ←¬∃c.(child(n, c)) ∧ h = 0
∨ ∃h′.(h′ = max(p)(c | child(n, c) | height(c, p)) ∧ h = h′ + 1)

which recursively computes the height of a node in a tree.
Here is an upwards derivative for an aggregate formula:

Δ(r = agg(p)(vs | T | U)) := ∃vs.(T ∧ ΔU) ∧ r = agg(p)(vs | T | U)

While this isn’t a precise derivative, it is still substantially cheaper than re-
evaluating the whole subformula, as the first conjunct acts as a guard, allowing
us to skip the second conjunct when U has not changed.

5 Changes on Functions

So far we have defined change actions for the kinds of things that typically make
up data, but we would also like to have change actions on functions. This would
allow us to define derivatives for higher-order languages (where functions are
first-class); and for semantic operators like fixpoint operators fix : (A → A) → A,
which also operate on functions.

Function spaces, however, differ from products and disjoint unions in that
there is no obvious “best” change action on A → B. Therefore instead of trying
to define a single choice of change action, we will instead pick out subsets of
function spaces which have “well-behaved” change actions.

540 M. Alvarez-Picallo et al.

Definition 11 (Functional Change Action). Given change actions Â and B̂
and a set U ⊆ A → B, a change action Û = (U,ΔU,⊕U) is functional whenever
the evaluation map ev : U × A → B is differentiable, that is to say, whenever
there exists a function ev′ : (U × A) × (ΔU × ΔA) → ΔB such that:

(f ⊕U δf)(a ⊕A δa) = f(a) ⊕B ev′((f, a), (δf, δa))

We will write Û ⊆ Â ⇒ B̂ whenever U ⊆ A → B and Û is functional.

There are two reasons why functional change actions are usually associated
with a subset of U ⊆ A → B. Firstly, it allows us to restrict ourselves to spaces
of monotone or continuous functions. But more importantly, functional change
actions are necessarily made up of differentiable functions, and thus a functional
change action may not exist for the entire function space A → B.

Proposition 10. Let Û ⊆ Â ⇒ B̂ be a functional change action. Then every
f ∈ U is differentiable, with a derivative f ′ given by:

f ′(x, δx) = ev′((f, x), (0, δx))

5.1 Pointwise Functional Change Actions

Even if we restrict ourselves to the differentiable functions between Â and B̂ it
is hard to find a concrete functional change action for this set. Fortunately, in
many important cases there is a simple change action on the set of differentiable
functions.

Definition 12 (Pointwise functional change action). Let Â and B̂ be
change actions. The pointwise functional change action Â ⇒pt B̂, when it
is defined, is given by (Â → B̂, A → ΔB,⊕→), with the monoid structure
(A → ΔB, ·→,0→) and the action ⊕→ defined by:

(f ⊕→ δf)(x) := f(x) ⊕B δf(x)
(δf ·→ δg)(x) := δf(x) ·B δg(x)

0→(x) := 0B

That is, a change is given pointwise, mapping each point in the domain to a
change in the codomain.

The above definition is not always well-typed, since given f : Â → B̂ and
δf : A → ΔB there is no guarantee that f ⊕→ δf is differentiable. We present
two sufficient criteria that guarantee this.

Theorem 5. Let Â and B̂ be change actions, and suppose that B̂ satisfies one
of the following conditions:

– B̂ is a complete change action.
– The change action ̂ΔB := (ΔB,ΔB, ·B) is complete and ⊕B : B × ΔB → B

is differentiable.

Fixing Incremental Computation 541

Then the pointwise functional change action (Â → B̂, A → ΔB,⊕→) is well
defined.11

As a direct consequence of this, it follows that whenever L is a Boolean algebra
(and hence has a complete change action), the pointwise functional change action
Â ⇒pt L̂�� is well-defined.

Pointwise functional change actions are functional in the sense of Defini-
tion 11. Moreover, the derivative of the evaluation map is quite easy to compute.

Proposition 11 (Derivatives of the evaluation map). Let Â and B̂ be
change actions such that the pointwise functional change action Â ⇒pt B̂ is well
defined, and let f : Â → B̂, a ∈ A, δa ∈ ΔA, δf ∈ A → ΔB.

Then the following are both derivatives of the evaluation map:

ev′
1((f, a), (δf, δa)) := f ′(a, δa) · δf(a ⊕ δa)

ev′
2((f, a), (δf, δa)) := δf(a) · (f ⊕ δf)′(a, δa)

A functional change action merely tells us that a derivative of the evaluation
map exists—a pointwise change action actually gives us a definition of it. In
practice, this means that we will only be able to use the results in Sect. 6.2
(incremental computation and derivatives of fixpoints) when we have pointwise
change actions, or where we have some other way of computing a derivative of
the evaluation map.

6 Directed-Complete Partial Orders and Fixpoints

Directed-complete partial orders (dcpos) equipped with a least element, are an
important class of posets. They allow us to take fixpoints of (Scott-)continuous
maps, which is important for interpreting recursion in program semantics.

6.1 Dcpos

As before, we can define change actions on dcpos, rather than sets, as change
actions whose base and change sets are endowed with a dcpo structure, and
where the monoid operation and action are (Scott-)continuous.

Definition 13. A change action Â is continuous if

– A and ΔA are dcpos.
– ⊕ is Scott-continuous as a map from A × ΔA → A.
– · is Scott-continuous as a map from ΔA × ΔA → ΔA.

11 Either of these conditions is enough to guarantee that the pointwise functional
change action is well defined, but it can be the case that B̂ satisfies neither and
yet pointwise change actions into B̂ do exist. A precise account of when pointwise
functional change actions exist is outside the scope of this paper.

542 M. Alvarez-Picallo et al.

Unlike posets, the change order ≤Δ does not, in general, induce a dcpo on
ΔA. As a counterexample, consider the change action (N, N,+), where N denotes
the dcpo of natural numbers extended with positive infinity.

A key example of a continuous change action is the L̂�� change action on
Boolean algebras.

Proposition 12 (Boolean algebra continuity). Let L be a Boolean algebra.
Then L̂�� is a continuous change action.

For a general overview of results in domain theory and dcpos, we refer the
reader to an introductory work such as [2], but we state here some specific results
that we shall be using, such as the following, whose proof can be found in [2,
Lemma 3.2.6]:

Proposition 13. A function f : A × B → C is continuous iff it is continuous
in each variable separately.

It is a well-known result in standard calculus that the limit of an absolutely
convergent sequence of differentiable functions {fi} is itself differentiable, and
its derivative is equal to the limit of the derivatives of the fi. A consequence of
Proposition 13 is the following analogous result:

Corollary 2. Let Â and B̂ be change actions, with B̂ continuous and let {fi}
and {f ′

i} be I-indexed directed sets of functions in A → B and A × ΔA → ΔB
respectively.

Then, if for every i ∈ I it is the case that f ′
i is a derivative of fi, then

⊔

i∈I f ′
i

is a derivative of
⊔

i∈I fi.

6.2 Fixpoints

Fixpoints appear frequently in the semantics of languages with recursion. If we
can give a generic account of how to compute fixpoints using change actions,
then this gives us a compositional way of extending a derivative for the non-
recursive semantics of a language to a derivative that can also handle recursion.
We will later apply this technique to create a derivative for the semantics of full
recursive Datalog (Sect. 7.2).

Iteration functions. Over directed-complete partial orders we can define a
least fixpoint operator lfp in terms of the iteration function iter:

iter : (A → A) × N → A

iter(f, 0) := ⊥
iter(f, n) := fn(⊥)
lfp : (A → A) → A

lfp(f) :=
⊔

n∈N

iter(f, n) (where f is continuous)

Fixing Incremental Computation 543

The iteration function is the basis for all the results in this section: we can
take a partial derivative with respect to n, and this will give us a way to get
to the next iteration incrementally; and we can take the partial derivative with
respect to f , and this will give us a way to get from iterating f to iterating
f ⊕ δf .

Incremental computation of fixpoints. The following theorems provide a
generalization of semi-naive evaluation to any differentiable function over a con-
tinuous change action. Throughout this section we will assume that we have a
continuous change action Â, and any reference to the change action N̂ will refer
to the monoidal change action on the naturals defined in Sect. 2.1.

Since we are trying to incrementalize the iterative step, we start by taking
the partial derivative of iter with respect to n.

Proposition 14 (Derivative of the iteration map with respect to n). Let
Â be a complete change action and let f : A → A be a differentiable function.
Then iter is differentiable with respect to its second argument, and a partial
derivative is given by:

∂2iter : (A → A) × N × ΔN → ΔA

∂2iter(f,0,m) := iter(f,m) � iter(f, 0)
∂2iter(f, n + 1,m) := f ′(iter(f, n), ∂2iter(f, n,m))

By using the following recurrence relation, we can then compute ∂2iter along
with iter simultaneously:

recurf : A × ΔA → A × ΔA

recurf (⊥,⊥) := (⊥, f(⊥) � ⊥)
recurf (a, δa) := (a ⊕ δa, f ′(a, δa))

Which has the property that

recurn
f (⊥,⊥) = (iter(f, n), ∂2iter(f, n, 1))

This gives us a way to compute a fixpoint incrementally, by adding succes-
sive changes to an accumulator until we reach it. This is exactly how semi-naive
evaluation works: you compute the delta relation and the accumulator simulta-
neously, adding the delta into the accumulator at each stage until it becomes
the final output.

Theorem 6 (Incremental computation of least fixpoints). Let Â be a
complete, continuous change action, f : Â → Â be continuous and differentiable.

Then lfp(f) =
⊔

n∈N
(π1(recurn

f (⊥,⊥))).12

12 Note that we have not taken the fixpoint of recurf , since it is not continuous.

544 M. Alvarez-Picallo et al.

Derivatives of fixpoints. In the previous section we have shown how to use
derivatives to compute fixpoints more efficiently, but we also want to take the
derivative of the fixpoint operator itself. A typical use case for this is where we
have calculated some fixpoint

FE := fix(λX.F (E,X))

then update the parameter E with some change δE and wish to compute the
new value of the fixpoint, i.e.

FE⊕δE := fix(λX.F (E ⊕ δE,X))

This can be seen as applying a change to the function whose fixpoint we are
taking. We go from computing the fixpoint of F (E,) to computing the fixpoint
of F (E ⊕ δE,). If we have a pointwise functional change action then we can
express this change as a function giving the change at each point, that is:

λX.F (E ⊕ δE,X) � F (E,X)

In Datalog this would allow us to update a recursively defined relation given
an update to one of its non-recursive dependencies, or the extensional database.
For example, we might want to take the transitive closure relation and update
it by changing the edge relation e.

However, to compute these examples would requires us to provide a derivative
for the fixpoint operator fix: we want to know how the resulting fixpoint changes
given a change to its input function.

Definition 14 (Derivatives of fixpoints). Let Â be a change action, let
Û ⊆ Â ⇒ Â be a functional change action (not necessarily pointwise) and
suppose fixU and fixΔA are fixpoint operators for endofunctions on U and ΔA
respectively.

Then we define

adjust : U × ΔU → (ΔA → ΔA)
adjust(f, δf) := λ δa. ev′((f,fixU (f)), (δf, δa))
fix′

U : U × ΔU → ΔA

fix′
U (f, δf) := fixΔA(adjust(f, δf))

The suggestively named fix′
U will in fact turn out to be a derivative—for

least fixpoints. The appearance of ev′, a derivative of the evaluation map, in
the definition of adjust is also no coincidence: as evaluating a fixpoint consists
of many steps of applying the evaluation map, so computing the derivative of
a fixpoint consists of many steps of applying the derivative of the evaluation
map.13

13 Perhaps surprisingly, the authors first discovered an expanded version of this formula,
and it was only later that we realised the remarkable connection to ev′.

Fixing Incremental Computation 545

Since lfp is characterized as the limit of a chain of functions, Corollary 2
suggests a way to compute its derivative. It suffices to find a derivative iter′

n of
each iteration map such that the resulting set {iter′

n | n ∈ N} is directed, which
will entail that

⊔

n∈N
iter′

n is a derivative of lfp.
These correspond to the first partial derivative of iter—this time with respect

to f . While we are differentiating with respect to f , we are still going to need
to define our derivatives inductively in terms of n.

Proposition 15 (Derivative of the iteration map with respect to f).
iter is differentiable with respect to its first argument and a derivative is given by:

∂1iter : (A → A) × Δ(A → A) × N → ΔA

∂1iter(f, δf,0) := ⊥ΔA

∂1iter(f, δf, n + 1) := ev′((f, iter(f, n)), (δf, ∂1iter(f, δf, n)))

As before, we can now compute ∂1iter together with iter by mutual
recursion.14

recurf,δf : A × ΔA → A × ΔA

recurf,δf (a, δa) := (f(a), ev′((f, a), (δf, δa)))

Which has the property that

recurn
f,δf (⊥,⊥) = (iter(f, n), ∂1iter(f, δf, n)).

This indeed provides us with a function whose limit we can take. If we do so
we will discover that it is exactly lfp′ (defined as in Definition 14), showing that
lfp′ is a true derivative.

Theorem 7 (Derivatives of least fixpoint operators). Let

– Â be a continuous change action
– U be the set of continuous functions f : A → A, with a functional change

action Û ⊆ Â ⇒ Â
– f ∈ U be a continuous, differentiable function
– δf ∈ ΔU be a function change
– ev′ be a derivative of the evaluation map which is continuous with respect to

a and δa.

Then lfp′ is a derivative of lfp.

Computing this derivative still requires computing a fixpoint—over the
change lattice—but this may still be significantly less expensive than recom-
puting the full new fixpoint.
14 In fact, the recursion here is not mutual : the first component does not depend on

the second. However, writing it in this way makes it amenable to computation by
fixpoint, and we will in fact be able to avoid the recomputation of itern when we
show that it is equivalent to lfp′.

546 M. Alvarez-Picallo et al.

7 Derivatives for Recursive Datalog

Given the non-recursive semantics for a language, we can extend it to handle
recursive definitions using fixpoints. Section 6.2 lets us extend our derivative for
the non-recursive semantics to a derivative for the recursive semantics, as well
as letting us compute the fixpoints themselves incrementally.

Again, we will demonstrate the technique with Datalog, although the app-
roach is generic.

7.1 Semantics of Datalog Programs

First of all, we define the usual “immediate consequence operator” which com-
putes “one step” of our program semantics.

Definition 15. Given a program P = (P1, . . . , Pn), where Pi is a predicate, with
schema Γi, the immediate consequence operator I : Reln → Reln is defined as
follows:

I(R1, . . . ,Rn) = (�P1�Γ1(R1, . . . ,Rn), . . . , �Pn�Γn
(R1, . . . ,Rn))

That is, given a value for the program, we pass in all the relations to the
denotation of each predicate, to get a new tuple of relations.

Definition 16. The semantics of a program P is defined to be

�P� := lfpReln(I)

and may be calculated by iterative application of I to ⊥ until fixpoint is reached.

Whether or not this program semantics exists will depend on whether the
fixpoint exists. Typically this is ensured by constraining the program such that I
is monotone (or, in the context of a dcpo, continuous). We do not require mono-
tonicity to apply Theorem6 (and hence we can incrementally compute fixpoints
that happen to exist even though the generating function is not monotonic), but
it is required to apply Theorem7.

7.2 Incremental Evaluation of Datalog

We can easily extend a derivative for the formula semantics to a derivative for the
immediate consequence operator I. Putting this together with the results from
Sect. 6.2, we have now created modular proofs for the two main results, which
allows us to preserve them in the face of changes to the underlying language.

Corollary 3. Datalog program semantics can be evaluated incrementally.

Corollary 4. Datalog program semantics can be incrementally maintained with
changes to relations.

Fixing Incremental Computation 547

Note that our approach makes no particular distinction between changes
to the extensional relations (adding or removing facts), and changes to the
intensional relations (changing the definition). The latter simply amounts to
a change to the denotation of that relation, which can be incrementally propa-
gated in exactly the same way as we would propagate a change to the extensional
relations.

8 Related Work

8.1 Change Actions and Incremental Computation

Change structures. The seminal paper in this area is Cai et al. [14]. We deviate
from that excellent paper in three regards: the inclusion of minus operators, the
nature of function changes, and the use of dependent types.

We have omitted minus operators from our definition because there are many
interesting change actions that are not complete and so cannot have a minus
operator. Where we can find a change structure with a minus operator, often
we are forced to use unwieldy representations for change sets, and Cai et al.
cite this as their reason for using a dependent type of changes. For example,
the monoidal change actions on sets and lists are clearly useful for incremental
computation on streams, yet they do not admit minus operators—instead, one
would be forced to work with e.g. multisets admitting negative arities, as Cai
et al. do.

Our function changes (when well behaved) correspond to what Cai et al.
call pointwise differences (see [14, section 2.2]). As they point out, you can
reconstruct their function changes from pointwise changes and derivatives, so
the two formulations are equivalent.

The equivalence of our presentations means that our work should be compati-
ble with their Incremental Lambda Calculus (see [14, section 3]). The derivatives
we give in Sect. 4.2 are more or less a “change semantics” for Datalog (see [14,
section 3.5]).

S-acts. S-acts (i.e the category of monoid actions on sets) and their categorical
structure have received a fair amount of attention over the years (Kilp, Knauer,
and Mikhalev [30] is a good overview). However, there is a key difference between
change actions considered as a category (CAct) and the category of S-acts
(SAct): the objects of SAct all maintain the same monoid structure, whereas
we are interested in changing both the base set and the structure of the action.

Derivatives of fixpoints. Arntzenius [5] gives a derivative operator for fix-
points based on the framework in Cai et al. [14]. However, since we have different
notions of function changes, the result is inapplicable as stated. In addition, we
require a somewhat different set of conditions; in particular, we do not require
our changes to always be increasing.

548 M. Alvarez-Picallo et al.

8.2 Datalog

Incremental evaluation. The earliest interpretation of semi-naive evaluation
as a derivative appears in Bancilhon [8]. The idea of using an approximate deriva-
tive and the requisite soundness condition appears as a throwaway comment in
Bancilhon and Ramakrishnan [9, section 3.2.2], and it would appear that nobody
has since developed that approach.

As far as we know, traditional semi-naive is the state of the art in incremental,
bottom-up, Datalog evaluation, and there are no strategies that accommodate
additional language features such as parity-stratified negation and aggregates.

Incremental maintenance. There is existing literature on incremental main-
tenance of relational algebra expressions.

Griffin, Libkin, and Trickey [24] following Qian and Wiederhold [35] compute
differences with both an “upwards” and a “downwards” component, and produce
a set of rules that look quite similar to those we derive in Theorem 4. However,
our presentation is significantly more generic, handles recursive expressions, and
works on set semantics rather than bag semantics.15

Several approaches [25,27]—most notably DReD—remove facts until one can
start applying the rules again to reach the new fixpoint. Given a good way of
deciding what facts to remove this can be quite efficient. However, such tech-
niques tend to be tightly coupled to the domain. Although we know of no theo-
retical reason why either approach should give superior performance when both
are applicable, an empirical investigation of this could prove interesting.

Other approaches [19,43] consider only restricted subsets of Datalog, or incur
other substantial constraints.

Embedding Datalog. Datafun (Arntzenius and Krishnaswami [6]) is a func-
tional programming language that embeds Datalog, allowing significant improve-
ments in genericity, such as the use of higher-order functions. Since we have
directly defined a change action and derivative operator for Datalog, our work
could be used as a “plugin” in the sense of Cai et al., allowing Datafun to com-
pute its internal fixpoints incrementally, but also allowing Datafun expressions
to be fully incrementally maintained.

In a different direction, Cathcart Burn, Ong, and Ramsay [15] have proposed
higher-order constrained Horn clauses (HoCHC), a new class of constraints for
the automatic verification of higher-order programs. HoCHC may be viewed as
a higher-order extension of Datalog. Change actions can be readily applied to
organise an efficient semi-naive method for solving HoCHC systems.

8.3 Differential λ-calculus

Another setting where derivatives of arbitrary higher-order programs have been
studied is the differential λ-calculus [20,21]. This is a higher-order, simply-typed
15 The same approach of finding derivatives would work with bag semantics, although

unfortunately the Boolean algebra structure is missing.

Fixing Incremental Computation 549

λ-calculus which allows for computing the derivative of a function, in a similar
way to the notion of derivative in Cai’s work and the present paper.

While there are clear similarities between the two systems, the most impor-
tant difference is the properties of the derivatives themselves: in the differential
λ-calculus, derivatives are guaranteed to be linear in their second argument,
whereas in our approach derivatives do not have this restriction but are instead
required to satisfy a strong relation to the function that is being differentiated
(see Definition 2).

Families of denotational models for the differential λ-calculus have been stud-
ied in depth [12,13,16,29], and the relationship between these and change actions
is the subject of ongoing work.

8.4 Higher-Order Automatic Differentiation

Automatic differentiation [23] is a technique that allows for efficiently computing
the derivative of arbitrary programs, with applications in probabilistic modeling
[31] and machine learning [10] among other areas. In recent times, this tech-
nique has been successfully applied to higher-order languages [11,41]. While
some approaches have been suggested [28,33], a general theoretical framework
for this technique is still a matter of open research.

To this purpose, some authors have proposed the incremental λ-calculus as
a foundational framework on which models of automatic differentiation can be
based [28]. We believe our change actions are better suited to this purpose than
the incremental λ-calculus, since one can easily give them a synthetic differential
geometric reading (by interpreting Â as an Euclidean module and ΔA as its
corresponding spectrum, for example).

9 Conclusions and Future Work

We have presented change actions and their properties, and used them to provide
novel, compositional, strategies for incrementally evaluating and maintaining
recursive functions, in particular the semantics of Datalog.

The main avenue for future theoretical work is the categorical structure of
change actions. This has begun to be explored by the authors in [4], where change
actions are generalized to arbitrary Cartesian base categories and a construction
is provided to obtain “canonical” Cartesian closed categories of change actions
and differentiable maps.

We hope that these generalizations would allow us to extend the theory of
change actions towards other classes of models, such as synthetic differential
geometry and domain theory. Some early results in [4] also indicate a connection
between 2-categories and change actions which has yet to be fully mapped.

The compositional nature of these techniques suggest that an approach like
that used in [22] could be used for an even more generic approach to automatic
differentiation.

In addition, there is plenty of scope for practical application of the techniques
given here to languages other than Datalog.

550 M. Alvarez-Picallo et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence. Oxford University Press, New York (1994)

3. Alvarez-Picallo, M., Eyers-Taylor, A., Jones, M.P., Ong, C.L.: Fixing incremental
computation: derivatives of fixpoints, and the recursive semantics of datalog. CoRR
abs/1811.06069 (2018). http://arxiv.org/abs/1811.06069

4. Alvarez-Picallo, M., Ong, C.H.L.: Change actions: models of generalised differ-
entiation. In: International Conference on Foundations of Software Science and
Computation Structures. Springer (2019, in press)

5. Arntzenius, M.: Static differentiation of monotone fixpoints (2017). http://www.
rntz.net/files/fixderiv.pdf

6. Arntzenius, M., Krishnaswami, N.R.: Datafun: a functional datalog. In: Proceed-
ings of the 21st ACM SIGPLAN International Conference on Functional Program-
ming, pp. 214–227. ACM (2016)

7. Avgustinov, P., de Moor, O., Jones, M.P., Schäfer, M.: QL: object-oriented queries
on relational data. In: LIPIcs-Leibniz International Proceedings in Informatics, vol.
56. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

8. Bancilhon, F.: Naive evaluation of recursively defined relations. In: Brodie, M.L.,
Mylopoulos, J. (eds.) On Knowledge Base Management Systems. TINF, pp. 165–
178. Springer, New York (1986). https://doi.org/10.1007/978-1-4612-4980-1 17

9. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query
processing strategies, vol. 15. ACM (1986)

10. Baydin, A.G., Pearlmutter, B.A.: Automatic differentiation of algorithms for
machine learning. arXiv preprint arXiv:1404.7456 (2014)

11. Baydin, A.G., Pearlmutter, B.A., Siskind, J.M.: DiffSharp: an AD library for .NET
languages. arXiv preprint arXiv:1611.03423 (2016)

12. Blute, R., Ehrhard, T., Tasson, C.: A convenient differential category. arXiv
preprint arXiv:1006.3140 (2010)

13. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for simply typed
resource calculi. Electron. Notes Theor. Comput. Sci. 265, 213–230 (2010)

14. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: incrementalizing λ-calculi by static differentiation. In: ACM SIG-
PLAN Notices, vol. 49, pp. 145–155. ACM (2014)

15. Cathcart Burn, T., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses
for verification. PACMPL 2(POPL), 11:1–11:28 (2018). https://doi.org/10.1145/
3158099

16. Cockett, J.R.B., Gallagher, J.: Categorical models of the differential λ-calculus
revisited. Electron. Notes Theor. Comput. Sci. 325, 63–83 (2016)

17. Compton, K.J.: Stratified least fixpoint logic. Theor. Comput. Sci. 131(1), 95–120
(1994)

18. Datomic website (2018). https://www.datomic.com. Accessed 01 Jan 2018
19. Dong, G., Su, J.: Incremental maintenance of recursive views using relational cal-

culus/SQL. ACM SIGMOD Rec. 29(1), 44–51 (2000)
20. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and

antiderivatives. Math. Struct. Comput. Sci. 1–66 (2017)
21. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.

309(1–3), 1–41 (2003)

http://arxiv.org/abs/1811.06069
http://www.rntz.net/files/fixderiv.pdf
http://www.rntz.net/files/fixderiv.pdf
https://doi.org/10.1007/978-1-4612-4980-1_17
http://arxiv.org/abs/1404.7456
http://arxiv.org/abs/1611.03423
http://arxiv.org/abs/1006.3140
https://doi.org/10.1145/3158099
https://doi.org/10.1145/3158099
https://www.datomic.com

Fixing Incremental Computation 551

22. Elliott, C.: The simple essence of automatic differentiation. Proc. ACM Program.
Lang. 2(ICFP), 70 (2018)

23. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, vol. 105. SIAM, Philadelphia (2008)

24. Griffin, T., Libkin, L., Trickey, H.: An improved algorithm for the incremental
recomputation of active relational expressions. IEEE Trans. Knowl. Data Eng. 3,
508–511 (1997)

25. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
ACM SIGMOD Rec. 22(2), 157–166 (1993)

26. Halpin, T., Rugaber, S.: LogiQL: A Query Language for Smart Databases. CRC
Press, Boca Raton (2014)

27. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive
database: an update propagation approach. In: Workshop on Deductive Databases,
JICSLP, pp. 56–65 (1992)

28. Kelly, R., Pearlmutter, B.A., Siskind, J.M.: Evolving the incremental λ cal-
culus into a model of forward automatic differentiation (AD). arXiv preprint
arXiv:1611.03429 (2016)

29. Kerjean, M., Tasson, C.: Mackey-complete spaces and power series-a topological
model of differential linear logic. Math. Struct. Comput. Sci. 1–36 (2016)

30. Kilp, M., Knauer, U., Mikhalev, A.V.: Monoids, Acts and Categories: With
Applications to Wreath Products and Graphs. A Handbook for Students and
Researchers, vol. 29. Walter de Gruyter, Berlin (2000)

31. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M.: Automatic dif-
ferentiation variational inference. J. Mach. Learn. Res. 18(1), 430–474 (2017)

32. LogicBlox Inc. website (2018). http://www.logicblox.com. Accessed 01 Jan 2018
33. Manzyuk, O.: A simply typed λ-calculus of forward automatic differentiation. Elec-

tron. Notes Theor. Comput. Sci. 286, 257–272 (2012)
34. de Moor, O., Baars, A.: Doing a doaitse: simple recursive aggregates in datalog.

In: Liber Amicorum for Doaitse Swierstra, pp. 207–216 (2013). http://www.staff.
science.uu.nl/∼hage0101/liberdoaitseswierstra.pdf. Accessed 01 Jan 2018

35. Qian, X., Wiederhold, G.: Incremental recomputation of active relational expres-
sions. IEEE Trans. Knowl. Data Eng. 3(3), 337–341 (1991)

36. Sáenz-Pérez, F.: DES: a deductive database system. Electron. Notes Theor. Com-
put. Sci. 271, 63–78 (2011)

37. Schäfer, M., de Moor, O.: Type inference for datalog with complex type hierarchies.
In: ACM SIGPLAN Notices, vol. 45, pp. 145–156. ACM (2010)

38. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program
analysis in datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction, pp. 196–206. ACM (2016)

39. Semmle Ltd. website (2018). https://semmle.com. Accessed 01 Jan 2018
40. Sereni, D., Avgustinov, P., de Moor, O.: Adding magic to an optimising datalog

compiler. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 553–566. ACM (2008)

41. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in a functional frame-
work. High.-Order Symb. Comput. 21(4), 361–376 (2008)

42. Souffle language website (2018). http://souffle-lang.org. Accessed 01 Jan 2018
43. Urpi, T., Olive, A.: A method for change computation in deductive databases. In:

VLDB, vol. 92, pp. 225–237 (1992)

http://arxiv.org/abs/1611.03429
http://www.logicblox.com
http://www.staff.science.uu.nl/~hage0101/liberdoaitseswierstra.pdf
http://www.staff.science.uu.nl/~hage0101/liberdoaitseswierstra.pdf
https://semmle.com
http://souffle-lang.org

552 M. Alvarez-Picallo et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Incremental λ-Calculus
in Cache-Transfer Style

Static Memoization by Program Transformation

Paolo G. Giarrusso1(B), Yann Régis-Gianas2, and Philipp Schuster3

1 LAMP—EPFL, Lausanne, Switzerland
2 IRIF, University of Paris Diderot, Inria, Paris, France

3 University of Tübingen, Tübingen, Germany

Abstract. Incremental computation requires propagating changes and
reusing intermediate results of base computations. Derivatives, as pro-
duced by static differentiation [7], propagate changes but do not reuse
intermediate results, leading to wasteful recomputation. As a solution,
we introduce conversion to Cache-Transfer-Style, an additional program
transformations producing purely incremental functional programs that
create and maintain nested tuples of intermediate results. To prove CTS
conversion correct, we extend the correctness proof of static differentia-
tion from STLC to untyped λ-calculus via step-indexed logical relations,
and prove sound the additional transformation via simulation theorems.

To show ILC-based languages can improve performance relative to
from-scratch recomputation, and that CTS conversion can extend its
applicability, we perform an initial performance case study. We provide
derivatives of primitives for operations on collections and incrementalize
selected example programs using those primitives, confirming expected
asymptotic speedups.

1 Introduction

After computing a base output from some base input, we often need to pro-
duce updated outputs corresponding to updated inputs. Instead of rerunning
the same base program on the updated input, incremental computation trans-
forms the input change to an output change, potentially reducing asymptotic
time complexity and significantly improving efficiency, especially for computa-
tions running on large data sets.

Incremental λ-Calculus (ILC) [7] is a recent framework for higher-order incre-
mental computation. ILC represents changes from a base value v1 to an updated
value v2 as a first-class change value dv . Since functions are first-class values,
change values include function changes.

ILC also statically transforms base programs to incremental programs or
derivatives, that are functions mapping input changes to output changes. Incre-
mental language designers can then provide their language with (higher-order)
primitives (with their derivatives) that efficiently encapsulate incrementalizable
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 553–580, 2019.
https://doi.org/10.1007/978-3-030-17184-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_20

554 P. G. Giarrusso et al.

computation skeletons (such as tree-shaped folds), and ILC will incrementalize
higher-order programs written in terms of these primitives.

Alas, ILC only incrementalizes efficiently self-maintainable computations [7,
Sect. 4.3], that is, computations whose output changes can be computed using
only input changes, but not the inputs themselves [11]. Few computations are self-
maintainable: for instance, mapping self-maintainable functions on a sequence is
self-maintainable, but dividing numbers is not! We elaborate on this problem in
Sect. 2.1. In this paper, we extend ILC to non-self-maintainable computations.
To this end, we must enable derivatives to reuse intermediate results created by
the base computation.

Many incrementalization approaches remember intermediate results through
dynamic memoization: they typically use hashtables to memoize function results,
or dynamic dependence graphs [1] to remember a computation trace. However,
looking up intermediate results in such dynamic data structure has a runtime
cost that is hard to optimize; and reasoning on dynamic dependence graphs and
computation traces is often complex. Instead, ILC produces purely functional
programs, suitable for further optimizations and equational reasoning.

To that end, we replace dynamic memoization with static memoization: fol-
lowing Liu and Teitelbaum [20], we transform programs to cache-transfer style
(CTS). A CTS function outputs their primary result along with caches of inter-
mediate results. These caches are just nested tuples whose structure is derived
from code, and accessing them does not involve looking up keys depending on
inputs. Instead, intermediate results can be fetched from these tuples using stat-
ically known locations. To integrate CTS with ILC, we extend differentiation to
produce CTS derivatives: these can extract from caches any intermediate results
they need, and produce updated caches for the next computation step.

The correctness proof of static differentiation in CTS is challenging. First, we
must show a forward simulation relation between two triples of reduction traces
(the first triple being made of the source base evaluation, the source updated eval-
uation and the source derivative evaluation; the second triple being made of the
corresponding CTS-translated evaluations). Dealing with six distinct evaluation
environments at the same time was error prone on paper and for this reason,
we conducted the proof using Coq [26]. Second, the simulation relation must
not only track values but also caches, which are only partially updated while in
the middle of the evaluation of derivatives. Finally, we study the translation for
an untyped λ-calculus, while previous ILC correctness proofs were restricted to
simply-typed λ-calculus. Hence, we define which changes are valid via a logical
relation and show its fundamental property. Being in an untyped setting, our
logical relation is not indexed by types, but step-indexed. We study an untyped
language, but our work also applies to the erasure of typed languages. Formal-
izing a type-preserving translation is left for future work because giving a type
to CTS programs is challenging, as we shall explain.

In addition to the correctness proof, we present preliminary experimental
results from three case studies. We obtain efficient incremental programs even
on non self-maintainable functions.

Incremental λ-Calculus in Cache-Transfer Style 555

We present our contributions as follows. First, we summarize ILC and illus-
trate the need to extend it to remember intermediate results via CTS (Sect. 2).
Second, in our mechanized formalization (Sect. 3), we give a novel proof of cor-
rectness for ILC differentiation for untyped λ-calculus, based on step-indexed
logical relations (Sect. 3.4). Third, building on top of ILC differentiation, we
show how to transform untyped higher-order programs to CTS (Sect. 3.5) and
we show that CTS functions and derivatives simulate correctly their non-CTS
counterparts (Sect. 3.7). Finally, in our case studies (Sect. 4), we compare the
performance of the generated code to the base programs. Section 4.4 discusses
limitations and future work. Section 5 discusses related work and Sect. 6 con-
cludes. Our mechanized proof in Coq, the case study material, and the extended
version of this paper with appendixes are available online at https://github.com/
yurug/cts.

2 ILC and CTS Primer

In this section we exemplify ILC by applying it on an average function, show
why the resulting incremental program is asymptotically inefficient, and use CTS
conversion and differentiation to incrementalize our example efficiently and speed
it up asymptotically (as confirmed by benchmarks in Sect. 4.1). Further examples
in Sect. 4 apply CTS to higher-order programs and suggest that CTS enables
incrementalizing efficiently some core database primitives such as joins.

2.1 Incrementalizing average via ILC

Our example computes the average of a bag of numbers. After computing the
base output y1 of the average function on the base input bag xs1, we want to
update the output in response to a stream of updates to the input bag. Here
and throughout the paper, we contrast base vs updated inputs, outputs, values,
computations, and so on. For simplicity, we assume we have two updated inputs
xs2 and xs3 and want to compute two updated outputs y2 and y3. We express
this program in Haskell as follows:

average :: Bag Z → Z

average xs = let s = sum xs;n = length xs; r = div s n in r

average3 = let y1 = average xs1; y2 = average xs2; y3 = average xs3
in (y1, y2, y3)

To compute the updated outputs y2 and y3 in average3 faster, we try using
ILC. For that, we assume that we receive not only updated inputs xs2 and xs3
but also input change dxs1 from xs1 to xs2 and input change dxs2 from xs2 to xs3.
A change dx from x1 to x2 describes the changes from base value x1 to updated
value x2, so that x2 can be computed via the update operator ⊕ as x1 ⊕ dx . A
nil change 0x is a change from base value x to updated value x itself.

https://github.com/yurug/cts
https://github.com/yurug/cts

556 P. G. Giarrusso et al.

ILC differentiation automatically transforms the average function to its
derivative daverage :: Bag Z → Δ(Bag Z) → ΔZ. A derivative maps input
changes to output changes: here, dy1 = daverage xs1 dxs1 is a change from
base output y1 = average xs1 to updated output y2 = average xs2, hence
y2 = y1 ⊕ dy1.

Thanks to daverage’s correctness, we can rewrite average3 to avoid expensive
calls to average on updated inputs and use daverage instead:

incrementalAverage3 :: (Z,Z,Z)
incrementalAverage3 =

let y1 = average xs1; dy1 = daverage xs1 dxs1
y2 = y1 ⊕ dy1; dy2 = daverage xs2 dxs2
y3 = y2 ⊕ dy2

in (y1, y2, y3)

In general, also the value of a function f :: A → B can change from a base
value f1 to an updated value f2, mainly when f is a closure over changing data.
In that case, the change from base output f1 x1 to updated output f2 x2 is given
by df x1 dx , where df :: A → ΔA → ΔB is now a function change from f1
to f2. Above, average exemplifies the special case where f1 = f2 = f : then the
function change df is a nil change, and df x1 dx is a change from f1 x1 = f x1
and f2 x2 = f x2. That is, a nil function change for f is a derivative of f .

2.2 Self-maintainability and Efficiency of Derivatives

Alas, derivatives are efficient only if they are self-maintainable, and daverage is
not, so incrementalAverage3 is no faster than average3! Consider the result of
differentiating average:

daverage :: Bag Z → Δ(Bag Z) → ΔZ

daverage xs dxs = let s = sum xs; ds = dsum xs dxs;
n = length xs; dn = dlength xs dxs;
r = div s n; dr = ddiv s ds n dn

in dr

Just like average combines sum, length, and div , its derivative daverage combines
those functions and their derivatives. daverage recomputes base intermediate
results s, n and r exactly as done in average, because they might be needed as
base inputs of derivatives. Since r is unused, its recomputation can be dropped
during later optimizations, but expensive intermediate results s and n are used
by ddiv :

ddiv :: Z → ΔZ → Z → ΔZ → ΔZ

ddiv a da b db = div (a ⊕ da) (b ⊕ db) − div a b

Incremental λ-Calculus in Cache-Transfer Style 557

Function ddiv computes the difference between the updated and the original
result, so it needs its base inputs a and b. Hence, daverage must recompute s
and n and will be slower than average!

Typically, ILC derivatives are only efficient if they are self-maintainable: a
self-maintainable derivative does not inspect its base inputs, but only its change
inputs, so recomputation of its base inputs can be elided. Cai et al. [7] leave
efficient support for non-self-maintainable derivatives for future work.

But this problem is fixable: executing daverage xs dxs will compute exactly
the same s and n as executing average xs, so to avoid recomputation we must
simply save s and n and reuse them. Hence, we CTS-convert each function f
to a CTS function fC and a CTS derivative dfC : CTS function fC produces,
together with its final result, a cache containing intermediate results, that the
caller must pass to CTS derivative dfC .

CTS-converting our example produces the following code, which requires no
wasteful recomputation.

type AverageC = (Z,SumC ,Z,LengthC ,Z,DivC)

averageC :: Bag Z → (Z,AverageC)
averageC xs =

let (s, cs1) = sumC xs; (n, cn1) = lengthC xs; (r , cr1) = divC s n
in (r , (s, cs1,n, cn1, r , cr1))

daverageC :: Bag Z → Δ(Bag Z) → AverageC → (ΔZ,AverageC)
daverageC xs dxs (s, cs1,n, cn1, r , cr1) =

let (ds, cs2) = dsumC xs dxs cs1
(dn, cn2) = dlengthC xs dxs cn1

(dr , cr2) = ddivC s ds n dn cr1
in (dr , ((s ⊕ ds), cs2, (n ⊕ dn), cn2, (r ⊕ dr), cr2))

For each function f , we introduce a type FC for its cache, such that a CTS
function fC has type A → (B ,FC) and CTS derivative dfC has type A →
ΔA → FC → (ΔB ,FC). Crucially, CTS derivatives like daverageC must return
an updated cache to ensure correct incrementalization, so that application of
further changes works correctly. In general, if (y1, c1) = fC x1 and (dy , c2) =
dfC x1 dx c1, then (y1 ⊕ dy , c2) must equal the result of the base function fC
applied to the updated input x1 ⊕ dx , that is (y1 ⊕ dy , c2) = fC (x1 ⊕ dx).

For CTS-converted functions, the cache type FC is a tuple of intermedi-
ate results and caches of subcalls. For primitive functions like div , the cache
type DivC could contain information needed for efficient computation of output
changes. In the case of div , no additional information is needed. The definition of
divC uses div and produces an empty cache, and the definition of ddivC follows
the earlier definition for ddiv , except that we now pass along an empty cache.

data DivC = DivC

divC :: Z → Z → (Z,DivC)
divC a b = (div a b,DivC)

ddivC :: Z → ΔZ → Z → ΔZ → DivC → (ΔZ,DivC)
ddivC a da b db DivC = (div (a ⊕ da) (b ⊕ db) − div a b,DivC)

558 P. G. Giarrusso et al.

Finally, we can rewrite average3 to incrementally compute y2 and y3:

ctsIncrementalAverage3 :: (Z,Z,Z)
ctsIncrementalAverage3 =

let (y1, c1) = averageC xs1; (dy1, c2) = daverageC xs1 dxs1 c1
y2 = y1 ⊕ dy1; (dy2, c3) = daverageC xs2 dxs2 c2
y3 = y2 ⊕ dy2

in (y1, y2, y3)

Since functions of the same type translate to CTS functions of different types,
in a higher-order language CTS translation is not always type-preserving; how-
ever, this is not a problem for our case studies (Sect. 4); Sect. 4.1 shows how to
map such functions, and we return to this problem in Sect. 4.4.

3 Formalization

We now formalize CTS-differentiation for an untyped Turing-complete λ-
calculus, and formally prove it sound with respect to differentiation. We also
give a novel proof of correctness for differentiation itself, since we cannot sim-
ply adapt Cai et al. [7]’s proof to the new syntax: Our language is untyped
and Turing-complete, while Cai et al. [7]’s proof assumed a strongly normalizing
simply-typed λ-calculus and relied on its naive set-theoretic denotational seman-
tics. Our entire formalization is mechanized using Coq [26]. For reasons of space,
some details are deferred to the appendix.

Fig. 1. Our language λL of lambda-lifted programs. Tuples can be nullary.

Transformations. We introduce and prove sound three term transformations,
namely differentiation, CTS translation and CTS differentiation, that take a
function to its corresponding (non-CTS) derivative, CTS function and CTS
derivative. Each CTS function produces a base output and a cache from a base
input, while each CTS derivative produces an output change and an updated
cache from an input, an input change and a base cache.

Incremental λ-Calculus in Cache-Transfer Style 559

Proof technique. To show soundness, we prove that CTS functions and deriva-
tives simulate respectively non-CTS functions and derivatives. In turn, we for-
malize (non-CTS) differentiation as well, and we prove differentiation sound with
respect to non-incremental evaluation. Overall, this shows that CTS functions
and derivatives are sound relatively to non-incremental evaluation. Our presenta-
tion proceeds in the converse order: first, we present differentiation, formulated
as a variant of Cai et al. [7]’s definition; then, we study CTS differentiation.

By using logical relations, we simplify significantly the setup of Cai et al. [7].
To handle an untyped language, we employ step-indexed logical relations.
Besides, we conduct our development with big-step operational semantics
because that choice simplifies the correctness proof for CTS conversion. Using
big-step semantics for a Turing complete language restricts us to terminating
computations. But that is not a problem: to show incrementalization is correct,
we need only consider computations that terminate on both old and new inputs,
following Acar et al. [3] (compared with in Sect. 5).

Structure of the formalization. Section 3.1 introduces the syntax of the language
λL we consider in this development, and introduces its four sublanguages λAL,
λIAL, λCAL and λICAL. Section 3.2 presents the syntax and the semantics of
λAL, the source language for our transformations. Section 3.3 defines differenti-
ation and its target language λIAL, and Sect. 3.4 proves differentiation correct.
Section 3.5 defines CTS conversion, comprising CTS translation and CTS differ-
entiation, and their target languages λCAL and λICAL. Section 3.6 presents the
semantics of λCAL. Finally, Sect. 3.7 proves CTS conversion correct.

Notations. We write X for a sequence of X of some unspecified length
X1, . . . , Xm.

3.1 Syntax for λL

A superlanguage. To simplify our transformations, we require input programs to
have been lambda-lifted [15] and converted to A’-normal form (A’NF). Lambda-
lifted programs are convenient because they allow us to avoid a specific treatment
for free variables in transformations. A’NF is a minor variant of ANF [24], where
every result is bound to a variable before use; unlike ANF, we also bind the result
of the tail call. Thus, every result can thus be stored in a cache by CTS conversion
and reused later (as described in Sect. 2). This requirement is not onerous: A’NF
is a minimal variant of ANF, and lambda-lifting and ANF conversion are routine
in compilers for functional languages. Most examples we show are in this form.

In contrast, our transformation’s outputs are lambda-lifted but not in A’NF.
For instance, we restrict base functions to take exactly one argument—a base
input. As shown in Sect. 2.1, CTS functions take instead two arguments—a base
input and a cache—and CTS derivatives take three arguments—an input, an
input change, and a cache. We could normalize transformation outputs to inhabit
the source language and follow the same invariants, but this would complicate
our proofs for little benefit. Hence, we do not prescribe transformation outputs

560 P. G. Giarrusso et al.

to satisfy the same invariants, and we rather describe transformation outputs
through separate grammars.

As a result of this design choice, we consider languages for base programs,
derivatives, CTS programs and CTS derivatives. In our Coq mechanization, we
formalize those as four separate languages, saving us many proof steps to check
the validity of required structural invariants. For simplicity, in this paper we
define a single language called λL (for λ-Lifted). This language satisfies invariants
common to all these languages (including some of the A’NF invariants). Then,
we define sublanguages of λL. We describe the semantics of λL informally, and
we only formalize the semantics of its sublanguages.

Syntax for terms. The λL language is a relatively conventional lambda-lifted λ-
calculus with a limited form of pattern matching on tuples. The syntax for terms
and values is presented in Fig. 1. We separate terms and values in two distinct
syntactic classes because we use big-step operational semantics. Our let-bindings
are non-recursive as usual, and support shadowing. Terms cannot contain λ-
expressions directly, but only refer to closures through the environment, and
similarly for literals and primitives; we elaborate on this in Sect. 3.2. We do
not introduce case expressions, but only bindings that destructure tuples, both
in let-bindings and λ-expressions of closures. Our semantics does not assign
meaning to match failures, but pattern-matchings are only used in generated
programs and our correctness proofs ensure that the matches always succeed.
We allow tuples to contain terms of form x ⊕ dx , which update base values x
with changes in dx , because A’NF-converting these updates is not necessary to
the transformations. We often inspect the result of a function call “f x ”, which
is not a valid term in our syntax. Hence, we write “@(f , x)” as a syntactic sugar
for “let y = f x in y” with y chosen fresh.

Syntax for closed values. A closed value is either a closure, a tuple of values,
a literal, a primitive, a nil change for a primitive or a replacement change. A
closure is a pair of an evaluation environment E and a λ-abstraction closed
with respect to E. The set of available literals � is left abstract. It may contain
usual first-order literals like integers. We also leave abstract the primitives p like
if-then-else or projections of tuple components. Each primitive p comes with
a nil change, which is its derivative as explained in Sect. 2. A change value can
also represent a replacement by some closed value av. Replacement changes are
not produced by static differentiation but are useful for clients of derivatives: we
include them in the formalization to make sure that they are not incompatible
with our system. As usual, environments E map variables to closed values.

Sublanguages of λL. The source language for all our transformations is a sublan-
guage of λL named λAL, where A stands for A’NF. To each transformation we
associate a target language, which matches the transformation image. The target
language for CTS conversion is named λCAL, where “C” stands for CTS. The tar-
get languages of differentiation and CTS differentiation are called, respectively,
λIAL and λICAL, where the “I” stands for incremental.

Incremental λ-Calculus in Cache-Transfer Style 561

3.2 The Source Language λAL

We show the syntax of λAL in Fig. 2. As said above, λAL is a sublanguage of
λL denoting lambda-lifted base terms in A’NF. With no loss of generality, we
assume that all bound variables in λAL programs and closures are distinct. The
step-indexed big-step semantics (Fig. 3) for base terms is defined by the judg-
ment written E � t ⇓n v (where n can be omitted) and pronounced “Under
environment E, base term t evaluates to closed value v in n steps.” Intuitively,
our step-indexes count the number of “nodes” of a big-step derivation.1 As they
are relatively standard, we defer the explanations of these rules to Appendix B.

Fig. 2. Static differentiation Dι(–); syntax of its target language λIAL, tailored to the
output of differentiation; syntax of its source language λAL. We assume that in λIAL the
same let binds both y and dy and that α-renaming preserves this invariant. We also
define the base environment �dE�1 and the updated environment �dE�2 of a change
environment dE .

Expressiveness. A closure in the base environment can be used to represent a
top-level definition. Since environment entries can point to primitives, we need
no syntax to directly represent calls of primitives in the syntax of base terms.
To encode in our syntax a program with top-level definitions and a term to be
evaluated representing the entry point, one can produce a term t representing the

1 It is more common to count instead small-step evaluation steps [3,4], but our choice
simplifies some proofs and makes a minor difference in others.

562 P. G. Giarrusso et al.

Fig. 3. Step-indexed big-step semantics for base terms of source language λAL.

entry point together with an environment E containing as values any top-level
definitions, primitives and literals used in the program. Semi-formally, given an
environment E0 mentioning needed primitives and literals, and a list of top-level
function definitions D = f = λx . t defined in terms of E0, we can produce a base
environment E = L(D), with L defined by:

L(•) = E0 and L(D, f = λx . t) = E, f = E[λx . t] where L(D) = E

Correspondingly, we extend all our term transformations to values and environ-
ments to transform such encoded top-level definitions.

Our mechanization can encode n-ary functions “λ(x1, x2, . . . , xn). t” through
unary functions that accept tuples; we encode partial application using a curry
primitive such that, essentially, curry f x y = f (x, y); suspended partial appli-
cations are represented as closures. This encoding does not support currying
efficiently, we further discuss this limitation in Sect. 4.4.

Control operators, like recursion combinators or branching, can be introduced
as primitive operations as well. If the branching condition changes, expressing the
output change in general requires replacement changes. Similarly to branching
we can add tagged unions.

To check the assertions of the last two paragraphs, the Coq development
contains the definition of a curry primitive as well as a primitive for a fixpoint
combinator, allowing general recursion and recursive data structures as well.

3.3 Static Differentiation from λAL to λIAL

Previous work [7] defines static differentiation for simply-typed λ-calculus terms.
Figure 2 transposes differentiation as a transformation from λAL to λIAL and
defines λIAL’s syntax.

Differentiating a base term t produces a change term Dι(t), its derivative.
Differentiating final result variable x produces its change variable dx . Differenti-
ation copies each binding of an intermediate result y to the output and adds a
new binding for its change dy . If y is bound to tuple (x), then dy will be bound
to the change tuple (dx). If y is bound to function application “f x ”, then dy will
be bound to the application of function change df to input x and its change dx .
We explain differentiation of environments Dι(E) later in this section.

Incremental λ-Calculus in Cache-Transfer Style 563

Fig. 4. Step-indexed big-step semantics for the change terms of λIAL.

Evaluating Dι(t) recomputes all intermediate results computed by t. This
recomputation will be avoided through cache-transfer style in Sect. 3.5. A com-
parison with the original static differentiation [7] can be found in Appendix A.

Semantics for λIAL. We move on to define how λIAL change terms evaluate
to change values. We start by defining necessary definitions and operations on
changes, such as define change values dv , change environments dE , and the
update operator ⊕.

Closed change values dv are particular λL values av. They are either a closure
change, a tuple change, a literal change, a replacement change or a primitive nil
change. A closure change is a closure containing a change environment dE and
a λ-abstraction expecting a value and a change value as arguments to evaluate a
change term into an output change value. An evaluation environment dE follows
the same structure as let-bindings of change terms: it binds variables to closed
values and each variable x is immediately followed by a binding for its associated
change variable dx . As with let-bindings of change terms, α-renamings in an
environment dE must rename dx into dy if x is renamed into y . We define the
update operator ⊕ to update a value with a change. This operator is a partial
function written “v ⊕ dv ”, defined as follows:

564 P. G. Giarrusso et al.

v1 ⊕ !v2 = v2
� ⊕ d� = δ⊕(�, d�)

E[λx . t] ⊕ dE [λx dx . dt] = (E ⊕ dE)[λx . t]
(v1, . . . , vn) ⊕ (dv1, . . . , dvn) = (v1 ⊕ dv1, . . . , vn ⊕ dvn)

p ⊕ 0p = p

where (E; x = v) ⊕ (dE ; x = v ; dx = dv) = ((E ⊕ dE); x = (v ⊕ dv)).
Replacement changes can be used to update all values (literals, tuples, prim-

itives and closures), while tuple changes can only update tuples, literal changes
can only update literals, primitive nil can only update primitives and closure
changes can only update closures. A replacement change overrides the current
value v with a new one v ′. On literals, ⊕ is defined via some interpretation
function δ⊕, which takes a literal and a literal change to produce an updated
literal. Change update for a closure ignores dt instead of computing something
like dE[t ⊕ dt]. This may seem surprising, but we only need ⊕ to behave well
for valid changes (as shown by Theorem 3.1): for valid closure changes, dt must
behave anyway similarly to Dι(t), which Cai et al. [7] show to be a nil change.
Hence, t ⊕ Dι(t) and t ⊕ dt both behave like t, so ⊕ can ignore dt and only con-
sider environment updates. This definition also avoids having to modify terms at
runtime, which would be difficult to implement safely. We could also implement
f ⊕ df as a function that invokes both f and df on its argument, as done by Cai
et al. [7], but we believe that would be less efficient when ⊕ is used at runtime.
As we discuss in Sect. 3.4, we restrict validity to avoid this runtime overhead.

Having given these definitions, we show in Fig. 4 a step-indexed big-step
semantics for change terms, defined through judgment dE � dt ⇓n dv (where n
can be omitted). This judgment is pronounced “Under the environment dE , the
change term dt evaluates into the closed change value dv in n steps.” Rules
[SDVar] and [SDTuple] are unsurprising. To evaluate function calls in let-
bindings “let y = f x , dy = df x dx in dt” we have three rules, depending on
the shape of dE (df). These rules all recompute the value vy of y in the original
environment, but compute differently the change dy to y . If dE (df) replaces
the value of f , [SDReplaceCall] recomputes v ′

y = f x from scratch in the new
environment, and bind dy to !v ′

y when evaluating the let body. If dE (df) is the
nil change for primitive p, [SDPrimitiveNil] computes dy by running p’s deriva-
tive through function Δp(–). If dE (df) is a closure change, [SDClosureChange]
invokes it normally to compute its change dvy . As we show, if the closure change
is valid, its body behaves like f ’s derivative, hence incrementalizes f correctly.

Closure changes with non-nil environment changes represent partial applica-
tion of derivatives to non-nil changes; for instance, if f takes a pair and dx is a
non-nil change, 0curry f df x dx constructs a closure change containing dx , using
the derivative of curry mentioned in Sect. 3.2. In general, such closure changes
do not arise from the rules we show, only from derivatives of primitives.

Incremental λ-Calculus in Cache-Transfer Style 565

3.4 A New Soundness Proof for Static Differentiation

In this section, we show that static differentiation is sound (Theorem 3.3) and
that Eq. (1) holds:

f a2 = f a1 ⊕ Dι(f) a1 da (1)

whenever da is a valid change from a1 to a2 (as defined later). One might want to
prove this equation assuming only that a1 ⊕ da = a2, but this is false in general.
A direct proof by induction on terms fails in the case for application (ultimately
because f1 ⊕ df = f2 and a1 ⊕ da = a2 do not imply that f1 a1 ⊕ df a1 da =
f2 a2). As usual, this can be fixed by introducing a logical relation. We call
ours validity : a function change is valid if it turns valid input changes into valid
output changes.

Fig. 5. Step-indexed validity, through judgments for values and for terms.

Static differentiation is only sound on input changes that are valid. Cai
et al. [7] show soundness for a strongly normalizing simply-typed λ-calculus using
denotational semantics. Using an operational semantics, we generalize this result
to an untyped and Turing-complete language, so we must turn to a step-indexed
logical relation [3,4].

Validity as a step-indexed logical relation. We say that “dv is a valid change
from v1 to v2, up to k steps” and write

dv �k v1 ↪→ v2

to mean that dv is a change from v1 to v2 and that dv is a valid description of
the differences between v1 and v2, with validity tested with up to k steps. This
relation approximates validity; if a change dv is valid at all approximations, it
is simply valid (between v1 and v2); we write then dv � v1 ↪→ v2 (omitting the
step-index k) to mean that validity holds at all step-indexes. We similarly omit
step-indexes k from other step-indexed relations when they hold for all k.

566 P. G. Giarrusso et al.

To justify this intuition of validity, we show that a valid change from v1
to v2 goes indeed from v1 to v2 (Theorem 3.1), and that if a change is valid up
to k steps, it is also valid up to fewer steps (Lemma 3.2).

Theorem 3.1 (⊕ agrees with validity)
If dv �k v1 ↪→ v2 holds for all k > 0, then v1 ⊕ dv = v2.

Lemma 3.2 (Downward-closure)
If N ≥ n, then dv �N v1 ↪→ v2 implies dv �n v1 ↪→ v2.

Crucially, Theorem3.1 enables (a) computing v2 from a valid change and its
source, and (b) showing Eq. (1) through validity. As discussed, ⊕ ignores changes
to closure bodies to be faster, which is only sound if those changes are nil; to
ensure Theorem 3.1 still holds, validity on closure changes must be adapted
accordingly and forbid non-nil changes to closure bodies. This choice, while
unusual, does not affect our results: if input changes do not modify closure bod-
ies, intermediate changes will not modify closure bodies either. Logical relation
experts might regard this as a domain-specific invariant we add to our relation.
Alternatives are discussed by Giarrusso [10, Appendix C].

As usual with step-indexing, validity is defined by well-founded induction
over naturals ordered by <; to show well-foundedness we observe that evaluation
always takes at least one step.

Validity for values, terms and environments is formally defined by cases in
Fig. 5. First, a literal change d� is a valid change from � to � ⊕ d� = δ⊕(�, d�).
Since the function δ⊕ is partial, the relation only holds for the literal changes
d� which are valid changes for �. Second, a replacement change !v2 is always a
valid change from any value v1 to v2. Third, a primitive nil change is a valid
change between any primitive and itself. Fourth, a tuple change is valid up to
step n, if each of its components is valid up to any step strictly less than n.
Fifth, we define validity for closure changes. Roughly speaking, this statement
means that a closure change is valid if (i) its environment change dE is valid
for the original closure environment E1 and for the new closure environment E2;
and (ii) when applied to related values, the closure bodies t are related by dt ,
as defined by the auxiliary judgment (dE � dt) �n (E1 � t1) ↪→ (E2 � t2)
for validity between terms under related environments (defined in Appendix C).
As usual with step-indexed logical relations, in the definition for this judgment
about terms, the number k of steps required to evaluate the term t1 is subtracted
from the number of steps n that can be used to relate the outcomes of the term
evaluations.

Soundness of differentiation. We can state a soundness theorem for differentia-
tion without mentioning step-indexes; thanks to this theorem, we can compute
the updated result v2 not by rerunning a computation, but by updating the base
result v1 with the result change dv that we compute through a derivative on the
input change. A corollary shows Eq. (1).

Incremental λ-Calculus in Cache-Transfer Style 567

Theorem 3.3 (Soundness of differentiation in λAL). If dE is a valid
change environment from base environment E1 to updated environment E2, that
is dE � E1 ↪→ E2, and if t converges both in the base and updated environment,
that is E1 � t ⇓ v1 and E2 � t ⇓ v2, then Dι(t) evaluates under the change
environment dE to a valid change dv between base result v1 and updated result
v2, that is dE � Dι(t) ⇓ dv , dv � v1 ↪→ v2 and v1 ⊕ dv = v2.

We must first show that derivatives map input changes valid up to k steps
to output changes valid up to k steps, that is, the fundamental property of our
step-indexed logical relation:

Lemma 3.4 (Fundamental Property)
For each n, if dE �n E1 ↪→ E2 then (dE � Dι(t)) �n (E1 � t) ↪→ (E2 � t).

Fig. 6. Cache-Transfer Style translation and syntax of its target language λCAL.

3.5 CTS Conversion

Figures 6 and 7 define both the syntax of λCAL and λICAL and CTS conversion.
The latter comprises CTS differentiation D(–), from λAL to λICAL, and CTS
translation T (–), from λAL to λCAL.

Syntax definitions for the target languages λCAL and λICAL. Terms of λCAL

follow again λ-lifted A’NF, like λAL, except that a let-binding for a function
application “f x ” now binds an extra cache identifier cyfx besides output y . Cache
identifiers have non-standard syntax: it can be seen as a triple that refers to
the value identifiers f , x and y . Hence, an α-renaming of one of these three
identifiers must refresh the cache identifier accordingly. Result terms explicitly

568 P. G. Giarrusso et al.

return cache C through syntax (x , C). Caches are encoded through nested tuples,
but they are in fact a tree-like data structure that is isomorphic to an execution
trace. This trace contains both immediate values and the execution traces of
nested function calls.

The syntax for λICAL matches the image of the CTS derivative and witnesses
the CTS discipline followed by the derivatives: to determine dy , the derivative
of f evaluated at point x with change dx expects the cache produced by evaluat-
ing y in the base term. The derivative returns the updated cache which contains
the intermediate results that would be gathered by the evaluation of f (x ⊕ dx).
The result term of every change term returns the computed change and a cache
update dC , where each value identifier x of the input cache is updated with its
corresponding change dx .

Fig. 7. CTS differentiation and syntax of its target language λICAL. Beware
T (dE [λx dx . Dι(t)]) applies a left-inverse of Dι(t) during pattern matching.

CTS conversion and differentiation. These translations use two auxiliary func-
tions: C(t) which computes the cache term of a λAL term t, and U (t), which
computes the cache update of t’s derivative.

CTS translation on terms, Tt(t′), accepts as inputs a global term t and a
subterm t′ of t. In tail position (t′ = x), the translation generates code to return
both the result x and the cache C(t) of the global term t. When the transforma-
tion visits let-bindings, it outputs extra bindings for caches cyfx on function calls
and visits the let-body.

Similarly to Tt(t′), CTS derivation Dt(t′) accepts a global term t and a
subterm t′ of t. In tail position, the translation returns both the result change dx
and the cache update U (t). On let-bindings, it does not output bindings for y
but for dy , it outputs extra bindings for cyfx as in the previous case and visits
the let-body.

Incremental λ-Calculus in Cache-Transfer Style 569

To handle function definitions, we transform the base environment E through
T (E) and T (Dι(E)) (translations of environments are done pointwise, see
Appendix D). Since Dι(E) includes E, we describe T (Dι(E)) to also cover T (E).
Overall, T (Dι(E)) CTS-converts each source closure f = E[λx . t] to a CTS-
translated function, with body Tt(t), and to the CTS derivative df of f . This
CTS derivative pattern matches on its input cache using cache pattern C(t). That
way, we make sure that the shape of the cache expected by df is consistent with
the shape of the cache produced by f . The body of derivative df is computed by
CTS-deriving f ’s body via Dt(t).

3.6 Semantics of λCAL and λICAL

An evaluation environment F of λCAL contains both values and cache values.
Values V resemble λAL values v , cache values Vc match cache terms C and
change values dV match λIAL change values dv . Evaluation environments dF
for change terms must also bind change values, so functions in change closures
take not just a base input x and an input change dx , like in λIAL, but also
an input cache C. By abuse of notation, we reuse the same syntax C to both
deconstruct and construct caches.

Base terms of the language are evaluated using a conventional big-step seman-
tics, consisting of two judgments. Judgment “F � M ⇓ (V, Vc)” is read “Under
evaluation environment F , base term M evaluates to value V and cache Vc”. The
semantics follows the one of λAL; since terms include extra code to produce and
carry caches along the computation, the semantics evaluates that code as well.
For space reasons, we defer semantic rules to Appendix E. Auxiliary judgment
“F � C ⇓ Vc” evaluates cache terms into cache values: It traverses a cache term
and looks up the environment for the values to be cached.

Change terms of λICAL are also evaluated using a big-step semantics, which
resembles the semantics of λIAL and λCAL. Unlike those semantics, evaluating
cache updates (dC , x ⊕ dx) is evaluated using the ⊕ operator (overloaded on
λCAL values and λICAL changes). By lack of space, its rules are deferred to
Appendix E. This semantics relies on three judgments. Judgment “dF � dM ⇓
(dV , Vc)” is read “Under evaluation environment F , change term dM evaluates
to change value dV and updated cache Vc”. The first auxiliary judgment “dF �
dC ⇓ Vc” defines evaluation of cache update terms. The final auxiliary judgment
“Vc ∼ C → dF ” describes a limited form of pattern matching used by CTS
derivatives: namely, how a cache pattern C matches a cache value Vc to produce
a change environment dF .

3.7 Soundness of CTS Conversion

The proof is based on a simulation in lock-step, but two subtle points emerge.
First, we must relate λAL environments that do not contain caches, with λCAL

environments that do. Second, while evaluating CTS derivatives, the evaluation
environment mixes caches from the base computation and updated caches com-
puted by the derivatives.

570 P. G. Giarrusso et al.

Theorem 3.7 follows because differentiation is sound (Theorem 3.3) and evalu-
ation commutes with CTS conversion; this last point requires two lemmas. First,
CTS translation of base terms commutes with our semantics:

Lemma 3.5 (Commutation for base evaluations)
For all E, t and v , if E � t ⇓ v , there exists Vc, T (E) � Tt(t) ⇓ (T (v), Vc).

Second, we need a corresponding lemma for CTS translation of differentiation
results: intuitively, evaluating a derivative and CTS translating the resulting
change value must give the same result as evaluating the CTS derivative. But to
formalize this, we must specify which environments are used for evaluation, and
this requires two technicalities.

Assume derivative Dι(t) evaluates correctly in some environment dE . Evalu-
ating CTS derivative Dt(t) requires cache values from the base computation, but
they are not in T (dE)! Therefore, we must introduce a judgment to complete a
CTS-translated environment with the appropriate caches (see Appendix F).

Next, consider evaluating a change term of the form dM = C[dM ′], where C

is a standard single-hole change-term context—that is, for λICAL, a sequence
of let-bindings. When evaluating dM , we eventually evaluate dM ′ in a change
environment dF updated by C: the change environment dF contains both the
updated caches coming from the evaluation of C and the caches coming from
the base computation (which will be updated by the evaluation of dM). Again,
a new judgment, given in Appendix F, is required to model this process.

With these two judgments, the second key Lemma stating the commutation
between evaluation of derivatives and evaluation of CTS derivatives can be stated.
We give here an informal version of this Lemma, the actual formal version can
be found in Appendix F.

Lemma 3.6 (Commutation for derivatives evaluation)
If the evaluation of Dι(t) leads to an environment dE 0 when it reaches the

differentiated context Dι(C) where t = C[t′], and if the CTS conversion of t
under this environment completed with base (resp. changed) caches evaluates
into a base value T (v) (resp. a changed value T (v ′)) and a base cache value
Vc (resp. an updated cache value V ′

c), then under an environment containing
the caches already updated by the evaluation of Dι(C) and the base caches to be
updated, the CTS derivative of t′ evaluates to T (dv) such that v ⊕ dv = v ′ and
to the updated cache V ′

c .

Finally, we can state soundness of CTS differentiation. This theorem says
that CTS derivatives not only produce valid changes for incrementalization but
that they also correctly consume and update caches.

Theorem 3.7 (Soundness of CTS differentiation)
If the following hypotheses hold:

1. dE � E ↪→ E′

2. E � t ⇓ v
3. E′ � t ⇓ v ′

Incremental λ-Calculus in Cache-Transfer Style 571

then there exists dv , Vc, V ′
c and F0 such that:

1. T (E) � T (t) ⇓ (T (v), Vc)
2. T (E′) � T (t) ⇓ (T (v ′), V ′

c)
3. C(t) ∼ Vc → F0

4. T (dE);F0 � Dt(t) ⇓ (T (dv), V ′
c)

5. v ⊕ dv = v ′

4 Incrementalization Case Studies

In this section, we investigate two questions: whether our transformations can
target a typed language like Haskell and whether automatically transformed
programs can perform well. We implement by hand primitives on sequences,
bags and maps in Haskell. The input terms in all case studies are written in a
deep embedding of λAL into Haskell. The transformations generate Haskell code
that uses our primitives and their derivatives.

We run the transformations on three case studies: a computation of the aver-
age value of a bag of integers, a nested loop over two sequences and a more
involved example inspired by Koch et al. [17]’s work on incrementalizing database
queries. For each case study, we make sure that results are consistent between
from scratch recomputation and incremental evaluation; we measure the execu-
tion time for from scratch recomputation and incremental computation as well
as the space consumption of caches. We obtain efficient incremental programs,
that is ones for which incremental computation is faster than from scratch recom-
putation. The measurements indicate that we do get the expected asymptotic
improvement in time of incremental computation over from scratch recomputa-
tion by a linear factor while the caches grows in a similar linear factor.

Our benchmarks were compiled by GHC 8.2.2 and run on a 2.20GHz hexa
core Intel(R) Xeon(R) CPU E5-2420 v2 with 32GB of RAM running Ubuntu
14.04. We use the criterion [21] benchmarking library.

4.1 Averaging Bags of Integers

Section 2.1 motivates our transformation with a running example of computing
the average over a bag of integers. We represent bags as maps from elements to
(possibly negative) multiplicities. Earlier work [7,17] represents bag changes as
bags of removed and added elements. We use a different representation of bag
changes that takes advantage of the changes to elements and provide primitives
on bags and their derivatives. The CTS variant of map, that we call mapC , takes
a function fC in CTS and a bag as and produces a bag and a cache. The cache
stores for each invocation of fC , and therefore for each distinct element in as,
the result of fC of type b and the cache of type c.

Inspired by Rossberg et al. [23], all higher-order functions (and typically, also
their caches) are parametric over cache types of their function arguments. Here,
functions mapC and dmapC and cache type MapC are parametric over the cache
type c of fC and dfC .

572 P. G. Giarrusso et al.

map :: (a → b) → Bag a → Bag b

data MapC a b c = MapC (Map a (b, c))
mapC :: (a → (b, c)) → Bag a → (Bag b,MapC a b c)
dmapC :: (a → (b, c)) → (a → Δa → c → (Δb, c)) → Bag a → Δ(Bag a) →

MapC a b c → (Δ(Bag b),MapC a b c)

We wrote the length and sum functions used in our benchmarks in terms of
primitives map and foldGroup and had their CTS function and CTS derivative
generated automatically.

We evaluate whether we can produce an updated result with daverageC
shown in Sect. 2.1 faster than by from scratch recomputation with average. We
expect the speedup of daverageC to depend on the size of the input bag n. We
fix an input bag of size n as the bag containing the numbers from 1 to n. We
define a change that inserts the integer 1 into the bag. To measure execution
time of from scratch recomputation, we apply average to the input bag updated
with the change. To measure execution time of the CTS function averageC , we
apply averageC to the input bag updated with the change. To measure execution
time of the CTS derivative daverageC , we apply daverageC to the input bag,
the change and the cache produced by averageC when applied to the input bag.
In all three cases we ensure that all results and caches are fully forced so as to
not hide any computational cost behind laziness.

0 50 100

0

0.02

0.04

0 50 100

0

0.2

0.4

Fig. 8. Benchmark results for average and totalPrice

The plot in Fig. 8a shows execution time versus the size n of the base input.
To produce the base result and cache, the CTS transformed function averageC
takes longer than the original average function takes to produce just the result.
Producing the updated result incrementally is slower than from scratch recom-
putation for small input sizes, but because of the difference in time complexity
becomes faster as the input size grows. The size of the cache grows linearly with
the size of the input, which is not optimal for this example. We leave optimizing
the space usage of examples like this to future work.

Incremental λ-Calculus in Cache-Transfer Style 573

4.2 Nested Loops over Two Sequences

Next, we consider CTS differentiation on a higher-order example. To incremen-
talize this example efficiently, we have to enable detecting nil function changes
at runtime by representing function changes as closures that can be inspected
by incremental programs. Our example here is the Cartesian product of two
sequences computed in terms of functions map and concat .

cartesianProduct :: Sequence a → Sequence b → Sequence (a, b)
cartesianProduct xs ys = concatMap (λx → map (λy → (x , y)) ys) xs

concatMap :: (a → Sequence b) → Sequence a → Sequence b
concatMap f xs = concat (map f xs)

We implemented incremental sequences and related primitives following
Firsov and Jeltsch [9]: our change operations and first-order operations (such as
concat) reuse their implementation. On the other hand, we must extend higher-
order operations such as map to handle non-nil function changes and caching. A
correct and efficient CTS derivative dmapC has to work differently depending
on whether the given function change is nil or not: For a non-nil function change
it has to go over the input sequence; for a nil function change it has to avoid
that.

Cai et al. [7] use static analysis to conservatively approximate nil function
changes as changes to terms that are closed in the original program. But in this
example the function argument (λy → (x , y)) to map in cartesianProduct is not
a closed term. It is, however, crucial for the asymptotic improvement that we
avoid looping over the inner sequence when the change to the free variable x in
the change environment is 0x .

To enable runtime nil change detection, we apply closure conversion to the
original program and explicitly construct closures and changes to closures. While
the only valid change for closed functions is their nil change, for closures we can
have non-nil function changes. A function change df , represented as a closure
change, is nil exactly when all changes it closes over are nil.

We represent closed functions and closures as variants of the same type. Cor-
respondingly we represent changes to a closed function and changes to a closure
as variants of the same type of function changes. We inspect this representation
at runtime to find out if a function change is a nil change.

data Fun a b c where
Closed :: (a → (b, c)) → Fun a b c
Closure :: (e → a → (b, c)) → e → Fun a b c

data Δ(Fun a b c) where
DClosed :: (a → Δa → c → (Δb, c)) → Δ(Fun a b c)
DClosure :: (e → Δe → a → Δa → c → (Δb, c)) → e → Δe → Δ(Fun a b c)

We use the same benchmark setup as in the benchmark for the average compu-
tation on bags. The input of size n is a pair of sequences (xs, ys). Each sequence

574 P. G. Giarrusso et al.

initially contains the integers from 1 to n. Updating the result in reaction to a
change dxs to the outer sequence xs takes less time than updating the result in
reaction to a change dys to the inner sequence ys. While a change to the outer
sequence xs results in an easily located change in the output sequence, a change
for the inner sequence ys results in a change that needs a lot more calculation
to find the elements it affects. We benchmark changes to the outer sequence xs
and the inner sequence ys separately where the change to one sequence is the
insertion of a single integer 1 at position 1 and the change for the other one is
the nil change.

0 50 100

0

1

2

3

0 50 100

0

1

2

3

Fig. 9. Benchmark results for cartesianProduct

Figure 9 shows execution time versus input size. In this example again prepar-
ing the cache takes longer than from scratch recomputation alone. The speedup
of incremental computation over from scratch recomputation increases with the
size of the base input sequences because of the difference in time complexity.
Eventually we do get speedups for both kinds of changes (to the inner and to
the outer sequence), but for changes to the outer sequence we get a speedup
earlier, at a smaller input size. The size of the cache grows super linearly in this
example.

4.3 Indexed Joins of Two Bags

Our goal is to show that we can compose primitive functions into larger and
more complex programs and apply CTS differentiation to get a fast incremental
program. We use an example inspired from the DBToaster literature [17]. In this
example we have a bag of orders and a bag of line items. An order is a pair of an
order key and an exchange rate. A line item is a pair of an order key and a price.
We build an index mapping each order key to the sum of all exchange rates of
the orders with this key and an index from order key to the sum of the prices
of all line items with this key. We then merge the two maps by key, multiplying
corresponding sums of exchange rates and sums of prices. We compute the total
price of the orders and line items as the sum of those products.

Incremental λ-Calculus in Cache-Transfer Style 575

type Order = (Z,Z)
type LineItem = (Z,Z)

totalPrice :: Bag Order → Bag LineItem → Z

totalPrice orders lineItems = let
orderIndex = groupBy fst orders
orderSumIndex = Map.map (Bag .foldMapGroup snd) orderIndex
lineItemIndex = groupBy fst lineItems
lineItemSumIndex = Map.map (Bag .foldMapGroup snd) lineItemIndex
merged = Map.merge orderSumIndex lineItemSumIndex
total = Map.foldMapGroup multiply merged
in total

groupBy :: (a → k) → Bag a → Map k (Bag a)
groupBy keyOf bag =

Bag .foldMapGroup (λa → Map.singleton (keyOf a) (Bag .singleton a)) bag

Unlike DBToaster, we assume our program is already transformed to explicitly
use indexes, as above. Because our indexes are maps, we implemented a change
structure, CTS primitives and their CTS derivatives for maps.

To build the indexes, we use a groupBy function built from primitive func-
tions foldMapGroup on bags and singleton for bags and maps respectively. The
CTS function groupByC and the CTS derivative dgroupByC are automatically
generated. While computing the indexes with groupBy is self-maintainable, merg-
ing them is not. We need to cache and incrementally update the intermediately
created indexes to avoid recomputing them.

We evaluate the performance in the same way we did in the other case studies.
The input of size n is a pair of bags where both contain the pairs (i , i) for i
between 1 and n. The change is an insertion of the order (1, 1) into the orders
bag. For sufficiently large inputs, our CTS derivative of the original program
produces updated results much faster than from scratch recomputation, again
because of a difference in time complexity as indicated by Fig. 8b. The size of
the cache grows linearly with the size of the input in this example. This is
unavoidable, because we need to keep the indexes.

4.4 Limitations and Future Work

Typing of CTS programs. Functions of the same type f1, f2 :: A → B can be
transformed to CTS functions f1 :: A → (B ,C1), f2 :: A → (B ,C2) with different
cache types C1,C2, since cache types depend on the implementation. This het-
erogeneous typing of translated functions poses difficult typing issues, e.g. what
is the translated type of a list (A → B)? We cannot hide cache types behind exis-
tential quantifiers because they would be too abstract for derivatives, which only
work on very specific cache types. We can fix this problem with some runtime
overhead by using a single type Cache, defined as a tagged union of all cache
types or, maybe with more sophisticated type systems—like first-class translu-
cent sums, open existentials or Typed Adapton’s refinement types [12]—that
could be able to correctly track down cache types properly.

576 P. G. Giarrusso et al.

In any case, we believe that these machineries would add a lot of complexity
without helping much with the proof of correctness. Indeed, the simulation rela-
tion is more handy here because it maintains a global invariant about the whole
evaluations (typically the consistency of cache types between base computations
and derivatives), not many local invariants about values as types would.

One might wonder why caches could not be totally hidden from the pro-
grammer by embedding them in the derivatives themselves; or in other words,
why we did not simply translate functions of type A → B into functions of
type A → B × (ΔA → ΔB). We tried this as well; but unlike automatic dif-
ferentiation, we must remember and update caches according to input changes
(especially when receiving a sequence of such changes as in Sect. 2.1). Returning
the updated cache to the caller works; we tried closing over the caches in the
derivative, but this ultimately fails (because we could receive function changes
to the original function, but those would need access to such caches).

Comprehensive performance evaluation. This paper focuses on theory and we
leave benchmarking in comparison to other implementations of incremental com-
putation to future work. The examples in our case study were rather simple
(except perhaps for the indexed join). Nevertheless, the results were encouraging
and we expect them to carry over to more complex examples, but not to all
programs. A comparison to other work would also include a comparison of space
usage for auxiliary data structure, in our case the caches.

Cache pruning via absence analysis. To reduce memory usage and runtime over-
head, it should be possible to automatically remove from transformed programs
any caches or cache fragments that are not used (directly or indirectly) to com-
pute outputs. Liu [19] performs this transformation on CTS programs by using
absence analysis, which was later extended to higher-order languages by Sergey
et al. [25]. In lazy languages, absence analysis removes thunks that are not needed
to compute the output. We conjecture that the analysis could remove unused
caches or inputs, if it is extended to not treat caches as part of the output.

Unary vs n-ary abstraction. We only show our transformation correct for
unary functions and tuples. But many languages provide efficient support for
applying curried functions such as div :: Z → Z → Z. Naively transform-
ing such a curried function to CTS would produce a function divC of type
Z → (Z → (Z,DivC 2)),DivC 1 with DivC 1 = (), which adds excessive overhead.
In Sect. 2 and our evaluation we use curried functions and never need to use this
naive encoding, but only because we always invoke functions of known arity.

5 Related Work

Cache-transfer-style. Liu [19]’s work has been the fundamental inspiration to this
work, but her approach has no correctness proof and is restricted to a first-order
untyped language. Moreover, while the idea of cache-transfer-style is similar,

Incremental λ-Calculus in Cache-Transfer Style 577

it’s unclear if her approach to incrementalization would extend to higher-order
programs. Firsov and Jeltsch [9] also approach incrementalization by code trans-
formation, but their approach does not deal with changes to functions. Instead of
transforming functions written in terms of primitives, they provide combinators
to write CTS functions and derivatives together. On the other hand, they extend
their approach to support mutable caches, while restricting to immutable ones
as we do might lead to a logarithmic slowdown.

Finite differencing. Incremental computation on collections or databases by
finite differencing has a long tradition [6,22]. The most recent and impressive
line of work is the one on DBToaster [16,17], which is a highly efficient app-
roach to incrementalize queries over bags by combining iterated finite differenc-
ing with other program transformations. They show asymptotic speedups both
in theory and through experimental evaluations. Changes are only allowed for
datatypes that form groups (such as bags or certain maps), but not for instance
for lists or sets. Similar ideas were recently extended to higher-order and nested
computation [18], though only for datatypes that can be turned into groups.
Koch et al. [18] emphasize that iterated differentiation is necessary to obtain
efficient derivatives; however, ANF conversion and remembering intermediate
results appear to address the same problem, similarly to the field of automatic
differentiation [27].

Logical relations. To study correctness of incremental programs we use a logical
relation among base values v1, updated values v2 and changes dv . To define a
logical relation for an untyped λ-calculus we use a step-indexed logical relation,
following Ahmed [4], Appel and McAllester [5]; in particular, our definitions are
closest to the ones by Acar et al. [3], who also work with an untyped language,
big-step semantics and (a different form of) incremental computation. However,
they do not consider first-class changes. Technically, we use environments rather
than substitution, and index our big-step semantics differently.

Dynamic incrementalization. The approaches to incremental computation with
the widest applicability are in the family of self-adjusting computation [1,2],
including its descendant Adapton [14]. These approaches incrementalize pro-
grams by combining memoization and change propagation: after creating a trace
of base computations, updated inputs are compared with old ones in O(1) to
find corresponding outputs, which are updated to account for input modifica-
tions. Compared to self-adjusting computation, Adapton only updates results
that are demanded. As usual, incrementalization is not efficient on arbitrary
programs, but only on programs designed so that input changes produce small
changes to the computation trace; refinement type systems have been designed
to assist in this task [8,12]. To identify matching inputs, Nominal Adapton [13]
replaces input comparisons by pointer equality with first-class labels, enabling
more reuse.

578 P. G. Giarrusso et al.

6 Conclusion

We have presented a program transformation which turns a functional program
into its derivative and efficiently shares redundant computations between them
thanks to a statically computed cache.

Although our first practical case studies show promising results, this paper
focused on putting CTS differentiation on solid theoretical ground. For the
moment, we only have scratched the surface of the incrementalization oppor-
tunities opened by CTS primitives and their CTS derivatives: in our opinion,
exploring the design space for cache data structures will lead to interesting new
results in purely functional incremental programming.

Acknowledgments. We are grateful to anonymous reviewers: they made important
suggestions to help us improve our technical presentation. We also thank Cai Yufei,
Tillmann Rendel, Lourdes del Carmen González Huesca, Klaus Ostermann, Sebastian
Erdweg for helpful discussions on this project. This work was partially supported by
DFG project 282458149 and by SNF grant No. 200021_166154.

References

1. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Carnegie Mellon University
(2005)

2. Acar, U.A.: Self-adjusting computation: (an overview). In: PEPM, pp. 1–6. ACM
(2009)

3. Acar, U.A., Ahmed, A., Blume, M.: Imperative self-adjusting computation. In: Pro-
ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, pp. 309–322. ACM, New York (2008).
https://doi.acm.org/10.1145/1328438.1328476

4. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified
types. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 69–83. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11693024_6

5. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (2001).
https://doi.acm.org/10.1145/504709.504712

6. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views.
In: SIGMOD, pp. 61–71. ACM (1986)

7. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages—incrementalizing λ-calculi by static differentiation. In: Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2014, pp. 145–155. ACM, New York (2014). https://
doi.acm.org/10.1145/2594291.2594304

8. Çiçek, E., Paraskevopoulou, Z., Garg, D.: A type theory for incremental compu-
tational complexity with control flow changes. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, pp.
132–145. ACM, New York (2016)

https://doi.acm.org/10.1145/1328438.1328476
https://doi.org/10.1007/11693024_6
https://doi.acm.org/10.1145/504709.504712
https://doi.acm.org/10.1145/2594291.2594304
https://doi.acm.org/10.1145/2594291.2594304

Incremental λ-Calculus in Cache-Transfer Style 579

9. Firsov, D., Jeltsch, W.: Purely functional incremental computing. In: Castor, F.,
Liu, Y.D. (eds.) SBLP 2016. LNCS, vol. 9889, pp. 62–77. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45279-1_5

10. Giarrusso, P.G.: Optimizing and incrementalizing higher-order collection queries
by AST transformation. Ph.D. thesis, University of Tübingen (2018). Defended.
http://inc-lc.github.io/

11. Gupta, A., Mumick, I.S.: Maintenance of materialized views: problems, techniques,
and applications. In: Gupta, A., Mumick, I.S. (eds.) Materialized Views, pp. 145–
157. MIT Press (1999)

12. Hammer, M.A., Dunfield, J., Economou, D.J., Narasimhamurthy, M.: Typed adap-
ton: refinement types for incremental computations with precise names. October
2016 arXiv:1610.00097 [cs]

13. Hammer, M.A., et al.: Incremental computation with names. In: Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, pp. 748–766. ACM, New
York (2015). https://doi.acm.org/10.1145/2814270.2814305

14. Hammer, M.A., Phang, K.Y., Hicks, M., Foster, J.S.: Adapton: composable,
demand-driven incremental computation. In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2014, pp. 156–166. ACM, New York (2014)

15. Johnsson, T.: Lambda lifting: transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer, Heidel-
berg (1985). https://doi.org/10.1007/3-540-15975-4_37

16. Koch, C.: Incremental query evaluation in a ring of databases. In: Symposium
Principles of Database Systems (PODS), pp. 87–98. ACM (2010)

17. Koch, C., et al.: DBToaster: higher-order delta processing for dynamic, frequently
fresh views. VLDB J. 23(2), 253–278 (2014). https://doi.org/10.1007/s00778-013-
0348-4

18. Koch, C., Lupei, D., Tannen, V.: Incremental view maintenance for collection pro-
gramming. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2016, pp. 75–90. ACM, New York
(2016)

19. Liu, Y.A.: Efficiency by incrementalization: an introduction. HOSC 13(4), 289–313
(2000)

20. Liu, Y.A., Teitelbaum, T.: Caching intermediate results for program improvement.
In: Proceedings of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, PEPM 1995, pp. 190–201. ACM, New
York (1995). https://doi.acm.org/10.1145/215465.215590

21. O’Sullivan, B.: criterion: a Haskell microbenchmarking library (2014). http://www.
serpentine.com/criterion/

22. Paige, R., Koenig, S.: Finite differencing of computable expressions. TOPLAS 4(3),
402–454 (1982)

23. Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. In: Proceedings of the 5th
ACM SIGPLAN Workshop on Types in Language Design and Implementation,
TLDI 2010, pp. 89–102. ACM, New York (2010)

24. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LISP Symb. Comput. 6(3–4), 289–360 (1993)

25. Sergey, I., Vytiniotis, D., Peyton Jones, S.: Modular, higher-order cardinality anal-
ysis in theory and practice. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, pp. 335–347.
ACM, New York (2014)

https://doi.org/10.1007/978-3-319-45279-1_5
http://inc-lc.github.io/
http://arxiv.org/abs/1610.00097
https://doi.acm.org/10.1145/2814270.2814305
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1007/s00778-013-0348-4
https://doi.acm.org/10.1145/215465.215590
http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/

580 P. G. Giarrusso et al.

26. The Coq Development Team: The Coq proof assistant reference manual, version
8.8 (2018). http://coq.inria.fr

27. Wang, F., Wu, X., Essertel, G., Decker, J., Rompf, T.: Demystifying differentiable
programming: shift/reset the penultimate backpropagator. Technical report (2018).
https://arxiv.org/abs/1803.10228

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://coq.inria.fr
https://arxiv.org/abs/1803.10228
http://creativecommons.org/licenses/by/4.0/

Concurrency and Distribution

Asynchronous Timed Session Types

From Duality to Time-Sensitive Processes

Laura Bocchi1(B), Maurizio Murgia1,4, Vasco Thudichum Vasconcelos2,
and Nobuko Yoshida3

1 University of Kent, Canterbury, UK
l.bocchi@kent.ac.uk

2 LASIGE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
3 Imperial College London, London, UK
4 University of Cagliari, Cagliari, Italy

Abstract. We present a behavioural typing system for a higher-order
timed calculus using session types to model timed protocols. Behavioural
typing ensures that processes in the calculus perform actions in the time-
windows prescribed by their protocols. We introduce duality and subtyp-
ing for timed asynchronous session types. Our notion of duality allows
typing a larger class of processes with respect to previous proposals.
Subtyping is critical for the precision of our typing system, especially in
the presence of session delegation. The composition of dual (timed asyn-
chronous) types enjoys progress when using an urgent receive semantics,
in which receive actions are executed as soon as the expected message
is available. Our calculus increases the modelling power of extant calculi
on timed sessions, adding a blocking receive primitive with timeout and
a primitive that consumes an arbitrary amount of time in a given range.

Keywords: Session types · Timers · Duality · π-calculus

1 Introduction

Time is at the basis of many real-life protocols. These include common client-
server interactions as for example, “An SMTP server SHOULD have a timeout
of at least 5minutes while it is awaiting the next command from the sender” [22].
By protocol, we intend application-level specifications of interaction patterns (via
message passing) among distributed applications. An extensive literature offers
theories and tools for formal analysis of timed protocols, modelled for instance
as timed automata [3,26,34] or Message Sequence Charts [2]. These works allow
to reason on the properties of protocols, defined as formal models. Recent work,

This work has been partially supported by EPSRC EP/N035372/1, EP/K011715/1,
EP/N027833/1, EP/K034413/1, EP/L00058X/1, EP/N028201/1, Aut. Reg. of
Sardinia projects Sardcoin and Smart collaborative engineering, FCT through
project Confident PTDC/EEI-CTP/4503/2014 and the LASIGE Research Unit
UID/CEC/00408/2019. We thank Julien Lange for his advise and comments.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 583–610, 2019.
https://doi.org/10.1007/978-3-030-17184-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_21

584 L. Bocchi et al.

based on session types, focus on the relationship between time-sensitive proto-
cols, modelled as timed extensions of session types, and their implementations
abstracted as processes in some timed calculus. The relationship between pro-
tocols and processes is given in terms of static behavioural typing [12,15] or
run-time monitoring [6,7,30] of processes against types. Existing work on timed
session types [7,12,15,30] is based on simple abstractions for processes which do
not capture time sensitive primitives such as blocking (as well as non-blocking)
receive primitives with timeout and time consuming actions with variable, yet
bound, duration. This paper provides a theory of asynchronous timed session
types for a calculus that features these two primitives. We focus on the asyn-
chronous scenario, as modern distributed systems (e.g., web) are often based
on asynchronous communications via FIFO channels [4,33]. The link between
protocols and processes is given in terms of static behavioural typing, checking
for punctuality of interactions with respect to protocols prescriptions. Unlike
previous work on asynchronous timed session types [12], our type system can
check processes against protocols that are not wait-free. In wait-free protocols,
the time-windows for corresponding send and receive actions have an empty
intersection. We illustrate wait-freedom using a protocol modelled as two timed
session types, each owning a set of clocks (with no shared clocks between types).

SC =!Command(x < 5, {x}).S′
C SS =?Command(y < 5, {y}).S′

S (1)

The protocol in (1) involves a client SC with a clock x, and a server SS with a
clock y (with both x and y initially set to 0). Following the protocol, the client
must send a message of type Command within 5 min, reset x, and continue as S′

C.
Dually, the server must be ready to receive a command with a timeout of 5 min,
reset y, and continue as S′

S. The model in (1) is not wait-free: the intersection
of the time-windows for the send and receive actions is non-empty (the time-
windows actually coincide). The protocol in (2), where the server must wait until
after the client’s deadline to read the message, is wait-free.

!Command(x < 5, {x}).S′′
C ?Command(y = 5, {y}).S′′

S (2)

Patterns like the one in (1) are common (e.g., the SMPT fragment mentioned
at the beginning of this introduction) but, unfortunately, they are not wait-free,
hence ruled out in previous work [12]. Arguably, (2) is an unpractical wait-free
variant of (1): the client must always wait for at least 5 min to have the message
read, no matter how early this message was sent. The definition of protocols
for our typing system (which allows for not wait-free protocols) is based on a
notion of asynchronous timed duality, and on a subtyping relation that provides
accuracy of typing, especially in the case of channel passing.

Asynchronous timed duality. In the untimed scenario, each session type has one
unique dual that is obtained by changing the polarities of the actions (send vs.
receive, and selection vs. branching). For example, the dual of a session type S

Asynchronous Timed Session Types 585

that sends an integer and then receives a string is a session type S that receives
an integer and then sends a string.

S =!Int.?String S =?Int.!String

Duality characterises well-behaved systems: the behaviour described by the com-
position of dual types has no communication mismatches (e.g., unexpected mes-
sages, or messages with values of unexpected types) nor deadlocks. In the timed
scenario, this is no longer true. Consider a timed extension of session types (using
the model of time in timed automata [3]), and of (untimed) duality so that dual
send/receive actions have equivalent time constraints and resets. The example
below shows a timed type S with its dual S, where S owns clock x, and S owns
clock y (with x and y initially set to 0):

S =!Int(x � 1, x).?String(x � 2) S =?Int(y � 1, y).!String(y � 2)

Here S sends an integer at any time satisfying x � 1, and then resets x. After
that, S receives a string at any time satisfying x � 2. The timed dual of S
is obtained by keeping the same time constraints (and renaming the clock—
to make it clear that clocks are not shared). To illustrate our point, we use
the semantics from timed session types [12], borrowed from Communicating
Timed automata [23]. This semantics is separated, in the sense that only time
actions may ‘take time’, while all other actions (e.g., communications) are
instantaneous.1 The aforementioned semantics allows for the following execu-
tion of S | S:

S | S
0.4−→ Int−→ ?String(x � 2) | S (clocks values: x = 0, y = 0.4)
0.6−→ Int−→ ?String(x � 2) |!String(x � 2) (clocks values: x = 0.6, y = 0)
2−→!String−→ ?String(x � 2) (clocks values: x = 2.6, y = 2)

where: (i) the system makes a time step of 0.4, then S sends the integer and
resets x, yielding a state where x = 0 and y = 0.4; (ii) the system makes a
time step of 0.6, then S receives the integer and resets y, yielding a state where
x = 0.6 and y = 0; (iii) the system makes a time step of 2, then the continuation
of S sends the string, when y = 2 and x = 2.6. In (iii), the string was sent too
late: constraint x � 2 of the receiving endpoint is now unsatisfiable. The system
cannot do any further legal step, and is stuck.

Urgent receive semantics. The example above shows that, in the timed asyn-
chronous scenario, the straightforward extension of duality to the timed scenario
does not necessarily characterise well-behaved communications. We argue, how-
ever, that the execution of S | S, in particular the time reduction with label
0.6, does not reflect the semantics of most common receive primitives. In fact,
most mainstream programming languages implement urgent receive semantics
1 Separated semantics can describe situations where actions have an associated

duration.

586 L. Bocchi et al.

for receive actions. We call a semantics urgent receive when receive actions are
executed as soon as the expected message is available, given that the guard of
that action is satisfied. Conversely, non-urgent receive semantics allows receive
actions to fire at any time satisfying the time constraint, as long as the message
is in the queue. The aforementioned reduction with label 0.6 is permitted by
non-urgent receive semantics such as the one in [23], since it defers the reception
of the integer despite the integer being ready for reception and the guard (y � 2)
being satisfied, but not by urgent receive semantics. Urgent receive semantics
allows, instead, the following execution for S | S:

S | S
0.4−→ !int−→ ?String(x � 2) | S (clocks values: x = 0, y = 0.4)
?int−→ ?String(x � 2) |!String(x � 2) (clocks values: x = 0, y = 0)
2−→!String−→ ?String(x � 2) (clocks values: x = 2, y = 2)

If S sends the integer when x = 0.4, then S must receive the integer imme-
diately, when y = 0.4. At this point, both endpoints reset their respective
clocks, and the communication will continue in sync. Urgent receive primitives
are common; some examples are the non-blocking WaitFreeReadQueue.read()
and blocking WaitFreeReadQueue.waitForData() of Real-Time Java [13], and
the receive primitives in Erlang and Golang. Urgent receive semantics make
interactions “more synchronous” but still as asynchronous as real-life programs.

A calculus for timed asynchronous processes. Our calculus features two time-
sensitive primitives. The first is a parametric receive operation an(b). P on a
channel a, with a timeout n that can be ∞ or any number in R�0. The para-
metric receive captures a range of receive primitives: non-blocking (n = 0),
blocking without timeout (n = ∞), or blocking with timeout (n ∈ R>0). The
second primitive is a time-consuming action, delay(δ). P , where δ is a constraint
expressing the time-window for the time consumed by that action. Delay pro-
cesses model primitives like Thread.sleep(n) in real-time Java [13] or, more
generally, any time-consuming action, with δ being an estimation of the delay of
computation.

Processes in our calculus abstract implementations of protocols given as pairs
of dual types. Consider the processes below.

PC = delay(x < 3). a HELO.P ′
C PS = delay(x = 5). a0(b).P ′

S QS = a5(b).Q′
S

Processes abiding the protocols in (2) could be as follows: PC for the client SC ,
and PS for the server SS . The client process PC performs a time consuming action
for up to 3 min, then sends command HELO to the server, and continues as P ′

C .
The server process PS sleeps for exactly 5 min, receives the message immediately
(without blocking), and continues as P ′

S . A process for the protocol in (1) could,
instead be the parallel composition of PC , again for the client, and QS for the
server. Process QS uses a blocking primitive with timeout; the server now blocks
on the receive action with a timeout of 5 min, and continues as Q′

S as soon as
a message is received. The blocking receive primitive with timeout is crucial

Asynchronous Timed Session Types 587

to model processes typed against protocols one can express with asynchronous
timed duality, in particular those that are not wait-free.

A type system for timed asynchronous processes. The relationship between types
and processes in our calculus is given as a typing system. Well-typed processes
are ensured to communicate at the times prescribed by their types. This result
is given via Subject Reduction (Theorem 4), establishing that well-typedness is
preserved by reduction. In our timed scenario, Subject Reduction holds under
receive liveness, an assumption on the interaction structure of processes. This
assumption is orthogonal to time. To characterise the interaction structures of a
timed process we erase timing information from that processes (time erasure).
Receive liveness requires that, whenever a time-erased processes is waiting for
a message, the corresponding message is eventually provided by the rest of the
system. While receive liveness is not needed for Subject Reduction in untimed
systems [21], it is required for timed processes. This reflects the natural intuition
that if an untimed-process violates progress, then its timed counterpart may miss
deadlines. Notably, we can rely on existing behavioural checking techniques from
the untimed setting to ensure receive liveness [17].

Receive liveness is not required for Subject Reduction in a related work on
asynchronous timed session types [12]. The dissimilarity in the assumptions is
only apparent; it derives from differences in the two semantics for processes.
When our processes cannot proceed correctly (e.g., in case of missed deadlines)
they reduce to a failed state, whereas the processes in [12] become stuck (indi-
cating violation of progress).

Synopsis. In Sect. 2 we introduce the syntax and the formation rules for asyn-
chronous timed session types. In Sect. 3, we give a modular Labelled Transition
System (LTS) for types in isolation (Sect. 3.1) and for compositions of types
(Sect. 3.3). The subtyping relation is given in Sect. 3.2 and motivated in Example
8, after introducing the typing rules. We introduce timed asynchronous duality
and its properties in Sect. 4. Remarkably, the composition of dual timed asyn-
chronous types enjoys progress when using an urgent receive semantics (Theo-
rem 1). Section 5 presents a calculus for timed processes and Sect. 6 introduces its
typing system. The properties of our typing system—Subject Reduction (The-
orem 4) and Time Safety (Theorem 5)—are introduced in Sect. 7. Conclusions
and related works are in Sect. 8. Proofs and additional material can be found in
the online report [11].

2 Asynchronous Timed Session Types

Clocks and predicates. We use the model of time from timed automata [3]. Let
X be a finite set of clocks, let x1, . . . , xn range over clocks, and let each clock
take values in R�0. Let t1, . . . , tn range over non-negative real numbers and
n1, . . . , nn range over non-negative rationals. The set G(X) of predicates over X

is defined by the following grammar.

δ :: = true | x > n | x = n | x − y > n | x − y = n | ¬δ | δ1 ∧ δ2 where x, y ∈ X

588 L. Bocchi et al.

We derive false, <, �, � in the standard way. Predicates in the form x−y > n
and x − y = n are called diagonal predicates; in these cases we assume x �= y.
Notation cn(δ) stands for the set of clocks in δ.

Clock valuation and resets. A clock valuation ν : X �→ R�0 returns the time of
the clocks in X. We write ν + t for the valuation mapping all x ∈ X to ν(x) + t,
ν0 for the initial valuation (mapping all clocks to 0), and, more generally, νt for
the valuation mapping all clocks to t. Let ν |= δ denote that δ is satisfied by ν.
A reset predicate λ over X is a subset of X. When λ is H then no reset occurs,
otherwise the assignment for each x ∈ λ is set to 0. We write ν [λ �→ 0] for the
clock assignment that is like ν everywhere except that its assigns 0 to all clocks
in λ.

Types. Timed session types, hereafter just types, have the following syntax:

T :: = (δ, S) | Nat | Bool | . . .

S :: = !T (δ, λ).S | ?T (δ, λ).S | ⊕ {li(δi, λi) : Si}i∈I | &{li(δi, λi) : Si}i∈I |
μα.S | α | end

Sorts T include base types (Nat, Bool, etc.), and sessions (δ, S). Messages of
type (δ, S) allow a participant involved in a session to delegate the remaining
behaviour S; upon delegation the sender will no longer participate in the dele-
gated session and receiver will execute the protocol described by S under any
clock assignment satisfying δ. We denote the set of types with T.

Type !T (δ, λ).S models a send action of a payload with sort T . The sending
action is allowed at any time that satisfies the guard δ. The clocks in λ are
reset upon sending. Type ?T (δ, λ).S models the dual receive action of a payload
with sort T . The receiving types require the endpoint to be ready to receive the
message in the precise time window specified by the guard.

Type ⊕{li(δi, λi) : Si}i∈I is a select action: the party chooses a branch i ∈ I,
where I is a finite set of indices, selects the label li, and continues as prescribed
by Si. Each branch is annotated with a guard δ and reset λ. A branch j can
be selected at any time allowed by δj . The dual type is &{li(δi, λi) : Si}i∈I

for branching actions. Each branch is annotated with a guard and a reset. The
endpoint must be ready to receive the label for j at any time allowed by δj (or
until another branch is selected).

Recursive type μα.S associates a type variable α to a recursion body S. We
assume that type variables are guarded in the standard way (i.e., they only occur
under actions or branches). We let A denote the set of type variables.

Type end models successful termination.

2.1 Type Formation

The grammar for types allow to generate types that are not implementable in
practice, as the one shown in Example 1.

Asynchronous Timed Session Types 589

Example 1 (Junk-types). Consider S in (3) under initial clock valuation ν0.

S =?T (x < 5, H).!T (x < 2, H).end (3)

The specified endpoint must be ready to receive a message in the time-window
between 0 and 5 time units, as we evaluate x < 5 in ν0. Assume that this
receive action happens when x = 3, yielding a new state in which: (i) the clock
valuation maps x to 3, and (ii) the endpoint must perform a send action while
x < 2. Evidently, (ii) is no longer possible in the new clock valuation, as the
x < 2 is now unsatisfiable. We could amend (3) in several ways: (a) by resetting
x after the receive action; (b) by restricting the guard of the receive action (e.g.,
x < 2 instead of x < 5); or (c) by relaxing the guard of the send action. All
these amendments would, however, yield a different type.

In the remainder of this section we introduce formation rules to rule out
junk types as the one in Example 1 and characterise types that are well-formed.
Intuitively, well-formed types allow, at any point, to perform some action in the
present time or at some point in the future, unless the type is end.

Judgments. The formation rules for types are defined on judgments of the form

A; δ $ S

where A is an environment assigning type variables to guards, and δ is a guard
in G(X). A is used as an invariant to form recursive types. Guard δ collects the
possible ‘pasts’ from which the next action in S could be executed (unless S is
end). We use notation ↓ δ (the past of δ) for a guard δ′ such that ν |= δ′ if and
only if ∃t : ν + t |= δ. For example, ↓ (1 � x � 2) = x � 2 and ↓ (x � 3) = true.
Similarly, we use the notation δ[λ �→ 0] to denote a guard in which all clocks in
λ are reset. For example, (x � 3 ∧ y � 2)[x �→ 0] = (x = 0 ∧ y � 2). We use the
notation δ1 Ď δ2 whenever, for all ν, ν |= δ1 =⇒ ν |= δ2. The past and reset of
a guard can be inferred algorithmically, and Ď is decidable [8].

A; true $ end
[end]

�� ∈ {!, ?} A; γ $ S δ[λ �→ 0] Ď γ T base type

A; ↓ δ $ �� T (δ, λ).S
[interact]

�� ∈ {!, ?} A; γ $ S δ[λ �→ 0] Ď γ T = (δ′, S′)
H; γ′ $ S′ δ′ Ď γ′

A; ↓ δ $ �� T (δ, λ).S
[delegate]

�� ∈ {⊕,&} ∀i ∈ I A; γi $ Si δi[λi �→ 0] Ď γi

A; ↓
∨

i∈I
δi $ �� {li(δi, λi) : Si}i∈I

[choice]

A,α : δ; δ $ S

A; δ $ μα.S
[rec]

A,α : δ; δ $ α
[var]

590 L. Bocchi et al.

Rule [end] states that the terminated type is well-formed against any A.
The guard of the judgement is true since end is a final state (as end has no
continuation, morally, the constraint of its continuation is always satisfiable).
Rule [interact] ensures that the past of the current action δ entails the past
of the subsequent action γ (considering resets if necessary): this rules out types
in which the subsequent action can only be performed in the past. Rules [end]
and [interact] are illustrated by the three examples below.

Example 2. The judgment below shows a type being discarded after an applica-
tion of rule [interact] :

H; x � 3 $\ ?Nat(1 � x � 3, H).!Nat(1 � x � 2, H).end (4)

The premise of [interact] would be δ Ď ↓ γ, which does not hold for δ = 1 �
x � 3 and ↓ γ = x � 2. This means that guard (1 � x � 3, H) of the first
action may lead to a state in which guard 1 � x � 2 for the subsequent action
is unsatisfiable. If we amend the type in (4) by adding a reset in the first action,
we obtain a well-formed type. We show its formation below, where for simplicity
we omit obvious preconditions like Nat base type, etc.

[end]H; true $ end 1 � x � 2 Ď true
[interact]H; x � 2 $!Nat(1 � x � 2, H).end x = 0 Ď x � 2
[interact]H; x � 3 $?Nat(1 � x � 3, {x}).!Nat(1 � x � 2, H).end

Rule [delegate] behaves as [interact] , with two additional premises on
the delegated session: (1) S′ needs to be well-formed, and (2) the guard of the
next action in S′ needs to be satisfiable with respect to δ′. Guard δ′ is used to
ensure a correspondence between the state of the delegating endpoint and that
of the receiving endpoint. Rule [choice] is similar to [interact] but requires
that there is at least one viable branch (this is accomplished by considering the
weaker past ↓ ∨

i∈Iδi) and checking each branch for formation. Rules [rec] and
[var] are for recursive types and variables, respectively. In [rec] the guard δ
can be easily computed by taking the past of the next action of the in S (or
the disjunction if S is a branching or selection). An algorithm for deciding type
formation can be found in [11].

Definition 1 (Well-formed types). We say that S is well-formed against
clock valuation ν if H; δ $ S and ν |= δ, for some guard δ. We say that S is
well-formed if it is well formed against ν0.

We will tacitly assume types are well-formed, unless otherwise specified. The
intuition of well-formedness is that if A; δ $ S then S can be run (using the
types semantics given in Sect. 3) under any clock valuation ν such that ν |= δ.
In the sequel, we take (well-formed) types equi-recursively [31].

Asynchronous Timed Session Types 591

3 Asynchronous Session Types Semantics and Subtyping

We give a compositional semantics of types. First, we focus on types in isolation
from their environment and from their queues, which we call simple type con-
figurations. Next we define subtyping for simple type configurations. Finally, we
consider systems (i.e., composition of types communicating via queues).

Fig. 1. LTS for simple type configurations

3.1 Types in Isolation

The behaviour of simple type configurations is described by the Labelled Transi-
tion System (LTS) on pairs (ν, S) over (V×S), where clock valuation ν gives the
values of clocks in a specific state. The LTS is defined over the following labels

� :: = !m | ?m | t | τ m :: = d | l

Label !m denotes an output action of message m and ?m an input action of m.
A message m can be a sort T (that can be either a higher order message (δ, S)
or base type), or a branching label l. The LTS for single types is defined as the
least relation satisfying the rules in Fig. 1. Rules [snd], [rcv], [sel], and [bra] can
only happen if the constraint of the next action is satisfied in the current clock
valuation. Rule [rec] unfolds recursive types, and [time] always lets time elapse.

Let s, s′, si (i ∈ N) range over simple type configurations (ν, S). We write
s �−→ when there exists s′ such that s �−→ s′, and write s t �−→ for s t−→ �−→.

3.2 Asynchronous Timed Subtyping

We define subtyping as a partial relation on simple type configurations. As in
other subtyping relations for session types we consider send and receive actions
dually [14,16,19]. Our subtyping relation is covariant on output actions and
contra-variant on input actions, similarly to that of [14]. In this way, our sub-
typing S < : S′ captures the intuition that a process well-typed against S can be
safely substituted with a process well-typed against S′. Definition 2, introduces
a notation that is useful in the rest of this section.

592 L. Bocchi et al.

Definition 2 (Future enabled send/receive). Action � is future enabled in
s if ∃t : s t �−→. We write s !⇒ (resp. s ?⇒) if there exists a sending action !m
(resp. a receiving action ?m) that is future enabled in s.

As common in session types, the communication structure does not allow for
mixed choices: the grammar of types enforces choices to be either all input
(branching actions), or output (selection actions). From this fact it follows that,
given s, reductions s !⇒ and s ?⇒ cannot hold simultaneously.

Definition 3 (Timed Type Simulation). Fix s1 = (ν1, S1) and s2 =
(ν2, S2). A relation R ∈ (V × S)2 is a timed type simulation if (s1, s2) ∈ R
implies the following conditions:

1. S1 = end implies S2 = end

2. s1
t !m1−→ s′1 implies ∃s′2,m2 : s2

t !m2−→ s′2, (m2,m1) ∈ S, (s′1, s
′
2) ∈ R

3. s2
t ?m2−→ s′2 implies ∃s′1,m1 : s1

t ?m1−→ s′1, (m1,m2) ∈ S, (s′1, s
′
2) ∈ R

4. s1
?⇒ implies s2

?⇒ and s2
!⇒ implies s1

!⇒
where S is the following extension of R to messages: (1) (T, T ′) ∈ S if T
and T ′ are base types, and T ′ is a subtype of T by sorts subtyping, e.g.,
(int, nat) ∈ S; (2) (l, l) ∈ S; (3) ((δ1, S1), (δ2, S2)) ∈ S, if ∀ν1 |= δ1 ∃ν2 |=
δ2 : ((ν1, S1), (ν2, S2)) ∈ R and ∀ν2 |= δ2 ∃ν1 |= δ1 : ((ν1, S1), (ν2, S2)) ∈ R.

Intuitively, if (s1, s2) ∈ R then any environment that can safely interact with
s2, can do so with s1. We write that s2 simulates s1 whenever s1 and s2 are in
a timed type simulation. Below, s2 simulates s1:

s1 = (ν0, !nat(x < 5, H).end) s2 = (ν0, !int(x � 10, H).end)

Conversely, s1 does not simulate s2 because of condition (2). Precisely, s2 can
make a transition s2

10 !int−→ that cannot be matched by s1 for two reasons: guard
x < 5 is no longer satisfiable when x = 10, and (nat, int) �∈ S since int is not
a subtype of nat. For receive actions, instead, we could substitute s with s′ if
s′ had at least the receiving capabilities of s. Condition (4) in Definition 3 rules
out relations that include, e.g., ((ν, ?T (true, H).end), (ν, !T (true, H).end)).

Live simple type configurations. In our subtyping definition we are interested in
simple type configurations that are not stuck. Consider the example below:

(ν, !Int(x � 10, H).end) (5)

The simple type configuration in (5) would not be stuck if ν = ν0, but would
be stuck for any ν = ν′[x �→ 10]. Definition 4 gives a formal definition of simple
type configurations that are not stuck, i.e., that are live.

Definition 4 (Live simple type configuration). A simple configuration
(ν, S) is said live if:

S = end or ∃t, � : (ν, S) t ◦m−→ (◦ ∈ {!, ?})
Observe that for all well-formed S, (ν0, S) is live.

Asynchronous Timed Session Types 593

Subtyping for simple type configurations. We can now define subtyping for simple
type configurations and state its decidability.

Definition 5 (Subtyping). s1 is a subtype of s2, written s1 < : s2, if there
exists a timed type simulation R on live simple type configurations such that
(s1, s2) ∈ R. We write S1 < : S2 when (ν0, S1) < : (ν0, S2). Abusing the notation,
we write m < : m′ iff there exists S such that (m,m′) ∈ S.

Subtyping has been shown to be decidable in the untimed setting [19] and
in the timed first order setting [6]. In [6], decidability is shown through a reduc-
tion to model checking of timed automata networks. The result in [6] can be
extended to higher-order messages using the techniques in [3], based on finite
representations (called regions) of possibly infinite sets of clock valuations.

Proposition 1 (Decidability of subtyping). Checking if (δ1, S1) < : (δ2, S2)
is decidable.

3.3 Types with Queues, and Their Composition

As interactions are asynchronous, the behaviour of types must capture the states
in which messages are in transit. To do this, we extend simple type configurations
with queues. A configuration S is a triple (ν, S, M) where ν is clock valuation, S
is a type and M a FIFO unbounded queue of the following form:

M :: = H | m; M

M contains the messages sent by the co-party of S and not yet received by S. We
write M for M; H, and call (ν, S, M) initial if ν = ν0 and M = H.

Composing types. Configurations are composed into systems. We denote S | S′

as the parallel composition of the two configurations S and S′.
The labelled transition rules for systems are given in Fig. 2. Rule (snd) is

for send actions. A send action can occur only if the time constraint of S is
satisfied (by the premise, which uses either rule [snd] or [sel] in Fig. 1). Rule
(que) models actions on queues. A queue is always ready to receive any message
m. Rule (rcv) is for receive actions, where a message is read from the queue. A
receiving action can only occur if the time constraint of S is satisfied (by the
premise, which uses either rule [rcv] or [bra] in Fig. 1). The message is removed
from the head of the queue of the receiving configuration. The third clause in
the premise uses the notion of subtyping (Definition 3) for basic sorts, labels,
and higher order messages. Rule (crcv) is the action of a configuration pulling a
message of its queue. Rule (com) is for communication between a sending con-
figuration and a buffer. Rule (ctime) lets time elapse in the same way for all
configurations in a system. Rule (time) models time passing for single configu-
rations. Time passing is subject to two constrains, expressed by the second and
third conditions in the premise. Condition (ν, S) !⇒ requires the time action t
to preserve the satisfiability of some send action. For example, in configuration

594 L. Bocchi et al.

Fig. 2. LTS for systems. We omit the symmetric rules of (crcv), and (csnd).

(ν0, !T (x < 2, H).S, H), a transition with label 2 would not preserve any send
action (hence would not be allowed), while a transition with label 1.8 would
be allowed by condition (ν, S) !⇒. Condition ∀t′ < t : (ν + t′, S, M) τÛ in the
premise of rule (time) checks that there is no ready message to be received in
the queue. This is to model urgency: when a configuration is in a receiving state
and a message is in the queue then the receiving action must happen without
delay. For example, (ν0, ?T (x < 2, H).S, H) can make a transition with label 1,
but (ν0, ?T (x < 2, H).S,m) cannot make any time transition. Below we show
two examples of system executions. Example 3 illustrates a good communica-
tion, thanks to urgency. We also illustrate in Example 4 that without an urgent
semantics the system in Example 3 gets stuck.

Example 3 (A good communication). Consider the following types:

S1 =!T (x � 1, x).?T (x � 2).end S2 =?T (y � 1, y).!T (y � 2).end

System (ν[x �→ 0], S1, H) | (ν[x �→ 0], S2, H) can make a time step with label
0.5 by (ctime), yielding the system in (6)

(ν[x �→ 0.5], S1, H) | (ν[x �→ 0.5], S2, H) (6)

The system in (6) can move by a τ step thanks to (com): the left-hand side
configuration makes a step with label !T by (snd) while the right-hand side
configuration makes a step ?T by (que), yielding system (7) below.

(ν[x �→ 0], ?T (x � 2).end, H) | (ν[y �→ 0.5], S2, T) (7)

The right-hand side configuration in the system in (7) must urgently receive
message T due to the third clause in the premise of rule (time). Hence, the only
possible step forward for (7) is by (crcv) yielding the system in (8).

(ν[x �→ 0], ?T (x � 2).end, H) | (ν[y �→ 0], !T (y � 2).end, H) (8)

Asynchronous Timed Session Types 595

Example 4 (In absence of urgency). Without urgency, the system in (7) from
Example 3 may get stuck. Assume the third clause of rule (time) was removed:
this would allow (7) to make a time step with label 0.5, followed by a step by
(rcv) yielding the system in (9), where clock y is reset after the receive action.

(ν[x �→ 0.5], ?T (x � 2).end, H) | (ν[y �→ 0], !T (y � 2).end, H) (9)

followed by a τ step by (com) reaching the following state:

(ν[x �→ 2.5], ?T (x � 2).end, T) | (ν[y �→ 0], end, H) (10)

The message in the queue in (10) will never be received as the guard x � 2 is not
satisfiable now or at any point in the future. This system is stuck. Instead, thanks
to urgency, the clocks of the configurations of system (8) have been ‘synchronised’
after the receive action, preventing the system from getting stuck.

4 Timed Asynchronous Duality

We introduce a timed extension of duality. As in untimed duality, we let
each send/select action be complemented by a corresponding receive/branching
action. Moreover, we require time constraints and resets to match.

Definition 6 (Timed duality). The dual type S of S is defined as follows:

!T (δ, λ).S =?T (δ, λ).S ?T (δ, λ).S =!T (δ, λ).S μα.S = μα.S

⊕{li(δi, λi) : Si}i∈I = &{li(δi, λi) : Si}i∈I α = α

&{li(δi, λi) : Si}i∈I = ⊕{li(δi, λi) : Si}i∈I end = end

Duality with urgent receive semantics enjoys the following properties: sys-
tems with dual types fulfil progress (Theorem 1); behaviour (resp. progress) of
a system is preserved by the substitution of a type with a subtype (Theorem 2)
(resp. Theorem 3). A system enjoys progress if it reaches states that are either
final or that allow further communications, possibly after a delay. Recall that
we assume types to be well-formed (cf. Definition 1): Theorems 1, 2, and 3 rely
on this assumption.

Definition 7 (Type progress). We say that a system (ν, S, M) is a success if
S = end and M = H. We say that S1 | S2 satisfies progress if:

S1 | S2 −→∗ S′
1 | S′

2 =⇒ S′
1 and S′

2 are success or ∃t : S′
1 | S′

2
t τ−→

Theorem 1 (Duality progress). System (ν0, S, H) | (ν0, S, H) enjoys
progress.

We show that subtyping does not introduce new behaviour, via the usual
notion of timed simulation [1]. Let c, c1, c2 range over systems. Fix c1 =
(ν1

1 , S1
1 , M11) | (ν1

2 , S1
2 , M12), and c2 = (ν2

1 , S2
1 , M21) | (ν2

2 , S2
2 , M22). We say that a binary

relation over systems preserves end if: Si
1 = end∧ Mi

1 = H iff Si
2 = end∧ Mi

2 = H
for all i ∈ {1, 2}. Write c1 � c2 if (c1, c2) are in a timed simulation that preserves
end.

596 L. Bocchi et al.

Theorem 2 (Safe substitution). If S′ < : S, then (ν0, S, H) | (ν0, S′, H) �
(ν0, S, H) | (ν0, S, H).

Theorem 3 (Progressing substitution). If S′ < : S, then (ν0, S, H) |
(ν0, S′, H) satisfies progress.

5 A Calculus for Asynchronous Timed Processes

We introduce our asynchronous calculus for timed processes. The calculus
abstracts implementations that execute one or more sessions. We let P, P ′, Q, . . .
range over processes, X range over process variables, and define n ∈ R�0∪{∞}.
We use the notation a for ordered sequences of channels or variables.

P :: = a v.P
| a 	 l. P
| if v then P else P
| P | P
| 0
| def D in P
| X〈a ; a〉
| (νab)P
| ab : h

| delay(δ). P (time-consuming)
| an(b). P
| an Ź {li : Pi}i∈I

| failed (run-time)
| delay(t). P

D :: = X(a ; a) = P

h :: = H | h · v | h · a

a v.P sends a value v on channel a and continues as P . Similarly, a 	 l. P
sends a label l on channel a and continue as P . Process if v then P else Q
behaves as either P or Q depending on the boolean value v. Process P | Q is
for parallel composition of P and Q, and 0 is the idle process. def D in P is
the standard recursive process: D is a declaration, and P is a process that may
contain recursive calls. In recursive calls X〈a ; a〉 the first list of parameters has
to be instantiated with values of ground types, while the second with channels.
Recursive calls are instantiated with equations X(a ; a) in D. Process (νab)P
is for scope restriction of endpoints a and b. Process ab : h is a queue with name
ab (colloquially used to indicate that it contains messages in transit from a to
b) and content h. (νab) binds endpoints a and b, and queues ab and ba in P .

There are two kind of time-consuming processes: those performing a time-
consuming action (e.g., method invocation, sleep), and those waiting to receive a
message. We model the first kind of processes with delay(δ). P , and the second
kind of processes with an(b). P (receive) and an Ź {li : Pi}i∈I (branching). In
delay(δ). P , δ is a constraints as those defined for types, but on one single clock
x. The name of the clock here is immaterial: clock x is used as a syntactic tool
to define intervals for the time-consuming (delay) action. In this sense, assume
x is bound in delay(δ). P . Process delay(δ). P consumes any amount of time t
such that t is a solution of δ. For example delay(x � 3). P consumes any value
between 0 to 3 time units, then behaves as P . Process an(b). P receive a message
on channel a, instantiates b and continue as P . Parameter n models different
receive primitives: non-blocking (n = 0), blocking (n = ∞), and blocking with

Asynchronous Timed Session Types 597

timeout (n ∈ R
�0). If n ∈ R

�0 and no message is in the queue, the process
waits n time units before moving into a failed state. If n is set to ∞ the process
models a blocking primitive without timeout. Branching process an Ź{li : Pi}i∈I

is similar, but receives a label li and continues as Pi.
Run-time processes are not written by programmers and only appear upon

execution. Process failed is the process that has violated a time constraint.
We say that P is a failed state if it has failed as a syntactic sub-term. Process
delay(t). P delays for exactly t time units.

Well-formed processes. Sessions are modelled as processes of the following form

(νab)(P | ab : h | ba : h ′)

where P is the process for endpoints a and b, ab is the queue for messages from a
to b, and ba is the queues for messages from b to a. A process can have more than
one ongoing session. For each, we expect that all necessary queues are present
and well-placed. We ensure that queues are well-placed via a well-formedness
property for processes (see [11] for an inductive definition). Well-formedness
rules out processes of the following form:

(νab) (an(c). (ba : h ′ | P) | Q | ab : h) (11)

The process in (11) in not well-formed since queue ba for communications to
endpoint a is not usable as it is in the continuation of the receive action.
Well-formedness of processes is necessary to our safety results. We check well-
formedness orthogonally to the typing system for the sake of simpler typing rules.
While well-formedness ensures the absence of misplaced queues, the presence of
an appropriate pair of queues for every session is ensured by the typing rules.

Session creation. Usually well-formedness is ensured by construction, as sessions
are created by a specific (synchronous) reduction rule [10,21]. This kind of session
creation is cumbersome in the timed setting as it allows delays that are not
captured by protocols, hence well-typed processes may miss deadlines. Other
work on timed session types [12] avoids this problem by requiring that all session
creations occur before any delay action. Our calculus allows session to be created
at any point, even after delays. In (12) a session with endpoints c and d is created
after a send action (assume P includes the queues for this new session).

(νab) (a v.delay(x � 3). (νcd)(P) | Q | ab : h | ba : h ′) (12)

A process like the one in (12) may be thought as a dynamic session creation
that happens synchronously (as in [10,21]), but assuming that all participants
are ready to engage without delays. Our approach yields a simplification to
the calculus (syntax and reduction rules) and, yet, a more general treatment of
session initiation than the work in [12].

598 L. Bocchi et al.

Fig. 3. Reduction for processes (rule [IfF], symmetric for [IfT] is omitted).

Fig. 4. Time-passing function Φt(P). Rule for at′ Ź {li : Pi}i∈I is omitted for brevity.
φt(P) is undefined in the remaining cases.

Asynchronous Timed Session Types 599

Reduction for processes. Processes are considered modulo structural equivalence,
denoted by ≡, and defined by adding the following rule for delays to the standard
ones [28]: delay(0). P ≡ P . Reduction rules for processes are given in Fig. 3. A
reduction step −→ can happen because of either an instantaneous step ⇀ by
[Red1] or time-consuming step ù by [Red2]. Rules [Send], [Rcv], [Sel], and [Bra]
are the usual asynchronous communication rules. Rule [Det] models the random
occurrence of a precise delay t, with t being a solution of δ. The other untimed
rules, [IfT], [Par], [Def], [Rec], [AStr], and [AScope] are standard. Note that rule
[Par] does not allow time passing, which is handled by rule [Delay]. Rule [TStr]
is the timed version of [AStr]. Rule [Delay] applies a time-passing function Φt

(defined in Fig. 4) which distributes the delay t across all the parts of a process.
Φt(P) is a partial function: it is undefined if P can immediately make an urgent
action, such as evaluation of expressions or output actions. If Φt(P) is defined,
it returns the process resulting from letting t time units elapse in P . Φt(P) may
return a failed state, if delay t makes a deadline in P expire. The definition
of Φt(P1 | P2) relies on two auxiliary functions: Wait(P) and NEQueue(P) (see
[11] for the full definition). Wait(P) returns the set of channels on which P (or
some syntactic sub-term of P) is waiting to receive a message/label. NEQueue(P)
returns the set of endpoints with a non-empty inbound queue. For example,
Wait(at(b). Q) = Wait(at Ź {li : Pi}i∈I) = {a} and NEQueue(ba : h) = {a} given
that h = H. Φt(P1 | P2) is defined only if no urgent action could immediately
happen in P1 | P2. For example, Φt(P1 | P2) is undefined for P1 = at(b). Q and
P2 = ba : v.

In the rest of this section we show the reductions of two processes: one with
urgent actions (Example 5), and one to a failed state (Example 6). We omit
processes that are immaterial for the illustration (e.g., unused queues).

Example 5 (Urgency and undefined Φt). We show the reduction of process P =
(νab)(a ‘Hi’.Q | ab : H | b10(c). P ′) that has an urgent action. Process P can
make the following reduction by [Send]:

P ⇀ (νab)(Q | ab : ‘Hi’ | b10(c). P ′)

At this point, to apply rule [Delay], say with t = 5, we need to apply the time-
passing function as shown below:

Φ5((νab)(a ‘Hi’.Q | ab : ‘Hi’ | b10(c). P ′)) = (νab)(a ‘Hi’.Q | Φ5(ab : ‘Hi’ | b10(c). P ′))

which is undefined. Φ5(ab : H | b10(c). P ′) is undefined because Wait(b10(c). P)X
NEQueue(ab : ‘Hi’) = {b} = H. Since Φ5(P ′) is undefined. Instead, the message
in queue ab can be received by rule [Rcv]:

(νab)(Q | ab : ‘Hi’ | b10(c). P ′) ⇀ (νab)(Q | ab : H | P [‘Hi’/c])

Example 6 (An execution with failure). We show a reduction to a failing state of
a process with a non-blocking receive action (expecting a message immediately)
composed with another process that sends a message after a delay.

600 L. Bocchi et al.

delay(x = 3). a ‘Hi’.Q | ab : H | b0(c). P apply [Det]
⇀ delay(3). a ‘Hi’.Q | ab : H | b0(c). P = P ′ apply [Delay] with t = 3
⇀ Φ3(P ′)

The application of the time-passing function to P ′ yields a failing state (a mes-
sage is not received in time) as shown below, where the second equality holds
since Wait(b0(c). P) X NEQueue(ab : H) = H:

Φ3(delay(3). a ‘Hi’.Q | b0(c). P | ab : H) =
Φ3(delay(3). a ‘Hi’.Q) | Φ3(b0(c). P | Φ3(ab : H)) =
delay(0). a ‘Hi’.Q | failed | ab : H

6 Typing for Asynchronous Timed Processes

We validate programs against specifications using judgements of the form Γ $
P Ź Δ. Environments are defined as follows:

Δ :: = H | Δ, a : (ν, S) | Δ, ab : M Θ :: = H | Θ ∪ {Δ}
Γ :: = H | Γ, a : T | Γ,X : (T ;Θ)

Environment Δ is a session environment, used to keep track of the ongoing
sessions. When Δ(a) = (ν, S) it means that the process being validated is acting
as a role in session a specified by S, and ν is the clock valuation describing a
(virtual) time in which the next action in S may be executed. We write dom(Δ)
for the set of variables and channels in Δ. Environment Γ maps variables a to
sorts T and process variables X to pairs (T ;Θ), where T is a vector of sorts
and Θ is a set of session environments. The mapping of process variable is used
to type recursive processes: T is used to ensure well-typed instantiation of the
recursion parameters, and Θ is used to model the set of possible scenarios when
a new iteration begins.

Notation, assumptions, and auxiliary definitions. We write Δ+ t for the session
environment obtained by incrementing all clock valuations in the codomain of
Δ by t.

Definition 8. We define the disjoint union A�B of sets of clocks A and B as:

A � B = {inl(x) | x ∈ A} ∪ {inr(x) | x ∈ B}

where inl and inr are one to one endofunctions on clocks and, for all x ∈ A and
y ∈ B, inl(x) �= inr(y). With an abuse of notation, we define the disjoint union
of clock valuations ν1, ν2, in symbols ν1 � ν2, as a clock valuation satisfying:

ν1 � ν2(inl(x)) = ν1(x) ν1 � ν2(inr(x)) = ν2(x)

We use the symbol
⊎

for the iterate disjoint union.

Asynchronous Timed Session Types 601

For a configuration (ν, S) we define val((ν, S)) = ν, and type((ν, S)) = S. We
overload function val to session environments Δ as follows:

val(Δ) =
⊎

a∈dom(Δ)

val(Δ(a))

We require Θ to satisfy the following three conditions:

1. If Δ ∈ Θ and Δ(a) = (ν, S), then S is well-formed (Definition 1) against ν;
2. For all Δ1 ∈ Θ, Δ2 ∈ Θ: type(Δ1(a)) = S iff type(Δ2(a)) = S;
3. There is guard δ such that:

{ν | ν |= δ} =
⋃

Δ∈Θ

val(Δ).

The last condition ensures that Θ is finitely representable, and is key for decid-
ability of type checking.

Example 7. We show some examples of Θ that do or do not satisfy the last
requirement above. Let S1 =!T (x � 2).end and S2 =!T (y � 2).end, and let:

Θ1 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) � 2 ∧ ν1(x) = ν2(y)};
Θ2 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) �

√
2 ∧ ν1(x) = ν2(y)};

Θ3 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) + ν2(y) = 2}.
We have that Θ1 satisfies condition (3): let δ1 = x � 2 ∧ y − x = 0. It is easy to
see that {ν | ν |= δ1} =

⋃
Δ∈Θ val(Δ). For Θ2, a candidate proposition would

be δ2 = x �
√

2 ∧ y − x = 0. However, δ2 can not be derived with the syntax of
propositions, as

√
2 is irrational. Indeed, Θ2 does not satisfy the condition. For

Θ3, let δ3 = x + y = 2. Again, δ3 is not a guard, as additive constraints in the
form x + y = n are not allowed. Indeed, also Θ3 does not satisfy the condition.

In the following, we write a : T for a1 : T1, . . . , an : Tn when a = a1, . . . , an and
T = T1, . . . , Tn (assuming a and T have the same number of elements). Similarly
for b : (ν, S). In the typing rules, we use a few auxiliary definitions: Definition 9
(t-reading Δ) checks if any ongoing sessions in a Δ can perform an input action
within a given timespan, and Definition 10 (Compatibility of configurations)
extends the notion of duality to systems that are not in an initial state.

Definition 9 (t-reading Δ). Session environment Δ is t-reading if there exist
some a ∈ dom(Δ), t′ < t and m such that: Δ(a) = (ν, S) ∧ (ν + t′, S) ?m−→.

Namely, Δ is t-reading if any of the open sessions in the mapping prescribe a
read action within the time-frame between ν and ν + t. Definition 9 is used in
the typing rules for time-consuming processes – [Vrcv], [Drcv], and [Delt] – to
‘disallow’ derivations when a (urgent) receive may happen.

Definition 10 (Compatibility of configurations). Configuration (ν1,
S1, M1) is compatible with (ν2, S2, M2), written (ν1, S1, M1)⊥(ν2, S2, M2), if:

602 L. Bocchi et al.

1. M1 = H ∨ M2 = H,

2. ∀i = j ∈ {1, 2} : Mi = m; M′i ⇒ ∃ν′
i, S

′
i,m

′ : (νi, Si)
?m′
−→ (ν′

i, S
′
i) ∧ m < :

m′ ∧ (ν′
i, S

′
i, M

′
i)⊥(νj , Sj , Mj),

3. M1 = H ∧ M2 = H ⇒ ν1 = ν2 ∧ S1 = S2.

By condition (3) initial configurations are compatible when they include dual
types, i.e., (ν0, S, H)⊥(ν0, S, H). By condition (2) two configurations may tem-
porarily misalign as execution proceeds: one may have read a message from
its queue, while the other has not, as long as the former is ready to receive it
immediately. Thanks to the particular shape of type’s interactions, initial con-
figurations – of the form (ν0, S, H)⊥(ν0, S, H) – will only reach systems, say
(ν1, S1, M1)⊥(ν2, S2, M2), in which at least one between M1 and M2 is empty. Con-
dition (1) requires compatible configurations to satisfy this basic property.

Typing rules. The typing rules are given in Fig. 5. Rule [Vrcv] is for input
processes. The first premise consists of two conditions requiring the time-span
[ν, ν + n] in which the process can receive the message to coincide with δ:

– ν + t |= δ ⇒ t � n rules out processes that are not ready to receive a message
when prescribed by the type.

– t � n ⇒ ν + t |= δ requires that an(b). P can read only at times that satisfy
the type prescription δ.2

The second premise of [Vrcv] requires the continuation P to be well-typed against
the continuation of the type, for all possible session environments where the
virtual time is somewhere between [ν, ν +n], where the virtual valuation ν in the
mapping of session a is reset according to λ. Rule [Drcv], for processes receiving
delegated sessions, is like [Vrcv] except: (a) the continuation P is typed against
a session environment extended with the received session S′, and (b) the clock
valuation ν′ of the receiving session must satisfy δ′. Recall that by formation
rules (Sect. 2.1) S′ is well-formed against all ν′ that satisfy δ′.

Rule [Vsend] is for output processes. Send actions are instantaneous, hence
the type current ν needs to satisfy δ. As customary, the continuation of the
process needs to be well-typed against the continuation of the type (with ν
being reset according to λ, and Γ extended with information on the sort of
b). [Dsend] for delegation is similar but: (a) the delegated session is removed
from the session environment (the process can no longer engage in the delegated
session), and (b) valuation ν′ of the delegated session must satisfy guard δ′.

Rule [Delδ] checks that P is well-typed against all possible solutions of δ.
Rule [Delt] shifts the virtual valuations in the session environment of t. This is
as the corresponding rule in [12] but with the addition of the check that Δ is
not t-reading, needed because of urgent semantics.

Rule [Res] is for processes with scopes.

2 While not necessary for our safety results, this constraint simplifies our theory. Tim-
ing variations between types and programs are all handled in one place: rule [Subt].

Asynchronous Timed Session Types 603

Rule [Rec] is for recursive processes. The rule is as usual [21] except that
we use a set of session environments Θ (instead of a single Δ) to capture a set
of possible scenarios in which a recursion instance may start, which may have
different clock valuations. Rule [Var] is also as expected except for the use of Θ.

Rules [Par] and [Subt] straightforward.

Example 8 (Typing with subtyping). Subtyping substantially increases the
power of our type system, in particular in the presence of channel passing. Intu-
itively, without subtyping, the type of any higher-order send action should be an
equality constraint (e.g., x = 1) rather than more general timeout (e.g., x < 1).
We illustrate our point using P defined below:

P = (νa1b1)(νa2b2)(P1 | P2 | P3 | Q) P1 = delay(x � 1). a1 a2

P2 = b11(c). c
2(d) P3 = delay(1 � x ∧ x � 2). b2 true

where Q contains empty queues of the involved endpoints. Intuitively, P proceeds
as follows: (1) P1 sends channel a2 to P2 within one time unit, and terminates;
(2) P2 reads the message as soon as it arrives, and listens for a message across the
received channel (a2) for two time units; (3) P3 sends value true through channel
b2 at a time in between 1 and 2, unaware that now she is communicating with
P2, and then terminates; (4) P2 reads the message immediately and terminates.
See below for one possible reduction:

P −→∗ (νa1b1)(νa2b2)(a1 a2 | b01(c). c
2(d) | delay(0 � x ∧ x � 1). b2 true) | Q)

−→∗ (νa1b1)(νa2b2)(0 | a2
2(d) | delay(0.5). b2 true | Q)

−→ (νa1b1)(νa2b2)(0 | a1.5
2 (d) | b2 true | Q)

−→∗ (νa1b1)(νa2b2)(0 | 0 | 0 | Q)

Although P executes correctly, the involved processes are well-typed against
types that are not dual:

$ P1 Ź a1 : (ν0, S1), a2 : (ν0, S2) $ P2 Ź b1 : (ν0, S′
1) $ P3 Ź b2 : (ν0, S2)

for S1 =!(y � 1, S2)(x � 1), S2 =?Bool(1 � y ∧ y � 2), S′
1 =?(y = 0, S′

2)(x � 1).
In order to type-check P , we need to apply rule [Res], requiring endpoints of the
same session to have dual types. But clearly: S′

1 = S1. Without subtyping, P
would not be well-typed. By subtyping, however, (y � 1, S2) < : (y = 0, S′

2) with
S′
2 =?Bool(y � 2).end, and then S′

1 < : S′
1. Thanks to the subtyping rule [subt]

we can derive $ P2 Ź b1 : (ν0, S1) and, in turn, $ P Ź H.

7 Subject Reduction and Time Safety

The main properties of our typing system are Subject Reduction and Time
Safety. Time Safety ensures that the execution of well-typed processes will only

604 L. Bocchi et al.

Fig. 5. Selected typing rules for processes

reach fail-free states. Recall, P is fail-free when none of its sub-terms is the
process failed. Time Safety builds on a condition that is not related with time,
but with the structure of the process interactions. If an untimed process gets
stuck due to mismatches in its communication structure, a timed process with
the same communication structure may move to a failed state. Consider P below:

P = (νab)(νcd)Q R = ab : H | ba : H | cd : H | dc : H
Q = a5(e). d e.0 | c5(e). b e.0 | R

(13)

P is well-typed: H $ P Ź a : (ν0, S), b : (ν0, S), c : (ν0, S), d : (ν0, S) with S =
?Int(x � 5, H).end. However, P can only make time steps, and when, overall,
more than 5 time units elapse (e.g., 6 in the reduction below) P reaches a failed
state due to a circular dependency between actions of sessions (νab) and (νcd):

P −→ Φ6(Q) = (νab)(νcd) (failed | failed | R)

Asynchronous Timed Session Types 605

Our typing system does not check against such circularities across different inter-
leaved sessions. This is common in work on untimed [21] and timed [12] session
types. However, in the untimed scenario, progress for interleaved sessions can be
guaranteed by means of additional checks on processes [17]. Time Safety builds
on the results in [17] by using an assumption (receive liveness) on the under-
neath structure of the timed processes. This assumptions is formally captured
in Definition 11, which is based on an untimed variant of our calculus.

The untimed calculus. We define untimed processes, denoted by P̂ , as processes
obtained from the grammar given for timed processes (Sect. 5) without delays
and failed processes. In untimed processes, time annotations of branching/receive
processes are immaterial, hence omitted in the rest of the paper.

Given a (timed) process P , one can obtain its untimed counter-part by eras-
ing delays and failed processes; we denoted the result of such erasure on P by
erase(P). The semantics of untimed processes is defined as the one for timed
processes (Sect. 5) except that reduction rules [Delay], [TStr], and [Red2], are
removed. Abusing the notation, we write P̂ −→ P̂ ′ when an untimed process P̂
moves to a state P̂ ′ using the semantics for untimed processes. The definitions of
Wait(P̂) and NEQueue(P̂) can be derived from the definitions for timed processes
in the straightforward way.

Definition 11 (receive liveness) formalises our assumption on the interaction
structures of a process.

Definition 11 (Receive liveness). P̂ is said to satisfy receive liveness (or is
live, for short) if, for all P̂ ′ such that P̂ −→∗ P̂ ′:

P̂ ′ ≡ (νab)Q̂ ∧ a ∈ Wait(Q̂) =⇒ ∃Q̂′ : Q̂ −→∗ Q̂′ ∧ a ∈ NEQueue(Q̂′)

In any reachable state P̂ ′ of a live untimed process P̂ , if any endpoint a in P̂ ′ is
waiting to receive a message (a ∈ Wait(Q̂)), then the overall process is able to
reach a state Q̂′ where a can perform the receive action (a ∈ NEQueue(Q̂′)).

Consider process P in (13). The untimed process erase(P) is not live
because Wait(erase(P)) = {a, c} and a, c �∈ NEQueue(erase(P)), since
NEQueue(erase(P)) is the empty set. Syntactically, erase(P) is as P , but it
does not have the same behaviour. P can only make time steps, reaching a failed
process, while erase(P) is stuck, as untimed processes only make communication
steps.

Properties. Time safety relies on Subject Reduction Theorem 4, which estab-
lishes a relation (preserved by reduction) of well-typed processes and their types.

Theorem 4 (Subject reduction for closed systems). Let erase(P) be
live. If H $ P Ź H and P −→ P ′ then H $ P ′ Ź H.

Note that Subject Reduction assumes erase(P) to be live. For instance, the
example of P in (13) is well-typed, but erase(P) is not live. The process can
reduce to a failed state (as illustrated earlier in this section) that cannot be
typed (failed processes are not well-typed). Time Safety establishes that well-
typed processes only reduce to fail-free states.

606 L. Bocchi et al.

Theorem 5 (Time safety). If erase(P) is live, $ P ŹH and P −→∗ P ′,
then P ′ is fail-free.

Typing is decidable if one uses processes annotated with the following informa-
tion: (1) scope restrictions (νab : S)P are annotated with the type S of the
session for endpoint a (the type of b is implicitly assumed to be S and both
endpoints are type checked in the initial clock valuation ν0); (2) receive actions
an(b : T). P are annotated with the type T of the received message; (3) recur-
sion X(a : T ; a : S, δ) = P are annotated with types for each parameter, and
a guard modelling the state of the clocks. We call annotated programs those
annotated processes derived without using productions marked as run-time (i.e.,
failed and delay(t). P), and where n in an(b : T). P ranges over Q�0 ∪ {∞}.
Proposition 2. Type checking for annotated programs is decidable.

8 Conclusion and Related Work

We introduced duality and subtyping relations for asynchronous timed session
types. Unlike for untimed and timed synchronous [6] dualities, the composition
of dual types does not enjoy progress in general. Compositions of asynchronous
timed dual types enjoy progress when using an urgent receive semantics. We
propose a behavioural typing system for a timed calculus that features non-
blocking and blocking receive primitives (with and without timeout), and time
consuming primitives of arbitrary but constrained delays. The main properties
of the typing system are Subject Reduction and Time Safety; both results rely
on an assumption (receive liveness) of the underneath interaction structure of
processes. In related work on timed session types [12], receive liveness is not
required for Subject Reduction; this is because the processes in [12] block (rather
than reaching a failed state) whenever they cannot progress correctly, hence
e.g., missed deadline are regarded as progress violations. By explicitly capturing
failures, our calculus paves the way for future work on combining static checking
with run-time instrumentation to prevent or handle failures.

Asynchronous timed session types have been introduced in [12], in a multi-
party setting, together with a timed π-calculus, and a type system. The direct
extension of session types with time introduces unfeasible executions (i.e., types
may get stuck), as we have shown in Example 1. [12] features a notion of fea-
sibility for choreographies, which ensures that types enjoy progress. We ensure
progress of types by formation and duality. The semantics of types in [12] is
different from ours in that receive actions are not urgent. The work in [12] gives
one extra condition on types (wait-freedom), because feasible types may still
yield undesirable executions in well-typed processes. Thanks to our duality, sub-
typing, and calculus (in particular the blocking receive primitive with timeout)
this condition is unnecessary in this work. As a result, our typing system allows
for types that are not wait-free. By dropping wait-freedom, we can type a class
of common real-world protocols in which processes may be ready to receive mes-
sages even before the final deadline of the corresponding senders. Remarkably,

Asynchronous Timed Session Types 607

SMTP mentioned in the introduction is not wait-free. For some other aspects,
our work is less general than the one in [12], as we consider binary sessions rather
than multiparty sessions. A theory of timed multiparty asynchronous protocols
that encompasses the protocols in [12] and those considered here is an interesting
future direction. The work in [6] introduces a theory of synchronous timed ses-
sion types, based on a decidable notion of compatibility, called compliance, that
ensures progress of types, and is equivalent to synchronous timed duality and
subtyping in a precise sense [6]. Our duality and subtyping are similar to those
in [6], but apply to the asynchronous scenario. The work in [15] introduces a
typed calculus based on temporal session types. The temporal modalities in [15]
can be used as a discrete model of time. Timed session types, thanks to clocks
and resets, are able to model complex timed dependencies that temporal session
types do not seem able to capture. Other work studies models for asynchronous
timed interactions, e.g., Communicating Timed Automata [23] (CTA), timed
Message Sequence Charts [2], but not their relationships with processes. The
work in [5] introduces a refinement for CTA, and presents a notion of urgency
similar to the one used in this paper, preliminary studied also in [29].

Several timed calculi have been introduced outside the context of behavioural
types. The work in [32] extends the π- calculus with time primitives inspired in
CTA and is closer, in principle, to our types than our processes. Another timed
extension of the π-calculus with time-consuming actions has been applied to the
analysis the active times of processes [18]. Some works focus on specific aspects
of timed behaviour, such as timeouts [9], transactions [24,27], and services [25].
Our calculus does not feature exception handlers, nor timed transactions. Our
focus in on detecting time violations via static typing, so that a process only
moves to fail-free states.

The calculi in [7,12,15] have been used in combination with session types.
The calculus in [12] features a non-blocking receive primitive similar to our
a0(b). P , but that never fails (i.e., time is not allowed to flow if a process tries
to read from an empty buffer—possibly leading to a stuck process rather than
a failed state). The calculus in [7] features a blocking receive primitive without
timeout, equivalent to our a∞(b). P . The calculus in [15], seems able to encode
a non-blocking receive primitive like the one of [12] and a blocking receive prim-
itive without timeout like our a∞(b). P . None of these works features blocking
receive primitives with timeouts. Furthermore, existing works feature [7,12] or
can encode [15] only precise delays, equivalent to delay(x = n). P . Such punc-
tual predictions are often difficult to achieve. Arbitrary but constrained delays
are closer abstractions of time-consuming programming primitives (and possibly,
of predictions one can derive by cost analysis, e.g., [20]).

As to applications, timed session types have been used for run-time mon-
itoring [7,30] and static checking [12]. A promising future direction is that of
integrating static typing with run-time verification and enforcement, towards a
theory of hybrid timed session types. In this context, extending our calculus with
exception handlers [9,24,27] could allow an extension of the typing system, that
introduces run-time instrumentation to handle unexpected time failures.

608 L. Bocchi et al.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007).
https://doi.org/10.1017/CBO9780511814105

2. Akshay, S., Gastin, P., Mukund, M., Kumar, K.N.: Model checking time-
constrained scenario-based specifications. In: FSTTCS. LIPIcs, vol. 8, pp. 204–
215. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010). https://doi.org/
10.4230/LIPIcs.FSTTCS.2010.204

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Advanced Message Queuing Protocols (AMQP). https://www.amqp.org/
5. Bartoletti, M., Bocchi, L., Murgia, M.: Progress-preserving refinements of CTA.

In: CONCUR. LIPIcs, vol. 118, pp. 40:1–40:19. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.40

6. Bartoletti, M., Cimoli, T., Murgia, M.: Timed session types. Log. Methods Comput.
Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:25)2017

7. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS,
vol. 9539, pp. 86–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
28934-2 5

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed processes. In:
Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 158–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76637-7 11

10. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

11. Bocchi, L., Murgia, M., Vasconcelos, V., Yoshida, N.: Asynchronous timed session
types: from duality to time-sensitive processes (2018). https://www.cs.kent.ac.uk/
people/staff/lb514/tstp.html

12. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 29

13. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS, 1st edn.
Prentice Hall PTR, Upper Saddle River (2009)

14. Chen, T.C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping
in session types. In: PPDP, pp. 135–146. ACM (2014). https://doi.org/10.1145/
2643135.2643138

15. Das, A., Hoffmann, J., Pfenning, F.: Parallel complexity analysis with temporal
session types. Proc. ACM Program. Lang. 2(ICFP), 91:1–91:30 (2018). https://
doi.org/10.1145/3236786

16. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-
6 19

https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.204
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.204
https://www.amqp.org/
https://doi.org/10.4230/LIPIcs.CONCUR.2018.40
https://doi.org/10.23638/LMCS-13(4:25)2017
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-76637-7_11
https://doi.org/10.1007/978-3-540-85361-9_33
https://www.cs.kent.ac.uk/people/staff/lb514/tstp.html
https://www.cs.kent.ac.uk/people/staff/lb514/tstp.html
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3236786
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-642-23217-6_19

Asynchronous Timed Session Types 609

17. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 18

18. Fischer, M., Förster, S., Windisch, A., Monjau, D., Balser, B.: A new time extension
to π-calculus based on time consuming transition semanticss. In: Grimm, C. (ed.)
Languages for System Specification, pp. 271–283. Springer, Boston (2004). https://
doi.org/10.1007/1-4020-7991-5 17

19. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

20. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 6

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

22. Klensin, J.: Simple mail transfer protocol. RFC 5321, October 2008. https://tools.
ietf.org/html/rfc5321

23. Krcal, P., Yi, W.: Communicating timed automata: the more synchronous, the
more difficult to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 249–262. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 24

24. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31982-5 18

25. Lapadula, A., Pugliese, R., Tiezzi, F.: CWS: a timed service-oriented calculus. In:
Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 275–
290. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9 19

26. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technolo. Transf. 1, 134–152 (1997)

27. López, H.A., Pérez, J.A.: Time and exceptional behavior in multiparty structured
interactions. In: Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176,
pp. 48–63. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29834-
9 5

28. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, New York (1999)

29. Murgia, M.: On urgency in asynchronous timed session types. In: ICE. EPTCS,
vol. 279, pp. 85–94 (2018). https://doi.org/10.4204/EPTCS.279.9

30. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017). https://doi.org/10.
1007/s00165-017-0420-8

31. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
32. Saeedloei, N., Gupta, G.: Timed π-calculus. In: Abadi, M., Lluch Lafuente, A.

(eds.) TGC 2013. LNCS, vol. 8358, pp. 119–135. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05119-2 8

33. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Comput. 10(6),
87–89 (2006). https://doi.org/10.1109/MIC.2006.116

34. Yovine, S.: Kronos: a verification tool for real-time systems. (Kronos user’s manual
release 2.2). Int. J. Softw. Tools Technol. Transf. 1, 123–133 (1997)

https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/1-4020-7991-5_17
https://doi.org/10.1007/1-4020-7991-5_17
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/978-3-662-46669-8_6
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
https://doi.org/10.1007/11817963_24
https://doi.org/10.1007/978-3-540-31982-5_18
https://doi.org/10.1007/978-3-540-31982-5_18
https://doi.org/10.1007/978-3-540-75292-9_19
https://doi.org/10.1007/978-3-642-29834-9_5
https://doi.org/10.1007/978-3-642-29834-9_5
https://doi.org/10.4204/EPTCS.279.9
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1109/MIC.2006.116

610 L. Bocchi et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Manifest Deadlock-Freedom for Shared
Session Types

Stephanie Balzer1(B), Bernardo Toninho2(B), and Frank Pfenning1

1 Carnegie Mellon University, Pittsburgh, USA
balzers@cs.cmu.edu

2 NOVA LINCS, Universidade Nova de Lisboa, Lisbon, Portugal
btoninho@fct.unl.pt

Abstract. Shared session types generalize the Curry-Howard correspon-
dence between intuitionistic linear logic and the session-typed π-calculus
with adjoint modalities that mediate between linear and shared session
types, giving rise to a programming model where shared channels must
be used according to a locking discipline of acquire-release. While this
generalization greatly increases the range of programs that can be writ-
ten, the gain in expressiveness comes at the cost of deadlock-freedom, a
property which holds for many linear session type systems. In this paper,
we develop a type system for logically-shared sessions in which types cap-
ture not only the interactive behavior of processes but also constrain the
order of resources (i.e., shared processes) they may acquire. This type-
level information is then used to rule out cyclic dependencies among
acquires and synchronization points, resulting in a system that ensures
deadlock-free communication for well-typed processes in the presence of
shared sessions, higher-order channel passing, and recursive processes.
We illustrate our approach on a series of examples, showing that it rules
out deadlocks in circular networks of both shared and linear recursive
processes, while still being permissive enough to type concurrent imple-
mentations of shared imperative data structures as processes.

Keywords: Linear and shared session types · Deadlock-freedom

1 Introduction

Session types [25–27] naturally describe the interaction protocols that arise
amongst concurrent processes that communicate via message-passing. This typ-
ing discipline has been integrated (with varying static safety guarantees) into
several mainstream language such as Java [28,29], F# [43], Scala [49,50],
Go [11] and Rust [33]. Session types moreover enjoy a logical correspon-
dence between linear logic and the session-typed π-calculus [8,9,51,55]. Lan-
guages building on this correspondence [24,52,55] not only guarantee session

Supported by NSF Grant No. CCF-1718267: “Enriching Session Types for Practical
Concurrent Programming” and NOVA LINCS (Ref. UID/CEC/04516/2019).

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 611–639, 2019.
https://doi.org/10.1007/978-3-030-17184-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_22

612 S. Balzer et al.

fidelity (i.e., type preservation) but also deadlock-freedom (i.e., global progress).
The latter is guaranteed even in the presence of interleaved sessions, which
are often excluded from the deadlock-free fragments of traditional session-typed
frameworks [20,26,27,53]. These logical session types, however, exclude program-
ming scenarios that demand sharing of mutable resources (e.g., shared databases
or shared output devices) instead of functional resource replication.

To increase their practicality, logical session types have been extended with
manifest sharing [2]. In the resulting language, linear and shared sessions coex-
ist, but the type system enforces that clients of shared sessions run in mutual
exclusion of each other. This separation is achieved by enforcing an acquire-
release policy, where a client of a shared session must first acquire the session
before it can participate in it along a private linear channel. Conversely, when a
client releases a session, it gives up its linear channel and only retains a shared
reference to the session. Thus, sessions in the presence of manifest sharing can
change, or shift, between shared and linear execution modes. At the type-level,
the acquire-release policy manifests in a stratification of session types into linear
and shared with adjoint modalities [5,47,48], connecting the two strata. Opera-
tionally, the modality shifting up from the linear to the shared layer translates
into an acquire and the one shifting down from shared to linear into a release.

Manifest sharing greatly increases the range of programs that can be written
because it recovers the expressiveness of the untyped asynchronous π-calculus [3]
while maintaining session fidelity. As in the π-calculus, however, the gain in
expressiveness comes at the cost of deadlock-freedom. An illustrative example is
an implementation of the classical dining philosophers problem, shown in Fig. 1,
using the language SILLS [2] that supports manifest sharing (in this setting we
often equate a process with the session it offers along a distinguished channel).
The code shows the process fork proc, implementing a session of type sfork, and
the processes thinking and eating , implementing sessions of type philosopher. We
defer the details of the typing and the definition of the session types sfork and
philosopher to Sect. 2 and focus on the programmatic working of the processes for
now. For ease of reading, we typeset shared session types and variables denoting
shared channel references in red.

A fork proc process represents a fork that can be perpetually acquired and
released. The actions accept and detach are the duals of acquire and release,
respectively, allowing a process to accept an acquire by a client and to initi-
ate a release by a client, respectively. Process thinking has two shared channel
references as arguments, for the forks to the left and right of the philosopher,
which the process tries to acquire. If the acquire succeeds, the process recurs
as an eating philosopher with two (now) linear channel references of type lfork.
Once a philosopher is done eating, it releases both forks and recurs as a thinking
philosopher. Let’s set a table for three philosopher that share three forks, all
spawned as processes executing in parallel:

f0 ← fork proc ; f1 ← fork proc ; f2 ← fork proc ;
p0 ← thinking ← f0 , f1 ; p1 ← thinking ← f1 , f2 ; p2 ← thinking ← f2 , f0 ;

Manifest Deadlock-Freedom for Shared Session Types 613

fork proc : {sfork}
c fork proc =

c′ accept c ;
c detach c′ ;
c fork proc

thinking : {phil sfork, sfork}
c thinking left , right =

left ′ acquire left ;
right ′ acquire right ;
c eating left ′, right ′ ;

eating : {phil lfork, lfork}
c eating left ′, right ′ =

right release right ′ ;
left release left ′ ;
c thinking left , right

Fig. 1. Dining philosophers in SILLS [2].

Infamously, this configuration may deadlock because of the circular dependency
between the acquires. We can break this cycle by changing the last line to p2 ←
thinking ← f0 , f2 , ensuring that forks are acquired in increasing order.

Perhaps surprisingly, cyclic dependencies between acquire requests are not
the only source of deadlocks. Fig. 2 gives an example, defining the processes
owner and contester , which both have a shared channel reference to a common
resource that can be perpetually acquired and released. Both processes acquire
the shared resource, but additionally exchange the message ping. More pre-
cisely, process owner spawns the process contester , acquires the shared resource,
and only releases the resource after having received the message ping from the
contester . Process contester , on the other hand, first attempts to acquire the
resource and then sends the message ping to the owner. The program deadlocks
if process owner acquires the resource first. In that case, process owner waits
for process contester to send the message ping while process contester waits to
acquire the resource held by process owner . We note that this deadlock arises
in both synchronous and asynchronous semantics.

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping wait c ;

sr release lr ; close o

contester : {⊕{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Fig. 2. Circular dependencies among acquire and synchronization actions.

In this paper, we develop a type system for manifest sharing that rules out
cycles between acquire requests and interdependencies between acquire requests
and synchronization actions, detecting the two kinds of deadlocks explained
above. In our type system, session types not only prescribe when resources must
be acquired and released, but also the range of resources that may be acquired. To
this end, we equip the type system with the notion of a world, an abstract value
at which a process resides, and type processes relative to an acyclic ordering on
worlds, akin to the partial-order based approaches of [34,37]. The contributions
of this paper are:

614 S. Balzer et al.

– a characterization of the possible forms of deadlocks that can arise in shared
session types;

– the introduction of manifest deadlock-freedom, where resource dependencies
are manifest in the type structure via world modalities;

– its elaboration in the programming language SILLS+ , resulting in a type
system, a synchronous operational semantics, and proofs of session fidelity
(preservation) and a strong form of progress that excludes all deadlocks;

– the novel abstraction of green and red arrows to reason about the interde-
pendencies between processes;

– an illustration of the concepts on various examples, including an extensive
comparison with related work.

This paper is structured as follows: Sect. 2 provides a short introduction
to manifest sharing. Sect. 3 develops the type system and dynamics of the lan-
guage SILLS+ . Sect. 4 illustrates the introduced concepts on an extended example.
Sect. 5 discusses the meta-theoretical properties of SILLS+ , emphasizing progress.
Sect. 6 compares with examples of related work and identifies future work. Sect. 7
discusses related work, and Sect. 8 concludes this paper.

2 Manifest Sharing

In the previous section, we have already explored the programmatic workings of
manifest sharing [2], which enforces an acquire-release policy on shared channel
references. In this section, we clarify the typing of shared processes.

A key contribution of manifest sharing is not only to support acquire-release
as a programming primitive but also to make it manifest in the type system.
Generalizing the idea of type stratification [5,47,48], session types are partitioned
into a linear and shared layer with two adjoint modalities connecting the layers:

AS � ↑S
LAL

AL,BL � AL ⊗ BL | ⊕{l : AL} | �{l : AL} | AL � BL | ∃x :AS.BL | Πx :AS.BL | 1 | ↓S
LAS

In the linear layer, we get the standard connectives of intuitionistic linear logic
(AL ⊗BL, AL � BL, ⊕{l : AL}, �{l : AL}, and 1). These connectives are extended
with the modal operator ↓S

LAS, shifting down from the shared to the linear layer.
Similarly, in the shared layer, we have the operator ↑S

LAL, shifting up from the
linear to the shared layer. The former translates into a release (and, dually,
detach), the latter into an acquire (and, dually, accept). As a result, we obtain
a system in which session types prescribe all forms of communication, including
the acquisition and release of shared processes.

Table 1 provides an overview of SILLS’s session types and their operational
reading. Since SILLS is based on an intuitionistic interpretation of linear logic
session types [8], types are expressed from the point of view of the providing pro-
cess with the channel along which the process provides the session behavior being
characterized by its session type. This choice avoids the explicit duality opera-
tion present in original presentations of session types [25,26] and in those based

Manifest Deadlock-Freedom for Shared Session Types 615

Table 1. Session types in SILLS and their operational meaning.

on classical linear logic [55]. Table 1 lists the points of view of the provider and
client of a given connective in the first and second lines, respectively. Moreover,
Table 1 gives for each connective its session type before and after the message
exchange, along with their respective process terms. We can see that the process
terms of a provider and a client for a given connective come in matching pairs,
indicating that the participants’ views of the session change consistently. We
use the subscripts L and S to distinguish between linear and shared channels,
respectively.

We are now able to give the session types of the processes fork proc, thinking ,
and eating defined in the previous section:

lfork = ↓S

L sfork
sfork = ↑S

L lfork
phil = 1

The mutually recursive session types lfork and sfork represent a fork that can per-
petually be acquired and released. We adopt an equi-recursive [14] interpretation
for recursive session types, silently equating a recursive type with its unfolding
and requiring types to be contractive [19].

We briefly discuss the typing and the dynamics of acquire-release. The typing
and the dynamics of the residual linear connectives are standard, and we detail
them in the context of SILLS+ (see Sect. 3). As is usual for an intuitionistic

616 S. Balzer et al.

interpretation, each connective gives rise to a left and a right rule, denoting the
use and provision, respectively, of a session of the given type:
(T-↑S

LR)
Γ ; · � PxL :: (xL : AL)

Γ � xL ← acceptxS;PxL :: (xS : ↑S
LAL)

(T-↑S

LL)
Γ, xS : ↑S

LAL;Δ, xL : AL � QxL :: (zL : CL)

Γ, xS : ↑S
LAL;Δ � xL ← acquire xS;QxL :: (zL : CL)

(T-↓S

LR)
Γ � PxS :: (xS : AS)

Γ ; · � xS ← detachxL;PxS :: (xL : ↓S
LAS)

(T-↓S

LL)
Γ, xS : AS;Δ � QxS :: (zL : CL)

Γ ;Δ, xL : ↓S
LAS � xS ← release xL;QxS :: (zL : CL)

The typing judgments Γ � P :: (xS : AS) and Γ ;Δ � P :: (xL : AL) indicate that
process P provides a session of type A along channel x, given the typing of the
channels specified in typing contexts Γ (and Δ). Γ and Δ consist of hypotheses
on the typing of shared and linear channels, respectively, where Γ is a structural
and Δ a linear context. To allow for recursive process definitions, the typing
judgment depends on a signature Σ that is populated with all process defini-
tions prior to type-checking. The adjoint formulation precludes shared processes
from depending on linear channel references [2,47], a restriction motivated from
logic referred to as the independence principle [47]. Thus, when a shared session
accepts an acquire and shifts to linear, it starts with an empty linear context.

Operationally, the dynamics of SILLS is captured by multiset rewriting
rules [12], which denote computation in terms of state transitions between con-
figurations of processes. Multiset rewriting rules are local in that they only men-
tion the parts of a configuration they rewrite. For acquire-release we have the
following:

(D-↑S
L)

proc(aS, xL ← accept aS ;PxL), proc(cL, xL ← acquire aS ;QxL)
−→ proc(aL, [aL/xL]PxL), proc(cL, [aL/xL]QxL), unavail(aS)

(D-↓S
L)

proc(aL, xS ← detach aL ;PxS), proc(cL, xS ← release aL ;QxS), unavail(aS)
−→ proc(aS, [aS/xS]PxS), proc(cL, [aS/xS]QxS)

Configuration states are defined by the predicates proc(cm , P) and unavail(aS).
The former denotes a running process with process term P providing along
channel cm , the latter acts as a placeholder for a shared process providing along
channel aS that is currently not available. The above rule exploits the invariant
that a process’ providing channel a can appear at one of two modes, a linear
one, aL, and a shared one, aS. While the process (i.e. the session) is linear, it
provides along aL, while it is shared, along aS. When a process shifts between
modes, it switches between the two modes of its offering channel. The channel at
the appropriate mode is substituted for the variables occurring in process terms.

3 Manifest Deadlock-Freedom

In this section, we introduce our language SILLS+ , a session-typed language
that supports sharing without deadlock. We focus on SILLS+ ’s type system and
dynamics in this section and discuss its meta-theoretical properties in Sect. 5.

Manifest Deadlock-Freedom for Shared Session Types 617

3.1 Competition and Collaboration

The introduction of acquire-release, to ensure that the multiple clients of a shared
process interact with the process in mutual exclusion from each other, gives rise
to an obvious source of deadlocks, as acquire-release effectively amounts to a
locking discipline. The typical approach to prevent deadlocks in that case is to
impose a partial order on the resources and to “lock-up”, i.e., to lock the resources
in ascending order. We adopted this strategy in Sect. 1 (Fig. 1) to break the cyclic
dependencies among the acquires in the dining philosophers.

In Sect. 1, however, we also considered another example (Fig. 2) and discov-
ered that cyclic acquisitions are not the only source of deadlocks, but deadlocks
can also arise from interdependent acquisitions and synchronizations. In that
example, we can prevent the deadlock by moving the acquire past the synchro-
nization, in either of the two processes. Whereas in a purely linear session-typed
system the sequencing of actions within a process do not affect other processes,
the relative placement of acquire requests and synchronizations become relevant
in a shared session-typed system.

Based on this observation, we can divide the processes in a shared-session
discipline into competitors and collaborators. The former compete for a set of
resources, whereas the latter do not overlap in the set of resources they acquire.
For example, in the dining philosophers (Fig. 1), the philosophers p0 , p1 , and p2
compete with each other for the set of forks f0 , f1 , and f2 , whereas the process
that spawns the philosophers and the forks collaborates with either of them.

Transferring this idea to the process graph that emerges at run-time, we note
that competitors are siblings whereas collaborators stand in a parent-descendant
relationship. We illustrate this outcome on Fig. 3 that shows a possible run-
time process graph for the dining philosophers. Linear processes are depicted as
solid black circles with a white identifier and shared processes are depicted as
dotted filled violet circles with a black identifier. Linear channels are depicted as
black lines, shared channel references as dotted violet lines with the arrow head
pointing to the shared process being acquired1. The identifiers P0, P1, and P2

stand for the three philosophers, F0, F1, and F2 for the three forks, and T for
the process that sets the table. The current run-time graph depicts the scenario
in which P1 is eating, while the other two philosophers are still thinking.

Embedded in the graph is a tree that arises from the linear processes and the
linear channels connecting them. For any two nodes in this tree, the parent node
denotes the client process and the child node the providing process. We note
that the independence principle (see Sect. 2), which precludes shared processes
from depending on linear channel references, guarantees that there exists exactly
one tree in the process graph, with the linear main process as its root. The shape
of the tree changes when new processes are spawned, linear channels exchanged
(through ⊗ and �), or shared processes acquired. For example, process P2 could
acquire the shared fork F0, which then becomes a linear child process of P2,
should the acquire succeed. As indicated by the shared channel references, the

1 We have made sure to make the different concepts distinguishable in greyscale mode.

618 S. Balzer et al.

P0 P1 P2

T

F1 F2

F0

Legend:

linear process (child: provider, parent: client)

shared process

linear channel

shared channel reference

Fig. 3. Run-time process graph for dining philosophers (see Fig. 1).

sibling nodes P0, P1, and P2 compete with each other for the nodes F0, F1, and
F2, whereas the node T does not compete for any of the resources acquired by
its descendants (including F1 and F2). Our type system enforces this paradigm,
as we discuss in the next section.

3.2 Type System

Invariants. Having identified the notions of collaborators and competitors, our
type system must guarantee: (i) that collaborators acquire mutually disjoint sets
of resources; (ii) that competitors employ a locking-up strategy for the resources
they share; and, (iii) that competitors have released all acquired resources when
synchronizing with other competitors. Invariant (ii) rules out cyclic acquisitions
and invariants (i) and (iii) combined rule out interdependent acquisitions and
synchronizations.

To express the high-level invariants above in our type system, we introduce
the notion of a world – an abstract value that is equipped with a partial order –
and associate such a world with every process. Programmers can create worlds,
indicate the world at which a process resides at spawn time, and define an order
on worlds. Moreover, we associate with each process a range of worlds that
indicates the worlds of resources that the process may acquire. As a result, we
obtain the following typing judgments:

Ψ ; Γ � P :: (xS : AS[ωk �ωn
ωl

]) (where Ψ+ irreflexive)

Ψ ; Γ ; Φ; Δ � P :: (xL : AL[ωk �ωn
ωl

]) (where Ψ+ irreflexive)

The typing judgments reveal that we impose worlds at the judgmental level,
resulting in a hybrid system, in which the adjoint modalities for acquire-release
are complemented with world modalities that occur as syntactic objects in propo-
sitions [7]. We use the notation xm : Am[ωk �ωn

ωl
] (where m stands for S or L)

to associate worlds ωk, ωl, and ωn with a process that offers a session of type
Am along channel x. World ωk denotes the world at which the process resides.

Manifest Deadlock-Freedom for Shared Session Types 619

We refer to this world as the self world. Worlds ωl and ωn indicate the range of
worlds of resources that the process may acquire, with ωl denoting the minimal
(min) world in this range and ωn the maximal (max) one.

Process terms are typed relative to the order specified in Ψ and the contexts
Γ , Φ, and Δ. As in Sect. 2, Γ is a structural context consisting of hypotheses
on the typing of variables bound to shared channel references, augmented with
world annotations. We find it necessary to split the linear context “Δ” from
Sect. 2 into the two disjoint contexts Φ and Δ, allowing us to separate channels
that are possibly aliased (due to sharing) from those that are not, respectively.
Both Φ and Δ consist of hypotheses on the typing of variables that are bound
to linear channels, augmented with world annotations. Ψ is presupposed to be
acyclic and defined as: Ψ � · | Ψ ′, ωk < ωl | Ψ ′, ωo , where ω stands for a
concrete world w or a world variable δ. We allow Ψ to contain single worlds,
to support singletons as well as to accommodate world creation prior to order
declaration. We define the transitive closure Ψ+, yielding a strict partial order,
and the reflexive transitive closure Ψ∗, yielding a partial order.

The high-level invariants (i), (ii), and (iii) identified earlier naturally tran-
scribe into the following invariants, which we impose on the typing judgments
above. We use the notation 〈xm〉;P to denote a process term that currently
executes an action along channel xm.

1. min(parent) ≤ self(acquired child) ≤ max(parent):
∀yL : BL[ωo�ωr

ωp
] ∈ Φ : Ψ∗ � ωl ≤ ωo ≤ ωn

2. max(parent) < min(child):
∀yL : BL[ωo�ωr

ωp
] ∈ Δ ∪ Φ : Ψ+ � ωn < ωp

3. If Ψ ; Γ, xS : A[ωt �ωv
ωu

]; Φ; Δ � xL ← acquire xS; QxS
:: (zL : CL[ωk �ωn

ωl
]), then

∀yL : BL[ωo�ωr
ωp

] ∈ Φ : Ψ+ � ωo < ωt.
4. If Ψ ; Γ ; Φ; Δ � 〈xm〉;P :: (xL : AL[ωk �ωn

ωl
]), then Φ = (·).

Invariants 1 and 2 ensure that, for any node in the tree, the acquired resources
reside at smaller worlds than those acquired by any descendant. As a result, the
two invariants guarantee high-level invariant (i). Invariant 3, on the other hand,
imposes a lock-up strategy on acquires and thus guarantees high-level invariant
(ii). To guarantee high-level invariant (iii), we impose Invariant 4, which forces a
process to release any acquired resources before communicating along its offering
channel. Since sibling nodes cannot be directly connected by a linear channel,
the only way for them to synchronize is through a common parent. Finally, to
guarantee that world annotations are internally consistent, we require for each
annotation [ωk �ωn

ωl
] that ωk < ωl ≤ ωn.

Rules. We now present select process typing rules, a complete listing is provided
in the companion technical report [4]. The only new rules with respect to the
language SILLS [2] are those pertaining to world creation and order determina-
tion. These are extra-logical judgmental rules. We allow both linear and shared
processes to create and relate worlds. Rules (T-NewL) and (T-NewS) create a
new world w and make it available to the continuation Qw. Rules (T-OrdL) and
(T-OrdS) relate two existing worlds, while preserving acyclicity of the order.

620 S. Balzer et al.

Ψ,w; Γ ; Φ; Δ 	 Qw :: (xL : AL[ωm
ωv
ωu

])

Ψ ; Γ ; Φ; Δ 	 w ← new world; Qw :: (xL : AL[ωm
ωv
ωu

])
(T-NewL)

Ψ,w; Γ 	 Qw :: (xS : AS[ωm
ωv
ωu

])

Ψ ; Γ 	 w ← new world; Qw :: (xS : AS[ωm
ωv
ωu

])
(T-NewS)

ωp, ωr ∈ Ψ (Ψ, ωp < ωr)
+ irreflexive

Ψ, ωp < ωr; Γ ; Φ; Δ 	 Q :: (xL : AL[ωm
ωv
ωu

])

Ψ ; Γ ; Φ; Δ 	 ωp < ωr; Q :: (xL : AL[ωm
ωv
ωu

])
(T-OrdL)

ωp, ωr ∈ Ψ (Ψ, ωp < ωr)
+ irreflexive

Ψ, ωp < ωr; Γ 	 Q :: (xS : AS[ωm
ωv
ωu

])

Ψ ; Γ 	 ωp < ωr; Q :: (xS : AS[ωm
ωv
ωu

])
(T-OrdS)

We now consider the typing rule for acquire, which must explicitly enforce the
various low-level invariants above. Since an acquire results in the addition of a
new child node to the executing process, the rule can interfere with Invariants 1
and 2. The first two premises of the rule ensure that the two invariants are
preserved. Moreover, the rule has to ensure that the acquiring process is locking-
up (Invariant 3), which is achieved by the third premise.

Ψ∗ 	 ωk ≤ ωm ≤ ωn Ψ+ 	 ωn < ωu ∀yL : BL[ωl
ωr
ωp

] ∈ Φ : ωl < ωm

Ψ ; Γ, xS : ↑S
LAL[ωm
ωv

ωu
]; Φ, xL : AL[ωm
ωv

ωu
]; Δ 	 QxL :: (zL : CL[ωj
ωn

ωk
])

Ψ ; Γ, xS : ↑S
LAL[ωm
ωv

ωu
]; Φ; Δ 	 xL ← acquirexS ; QxL :: (zL : CL[ωj
ωn

ωk
])

(T-↑S
LL)

The remaining shift rules are actually unchanged with respect to SILLS, mod-
ulo the world annotations. In particular, low-level Invariant 4 is already satisfied
because the conclusion of rule (T-↑S

LR) does not have a context Φ and because
the independence principle forces Φ to be empty in rule (T-↓S

LR).

Ψ ; Γ ; · ; · 	 PxL :: (xL : AL[ωm
ωv
ωu

])

Ψ ; Γ 	 xL ← acceptxS ; PxL :: (xS : ↑S
LAL[ωm
ωv

ωu
])

(T-↑S
LR)

Ψ ; Γ, xS : AS[ωm
ωv
ωu

]; Φ; Δ 	 QxS :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ, xL : ↓S
LAS[ωm
ωv

ωu
]; Δ 	 xS ← releasexL ; QxS :: (zL : CL[ωj
ωn

ωk
])

(T-↓S
LL)

Ψ ; Γ 	 PxS :: (xS : AS[ωm
ωv
ωu

])

Ψ ; Γ ; · ; · 	 xS ← detachxL ; PxS :: (xL : ↓S
LAS[ωm
ωv

ωu
])

(T-↓S
LR)

We now consider the linear connectives, starting with 1. Rule (T-1L) reveals
that only processes that have never been acquired may be terminated. This
restriction is important to guarantee progress because existing clients of a shared
process may wait indefinitely otherwise. We impose the restriction as a well-
formedness condition on a session type, giving rise to a strictly equi-synchronizing
session type. The notion of an equi-synchronizing session type [2] has been
defined for SILLS and guarantees that a process that has been acquired at a
type AS is released back to the type AS, should it ever be released. A strictly
equi-synchronizing session type additionally requires that an acquired resource
must be released. The corresponding rules can be found in [4]. Linearity enforces
Invariant 4 in rule (T-1R), making sure that no linear channels are left behind.

Manifest Deadlock-Freedom for Shared Session Types 621

Ψ ; Γ ; Φ; Δ 	 Q :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : 1[ωm
ωv
ωu

] 	 waitxL ; Q :: (zL : CL[ωj
ωn
ωk

])
(T-1L)

Ψ ; Γ ; · ; · 	 closexL :: (xL : 1[ωm
ωv
ωu

])
(T-1R)

Next, we consider internal and external choice. Since internal and external
choice cannot alter the linear process tree of a process graph, the rules are very
similar to the ones in SILLS. The only differences are that we get two left rules
for each connective and that the Φ-context of each right rule must be empty to
satisfy Invariant 4. The former is merely due to the tracking of possibly aliased
sessions in the Φ context. We only list rules for internal choice, those for external
choice are dual and can be found in [4].

(∀i) Ψ ; Γ ; Φ; Δ, xL : ALi [ωm
ωv
ωu

] 	 Qi :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : ⊕{l : AL}[ωm
ωv
ωu

] 	 case xL of l ⇒ Q :: (zL : CL[ωj
ωn
ωk

])
(T-⊕L1)

(∀i) Ψ ; Γ ; Φ, xL : ALi [ωm
ωv
ωu

]; Δ 	 Qi :: (zL : CL[ωj
ωn
ωk

])

Ψ ; Γ ; Φ, xL : ⊕{l : AL}[ωm
ωv
ωu

]; Δ 	 case xL of l ⇒ Q :: (zL : CL[ωj
ωn
ωk

])
(T-⊕L2)

Ψ ; Γ ; · ; Δ 	 P :: (xL : AL h [ωm
ωv
ωu

])

Ψ ; Γ ; · ; Δ 	 xL.lh ; P :: (xL : ⊕{l : AL}[ωm
ωv
ωu

])
(T-⊕R)

More interesting are linear channel output and input, since these alter the
linear process tree of a process graph. Moreover, additional world annotations
are needed to indicate the worlds of the channel that is exchanged. For the
latter we use the notation @ωl �ωr

ωp
, indicating that the exchanged channel has

the worlds ωl, ωp, and ωr for self, min, and max, respectively. To account for
induced changes in the process graph, the rules that type an input of a linear
channel must guard against any disturbance of Invariants 1 and 2. Because the
two invariants guarantee that parents do not overlap with their descendants in
terms of acquired resources, they prevent any exchange of acquired channels.
We thus restrict ⊗ and � to the exchange of channels that have not yet been
acquired. This is not a limitation since, as we will see below, shared channel
output and input are unrestricted.

Even with the above restriction in place, we still have to make sure that a
received channel satisfies Invariant 2. If we were to state a corresponding premise
on the receiving rules, invertibility of the rules would be disturbed. To uphold
invertibility, we impose a well-formedness condition on session types that ensures
for a session of type AL@ωl �ωr

ωp
⊗BL[ωm �ωv

ωu
] that ωv < ωp and, analogously, for

a session of type AL@ωl �ωr
ωp

� BL[ωm �ωv
ωu

] that ωv < ωp. Session types are
checked to be well-formed upon process definition. Given type well-formedness,
we obtain the following rules for �, noting that the right rule enforces Invariant 4
by requiring an empty Φ-context. The rules for ⊗ are dual.

622 S. Balzer et al.

Ψ ; Γ ; Φ; Δ, xL : BL[ωm�ωv
ωu

] � Q :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ; Φ; Δ, xL : AL@ωl�ωr
ωp

� BL[ωm�ωv
ωu

], yL : AL[ωl�ωr
ωp

] � send xL yL ; Q :: (zL : CL[ωj �ωn
ωk

])
(T-�L1)

Ψ ; Γ ; Φ, xL : BL[ωm�ωv
ωu

]; Δ � Q :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ; Φ, xL : AL@ωl�ωr
ωp

� BL[ωm�ωv
ωu

]; Δ, yL : AL[ωl�ωr
ωp

] � send xL yL ; Q :: (zL : CL[ωj �ωn
ωk

])
(T-�L2)

Ψ ; Γ ; · ; Δ, yL : AL[ωl�ωr
ωp

] � PyL
:: (xL : BL[ωm�ωv

ωu
])

Ψ ; Γ ; · ; Δ � yL ← recv xL ; PyL
:: (xL : AL@ωl�ωr

ωp
� BL[ωm�ωv

ωu
])

(T-�R)

Since there are no invariants imposed on the shared context Γ , the rules
for shared channel output and input are identical to those in SILLS. The only
differences are that we have two left rules and that the Φ-context of the right rule
must be empty to satisfy Invariant 4. The former is merely due to the tracking
of possibly aliased sessions in the Φ context.

Ψ ; Γ, yS : AS[ωl�ωr
ωp];Φ; Δ, xL : BL[ωm�ωv

ωu] � QyS :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ;Φ; Δ, xL : ∃x:AS@ωl�ωr
ωp . BL[ωm�ωv

ωu] � yS ← recv xL ;QyS :: (zL : CL[ωj �ωn
ωk

])
(T-∃L1)

Ψ ; Γ, yS : AS[ωl�ωr
ωp];Φ, xL : BL[ωm�ωv

ωu]; Δ � QyS :: (zL : CL[ωj �ωn
ωk

])

Ψ ; Γ ;Φ, xL : ∃x:AS@ωl�ωr
ωp . BL[ωm�ωv

ωu]; Δ � yS ← recv xL ;QyS :: (zL : CL[ωj �ωn
ωk

])
(T-∃L2)

Ψ ; Γ, yS : AS[ωl�ωr
ωp]; · ; Δ � P :: (xL : BL[ωm�ωv

ωu])

Ψ ; Γ, yS : AS[ωl�ωr
ωp]; · ; Δ � sendxL yS ;P :: (xL : ∃x:AS@ωl�ωr

ωp . BL[ωm�ωv
ωu])

(T-∃R)

We finally consider the rules for forwarding and spawning. We allow a shared
forward between processes that offer the same session at the same worlds.
Because forwards have to be world-invariant, however, no well-typed program
could ever have a linear forward. The process being forwarded to must be in
either of the contexts Φ or Δ, and thus satisfies Invariant 2, making it impossible
for the world annotations of the forwarder and forwardee to match. We omit
linear forwarding and discuss possible future extensions in Sect. 6.

Ψ ; Γ, yS : AS[ωj
ωn
ωk

] 	 fwd xS yS :: (xS : AS[ωj
ωn
ωk

])
(T-IdS)

The rules for spawning depend on the possible modes of the spawning
and spawned processes: (T-SpawnLL) specifies how a linear process can spawn
another linear process; (T-SpawnSS) specifies how a shared processes can spawn
another shared process. The rules are checked relative to a process definition
found in the signature Σ and to a world substitution mapping γ : |Ψ | → |Ψ ′|,
such that for each δ ∈ Ψ ′ we have Ψ � γ(δ), where |Ψ | denotes the field of
Ψ (i.e., the union of its domain and range). As usual, we lift substitution to
types γ̂(Am), contexts γ̂(Γ), and orders γ̂(Ψ). Both rules ensure that, given the
mapping γ, the order Ψ of the spawning process entails the one of the process
definition (Ψ � γ̂(Ψ ′)). The linear spawn rule (T-SpawnLL) further enforces
Invariant 2 for the spawned child. We note that the spawned child enters the
linear context Δ in the spawning process’ continuation since no aliases to such
a process can exist at this point.

Manifest Deadlock-Freedom for Shared Session Types 623

Δ1 = yL : BL[ωm�ωv
ωu] Φ1 = ỹL : B̃L[ω̃m�ω̃v

ω̃u
] Γ1 = zS : CS[ωl�ωr

ωp]

(Ψ ′ � x′
L : A′

L[δj �δn
δk

] ← XL ← Δ′, Φ′, Γ ′ = Px′
L

,dom(Δ′),dom(Φ′),dom(Γ ′),Ψ′′) ∈ Σ

γ̂(A′
L[δj �δn

δk
]) = AL[ωj �ωn

ωk
] γ̂(Δ′) = Δ1 γ̂(Φ′) = Φ1 γ̂(Γ ′) = Γ1 Ψ � γ̂(Ψ ′)

Ψ+ � ωt < ωk

Ψ ; Γ1, Γ2; Φ2; Δ2, xL : AL[ωj �ωn
ωk

] � QxL
:: (z′′

L : DL[ωi�ωt
ωq])

Ψ ; Γ1, Γ2; Φ1, Φ2; Δ1, Δ2 � xL : AL[ωj �ωn
ωk

] ← XL ← yL, ỹL, zS ; QxL
:: (z′′

L : DL[ωi�ωt
ωq])

(T-SpawnLL)

Γ1 = zS : CS[ωl�ωr
ωp] (Ψ ′ � x′

S : A′
S[δj �δn

δk
] ← XS ← Γ ′ = Px′

S
,dom(Γ ′),Ψ′′) ∈ Σ

γ̂(A′
S[δj �δn

δk
]) = AS[ωj �ωn

ωk
] γ̂(Γ ′) = Γ1 Ψ � γ̂(Ψ ′)

Ψ ; Γ1, Γ2, xS : AS[ωj �ωn
ωk

] � QxS
:: (z′′

S : DS[ωi�ωt
ωq])

Ψ ; Γ1, Γ2 � xS : AS[ωj �ωn
ωk

] ← XS ← zS ; QxS
:: (z′′

S : DS[ωi�ωt
ωq])

(T-SpawnSS)

In the companion technical report [4], we provide a variant of rule
(T-SpawnLL) for the case of a linear recursive tail call. Without linear forward-
ing, a linear tail call can no longer be implicitly “de-sugared” into a spawn and
a linear forward [2,22,52], but must be accounted for explicitly. In the report,
we also provide the rules for checking process definitions. Those rules make sure
that the process’ world order is acyclic, that the types of the providing session
and argument sessions are well-formed, and that the process satisfies Invariants 1
and 2.

3.3 Dining Philosophers in SILLS+

Having introduced our type system, we revisit the dining philosophers from
Sect. 1 and show how to program the example in SILLS+ , ensuring that the
program will run without deadlocks. The code is given in Fig. 4. We note the
world annotations in the signature of the process definitions. For instance,

thinking : {δ0 < δ1, δ1 < δ2, δ2 < δ3 � phil[δ0�δ2
δ1

] ← sfork[δ1�δ3
δ3

], sfork[δ2�δ3
δ3

]; ·; ·}

indicates that, given the order δ0 < δ1 < δ2 < δ3, process thinking provides
a session of type phil[δ0 �δ2

δ1
] and uses two shared channel references of type

sfork[δ1 �δ3
δ3

] and sfork[δ2 �δ3
δ3

]. The two · signify that neither acquired nor linear
channel references are given as arguments. The signature indicates that the two
shared fork references reside at different worlds, such that the world of the first
one is smaller than the one of the second.

Let’s briefly convince ourselves that the two acquires in process thinking in
Fig. 4 are type-correct. For each acquire we have to show that: the world of the
resource to be acquired is within the acquiring process’ range; the max of the
acquiring process is smaller than the min of the acquired resource; and, that
the self of the acquired resource is larger than those of all already acquired
resources. We can convince ourselves that all those conditions are readily met.

624 S. Balzer et al.

Fig. 4. Deadlock-free version of dining philosophers in SILLS+ .

We note, however, that if we were to swap the two acquires, the program would
not type-check.

Let us once more set the table for three philosophers and three forks. We
execute this code in a process with world annotations [δa�δb

δb
] such that δa < δb.

We first create new worlds and define their order:

w1 ← new world;w2 ← new world;w3 ← new world;w4 ← new world;
δa < w1; δa < w2; δb < w1;w1 < w2;w1 < w3;w1 < w4;w2 < w3;w2 < w4;w3 < w4;

We then spawn the forks, each residing at a different world, such that the max
world of a fork is higher than the self of the highest fork, ensuring Invariant 2
for the philosopher processes that we spawn afterwards:

f1 : sfork[w1�w4
w4

] ← fork proc ; f2 : sfork[w2�w4
w4

] ← fork proc ;
f3 : sfork[w3�w4

w4
] ← fork proc ;

When we spawn the philosophers, we ensure that P0 is going to pick up fork F1

and then F2, P1 is going to pick up F2 and then F3, and P2 is going to pick up
F1 and then F3.

p0 : phil[δa
w2
w1

] ← thinking ← ·; ·; f1 , f2 ; p1 : phil[δa
w3
w2

] ← thinking ← ·; ·; f2 , f3 ;
p2 : phil[δa
w3

w1
] ← thinking ← ·; ·; f1 , f3 ;

We note that the deadlocking spawn

p2 : phil[δa�w3
w1

] ← thinking ← ·; ·; f3 , f1 ;

is type-incorrect since we would substitute both w1 and w3 for δ1 and w3 and w1

for δ2, which violates the ordering constraints put in place by typing.

Manifest Deadlock-Freedom for Shared Session Types 625

3.4 Dynamics

We now give the dynamics of SILLS+ . Our current system is based on a syn-
chronous dynamics. While this choice is more conservative, it allows us to narrow
the complexity of the problem at hand.

As in SILLS, we use multiset rewriting rules [12] to capture the dynam-
ics of SILLS+ (see Sect. 2). Multiset rewriting rules represent computation
in terms of local state transitions between configurations of processes, only
mentioning the parts of a configuration they rewrite. We use the predicates
proc(am , wa1 �wa3

wa2
, Pam

) and unavail(aS, wa1 �wa3
wa2

) to define the states of a con-
figuration (see Sect. 5.1). The former denotes a process executing term P that
provides along channel am at mode m with worlds wa1 , wa2 , and wa3 for self,
min, and max, respectively. The latter acts as a placeholder for a shared process
providing along channel aS with worlds wa1 , wa2 , and wa3 for self, min, and max,
respectively, that is currently unavailable. We note that since worlds are also
run-time artifacts, they must occur as part of the state-defining predicates.

Fig. 5 lists selected rules of the dynamics. Since the rules remain largely the
same as those of SILLS, apart from the world annotations that are “threaded
through” unchanged, we only discuss the rules that actually differ from the
SILLS rules. The interested reader can find the remaining rules in the companion
technical report [4].

(D-SpawnLL)
proc(aL, wa1

wa3
wa2

, xL : AL[wb1

wb3
wb2

] XL cL, c̃L, dS ; QxL),
!def(Ψ ′ � x ′

L : A′
L[δj

δn
δk
] XL Δ′,Φ′,Γ ′ = Px ′

L
,dom(Δ′),dom(Φ′),dom(Γ ′),Ψ′′)

proc(bL, wb1

wb3
wb2

, [bL/x ′
L , cL/dom(Δ′), c̃L/dom(Φ′), dS/dom(Γ ′)]γ̂(Px ′

L
,dom(Δ′),dom(Φ′),dom(Γ ′),Ψ′′)),

proc(aL, wa1

wa3
wa2

, [bL/xL]QxL),
unavail(bS, wb1

wb3
wb2

) (b fresh)

(D-New)
proc(a, wa1

wa3
wa2

, w new world; Qw) proc(a, wa1

wa3
wa2

, Qw) (w fresh)

(D-Ord)
proc(a, wa1

wa3
wa2

, w < w′; Q) proc(a, wa1

wa3
wa2

, Q)

Fig. 5. Selected multiset rewriting rules of SILLS+ .

Noteworthy are the rules D-New and D-Ord for creating and relating
worlds, respectively. Rule D-New creates a fresh world, which will be glob-
ally available in the configuration. Rule D-Ord, on the other hand, updates the
configuration’s order with the pair w < w′. Rule D-SpawnLL, lastly, substitutes
actual worlds for world variables in the body of the spawned process, using the
substitution mapping γ defined earlier. It relies on the existence of a correspond-
ing definition predicate for each process definition contained in the signature Σ.
We note that the substitution γ in rule D-SpawnLL instantiates the appropriate
world variables in the spawned process P .

626 S. Balzer et al.

4 Extended Example: An Imperative Shared Queue

We now develop a typical imperative-style implementation of a queue that uses
a list data structure internally to store the queue’s elements and has shared
references to the front and the back of the list for concurrent dequeueing and
enqueueing, respectively. The session types for the queue and the list are2

queue AS = ↑S

L�{enq : Πx:AS. ↓S

Lqueue AS,
deq : ⊕{none : ↓S

Lqueue AS, some : ∃x:AS. ↓S

Lqueue AS}}

list AS = ↑S

L�{ins : Πx:AS.∃y:list AS. ↓S

Llist AS,
del : ⊕{none : ↓S

Llist AS, some : ∃x:AS. ↓S

Llist AS}
The list is implemented in terms of processes empty and elem, denoting the

empty list and a cons cell, respectively. We show the more interesting case of a
cons cell (Fig. 6). The queue is defined by processes head (Fig. 7) and queue proc
(Fig. 8), the latter being the queue’s interface to its clients.

Fig. 6. Imperative queue – elem process.

We can now define a client (Fig. 8) for the queue, assuming existence of a
corresponding shared session type item and a process item proc offering a session
of type item[δ3�δ4

δ4
]. The client instantiates the queue at world δb, allowing it

to acquire resources at world w1, which is exactly the world at which process
queue proc instantiates the list. Given that the client itself resides at world δa,
which is smaller than the queue’s world δb, the client is allowed to acquire the
queue, which in turn will acquire the list to satisfy any requests by the client.

The example showcases a paradigmatic use of several collaborators, where
collaborators can hold resources while they “talk down” in the tree. In particular,
as illustrated in Fig. 9, the clients C1, C2, and C3 compete for resources at
world δb, i.e., the queue Q. On the other hand, a client Ci collaborates with the
queue Q, the list elements Li, and the items Ii, since they do not overlap in
2 We adopt polymorphism for the example without formal treatment since it is orthog-

onal and has been studied for session types in [23,46].

Manifest Deadlock-Freedom for Shared Session Types 627

Fig. 7. Imperative queue – head process.

Fig. 8. Imperative queue – queue proc process and client process.

the set of resources they may acquire: a client acquires resources at δb, a queue
resources at w1, a list resources at w2, and an item resources at w4, and we have
δa < δb < w1 < w2 < w3 < w4. We note in particular that the setup prevents a
list element from acquiring its successor, forcing linear access through the queue.

5 Semantics

In this section, we discuss the meta-theoretical properties of SILLS+ , focusing on
deadlock-freedom. The companion technical report [4] provides further details.

628 S. Balzer et al.

Fig. 9. Run-time process graph for imperative queue (see Fig. 3 for legend).

5.1 Configuration Typing and Preservation

Given the hierarchy between mode S and L and the fact that shared processes
cannot depend on linear processes, we divide a configuration into a shared part
Λ and a linear part Θ. We use the typing judgment Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ to
type configurations. The judgment expresses that a well-formed configuration
Λ;Θ provides the shared channels in Γ and the linear channels in Φ and Δ.
A configuration is type-checked relative to all shared channel references and a
global order Ψ . While type-checking is compositional insofar as each process
definition can be type-checked separately, solely relying on the process’ local
Ψ (and Γ), at run-time, the entire order that a configuration relies upon is
considered. We give the configuration typing rules in Fig. 10.

Our progress theorem crucially depends on the guarantee that the Invari-
ants 1 and 2 from Sect. 3 hold for every linear process in a configura-
tion’s tree. This is expressed by the premises Inv1(proc(aL, wa1 �wa3

wa2
, PaL

)) and
Inv2(proc(aL, wa1 �wa3

wa2
, PaL

)) in rule (T-Θ2), based on the Definitions 1 and 2
below that restate Invariants 1 and 2 for an entire configuration. We note that
Invariant 2 is based on the set of all transitive children (i.e., descendants) of a
process. We formally define the notion of a descendant inductively over a well-
typed linear configuration. The interested reader can find the definition in the
companion technical report [4].

Invariant 1 (min(parent) ≤ self(acquired child) ≤ max(parent)). If Ψ ; Γ � Θ ::
Φ,Δ and for any proc(aL, wa1 �wa3

wa2
, PaL

) ∈ Θ such that Ψ ; Γ ; Φ1; Δ1 � PaL
:: (aL :

AL[wa1 �wa3
wa2

]), Inv1(proc(aL, wa1 �wa3
wa2

, PaL
)) holds if an only if for every acquired

resource bL : BL[wb1 �wb3
wb2

] ∈ Φ1 it holds that Ψ∗ � wa2 ≤ wb1 ≤ wa3 . Moreover,
if PaL

= xL ← acquire cS ;QxL , for a (cS : ↑S

LCL[wc1 �wc3
wc2

]) ∈ Γ , then, for every
acquired resource bL : BL[wb1 �wb3

wb2
] ∈ Φ1, it holds that Ψ+ � wb1 < wc1 and that

Ψ∗ � wa2 ≤ wc1 ≤ wa3 .

Manifest Deadlock-Freedom for Shared Session Types 629

Fig. 10. Configuration typing

Invariant 2 (max(parent) < minima(descendants)). If Ψ ; Γ � Θ :: Φ,Δ
and for any proc(aL, wa1 �wa3

wa2
, PaL

) ∈ Θ and that process’ descendants (Ψ ; Γ �
Θ :: Φ,Δ) � aL = (Φ′,Δ′), Inv2(proc(aL, wa1 �wa3

wa2
, PaL

)) holds iff for every
descendant bL : BL[wb1 �wb3

wb2
] ∈ (Φ′,Δ′) it holds that Ψ+ � wa3 < wb2 .

Our preservation theorem states that Invariants 1 and 2 are preserved for
every linear process in the configuration along transitions. Moreover, the theorem
expresses that the types of the providing linear channels Φ and Δ are maintained
along transitions and that new shared channels and worlds may be allocated.
The proof relies, in particular, on session types being strictly equi-synchronizing,
on a process’ type well-formedness and assurance that the process’ min world is
less than or equal to its max world.

Theorem 5.1 (Preservation). If Ψ ; Γ � Λ; Θ :: Γ ; Φ,Δ and Λ;Θ −→ Λ′;Θ′,
then Ψ ′; Γ ′ � Λ′; Θ′ :: Γ ′; Φ,Δ, for some Λ′, Θ′, Ψ ′, and Γ ′.

5.2 Progress

In our development so far we have distilled the two scenarios of interdepen-
dencies between processes that can lead to deadlocks: cyclic acquisitions and
interdependent acquisitions and synchronizations. This has lead to the develop-
ment of a type system that ingrains the notions of competitors and collaborators,
such that the former compete for a set of resources whereas the latter do not
overlap in the set of resources they acquire. Our type system then ties these
notions to a configuration’s linear process tree such that collaborators stand in a
parent-descendant relationship to each other and competitors in a sibling/cousin
relationship. In this section, we prove that this orchestration is sufficient to rule
out any of the aforementioned interdependencies.

630 S. Balzer et al.

To this end we introduce the notions of red and green arrows that allow us
to reason about process interdependencies in a configuration’s tree. A red arrow
points from a linear proc(aL, wa1 �wa3

wa2
, Q) to a linear proc(bL, wb1 �wb3

wb2
, P), if the

former is attempting to acquire a resource held by the latter and, consequently, is
waiting for the latter to release that resource. A green arrow points from a linear
proc(aL, wa1 �wa3

wa2
, Q) to a linear proc(bL, wb1 �wb3

wb2
, P), if the former is waiting to

synchronize with the latter. We define these arrows formally as follows:

Definition 5.2 (Acquire Dependency — “Red Arrow”). Given a well-
formed and well-typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ, there exists a waiting-
due-to-acquire relation A(Θ) among linear processes in Θ at run-time such that

proc(aL, wa1 �wa3
wa2

, xL ← acquire cS; QxL) <A proc(bL, wb1 �wb3
wb2

, P〈cL〉)
where P 〈cL〉 denotes a process term with an occurrence of channel cL.

Definition 5.3 (Synchronization Dependency — “Green Arrow”).
Given a well-formed and well-typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ, there
exists a waiting-due-to-synchronization relation S(Θ) among linear processes in
Θ at run-time such that

proc(aL, wa1 �wa3
wa2

, 〈bL〉;Q) <S proc(bL, wb1 �wb3
wb2

, 〈¬bL〉;P)

proc(bL, wb1 �wb3
wb2

, 〈bL〉;P) <S proc(aL, wa1 �wa3
wa2

, 〈¬bL〉;Q〈bL〉)
where P 〈aL〉 denotes a process term with an occurrence of channel bL, 〈a〉; P a
process term that currently executes an action along channel a, and 〈¬a〉; P a
process term whose currently executing action does not involve the channel a.

It may be helpful to consult Fig. 3 at this point and note the semantic dif-
ference between the violet arrows in that figure and the red arrows discussed
here. Whereas violet arrows point from the acquiring process to the resource
being acquired, red arrows point from the acquiring process to the process that
is holding the resource. Thus, violet arrows can go out of the tree, while red
arrows stay within. Given the definitions of red and green arrows, we can define
the relation W(Θ) on the configuration’s tree, which contains all process pairs
that are in some way waiting for each other:

Definition 5.4 (Waiting Dependency). Given a well-formed and well-
typed configuration Ψ ;Γ � Λ;Θ :: Γ ;Φ,Δ, there exists a waiting relation
W(Θ) among processes in Θ at run-time such that proc(aL, wa1 �wa3

wa2
, P) <W

proc(bL, wb1 �wb3
wb2

, Q),

– if proc(aL, wa1 �wa3
wa2

, P) <A proc(bL, wb1 �wb3
wb2

, Q), or
– if proc(aL, wa1 �wa3

wa2
, P) <S proc(bL, wb1 �wb3

wb2
, Q).

Having defined the relation W(Θ), we can now state the key lemma underly-
ing our progress theorem, indicating that W(Θ) is acyclic in a well-formed and
well-typed configuration.

Manifest Deadlock-Freedom for Shared Session Types 631

Lemma 5.5 (Acyclicity of W(Θ)). If Ψ ; Γ � Λ; Θ :: Γ ; Φ,Δ, then W(Θ) is
acyclic.

We focus on explaining the main idea of the proof here. The proof proceeds
by induction on Ψ ;Γ � Θ :: Φ,Δ, assuming for the non-empty case Ψ ;Γ �
Θ, proc(aL, wa1 �wa3

wa2
, PaL

) :: (Φ,Δ, aL : AL[wa1 �wa3
wa2

]) that W(Θ) is acyclic, by the
inductive hypothesis. We then know that there cannot exist any paths of green
and red arrows in Θ that form a cycle, and we have to show that there is no
way of introducing such a cyclic path by adding node proc(aL, wa1 �wa3

wa2
, PaL

) to
the configuration Θ. In particular, the proof considers all possible new arrows
that may be introduced by adding the node and that are necessary for creating a
cycle, showing that such arrows cannot come about in a well-typed configuration.

We illustrate the reasoning for the two selected cases shown in Fig. 11. Case
(a) represents a case in which process PaL

is waiting to synchronize with its child
PbL while holding a resource a descendant of PbL or PbL itself wants to acquire.
However, this scenario cannot come about in a well-typed configuration because
PaL

and PbL are collaborators and thus cannot overlap in resources they acquire.
Case (b) represents a case in which process PaL

is waiting to synchronize with
its child PbL while another child, process PcL , is waiting to synchronize with PaL

.
Given acyclicity of W(Θ), a necessary condition for a cycle to form is that there
already must exist a red arrow C in the configuration that connects the subtrees
in which the siblings PbL and PcL reside. However, this scenario cannot come
about in a well-typed configuration because PbL and PcL are competitors, forcing
PcL or any of its descendant to release a resource before synchronizing with PaL

.
These arguments are made precise in various lemmas in [4].

PaLA B

C

PbL PcL

(b)
PaLA

B

C

PbL PcL

(a)

Fig. 11. Two prototypical cases in proof of acyclicty of W(Θ).

Given acyclicity of W(Θ), we can state and prove the following strong
progress theorem. The theorem relies on the notion of a poised process, a pro-
cess currently executing an action along its offering channel, and distinguishes
a configuration only consisting of the top-level, linear “main” process from one
that consists of several linear processes. We use |Θ| to denote the cardinality
of Θ:

632 S. Balzer et al.

Theorem 5.6 (Progress). If Ψ ;Γ � Λ;Θ :: (Γ ; cL : 1[wc1 �wc3
wc2

]), then either

– Λ −→ Λ′, for some Λ′, or
– Λ is poised and

• if |Θ| = 1, then either Λ;Θ −→ Λ′;Θ′, for some Λ′ and Θ′, or Θ is poised,
or

• if |Θ| > 1, then Λ;Θ −→ Λ′;Θ′, for some Λ′ and Θ′.

The theorem indicates that, as long as there exist at least two linear processes
in the configuration, the configuration can always step. If the configuration only
consists of the main process, then this process will become poised (i.e., ready to
close), once all sub-computations are finished. The proof of the theorem relies
on the acyclicity of W(Θ) and the fact that all sessions must be strictly equi-
synchronizing.

6 Additional Discussion

Linear Forwarding. Our current formalization does not include linear for-
warding because a forward changes the process tree and thus endangers the
invariants imposed on it. This means that certain programs from the purely lin-
ear fragment may not type-check in our system. However, the correspondingly
η-expanded versions of these programs should be expressible and type-checkable
in SILLS+ . As part of future work, we want to explore the addition of the linear
forward

Ψ+ � ωn < ωu

Ψ ; Γ ; · ; yL : AL[ωm�ωv
ωu

] � fwd xL yL :: (xL : AL[ωj �ωn
ωk

])
(T-IdL)

which allows forwarding to processes that are known to not yet be aliased and
whose world annotations meet the premise Ψ+ � ωn < ωu. Restricting to pro-
cesses in Δ should uphold Invariant 1, while the premise of the rule should uphold
Invariant 2. However, this change will affect the inner working of the proofs, the
use of inversion in particular, which might have far-reaching consequences that
need to be carefully explored.

Unbounded Process Networks and World Polymorphism. The typing
discipline presented in the previous sections, while rich enough to account for
a wide range of interesting programs, cannot type programs that spawn a stat-
ically undetermined number of shared sessions that are then to be used. For
instance, while we can easily type a configuration of any given number of dining
philosophers (Sect. 3.3), we cannot type a recursive process in which the number
of philosophers (and forks) is potentially unbounded (as done in [21,38]), due to
the way worlds are created and propagated across processes.

The general issue lies in implementing a statically unbounded network of pro-
cesses that interact with each other. These interactions require the processes to
be spawned at different worlds which must be generated dynamically as needed.

Manifest Deadlock-Freedom for Shared Session Types 633

To interact with such a statically unknown number of processes uniformly, their
offering channels must be stored in a list-like structure for later use. However,
in our system, recursive types have to be invariant with respect to worlds. For
instance, in a recursive type such as T = AL@ωl �ωr

ωp
⊗T , the worlds ωl, ωp, ωr

are fixed in the unfoldings of T . Thus, we cannot type a world-heterogeneous
list and cannot form such process networks.

Given that the issues preventing us from typing such unbounded networks
lie in problems of world invariance, the natural solution is to explore some form
of world polymorphism, where types can be parameterized by worlds which are
instantiated at a later stage. Such techniques have been studied in the context of
hybrid logical processes in [7] by considering session types of the form ∀δ.A and
∃δ.A, sessions that are parametric in the world variable δ, that is instantiated
by a concrete reachable world at runtime. While their development cannot be
mapped directly to our setting, it is a promising avenue of future work.

7 Related Work

Behavioral Type Analysis of Deadlocks. The addition of channel usage
information to types in a concurrent, message-passing setting was pioneered by
Kobayashi and Igarashi [30,34], who applied the idea to deadlock prevention
in the π-calculus and later to more general properties [31,32], giving rise to a
generic system that can be instantiated to produce a variety of concrete typing
disciplines for the π-calculus (e.g., race detection, deadlock detection, etc.).

This line of work types π-calculus processes with a simplified form of pro-
cess (akin to CCS [42] terms without name restriction) that characterizes the
input/output behavior of processes. These types are augmented with abstract
data that pertain to the relative ordering of channel actions, with the type sys-
tem ensuring that the transitive closure of such orderings forms a strict partial
order, ensuring deadlock-freedom (i.e., communication succeeds unless a process
diverges). Building on this, Kobayashi et al. proposed type systems that ensure
a stronger property dubbed lock-freedom [35] (i.e., communication always suc-
ceeds), and variants that are amenable to type inference [36,39]. Kobayashi [37]
extended this latter system to more accurately account for recursive processes
while preserving the existence of a type inference algorithm.

Our system draws significant inspiration from this line of work, insofar as we
also equip types with abstract ordering data on certain communication actions,
which is then statically enforced to form a strict partial order. We note that
our SILLS+ language differs sufficiently from the pure π-calculus in terms of its
constructs and semantics to make the formulation of a direct comparison or an
immediate application of their work unclear (e.g., [37] uses replication to encode
recursive processes). Moreover, we integrate this style of order-based reasoning
with both linear and shared session typing, which interact in non-trivial ways
(especially in the presence of recursive types and recursive process definitions).

In terms of typability, enforcing session fidelity can be a double-edged sword:
some examples of the works above can be transposed to SILLS+ with mostly

634 S. Balzer et al.

cosmetic changes and without making use of shared sessions (e.g., a parallel
implementation of factorial that recurses via replication but always answers on
a private channel); others are incompatible with linear sessions and require the
use of shared sessions via the acquire-release discipline, which entails a more
indirect but still arguably faithful modelling of the original π-calculus behavior;
some examples, however, cannot be easily adapted to the shared session disci-
pline (e.g., ∗c?(x, y).x?(z).y?(z) | ∗c?(x, y).y?(z).x?(z) is typable in [37], where
x?(z) denotes input on x and ∗c?(x, y) denotes replicated input) and their tran-
scription, while possible, would be too far removed from the original term to
be deemed a faithful representation. Recursive processes are known to produce
patterns that can be challenging to analyze using such order-based techniques.
The work of [21,38] specializes Kobayashi’s system to account for potentially
unbounded process networks with non-trivial forms of sharing. Such systems are
not typable in our work (see Sect. 6 for additional discussion on this topic).

The work of Padovani [44] develops techniques inspired by [35,37] to develop
a typing system for deadlock (and lock) freedom for the linear π-calculus where
(linear) channels must be used exactly once. By enforcing this form of linearity,
the resulting system uses only one piece of ordering data per channel usage and
can easily integrate a form of channel polymorphism that accounts for intricate
cyclic interleavings of recursive processes. The combination of manifest sharing
and linear session typing does not seem possible without the use of additional
ordering data, and the lack of single-use linear channels make the robust channel
polymorphism of [44] not feasible in our setting.

Dardha and Gay [15] recently integrated a system of Kobayashi-style order-
ings in a logical session π-calculus based on classical linear logic, extended with
the ability to form cyclic dependencies of actions on linear session channels
(Atkey et al. [1] study similar cycles but do not consider deadlock-freedom),
without the need for new process constructs or an acquire-release discipline.
Their work considers only a restricted form of replication common in linear logic-
based works, not including recursive types nor recursive process definitions. This
reduces the complexity of their system, at the cost of expressiveness. We also
note that the cycles enabled by their system are produced by processes sharing
multiple linear names. Since linearity is still enforced, they cannot represent the
more general form of cycles that exploit shared channels, as we do.

A comparative study of session typing and Kobayashi-style systems in terms
of sharing was developed by Dardha and Pérez [16], showing that such order-
based techniques can account for sharing in ways that are out of reach of both
classical session typing and pure logic-based session typing. Our system (and
that of [15]) aims to combine the heightened power of Kobayashi-style systems
with the benefits of session typing, which seems to be better suited as a typing
discipline for a high-level programming language [18].

Progress and Session Typing. To address limitations of classical binary ses-
sion types, Honda et al. [27] introduced multiparty session types, where sessions
are described by so-called global types that capture the interactions between
an arbitrary number of session participants. Under some well-formedness

Manifest Deadlock-Freedom for Shared Session Types 635

constraints, global types can be used to ensure that a collection of processes
correctly implements the global behavior in a deadlock-free way. However, these
global type-based approaches do not ensure deadlock freedom in the presence of
higher-order channel passing or interleaved multiparty sessions. Coppo et al. [13]
and Bettini et al. [6] develop systems that track usage orders among interleaved
multiparty sessions, ruling out cyclic dependencies that can lead to deadlocks.
The resulting system is quite intricate, since it combines the full multiparty ses-
sion theory with the order tracking mechanism, interacts negatively with recur-
sion (essentially disallowing interleaving with recursion) and, by tracking order
at the multiparty session-level, ends up rejecting various benign configurations
that can be accounted for by our more fine-grained analysis. We also highlight
the analyses of Vieira and Vasconcelos [54] and Padovani et al. [45] that are more
powerful than the approaches above, at the cost of a more complex analysis based
on conversation types [10] (themselves a partial-order based technique).

Static Analysis of Concurrent Programs. Lange et al. [40,41] develop a
deadlock detection framework applied to the Go programming language. Their
work distills CCS processes from programs which are then checked for deadlocks
by a form of symbolic execution [40] and model-checked against modal μ-calculus
formulae [41] which encode deadlock-freedom of the abstracted process (among
other properties of interest). Their abstraction introduces some distance between
the original program and the analysed process and so the analysis is sound only
for certain restricted program fragments, excluding any combination of recursion
and process spawning. Our direct approach does not suffer from this limitation.

de’Liguoro and Padovani [17] develop a typing discipline for deadlock-freedom
in a setting where processes exchange messages via unordered mailboxes. Their
calculus subsumes the actor model and their analysis combines both so-called
mailbox types and specialized dependency graphs to track potential cycles
between mailboxes in actor-based systems. The unordered nature of actor-based
communication introduces significant differences wrt our work, which crucially
exploits the ordering of exchanged messages.

8 Concluding Remarks

In this paper we have developed the concept of manifest deadlock-freedom in
the context of the language SILLS+ , a shared session-typed language, showcasing
both the programming methodology and the expressiveness of our framework
with a series of examples. Deadlock-freedom of well-typed programs is estab-
lished by a novel abstraction of so-called green and red arrows to reason about
the interdependencies between processes in terms of linear and shared channel
references.

In future work, we plan to address some of the limitations of the interactions
of deadlock-free shared sessions with recursion, by considering promising notions
of world polymorphism and world communication. We also plan to study the
problem of world inference and the inclusion of a linear forwarding construct.

636 S. Balzer et al.

References

1. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30936-1 2

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. (PACMPL) 1(ICEP), 37:1–37:29 (2017)

3. Balzer, S., Pfenning, F., Toninho, B.: A universal session type for untyped asyn-
chronous communication. In: 29th International Conference on Concurrency The-
ory (CONCUR). LIPIcs, pp. 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018)

4. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. Technical report CMU-CS-19-102, Carnegie Mellon University (2019)

5. Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

6. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

7. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Logic-based domain-aware ses-
sion types, unpublished draft

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

9. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016)

10. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51–52),
4399–4440 (2010)

11. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

12. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Inf. Comput. 207(10), 1044–1077 (2009)

13. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

14. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
50–63 (1999)

15. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

16. Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In:
EXPRESS/SOS, pp. 1–15 (2015)

17. de’Liguoro, U., Padovani, L.: Mailbox types for unordered interactions. In: 32nd
European Conference on Object-Oriented Programming, ECOOP 2018, pp. 15:1–
15:28 (2018)

https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-319-89366-2_5

Manifest Deadlock-Freedom for Shared Session Types 637

18. Gay, S.J., Gesbert, N., Ravara, A.: Session types as generic process types. In: 21st
International Workshop on Expressiveness in Concurrency and 11th Workshop on
Structural Operational Semantics, EXPRESS/SOS 2014, pp. 94–110 (2014)

19. Gay, S.J., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica
42(2–3), 191–225 (2005)

20. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pp. 299–
312 (2010)

21. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 6

22. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 771–798. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 27

23. Griffith, D.: Polarized substructural session types. Ph.D. thesis, University of Illi-
nois at Urbana-Champaign (2016)

24. Griffith, D., Pfenning, F.: SILL (2015). https://github.com/ISANobody/sill
25. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

26. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

27. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pp. 273–284. ACM (2008)

28. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

29. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 7

30. Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent
programming languages. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302,
pp. 187–201. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032742

31. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. In: Confer-
ence Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 128–141 (2001)

32. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theor.
Comput. Sci. 311(1–3), 121–163 (2004)

33. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: 11th
ACM SIGPLAN Workshop on Generic Programming, WGP 2015, pp. 13–22 (2015)

34. Kobayashi, N.: A partially deadlock-free typed process calculus. In: Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 128–139
(1997)

35. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

36. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Inf.
42(4–5), 291–347 (2005)

https://doi.org/10.1007/978-3-662-44584-6_6
https://doi.org/10.1007/978-3-319-89884-1_27
https://github.com/ISANobody/sill
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/BFb0032742

638 S. Balzer et al.

37. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817949 16

38. Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks. Inf.
Comput. 252, 48–70 (2017)

39. Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process cal-
culus. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 489–504.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 35

40. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety
for channel-based programming. In: 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pp. 748–761. ACM (2017)

41. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, 27
May–03 June 2018, pp. 1137–1148 (2018)

42. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

43. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: Proceed-
ings of the 27th International Conference on Compiler Construction, CC 2018, pp.
128–138 (2018)

44. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: Computer
Science Logic - Logic in Computer Science (CSL-LICS), pp. 72:1–72:10 (2014)

45. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 147–162. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43376-8 10

46. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and
observational equivalences for session-based concurrency. Inf. Comput. 239, 254–
302 (2014)

47. Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 1

48. Reed, J.: A judgmental deconstruction of modal logic, January 2009. http://www.
cs.cmu.edu/∼jcreed/papers/jdml.pdf, unpublished manuscript

49. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: 31st European Conference on Object-
Oriented Programming, ECOOP 2017, pp. 24:1–24:31 (2017)

50. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: 30th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2016, pp. 21:1–21:28
(2016)

51. Toninho, B.: A logical foundation for session-based concurrent computation. Ph.D.
thesis, Carnegie Mellon University and New University of Lisbon (2015)

52. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/3-540-44618-4_35
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20

Manifest Deadlock-Freedom for Shared Session Types 639

53. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
54. Vieira, H.T., Vasconcelos, V.T.: Typing progress in communication-centred sys-

tems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol.
7890, pp. 236–250. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38493-6 17

55. Wadler, P.: Propositions as sessions. In: 17th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), pp. 273–286. ACM (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-38493-6_17
https://doi.org/10.1007/978-3-642-38493-6_17
http://creativecommons.org/licenses/by/4.0/

A Categorical Model of an i/o-typed
π-calculus

Ken Sakayori(B) and Takeshi Tsukada

The University of Tokyo, Tokyo, Japan
sakayori@kb.is.s.u-tokyo.ac.jp

Abstract. This paper introduces a new categorical structure that is a
model of a variant of the i/o-typed π-calculus, in the same way that a
cartesian closed category is a model of the λ-calculus. To the best of
our knowledge, no categorical model has been given for the i/o-typed π-
calculus, in contrast to session-typed calculi, to which corresponding logic
and categorical structure were given. The categorical structure intro-
duced in this paper has a simple definition, combining two well-known
structures, namely, closed Freyd category and compact closed category.
The former is a model of effectful computation in a general setting, and
the latter describes connections via channels, which cause the effect we
focus on in this paper. To demonstrate the relevance of the categori-
cal model, we show by a semantic consideration that the π-calculus is
equivalent to a core calculus of Concurrent ML.

Keywords: π-calculus · Categorical type theory ·
Compact closed category · Closed Freyd category

1 Introduction

The Curry-Howard-Lambek correspondence reveals the trinity of the simply-
typed λ-calculus, propositional intuitionistic logic and cartesian closed category.
Via the correspondence, a type of the calculus can be seen as a formula of the
logic, and as an object of a category; a term can be seen as a proof and as a
morphism (see, e.g., [23]). Since its discovery, a number of variations have been
proposed and studied.

In concurrency theory, a correspondence between a process calculus and logic
was established by Caires, Pfenning and Toninho [8,9] and later by Wadler [48].
What they found is that session types [18,20] can be seen as formulas of linear
logic [14], and processes as proofs. This remarkable result has inspired lots of
work (e.g. [3,4,10,25,45,46]).

This correspondence is, however, not completely satisfactory as pointed out
in [3,26], as well as by Wadler himself [48]. The session-typed calculi in [9,48] cor-
responding to linear logic have only well-behaved processes, because the session
type systems guarantee deadlock-freedom and race-freedom of well-typed pro-
cesses. This strong guarantee is often useful for programmers writing processes
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 640–667, 2019.
https://doi.org/10.1007/978-3-030-17184-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_23

A Categorical Model of an i/o-typed π-calculus 641

in the typed calculus, but can be seen as a significant limitation of expressive
power. For example, it prevents us from modelling wild concurrent systems or
programs that might fall into deadlocks or race conditions.

This paper describes an approach to a Curry-Howard-Lambek correspon-
dence for concurrency in the presence of deadlocks and race conditions, from the
viewpoint of categorical type theory.

What Is the Categorical Model of the π-calculus? We focus on the π-
calculus [30,31] in this paper. This is not only because the π-calculus is widely
used and powerful, but also because of a classical result by Sangiorgi [39,42],
which is the starting point of our development.

Sangiorgi, in the early 90s, gave translations between the conventional, first-
order π-calculus and its higher-order variant [39,42]. This translation allows us
to regard the π-calculus as a higher-order programming language.

Let us review the observation by Sangiorgi, using a core of the asynchronous
π-calculus: P ::=0 | (P |Q) | ā〈x〉 | a(x).P .1 The idea is to decompose the input-
prefixing a(x).P into a and (x).P . Let us write a[(x).P] for a(x).P to emphasise
the decomposition. Then a reduction can also be decomposed as

ā〈x〉 | a[(y).P] | Q −→ [(y).P]〈x〉 | Q −→ P{x/y} | Q,

where the first step is the communication and the second step is the β-reduction
(i.e. (λy.P)x −→ P{x/y} in the λ-calculus notation). Hence we regard

– an output ā〈x〉 as an application of a function ā to x, and
– an input a(x).P as an abstraction (x).P (or λx.P) “located” at a[−].

Now, ignoring the mysterious operator a[−], what we had are the core oper-
ations of functional programming languages (i.e. abstraction and application).
This functional programming language is effectful; in fact, communication via
channels is a side effect.

This observation leads us to base our categorical model for the π-calculus
on a model for effectful functional programs. Among several models, we choose
closed Freyd category [37] for modelling the functional part.

Then what is the categorical counterpart of a[−]? As this operation seems
responsible for communication, this question can be rephrased as: what is the
categorical structure for communication? An observation by Abramsky et al. [2]
answered this question. They pointed out the importance of compact closed cate-
gory [21] in concurrency theory, which nicely describes CCS-like processes inter-
connected via ports.

By combining the two structures described above, this paper introduces a
categorical structure, which we call compact closed Freyd category, as a cate-
gorical model of the π-calculus.2 Despite its simplicity, compact closed Freyd
1 This calculus slightly differs from the calculus we shall introduce in Sect. 2, but the

differences are not important here.
2 Here is the reason why we do not use a monad for modelling the effect: it is unclear

for us how to integrate a monad with the compact closed structure. On the contrary,
a Freyd category has a (pre)monoidal category as its component; we can simply
require that it is compact closed.

642 K. Sakayori and T. Tsukada

category captures the strong expressive power of the π-calculus. The compact
closed structure allows us to connect ports in an arbitrary way, in return for the
possibility of deadlocks; the Freyd structure allows us to duplicate objects, and
duplication of input channels introduces the possibility of race conditions.

Reconstructing Calculi. This paper introduces two calculi that are sound
and complete with respect to the compact closed Freyd category model. One is
a variant of the π-calculus, named πF ; the design of πF is based on the obser-
vations described above. The other is a higher-order programming language λch

defined as an instance of the computational λ-calculus [33]. Designing λch is not
so difficult because we can make use of the correspondence between computa-
tional λ-calculus and closed Freyd category (see Sect. 4). The λch -calculus have
operations for creating a channel and for sending a value via the channel and,
therefore, can be seen as a core calculus of Concurrent ML (or CML) [38].

Since the higher-order calculus λch and πF correspond to the same categor-
ical model, we can obtain translations between these calculi by simple semantic
computations. These translations are “correct by definition” and, interestingly,
coincide with those between higher-order and first-order π-calculus [39,42].

On β- vs. βη-theories. The categorical analysis of this paper reveals that
many conventional behavioural equivalences for the π-calculus are problematic
from a viewpoint of categorical type theory. The problem is that they induce
only semicategories, which may not have identities for some objects. This is a
reminiscent of the β-theory of the λ-calculus, of which categorical model is given
by semi-categorical notions [16].

Adding a single rule (which we call the η-rule) resolves the problem. Our
categorical type theory deals with only equivalences that admits the η-rule, and
the simplicity of the theory of this paper essentially relies on the η-rule.

Interestingly the η-rule seems to explain some phenomenon in the literature.
For example, Sangiorgi observed that a syntactic constraint called locality [28,49]
is essential for his translation [39,42]. The correctness of the translation can be
proved without using the η-rule, when one restricts the calculus local; we expect
that Sangiorgi’s observation can be related to this phenomenon.

Contributions. This paper introduces a new variant of the i/o-typed π-
calculus, which we call πF . A remarkable feature of πF is that it has a categorical
counterpart, called compact closed Freyd category. The correspondence is fairly
firm; the categorical semantics is sound and complete, and the term model is the
classifying category. The relevance of the model is demonstrated by a semantic
reconstruction of Sangiorgi’s translation [39,42]. These results open a new fron-
tier in the Curry-Howard-Lambek correspondence for concurrency; session-type
is not the only base for a Curry-Howard-Lambek correspondence for π-calculi.

Organisation of this Paper. Section 2 introduces the calculus πF and discuss
equivalences on processes. Section 3 gives the categorical semantics of πF and

A Categorical Model of an i/o-typed π-calculus 643

shows soundness and completeness. A connection to a higher-order programming
language with channels is studied in Sect. 4. In Sect. 5, we (1) discuss how our work
relates to linear logic and (2) present some ideas for how to extend the applica-
tion range of our model. We discuss related work in Sect. 6 and conclude in Sect. 7.
Omitted proofs, as well as detailed definitions, are available in the full version.

2 A Polyadic, Asynchronous π-calculus with i/o-types

This section introduces a variant of π-calculus, named πF . It is based on a fairly
standard calculus, namely polyadic and asynchronous π-calculus with i/o-types,
but the details are carefully designed so that πF has a categorical model.

2.1 The πF -calculus

This subsection defines the calculus πF , which is based on an asynchronous vari-
ant of the polyadic π-calculus with i/o-types in [35]. The aim of this subsection
is to explain what are the differences from the conventional π-calculus. Although
πF has some uncommon features, each of them was studied in the literature; see
Related Work (Sect. 6) for related ideas and calculi.

Types. The set of types, ranged over by S and T , is given by

S, T ::= cho[T1, . . . , Tn] | chi[T1, . . . , Tn] (n ≥ 0).

The type cho[T1, . . . , Tn] is for output channels sending n arguments of types
T1, . . . , Tn. The type chi[T1, . . . , Tn] is for input channels. The dual T⊥ of type
T is defined by cho[�T]⊥ def= chi[�T] and chi[�T]⊥ def= cho[�T]. For a sequence �T

def=
T1, . . . , Tn of types, we write �T⊥ for T⊥

1 , . . . , T⊥
n .

An important difference from [35] is that no channel allows both input and
output operations. We will refer this feature of πF as i/o-separation.

Processes. Let N be a denumerable set of names, ranged over by x, y and z.
Each name is either input-only or output-only, because of i/o-separation.

The set of processes, ranged over by P , Q and R, is defined by

P,Q,R ::=0 | (P |Q) | (νcho[�T] xy)P | x〈�y〉 | !x(�y).P.

The notion of free names, as well as bound names, is defined as usual. The set
of free names (resp. bound names) of P is written as fn(P) (resp. bn(P)). We
allow tacit renaming of bound names, and identify α-equivalent processes.

The meaning of the constructs should be clear, except for (νT xy)P which
is less common. The process 0 is the inaction; P | Q is a parallel composition;
x〈�y〉 is an output; and !x(�x).P is a replicated input. The restriction (νT xy)P
hides the names x and y of type T and T⊥ and, at the same time, establishes a
connection between x and y. Communication takes place only over bound names
explicitly connected by ν. This is in contrast to the conventional π-calculus, in
which input-output correspondence is a priori (i.e. ā is the output to a).

644 K. Sakayori and T. Tsukada

Γ � 0 : �
Γ � P : � Γ � Q : �

Γ � P | Q : �
Γ, x : cho[�T], y : chi[�T] � P : �

Γ � (νcho[�T] xy)P : �
(x : chi[�T]) ∈ Γ Γ, �y : �T � P : �

Γ � !x(�y).P : �
(x : cho[�T]) ∈ Γ �y : �T ⊆ Γ

Γ � x〈�y〉 : �

Fig. 1. Typing rules for processes

The πF -calculus does not have non-replicated input x(�y).P .

Typing Rules. A type environment Γ is a finite sequence of type bindings of
the form x : T . We assume the names in Γ are pairwise distinct. If �x = x1, . . . , xn

and �T = T1, . . . , Tn, we write �x : �T for x1 : T1, . . . , xn : Tn. We write (�x : �T) ⊆ Γ
to mean xi : Ti ∈ Γ for every i.

A type judgement is of the form Γ � P : 	, meaning that P is a well-typed
process under Γ . The typing rules are listed in Fig. 1.

Notation 1. We define (νchi[�T] xy)P as (νcho[�T] yx)P ; then (νT xy)P is defined
for every T . We abbreviate (νT1 x1y1) . . . (νTn

xnyn)P as (ν �T �x�y)P . We often
omit type annotations and write (νxy) for (νT xy) and (ν�x�y) for (ν �T �x�y). We
use a and b for names of input channel types and ā and b̄ for output. Note that
a and ā are connected only if they are bound by the same occurrence of ν.
�

Operational Semantics. Structural congruence, written ≡, is the smallest
congruence relation on processes that satisfies the following rules:

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
(νxy)(P | Q) ≡ ((νxy)P) | Q (νwx)(νyz)P ≡ (νyz)(νwx)P

where x, y /∈ fn(Q) in the fourth rule and w, x, y, z are distinct in the fifth rule.
The reduction relation on processes, written −→, is defined by the base rule

(ν �w�z)(νāa)(!a(�x).P | ā〈�y〉 | Q) −→ (ν �w�z)(νāa)(!a(�x).P | P{�y/�x} | Q)

(where P{�x/�y} is the capture-avoiding substitution) and the structural rule
which concludes P −→ Q from ∃P ′ Q′. P ≡ P ′ −→ Q′ ≡ Q. Note that, unlike
conventional π-calculi, communication only occurs over bound names connected
by ν. We write −→∗ for the reflexive and transitive closure of −→.

It should be clear that deadlocks and racy communications can be expressed
in πF . An example of race is (νāa)(ā〈�y〉 | !a(�x).P | !a(�x).Q), where two input
actions are trying to consume the output regarded as a resource. A similar
process (νāa)(!a(�x).P | ā〈�y〉 | ā〈�z〉) does not have a race since the receiver !a(�x).P
is replicated. In general, race conditions on output actions do not occur in πF .

A Categorical Model of an i/o-typed π-calculus 645

2.2 Equivalences on Processes

To establish a Curry-Howard-Lambek correspondence is to find a nice alge-
braic or categorical structure of terms. For example, the original Curry-Howard-
Lambek correspondence reveals the cartesian closed structure of λ-terms.

Such a nice structure would become visible only when appropriate notions
of composition and of equivalence could be identified, such as substitution and
βη-equivalence for the λ-calculus.

As for process calculi, so-called “parallel composition + hiding” paradigm [17]
has been used to compose processes. Given typed processes

�x : �T , �y : �S � P : 	 and �w : �S⊥, �u : �U � Q : 	,

their composite via (�y, �w) is defined as

�x : �T , �u : �U � (ν �S �y �w)(P | Q) : 	.

This kind of composition appears quite often in logical studies of π-calculi [1,
5,19]. It also plays a central role in interaction category paradigm proposed by
Abramsky, Gay and Nagarajan [2].

So it remains to determine an equivalence on π-calculus processes, appropri-
ate for our purpose. This subsection approaches the problem from two directions:

– Examining behavioural equivalences proposed and studied in the literature
– Developing a new equivalence based on categorical considerations

Let us clarify the notion of equivalence discussed below. An equation-in-
context is a judgement of the form Γ � P = Q, where Γ � P : 	 and Γ � Q : 	.
An equivalence E is a set of equations-in-context that is reflexive, transitive and
symmetric (e.g. (Γ � P = P) ∈ E for every Γ � P :).

Behavioural Equivalences. As mentioned above, we are interested in the
structure of πF -processes modulo existing behavioural equivalences. Among the
various behavioural equivalence, we start with studying barbed congruence [32],
which is one of the most widely used equivalences.

We define (asynchronous and weak) barbed congruence for πF . For each name
ā, we write P↓ā if P ≡ (ν�x�y)(ā〈�z〉 | Q) and ā is free, and P⇓ā if ∃Q.P −→∗ Q↓ā.
A (Γ/Δ)-context is a context C such that Γ � C[P] : 	 for every Δ � P : 	.

Definition 1. A barbed bisimulation is a symmetric relation R on processes
such that, whenever P R Q, (1) P↓ā implies Q⇓ā and (2) P −→ P ′ implies
∃Q′. (Q −→∗ Q′) ∧ (P ′ R Q′). Barbed bisimilarity

•≈ is the largest barbed bisim-
ulation. Typed processes Δ � P : 	 and Δ � Q : 	 are barbed congruent at Δ,
written Δ � P �

c Q, if C[P]
•≈ C[Q] for every (Γ/Δ)-context C.
�

Let us consider a category-like structure C in which an object is a type and
a morphism is an equivalence class of πF -processes modulo barbed congruence.
More precisely, a morphism from T to S is a process x : T, y : S⊥ � P : 	 modulo

646 K. Sakayori and T. Tsukada

barbed congruence (and renaming of free names x and y). Then the composi-
tion (i.e. “parallel composition + hiding”) is well-defined on equivalence classes,
because barbed congruence is a congruence. This is a fairly natural setting.

We have a strikingly negative result.

Theorem 1. C is not a category.

Proof. In every category, if f : A −→ A is a left-identity on A (i.e. f ◦ g = g for
every g : A −→ A), then f is the identity on A. The process a : cho[], b̄ : chi[] �
!a().b̄〈〉 : 	 seen as a morphism (cho[]) −→ (cho[]) is a left-identity but not the
identity. The former means that c : cho[], b̄ : chi[] � (

(νāa)(!a().b̄〈〉 | P)
)

�
c

P{b̄/ā} for every c : cho[], ā : chi[] � P : 	, which is a consequence of the repli-
cator theorems [35]. To prove the latter, observe that (ν b̄b)(!a().b̄〈〉 | 0) and 0

are not barbed congruent. Indeed the context C
def= (νāa)(ā〈〉 | !a().ō〈〉 | [])

distinguishes the processes, where ō is the observable.
�
Note that race condition is essential for the proof, specifically, for the part

proving that the process !a().b̄〈〉 is not the identity. A race condition occurs in
C[(ν b̄b)(!a().b̄〈〉 | 0)], where ā in C has two receivers.

The process !a().b̄〈〉 is called forwarder, and forwarders will play a central
role in this paper. Its general form is a ↪→ b̄

def= !a(�x).b̄〈�x〉. When x : T and
y : T⊥, we write x � y to mean x ↪→ y if T = chi[�S] and otherwise y ↪→ x.

Remark 1. The argument in the proof of Theorem 1 is widely applicable to i/o-
typed calculi, not specific to πF . In particular, i/o-separation (i.e. absence of
chi/o[�T]) is not the cause, but the existence of cho[�T] or chi[�T] is.
�
Remark 2. Session-typed calculi in Caires, Pfenning and Toninho [8,9], which
correspond to linear logic, do not seem to suffer from this problem. In our under-
standing, this is because of race-freedom of their calculi.
�

To obtain a category, we should think of a coarser equivalence that identifies
(ν b̄b)(!a().b̄〈〉 | 0) with 0. Such an equivalence should be very coarse; even must-
testing equivalence [11] fails to equate them. As long as we have checked, only
may-testing equivalence [11] defined below satisfies the requirement.

Definition 2. Typed processes Δ � P : 	 and Δ � Q : 	 are may-testing
equivalent at Δ, written Δ � P =may Q, if C[P]⇓ā ⇔ C[Q]⇓ā for every (Γ/Δ)-
context C and name ā.
�

As we shall see, πF -processes modulo may-testing equivalence behaves well.
May-testing equivalence is, however, often too coarse.

Category-Driven Approach. In this approach, we first guess an appropriate
categorical structure sufficient for interpreting πF , based on intuitions discussed
in Introduction (see also Sect. 3.1), and then design an equivalence so that it is
sound and complete with respect to the categorical semantics.

Figure 2 defines the equivalence, described as a set of rules. A πF -theory is
an equivalence that behaves well from the categorical perspective.

A Categorical Model of an i/o-typed π-calculus 647

a /∈ fn(P, C) ā /∈ bn(C)
Γ � (νāa)(!a(�x).P | C[ā〈�y〉]) = (νāa)(!a(�x).P | C[P{�y/�x}])

(E-Beta)

a, ā /∈ fn(P)
Γ � (νāa)!a(�y).P = 0

(E-GC)
ā, a /∈ fn(c̄〈�x〉)

Γ � c̄〈�x〉 = (νāa)(a ↪ b̄ | c̄〈�x{ā/b̄}〉) (E-FOut)

b, ā /∈ fn(P)
Γ � (νāa)(b ↪ ā | P) = P{b/a} (E-Eta)

P ≡ Q

Γ � P = Q
(E-SCong)

Δ � P = Q C : Γ/Δ-context
Γ � C[P] = C[Q]

(E-Ctx)

Fig. 2. Inference rules of equations-in-context. Each rule has implicit assumptions that
the both sides of the equation are well-typed processes.

Definition 3. An equivalence E is a πF -theory if it is closed under the rules in
Fig. 2. Any set Ax of equations-in-context has the minimum theory Th(Ax) that
contains Ax. We write Ax � Γ � P = Q if (Γ � P = Q) ∈ Th(Ax).
�

Let us examine each rule in Fig. 2.
The rule (E-Beta) should be compared with the reduction relation. When

C = ([] | Q), then (E-Beta) claims

(νāa)(!a(�x).P | ā〈�y〉 | Q) = (νāa)(!a(�x).P | P{�y/�x} | Q)

provided that a /∈ fn(P,Q), which is indeed an instance of the reduction.
A significant difference from reduction is the side condition. It is essential

in the presence of race conditions. Without the side condition, every πF -theory
would be forced to contain the symmetric and transitive closure of the reduction
relation; thus it would identify P | (νāa)(!a().P | !a().Q) with Q | (νāa)(!a().P |
!a().Q) for every processes P and Q (where ā, a are fresh), because

(νāa)(ā〈〉 | !a().P | !a().Q) −→ P | (νāa)(!a().P | !a().Q)
(νāa)(ā〈〉 | !a().P | !a().Q) −→ Q | (νāa)(!a().P | !a().Q).

The side condition prevents πF -theories from collapsing.
Another, relatively minor, difference is that application of (E-Beta) is not

limited to the contexts of the form [] | Q. This kind of extension can be found in,
for example, work by Honda and Laurent [19] studying π-calculus from a logical
perspective.

The rule (E-GC) runs “garbage-collection”. Because no one can send a mes-
sage to the hidden name a, the process !a(�x).P will never be invoked and thus
is safely discarded. This rule is sound with respect to many behavioural equiv-
alences, including barbed congruence. Rules of this kind often appear in the
literature studying logical aspects of concurrent calculi (as in Honda and Lau-
rent [19] and Wadler [48]). There is, however, a subtle difference in the side
condition: (E-GC) requires that a and ā do not appear at all in P .

648 K. Sakayori and T. Tsukada

The rule (E-FOut) can be seen as the η-rule of abstractions, as in the λ-
calculus and in the higher-order π-calculus [39]. In the latter, an output name b̄
can be identified with an abstraction (�y).b̄〈�y〉. Then we have, for example,

(νāa)(a ↪→ b̄ | c̄〈ā〉) = (νāa)(a ↪→ b̄ | c̄〈 (�y).ā〈�y〉 〉) = c̄〈 (�y).b̄〈�y〉 〉 = c̄〈b̄〉

where we use (E-Beta) and (E-GC) in the second step. An important usage
of (E-FOut) is to replace an output of free names with that of bound names.
This kind of operation has been studied in [7,28] as a part of translations from
the π-calculus to its local/internal fragments.3

The rule (E-Eta) requires the forwarders are left-identities, directly describ-
ing the requirement discussed above.4

The rules (E-SCong) and (E-Ctx) are easy to understand. The former
requires that structurally congruent processes should be identified; the latter
says that a πF -theory is a congruence.

These rules can be justified from the operational viewpoint, as well. A well-
known result on the i/o-typed π-calculus (see, e.g., [35,43]) shows the following
propositions.

Proposition 1. Barbed congruence is closed under all rules but (E-Eta).
�
Proposition 2. May-testing equivalence is a πF -theory.
�
In particular, the latter means that may-testing equivalence is in the scope of
the categorical framework of this paper; see Theorem 5.

3 Categorical Semantics

This section introduces the class of compact closed Freyd categories and discusses
the interpretation of the πF -calculus in the categories. We show that the cate-
gorical semantics is sound and complete with respect to the equational theory
given in Sect. 2.2, and that the syntax of the πF -calculus induces a model.

This section, by its nature, is slightly theoretical compared with other sec-
tions. Section 3.1 explains the ideas of this section without heavily using cate-
gorical notions; the subsequent subsections require familiarity with categorical
type theory.

3.1 Overview

As mentioned in Sect. 1, the categorical model of πF is compact closed Freyd
category, which has both closed Freyd and compact closed structures. Here we

3 Free outputs can be eliminated from πF -processes by using the rules (E-FOut) and
(E-Eta), i.e. external mobility can be encoded by internal mobility [7,40]. If the
calculus is local [28,49], then we do not need (E-Eta) to eliminate free outputs.

4 A forwarder behaves as a right-identity with respect to every πF -theory. This is a
consequence of rules (E-Beta), (E-GC) and (E-FOut).

A Categorical Model of an i/o-typed π-calculus 649

informally discuss what is a compact closed Freyd category and how to interpret
πF by using syntactic representation.

A closed Freyd category is a model of higher-order programs with side effects.
It has, among others, the structures to interpret the function type A ⇒ B and
its constructor and destructor, namely, abstraction λx.t and application t u. It
also has a mechanism for unrestricted duplication of variables; in terms of logic,
contraction is admissible.

A compact closed category can be seen as MLL [14] with the left rule:

Γ,A∗, A � I

Γ � I

[
Γ � A∗ Δ � A

Γ,Δ � I

]
.

(The right rule is the companion, which itself is derivable in MLL.)
A compact closed Freyd category has all the constructs. It has the structures

corresponding to the following type constructors:

(closed Freyd) I,A ⊗ B,A ⇒ B (compact closed) I,A ⊗ B,A∗.

Note that the pair type A ⊗ B (as well as the unit I) coming from the closed
Freyd structure is identified with that from the compact closed structure. Infer-
ence rules for a compact closed Freyd category is those for functional languages
and the above rules of the compact closed structure.

Interpreting πF in a compact closed Freyd category is to interpret it by using
these constructs. As mentioned in Sect. 1, following Sangiorgi [39], we regard

– an output ā〈�x〉 as an application of a function ā to a tuple 〈�x〉, and
– an input !a(�x).P as an abstraction (�x).P (or λ�x.P) located at a.

We interpret the output action by using the function application. Hence the type
cho[T] is regarded as a function type T ⇒ I (where the unit type I is the type
for processes i.e.); then the typing rule for output actions becomes

Γ, ā : (T ⇒ I), x : T � ā : T ⇒ I Γ, ā : (T ⇒ I), x : T � x : T

Γ, ā : (T ⇒ I), x : T � ā〈x〉 : I

The type chi[T] is understood as (T ⇒ I)∗; the input-prefixing rule becomes

Γ, a : (T ⇒ I)∗ � a : (T ⇒ I)∗
Γ, a : (T ⇒ I)∗, x : T � P : I

Γ, a : (T ⇒ I)∗ � (x).P : T ⇒ I

Γ, a : (T ⇒ I)∗ � !a(x).P : I

This derivation directly expresses the intuition that an input-prefixing is abstrac-
tion followed by allocation; here allocation is interpreted by using the compact
closed structure, i.e. connection of ports. The name restriction also has a natural
derivation:

Γ, a : (T ⇒ I)∗, ā : (T ⇒ I) � P : I

Γ � (νāa)P : I

650 K. Sakayori and T. Tsukada

3.2 Compact Closed Freyd Category

Let us formalise the ideas given in Sect. 3.1. Hereafter in this section, we assume
basic knowledge of category theory and of categorical type theory.

We recall the definitions of compact closed category and closed Freyd cat-
egory. For simplicity, the structures below are strict and chosen; a functor is
required to preserve the chosen structures on the nose.

Definition 4 (Compact closed category [21]). Let (C,⊗, I) be a symmetric
strict monoidal category. The dual of an object A in C is an object A∗ equipped
with unit ηA : I −→ A⊗A∗ and counit εA : A∗⊗A −→ I that satisfy the “triangle
identities” (ηA ⊗ idA); (idA ⊗ εA) = idA and (idA∗ ⊗ηA); (εA ⊗ idA∗) = idA∗ . The
category C is compact closed if each object is equipped with a chosen dual.
�
Definition 5 (Closed Freyd category [37]). A Freyd category is given by
(1) a category with chosen finite products (C,⊗, I), called value category, (2) a
symmetric strict monoidal category (K,⊗, I, symm), called producer category,
and (3) an identity-on-object strict symmetric monoidal functor J : C → K. A
Freyd category is a closed Freyd category if the functor J(−) ⊗ A : C → K has
the (chosen) right adjoint A ⇒ − : K → C for every object A. We write ΛA,B,C

for the natural bijection K(J(A) ⊗ B,C) −→ C(A,B ⇒ C) and evalA,B for
Λ−1(idA⇒B) : (A ⇒ B) ⊗ A −→ B in K.
�
Remark 3. The above definition is a restriction of the original one [37], in which
K is a premonoidal [36] category. This change reflects concurrency of the cal-
culus. In fact, it validates the following law, expressed by the syntax of the
computational λ-calculus [33],

letx = M in let y = N inL = let y = N in letx = M inL.

Then one can evaluate M by using the left form and N by using the right form.
This law allows us to evaluate M and N in arbitrary order, or concurrently.
�

We now introduce the categorical structure corresponding to the πF -calculus.

Definition 6 (Compact closed Freyd category). A compact closed Freyd
category is a Freyd category J : C −→ K such that (1) K is compact closed, and
(2) J has the (chosen) right adjoint I ⇒ − : K → C.
�
We shall often write J for a compact closed Freyd category J : C ⊥ K.

A compact closed Freyd category is a closed Freyd category:

K(J(A) ⊗ B,C) ∼= K(J(A), B∗ ⊗ C) ∼= C(A, I ⇒ (B∗ ⊗ C)).

Example 1. The most basic example of a compact closed Freyd category is (the
strict monoidal version of) J : Sets ⊥ Rel : P. Here J is the identity-on-object
functor that maps a function to its graph and P is the “power set functor”

A Categorical Model of an i/o-typed π-calculus 651

chi[T1, . . . , Tn] def= ((1 ⊗ · · · ⊗ TT n) ⇒ I)∗

cho[T1, . . . , Tn] def= (T1 ⊗ · · · ⊗ Tn) ⇒ I

Γ � 0 : � def= J(!Γ)

Γ � !a(�x).P : � def= J(〈πΓ
a , ΛΓ,�T ,I(Γ, �x : �T � P : �)〉); εch[�T]

Γ � ā〈�x〉 : � def= J(〈πΓ
ā , πΓ

x1 , . . . , πΓ
xn

〉); eval�T ,I

Γ � P | Q : � def= J(ΔΓ); (Γ � P : � ⊗ Γ � Q : �)

Γ � (νxy)P : � def= (idΓ ⊗ ηT); Γ, x : T, y : T ⊥ � P : �

Fig. 3. Interpretation of types and processes. Here !Γ , ΔΓ and πΓ
y are maps in C

induced by the cartesian structure, namely, !Γ : �Γ � −→ I is the terminal map,
ΔΓ : �Γ � −→ �Γ � ⊗ �Γ � is the diagonal map and, when Γ = (y1 : T1, . . . , yn : Tn)
and x = yj , the morphism πΓ

x : �Γ � −→ �Tj� is the j-th projection. The interpretation
of a type environment x1 : T1, . . . , xn : Tn is �T1� ⊗ · · · ⊗ �Tn�.

that maps a relation R ⊆ A × B to a function P(R) def= {(SA, SB) | SB =
{b | a ∈ SA, a R b}}. Another example is obtained by replacing sets with
posets, functions with monotone functions and relations with downward closed
relations.
�

Example 2. A more sophisticated example is taken from Laird’s game-semantic
model of π-calculus [22]. Precisely speaking, the model in [22] itself is not com-
pact closed Freyd, but its variant (with non-negative arenas) is. This model is
important since it is fully abstract w.r.t. may-testing equivalence [22, Theorem 1];
hence our framework has a model that captures the may-testing equivalence.
�

3.3 Interpretation

Given a compact closed Freyd category J : C ⊥ K, this section defines the inter-
pretation �−�J . It maps types and type environments to objects as usual, and a
well-typed process Γ � P : 	 to a morphism �P � : �Γ � → I in K (recall that the
tensor unit I is the interpretation of the type for processes).

Figure 3 defines the interpretation of types and processes. It simply formalises
the ideas presented in Sect. 3.1: for example, the interpretation of !a(�x).P is the
abstraction Λ (from the closed Freyd structure) followed by location ε (from the
compact closed structure). There are some points worth noting.

– (A ⇒ I)∗ is not isomorphic to A∗ ⇒ I, A ⇒ I nor I ⇒ A. Indeed (A ⇒ I)∗

cannot be simplified. Do not confuse it with a valid law I ⇒ (A∗) ∼= A ⇒ I.
– A parallel composition is interpreted as a pair. Recall that two components

of a pair are evaluated in parallel in this setting (cf. Remark 3).
– All but the last rule use the cartesian structure of C in order to duplicate or

discard the environment.

652 K. Sakayori and T. Tsukada

Example 3. Let us consider y : T � (νāa)(ā〈y〉 | !a(x).P) : 	, where ā, a, y /∈
fn(P) and a : chi[T]. By (E-Beta) and (E-GC), this process is equal to P{y/x}.
It is natural to expect that the interpretations of the two processes coincide;
indeed it is. As the following calculation indicates, our semantics factorises the
reduction into two steps: (1) the “transmission” of the closure λ�x.P by the tri-
angle identity of the compact closed structure, and (2) the β-reduction modelled
by eval of the closed Freyd structure:

�y : T � (νāa)(ā〈y〉 | !a(x).P) : 	�

= (idT ⊗ ηcho[T]); �y : T, ā : cho[T], a : chi[T] � ā〈y〉 | !a(x).P : 	�

= (id ⊗ η); (�y : T, ā : cho[T] � ā〈y〉 : 	� ⊗ �a : chi[T] � !a(x).P : 	�)
= (id ⊗ η); ((symmT,cho[T]; evalT,I) ⊗ (idch[T]∗ ⊗ J(Λ(�x : T � P : 	�))); εT⇒I

= (idT ⊗ J(Λ(�x : T � P : 	�))); symmT,cho[T]; evalT,I (By triangle identity)

= (J(Λ(�x : T � P : 	�)) ⊗ idT); evalT,I

= �x : T � P � (By the universality of eval)
= �y : T � P{y/x} : 	�.

(Here we implicitly use derived rules for weakening and exchange.)
�

Example 4. The interpretation of a forwarder a : chi[�T], b̄ : cho[�T] � a ↪→ b̄ : 	 is
the counit εcho[�T] : �cho[�T]�∗ ⊗ �cho[�T]� −→ I in K, which is the one-sided form
of the identity. Recall that a forwarder is the identity in every πF -theory.
�

The semantics is sound and complete. That means, a judgement Ax � Γ �
P = Q is provable if and only if Γ � P = Q is valid in all models J of Ax .

Here we define the related notions and prove soundness; completeness is the
topic of the next subsection.

Definition 7. An equational judgement Γ � P = Q is valid in J if �Γ � P :
	�J = �Γ � Q : 	�J . Given a set Ax of non-logical axioms, J is a model of Ax,
written J |= Ax, if it validates all judgements in Ax. We write Ax �Γ � P = Q
if Γ � P = Q is valid in every J such that J |= Ax.
�
Theorem 2 (Soundness). If Ax � Γ � P = Q, then Ax � Γ � P = Q.
�

3.4 Term Model

A term model is a category whose objects are type environments and whose mor-
phisms are terms (i.e. processes in this setting). This section gives a construction
of the term model, by which we show completeness. This subsection basically
follows the standard arguments in categorical type theory; we mainly focus on
the features unique to our model, giving a sketch to the common part.

Given a set Ax of axioms, we define the term model JAx : CAx ⊥ KAx , which
we also write as Cl(Ax).

A Categorical Model of an i/o-typed π-calculus 653

The definition of the producer category KAx follows the standard recipe.
As usual, its objects are finite lists of types. The monoidal product �T ⊗ �S is
the concatenation of the lists and the dual �T ∗ is �T⊥. Given objects �T and �S,
a morphism from �T to �S is a process �x : �T , �y : �S⊥ � P : 	 (modulo renaming
of variables �x and �y). If Ax � �x : �T , �y : �S⊥ � P = Q is provable, then P and
Q are regarded as the same morphism. Composition of morphisms is defined as
“parallel composition plus hiding”: For morphisms P : �T −→ �S and Q : �S −→ �U ,
i.e. processes such that �x : �T , �y : �S⊥ � P : 	 and �z : �S, �w : �U⊥ � Q : 	, their
composite is �x : �T , �w : �U⊥ � (ν�y�z)(P | Q) : 	. The monoidal product P ⊗ Q
of morphisms is the parallel composition P | Q. The identity, as well as the
symmetry of the monoidal product and the unit and counit of the compact closed
structure, is a parallel composition of forwarders: for example, the identity on
�S is �x : �S, �y : �S⊥ � x1 � y1 | · · · | xn � yn : 	 where n is the length of �S.
The facts that most structural morphisms are forwarders and that forwarders
compose are the keys to show that KAx is a compact closed category.

We then see the definition of CAx , of which the definition of morphisms has
a subtle point. The objects of CAx are by definition the same as KAx , i.e. lists
of types. The definition of morphisms relies on the notion of values. The values
are defined by the grammar V ::=x | (�x).P , where P is a process and (�x).P is
called an abstraction. Typing rules for values are as follows:

x : T ∈ Γ

Γ � x : T

Γ, �x : �T � P

Γ � (�x).P : cho[�T]
.

(To understand the right rule, recall that �cho[�T]� = ��T � ⇒ I.) A morphism
from �T to �S = (S1, . . . , Sn) is an n-tuple (V1, . . . , Vn) of values of type �x : �T �
Vi : Si for each i (modulo renaming of �x). Composition is intuitively defined by
“substitution followed by β-reduction” whose definition is omitted here.5

The functor JAx places the values to the channels. For example, let �T =
(chi[U1], cho[U2]) and consider the morphism in CAx given by

a : chi[T1], b̄ : cho[T2] � (a, b̄, (�x).P) : (chi[T1], cho[T2], cho[�S])

where �S is the type for �x. The image of this morphism by the functor JAx is

a : chi[T1], b̄ : cho[T2], c̄ : cho[T1], d : chi[T2], e : chi[�S] � a ↪→ c̄ | d ↪→ b̄ | !e(�x).P : 	.

This example contains all the three ways to place a value to a given channel.

Theorem 3. Cl(Ax) is a compact closed Freyd category for every Ax.
�
In the model Cl(Ax), the interpretation of a process Γ � P : 	 is the equiv-

alence class that P belongs to. This fact leads to completeness.

5 Here is a subtle technical issue that we shall not address in this paper; see the long
version for the formal definition. We think, however, that this paragraph conveys a
precise intuition.

654 K. Sakayori and T. Tsukada

Theorem 4 (Completeness). If Ax � Γ � P = Q, then Ax � Γ � P = Q.
�
Theorem 5. There exists a compact closed Freyd category J that is fully
abstract w.r.t. may-testing equivalence, i.e. Γ � P =may Q iff �P �J = �Q�J .

Proof. Let J be the term model Cl(=may) and use Proposition 2.
�

3.5 Theory/Model Correspondence

It is natural to expect that Cl(Ax) is the classifying category as in the standard
categorical type theory. This means, to give a model of Ax in J is equivalent to
give a structure-preserving functor Cl(Ax) −→ J . This subsection clarifies and
studies this claim.

The set Mod(Ax , J) of models of Ax in J is defined as follows. If J |= Ax ,
then Mod(Ax , J) is a singleton set6; otherwise Mod(Ax , J) is the empty set.

We then define the notion of structure-preserving functors.

Definition 8. A strict compact closed Freyd functor from J : C ⊥ K : I ⇒ (−)
to J ′ : C′ ⊥ K′ : I ⇒′ (−) is a pair of functor (Φ, Ψ) such that

– Φ is a strict finite product preserving functor from C to C′,
– Ψ is a strict symmetric monoidal functor from K to K′ that preserves the

chosen compact closed structures (i.e. units and counits) on the nose, and
– (Φ, Ψ) is a map of adjoints between J � I ⇒ (−) and J ′ � I ⇒′ (−).

�
The collection of (small) compact closed Freyd categories and strict compact
closed Freyd functors form a 1-category, which we write as CCFC .

Now the question is whether Mod(Ax , J)
?∼= CCFC (Cl(Ax), J) in Set.

Unfortunately this does not hold. More precisely, the left-to-right inclusion
does not hold in general. This means that the term model satisfies some addi-
tional axioms reflecting some aspects of the πF -calculus.

The additional axioms reflect the definition of the dual �T ∗ in the term model;
we have �T ∗ def= �T⊥ by definition, and thus �T ∗∗ = �T and (�T ⊗ �S)∗ = �T ∗ ⊗ �S∗.
It might be surprising that these equations are harmful because isomorphisms
A∗∗ ∼= A and (A ⊗ B)∗ ∼= A∗ ⊗ B∗ exist in every compact closed category. The
point is that the equations also require C to have isomorphisms A∗∗ ∼= A and
(A ⊗ B)∗ ∼= A∗ ⊗ B∗ (witnessed by the respective identities).

We formally define the additional axioms, which we call (I) and (D):

(I) The canonical isomorphism A∗∗ −→ A in K is the identity.
(D) The canonical isomorphism (A ⊗ B)∗ −→ A∗ ⊗ B∗ in K is the identity.

Theorem 6. Mod(Ax , J) ∼= CCFC (Cl(Ax), J) if J satisfies (I) and (D).
�

6 Because we consider only the empty signature, the set of valuations is singleton.

A Categorical Model of an i/o-typed π-calculus 655

σ ::= τ τ ′ ξ ::= σ τ ::= (ξ1, . . . , ξn)

V ::= x | λ〈�x〉.M
M ::= 〈�V 〉 | V 〈�V 〉 | let 〈�x〉 = M inM ′

(a) λc

ξ ::= · · · | σ∗

V ::= · · · | channelσ | sendσ

(b) λch (difference from λc)

Fig. 4. Syntax of types and terms of the λc- and λch -calculi. The syntax of λc is adapted
to the setting of this paper.

4 A Concurrent λ-calculus and (de)compilation

In order to demonstrate the relevance of our semantic framework, this section
tries to give a semantic reconstruction of fully-abstract compilation and decompi-
lation from a higher-order calculus to the (first-order) π-calculus, such as [39,42].
We first design an instance of the computational λ-calculus [33], named λch , that
is sound and complete with respect to compact closed Freyd categories. It is
obtained by a straightforward extension of the coincidence between the compu-
tational λ-calculus and closed Freyd categories (Sect. 4.1). There are translations
between πF and λch since both are sound and complete with respect to com-
pact closed Freyd categories. Section 4.2 actually calculates the translations, and
compare them with those in [39,42].

4.1 The λch -calculus

The λch -calculus is a computational λ-calculus with additional constructors deal-
ing with channels. This section introduces and explains the calculus.

The situation is nicely expressed by the following intuitive equation:

λch

λc
≈ (compact closed Freyd category + I + D)

(closed Freyd category)
.

The base calculus λc is the computational λ-calculus, which corresponds to closed
Freyd category [33,37]. It is a call-by-value higher-order programming language,
given in Fig. 4(a). Our calculus λch is obtained by adding type and term con-
structors originating from the compact closed structure, which λc does not have.

Syntax. As for types, λch has a new constructor coming from the dual object
A∗. Normalising occurrences of the dual A∗ using the axioms (I) A∗∗ = A and
(D) (A ⊗ B)∗ = A∗ ⊗ B∗, we obtain the following grammar of types:

σ ::= τ → τ ′ ξ ::=σ | σ∗ τ ::= (ξ1, . . . , ξn)

where n ≥ 0 and (ξ1, . . . , ξn) is an alternative notation for ξ1⊗· · ·⊗ξn. Compared
with λc, the only new type is the dual type σ∗ of a function type σ.

As for terms, λch has constructors corresponding to the unit and counit

ηA : I −→ A ⊗ A∗ εA : A∗ ⊗ A −→ I (for each object A)

656 K. Sakayori and T. Tsukada

of the compact closed structure. We simply add these morphisms as constants:

Γ � channelσ : () → (σ, σ∗)
and

Γ � sendσ : (σ∗, σ) → ()
.

We shall often omit the subscript σ.
In summary, we obtain the syntax of λch shown in Fig. 4. Interestingly, λch

can be seen as a very core of Concurrent ML [38], a practical higher-order concur-
rent language, although λch is developed from purely semantic considerations.

Semantics. Let us first discuss the intuitive meanings of the new constructors.
The type σ∗ is for output channels; channel 〈〉 creates and returns a pair of an
input channel and an output channel that are connected; and send 〈α, V 〉 sends
the value V via the output channel α. The following points are worth noting.

– λch has no type constructor for input channels. The type system does not
distinguish between input channels for type σ and values of type σ.

– λch has no receive constructor. Receiving operation is implicit and on demand,
delayed as much as possible.

– The send operator broadcasts a value via a channel. Several receivers may
receive the same value from the same channel.

The first two points reflect the asynchrony of πF , and the last point reflects the
absence of non-replicated input (cf. Sect. 4.2).

Based on this intuition, we develop the operational, axiomatic and categorical
semantics of λch . We shall use the following abbreviations:

(νxy)M def= let 〈x, y〉 = channel 〈〉 inM M ‖ N
def= let 〈〉 = M inN.

Operational Semantics. Assume an infinite set X of channels, ranged over by α
and β. For each channel α, we write α for the input name and ᾱ for the output
name, both of which are values. A configuration is a tuple (M, �α, μ) of a term
M , a sequence �α of generated channels and a sequence μ of performed send
operations, i.e. μ = (send 〈β̄1, V1〉, . . . , send 〈β̄k, Vk〉). The reduction relation is
defined by the following rules for channels

(E[channel 〈〉], �α, μ) −→ (E[〈β, β̄〉], �α · β, μ) (β /∈ �α)
(E[send 〈β̄, V 〉], �α, μ) −→ (E[〈〉], �α, μ · send 〈β̄, V 〉)

(E[β V], �α, μ) −→ (E[W V], �α, μ) (send 〈β̄,W 〉 ∈ μ).

in addition to the standard rules for λ-abstractions and let-expressions, which
change only M . Here the set of evaluation contexts is given by the grammar:

E ::= [] | let 〈�x〉 = E inM | let 〈�x〉 = M inE.

Note that M and N in let 〈�x〉 = M inN are evaluated in parallel (cf. Remark 3).
This justifies the notation M ‖ N , an abbreviation for let 〈〉 = M inN .

A Categorical Model of an i/o-typed π-calculus 657

Axiomatic Semantics. The inference rules of the equational logic for λch are
those for λc with the rule of concurrent evaluation

let 〈�x〉 = M in let 〈�y〉 = N inL = let 〈�y〉 = N in let 〈�x〉 = M inL;

the β- and η-rules for channels

(νxx̄)(send 〈x̄, V 〉 ‖ M) = (νxx̄)(send 〈x̄, V 〉 ‖ M{V/x})
(νyȳ)(send 〈z̄, y〉 ‖ N) = N{z̄/ȳ}

where x̄ /∈ Fv(V) ∪ Fv(M), y /∈ Fv(N) and z̄ �= ȳ; and a GC rule.

Categorical Semantics. One can interpret λch -terms in a compact closed Freyd
category with (I) and (D). The interpretation of the λc-calculus part is stan-
dard [24,37]; the constant channelσ (resp. sendσ) is interpreted as the “closure”
whose body is ησ (resp. εσ) as expected.

�Γ � channelσ : () → (σ, σ∗)� def= J(!Γ ;ΛI,I,σ⊗σ∗(ησ))

�Γ � sendσ : (σ∗, σ) → ()� def= J(!Γ ;ΛI,σ⊗σ∗,I(εσ)).

The categorical semantics is sound and complete with respect to the equa-
tional theory of the λch -calculus. The proofs are basically straightforward but
there is a subtle issue in the definition of the term model: we have different def-
initions of the right adjoint I ⇒ (−), which are of course equivalent but do not
coincide on the nose. Our choice here is I ⇒ 〈�ξ〉 def= (�ξ⊥) → ().

4.2 Translations Between λch and πF

The higher-order calculus λch is equivalent to πF . This is because both calculi
correspond to the same class of categories, namely, the class of compact closed
Freyd categories with (I) and (D), i.e.,

(λch) ≈ (compact closed Freyd category + I + D) ≈ (πF).

This subsection studies translations derived from this semantic correspondence.
The translations are defined by the interpretations in the term models. For

example, the translation �−� from λch to πF is induced by the interpretation
of λch -terms in the term model Cl(∅). The interpretation �M�Cl(∅) of a λch -
term M is an equivalence class of πF -processes, since a morphism in Cl(∅) is an
equivalence class of πF -processes. The translation �M� is defined by choosing a
representative of the equivalence class. The other direction [(−)] is obtained by
the interpretation of πF in the term model of λch .

Figures 5 and 6 are concrete definitions of the translations for a natural choice
of representatives. Let us discuss the translations in more details.

The translation from πF to λch (Fig. 5) is easy to understand. It directly
expresses the higher-order view of the first-order π-calculus. For example, an

658 K. Sakayori and T. Tsukada

[(cho[�T])] def= [(�T)] () [(chi[�T])] def= ([(�T)] ())∗ [((T1, . . . , Tn))] def= ([(T1)], . . . , [(Tn)])

[(0)] def= 〈〉 [(P | Q)] def= [(P)] ‖ [(Q)] [((νxy)P)] def= (νxy)[(P)]

[(ā〈�x〉)] def= ā 〈�x〉 [(!a(�x).P)] def= send 〈a, λ(�x).[(P)]〉

Fig. 5. Translation from πF to λch

Fig. 6. Translation from λch to πF

output action is mapped to an application and an input-prefixing !a(�x).P to a
send operation of the value λ〈�x〉.P via the channel a.

An interesting (and perhaps confusing) phenomenon is that an input channel
in πF is mapped to an output channel in λch . This can be explained as follows.
In the name-passing viewpoint, the reduction

(νxy)(!y(�z).P | x〈�u〉) −→ (νxy)(!y(�z).P | P{�u/�z})

sends �u to the process !y(�z).P , and thus x is output and y is input. In the
process-passing viewpoint, the abstraction (�z).P is sent to the location of x, and
thus y is the output and x is the input.

Next, we explain the translation from λch to πF (Fig. 6).
Let us first examine the translation of types. The most non-trivial part is

the translation of a function type τ1 → τ2. A key to understand the translation
is the isomorphism τ1 → τ2 ∼= τ1 ⊗ τ⊥

2 → (). The latter form of function type
corresponds to an output channel type in πF . Hence a function is understood as
a process additionally taking channels to which the return values are passed.

The translation �M��p of a λch -term Γ � M : (ξ1, . . . , ξn) takes extra param-
eters �p = p1, . . . , pn to which the values should be placed. This is a consequence
of the definition in the πF -term model that a morphism �T −→ �S is a process
�x : �T , �y : �S⊥ � P : 	. Here �p corresponds to �y, Γ to �x : �T and �ξ to �S.

Now it is not so difficult to understand the interpretations of constructs in the
λc-calculus. For example, the abstraction �λ〈�x〉.M�p is mapped to an abstraction
(�x, �q).�M��q placed at p, which takes additional channels �q to which the results
of the evaluation of M should be sent.

It might be surprising that the interpretations of channel and send coincide.
This is because of the one-sided formulation of πF . In the two-sided formula-
tion, the unit η and counit ε of the compact closed structure, corresponding to
channel and send, can be written as logical inference rules

A Categorical Model of an i/o-typed π-calculus 659

0 def= 0 P | Q
def= P | Q (νxy)P def= (νxy) P !x v

def= v x

v〈w1, . . . , wn〉 def= (νāa)(ν b̄1b1) . . . (ν b̄nbn)(v a | w1 b1 | · · · | n bn | ā〈b̄1, . . . , b̄n〉)
x a

def= (a ↪ x) (�x).P a
def= !a(�x). P

Fig. 7. Translation from AHOπ to πF

Γ,A,A⊥ � Δ

Γ � Δ
and

Γ � A⊥, A,Δ

Γ � Δ
,

which are different. In the one-sided formulation, however, they become

Γ,A,A⊥,Δ⊥ �
Γ,Δ⊥ � .

Hence η and ε (or channel and send) cannot be distinguished in πF .
The translation �−� must be the inverse of [(−)] because both the term models

are the initial compact closed Freyd category with (I) and (D). That means,
∅ � Γ � P = �[(P)]� and ∅ � Γ � M = [(�M�)] are provable for every P and M .
This result is independent of the choice of representatives.

4.3 Relation to Other Calculi and Translations

A number of higher-order concurrent calculi, as well as their translations to the
first-order π-calculus, have been proposed and studied (e.g. [29,39,40,42,45,47]).
The calculus λch and the translations have a lot of ideas in common with those
calculi and translations; see Sect. 6.

This subsection mainly discusses the relationship to the translations by San-
giorgi [42] (see also [43]) between asynchronous higher-order π-calculus (AHOπ
for short) and asynchronous local π-calculus (Lπ for short). Here we focus on
this work because it is closest to ours. We shall see that our semantic or cat-
egorical development provides us with a semantic reconstruction of Sangiorgi’s
translations, as well as an extension.

A variant of AHOπ can be seen as a fragment of λch . The syntax of processes
of AHOπ and representation by λch -terms are given as follow:

v, w ::= x | (�x).P P,Q ::= 0 | (P | Q) | (νxy)P | !x v | v〈�w〉
x λ〈�x〉.P 〈〉 P ‖ Q (νxy)P send 〈x, v〉 v 〈�w〉.

(It slightly differs from the original syntax, as ν binds a pair of names.)
This fragment is nicely described as the limitation on types:

σ ::= (�σ) → () ξ ::= σ | σ∗ τ ::= ().

Recall that σ is a type for abstractions, ξ is a type for variables, and τ is a type
for terms. This limitation means that (1) an abstraction cannot take a channel
as an argument, and (2) a term M must be of the unit type, i.e. a process.

660 K. Sakayori and T. Tsukada

Once regarding AHOπ as a fragment of λch , the translation from AHOπ to
πF is obtained by restricting �−� to AHOπ. The resulting translation is in Fig. 7.
As mentioned, the translation is the same as that of Sangiorgi [42] except for
minor differences due to the slight change of the syntax.

Sangiorgi also gave a translation in the opposite direction, from Lπ to AHOπ
in the same paper. The calculus Lπ is a fragment of the π-calculus in which only
output channels can be passed. The i/o-separation of πF allows us to characterise
the local version of πF by a limitation on types. In the local variant, the output
channel type is restricted to T ::= cho[�T], expressing that only output channels
can be passed via an output channel. Then the definition of type environment
should be changed accordingly: Γ ::= · | x : T | x : T⊥ (since the syntactic class
represented by T is not closed under the dual (−)⊥ in the local setting).

Interestingly the limitation on types in AHOπ coincides with that in Lπ,
when one identify cho[�T] with (�T) → () (as we have done in many places). In
other words, the syntactic restrictions of AHOπ and Lπ are the same semantic
conditions described in different syntax. As a consequence, the image of Lπ by
[(−)] is indeed in AHOπ.

Remark 4. There is, however, a notable difference from Sangiorgi’s work [42].
Sangiorgi proved that the translation is fully-abstract with respect to barbed
congruence; in contrast, we only show that � M = N iff � �M� = �N�. In
particular, the η-rule is inevitable for our argument. The presence of the η-
rules significantly simplifies the argument, at the cost of operational justification
(recall that the η-rule is not sound with respect to barbed congruence).

It is natural to ask how one can reconstruct the full-abstraction result with
respect to barbed congruence. An interesting observation is that, if M and N
are AHOπ processes, then �	 M = N iff �	 �M� = �N�, where �	 means prov-
ability without using η-rules. We expect that this semantic observation explains
why locality is essential as noted in [42]; we leave the details for future work.
�

5 Discussions

Connection to Logics. We have so far studied a connection between compact
closed Freyd category and π-calculus. Here we briefly discuss the missing piece
of the Curry-Howard-Lambek correspondence, namely logic.

The model of this paper is closely related to linear logic. Actually, every
compact closed Freyd category is a model of linear logic (more precisely, MELL),
as an instance of linear-non-linear model [6] (see, e.g., [27] for categorical models
of linear logic). The interpretation of formulas is shown in Table 1. It differs
from the translations by Abramsky [1] and Bellin and Scott [5] and from the
Curry-Howard correspondence for session types by Caires and Pfenning [8], but
resembles the connection between a variant of local π-calculus and a polarised
linear logic by Honda and Laurent [19]; a detailed analysis of the translation is
left for future work.

The logic corresponding to compact closed Freyd category should be a proper
extension of linear logic, since compact closed Freyd categories form a proper

A Categorical Model of an i/o-typed π-calculus 661

Table 1. The categorical and πF -calculus interpretations of MELL formulas

linear logic compact closed Freyd category πF -calculus

(formula) (object) (type environment)

A ⊗ B A ⊗ B x : A, y : B

A ` B

!A I ⇒ A x : cho[A⊥]

?A (A ⇒ I)∗ x : chi[A]

subclass of linear-non-linear models. For example, the following rules are invalid
in linear logic but admissible in compact closed Freyd categories:

� Γ � Δ

� Γ,Δ

� Γ,A,B � Δ,A⊥, B⊥

� Γ,Δ

� Γ,A,A⊥

� Γ
.

These rules, especially the second rule called multicut, were often studied in
concurrency theory; see Abramsky et al. [2] for their relevance to concurrency.

Do the above rules fill the gap between linear logic and compact closed Freyd
category? Recent work by Hasegawa [15] suggests that MELL with above rules
is still weaker than compact closed Freyd category. First observe that the above
rules can be interpreted in any linear-non-linear model of which the monoidal
category is compact closed. Hasegawa showed that a linear-non-linear model
whose monoidal category is compact closed induces a closed Freyd category of
which the monoidal category is traced (and vice versa) but the induced Freyd
category is not necessarily compact closed. Hence the logic corresponding to
compact closed Freyd category has further axioms or rules in addition to the
above ones. A reasonable candidate for the additional axiom is ! ∼= ?; interest-
ingly, Atkey et al. [3] reached a similar rule from a different perspective. Further
investigation is left for future work.

Non-empty Signature. The categorical type theory for the λ-calculus con-
siders a family parameterised by signatures, consisting of atomic types and con-
stants. It covers, for example, the λ-calculus with natural number type and
arithmetic constants (such as addition and multiplication), as well as a calculus
with integer reference type and read and update functions.

Although this paper only considers the calculus with the empty signature,
which has no additional type nor constant, extending our theory to handle non-
empty signatures is, in a sense, not difficult. The easiest way is to apply the
established theory of the computational λ-calculus [33,37]. As we have seen in
Sect. 4, the πF -calculus can be seen as a computational λ-calculus λch hav-
ing constants for manipulating channels; hence the πF -calculus with additional
constants is λch with the additional constants, which is still in the family of
computational λ-calculus.

The πF -calculus with non-empty signature has several applications. We shall
briefly discuss some of them.

662 K. Sakayori and T. Tsukada

An important example of πF with non-empty signature is the calculus with
non-replicated input, which we regard as a calculus with additional “process
constants” but without any additional type. A key observation is that every
non-replicated input process a(�x).P can be expressed as

a(�x).P �
c (ν b̄b)(a(�x).b̄〈�x〉 | !b(�x).P) (�c is weak barbed congruence)

and thus it suffices to deal with non-replicated input processes in special form,
namely a : chi[�T], b̄ : cho[�T] � a(�x).b̄〈�x〉 : 	. Adding these processes as con-
stants and the computational rules of a(�x).b̄〈�x〉 as equational axioms results in a
calculus with non-replicated inputs. The categorical model is a compact closed
Freyd category with distinguished morphisms (A ⇒ I) −→ (A ⇒ I) for each
object A which satisfy certain axioms.

This technique is applicable to synchronous output as well. Because

ā〈�x〉.P �
c (ν b̄b)(ā〈�x〉.b̄〈〉 | !b().P),

it suffices to consider constants representing ā : cho[�T], �x : �T , b̄ : cho[] � ā〈�x〉.b̄〈〉 : 	.

6 Related Work

Logical Studies of π-calculi. There is a considerable amount of studies on
connections between process calculi and linear logic. Here we divide these stud-
ies into two classes. These classes are substantially different; for example, one
regards the formula A ⊗ B as a type for processes with two “ports” of type A
and B, whereas the other as the session-type !A.B. Our work is more closely
related to the former than the latter, but some interesting coincidence to the
latter kind of studies can also be found.

The former class of research dates back to the work by Abramsky [1] and
Bellin and Scott [5], where they discovered that π-calculus processes can encode
proof-nets of classical linear logic. Later, Abramsky et al. [2] introduced the
interaction categories to give a semantic description of a CCS-like process calcu-
lus. In their work, they observed that the compact closed structure is important
to capture the strong expressive power of process calculi.

A tighter connection between π-calculus and proof-nets was recently pre-
sented by Honda and Laurent [19]. They showed that an i/o-typed π-calculus
corresponds to polarised proof-nets, and introduced the notion of extended reduc-
tion for the π-calculus to simulate cut-elimination. The π-calculus used in this
work is very similar to πF in terms of syntax and reduction. Their calculus is
asynchronous, does not allow non-replicated inputs, and requires i/o-separation.
Furthermore, the extended reduction is almost the same as the rules (E-Beta)
and (E-GC) except for the side conditions. A significant difference compared
to our work is that their calculus is local [28,49], reflecting the fact that the
corresponding logic is polarised.

Our work is inspired by these studies. The idea of i/o-separation can already
be found in the work by Bellin and Scott and the use of compact closed category

A Categorical Model of an i/o-typed π-calculus 663

is motivated by the study of interaction category. It is worth mentioning here
that the design of πF is also influenced by the calculus introduced by Laird [22],
although it is not a logical study but categorical (see below).

The latter approach started with the Curry-Howard correspondences between
session-typed π-calculi and linear logic established by Caires, Pfenning and Ton-
inho [8,9] and subsequently by Wadler [48]. These correspondences are exact
in the sense that every process has a corresponding proof, and vice versa. As a
consequence, processes of the calculi inherit good properties of linear logic proofs
such as termination and confluence of cut-elimination. In terms of process cal-
culi, process of these calculi do not fall into deadlock or race condition. This can
be seen as a serious restriction of expressive power [3,26,48].

Several extensions to increase the expressiveness of these calculi have been
proposed and studied. Interestingly, ideas behind some of these extensions are
related to our work, in particular to Sect. 5 discussing the multicut rule [2] and
the axiom ! ∼= ?. Atkey et al. [3] studied CP [48] with the multicut rule and ! ∼= ?
and discussed how these extensions increase the expressiveness of the calculus,
at the cost of losing some good properties of CP. Dardha and Gay [10] studied
another extension of CP with multicut, keeping the calculus deadlock-free by an
elaborated type system.

Balzer and Pfenning [4] proposed a session-typed calculus with shared (muta-
ble) resources, inspired by linear-non-linear adjunction [6].

Categorical Semantics of π-calculi. The idea of using a closed Freyd cate-
gory to model the π-calculus is strongly inspired by Laird [22]. He introduced
the distributive-closed Freyd category to describe abstract properties of a game-
semantic model of the asynchronous π-calculus and showed that distributive-
closed Freyd categories with some additional structures suffice to interpret the
asynchronous π-calculus. The additional structures are specific to his game model
and not completely axiomatised.7 Our notion of compact closed Freyd category
might be seen as a reformulation of his idea, obtained by filtering out some struc-
tures difficult to axiomatise and by strengthening some others to make axioms
simpler. A significant difference is that our categorical model does not deal with
non-replicated inputs, which we think is essential for a simple axiomatisation.

Another approach for categorical semantics of the π-calculus has been the
presheaf based approach [12,44]. These studies gave particular categories that
nicely handles the nominal aspects of the π-calculus; these studies, however, do
not aim for a correspondence between a categorical structure and the π-calculus.

Higher-Order Calculi with Channels. Besides the λch -calculus, there are
numbers of functional languages augmented by communication channels, from
theoretical ones [13,25,46,48] to practical languages [34,38].

On the practical side, Concurrent ML (CML) [38], among others, is a well-
developed higher-order concurrent language. CML has primitives to create chan-
nels and threads, and primitives to send and accept values through channels.
7 A list of properties in [22] does not seem to be complete. We could not prove some

claims in the paper only from these properties, but with ones specific to his model.

664 K. Sakayori and T. Tsukada

Since our λch -calculus can create (non-linear) channels and send values via chan-
nels, the λch -calculus can be seen as a core calculus of CML despite its origin in
categorical semantics. The major difference between CML and the λch -calculus
is that communications in CML are synchronous whereas communications in the
λch -calculus are asynchronous.

On the theoretical side, session-typed functional languages have been actively
studied [13,25,46,48]. Notably, some of these languages [25,46,48] are built upon
the Curry-Howard foundation between linear logic and session-typed processes.
It might be interesting to investigate whether we can relate these languages and
the λch -calculus through the lens of Curry-Howard-Lambek correspondence.

Higher-Order vs. First-Order π-calculus. A number of translations from
higher-order languages to the π-calculus have been developed [39,40,42,45,47]
since Milner [29] presented the encodings of the λ-calculus into the π-calculus.
The basic idea shared by these studies is to transform λx.M to a process
!a(x, p).P that receives the argument x together with a name p where the rest
of the computation will be transmitted. In our framework, this idea is described
as the isomorphism A ⇒ B ∼= A ⊗ B∗ ⇒ I.

Among others, the translation from AHOπ to Lπ [42] is the closest to our
translation from the λch -calculus to the πF -calculus. Sangiorgi [41] observed
that Milner’s translation can be established via the translation of AHOπ by
applying the CPS transformation to the λ-calculus. This observation also applies
to our translation. That is, we can obtain Milner’s translation by combining CPS
transformation and the compilation of the λch -calculus.

7 Conclusion and Future Work

We have introduced an i/o-typed π-calculus (πF -calculus) as well as the categor-
ical counterpart of πF -calculus (compact closed Freyd category) and showed the
categorical type theory correspondence between them. The correspondence was
established by regarding the π-calculus as a higher-order programming language,
introducing the i/o-separation, and introducing the η-rule, a rule that explains
the mismatch between behavioural equivalences and categorical models.

As an application of our semantic framework we introduced a higher-order
calculus λch -calculus “equivalent” to the πF -calculus. We have demonstrated
that translations between λch -calculus and πF -calculus can be derived by a sim-
ple semantic argument, and showed that the translation from λch to πF is a
generalisation of the translation from AHOπ to Lπ given by Sangiorgi [42].

There are three main directions for future work. First, further investiga-
tion on the η-rule is indispensable. We plan to construct a categorical model of
the πF -calculus with an additional constant that captures barbed congruence.
Revealing the relationship between locality and the η-rule is another impor-
tant problem. Second, the operational properties of the λch -calculus and its
relation to the equational theory needs a further investigation. Third, finding
the logical counterpart of compact closed Freyd category to establish a proper
Curry-Howard-Lambek correspondence is an interesting future work.

A Categorical Model of an i/o-typed π-calculus 665

Acknowledgement. We would like to thank Naoki Kobayashi, Masahito Hasegawa
and James Laird for discussions, and anonymous referees for valuable comments. This
work was supported by JSPS KAKENHI Grant Number 15H05706 and 16K16004.

References

1. Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (1994)
2. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the founda-

tions of typed concurrent programming. In: Proceedings of the NATO Advanced
Study Institute on Deductive Program Design, Marktoberdorf, Germany, pp. 35–
113 (1996)

3. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: A List of
Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, pp. 32–55 (2016)

4. Balzer, S., Pfenning, F.: Manifest sharing with session types. PACMPL 1(ICFP),
37:1–37:29 (2017)

5. Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theor. Comput. Sci.
135(1), 11–65 (1994)

6. Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0022251

7. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
Theor. Comput. Sci. 195(2), 205–226 (1998)

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

9. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(3), 367–423 (2016)

10. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

11. de Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. In: Diaz, J.
(ed.) ICALP 1983. LNCS, vol. 154, pp. 548–560. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0036936

12. Fiore, M.P., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus.
Inf. Comput. 179(1), 76–117 (2002)

13. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

14. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
15. Hasegawa, M.: From linear logic to cyclic sharing. Lecture slides, Linearity (2018)
16. Hayashi, S.: Adjunction of semifunctors: categorical structures in nonextensional

lambda calculus. Theor. Comput. Sci. 41, 95–104 (1985)
17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle

River (1985)
18. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

19. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and
polarised proof-nets. Theor. Comput. Sci. 411(22–24), 2223–2238 (2010)

https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/BFb0036936
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35

666 K. Sakayori and T. Tsukada

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

21. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl.
Algebra 19, 193–213 (1980)

22. Laird, J.: A game semantics of the asynchronous π-calculus. In: Abadi, M., de
Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 51–65. Springer, Heidelberg
(2005). https://doi.org/10.1007/11539452 8

23. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic, vol. 7.
Cambridge University Press, New York (1988)

24. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Inf. Comput. 185(2), 182–210 (2003)

25. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J. (ed.)
ESOP 2015. LNCS, vol. 9032, pp. 560–584. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46669-8 23

26. Mazza, D.: The true concurrency of differential interaction nets. Math. Struct.
Comput. Sci. 28(7), 1097–1125 (2018)

27. Melliès, P.A.: Categorical semantics of linear logic. Panoramas et syntheses 27,
15–215 (2009)

28. Merro, M.: Locality in the π-calculus and applications to distributed objects. Ph.D.
thesis, École Nationale Supérieure des Mines de Paris (2000)

29. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992)

30. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

31. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992)

32. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

33. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS 1989), Pacific
Grove, California, USA, 5–8 June 1989, pp. 14–23 (1989)

34. Peyton Jones, S.L., Gordon, A.D., Finne, S.: Concurrent Haskell. In: Conference
Record of POPL 1996: The 23rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, Papers Presented at the Symposium, St. Peters-
burg Beach, Florida, USA, 21–24 January 1996, pp. 295–308 (1996)

35. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math.
Struct. Comput. Sci. 6(5), 409–453 (1996)

36. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math.
Struct. Comput. Sci. 7(5), 453–468 (1997)

37. Power, J., Thielecke, H.: Closed Freyd- and κ-categories. In: Wiedermann, J., van
Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 625–634.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 59

38. Reppy, J.H.: CML: a higher-order concurrent language. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion (PLDI), Toronto, Ontario, Canada, 26–28 June 1991, pp. 293–305 (1991)

39. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D. thesis, University of Edinburgh, UK (1993)

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/11539452_8
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-48523-6_59

A Categorical Model of an i/o-typed π-calculus 667

40. Sangiorgi, D.: π-Calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1&2), 235–274 (1996)

41. Sangiorgi, D.: From λ to π; or, rediscovering continuations. Math. Struct. Comput.
Sci. 9(4), 367–401 (1999)

42. Sangiorgi, D.: Asynchronous process calculi: the first- and higher-order paradigms.
Theor. Comput. Sci. 253(2), 311–350 (2001)

43. Sangiorgi, D., Walker, D.: The π-calculus—A Theory of Mobile Processes.
Cambridge University Press, New York (2001)

44. Stark, I.: A fully abstract domain model for the π-calculus. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, 27–30 July 1996, pp. 36–42 (1996)

45. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes.
In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 23

46. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

47. Turner, D.N.: The polymorphic Pi-calculus: theory and implementation. Ph.D.
thesis, University of Edinburgh, UK (1996)

48. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)
49. Yoshida, N.: Minimality and separation results on asynchronous mobile processes -

representability theorems by concurrent combinators. Theor. Comput. Sci. 274(1–
2), 231–276 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
http://creativecommons.org/licenses/by/4.0/

A Process Algebra for Link
Layer Protocols

Rob van Glabbeek1,2(B), Peter Höfner1,2, and Michael Markl1,3

1 Data61, CSIRO, Sydney, Australia
rvg@cs.stanford.edu

2 Computer Science and Engineering, University of New South Wales,
Sydney, Australia

3 Institut für Informatik, Universität Augsburg, Augsburg, Germany

Abstract. We propose a process algebra for link layer protocols, fea-
turing a unique mechanism for modelling frame collisions. We also for-
malise suitable liveness properties for link layer protocols specified in this
framework. To show applicability we model and analyse two versions of
the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol. Our analysis confirms the hidden station problem for the ver-
sion without virtual carrier sensing. However, we show that the version
with virtual carrier sensing not only overcomes this problem, but also
the exposed station problem with probability 1. Yet the protocol cannot
guarantee packet delivery, not even with probability 1.

1 Introduction

The (data) link layer is the 2nd layer of the ISO/OSI model of computer network-
ing [18]. Amongst others, it is responsible for the transfer of data between adja-
cent nodes in Wide Area Networks (WANs) and Local Area Networks (LANs).

Examples of link layer protocols are Ethernet for LANs [16], the Point-to-
Point Protocol [24] and the High-Level Data Link Control protocol (e.g. [14]).
Part of this layer are also multiple access protocols such as the Carrier-Sense Mul-
tiple Access with Collision Detection (CSMA/CD) protocol for re-transmission
in Ethernet bus networks and hub networks, or the Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol [17,19] in wireless networks.

One of the unique characteristics of the link layer is that when devices
attempt to use a medium simultaneously, collisions of messages occur. So, any
modelling language and formal analysis of layer-2 protocols has to support such
collisions. Moreover, some protocols are of probabilistic nature: CSMA/CA for
example chooses time slots probabilistically with discrete uniform distribution.

As we are not aware of any formal framework with primitives for mod-
elling data collisions, this paper introduces a process algebra for modelling and
analysing link layer protocols. In Sect. 2 we present an algebra featuring a unique
mechanism for modelling collisions, ‘hard-wired’ in the semantics. It is the non-
probabilistic fragment of the Algebra for Link Layer protocols (ALL), which we
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 668–693, 2019.
https://doi.org/10.1007/978-3-030-17184-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_24

A Process Algebra for Link Layer Protocols 669

introduce in Sect. 3. In Sect. 4 we formulate packet delivery, a liveness property
that ideally ought to hold for link layer protocols, either outright, or with a high
probability. In Sect. 5 we use this framework to formally model and analyse the
CSMA/CA protocol.

Our analysis confirms the hidden station problem for the version of
CSMA/CA without virtual carrier sensing (Sect. 5.2). However, we also show
that the version with virtual carrier sensing overcomes not only this problem,
but also the exposed station problem with probability 1. Yet the protocol cannot
guarantee packet delivery, not even with probability 1.

2 A Non-probabilistic Subalgebra

In this section we propose a timed process algebra that can model the collision
of link layer messages, called frames.1 It can be used for link layer protocols
that do not feature probabilistic choice, and is inspired by the (Timed) Alge-
bra for Wireless Networks ((T-)AWN) [2,12,13], a process algebra suitable for
modelling and analysing protocols on layers 3 (network) and 4 (transport) of the
OSI model.

The process algebra models a (wired or wireless) network as an encapsulated
parallel composition of network nodes. Due to the nature of the protocols under
consideration, on each node exactly one sequential process is running. The alge-
bra features a discrete model of time, where each sequential process maintains
a local variable now holding its local clock value—an integer. We employ only
one clock for each sequential process. All sequential processes in a network syn-
chronise in taking time steps, and at each time step all local clocks advance by
one unit. Since this means that all clocks are in sync and do not run at different
speeds it is clear that we do not consider the problem of clock shift. For the rest,
the variable now behaves like any other variable maintained by a process: its value
can be read when evaluating guards, thereby making progress time-dependant,
and any value can be assigned to it, thereby resetting the local clock. Network
nodes communicate with their direct neighbours—those nodes that are in trans-
mission range. The algebra provides a mobility option that allows nodes to move
in or out of transmission range. The encapsulation of the entire network inhibits
communications between network nodes and the outside world, with the excep-
tion of the receipt and delivery of data packets from or to clients (the higher
OSI layers).

2.1 A Language for Sequential Processes

The internal state of a process is determined, in part, by the values of certain
data variables that are maintained by that process. To this end, we assume a
data structure with several types, variables ranging over these types, operators
and predicates. Predicate logic yields terms (or data expressions) and formulas

1 As it is the nonprobabilistic fragment of a forthcoming algebra we do not name it.

670 R. van Glabbeek et al.

to denote data values and statements about them. Our data structure always
contains the types TIME, DATA, MSG, CHUNK, ID and P(ID) of discrete time values,
which we take to be integers, network layer data, messages, chunks of messages
that take one time unit to transmit, node identifiers and sets of node identifiers.
We further assume that there are variables now of type TIME and rfr of type
CHUNK. In addition, we assume a set of process names. Each process name X
comes with a defining equation

X(var1, . . . , varn)
def
= P ,

in which n ∈ IN, vari are variables and P is a sequential process expression
defined by the grammar below. It may contain the variables vari as well as
X. However, all occurrences of data variables in P have to be bound.2 The
choice of the underlying data structure and the process names with their defining
equations can be tailored to any particular application of our language.

The sequential process expressions are given by the following grammar:

P ::= X(exp1, . . . , expn) | [ϕ]P | [[var := exp]]P | α.P | P + P

α ::= transmit(ms) | newpkt(data, dest) | deliver(data)

Here X is a process name, expi a data expression of the same type as vari, ϕ
a data formula, var := exp an assignment of a data expression exp to a variable
var of the same type, ms a data expression of type MSG, and data, dest data
variables of types DATA, ID respectively.

Given a valuation of the data variables by concrete data values, the sequential
process [ϕ]P acts as P if ϕ evaluates to true, and deadlocks if ϕ evaluates to
false. In case ϕ contains free variables that are not yet interpreted as data
values, values are assigned to these variables in any way that satisfies ϕ, if
possible. The process [[var := exp]]P acts as P , but under an updated valuation of
the data variable var. The process P + Q may act either as P or as Q, depending
on which of the two processes is able to act at all. In a context where both are able
to act, it is not specified how the choice is made. The process α.P first performs
the action α and subsequently acts as P . The above behaviour is identical to
AWN, and many other standard process algebras. The action transmit(ms)
transmits (the data value bound to the expression) ms to all other network
nodes within transmission range. The action newpkt(data, dest) models the
injection by the network layer of a data packet data to be transmitted to a
destination dest. Technically, data and dest are variables that will be bound to
the obtained values upon receipt of a newpkt. Data is delivered to the network
layer by deliver(data). In contrast to AWN, we do not have a primitive for

2 An occurrence of a data variable in P is bound if it is one of the variables vari, one
of the two special variables now or rfr, a variable var occurring in a subexpression
[[var := exp]]Q, an occurrence in a subexpression [ϕ]Q of a variable occurring free in
ϕ, or a variable data or dest occurring in a subexpression newpkt(data, dest).Q.
Here Q is an arbitrary sequential process expression.

A Process Algebra for Link Layer Protocols 671

receiving messages from neighbouring nodes, because our processes are always
listening to neighbouring nodes, in parallel with anything else they do.

As in AWN, the internal state of a sequential process described by an expres-
sion P is determined by P , together with a valuation ξ associating values ξ(var)
to variables var maintained by this process. Valuations naturally extend to ξ-
closed expressions—those in which all variables are either bound or in the domain
of ξ. We denote the valuation that assigns the value v to the variable var, and
agrees with ξ on all other variables, by ξ[var := v]. The valuation ξ|S agrees
with ξ on all variables var ∈ S and is undefined otherwise. Moreover we use
ξ[var ++] as an abbreviation for ξ[var := ξ(var)+ 1], for suitable types.

To capture the durational nature of transmitting a message between network
nodes, we model a message as a sequence of chunks, each of which takes one
time unit to transmit. The function dur : MSG → TIME>0 calculates the amount
of time steps needed for a sending a message, i.e. it calculates the number of
chunks. We employ the internal data type CHUNK := {m:c | m ∈ MSG, 1 ≤ c ≤
dur(m)} ∪ {conflict, idle}. The chunk m:c indicates the c th fragment of a
message m. Data conflicts—junk transmitted via the medium—is modelled by
the special chunk conflict, and the absence of an incoming chunk is modelled
by idle.

Our process algebra maintains a variable rfr of type CHUNK, storing the frag-
ment of the current message received so far.

rfr ch rfr � ch
∗ conflict conflict
∗ idle idle
∗ m:1 m:1

m:c m:c+1 m:c+1
rfr m:c+1 conflict

if rfr �= m:c

As a value of this variable, m:c indicates that the
first c chunks of message m have been received in
order; conflict indicates that the last incoming
chunk was not the expected (next) part of a mes-
sage in progress, and idle indicates that the chan-
nel was idle during the last time step. The table on
the right, with ∗ a wild card, shows how the value
of rfr evolves upon receiving a new chunk ch.

Specifications may refer to the data type
CHUNK only through the Boolean functions new—having a single argument msg
of type MSG—and idle, defined by new(msg) := (rfr = (msg : dur(msg)) and
idle := (rfr = idle). A guard [new(msg)] evaluates to true iff a new message
msg has just been received; [idle] evaluates to true iff in the last time slice the
medium was idle.

The structural operational semantics of Table 1 describes how one internal
state can evolve into another by performing an action. The set Act of actions con-
sists of transmit(m:c, ch), wait(ch), newpkt(d, dest), deliver(d), and internal
actions τ, for each choice of m∈ MSG, c∈{1, . . . , dur(m)}, ch ∈ CHUNK, d∈ DATA
and dest∈ ID, where the first two actions are time consuming. On every time-
consuming action, each process receives a chunk ch and updates the variable rfr
accordingly; moreover, the variable now is incremented on all process expressions
in a (complete) network synchronously.

Besides the special variables now and rfr, the formal semantics employs an
internal variable cntr∈ IN that enumerates the chunks of split messages and is

672 R. van Glabbeek et al.

T
a
b
le

1
.
S
tr

u
ct

u
ra

l
o
p
er

a
ti

o
n
a
l
se

m
a
n
ti

cs
fo

r
se

q
u
en

ti
a
l
p
ro

ce
ss

ex
p
re

ss
io

n
s

A Process Algebra for Link Layer Protocols 673

used to identify which chunk needs to be sent next. The variables now, rfr and
cntr are not meant to be changed by ALL specifications, e.g. by using assign-
ments. We call them read-only and collect them in the set RO = {now, rfr, cntr}.

Let us have a closer look at the rules of Table 1.
The first two rules describe the sending of a message ms. Remember that

dur(ms) calculates the time needed to send ms. The counter cntr keeps track
of the time passed already. The action transmit(m:c, ch) occurs when the node
transmits the fragment m:c; simultaneously, it receives the fragment ch.3 The
counter cntr is 0 before a message is sent, and is incremented before the trans-
mission of each chunk. So, each chunk sent has the form ξ(ms):ξ(cntr)+1. To
ease readability we abbreviate ξ(cntr)+1 by c+. In case the (already incre-
mented) counter c+ is strictly smaller than the number of chunks needed to send
ξ(ms), another transmit-action is needed (Rule 1); if the last fragment has been
sent (c+ = dur(ξ(ms))) the process can continue to act as P (Rule 2).

The actions newpkt(d, dest) and deliver(d) are instantaneous and model the
submission of data d from the network layer, destined for dest, and the delivery
of data d to the network layer, respectively. The process newpkt(d, dest).P has
also the possibility to wait, namely if no network layer instruction arrives.

Rule 6 defines a rule for assignment in a straightforward fashion; only the
valuation of the variable var is updated.

In Rules 7 and 8, which define recursion, ξ|RO[vari := ξ(expi)]ni=1 is the valu-
ation that only assigns the values ξ(expi) to the variables vari, for i = 1, . . . , n,
and maintains the values of the variables now, rfr and cntr. These rules state
that a defined process X has the same transitions as the body p of its defining
equation. In case of a wait-transition, the sequential process does not progress,
and accordingly the recursion is not yet unfolded.

Most transition rules so far feature statements of the form ξ(exp) where exp
is a data expression. The application of the rule depends on ξ(exp) being defined.
Rule 9 covers all cases where the above rules cannot be applied since at least one
data expression in an action α is not defined. A state ξ, P is unvalued, denoted
by ξ(p)↑, if P has the form transmit(ms).P , deliver(data).P , [[var := exp]]P
or X(exp1, . . . , expn) with either ξ(ms) or ξ(data) or ξ(exp) or some ξ(expi)
undefined. From such a state the process can merely wait.

A process P + Q can wait only if both P and Q can do the same; if either
P or Q can achieve ‘proper’ progress, the choice process P + Q always chooses
progress over waiting. A simple induction shows that if ξ, P wait(ch)−−−−−→ ζ, P ′ and
ξ,Q wait(ch)−−−−−→ ζ ′, Q′ then P = P ′, Q = Q′ and ζ = ζ ′.

The first rule of (12), describing the semantics of guards [ϕ], is taken from
AWN. Here ξ

ϕ→ ζ says that ζ is an extension of ξ, i.e. a valuation that agrees
with ξ on all variables on which ξ is defined, and evaluates other variables occur-
ring free in ϕ, such that the formula ϕ holds under ζ. All variables not free in
ϕ and not evaluated by ξ are also not evaluated by ζ. Its negation ξ ϕ−�→ says

3 Normally, a node is in its own transmission range. In that case the received chunk
ch will be either the chunk m:c it is transmitting itself, or conflict in case some
other node within transmission range is transmitting as well.

674 R. van Glabbeek et al.

that no such extension exists, and thus, that ϕ is false in the current state, no
matter how we interpret the variables whose values are still undefined. If that is
the case, the process [ϕ]p will idle by performing the action wait(ch).

2.2 A Language for Node Expressions

We model network nodes in the context of a (wireless) network by node expres-
sions of the form

id :(ξ, P):R .

Here id ∈ ID is the address of the node, P is a sequential process expression
with a valuation ξ, and R ∈ P(ID) is the range of the node, defined as the set
of nodes within transmission range of id. Unlike AWN, the process algebra does
not offer a parallel operator for combining sequential processes; such an operator
is not needed due to the nature of link layer protocols.

In the semantics of this layer it is crucial to handle frame collisions. The idea
is that all chunks sent are recorded, together with the respective recipient. In
case a node receives more than one chunk at a time, a conflict is raised, as it
is impossible to send two or more messages via the same medium at the same
time.

The formal semantics for node expressions, presented in Table 2, uses tran-
sition labels traffic(T ,R), id :deliver(d), id :newpkt(d, id ′), connect(id, id ′),
disconnect(id, id ′) and τ , with partial functions T ,R : ID ⇀ CHUNK, id, id ′ ∈ ID,
and d ∈ DATA.

Table 2. Structural operational semantics for node expressions

All time-consuming actions on process level (transmit(m:c,ch) and wait(ch))
are transformed into an action traffic(T ,R) on node level: the first argument

A Process Algebra for Link Layer Protocols 675

Table 3. Structural operational semantics for network expressions

T maps dest to m:c if and only if the chunk m:c is transmitted to dest. The
second argument R maps id to m:c if and only if the chunk m:c is received on
process level at node id. For the sos-rules of Table 2 we use the set-theoretic
presentation of partial functions. The two rules for wait set T := ∅, as no
chunks are transmitted; the rules for transmit allow a transmitted chunk m:c
to travel to all nodes within transmission range: T := {(r,m:c) |r ∈ R}. In case
that during the transmission or waiting no chunk is received (ch = idle) we set
R = ∅; otherwise R = {(id, ch)}, indicating that chunk ch is received by node id.

The actions id :newpkt(d, dest) and id :deliver(d) as well as the internal
actions τ are simply inherited by node expressions from the processes that run
on these nodes.

The remaining rules of Table 2 model the mobility aspect of wireless networks;
the rules are taken straight from AWN [12,13]. We allow actions connect(id, id ′)
and disconnect(id, id ′) for id, id ′ ∈ ID modelling a change in network topology.
These actions can be thought of as occurring nondeterministically, or as actions
instigated by the environment of the modelled network protocol. In this formali-
sation node id ′ is in the range of node id, meaning that id ′ can receive messages
sent by id, if and only if id is in the range of id ′. To break this symmetry, one just
skips the last four rules of Table 2 and replaces the synchronisation rules for con-
nect and disconnect in Table 3 by interleaving rules (like the ones for deliver,
newpkt and τ) [12]. For some applications a wired or non-mobile network need
to be considered. In such cases the last six rules of Table 2 are dropped.

Whether a node id :P :R receives its own transmissions depends on whether
id ∈ R. Only if id ∈ R our process algebra will disallow the transmission from
and to a single node id at the same time, yielding a conflict.

2.3 A Language for Networks

A partial network is modelled by a parallel composition ‖ of node expressions,
one for every node in the network. A complete network is a partial network
within an encapsulation operator [], which limits the communication between
network nodes and the outside world to the receipt and delivery of data packets
to and from the network layer.

676 R. van Glabbeek et al.

The syntax of networks is described by the following grammar:

N ::= [MT
T] MT

S1∪·S2
::=MT

S1
‖MT

S2
MT

{id} ::= id :(ξ, P):R ,

with {id} ∪ R ⊆ T ⊆ ID. Here MT
S models a partial network describing the

behaviour of all nodes id ∈ S. The set T contains the identifiers of all nodes that
are part of the complete network. This grammar guarantees that node identifiers
of node expressions—the first component of id :P :R—are unique.

The operational semantics of network expressions is given in Table 3. Internal
actions τ as well as the actions id :deliver(d) and id :newpkt(d,id) are inter-
leaved in the parallel composition of nodes that makes up a network, and then
lifted to encapsulated networks (Line 1 of Table 3).

Actions traffic and (dis)connect are synchronised. The rule for synchro-
nising the action traffic (Line 3), the only action that consumes time on the
network layer, uses the union � of partial functions. It is formally defined as

(R1 � R2)(id) :=

⎧
⎨

⎩

conflict if id ∈ dom(R1) ∩ dom(R2)
R1(id) if id ∈ dom(R1) − dom(R2)
R2(id) if id ∈ dom(R2) − dom(R1) .

The synchronisation of the sets Ri and Ti has the following intuition: if a node
identifier id ∈ ID is in both dom(T1) and dom(T2) then there exist two nodes that
transmit to node id at the same time, and therefore a frame collision occurs.
In our algebra this is modelled by the special chunk conflict. The sos rules of
Tables 2 and 3 guarantee that there cannot be collisions within the set of received
chunks R. The reason is that each node merely contributes to R a chunk for
itself; it can be the chunk conflict though. Therefore we could have written
R1 ∪ R2 instead of R1 � R2 in the sixth rule of Table 3.

The last rule propagates a traffic(T ,R)-action of a partial network M to a
complete network [M]. By then T consists of all chunks (after collision detection)
that are being transmitted by any member in the network, and R consists of all
chunks that are received. The condition R = T determines the content of the
messages in R. The traffic(T ,R)-actions become internal at this level, as they
cannot be steered by the outside world; all that is left is a time-step tick.

2.4 Results on the Process Algebra

As for the process algebra T-AWN [2], but with a slightly simplified proof, one
can show that our processes have no time deadlocks:

Theorem 2.1. A complete network N in our process algebra always admits a
transition, independently of the outside environment, i.e. ∀N,∃a such that N a−→
and a �∈ {connect(id, id ′),disconnect(id, id ′), id :newpkt(d,dest)}.
More precisely, either N tick−−→, or N id : deliver(d)−−−−−−−−→ or N τ−→.

The following results (statements and proofs) are very similar to the results
about the process algebra AWN, as presented in [13]. A rich body of foundational

A Process Algebra for Link Layer Protocols 677

meta theory of process algebra allows the transfer of the results to our setting,
without too much overhead work.

Identical to AWN and its timed version T-AWN, our process algebra admits
a translation into one without data structures (although we cannot describe the
target algebra without using data structures). The idea is to replace any variable
by all possible values it can take. The target algebra differs from the original only
on the level of sequential processes; the subsequent layers are unchanged. The
construction closely follows the one given in the appendix of [2]. The inductive
definition contains the rules

Tξ(deliver(data).P) = deliver(ξ(data)).Tξ(P) and
Tξ([[var := exp]]P) = τ.Tξ

[
var := ξ(exp)

] (P).
Most other rules require extra operators that keep track of the passage of time
and the evolution of other internal variables. The resulting process algebra has a
structural operational semantics in the (infinitary) de Simone format, generating
the same transition system—up to strong bisimilarity, ↔ —as the original. It
follows that ↔, and many other semantic equivalences, are congruences on our
language [23].

Theorem 2.2. Strong bisimilarity is a congruence for all operators of our lan-
guage.

This is a deep result that usually takes many pages to establish (e.g. [25]). Here
we get it directly from the existing theory on structural operational semantics,
as a result of carefully designing our language within the disciplined framework
described by de Simone [23]. ��

Theorem 2.3. The operator ‖ is associative and commutative, up to ↔.

Proof. The operational rules for this operator fits a format presented in [6],
guaranteeing associativity up to ↔. The ASSOC-de Simone format of [6]
applies to all transition system specifications (TSSs) in de Simone format,
and allows 7 different types of rules (named 1–7) for the operators in ques-
tion. Our TSS is in de Simone format; the four rules for ‖ of Table 3 are
of types 1, 2 and 7, respectively. To be precise, it has rules 1a and 2a for
a ∈ {τ ,id :deliver(d),id :newpkt(d, dest)}, rules 7(a,b) for

(a, b) ∈ {(traffic(T1,R1), traffic(T2,R2)) | R1,R2, T1, T2 ∈ ID ⇀ CHUNK}

and rules 7(c,c) for c ∈ {connect(id, id ′),disconnect(id, id ′) | id, id ′ ∈ ID}.
Moreover, the partial communication function γ : Act × Act ⇀ Act is given by
γ(traffic(T1,R1), traffic(T2,R2)) = traffic(T1 � T2,R1 � R2) and γ(c, c) = c.
The main result of [6] is that an operator is guaranteed to be associative, provided
that γ is associative and six conditions are fulfilled. In the absence of rules
of types 3, 4, 5 and 6, five of these conditions are trivially fulfilled, and the
remaining one reduces to

7(a,b) ⇒ (1a ⇔ 2b) ∧ (2a ⇔ 2γ(a,b)) ∧ (1b ⇔ 1γ(a,b)) .

678 R. van Glabbeek et al.

Here 1a says that rule 1a is present, etc. This condition is trivially met for ‖ as
there neither exists a rule of the form 1traffic(T,R) nor of the form 2traffic(T,R),
or 1c, 2c with c as above. As on traffic actions γ is basically the union of partial
functions (�), where a collision in domains is indicated by an error conflict, it
is straightforward to prove associativity of γ.

Commutativity of ‖ follows by symmetry of the sos rules. ��

3 An Algebra for Link Layer Protocols

We now introduce ALL, the Algebra for Link Layer protocols. It is obtained
from the process algebra presented in the previous section by the addition of a
probabilistic choice operator

⊕n
0 . As a consequence, the semantics of the algebra

is no longer a labelled transition system, but a probabilistic labelled transition
system (pLTS) [8]. This is a triple (S,Act,→), where

(i) S is a set of states
(ii) Act is a set of actions
(iii) → ⊆ S × Act × D(S), where D(S) is the set of all (discrete) probability

distributions over S: functions Δ : S → [0, 1] with
∑

s∈S Δ(s) = 1.

As with LTSs, we usually write s α−→ Δ instead of (s, α,Δ) ∈ →. The point
distribution δs, for s ∈ S, is the distribution with δs(s) = 1. We simply write
s α−→ t for s α−→ δt. An LTS may be viewed as a degenerate pLTS, in which only
point distributions occur. For a uniform distribution over s0, . . . , sn ∈ S we write
Un

i=0si. The pLTS associated to ALL takes S to be the disjoint union of the pairs
ξ, P , with P a sequential process expression, and the network expressions. Act
is the collection of transition labels, and → consists of the transitions derivable
from the structural operational semantics of the language.

Rules (1)–(6), (9), (11) and (12) of Table 1 are adopted to ALL unchanged,
whereas in Rules (7), (8) and (10) the state ζ, P ′ (or ζ,Q′) is replaced by an
arbitrary distribution Δ. Add to those the following rule for the probabilistic
choice operator:

ξ,

n⊕

i=0

P τ−→ Uξ(n)
i=0 ξ

[
i := i

]
, P

Here the data variable i may occur in P . The rules of Tables 2 and 3 are adapted
to ALL unchanged, except that P ′, M ′ and N ′ are now replaced by arbitrary
distributions over sequential processes and network expressions, respectively.
Here we adapt the convention that a unary or binary operation on states lifts
to distributions in the standard manner. For example, if Δ is a distribution over
sequential processes, id ∈ ID and R ⊆ ID, then id :Δ :R describes the distribution
over node expressions that only has probability mass on nodes with address id
and range R, and for which the probability of id :P :R is Δ(P). Likewise, if Δ and
Θ are distributions over network expressions, then Δ‖Θ is the distribution over
network expressions of the form M‖N , where (Δ‖Θ)(M‖N) = Δ(M) · Θ(N).

A Process Algebra for Link Layer Protocols 679

4 Formalising Liveness Properties of Link Layer
Protocols

Link layer protocols communicate with the network layer through the actions
id :newpkt(d, dest) and id :deliver(d). The typical liveness property expected
of a link layer protocol is that if the network layer at node id injects a data
packet d for delivery at destination dest then this packet is delivered eventually.
In terms of our process algebra, this says that every execution of the action
id :newpkt(d, dest) ought to be followed by the action dest :deliver(d). This
property can be formalised in Linear-time Temporal Logic [22] as

G
(
id :newpkt(d, dest) ⇒ F(dest :deliver(d))

)
(1)

for any id, dest∈ ID and d ∈ DATA. This formula has the shape G
(
φpre ⇒ Fφpost

)
,

and is called an eventuality property in [22]. It says that whenever we reach a
state in which the precondition φpre is satisfied, this state will surely be followed
by a state were the postcondition φpost holds. In [7,13] it is explained how action
occurrences can be seen or encoded as state-based conditions. Here we will not
define how to interpret general LTL-formula in pLTSs, but below we do this for
eventuality properties with specific choices of φpre and φpost .

Formula (1) is too strong and does not hold in general: in case the nodes
id and dest are not within transmission range of each other, the delivery of
messages from id to dest is doomed to fail. We need to postulate two side
conditions to make this liveness property plausible. Firstly, when the request
to deliver the message comes in, id needs to be connected to dest. We intro-
duce the predicate cntd(id, dest) to express this, and hence take φpre to be
cntd(id, dest) ∧ id :newpkt(d, dest). Secondly, we assume that the link between
id and dest does not break until the message is delivered. As remarked in [13],
such a side condition can be formalised by taking φpost to be dest :deliver(d) ∨
disconnect(id, dest). Thus the liveness property we are after is

G
(
cntd(id, dest) ∧ id :newpkt(d, dest) ⇒

F(dest :deliver(d) ∨ disconnect(id, dest) ∨ disconnect(dest, id))
) (2)

We now define the validity of eventuality properties G
(
φpre ⇒ Fφpost

)
. Here

φpre and φpost denote sets of transitions and actions, respectively, and hold if one of
the transitions or actions in the set occurs. In (2), φpre denotes the transitions with
label id :newpkt(d, dest) that occur when the side condition cntd(id, dest) is met,
whereas φpost = {dest :deliver(d),disconnect(id, dest),disconnect(dest, id)}
is a set of actions.

A path in a pLTS (S,Act,→) is an alternating sequence s0, α1, s1, α2, . . . of
states and actions, starting with a state and either being infinite or ending with
a state, such that there is a transition si

αi+1−−−→ Δi+1 with Δi+1(si+1) > 0 for each
i. The path is rooted if it starts with a state marked as ‘initial’, and complete if
either it is infinite, or there is no transition starting from its last state. A state
or transition is reachable if it occurs in a rooted path.

680 R. van Glabbeek et al.

In a pLTS with an initial state, an eventually formula G
(
φpre ⇒ Fφpost

)
,

with φpre and φpost denoting sets of transitions and actions, holds outright if all
complete paths starting with a reachable transition from φpre contain a transition
with a label from φpost .

Definitions 3 and 5 in [9] define the set of probabilities that a pLTS with
an initial state will ever execute the action ω. One obtains a set of probabilities
rather than a single probability due to the possibility of nondeterministic choice.
This definition generalises to sets of actions φpost (seen as disjunctions) by first
renaming all actions in such a set into ω. It also generalises trivially to pLTSs
with an initial transition. For t a transition in a pLTS, let Prob(t, φpost) be the
infimum of the set of probabilities that the pLTS in which t is taken to be the
initial transition will ever execute φpost . Now in a pLTS with an initial state, an
eventually formula G

(
φpre ⇒ Fφpost

)
holds with probability at least p if for all

reachable transitions t in φpre we have Prob(t, φpost) ≥ p.
Possible correctness criteria for link layer protocols are that the liveness prop-

erty (2) either holds outright, holds with probability 1, or at least holds with
probability p for a sufficiently high value of p.

Sometimes we are content to establish that (2) holds under the additional
assumptions that the network is stable until our packet is delivered, meaning that
no links between any nodes are broken or established, and/or that the network
layer refrains from injecting more packets. This is modelled by taking

φpost = {dest :deliver(d),disconnect(∗, ∗), connect(∗, ∗),newpkt(∗, ∗)}. (3)

We will refer to this version of (2) as the weak packet delivery property. Packet
delivery is the strengthening without newpkt(∗, ∗) in (3), i.e. not assuming that
the network layer refrains from injecting more packets.

5 Modelling and Analysing the CSMA/CA Protocol

In this section we model two versions of the CSMA/CA protocol, using the
process algebra ALL. Moreover, we briefly discuss some results we obtained
while analysing these protocols.

The Carrier-Sense Multiple Access (CSMA) protocol is a media access con-
trol (MAC) protocol in which a node verifies the absence of other traffic before
transmitting on a shared transmission medium. If a carrier is sensed, the node
waits for the transmission in progress to end before initiating its own transmis-
sion. Using CSMA, multiple nodes may, in turn, send and receive on the same
medium. Transmissions by one node are generally received by all other nodes
connected to the medium.

The CSMA protocol with Collision Avoidance (CSMA/CA) [17,19]4

improves the performance of CSMA. If the transmission medium is sensed busy
4 The primary medium access control (MAC) technique of IEEE 802.11 [19] is called
distributed coordination function (DCF), which is a CSMA/CA protocol.

A Process Algebra for Link Layer Protocols 681

before transmission then the transmission is deferred for a random time interval.
This interval reduces the likelihood that two or more nodes waiting to transmit
will simultaneously begin transmission upon termination of the detected trans-
mission. CSMA/CA is used, for example, in Wi-Fi.

It is well known that CSMA/CA suffers from the hidden station problem (see
Sect. 5.2). To overcome this problem, CSMA/CA is often supplemented by the
request-to-send/clear-to-send (RTS/CTS) handshaking [19]. This mechanism is
known as the IEEE 802.11 RTS/CTS exchange, or virtual carrier sensing. While
this extension reduces the amount of collisions, wireless 802.11 implementations
do not typically implement RTS/CTS for all transmissions because the trans-
mission overhead is too great for small data transfers.

We use the process algebra ALL to model both the CSMA/CA without and
with virtual carrier sensing.

5.1 A Formal Model for CSMA/CA

Our formal specification of CSMA/CA consists of four short processes written in
ALL. It is precise and free of ambiguities—one of the many advantages formal
methods provide, in contrast to specifications written in English prose.

The syntax of ALL is intended to look like pseudo code, and it is our belief
that the specification can easily be read and understood by software engineers,
who may or may not have experience with process algebra.

As the underlying data structure of our model is straightforward, we do not
present it explicitly, but introduce it while describing the different processes.

The basic process CSMA, depicted in Process 1, is the protocol’s entry point.

Process 1. The Basic Routine

CSMA(id)
def
=

1. newpkt(data,dest). INIT(id,0,dataframe(data,id,dest))
2. + [new(dataframe(data,src,id))] deliver(data) .
3. (
4. [[timeout := now + sifs]] [now ≥ timeout]
5. transmit(ackframe(src)) . CSMA(id)
6.)

This process maintains a single data variable id in which it stores its own iden-
tity. It waits until either it receives a request from the network layer to transmit a
packet data to destination dest, or it receives from another node in the network
a CSMA message (data frame) destined for itself.

In case of a newly injected data packet (Line 1), the process INIT is called; this
process (described below) initiates the sending of the message via the medium.
When passing the message on to INIT we use a function dataframe : DATA×ID×
ID → MSG that generates a message in a format used by the protocol: next to
the header fields (from which we abstract) it contains the injected data as well
as the designated receiver dest and the sender id—the current node.

682 R. van Glabbeek et al.

In case of an incoming dataframe destined for this node (the third argument
carrying the destination is id) (Line 2)—any other incoming message is ignored
by this process—the data is handed over to the network layer (deliver(data))
followed by the transmission of an acknowledgement back to the sender of the
message (src). CSMA/CA requires a short period of idling medium before send-
ing the acknowledgement: in [19] this interval is called short interframe space
(sifs). The process waits until the time of the interframe spacing has passed, and
then transmits the acknowledgement. The acknowledgement sent is not always
received by src, e.g. due to data collision; therefore src could send the same
message again (see Process 4) and id could deliver the same data to the network
layer again.

Process 2. Protocol Initialisation

INIT(id,tries,dframe)
def
=

1. [tries ≤ max retransmit]
2. [[cw := cwmin × 2tries]]
3.

⊕cw−1
b=0 CCA(id,b,tries,dframe) /* choose a backoff from {0, . . . , cw−1} */

4. + [tries > max retransmit]
5. deliver(channel access failure) . CSMA(id)

The process INIT (Process 2) initiates the sending of a message via the
medium. Next to the variable id, which is maintained by all processes, it main-
tains the variable tries and dframe: tries stores the number of attempts
already made to send message dframe. When the process is called the first time
for a message dframe (Line 1 of Process 1) the value of tries is 0.

The constant max retransmit specifies the maximum number of attempts
the protocol is allowed to retransmit the same message. If the limit is not yet
reached (Line 1) the message dframe is sent. As mentioned above, CSMA/CA
defers messages for a random time interval to avoid collision. The node must start
transmission within the contention window cw, a.k.a. backoff time. cw is calcu-
lated in Line 2; it increases exponentially.5 After cw is determined, the process
CCA is called, which performs the actual transmit-action. In case the maximum
number of retransmits is reached (Line 4), the process notifies the network layer
and restarts the protocol, awaiting new instructions from the application layer,
or a new incoming message.

Process 3 takes care of the actual transmission of dframe. However, the
protocol has a complicated procedure when to send this message.

First, the process senses the medium and awaits the point in time when it is
idle (Line 6). In case, before this happens, it receives from another node in the
network a CSMA message destined for itself (Line 1), this message is handled
just as in Process 1, except that after acknowledging this message the protocol
returns to Process 3.

5 A typical value for cwmin is 16; it must satisfy cwmin > 0.

A Process Algebra for Link Layer Protocols 683

Process 3. Clear Channel Assessment With Physical Carrier Sense

CCA(id,b,tries,dframe)
def
=

1. [new(dataframe(data,src,id))] deliver(data) .
2. (
3. [[timeout := now + sifs]] [now ≥ timeout]
4. transmit(ackframe(src)) . CCA(id,b,tries,dframe)
5.)
6. + [idle]
7. [[timeout:=now+difs]] /* start wait for duration difs */
8. (
9. [¬idle] CCA(id,b,tries,dframe)

10. + [idle ∧ now ≥ timeout]
11. [[timeout := now + b]]
12. (
13. [¬idle] /* busy during backoff time */
14. [[b := timeout − now]] CCA(id,b,tries,dframe)
15. + [idle ∧ now ≥ timeout] /* idle for backoff time */
16. transmit(dframe) .
17. ACKRECV(id,tries,now+max ack wait,dframe)
18.)
19.)

To guarantee a gap between messages sent via the medium, CSMA/CA (as
well as other protocols) specifies the distributed (coordination function) inter-
frame space (difs ∈ TIME), which is usually small,6 but larger than sifs, so
that acknowledgements get priority over new data frames. When the medium
becomes busy during the interframe space, another node started transmitting
and the process goes back to listening to the medium (Line 9). In case nothing
happens on the medium and the end of the interframe space is reached (Line
10), the process determines the actual time to start transmitting the message,
taking the backoff time b into account (Line 11). If the medium is idle for the
entire backoff period (Line 15), the message is transmitted (Line 16), and the
process calls the process ACKRECV that will await an acknowledgement from the
recipient of dframe (Line 17); the third argument specifies the maximum time
the process should wait for such an acknowledgement. (As mentioned before an
acknowledgement may never arrive.) If another node transmits on the medium
during the backoff period, the protocol restarts the routine (Lines 13 and 14),
with an adjusted backoff value b—the process already started waiting and should
not be punished when the waiting is restarted; this update guarantees fairness
of the protocol.

The process awaiting an acknowledgement (Process 4) is straightforward. It
waits until either it receives a CSMA message destined for itself (Line 1), or it
receives an acknowledgement (Line 6), or it has waited for this acknowledgement
as long as it is going to (Line 8).
6 Recommended values for the constant difs are given in [19].

684 R. van Glabbeek et al.

In the first case, the message is handled just as in Process 1, except that after
acknowledging this message the protocol returns to Process 4. In the second case
the network layer is informed that the sending of dframe was successful and the
process loops back to Process 1 (Line 7). Line 8 describes the situation where no
acknowledgement message arrives and the process times out. Here CSMA/CA
retries to send the message; the counter tries is incremented.

Process 4. Receiving an ACK

ACKRECV(id,tries,acktimeout,dframe)
def
=

1. [new(dataframe(data,src,id))] deliver(data) .
2. (
3. [[timeout := now + sifs]] [now ≥ timeout]
4. transmit(ackframe(src)) . ACKRECV(id,tries,acktimeout,dframe)
5.)
6. + [new(ackframe(id))] /* acknowledgement received */
7. deliver(success) . CSMA(id)
8. + [now ≥ acktimeout] INIT(id,tries+1,dframe)

5.2 The Hidden Station Problem

As mentioned in the introduction to this section, CSMA/CA suffers from the
hidden station problem. This refers to the situation where two nodes A and C
are not within transmission range of each other, while a node B is in range of
both. In this situation C may be transmitting to B, but A is not able to sense
this, and thus may start a transmission to B at roughly the same time, leading
to data collisions at B.

While CSMA/CA is not able to avoid such collisions as a whole—it is always
possible that two (or more) nodes hidden from each other happen to (randomly)
choose the same backoff time to send messages—it is the exponential growth of
the backoff slots that makes the problem less pressing in the long run, as the
following theorem shows.

Theorem 5.1. If max retransmit=∞ then weak packet delivery holds with
probability 1.

Proof sketch. Since the number of messages that nodes transmit is bounded, and
all nodes select random times to start transmitting out of an increasing longer
time span, with probability 1 each message will eventually go through. �

In practice, max retransmit is set to a value that is not high enough to approx-
imate the idea behind the above proof. In fact, the transmission time of a single
message may be larger than the maximal backoff period allowed. For this reason
the hidden station problem does occur when running the CSMA/CA protocol,
as studies have shown [5]. Nevertheless, the above analysis still shows that link
layer protocols can be formally analysed by process algebra in general, and ALL
in particular.

A Process Algebra for Link Layer Protocols 685

sender receiver

RTS

CTS

Data

ACK

Fig. 1. RTS/CTS exchange

5.3 A Formal Model for CSMA/CA with Virtual Carrier Sensing

To overcome the hidden station problem the usage of a request-to-send/clear-
to-send (RTS/CTS) handshaking [19] mechanism is available. This mechanism
is also known as virtual carrier sensing. The exchange of RTS/CTS messages
happens just before the actual data is sent, see Fig. 1. The mechanism serves two
purposes: (a) As the RTS and CTS messages are very short—they only contain
two node identifiers as well as a natural number indicating the time it will take to
send the actual data (plus overhead)—the likelihood of a collision is reduced. (b)
While the handshaking does not help with solving the hidden station problem
for the RTS message itself, it avoids the problem for the sending of data. The
reason is that a hidden node, which could interfere with the sending of data will
receive the CTS message from the designated recipient of data, and the hidden
node will remain silent until the data has been sent.

As for the CSMA/CA protocol we have modelled this extension in ALL,
based on the model of CSMA/CA we presented earlier.

Our extended model uses two functions to generate rts and cts messages,
respectively. The signature of both is ID × ID × TIME → MSG. The first argu-
ment carries the sender (source) of the message, the second the indented des-
tination, and the third argument a duration (time period) of silence that is
requested/granted. For example, before the message rts(src,dest,d) is trans-
mitted, the time period d is calculated by
The calculation is straightforward as it follows the protocol logic and determines
the amount of time needed until the acknowledgement would be received (see
Fig. 2). After the rts message has been received the medium should be idle for
the interframe space sifs; then a cts message is sent back, which takes time
dur cts; then another interframe space is needed, followed by the actual trans-
mission of the message—the sending will take dur(dataframe(data,id,dest))
time units; after the message is received (hopefully) another interframe space is
required before the acknowledgement is sent back.

[[d := sifs+dur cts+sifs+dur(dataframe(data,id,dest))+sifs+dur ack]] .

Process 2 remains essentially unchanged; it is merely equipped with the des-
tination dest of the message that needs to be transmitted, and an additional
timed variable nav ∈ TIME. These variables are not used in this process, but
required later on. Variable nav holds the point in time until the process should

686 R. van Glabbeek et al.

Fig. 2. The use of virtual channel sensing using CSMA/CA [3]

not transmit any rts or cts message. This period of silence is necessary as the
node figures out that until time nav another node will transmit message(s).7

Process 5 is the modified version of Process 1. Identical to Process 1 it awaits
an instruction from the network layer, or an incoming CSMA message destined
for itself. Lines 1–3 are identical to Process 1. Lines 4–11 handle the two new mes-
sage types. In case an rts message rts(src,dest,d) is received that is intended
for another recipient (dest �= id) the node concludes that another node wants to
use the medium for the amount of d time units; the process updates the variable
nav if needed, indicating the period the node should remain silent, by taking
the maximum of the current value of nav, and now+d, the point in time until
the sender src of the rts message requires the medium. The same behaviour
occurs if a cts message is received that is not intended for the node itself (Line
4). If the incoming message is an rts message intended for the node itself (Line
6) by default the node answers with a clear-to-send message back to the sender
(Line 9). However, when the receiver of the rts has knowledge about other nodes
requiring the medium (now ≤ nav), a clear-to-send cannot be granted, and the
request is dropped (Line 6). Similar to the sending of an acknowledgement (Line
2), the process waits for the short interframe space (sifs) before sending the
CTS (Line 6). Line 8 handles the case where the medium becomes busy (¬idle)
during this period; also here a clear-to-send cannot be granted, and the request
is dropped.8 Only when the medium stays idle during the entire interframe space
the node id can inform the source of the rts message that the medium is clear
to send; the cts is transmitted in Line 9. The time a receiver of this message
has to be silent is adjusted by deducting the time elapsed before this happens.
In Line 10 the process resets nav to remind itself not to issue any rts message
until the present exchange has been completed.9

7 After a successful RTS/CTS exchange, communicating nodes proceed with trans-
mitting the data and an acknowledgement regardless of the value of nav.

8 The condition now > timeout−sifs prevents the process from dropping the request
in the very first time slice that CSMA is running. Here the medium counts as busy,
but only because we have just received an rts message.

9 A case new(cts(src,dest,d)) ∧ dest = id is not required as a cts message is only
expected in case an rts was sent, and hence handled in process RTSREACT.

A Process Algebra for Link Layer Protocols 687

Process 5. The Basic Routine (RTS/CTS)

CSMA(id,nav)
def
=

1. newpkt(data,dest). INIT(id,dest,0,dataframe(data,id,dest),nav)
2. + [new(dataframe(data,src,id))] deliver(data) . [[timeout := now + sifs]]
3. [now ≥ timeout] transmit(ackframe(src)) . CSMA(id,nav)
4. + [(new(rts(src,dest,d)) ∨new(cts(src,dest,d))) ∧ dest �= id∧ nav < now+d]
5. [[nav := now+d]] CSMA(id, nav)
6. + [new(rts(src,id,d)) ∧ now > nav] [[timeout := now + sifs]]
7. (
8. [¬idle ∧ now > timeout−sifs] CSMA(id, nav)
9. + [idle ∧ now ≥ timeout] transmit(cts(id,src,d−dur cts−sifs)) .

10. [[nav := now+d−dur cts−sifs]] CSMA(id, nav)
11.)

Process 6. Clear Channel Assessment With Virtual Carrier Sense

CCA(id,dest,b,tries,dframe,nav)
def
=

1. [new(dataframe(data,src,id))] deliver(data) . [[timeout := now + sifs]]
2. [now ≥ timeout] transmit(ackframe(src)) . CCA(id,dest,b,tries,dframe,nav)
3. + [(new(rts(src,dest,d)) ∨new(cts(src,dest,d))) ∧ dest �= id∧ nav < now+d]
4. [[nav := now+d]] CCA(id,dest,b,tries,dframe,nav)
5. + [new(rts(src,id,d)) ∧ now > nav] [[timeout := now + sifs]]
6. (
7. [¬idle ∧ now > timeout−sifs] CCA(id,dest,b,tries,dframe,nav)
8. + [idle ∧ now ≥ timeout] transmit(cts(id,src,d−dur cts−sifs)) .
9. [[nav := now+d−dur cts−sifs]] CCA(id,dest,b,tries,dframe,nav)

10.)
11. + [idle ∧ now > nav]
12. [[timeout:=now+difs]]
13. (
14. [¬idle] CCA(id,dest,b,tries,dframe,nav)
15. + [idle ∧ now ≥ timeout]
16. [[timeout := now + b]]
17. (
18. [¬idle] /* busy during backoff time */
19. [[b := timeout − now]] CCA(id,dest,b,tries,dframe,nav)
20. + [idle ∧ now ≥ timeout] /* idle for backoff time */
21. [[d := sifs + dur cts + sifs + dur(dframe) + sifs + dur ack]]
22. transmit(rts(id,dest,d)) .
23. CTSRECV(id,dest,tries,now + max cts wait,dframe,nav)
24.)
25.)

Process 6 is the modified version of Process 3. The goal of this process is to
send an rts message (Line 22). Before it can start its work, it waits until the
medium is idle, and any time it is required to be silent has elapsed (Line 11).

688 R. van Glabbeek et al.

Until this happens incoming data frames, rts or cts messages are treated just
as in Process 5: Lines 1–10 copy Lines 2–11 of Process 5, except that afterwards
the process returns to itself. Then Lines 12–20 are copied from Lines 7–15 from
Process 3. Line 21 calculates the time other nodes ought to keep silent when
receiving the rts message, and Line 23 passes control to the process CTSRECV,
which awaits a cts response to the rts message transmitted in Line 22. The
fourth argument of CTSRECV specifies the maximum time that process should
wait for such a response; a good value for max cts wait is sifs + dur cts.

Process CTSRECV listens for this time to a cts message with source dest and
destination id. In case the expected cts message arrives in time (Line 1), the
node waits for a time sifs (Line 2) and then transmits the data frame and pro-
ceeds to await an acknowledgement (Line 3). The fourth argument of ACKRECV
specifies the maximum time the process should wait for such an acknowledge-
ment; a good value for max ack wait is sifs+dur ack. If the cts message does
not arrive in time (Line 6), the process returns to INIT to send another rts
message, while incrementing the counter tries (Line 7). While waiting for the
cts message, any incoming rts or cts message destined for another node is
treated exactly as in Process 5 (Lines 4–5). Incoming data frames cannot arrive
when this process is running, and incoming rts messages to id are ignored.

Process 7. Receiving a CTS

CTSRECV(id,dest,tries,ctstimeout,dframe,nav)
def
=

1. [new(cts(dest,id,d))]
2. [[timeout := now + sifs]] [now ≥ timeout]
3. transmit(dframe) . ACKRECV(id,dest,tries,now + max ack wait,dframe,nav)
4. + [(new(rts(src,dest,d)) ∨new(cts(src,dest,d))) ∧ dest �= id∧ nav < now+d]
5. [[nav := now+d]] CTSRECV(id,dest,tries,ctstimeout,dframe,nav)
6. + [now ≥ ctstimeout]
7. INIT(id,dest,tries+1,dframe,nav)

Process 8. Receiving an ACK

ACKRECV(id,dest,tries,acktimeout,dframe,nav)
def
=

1. [new(ackframe(id))]
2. deliver(success) . CSMA(id,nav)
3. + [(new(rts(src,dest,d))∨new(cts(src,dest,d)))∧dest �= id∧nav < now+d]
4. [[nav := now+d]] ACKRECV(id,dest,tries,acktimeout,dframe,nav)
5. + [now ≥ timeout] /* nothing received */
6. INIT(id,dest,tries+1,dframe,nav)

Process 8 handles the receipt of an acknowledgement in response to a success-
ful data transmission. If an acknowledgement arrives, it must be from the node
to which id has transmitted a data frame. In that case (Line 1), the network
layer is informed that the sending of dframe was successful and the process loops
back to Process 5 (Line 2). Line 5 describes the situation where no acknowledge-
ment message arrives and the process times out. Also here CSMA/CA retries

A Process Algebra for Link Layer Protocols 689

to send the message; the counter tries is incremented. Lines 3–4 describe the
usual handling of incoming rts or cts messages destined for another node.

5.4 The Exposed Station Problem

Another source of collisions in CSMA/CA is the well-known exposed station
problem. This refers to a linear topology A − B − C − D, where an unending
stream of messages between C and D interferes with attempts by A to get a
message across to B. In the default CSMA/CA protocol as formalised in Sect. 5.1,
transmissions from A to B may perpetually collide at B with transmissions from
C destined for D. CSMA/CA with virtual carrier sensing mitigates this problem,
for a cts sent by B in response to an rts sent by A will tell C to keep silent
for the required duration. In fact, we can show that in the above topology,
if max retransmit=∞ then packet delivery holds with probability 1. A non-
probabilistic guarantee cannot be given since nodes A and C could behave in
the same way, meaning if one node is sending out a message the other does the
same at the very same moment, and if one is silent the other remains silent as
well. In this scenario all messages to be sent are doomed.

Based on our formalisation, we can prove that once the RTS/CTS handshake
has been successfully concluded, meaning that all nodes within range of the
intended recipient have received the cts, then packet delivery holds outright. So
the only problem left is to achieve a successful RTS/CTS handshake. Since rts
and cts messages are rather short, even by modest values of max retransmit it
becomes likely that such messages do not collide.

In spite of this, CSMA/CA with (or without) virtual channel sensing cannot
achieve packet delivery with probability 1 for general topologies. Assume the
following network topology

B A

C1 D1

C2 D2

C3 D3

Here it may happen that one of the Cis is always busy transmitting a large
message to Di; any given Ci is occasionally silent (not sending any message), but
then one of the others is transmitting. As Ci is disconnected from Cj , for j �= i,
coordination between the nodes is impossible. As a consequence, the medium at
A will always be busy, so that A cannot send an rts message from B.

6 Related Work

The CSMA protocol in its different variants has been analysed with different
formalisms in the past.

Multiple analyses were performed for the CSMA/CD protocol (CSMA with
collision detection), a predecessor of CSMA/CA that has a constant backoff, i.e.

690 R. van Glabbeek et al.

the backoff time is not increased exponentially, see [10,11,20,21,26]. In all these
approaches frame collisions have to be modelled explicitly, as part of the pro-
tocol description. In contrast, our approach handles collisions in the semantics;
thereby achieving a clear separation between protocol specifications and link
layer behaviour.

Duflot et al. [10,11] use probabilistic timed automata (PTAs) to model the
protocol, and use probabilistic model checking (PRISM) and approximate model
checking (APMC) for their analysis. The model explained in [26] is based on
PTAs as well, but uses the model checker Uppaal as verification tool. These
approaches, although formal, have very little in common with our approach. On
the one hand it is not easy to change the model from CSMA/CD to CSMA/CA,
as the latter requires unbounded data structures (or alike) to model the expo-
nential backoff. On the other hand, as usual, model checking suffers from state
space explosion and only small networks (usually fewer than ten nodes) can
be analysed. This is sufficient and convenient when it comes to finding counter
examples, but these approaches cannot provide guarantees for arbitrary network
topologies, as ours does.

Jensen et al. [20] use models of CSMA/CD to compare the tools SPIN and
Uppaal. Their models are much more abstract than ours. It is proven that no
collisions will ever occur, without stating the exact conditions under which this
statement holds.

To the best of our knowledge, Parrow [21] is the only one who used process
algebra (CCS) to model and analyse CSMA. His untimed model of CSMA/CD
is extremely abstract and the analysis performed is limited to two nodes only,
avoiding scenarios such as the hidden station problem.

There are far fewer formal analyses techniques available when it comes to
CSMA/CA (with and without virtual medium sensing). Traditional approaches
to the analysis of network protocols are simulation and test-bed experiments.
This is also the case for CSMA/CA (e.g. [4]). While these are important and
valid methods for protocol evaluation, in particular for quantitative performance
evaluation, they have limitations in regards to the evaluation of basic protocol
correctness properties.

Following the spirit of the above-mentioned research of model checking CSMA,
Fruth [15] analyses CSMA/CA using PTAs and PRISM. He considers properties
such as the minimum probability of two nodes successfully completing their
transmissions, and maximum expected number of collisions until two nodes have
successfully completed their transmissions. As before, this analysis technique
does not scale; in [15] the experiments are limited to two contending nodes only.

Beyond model checking, simulation and test-bed experiments, we are only
aware of two other formal approaches. In [1] Markov chains are used to derive
an accurate, analytical model to compute the throughput of CSMA/CA. Cal-
culating throughput is an orthogonal task to our vision of proving (functional)
correctness.

An approach aiming at proving the correctness of CSMA/CA with virtual
carrier sensing (RTS/CTS), and hence related to ours, is presented in [3]. Based

A Process Algebra for Link Layer Protocols 691

on stochastic bigraphs with sharing it uses rewrite rules to analyse quantita-
tive properties. Although it is an approach that is capable to analyse arbitrary
topologies, to apply the rewrite rules a particular topology needs to be modelled
by a directed acyclic graph structure, which is part of the bigraph.

7 Conclusion

In this paper we have proposed a novel process algebra, called ALL, that can
be used to model, verify and analyse link layer protocols. Since we aimed at a
process algebra featuring aspects of the link layer such as frame collisions, as
well as arbitrary data structures (to model a rich class of protocols), we could
not use any of the existing algebras. The design of ALL is layered. The first
layer allows modelling protocols in some sort of pseudo code, which hopefully
makes our approach accessible for network and software researchers/engineers.
The other layers are mainly for giving a formal semantics to the language. The
layer of partial network expressions, the third layer, provides a unique and sophis-
ticated mechanism for modelling the collision of frames. As it is hard-wired in
the semantics there is no need to model collisions manually when modelling a
protocol, as it was done before [21]. Next to primitives needed for modelling link
layer protocols (e.g. transmit) and standard operators of process algebra (e.g.
nondeterministic choice), ALL provides an operator for probabilistic choice.

This operator is needed to model aspects of link layer protocols such as the
exponential backoff for the Carrier-Sense Multiple Access with Collision Avoid-
ance protocol, the case study we have chosen to demonstrate the applicability
of ALL. We have modelled and analysed two versions of CSMA/CA, without
and with virtual carrier sensing. Our analysis has confirmed the hidden station
problem for the version without virtual carrier sensing. However, we have also
shown that the version with virtual carrier sensing overcomes not only this prob-
lem, but also the exposed station problem with probability 1. Yet the protocol
cannot guarantee packet delivery, not even with probability 1.

To perform this analysis we had to formalise suitable liveness properties for
link layer protocols specified in our framework.

Acknowledgement. We thank Tran Ngoc Ma for her involvement in this project in
a very early phase. We also like to thank the German Academic Exchange Service
(DAAD) that funded an internship of the third author at Data61, CSIRO.

References

1. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000). https://doi.org/10.
1109/49.840210

2. Bres, E., van Glabbeek, R.J., Höfner, P.: A timed process algebra for wireless
networks with an application in routing. In: Thiemann, P. (ed.) ESOP 2016. LNCS,
vol. 9632, pp. 95–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49498-1 5

https://doi.org/10.1109/49.840210
https://doi.org/10.1109/49.840210
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/978-3-662-49498-1_5

692 R. van Glabbeek et al.

3. Calder, M., Sevegnani, M.: Modelling IEEE 802.11 CSMA/CA RTS/CTS with
stochastic bigraphs with sharing. Formal Aspects Comput. 26(3), 537–561 (2014).
https://doi.org/10.1007/s00165-012-0270-3

4. Chhaya, H.S., Gupta, S.: Performance modeling of asynchronous data transfer
methods of IEEE 802.11 MAC Protocol. Wirel. Netw. 3, 217–234 (1997). https://
doi.org/10.1023/A:1019109301754

5. Comer, D.: Computer Networks and Internets. Pearson Education Inc., UpperSad-
dle River (2009)

6. Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 35

7. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks on
testing probabilistic processes. In: Cardelli, L., Fiore, M., Winskel, G. (eds.) Com-
putation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin, Electronic
Notes in Theoretical Computer Science, vol. 172, pp. 359–397. Elsevier (2007).
https://doi.org/10.1016/j.entcs.2007.02.013

9. Deng, Y., van Glabbeek, R.J., Morgan, C.C., Zhang, C.: Scalar outcomes suffice
for finitary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol.
4421, pp. 363–378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71316-6 25

10. Duflot, M., et al.: Probabilistic model checking of the CSMA/CD, protocol using
PRISM and APMC. In: Automated Verification of Critical Systems (AVoCS 2004).
Electronic Notes in Theoretical Computer Science Series, vol. 128, pp. 195–214
(2004). https://doi.org/10.1016/j.entcs.2005.04.012

11. Duflot, M., et al.: Practical applications of probabilistic model checking to commu-
nication protocols. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for Industrial
Critical Systems: A Survey of Applications, pp. 133–150. IEEE (2013). https://
doi.org/10.1002/9781118459898.ch7

12. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 295–315. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28869-2 15

13. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks used for modelling, verifying
and analysing AODV. Technical report 5513, NICTA (2013). http://arxiv.org/abs/
1312.7645

14. Friend, G.E., Fike, J.L., Baker, H.C., Bellamy, J.C.: Understanding Data Commu-
nications, 2nd edn. Howard W. Sams & Company, Indianapolis (1988)

15. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE
802.15.4 low-rate wireless personal area network protocol. In: Leveraging Appli-
cations of Formal Methods, Second International Symposium (ISoLA 2006), pp.
290–297. IEEE Computer Society (2006). https://doi.org/10.1109/ISoLA.2006.34

16. IEEE: IEEE standard for ethernet (2016). https://doi.org/10.1109/IEEESTD.
2016.7428776

17. IEEE: IEEE standard for low-rate wireless networks (2016). https://doi.org/10.
1109/IEEESTD.2016.7460875

18. ISO/IEC 7498–1: Information technology—open systems interconnection—basic
reference model: The basic model (1994). https://www.iso.org/standard/20269.
html

https://doi.org/10.1007/s00165-012-0270-3
https://doi.org/10.1023/A:1019109301754
https://doi.org/10.1023/A:1019109301754
https://doi.org/10.1007/978-3-540-85361-9_35
https://doi.org/10.1145/201019.201032
https://doi.org/10.1016/j.entcs.2007.02.013
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1002/9781118459898.ch7
https://doi.org/10.1002/9781118459898.ch7
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007/978-3-642-28869-2_15
http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1312.7645
https://doi.org/10.1109/ISoLA.2006.34
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html

A Process Algebra for Link Layer Protocols 693

19. ISO/IEC/IEEE 8802–11: Information technology—telecommunications and infor-
mation exchange between systems—local and metropolitan area networks—specific
requirements—part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications (2018). https://www.iso.org/standard/73367.html

20. Jensen, H.E., Larsen, K.G., Skou, A.: Modelling and analysis of a collision
avoidance protocol using Spin and Uppaal. In: The Spin Verification System.
Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 33–50.
DIMACS/AMS (1996). https://doi.org/10.7146/brics.v3i24.20005

21. Parrow, J.: Verifying a CSMA/CD-protocol with CCS. In: Aggarwal, S. (eds.)
IFIP Symposium on Protocol Specification, Testing and Verification (PSTV 1988),
North-Holland, pp. 373–384 (1988)

22. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science
(FOCS 1977), pp. 46–57. IEEE (1977). https://doi.org/10.1109/SFCS.1977.32

23. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. TCS 37, 245–
267 (1985). https://doi.org/10.1016/0304-3975(85)90093-3

24. Simpson, W.: The point-to-point protocol (PPP). RFC 1661 Internet Standard
(1994). http://www.ietf.org/rfc/rfc1661.txt

25. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75, 440–469 (2010). https://doi.org/10.1016/j.
scico.2009.07.008

26. Zhao, J., Li, X., Zheng, T., Zheng, G.: Removing irrelevant atomic formulas for
checking timed automata efficiently. In: Larsen, K.G., Niebert, P. (eds.) FORMATS
2003. LNCS, vol. 2791, pp. 34–45. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-40903-8 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://www.iso.org/standard/73367.html
https://doi.org/10.7146/brics.v3i24.20005
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0304-3975(85)90093-3
http://www.ietf.org/rfc/rfc1661.txt
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1007/978-3-540-40903-8_4
https://doi.org/10.1007/978-3-540-40903-8_4
http://creativecommons.org/licenses/by/4.0/

Program Analysis and Automated
Verification

Data Races and Static Analysis
for Interrupt-Driven Kernels

Nikita Chopra, Rekha Pai(B), and Deepak D’Souza

Indian Institute of Science, Bangalore, India
{nikita,rekhapai,deepakd}@iisc.ac.in

Abstract. We consider a class of interrupt-driven programs that model
the kernel API libraries of some popular real-time embedded operating
systems and the synchronization mechanisms they use. We define a natu-
ral notion of data races and a happens-before ordering for such programs.
The key insight is the notion of disjoint blocks to define the synchronizes-
with relation. This notion also suggests an efficient and effective lockset
based analysis for race detection. It also enables us to define efficient
“sync-CFG” based static analyses for such programs, which exploit data
race freedom. We use this theory to carry out static analysis on the
FreeRTOS kernel library to detect races and to infer simple relational
invariants on key kernel variables and data-structures.

Keywords: Static analysis · Interrupt-driven programs · Data races

1 Introduction

Embedded software is widespread and increasingly employed in safety-critical
applications in medical, automobile, and aerospace domains. These programs
are typically multi-threaded applications, running on uni-processor systems, that
are compiled along with a kernel library that provides priority-based schedul-
ing, and other task management and communication functionality. The appli-
cations themselves are similar to classical multi-threaded programs (using lock,
semaphore, or queue based synchronization) although they are distinguished by
their priority-based execution semantics. The kernel on the other hand typically
makes use of non-standard low-level synchronization mechanisms (like disabling-
enabling interrupts, suspending the scheduler, and flag-based synchronization)
to ensure thread-safe access to its data-structures. In the literature such software
(both applications and kernels) are referred to as interrupt-driven programs. Our
interest in this paper is in the subclass of interrupt-driven programs correspond-
ing to kernel libraries.

Efficient static analysis of concurrent programs is a challenging problem. One
could carry out a precise analysis by considering the product of the control flow
graphs (CFGs) of the threads, however this is prohibitively expensive due to the
exponential number of program points in the product graph. A promising direc-
tion is to focus on the subclass of race-free programs. This is an important class
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 697–723, 2019.
https://doi.org/10.1007/978-3-030-17184-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_25

698 N. Chopra et al.

of programs, as most developers aim to write race-free code, and one could try
to exploit this property to give an efficient way of analyzing programs that fall in
this class. In recent years there have been many techniques [7,11,12,18,21] that
exploit the race-freedom property to perform sound and efficient static analysis.
In particular [11,21] create an appealing structure called a “sync-CFG” which
is the union of the control flow graphs of the threads augmented with possi-
ble “synchronization” edges, and essentially perform sequential analysis on this
graph to obtain sound facts about the concurrent program. However these tech-
niques are all for classical lock-based concurrent programs. A natural question
asks if we can analyze interrupt-driven programs in a similar way.

There are several challenges in doing this. Firstly one needs to define what
constitutes a data race in a generalized setting that includes these programs.
Secondly, how does one define the happens-before order, and in particular the
synchronizes-with relation that many of the race-free analysis techniques rely
on, given the ad-hoc synchronization mechanisms used in these programs.

A natural route that suggests itself is to translate a given interrupt-driven
program into one that uses classical locks, and faithfully captures the interleaved
executions of the original program. One could then use existing techniques for
lock-based concurrency to analyze these programs. However, this route is fraught
with many challenges. To begin with, it is not clear how one would handle flag-
based synchronization which is one of the main synchronization mechanisms
used in these programs. Even if one could handle this, such a translation may
not preserve data races, in that the original program might have had a race but
the translated program does not. Finally, some of the synchronizes-with edges in
the translated program are clearly unnecessary, leading to imprecise data-flow
facts in the analyses.

In this paper, we show that it is possible to take a more organic route and
address these challenges in a principled way that could apply to other non-
standard classes of concurrent systems as well. Firstly, we propose a general
definition of a data race that is not based on a happens-before order, but on
the operational semantics of the class of programs under consideration. The def-
inition essentially says that two statements s and t can race, if two notional
“blocks” around them can overlap in time during an execution. We believe that
this definition accurately captures what it is that a programmer tries to avoid
while dealing with shared variables whose values matter. Secondly we propose
a way of defining the synchronizes-with relation, based on the notion of disjoint
blocks. These are statically identifiable pairs of path segments in the CFGs of dif-
ferent threads that are guaranteed to never overlap (in time) during an execution
of the program, much like blocks of code that lie between an acquire and release
of the same lock. This relation now suggests a natural sync-CFG structure on
which we can perform analyses like value-set (including interval, null-deference,
and points-to analysis), and region-based relational invariant analysis, in a sound
and efficient manner. We also use the notion of disjoint blocks to define an effi-
cient and precise lock-set-based analysis for detecting races in interrupt-driven
programs.

Static Analysis of Interrupt-Driven Kernels 699

We implement some of these analyses on the FreeRTOS kernel library [3]
which is one of the most widely used open-source real-time kernels for embed-
ded systems, comprising about 3,500 lines of C code. Our race-detection analysis
reports a total of 64 races in kernel methods, of which 18 turn out to be true
positives. We also carry out a region-based relational analysis using an imple-
mentation based on CIL [22]/Apron [15], to prove several relational invariants
on the kernel variables and abstracted data-structures.

2 Overview

We give an overview of our contributions via an illustrative example modelled
on a portion of the FreeRTOS kernel library. Figure 1 shows an interrupt-driven
program that contains a main thread that first initializes the kernel variables.
The variables represent components of a message queue, like msgw (the number
of messages waiting in the queue), len (max length of the queue), wtosend (the
number of tasks waiting to send to the queue), wtorec (the number of tasks
waiting to receive from the queue), and RxLock (a counter which also acts as
a synchronization flag that mediates access to the waiting queues). The main
thread then creates (or spawns) two threads: qsend which models the kernel
API method for sending a message to the queue, and qrec ISR which models
a method for receiving a message, and which is meant to be called from an
interrupt-service routine. The basic semantics of this program is that the ISR
thread can interrupt qsend at any time (provided interrupts are not disabled),
but always runs to completion itself. The threads use disableint/enableint
to disable and enable interrupts, suspendsch/resumesch to suspend/resume
the scheduler (thereby preventing preemption by another non-ISR thread), and
finally flag-based synchronization (using the RxLock variable), as different means
to ensure mutual exclusion.

Our first contribution is a general notion of data races which is applicable
to such programs. We say that two conflicting statements s and t in two dif-
ferent threads are involved in a data race if assuming s and t were enclosed in
a notional “block” of skip statements, there is an execution in which the two
blocks “overlap” in time. The given program can be seen to be free of races.
However if we were to remove the disableint statement of line 10, then the
statements accessing msgw in lines 12 and 42 would be racy, since soon after the
access of msgw in qsend at line 12, there could be preemption by qrec ISR which
goes on to execute line 42.

Next we illustrate the notion of “disjoint blocks” which is the key to defining
synchronizes-with edges, which we need in our sync-CFG analysis as well as to
define an appropriate happens-before relation. Disjoint blocks are also used in
our race-detection algorithm. A pair of blocks of code (for example any of the
like-shaded blocks of code in the figure) are disjoint if they can never overlap
during an execution. For example, the block comprising lines 11–14 in qsend and
the whole of qrec ISR, form a pair of disjoint blocks.

Next we give an analysis for checking race-freedom, by adapting the standard
lockset analysis [24] for classical concurrent programs. We associate a unique

700 N. Chopra et al.

17
16 }
15

12

11

qsend:

10

18

if(msgw < len) {
disableint;

if(wtorec > 0)
msgw++;

wtorec−−;
enableint;

enableint;
suspendsch;
disableint;
RxLock++;

else { 48
47
46

if(msgw > 0) {

45
44

qrec_ISR:

49

msgw−−;
if(RxLock = 0) {
if(wtosend > 0)
wtosend−−;

}
else
RxLock++;

}

create(qrec_ISR);
create(qsend);
RxLock := 0;5

4
3

1
2

6
7

19
20
21
22
23
24
25
26
27

14
13

29
28

wtorec := 0;

len := 10;
msgw := 0;

enableint;
wtosend++;

RxLock := 0;30

resumesch;
}

31
31

disableint;
while(RxLock > 1) {

wtosend−−;

}

if(wtosend > 0)

RxLock−−;

41

43
42

wtosend := 0;

enableint;31

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 = RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 < wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

0 = RxLock = msgw < len = 10

main:

Fig. 1. An interrupt-driven program modelled on the FreeRTOS kernel library. Simi-
larly shaded blocks denote disjoint blocks. Some of the sync-with edges are shown in
dashed lines. Some edges like 22 → 41 and 49 → 20 have been omitted for clarity.

lock with each pair of disjoint blocks, and add notional acquires and releases of
this lock at the beginning and end (respectively) of these blocks. We now do
the standard lockset analysis on this version of the program, and declare two
accesses to be non-racy if they hold sets of locks with a non-empty intersection.

Finally, we show how to do data-flow analysis for such programs in a sound
and efficient way. The basic idea is to construct a “sync-CFG” for the program
by unioning the control-flow graphs of the threads, and adding sync edges that
capture the synchronizes-with edges (going from the end of a block to the begin-
ning of its paired block), for example line 14 to line 41 and line 49 to line 11.
The sync-edges are shown by dashed arrows in the figure. We now do a standard
“value-set” analysis (for example interval analysis) on this graph, keeping track
of a set of values each variable can take. The resulting facts about a variable are
guaranteed to be sound at points where the variable is accessed (or even “owned”
in the sense that a notional read of the variable at that point is non-racy). For
example an interval analysis on this program would give us that 0 < msgw at
line 14. Finally, we could do a region-based value-set analysis, by identifying
regions of variables that are accessed as a unit – for example msgw and len could

Static Analysis of Interrupt-Driven Kernels 701

be in one region, while wtosend and wtorec could be in another. The figure
shows some facts inferred by a polyhedral analysis based on these regions, for
the given program.

3 Interrupt-Driven Programs

The programs we consider have a finite number of (static) threads, with a des-
ignated “main” thread in which execution begins. The threads access a set of
shared global variables, some of which are used as “synchronization flags”, using
a standard set of commands like assignment statements of the form x := e,
conditional statements (if-then-else), loop statements (while), etc. In addi-
tion, the threads can use commands like disableint, enableint (to disable
and enable interrupts, respectively), suspendsch, resumesch (to suspend and
resume the scheduler, respectively), while the main thread can also create a
thread (enable it for execution). Table 1 shows the set of basic statements cmdV,T

over a set of variables V and a set of threads T .
We allow standard integer and Boolean expressions over a set of variables V .

For an integer expression e over V , and an environment φ for V , we denote by
�e�φ the integer value that e evaluates to in φ. Similarly for a Boolean expression
b, we denote the Boolean value (true or false) that b evaluates to in φ by �b�φ.
For a set of environments Φ for a set of variables V , we define the set of integer
values that e can evaluate to in an environment in Φ, by �e�Φ = {�e�φ | φ ∈ Φ}.
Similarly, for a boolean expression b, we define the set of environments in Φ that
satisfy b to be �b�Φ = {φ ∈ Φ | �b�φ = true}.

Each thread is of one of two types: “task” threads that are like standard
threads, and “ISR” threads that represent threads that run as interrupt ser-
vice routines. The main thread is a task thread, which is the only task thread
enabled initially. The main thread can enable other threads (both task and ISR)
for execution using the create command. Task threads can be preempted by
other task threads (whenever interrupts are not disabled, and the scheduler is
not suspended) or by ISR threads (whenever interrupts are not disabled). On
the other hand ISR threads cannot be preempted and are assumed to run to
completion.

Only task threads are allowed to use disableint, enableint, suspendsch
and resumesch commands. Similarly, if flag-based synchronization is used, only
task threads can modify the flag variable, while an ISR can only check whether
the flag is set or not, and perform some actions accordingly.

Formally we represent an interrupt-driven program P as a tuple (V, T) where
V is a finite set of integer variables, and T is a finite set of named threads. Each
thread t ∈ T has a type which is one of task or ISR, and an associated control-
flow graph of the form Gt = (Lt, st, inst t) where Lt is a finite set of locations of
thread t, st ∈ Lt is the start location of thread t, inst t ⊆ Lt × cmdV,T × Lt is a
finite set of instructions of thread t.

Some definitions related to threads will be useful going forward. We denote
by LP =

⋃
t∈T Lt the disjoint union of the thread locations. Whenever P is clear

702 N. Chopra et al.

Table 1. Basic statements cmdV,T over variables V and threads T

Command Description

skip Do nothing

x := e Assign the value of expression e to variable x ∈ V

assume(b) Enabled only if expression b evaluates to true, acts like skip

create(t) Enable thread t ∈ T for execution

disableint Disable interrupts and context switches

enableint Enable interrupts and context switches

suspendsch Suspend the scheduler (other task threads cannot preempt the
current thread); Also sets ssflag variable

resumesch Resume the scheduler (other task threads can now preempt the
current thread); Also unsets ssflag variable

from the context we will drop the subscript of P from LP and its decorations.
For a location l ∈ L we denote by tid(l) the thread t which contains location l .
We denote the set of instructions of P by instP =

⋃
t∈T inst t. For an instruction

ι ∈ inst t, we will also write tid(ι) to mean the thread t. For an instruction
ι = 〈l , c, l ′〉, we call l the source location, and l ′ the target location of ι.

We denote the set of commands appearing in program P by cmd(P). We will
consider an assignment x := e as a write-access to x, and as a read-access to
every variable that appears in the expression e. Similarly, assume(b) is considered
to be a read-access of every variable that occurs in expression b. We say two
accesses are conflicting accesses if they are read/write accesses to the same
variable, and at least one of them is a write. We assume that the control-flow
graph of each thread comes from a well-structured program. Finally, we assume
that the main thread begins by initializing the variables to constant values.
Figure 2 shows an example program and the control-flow-graphs of its threads.

We define the operational semantics of an interrupt-driven program using a
labeled transition system (LTS). Let P = (V, T) be a program. We define an
LTS TP = (Q,Σ, s,⇒) corresponding to P , where:

– Q is a set of states of the form (pc, φ, enab, rt, it, id , ss), where pc ∈ T → L is
the program counter giving the current location of each thread, φ ∈ V → Z

is a valuation for the variables, enab ⊆ T is the set of enabled threads, rt ∈ T
is the currently running thread; it ∈ T is the task thread which is interrupted
when the scheduler is suspended; and id and ss are Boolean values telling us
whether interrupts are disabled (id = true) or not (id = false) and whether
the scheduler is suspended (ss = true) or not (ss = false).

– The set of labels Σ is the set of instructions instP of P .
– The initial state s is (λt.st, λx.0, {main},main,main, false, false). Thus all

threads are at their entry locations, the initial environment sets all variables
to 0, only the main thread is enabled and running, the interrupted task is

Static Analysis of Interrupt-Driven Kernels 703

main:
1. x := 0;
2. y := 0;
3. t := 0;
4. create(t1);
5. create(t2);
6.

t1: t2:
7. x := x + 1; 9. disableint;
8. 10. y := t;

11. t := x;
12. if(t > 0) {
13. y := y + 1;
14. }
15. else {
16. t := t + 1;
17. }
18. enableint;
19.

(a) Example program

t1 t2main

7

8

x := x + 1

9

10

11

12

18

19

disableint

y := t

t := x

enableint

assume(t>0)assume(t<=0)

skip skip

13

1417

16

t := t + 1 y := y + 1

1

2

3

4

5

6

x := 0

y := 0

t := 0

create(t1)

create(t2)

(b) Control-flow-graph representation

Fig. 2. An example program and its CFG representation.

set to main (this is a dummy value as it is used only when the scheduler is
suspended), interrupts are enabled, and the scheduler is not suspended.

– For an instruction ι = 〈l , c, l ′〉 in instP , with tid(ι) = t, we define

(pc, φ, enab, rt, it, id , ss) ⇒ι (pc′, φ′, enab′, rt′, it′, id ′, ss ′)

iff the following conditions are satisfied:
• t ∈ enab; pc(t) = l ; pc′ = pc[t �→ l ′];
• if id is true or rt is an ISR then t = rt;
• if ss is true, then either t = rt or t is an ISR thread;
• Based on the command c, the following conditions must be satisfied:

∗ If c is the skip command then φ′ = φ, enab′ = enab, id ′ = id , and
ss ′ = ss.

∗ If c is an assignment statement of the form x := e then φ′ = φ[x �→ �e�φ],
enab′ = enab, id ′ = id , and ss ′ = ss.

∗ If c is a command of the form assume(b) then �b�φ = true, φ′ = φ,
enab′ = enab, id ′ = id , and ss ′ = ss.

∗ If c is a create(u) command then t = main, φ′ = φ, enab′ = enab∪{u},
id ′ = id , and ss ′ = ss.

∗ If c is the disableint command then φ′ = φ, enab′ = enab, id ′ = true,
and ss ′ = ss.

∗ If c is the enableint command then φ′ = φ, enab′ = enab, id ′ = false,
and ss ′ = ss.

∗ If c is the suspendsch command then φ′ = φ[ssflag �→ 1], enab′ =
enab, id ′ = id , and ss ′ = true.

∗ If c is the resumesch command then φ′ = φ[ssflag �→ 0], enab′ = enab,
id ′ = id , and ss ′ = false.

704 N. Chopra et al.

• In addition, the transitions set the new running thread rt′ and interrupted
task it′ as follows. If t is an ISR thread, ss is true, and ι is the first
statement of t then it′ = rt, rt′ = t. If t is an ISR thread, ss is true, and ι
is the last statement of t then it′ = it, rt′ = it. In all other cases, rt′ = t
and it′ = it.

An execution σ of P is a finite sequence of transitions in TP from the initial
state s: σ = τ0, τ1, . . . , τn (n ≥ 0) from ⇒, such that there exists a sequence
of states q0, q1, . . . , qn+1 from Q, with q0 = s and τi = (qi, ιi, qi+1) for each
0 ≤ i ≤ n. Wherever convenient we will also represent an execution like σ above
as a sequence of the form q0 ⇒ι0 q1 ⇒ι1 · · · ⇒ιn qn+1. We say that a state q ∈ Q
is reachable in program P if there is an execution of P leading to state q.

4 Data Races and Happens-Before Ordering

In this section we propose a definition of a data race which has general applicabil-
ity, and also define a natural happens-before order for interrupt-driven programs.

4.1 Data Races

Data races have typically been defined in the literature in terms of a happens-
before order on program executions. In the classical setting of lock-based syn-
chronization, the happens-before relation is a partial order on the instructions in
an execution, that is reflexive-transitive closure of the union of the program-order
relation between two instructions in the same thread, and the synchronizes-with
relation which relates a release of a lock in a thread to the next acquire of the
same lock in another thread. Two instructions in an execution are then defined
to be involved in a data race if they are conflicting accesses to a shared variable
and are not ordered by the happens-before relation.

We feel it is important to have a definition of a data race that is based on the
operational semantics of the class of programs we are interested in, and not on a
happens-before relation. Such a definition would more tangibly capture what it
is that a programmer typically tries to avoid when dealing with shared variables
whose consistency she is worried about. Moreover, when coming up with a defi-
nition of the happens-before order (the synchronizes-with relation in particular)
for non-standard concurrent programs like interrupt-driven programs, it is use-
ful to have a reference notion to relate to. For instance, one could show that a
proposed happens-before order is strong enough to ensure the absence of races.

We propose to define a race between two conflicting statements in a program
in terms of whether two imaginary blocks enclosing each of these statements can
overlap in an execution. Let us consider a multi-threaded program P in a class of
concurrent programs with a certain operational execution semantics. Consider a
block of contiguous instructions in a thread t of a program P and another block
in thread t′ of P . We say that these two blocks are involved in a high-level race
in an execution of P if they overlap with each other during the execution, in that

Static Analysis of Interrupt-Driven Kernels 705

one block begins in between the beginning and ending of the other. We say two
conflicting statements s and t in P are involved in a data race (or are racy), if
the following condition is true: Consider the program P ′ which is obtained from
P by replacing the statement s by the block “skip; s; skip”, and similarly for
statement t. Then there is an execution of P ′ in which the two blocks containing
s and t are involved in a high-level race. The definition is illustrated in Fig. 3.
We say a program P is race-free if no pair of instructions in it are racy.

t;
s; skip;

s;
skip;

skip;
t;
skip;

t1: t2: t1: t2:

t1 t2P ′P

Fig. 3. Illustrating the definition of a data race on statements s and t. A program P ,
its transformation P ′, and an execution of P ′ in which the blocks overlap.

The rationale for this definition is that the concerned statements s and t may
be compiled down to a sequence of instructions (represented by the blocks with
skip’s around s and t) depending on the underlying processor and compiler,
and if these instructions interleave in an execution, it may lead to undesirable
results.

To illustrate the definition, consider the program in Fig. 2a. The accesses to
x in line 7 and line 11 can be seen to be racy, since there is an execution of the
augmented program P ′ in which t1 performs the skip followed by the increment
to x at line 7, followed by a context switch to thread t2 which goes on to execute
lines 9 and 10 and then the read of x in line 11. On the other hand, the version
of the program in which line 7 is enclosed in a disableint-enableint block,
does not contain a race.

We note that for classical concurrent programs, it might suffice to define a
race as consecutive occurrences of conflicting accesses in an execution, as done in
[4,17]. However, this definition is not general enough to apply to interrupt-driven
programs. By this definition, the statements in lines 7 and 11 of the program in
Fig. 2a are not racy, as there is no execution in which they happen consecutively.
This is because the disableint-enableint block containing the access in line 11
is “atomic” in that the statements in the block must happen contiguously in any
execution, and hence the instructions corresponding to line 7 and line 11 can
never happen immediately one after another.

4.2 Disjoint Blocks and the Happens-Before Relation

Now that we have a proposed definition of races, we can proceed to give a
principled way to define the happens-before relation for our class of interrupt-

706 N. Chopra et al.

driven programs. The main question is how does one define the synchronizes-
with relation. Our insight here is that the key to defining the synchronizes-with
relation lies in identifying what we call disjoint blocks for the class of programs.
Disjoint blocks are statically identifiable pairs of path segments in the CFGs of
different threads, which are guaranteed by the execution semantics of the class
of programs never to overlap in an execution of the program. Disjoint block
structures – for example in the form of blocks enclosed between locks/unlocks of
the same lock – are the primary mechanism used by developers to ensure race-
freedom. The synchronizes-with relation in an execution can then be defined as
relating, for every pair (A,B) of disjoint blocks in the program, the end of block
A to the beginning of the succeeding occurrence of block B in the execution. The
happens-before order for an execution can now be defined, as before, in terms
of the program order and the synchronizes-with order, and is easily seen to be
sufficient to ensure non-raciness.

Let us illustrate this hypothesis on classical lock-based programs. The disjoint
block pairs for this class of programs are segments of code enclosed between
acquires and releases of the same lock; or the portion of a thread’s code before it
spawns a thread t, and the whole of thread t’s code; and similarly for joins. The
synchronizes-with relation between instructions in an execution essentially goes
from a release to the succeeding acquire of the same lock. If two accesses are
related by the resulting happens-before order, they clearly cannot be involved
in a race.

We now focus on defining a happens-before relation based on disjoint blocks
for our class of interrupt-driven programs. We have identified eight pairs of
disjoint block patterns for this class of programs, which are depicted in Fig. 4.
We use the following types of blocks to define the pairs. A block of type D is
a path segment in a task thread that begins with a disableint and ends with
an enableint with no intervening enableint in between. A block of type S
is a path segment in a task thread that begins with a suspendsch and ends
with a resumesch with no intervening resumesch. An I block is an initial and
terminating path segment in an ISR thread (i.e. begins with the first instruction
and ends with a terminating instruction). Similarly, for a task thread t, Tt is
an initial and terminating path in t, while Mt is an initial segment of the main
thread that ends with a create(t) command. A block of type Cssflag is a path
segment in an ISR thread corresponding to the then block of a conditional that
checks if ssflag = 0. For a synchronization flag f , Cf is the path segment in
an ISR thread corresponding to the then block of a conditional that checks if
f = 0. Finally Ff is a segment between statements that set f to 1 and back to
0, in a task thread. We also require that an Ff segment be within the scope of
a suspendsch command.

We can now describe the pairs of disjoint blocks depicted in Fig. 4. Case (a)
says that two D blocks in different task threads are disjoint. Clearly two such
blocks can never overlap in an execution, since once one of the blocks begins exe-
cution no context-switch can occur until interrupts are enabled again. Case (b)
says that D and I blocks are disjoint. Once again this is because once the D block

Static Analysis of Interrupt-Driven Kernels 707

(a) (b) (c)

(f)(d) (e)

main:

// begin

t:

// begin

// end

task: task: task:task:

(g) (h)

task: task: task: ISR:

// begin

// end

ISR:

// begin

// end

ISR:

// begin

// end

ISR:

if(f = 0){

task:ISR:

if(ssflag = 0){

task:

f := 1;

f := 0;

} }

// suspended
// with scheduler

create(t)

suspendsch;

resumesch;

disableint;

enableint

suspendsch; suspendsch;

resumesch; resumesch;

suspendsch;

resumesch;

enableint

disableint; disableint;

enableint

disableint;

enableint

D D I I I

D S S S

S

Mt Tt

Ff

CfCssflag

D

Fig. 4. Disjoint blocks in an interrupt-driven program.

begins execution no ISR can run until interrupts are enabled again, and once
an ISR begins execution it runs to completion without any context-switches.
Case (e) says that S blocks in different task threads are disjoint, because once
the scheduler is suspended no context-switch to another task thread can occur.
Case (f) says that Mt and Tt blocks are disjoint, since a thread cannot begin
execution before it is created in main. Case (g) says that an S block is disjoint
from a Cssflag block. This is because once the scheduler is suspended by the
suspendsch command, and even if a context-switch to an ISR occurs, the then
block of the if statement will not execute. Conversely, if the ISR is running
there can be no context-switch to another thread. Finally, case (h) is similar to
case (g). We note that the disjoint block pairs are not ordered (the relation is
symmetric).

We can now define the synchronizes-with relation as follows. Let σ = q0 ⇒ι0

q1 ⇒ι1 · · · ⇒ιn qn+1 be an execution of P . We say instruction ιi synchronizes-
with an instruction ιj of P in σ, if i < j, tid(ιi) = tid(ιj), and there exists a pair
of disjoint blocks A and B, with ιi ending block A and ιj beginning block B. As
usual we say ιi is program-order related to ιj iff i < j and tid(ιi) = tid(ιj). We
define the happens-before relation on σ as the reflexive-transitive closure of the
union of the program-order and synchronizes-with relations for σ.

We can now define a HB-race in an execution σ of P as follows: we say that
two instructions ιi and ιj in σ are involved in a HB-race if they are conflicting

708 N. Chopra et al.

instructions that are not ordered by the happens-before relation in σ. We say
that two instructions in P are HB-racy if there is an execution of P in which
they are involved in a HB-race. Finally, we say a program P is HB-race-free if
no two of its instructions are HB-racy.

Once again, it is fairly immediate to see that if two statements of a program
are not involved in a HB-race, they cannot be involved in a race. Further, if
two statements belong to disjoint blocks, then they are clearly happens-before
ordered in every execution. Hence belonging to disjoint blocks is sufficient to
ensure that the statements are happens-before ordered, which in turn ensures
that the statements cannot be involved in a race.

5 Sync-CFG Analysis for Interrupt-Driven Programs

In this section we describe a way of lifting a sequential value-set analysis in
a sound way for a HB-race free interrupt-driven program, in a similar way to
how it is done for lock-based concurrent programs in [11]. A value-set analysis
keeps track of the set of values each variable can take at each program point.
The basic idea is to create a “sync-CFG” for a given interrupt-driven program
P , which is essentially the union of the CFGs of each thread of P , along with
“may-synchronize-with” edges between statements that may be synchronizes-
with related in an execution of P , and then perform the value-set analysis on
the resulting graph. Whenever the given program is HB-race free, the result of
the analysis is guaranteed to be sound, in a sense made clear in Theorem 1.

5.1 Sync-CFG

We begin by defining the “sync-CFG” for an interrupt-driven program. It is
on this structure that we will do the value-set analysis. Let P = (V, T) be
an interrupt-driven program, and let G be the disjoint union (over threads
t ∈ T) of the CFGs Gt. We define a set of may-synchronize-with edges in G,
denoted MSW (G), as follows. The edges correspond to the pairs of disjoint blocks
depicted in Fig. 4, in that they connect the ending of one block to the beginning
of the other block in the pair. Consider two instructions ι = 〈l , c,m〉 ∈ inst t

and κ = 〈l ′, c′,m′〉 ∈ inst t′ , with t = t′. We add the edge (m, l ′) in MSW (G),
iff for some pair of disjoint blocks (A,B), ι ends a block of type A in thread t
and κ begins a block of type B in thread t′. For example, corresponding to a
(D,D) pair of disjoint blocks, we add the edge (m, l ′) when c is an enableint
command, and c′ is a disableint command.

The sync-CFG induced by P is the control flow graph given by G along with
the additional edges in MSW (G). Figure 6 shows a program P2 and its induced
sync-CFG.

5.2 Value Set Analysis

We first spell out the particular form of abstract interpretation we will be using.
It is similar to the standard formulation of [9], except that it is a little more
general to accommodate non-standard control-flow graphs like the sync-CFG.

Static Analysis of Interrupt-Driven Kernels 709

An abstract interpretation of a program P = (V, T) is a structure of the form
A = (D,≤, do, F) where

– D is the set of abstract states.
– (D,≤) forms a complete lattice. We denote the join (least upper bound) in

this lattice by �≤, or simply � when the ordering is clear from the context.
– d0 ∈ D is the initial abstract state.
– F : instP → (D → D) associates a transfer function F (ι) (or simply Fι) with

each instruction ι of P . We require each transfer function Fι to be monotonic,
in that whenever d ≤ d′ we have Fι(d) ≤ Fι(d′).

An abstract interpretation A = (D,≤, d0, F) of P induces a “global” transfer
function FA : D → D, given by FA(d) = d0 �

⊔
ι∈instP

Fι(d). This transfer
function can also be seen to be monotonic. By the Knaster-Tarski theorem [28],
FA has a least fixed point (LFP) in D, which we denote by LFP(FA), and refer
to as the resulting value of the analysis.

A value set for a set of variables V is a map vs : V → 2Z, associating a
set of integer values with each variable in V . A value set vs induces a set of
environments Φvs in a natural way: Φvs = {φ | for all x ∈ V, φ(x) ∈ vs(x)}
(i.e. essentially the Cartesian product of the values sets). Conversely, a set of
environments Φ for V , induces a value set valset(Φ) given by valset(Φ)(x) =
{v ∈ Z | ∃φ ∈ Φ, φ(x) = v}, which is the “projection” of the environments to
each variable x ∈ V . Finally, we define a point-wise ordering on value sets as
follows: vs � vs ′ iff vs(x) ⊆ vs ′(x) for each variable x in V . We denote the least
element in this ordering by vs⊥ = λx.∅.

We can now define the value-set analysis Avset for an interrupt-driven pro-
gram P = (V, T) as follows. Let Avset = (D,≤, d0, F) where

– D is the set LP → (V → 2Z) (thus an element of D associates a value-set
with each program location)

– The ordering d ≤ d′ holds iff d(l) � d′(l) for each l ∈ LP

– The initial abstract value d0 is given by:

d0 = λl.

{
λx.{0} if l = smain

vs⊥ otherwise.

– The transfer functions are given as follows. Given an abstract value d, and
a location l ∈ LP , we define vsd

l to be the join of the value-set at l, and
the value-set at all may-synchronizes-with edges coming into l. Thus vsd

l =
d(l)��

⊔
(n,l)∈MSW (G) d(n). Below we will use Φ as an abbreviation of the set

Φvsdl
of environments induced by vsd

l . Let ι = 〈l , c, l ′〉 be an instruction in P .

• If c is the command x := e then Fι(d) = d′ where

d′(m) =
{
vsd

l [x �→ �e�Φ] if m = l ′

vs⊥ otherwise.

710 N. Chopra et al.

• If c is the command assume(b), then Fι(d) = d′ where

d′(m) =
{
valset(�b�Φ) if m = l ′

vs⊥ otherwise.

• If c is any other command (skip, disableint, enableint, suspendsch,
resumesch, or create) then Fι(d) = d′ where

d′(m) =
{
vsd

l if m = l ′

vs⊥ otherwise.

Figure 6 shows the results of a value-set analysis on the sync-CFG of program
P2. The data-flow facts are shown just before a statement, at selected points in
the program.

Soundness. The value-set analysis is sound in the following sense: if P is a HB-
race free program, and we have a reachable state of P at a location l in a thread
where a variable x is read ; then the value of x in this state is contained in the
value-set for x, obtained by the analysis at point l. More formally:

Theorem 1. Let P = (V, T) be an HB-race free interrupt-driven program, and
let d∗ be the result of the analysis Avset on P . Let l be a location in a thread
t ∈ T where a variable x is read (i.e. P contains an instruction of the form
〈l , c, l ′〉 where c is a read access of x). Let φ be an environment at l reachable
via some execution of P . Then φ(x) ∈ d∗(l)(x).

The proof of this theorem is similar to the one for classical concurrent pro-
grams in [11] (see [10] for a more accurate proof). The soundness claim can
be extended to locations where a variable is “owned” (which includes locations
where it is read). We say a variable x is owned by a thread t at location l, if an
inserted read of x at this point is non-HB-racy in the resulting program.

Region-Based Analysis. One problem with the value-set analysis is that it may
not be able to prove relational invariants (like x ≤ y) for a program. One way
to remedy this is to exploit the fact that concurrent programs often ensure race-
free access to a region of variables, and to essentially do a region-based value-set
analysis, as originally done in [21]. More precisely, let us say we have a partition
of the set of variables V of a program P into a set of regions R1, . . . , Rn. We
classify each read (write) access to a variable x in a region R, as an read (write)
access to region R. We say that two instructions in an execution of P are involved
in a HB-region-race, if the two instructions are conflicting accesses to the same
region R, and are not happens-before ordered in the execution. A program is
HB-region-race free if none of its executions contain a HB-region-race.

We can now define a region-based version of the value-set analysis for a
program P , which we call Arvset . The value-set for a region R is a set of valuations
(or sub-environments) for the variables in R. The transfer functions are defined
in an analogous way to the value-set analysis. The analogue of Theorem 1 for
regions gives us that for a HB-region-race free program, at any location where a
region R is accessed, the region-value-set computed by the analysis at that point
will contain every sub-environment of R reachable at that point.

Static Analysis of Interrupt-Driven Kernels 711

6 Translation to Classical Lock-Based Programs

In this section we address the question of why an execution-preserving trans-
lation to a classical lock-based program is not a fruitful route to take. In a
nutshell, such a translation would not preserve races and would induce a sync-
CFG with many unnecessary MSW edges, leading to much more imprecise facts
than the analysis on the native sync-CFG described in the previous section.
We also describe how our approach can be viewed as a lightweight translation
of an interrupt-driven program to a classical lock-based one. The translation
is “lightweight” in the sense that it does not attempt to preserve the execution
semantics of the given interrupt-driven program, but instead preserves races and
the sync-CFG structure of the original program.

6.1 Execution-Preserving Lock Translation

One could try to translate a given interrupt-driven program P into a classi-
cal lock-based program PL in a way that preserves the interleaved execution
semantics of P . By this we mean that every execution of P has a corresponding
execution in PL that follows essentially the same sequence of interleaved instruc-
tions from the different threads (modulo of course the synchronization state-
ments which may differ); and vice-versa. For example, to capture the semantics
of disableint-enableint, one could introduce an “execution” lock E which is
acquired in place of disabling interrupts, and released in place of enabling inter-
rupts. Every instruction in a task thread outside a disableint-enableint block
must also acquire and release E immediately before and after the instruction.
Note that the latter step is necessary if we want to capture the fact that once
a thread disables interrupts it cannot be preempted by any thread. Figure 5a
shows an interrupt-driven program P1 and its lock translation PL

1 in Fig. 5b.
There are still issues with the translation related to re-entrancy of locks and it
is not immediately clear how one would handle flag-based synchronization – but
let us keep this aside for now.

The first problem with this translation is that it does not preserve race infor-
mation. Consider the program P1 in Fig. 5a and its translation PL

1 . The original
program clearly has a race on x in statements 4 and 9. However the translation
PL
1 does not have a race as the accesses are protected by the lock E. Hence

checking for races in PL does not substitute for checking in P . An alternative
around this would be to first construct P ′ (recall that this is the version of P
in which we introduce the skip-blocks around statements we want to check for
races), then construct its lock translation (P ′)L, and check this program for
high-level races on the introduced skip-blocks. However this is expensive as it
involves a 3x blow-up in going from P to P ′ and another 3x blow-up in going
from P ′ to (P ′)L. Further, checking for high-level races (for example using a
lock-set analysis) is more expensive than just checking for races. In contrast, as
we show next, our lock-set analysis on the native program P does not incur any
of these expenses.

712 N. Chopra et al.

main:
1. x := y := t := 0;
2. create(t1);
3. create(t2);

t1: t2:
4. x := x + 1; 8. disableint;
5. disableint; 9. t := x;
6. x := y; 10. enableint;
7. enableint;

(a) Example program P1

main:
1. x := y := t := 0;
2. spawn(t1);
3. spawn(t2);

t1: t2:
4. lock(E) 10. lock(E);
5. x := x + 1; 11. t := x;
6. unlock(E) 12. unlock(E);
7. lock(E)
8. x := y;
9. unlock(E)

(b) Exec-preserving trans. PL
1

main:
1. x := y := t := 0;
2. spawn(t1);
3. spawn(t2);

t1: t2:
4. x := x + 1; 8. lock(A);
5. lock(A); 9. t := x;
6. x := y; 10. unlock(A);
7. unlock(A);

(c) Lightweight trans. PW
1

Fig. 5. Example program P1, and its lock and lightweight translations PL
1 , PW

1 .

The second problem with a precise lock translation is that the sync-CFG of
the translated program has many unnecessary MSW-edges, leading to impre-
cision in the ensuing analysis. Consider the program P2 in Fig. 6, and its lock
translation PL

2 in Fig. 7. P2 is similar to P1 except that line 4 is now an increment
of y instead of x, and the resulting program is race-free (in fact HB-race-free).
Notice that the may-sync-with edges from line 13 to 4, and line 6 to 10 in the
sync-CFG of PL

2 in Fig. 7 are unnecessary (they are not present in the native
sync-CFG) and lead to imprecise facts in an interval analysis on this graph. Some
of the final facts in an interval analysis on these graphs are shown alongside the
programs in Figs. 6 and 7. In particular the analysis on PL

2 is unable to prove
the assertion in line 10 of the original program.

6.2 A Lightweight Lock-Translation

Our disjoint block-based approach of Sect. 5 can be viewed as a lightweight lock
translation which does not attempt to preserve execution semantics, but pre-
serves disjoint blocks and hence also races and the sync-CFG structure of the
original interrupt-driven program.

create(t2);
create(t1);
x := y := t := 0;1

2
3

6

5

t1:

4
disableint;
y := y+1;

7
x := y;
enableint;

disableint;

t2:

8

10
9 t := x;

// assert(t<=1)
enableint;11

main:

x = y = t = 0

0 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 01 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 1

Fig. 6. Program P2 with its Sync-CFG and facts from an interval analysis

Static Analysis of Interrupt-Driven Kernels 713

spawn(t2);
spawn(t1);
x := y := t := 0;1

2
3

5

t1:

4
y := y+1;
lock(E); lock(E);

t2:

10

12
11 t := x;

// assert(t<=1)
unlock(E);13

unlock(E);6

unlock(E);
x := y;8

9

lock(E);7

0 ≤ x, t
1 ≤ y

main:

0 ≤ x, y, t

0 ≤ x, y, t 0 ≤ x, y, t

0 ≤ x, y, t

0 ≤ x, y, t

Fig. 7. Lock translation PL
2 of P2, with its Sync-CFG and interval analysis facts

Let us first spell out the translation. Let us fix an interrupt-driven program
P = (V, T). The idea is simply to introduce a lock corresponding to each pattern
of disjoint block pairs listed in Fig. 4, and to insert at the entry and exit to these
blocks an acquire and release (respectively) of the corresponding lock. For each
of the cases (a) through (h) we introduce locks named A through H, with some
exceptions. Firstly, for case (f) regarding the create of a thread t, we simply
translate these as a spawn(t) command in a classical lock-based programming
language, which has a standard acquire-release semantics. Secondly, for case (h),
we need a copy of H for each thread t, which we call Ht. This is because the
concerned blocks (say between a set and unset of the flag f) are not disjoint
across task threads, but only with the “then” block of an ISR thread statement
that checks if f = 0. The ISR thread now acquires the set of locks {Ht | t ∈ T}
at the beginning of the “then” block of the if statement, and releases them at
the end of that block. We call the resulting classical lock-based program PW .
Figure 5c shows this translation for the program P1.

Figure 8 shows this translation along with the sync-CFG edges and some of
the final facts in an interval analysis for the program P2.

It is not difficult to see that PW allows all executions that are possible in P .
However it also allows more: for example the execution of PW

1 (Fig. 5c) in which
thread t1 preempts t2 at line 9 to execute the statement at line 4, is not allowed
in P1. Thus it only weakly captures the execution semantics of P . However, every
race in P is also a race in PW . To see this, suppose we have a race on statements
s and t in P . This means there is a high-level race on the two skip blocks around
s and t in the augmented program P ′. Since an execution exhibiting the high-
level race on these blocks would also be present in (P ′)W which is identical to
(PW)′, it follows that the corresponding statements are racy in PW as well.

Further, since our translation preserves disjoint blocks by construction, if s
and t are in disjoint blocks in P , the corresponding statements will be in disjoint
blocks in PW ; and vice-versa. It follows that the sync-CFGs induced by P and
PW are essentially isomorphic (modulo the synchronization statements). As a
result, any value-set-based analysis will produce identical results on the two
graphs.

714 N. Chopra et al.

Finally, if statements s and t are HB-racy in P , they must also be HB-racy
in PW . This is because disjoint blocks are preserved and the synchronizes-with
relation is inherited from the disjoint blocks. Hence the execution witnessing the
HB-race in P would also be present in PW , and would also witness a HB-race
on the corresponding statements.

We summarize these observations below:

Proposition 1. Let P be an interrupt-driven program and PW the classical lock
program obtained using our lightweight lock translation. Then:

1. If statements s and t are racy in P , the corresponding statements are racy in
PW as well.

2. If statements s and t are HB-racy in P , the corresponding statements are
HB-racy in PW as well.

3. The sync-CFGs induced by P and PW are essentially isomorphic. As a result
the final facts in a value-set-based analysis on these graphs will be identical.

��

spawn(t2);
spawn(t1);
x := y := t := 0;1

2
3

6

5

t1:

4 y := y+1;

7
x := y;
unlock(A);

lock(A);

t2:

8

10
9 t := x;

// assert(t<=1)
unlock(A);11

lock(A);

main:

x = y = t = 0

0 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 01 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 1

Fig. 8. Our lightweight translation PW
2 of P2, with its Sync-CFG and interval analysis

facts

6.3 Lockset Analysis for Race Detection

For classical lock-based programs, the lockset analysis [24] essentially tracks
whether two statements are in disjoint blocks. Here two blocks are disjoint if
they hold the same lock for the duration of the block. When two statements are
in disjoint blocks, they are necessarily happens-before ordered, and hence this
gives us a way to declare pairs of statements to be non-HB-racy.

A lockset analysis computes the set of locks held at each program point as
follows: at program entry it is assumed that no locks are held. When a call to
acquire(l) is encountered, the analysis adds the lock l at the out point of the
call. When a call to release(l) is encountered the lockset at the out point of the
call is the lockset computed at the in point with the lock l removed. For any
other statement, the lockset from the in point of the statement is copied to its
out point. The join operation is the simple intersection of the input locksets.
Once locksets are computed at each point, a pair of conflicting statements s and

Static Analysis of Interrupt-Driven Kernels 715

t in different threads are declared to may HB-race if the locksets held at these
points have no lock in common.

Using our lock translation above, we can detect races as follows. Given an
interrupt-driven program P , we first translate it to the lock-based program PW ,
and do a lockset analysis on PW . If any pair of conflicting statements s and t
are found to be may-HB-racy in PW , we declare them to be may-HB-racy in P .
By Proposition 1(2), it follows that this is a sound analysis for interrupt-driven
programs.

7 Analyzing the FreeRTOS Kernel Library

We now perform an experimental evaluation of the proposed race detection algo-
rithm and sync-CFG-based relational analysis for interrupt-driven programs.
We use the FreeRTOS kernel library [3], on which our interrupt-driven pro-
gram semantics are based, to perform our evaluation. FreeRTOS is a collection
of functions mostly written in C, that an application developer compiles with
and invokes in the application code. We view the FreeRTOS kernel library as an
interrupt-driven program as follows: we build an interrupt-driven program out of

task: ISR:

main:

the FreeRTOS kernel as shown in the
figure alongside. The main thread is
responsible for initializing the kernel data
structures and then creating two threads:
a task thread which branches out calling
each task kernel API function, and loops
on this; and an ISR thread which similarly
branches and loops on the ISR kernel API
functions. FreeRTOS provides versions of
API functions that can be called from
interrupt service routines. These functions
have “FromISR” appended to their name.
While it is sufficient to have one ISR
thread, we assume (in the analysis) that
there could be any number of task threads
running. To achieve this we simply add sync-edges within each task kernel func-
tion, in addition to the usual sync-edges between task functions. We used FreeR-
TOS version 10.0.0 for our experiments. We conducted these experiments on an
Intel Core i7 machine with 32 GB RAM running Ubuntu 16.04.

7.1 Race Detection

We consider 49 task and queue API functions that can be called from an appli-
cation (termed top-level functions) for race detection. The functions operating
on semaphores and mutexes were not considered.

716 N. Chopra et al.

We prepared the API functions for analysis, in two steps: (1) inlining and
(2) lock insertion, as follows: The function vTaskStartScheduler and the queue
initialization code in the function xQueueGenericCreate were treated as part of
the main thread, which initializes kernel data structures. All the helper function
calls made inside the top-level functions were inlined. After inlining, the functions
are modified to acquire and release locks using the strategy explained in Sect. 6.2.
We consider each pair of disjoint blocks as taking the same distinct lock. For
example, the pair of disjoint blocks protected by disableint-enableint take
lock A. That is disableint is replaced with acquire(A) and enableint is
replaced with release(A). A total of 9 locks corresponding to disjoint blocks
were employed in the modification of the FreeRTOS code. The two steps outlined
above are automated. Inlining is achieved using the inline pass in the CIL
framework [22]. Lock insertion is accomplished using a script.

The modified code, which has over 3.5K lines of code, is used for race detec-
tion. We tracked 24 variables and check whether the statements accessing them
are racy. These variables include fields in the queue data-structure, task con-
trol block, and queue registry, as well as variables related to tasks. FreeRTOS
maintains lists for the states of the tasks like “ready”, “suspended”, “waiting to
send”, etc. The pointers to these lists are also analysed. Access to any portion
of a list (like the delayed list) is treated as an access of a corresponding variable
of the same name.

Races are detected in this modified FreeRTOS code in three steps - (1) com-
pute locks held, (2) identify whether access of a variable is a read or write, and
(3) report potential races. First a lockset analysis, as explained in Sect. 6.3, to
compute locks held at each access to variables, is implemented as a pass in CIL.
The modified FreeRTOS code is analyzed using this new pass and the lockset at
each access to the 24 variables of interest is computed. Then, a writes pass to
identify whether accesses to variables are “read” or “write”, also implemented in
CIL, is run on the modified FreeRTOS code. Finally, a shell script to interpret
both the results in the previous steps and report potential races is employed.
The script identifies the conflicting access pairs (using the writes pass) and the
locks held by the conflicting accesses (using lockset pass).

Our analysis reports 64 pairs of conflicting accesses as being potentially
racy. On manual inspection we classified 18 of them are real races and the
rest as false positives. Table 2 summarizes our findings. The second column
in the table lists the variables of interest involved in the race, like various
task list pointers, queue registry fields pcQueueName and xHandle, task vari-
able uxCurrentNumberOfTasks, tick count xTickCount, etc. The third column
lists the functions in which the conflicting accesses are made and the fourth gives
the number of racing pairs. The fifth column assesses the potential races based
on our manual inspection of the code. The analysis took 3.91 s.

The false positives were typically due to the fact that we had abstracted
data-structures (like the delayed list which is a linked-list) by a synonymous
variable. Thus even if the accesses were to different parts of the structure (like

Static Analysis of Interrupt-Driven Kernels 717

the container field of a list item and the next pointer of a different list item) our
analysis flagged them as races.

We were in touch with the developers of FreeRTOS regarding the 18 pairs
we classified as true positives. The 14 races on the queue registry were deemed
to be non-issues as the queue delete function is usually invoked only once the
application is about to terminate. The 2 races on uxCurrentNumberOfTasks are
known (going by comments in the code) but are considered benign as the variable
is of “base type”. The remaining couple of races on the delayed task lists appear
to be real issues as they have been fixed (independent of our work) in v10.1.1.

7.2 Region-Based Relational Analysis

Our aim here is to do a region-based interval and polyhedral analysis of a region-
race-free subset of the FreeRTOS kernel APIs, and to prove some simple asser-
tions about the kernel variables in each region.

We first identified six regions for this purpose. One region corre-
sponds to variables protected by disabling interrupts (like xTickCount,
xNextTaskUnblockTime, etc.), while variables protected by suspend and resume
scheduler commands (like uxPendedTicks, xPendingReadyList, etc.) are in
another region. Fields of the queue structure like pcHead, pcTail, etc. are in
a third region, while the waiting lists for a queue form another region. The
queue registry fields like pcQueueName and xHandle are in region 5. The pointer
variable pxCurrentTCB, pointing to the current Task Control Block (TCB), is
put in the sixth region.

The FreeRTOS code was modified further to reflect access to regions. For
this new variables R1, . . . , R6, are declared. Wherever there is a write (or read)
access to a variable in region i an assignment statement that defines (or reads
from) variable Ri is inserted just before the access. This is done using a script
which takes the result of the writes pass to find where in the source code an
appropriate assignment statement has to be inserted. We selected 15 APIs that
did not contain any region races.

Next, we prepared the API functions for the analysis in two steps. They are
described below:

Abstraction of FreeRTOS API Functions. We abstracted the FreeRTOS source
code to prepare it for the relational analysis. In this abstraction, we basically
model the various lists (ready list, delayed list) by their lengths and the value at
the head of the list (if required). Using this abstraction, we are able to convert
list operations to operations on integers.

Similarly, to model insertion into a list, we abstract it by incrementing the
variable which represents the length of the list. We abstracted all the API func-
tions in a similar fashion.

Creation of the Sync-CFG. The next step is to create a sync-CFG out of the
abstracted program. For doing this, we used the abstracted version of the FreeR-
TOS code (along with acquire-release added as explained in Sect. 7.1).

718 N. Chopra et al.

Table 2. Potential races

Variables Functions #Race pairs Remark

pxDelayedTaskList eTaskGetState

xTaskIncrementTick

1 Real race. Read of

pxDelayedTaskList in

eTaskGetState while it is written

to in xTaskIncrementTick

pxOverflowDelayedTaskList eTaskGetState

xTaskIncrementTick

1 Real race. (similar as above)

uxCurrentNumberOfTasks xTaskCreate

uxTaskGetNumberOfTasks

2 Real race. Unprotected read in

uxTaskGetNumberOfTasks while it is

written to in xTaskCreate

pcQueueName

xHandle

vQueueDelete

pcQueueGetName

vQueueAddToRegistry

14 Real race. Unprotected accesses in

queue registry functions

xTasksWaitingToSend

xTasksWaitingToReceive

eTaskGetState

xQueueGenericReset

2 False positive. Initialization of

vars when queue is created

pxDelayedTaskList

pxOverflowDelayedTaskList

xSuspendedTaskList

pxCurrentTCB

9 functions like

xTaskCreate,

eTaskGetState, etc.

11 False positive. Initialization of

vars when the first task is created

pxDelayedTaskList

pxOverflowDelayedTaskList

xSuspendedTaskList

xTasksWaitingToSend

xTasksWaitingToReceive

13 functions like

vTaskDelay,

eTaskGetState, etc.

33 False positive. The accesses are to

disjoint portions of the lists

Next, we used a script to insert non-deterministic gotos from the point of
release of a lock to the acquire of the same lock. Since we are using gotos for
creation of sync-CFG, we keep all the API functions in main itself and evaluate
a non-deterministic “if” condition before entering the code for an API function.

Results. For the purpose of analysis we listed out some numerical relations
between kernel variables in the same region, which we believed should hold.
We identified a total of 15 invariants including 4 invariants which involve rela-
tions between kernel variables. We then inserted assertions for these invariants
at the key points in our source code like the exit of a block protecting a region.

We have implemented an interval-based value-set analysis and a region-based
octagon and polyhedral analysis for C programs using CIL [22] as the front-end
and the Apron library (version 0.9.11) [16]. We represent the sync-with edges of
the sync-CFG of a program using goto statements from the source (release) to
the target (acquire) of the may-synchronizes-with (MSW) edges.

We ran our implementation on the abstracted version of the FreeRTOS kernel
library, with the aim of checking how many of the invariants it was able to prove.
The abstracted code along with addition of gotos is about 1500 lines of code.
We did a preliminary interval analysis on this abstracted sync-CFG and were
able to prove 11 out of these 15 invariants. With a widening threshold of 30,
the interval analysis takes under 5 min to run. As expected, the interval analysis
could not prove the relational invariants.

Static Analysis of Interrupt-Driven Kernels 719

We then did a region-based polyhedral analysis using the six regions identified
above. For the region-based analysis, we used convex polyhedra domain with a
widening threshold of 30. It is able to prove all the assertions we believed to be
true. The analysis takes about 30 min to complete with the convex polyhedra
domain and about 20 min with the octagon domain.

The results obtained by our analysis are shown in Table 3.

Table 3. Relational analysis results

Assertion Interval Anal Region Anal
(Oct/Polyhedral)

xTickCount ≤ xNextTaskUnblockTime No Yes

head(pxDelayedTaskList) = xNextTaskUnblockTime No Yes

head(pxDelayedTaskList) ≥ TickCount No Yes

uxMessagesWaiting ≤ uxLength No Yes

uxMessagesWaiting ≥ 0 Yes Yes

uxCurrentNumberOfTasks ≥ 0 Yes Yes

lenpxReadyTasksLists ≥ 0 Yes Yes

uxTopReadyPriority ≥ 0 Yes Yes

lenpxDelayedTaskList ≥ 0 Yes Yes

lenxPendingReadyList ≥ 0 Yes Yes

lenxSuspendedTaskList ≥ 0 Yes Yes

cRxLock ≥ −1 Yes Yes

cTxLock ≥ −1 Yes Yes

lenxTasksWaitingToSend ≥ 0 Yes Yes

lenxTasksWaitingToReceive ≥ 0 Yes Yes

8 Related Work

We classify related work based on the main topics touched upon in this paper.

Data Races. Adve and Hill [1] introduce the notion of a data race using a
happens-before relation, and identify instructions that form release-acquire pairs,
for low-level concurrent programs. Boehm and Adve [4] define races in terms of
consecutive occurrences in a sequentially consistent execution, as well as using
a happens-before order, in the context of the C++ semantics. They show their
notions are equivalent as far as race-free programs go. As pointed out earlier,
the definition of races as consecutive occurrences is inadequate in our setting.
Schwarz et al. [26] define a notion of data race for priority-based interrupt-driven
programs, where there is a single main task and multiple ISRs. A race occurs
when the main thread is accessing a variable at a certain dynamic priority, and an
ISR thread with higher priority also accesses the variable. Our definition can be
seen to be stronger and more accurately captures racy situations. In particular,

720 N. Chopra et al.

if the ISR thread with higher priority does not actually execute the conflicting
access, due to say a condition not being enabled, then we would not call it a
race. The term “high-level” race was coined by Artho et al. [2]. Our definition
of a high-level race follows that of [20].

Analysis of Interrupt-Driven Programs. Regehr and Cooprider [23] describe a
source-to-source translation of an interrupt-driven program to a standard multi-
threaded program, and analyze the translated program for races. Their trans-
lation is inadequate for our setting in many ways: in particular, disable-enable
of interrupts is translated by acquiring and releasing all ISR-specific locks; how-
ever this does not prevent interaction with another task while one task has
disabled interrupts. In [8] they also describe an analysis framework for constant-
propagation analysis on TinyOS applications. They use a similar idea of adding
“control-flow” edges between disable-enable blocks and ISRs. However no sound-
ness argument is given, and other kinds of blocks (suspend/resume, flag-based
synchronization) are not handled. The works in [5,6,13] analyze timing prop-
erties, interrupt-latency, and stack sizes for interrupt-driven programs, using
model-checking, algebraic, and algorithmic approaches. Schwarz et al. [25,26]
give analyses for race-detection and invariants based on linear-equalities for their
aforementioned class of priority-based interrupt-driven programs. Our work dif-
fers in several ways: Their analysis is directed towards applications (we target
libraries where task priorities do not matter), their analyses are specific (we
provide a basis for carrying out a variety of value-set and relational analyses,
targeting race-free programs), they consider priority and flag-based synchroniza-
tion (but not disable-enable and suspend-resume based synchronization). Sung
and others [27] consider interrupt-driven applications in the form of ISRs with
different priorities, and perform interval-based static analysis for checking asser-
tions. They do not handle libraries and do not leverage race-freedom. Finally,
[20] uses a model-checking approach to find all high-level races in FreeRTOS
with a completeness guarantee.

Analysis of Race-Free Programs. Chugh et al. [7] use race information to do
thread-modular null-dereference analysis, by killing facts at a point whenever a
notional read of a variable is found to be racy. De et al. [11] propose the sync-
CFG and value-set analysis for race-free programs, while Mukherjee et al. [21]
extend the framework to region and relational analyses. Gotsman et al. [12] and
Miné et al. [18,19] define relational shape/value analyses for concurrent programs
that exploit race-freedom and lock invariants respectively. All these works are for
classical lock-based synchronization while we target interrupt-driven programs.

9 Conclusion

In this paper our aim has been to give efficient static analyses for classes of
non-standard concurrent programs like interrupt-driven kernels, that exploit the
property of race-freedom. Towards this goal, we have proposed a definition of

Static Analysis of Interrupt-Driven Kernels 721

data races which we feel is applicable to general concurrent programs. We have
also proposed a general principle for defining synchronizes-with edges, which is
the key ingredient of a happens-before relation, based on the notion of disjoint
blocks. We have implemented our theory to perform sound and effective static
analysis for race-detection and invariant inference, on the popular real-time ker-
nel FreeRTOS.

We feel this framework should be applicable to other kinds of concurrent
systems, like other embedded kernels (for example TI-RTOS [14]) and appli-
cation programs, and event-driven programs. There are additional challenges in
these systems like priority-based preemption and priority inheritance conventions
which need to be addressed. Apart from investigating these systems we would
like to apply this theory to perform other static analyses like null-dereference,
points-to, and shape analysis, for these non-standard classes of concurrent
programs.

References

1. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

2. Artho, C., Havelund, K., Biere, A.: High-level data races. J. Softw. Test. Verif.
Reliab. 13, 207–227 (2003)

3. Barry, R.: The FreeRTOS kernel, v10.0.0 (2017). https://freertos.org
4. Boehm, H., Adve, S.V.: Foundations of the C++ concurrency memory model. In:

Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, USA, pp. 68–78. ACM (2008)

5. Brylow, D., Damgaard, N., Palsberg, J.: Static checking of interrupt-driven soft-
ware. In: Proceedings of the 23rd International Conference on Software Engineer-
ing, ICSE 2001, Toronto, Ontario, Canada, 12–19 May 2001, pp. 47–56 (2001)

6. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.:
Stack size analysis for interrupt-driven programs. In: Cousot, R. (ed.) SAS 2003.
LNCS, vol. 2694, pp. 109–126. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-44898-5 7

7. Chugh, R., Voung, J.W., Jhala, R., Lerner, S.: Dataflow analysis for concurrent
programs using data race detection. In: Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, 7–13 June 2008, pp. 316–326 (2008)

8. Cooprider, N., Regehr, J.: Pluggable abstract domains for analyzing embedded
software. In: Proceedings of the ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES 2006), Ottawa,
Canada, 14–16 June 2006, pp. 44–53 (2006)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

10. De, A.: Access path based dataflow analysis for sequential and concurrent pro-
grams. Ph.D. thesis, Indian Institute of Science, Bangalore, December 2012

https://freertos.org
https://doi.org/10.1007/3-540-44898-5_7
https://doi.org/10.1007/3-540-44898-5_7

722 N. Chopra et al.

11. De, A., D’Souza, D., Nasre, R.: Dataflow analysis for data race-free programs.
In: Proceedings of the 20th European Symposium on Programming ESOP 2011,
Saarbrücken, Germany, 26 March – 3 April 2011, pp. 196–215 (2011)

12. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, 10–13 June 2007, pp.
266–277 (2007)

13. Huang, Y., Zhao, Y., Shi, J., Zhu, H., Qin, S.: Investigating time properties of
interrupt-driven programs. In: Gheyi, R., Naumann, D. (eds.) SBMF 2012. LNCS,
vol. 7498, pp. 131–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33296-8 11

14. Texas Instruments: TI-RTOS: A Real-Time Operating System for Microcontrollers
(2017). http://www.ti.com/tool/ti-rtos

15. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

16. Jeannet Bertrand, M.A.: Apron numerical abstract domain library (2009). http://
apron.cri.ensmp.fr/library/

17. Kini, D., Mathur, U., Viswanathan, M.: Dynamic race prediction in linear time. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, pp. 157–170. ACM, New York (2017)

18. Miné, A.: Relational thread-modular static value analysis by abstract interpre-
tation. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp.
39–58. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 3

19. Monat, R., Miné, A.: Precise thread-modular abstract interpretation of concurrent
programs using relational interference abstractions. In: Bouajjani, A., Monniaux,
D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 386–404. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52234-0 21

20. Mukherjee, S., Kumar, A., D’Souza, D.: Detecting all high-level dataraces in an
RTOS kernel. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol.
10145, pp. 405–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52234-0 22

21. Mukherjee, S., Padon, O., Shoham, S., D’Souza, D., Rinetzky, N.: Thread-local
semantics and its efficient sequential abstractions for race-free programs. In:
Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 253–276. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66706-5 13

22. Necula, G.: CIL – infrastructure for c program analysis and transformation (v.
1.3.7) (2002). http://people.eecs.berkeley.edu/∼necula/cil/

23. Regehr, J., Cooprider, N.: Interrupt verification via thread verification. Electr.
Notes Theor. Comput. Sci. 174(9), 139–150 (2007)

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

25. Schwarz, M.D., Seidl, H., Vojdani, V., Apinis, K.: Precise analysis of value-
dependent synchronization in priority scheduled programs. In: McMillan, K.L.,
Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 21–38. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54013-4 2

26. Schwarz, M.D., Seidl, H., Vojdani, V., Lammich, P., Müller-Olm, M.: Static anal-
ysis of interrupt-driven programs synchronized via the priority ceiling protocol.
In: Proceedings of the ACM SIGPLAN-SIGACT Principles of Programming Lan-
guages (POPL), pp. 93–104 (2011)

https://doi.org/10.1007/978-3-642-33296-8_11
https://doi.org/10.1007/978-3-642-33296-8_11
http://www.ti.com/tool/ti-rtos
https://doi.org/10.1007/978-3-642-02658-4_52
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.1007/978-3-319-52234-0_22
https://doi.org/10.1007/978-3-319-52234-0_22
https://doi.org/10.1007/978-3-319-66706-5_13
http://people.eecs.berkeley.edu/~necula/cil/
https://doi.org/10.1007/978-3-642-54013-4_2

Static Analysis of Interrupt-Driven Kernels 723

27. Sung, C., Kusano, M., Wang, C.: Modular verification of interrupt-driven software.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, Urbana, IL, USA, 30 October – 3 November 2017,
pp. 206–216 (2017)

28. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5, 285–309 (1955)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Abstract Domain for Trees
with Numeric Relations

Matthieu Journault1(B), Antoine Miné1,2(B), and Abdelraouf Ouadjaout1(B)

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6,
LIP6, 75005 Paris, France

{matthieu.journault,antoine.mine,abdelraouf.ouadjaout}@lip6.fr
2 Institut universitaire de France, Paris, France

Abstract. We present an abstract domain able to infer invariants on
programs manipulating trees. Trees considered in the article are defined
over a finite alphabet and can contain unbounded numeric values at their
leaves. Our domain can infer the possible shapes of the tree values of each
variable and find numeric relations between: the values at the leaves as
well as the size and depth of the tree values of different variables. The
abstract domain is described as a product of (1) a symbolic domain based
on a tree automata representation and (2) a numerical domain lifted, for
the occasion, to describe numerical maps with potentially infinite and
heterogeneous definition set. In addition to abstract set operations and
widening we define concrete and abstract transformers on these environ-
ments. We present possible applications, such as the ability to describe
memory zones, or track symbolic equalities between program variables.
We implemented our domain in a static analysis platform and present
preliminary results analyzing a tree-manipulating toy-language.

1 Introduction

The abstract interpretation framework [5] enables the development of sound
static analyzers by inferring and proving invariants on reachable states of pro-
grams. Invariants in the scope of abstract interpretation are elements of a lattice
called an abstract domain. Most domains focus on numeric or pointer variables.
By contrast, we propose an abstract domain for variables whose values are tree
data-structures. Tree values appear natively in some languages (such as OCaml)
and applications (such as the DOM in web programming) or can be encoded
through pointer manipulations (as in C). Trees can abstract terms in logic pro-
gramming. A tree domain can also be useful to collect symbolic expressions
appearing in a program.

This work is supported by the European Research Council under Consolidator Grant
Agreement 681393 – MOPSA.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 724–751, 2019.
https://doi.org/10.1007/978-3-030-17184-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_26

An Abstract Domain for Trees with Numeric Relations 725

typedef struct node
{

int data;
struct node* next;

} node;

node* append(node* head , int data)
{

if (head==NULL) {
return (create(data , NULL));

} else {
node *cursor=head;
while(cursor ->next != NULL)

cursor=cursor ->next;
node* new_node=create(data ,NULL);
cursor ->next=new_node;
return head;

}
}

Program 1: Append to list in C

float golden_ratio(int n) {
int i = 0;
float r = 1;
while (i < n) {

r = 1 + 1 / r;
i += 1;

}
return r;

}

Program 2: Golden ratio in C

let rec f x n =
match n with
| 0 -> []
| _ -> (x+1)::(x-1) ::(f x (n-1))

let () =
(* Assume x:int and n:int >=0*)
let t = f x n in
match t with
| [] -> ()
| p :: q when p > x -> ()
| _ -> assert false

Program 3: List type in OCaml

Used Memory Zones. Program 1 describes an append function defined in the C
language, this function adds an integer at the end of a linked list. The infinite
set of unbounded terms of the form *(*(...*(head + 4) ...+ 4) + 4) represents
memory zones that are used by the append function. Our analyzer is able to infer
and represent such sets of terms. This provides the information that Program 1
does not use any of the data field of the linked list. Such a function would be
fairly commonly called in a real-life project. In a classical top-down static analy-
sis by abstract interpretation, function calls are inlined at each call site. A way to
improve scalability is to design modular analyzers able to reuse previous analysis
results (as emphasized in [7]). In order to be able to successfully reuse function
body analysis, input states must be unified. Moreover the cost of performing the
analysis of the body of functions grows with the number of variables that need to
be tracked. A common way to deal with both problems is to use framing on the
inputs of the functions (as in separation logic [25]). This improves (1) precision:
as we know that they are not modified by the function call, (2) body analysis effi-
ciency: as the input state is reduced and finally (3) modularity: as constraints on
the usage of the first analysis are relaxed by the removal of constraints.

Symbolic Relations. Program 2 is a C function computing an approximation of
the golden ration (as it is the limit of the sequence r0 = 1, rn+1 = 1 + 1

rn
). As

classical numerical domains can not represent such numerical relations, methods
were proposed to track symbolic equality between expressions (see [23]). However
such methods can not handle the unbounded iteration of Program 2. The set of
reachable states at the end of Program 2 can be expressed by r = 1 + 1/(1 +
1/ . . . 1 . . .) with depth n. Please note that to infer such results we need to express
numerical relations between the size of trees and the numeric variables from the
program.

726 M. Journault et al.

Numerical Environment. Consider now the OCaml Program 3, we want to prove
that the assert false expression is never reached. This program builds a list
of size 2∗n with alternating values x+1 and x−1. The assertion states that the
head of the list is x+1. After the definition of t there are two types of reachable
states. (1) Those that have not gone through the loop (t �→ [], x �→ Z, n �→ 0),
and (2) those that have gone through at least one iteration of the loop: (t �→
[a1;a2;a3; ...], x �→ α, n > 0, a1 �→ α + 1, a2 �→ α − 1, a3 �→ α + 1), where
α ∈ Z. Therefore we need to be able to keep numerical relations between the
parametric and unbounded number of numeric values appearing in t and numeric
variables from the program. Classical numeric domains do not provide out-of-
the-box abstractions for sets of partially defined numerical functions, therefore
we define such an abstraction. As an example of analysis result, the memory
representation obtained by our analysis for t describes the set of trees of the
form: Cons(a, Cons(b, Cons(a, ..., Nil) ...)) where a = x + 1 and b =
x− 1. Therefore we are able to prove that the assert false expression is never
reached.

Contributions. The main contributions of the article are threefold: (1) The exten-
sion of results on tree automata to the abstract interpretation framework by
definition of a widening operator, in order to represent the set of tree shapes
that a variable can contain. (2) The definition of a numerical domain built upon
classical abstract domains able to represent sets of partial numerical maps with
heterogeneous and unbounded definition sets. This is necessary to represent the
numeric values at the leaves of a set of trees, as trees are unbounded and can
contain a different number of leaves. (3) The definition of a novel abstraction
for trees that can contain numerical values at their leaves. This last domain
combines the abstractions (1) and (2). Moreover it is relational as it can express
relations between numerical values found in trees and in the rest of the program,
and relations between trees. Finally all results were implemented in an existing
framework and experimented on a toy-language.

Limitations. At this point, analyses can only be performed on the toy language
presented thereinafter, not on real life code, therefore we do not present any
benchmark results, even though examples of analysis results will be put forth.
Indeed Programs 1, 2 and 3 were precisely analyzed once encoded into our toy-
language (see Programs 4 and 5).

Outline. We start, in Sect. 2, by presenting the concrete semantic we want to
abstract. In Sect. 3 we build a first abstraction which forgets numerical values and
focuses on abstracting tree shapes. Section 4 presents a novel numerical abstract
domain required for the definition of the abstract domain of Sect. 5, which aims
at precisely representing numerical constraints between trees and program vari-
ables. In Sect. 6 we provide remarks on the implementation and results of the
analyzer. Finally Sect. 7 mentions related works while Sect. 8 concludes.

An Abstract Domain for Trees with Numeric Relations 727

Notations. Classical Galois connections (see [5]) are denoted (A,⊆A) −−−→←−−−
α

γ

(B,⊆B). When no best abstraction can be defined, we use the representation
framework (as defined by Bourdoncle in [3], also known as concretization only
framework), representations are denoted by (A,⊆A)

γ←− (B,⊆B). A � B denotes
the set of partial maps from A to B, and λ|Ax.f(x) ∈ B denotes the map in
A → B that associates f(x) to x. Finally when f ∈ A → C and g ∈ B → C,
with A ∩ B = ∅, f
 g is the function defined on A ∪ B, that associates f(x)
(resp. g(x)) to x whenever x ∈ A (resp. x ∈ B).

2 Syntax and Concrete Semantics

Definition 1. An alphabet F is a finite set, a ranked alphabet is a pair R =
(F , a) where F is an alphabet and a ∈ F → N. For f ∈ F , we call arity of f
the value a(f). We assume that Z and F are disjoint and we define the set of
natural terms over R (denoted TZ(R)) to be the smallest set defined by:

– Z ⊆ TZ(R)
– ∀p ≥ 0, f ∈ F , t1, . . . , tp ∈ TZ(R), a(f) = p ⇒ f(t1, . . . , tp) ∈ TZ(R)

Moreover when R contains at least one symbol of arity 0, we define terms over
R (denoted T (R)) to be the smallest set defined by:

– ∀p ≥ 0, f ∈ F , t1, . . . , tp ∈ T (R), a(f) = p ⇒ f(t1, . . . , tp) ∈ T (R)

In the following, Fn denotes the subset of F of arity n. Moreover given a term
t ∈ T (R) we denote f = head(t) ∈ F and sons(t) a possibly empty tuple
(t1, . . . , tn) of elements of T (R) such that t = f(t1, . . . , tn).

Remark 1. Numerical leaves are defined to contain integers, however this could
be modified to rationals, real numbers or floats. We are parametric in the type
of numeric values, as they are delegated to an underlying numerical domain.

Example 1. Consider the ranked alphabet R = {*(1), &(1), +(2), x(0)}, u(n)
means that symbol u has arity n. Then &x ∈ T (R), but *(&x+4) ∈ TZ(R),
and *(&x+4) /∈ T (R). Using this alphabet we can model C pointer arithmetic.

Example 2. U = {+(x, y) | x ≤ y} and V = {+(x,+(z, y)) | x ≤ y ∧ z ≤ y} are
two sets of natural terms over R = {+(2)} which we use as running examples.

728 M. Journault et al.

Fig. 1. Syntax extension of the language

Fig. 2. Concrete operations on natural terms

int i;
int n;
tree y;
assume(n >= 0);
i = 0;
y = make_symbolic("p" ,{});
while (i < n) {

y = make_symbolic("*",
{make_symbolic("+",

{y,
make_integer (4)

})
});

i = i+1;
}

Program 4: *(p+4) iterated

int n; int i; int x; int rep;
tree t;
assume(n>=0);
i = 0;
t = make_symbolic("Nil" ,{});
while (i < n) {

t = make_symbolic("Cons",
{make_integer(x-1), t});

t = make_symbolic("Cons",
{make_integer(x+1), t});

i = i + 1;
};

if (get_sym_head(t) != "Nil") {
rep = get_num_head(get_son(t,0));
assert(rep > x);

}

Program 5: List manipulation

Syntax of the Language and Concrete Operations. We assume already defined
a small imperative language and extend it (in Fig. 1) with statements, tree
expressions (tree-expr) which are expressions that are evaluated to trees, and
simple symbol expressions (sym-expr) which enable the manipulation of sym-
bols. We add the ability to build a tree which contains only a numerical leaf:
make integer(e), the ability to read the i-th son of a tree t: get son(t, i),
Figure 2 defines concrete operations over the set ℘(TZ(R)). Figure 2 assumes
given a set of program numerical variables V, a set of numerical expressions
(over V) denoted expr, a set of statements stmt, a notion of numerical environ-
ment E ∈ E = V → Z, a set of tree program variables T , a notion of tree

An Abstract Domain for Trees with Numeric Relations 729

environment F ∈ F = T → ℘(TZ(R)), D = E × F is our concrete domain.
Finally we assume already partially defined on numerical expressions an eval-
uation function E[[e ∈ expr]](E ∈ V → Z, F ∈ T → ℘(TZ(R))) ∈ ℘(Z). Using
this operator we are able to define Program 4 which computes the memory zones
used by append from Program 1, and Program 5 that simulates the behavior of
Program 3.

3 Natural Term Abstraction by Tree Automata

In this section we start by defining a value abstraction for tree sets (in Sect. 3.1),
which is then lifted to an environment abstraction (in Sect. 3.2).

3.1 Value Abstraction

As a first abstraction for natural terms, we put aside numerical values and define
an abstraction able to describe sets of tree shapes. Tree automata enable the
description of set of terms built upon a finite ranked alphabet. The ranked
alphabet of the language we want to analyze is extend with the � symbol to
denote potential positions of numerical values.

Definition 2 (Finite tree automata). A finite tree automaton (FTA) over
a ranked alphabet R is a tuple (Q,R, Qf , δ), where Q is a (finite) set of states,
Qf ⊆ Q is the set of final states, and δ ∈ ℘(

⋃
n∈N

Fn × Qn × Q) is the set
of transitions. We define δ : (

⋃
n∈N

Fn × Qn) → ℘(Q) by: δ(f,−→q) = {q′ |
(f,−→q , q′) ∈ δ}. When δ is such that, ∀n ∈ N, f ∈ Fn, −→q ∈ Qn, |δ(f,−→q)| = 1,
we say that the automaton is complete and deterministic (CDFTA). We then
abuse notations and denote by δ(f,−→q) the unique element in the set δ(f,−→q).

Definition 3 (Reachability). Given a FTA A = (Q,R, Qf , δ) we define, a
reachability function reachA : T (R) → ℘(Q)

reachA(t) =let t1, . . . , tn = sons(t) in
⋃

(q1,...,qn)∈(reachA(t1),...,reachA(tn))

δ(head(t), (q1, . . . , qn))

If sons(t) is the empty tuple (which is the case when t is a constant a), the union
is made over a unique element (which is the empty tuple), which then boils down
to: δ(a, ()). If sons(t) is not the empty tuple and for some i, ReachA(ti) is
empty, then ReachA(t) is also empty.

Example 3. Consider the ranked alphabet R = {f(2), a(0)}, and the automaton
A = ({u, v},R, {v}, {a() → u, f(v, v) → v, f(u, u) → u, f(u, u) → v}). Then
reachA(a) = {u}, reachA(f(a, a)) = {u, v}, reachA(f(f(a, a), a)) = {u, v}.

730 M. Journault et al.

Definition 4 (Acceptance). Given a FTA A = (Q,R, Qf , δ), a term t, we
say that t is accepted by the automaton if reachA(t) ∩ Qf �= ∅. L(A) denotes
the set of terms accepted by automaton A.

Example 4. With the definition of Example 3, L(A) is the set of terms over R
that contain at least one f .

Definition 5 (Tree regular languages). A set of terms T over a ranked
alphabet R is called tree regular if there exists a FTA A over R such that
L(A) = T . The set of such languages is denoted TReg(R).

Remark 2. As for regular languages, for all A ∈ FTA there exists A′ ∈ CDFTA
such that L(A) = L(A′), moreover A′ is computable (see [4]).

Example 5. – As proved in Example 4 the set of all terms over {f(2), a(0)} that
contain at least one f is tree regular.

– Consider now the ranked alphabet {a(1), b(1), ε(0)} and the set of terms T =
{ε, a(b(ε)), a(a(b(b(ε)))), . . . }. We can prove (in a similar way as for anbn in
regular languages) that T is not tree regular.

– On every ranked alphabet R: every finite language, the empty language and
T (R) are tree regular.

Proposition 1. (TReg(R),⊆,∩,∪, .c, ∅, T (R)) is a complemented lattice with
infinite height, moreover it is not complete. ⊆,∩,∪ and complementation (.c)
are computable operations on tree automata [4].

We denote by R� the ranked alphabet R after adding the symbol � of arity
0 (we assume that � �∈ R). Given a natural term t, we define t� to be the term
obtained by replacing every integer with the � symbol.

Proposition 2. (℘(TZ(R)),⊆)
γ←− (TReg(R�),⊆) where γ(A) = {t | t� ∈

L(A)} is a representation. Moreover with such a γ definition, ∪, ∩ soundly
represent the union and the intersection.

Remark 3. We only have a representation and not a Galois connection as lan-
guage T of Example 5 does not have a best tree regular over approximation.

Example 6. Let R = {+(2)} and A = ({0, 1},R�, {0, 1}, {(�() → 0,+(0, 0) →
1,+(0, 1) → 1)}). Examples of terms recognized by A are shown on Fig. 3.
Natural terms from our running example U and V (defined in Example 2) are
also contained in γ(A). Moreover as we do not provide numerical constraints:
1 + (3 + 4), 23, 1 + (2 + (3 + 4)) are also elements in γ(A).

Due to the infinite height of the lattice, a widening operator is required. In
the following, we assume given a constant w ∈ N, this constant will be used
to stabilize increasing chains, the greater the constant, the more precise our
widening operator will be.

An Abstract Domain for Trees with Numeric Relations 731

Definition 6. Let A = (Q,R, Qf , δ) ∈ FTA, and ∼ be an equivalence relation
on Q, such that p ∼ q ∧ p ∈ Qf ⇒ q ∈ Qf . We define A/ ∼= (Q/ ∼,R, Qf/ ∼,⋃

(f,q1,...,qn,q)∈δ{(f, q∼
1 , . . . , q∼

n , q∼)}) where q∼ is the equivalence class of q in ∼.

Proposition 3. For every A ∈ FTA and every ∼ equivalence relation on its
states, L(A) ⊆ L(A/ ∼).

Therefore following the idea from [9] and in [11], we define a widening opera-
tion by quotienting states of automata by an equivalence relation of finite index.
We define by induction a special sequence of equivalence relations on states
of tree automata: ∼1= {Qf , Q \ Qf} and ∼k+1 is ∼k where we split equiv-
alence classes not satisfying the following condition: ∀f ∈ Fn, ∀p1, . . . , pn ∈
Q, ∀q1, . . . , qn ∈ Q, (

∧n
i=1 pi ∼k qi) ⇒ δ(f, p1, . . . , pn) ∼k δ(f, q1, . . . , qn) and

∀q ∈ Qf , q∼k ⊆ Qf . This sequence of equivalence relations is the Myhill-Nerode
sequence (see [4]). This sequence is of length at most the number of states of the
automaton (before stabilization). Let φ(w) = max{i ≤ |Q| | index of ∼i≤ w}
(given an integer w, φ yields the index of the most precise of the equivalence
relationships in the Myhill-Nerode sequence, that contains at most w equiva-
lence classes) and [A]w = A/ ∼φ(w). [A]w is therefore a FTA with at most w
states such that L(A) ⊆ L([A]w). As for regular languages, for every CDFTA a
equivalent minimal CDFTA (in the sense of the number of states, and unique
modulo state renaming) can be obtained by quotienting the automaton by ∼|Q|.
Therefore we define a widening operator on CDFTAs, which is then lifted to tree
regular languages.

Definition 7 (Widening operator �). A�A′ = [A ∪ A′]w.

Proposition 4. This widening is sound and stabilizes infinite sequences.

Remark 4. Consider the two following complete and deterministic tree auto-
mata: A = ({a, b, h}, {+(2)}, {a}, {�() → b,+(b, b) → a}) and B = ({a, b, c, h},
{+(2)}, {a}, {�() → b,+(b, b) → c,+(b, c) → a}) (unmentioned transitions
go to h). A (resp. B) recognizes the tree +(�,�) (resp. +(�,+(�,�))), it
over-approximates U (resp. V) from our running example. A ∪ B is recognized
by the following complete and deterministic tree automaton: C = ({a, b, c, h},
{+(2)}, {a, c}, {�() → b,+(b, b) → c,+(b, c) → a}). If we want to widen
A and B with parameter 3, the following equivalence relation is computed:
{{h}, {b}, {a, c}}. Merging equivalent states produces ({a, b, h}, {+(2)}, {a},
{�() → b,+(b, b) → a,+(b, a) → a}), which contains a loop and over-
approximates the union.

732 M. Journault et al.

3.2 Environment Abstraction

� +

� �

+

� +

� �

+

� . . .

+

� �

Fig. 3. Example of accepted
trees from Example 6

Now that we are given an abstraction for nat-
ural term sets, let us show how this is lifted
to a notion of abstract natural term environ-
ments mapping variables to natural terms. Given
a set of natural term variables T , consider F� =
(T → TReg(R�)) ∪ {⊥} and the set operators
defined by the point-wise lifting of operators on
TReg(R�). We also lift the concretization func-
tion ℘(TZ(R)) ← TReg(R�) to F ← F�. We
assume given an abstract numerical environment
E� and an abstract evaluator E[[e]]�. Abstract
transformers [[make symbolic]]�, [[is symbol]]�, [[get son(e)]]�, [[get sym head]]�

and [[get num head]]� are simple tree automata operations. For concision Fig. 4
only provides definitions of two of these operators. Please note that these def-
initions require all states of the automata to be reachable. An example of use
of the is symbol operator can be found in Example 7. Other abstract operators
are similar.

Fig. 4. Abstract operators

Example 7. Consider the tree automaton A of Example 6, (Fig. 3), with
F � = (x �→ A): [[get sym head(x)]]�(E�, F �) = {+} and [[get num head(x)]]�(E�,
F �) = �.

4 Numerical Abstractions

As emphasized in the introductory example, we rely on numerical domains to
introduce constraints on numerical variables found in trees. In a classical numeric
abstraction (e.g. intervals [6], octagons [22], polyhedra [8], . . .), each abstract
element represents a set of maps V → R for a fixed, finite set of variables
V. In contrast, our numeric variables are leaves of a possibly infinite set of
trees of unbounded size. Hence before starting the presentation of the numerical
abstraction for natural terms, we show how to extend in a generic way an abstract
element in two steps. Firstly we want to be able to represent a set of maps, where
each map is defined over a (possibly different) finite subset of an infinite set of
variables (this is done in Sect. 4.1). Secondly, we use summarization variables to
relax the finiteness constraint, so as to represent sets of maps over heterogeneous
maps over infinitely many variables (done in Sect. 4.2).

An Abstract Domain for Trees with Numeric Relations 733

4.1 Heterogeneous Support

We define M
Δ= ℘(V � R), the set of partial maps from V, to R. M is ordered

by the inclusion relation ⊆. In the following def(f) denotes the definition set of

f . We assume defined a representation (℘(S → R),⊆)
γS
0←−− (NS ,�S

0), for every
finite set S ⊆ V (such as octagons in |S| dimensions). NS comes with the usual
abstract set operator �S

0 , �S
0 . Moreover if x ∈ S, y /∈ S, S ′ is another finite set

and N � ∈ NS then N �[x �→ y] ∈ NS∪{y}\{x} is the abstract element obtained by
renaming x into y, N �

|S′ ∈ NS′ is obtained by existentially quantifying dimensions
associated to elements in S and not in S ′ and adding unconstrained dimensions
for elements in S ′ and not in S. From now on we assume that this last operator
is exact (as for intervals, octagons, polyhedra over R). However results from this
section can be extended to numerical domains that are able, given N � ∈ NS ,
N �′ ∈ NS′ , to check if γS

0 (N �) ⊆ γS′
0 (N �′)|S . The precision of the extension

defined in this subsection would then depend upon the precision of this test in
the underlying domain. Finally [[.]]S0 (resp. [[.]]�,S0) refers to the classical concrete
(resp. abstract) semantic of operators on sets of numerical maps (resp. abstract
elements). A classical method for the abstraction of heterogeneous maps is the
use of a partitioning of the concrete element according to the definition set of its
represented maps. However partitioning induces an increase in numerical oper-
ation cost (exponential in the number of variable) which we would like to avoid.
Therefore in order to abstract sets of maps with heterogeneous definition sets,
we start by abstracting the potential definition set. We choose a simple lower-
bound/upper-bound abstraction (l and u in the following definition). Moreover
we need to abstract the potential mappings given a definition set: this is done
using a classical numerical domain. Contrary to partitioning, we will use only
one numerical abstract element, defined on the upper-bound u, to represent all
environments (instead of one abstract element by definition set). We also add a
� element, used in the case where the upper bound u is infinite.

Definition 8 (Numerical abstraction). Let us define the following set: M� Δ=
{〈N �, l, u〉 | l, u ∈ ℘(V)∧l and u are finite∧l ⊆ u∧N � ∈ Nu∧N � �= ⊥u

0}∪{�,⊥}.
An element of M� is therefore: either �, ⊥ or a triple 〈N �, l, u〉 where l and u
are finite sets of variables such that N � is defined over u.

Definition 9 (Concretization function). Abstract elements from M� are
mapped to M thanks to the following concretization function: γ(⊥) = ∅, γ(�) =
M and γ(〈N �, l, u〉) = {ρ ∈ S → Z | l ⊆ S ⊆ u ∧ ρ ∈ γS

0 (N �)|S)}.

Example 8. As an example consider γ(〈{x = y, x ≤ 3, z = 0}, {x}, {x, y, z}〉) =
{(x �→ a) | a ≤ 3}∪ {(x �→ a, y �→ a) | a ≤ 3}∪ {(x �→ a, z �→ 0) | a ≤ 3}∪ {(x �→
a, y �→ a, z �→ 0) | a ≤ 3}. As intended, the resulting set of maps contains maps
with different definition sets.

734 M. Journault et al.

Definition 10 (Order). On M� we define the following comparison operator:
〈N �, l, u〉 � 〈N �′, l′, u′〉 ⇔ l′ ⊆ l ⊆ u ⊆ u′ ∧ N � �u

0 N �′
|u, this comparison is

trivially extended to � (resp. ⊥) as being the biggest (resp. smallest) element in
M�. In the following M�

p denotes the subset of M� where u = p extended with �
and ⊥.

Proposition 5. γ is monotonic for �.

Figure 5 provides the definition of the concrete and abstract semantics of the
classical numerical statements, Assume and Assign (denoted x ← e). We denote
vars(e) the set of variables appearing in e. We recall that [[Assume(c)]]S0 (E ∈
℘(S → R)) = {f ∈ E | true ∈ E[[c]](f)} and [[x ← e]]S0 (E ∈ ℘(S → R)) =
{f [x �→ e′] | f ∈ E ∧ e′ ∈ E[[e]](f)}. In order to ease the lifting of these classi-
cal operators we define [[stmt]]0(M ∈ M) Δ= ∪S finite⊆V [[stmt]]S0 (M ∩ (S → R)),
for every statement stmt. Moreover we assume the existence of the following
abstract operators: [[Assume(c)]]�,u0 (N �) and [[x ← e]]�,u0 N � abstracting soundly
their respective concrete transformers. Note that the concrete semantic of
Assume(c) (resp. x ← e) enforces that maps are defined at least on the vari-
ables appearing in c (resp. in e and on x). Abstract operators from Fig. 5 are
sound with respect to γ and their concrete operators.

Fig. 5. Concrete and abstract semantic of usual numerical operators

We now need to define � that abstracts the classic set operator ∪. We can not
directly apply the corresponding abstract operator on the numerical component
of the abstractions as they might have different definition sets. A first naive solu-
tion would be to extend their respective definition set and to perform the abstract
operation on the resulting elements: N �

|u∪u′ �u∪u′
0 N �′

|u∪u′ . However consider
M = 〈{x = y}(= U �), {x, y}, {x, y}〉 and N = 〈{x = z}(= V �), {x, z}, {x, z}〉,
where the underlying domain is the octagon domain where elements are repre-
sented as a set of linear constraints (e.g. {x = y}). We have U �

|{x,y,z} = {x = y}
and V �

|{x,y,z} = {x = z}, hence U �
|{x,y,z} �{x,y,z}

0 V �
|{x,y,z} = �. Consider now the

abstract element in M�: R = 〈{x = y, x = z}(= W �), {x}, {x, y, z}〉. The con-
cretization of R over-approximates the union of the concretization of M and N ,
and its numerical component is more precise than �. We note that the numerical
constraints appearing in W � could be found in U � or V �, therefore in order to
remove the aforementioned imprecision we define a refined abstract union opera-
tor, denoted as �� , that uses constraints found in the inputs in order to refine its

An Abstract Domain for Trees with Numeric Relations 735

Algorithm 1. strengthening operator
Input : X�, C: a set of constraints, U � ∈ Nu: a soundness threshold on

environment u, V � ∈ Nv: a soundness threshold on environment v
Output: Z� an abstract element over-approximating U � on u and V � on v

1 Z� ← X�;
2 foreach c ∈ C do

3 T � ← [[Assume(c)]]�,u∪v
0 (Z�);

4 if U � �u
0 T �

|u ∧ V � �v
0 T �

|v then

5 Z� ← T �;
6 end

7 return Z�;

result. This is done using the strenghtening operator of Algorithm 1 which adds
constraints from C that do not make the projection of X� to u (resp. v) lower
than the threshold U � (resp. V �). We assume that, given an abstract element
U �, we can extract a finite set of constraints satisfied by U �, those are denoted
constraints(U �) (the more constraints can be extracted, the more precise the
result will be). For example if the numerical domain is the interval domain, con-
straints have the form ±x ≥ a. If the numerical domain is the octagon domain
the constraints operator yields all the linear relations among variables that
define the octagon.

Definition 11 (�� operator). Let U � ∈ Nu, V � ∈ Nv be two numerical envi-
ronments, let X� ∈ Nu∪v, let C be a sequence of numerical constraints over u∪v,
let c = u ∩ v we define:

U � �� V � = let X� = (U �
|c �

c
0 V �

|c)|u∪v in

let C = constraints(U �) ∪ constraints(V �) in

strengthening(X�, C, U �, V �)

Remark 5. – The precision of �� depends upon the order of iteration over con-
straints c ∈ C in Algorithm 1. Our implementation currently iterates in the
order in which constraints are returned from the abstract domains. More
clever heuristics will be considered in future work.

– U � �� V � starts by performing the join over the domain c, the result is
then strengthened. Other strenghtening(X�, U � ∈ Nu, V � ∈ Nv) opera-
tor could be defined, however in order to ensure soundness of �� , it must
satisfy the following constraints: U � �u

0 strenghtening(X�, U �, V �) and
V � �v

0 strenghtening(X�, U �, V �).

Example 9. Let us now consider the example introduced thereinbefore U � �� V � =
{x = y, y = z} ∈ N{x,y,z}. Indeed using the notations of Definition 11: Z� Δ=
X� = � ∈ N{x,y,z}, C = {x = y, y = z}, moreover [[Assume(x = y)]]�,u∪v

0 (�) =

736 M. Journault et al.

{x = y}(Δ= T �), U � �{x,y}
0 {x = y} = T �

|{x,y} and V � �{x,z}
0 � = T �

|{x,z}. There-
fore constraint x = y is added to Z�. At the next loop iteration: [[Assume(x =
z)]]�,u∪v

0 ({x = y}) = {x = y, x = z}(Δ= T �), U � �{x,y}
0 {x = y} = T �

|{x,y} and

V � �{x,z}
0 {x = z} = T �

|{x,z}. Therefore constraint x = z is added to Z�.

Proposition 6 (Soundness of ��). let U � ∈ Nu and V � ∈ Nv, then γu
0 (U �) ⊆

(γu∪v
0 (U � �� V �))|u and γv

0 (V �) ⊆ (γu∪v
0 (U � �� V �))|v.

Definition 12 (Union abstract operators). We define the following abstr-
act set operator: 〈N �, l, u〉 � 〈N �′, l′, u′〉 Δ= 〈N � �� N �′, l ∩ l′, u ∪ u′〉. This operator
soundly abstracts the union. Moreover in order to ensure the stabilization of
infinitely increasing chains in M� we define the following widening operator:

〈N �, l, u〉�〈N �′, l′, u′〉 =

⎧
⎨

⎩

〈N ��u
0N �′

|u, l, u〉 when l ⊆ l′ ∧ u′ ⊆ u

〈N � �� N �′, l′, u〉 when l′ ⊂ l ∧ u′ ⊆ u
� otherwise

Remark 6. This widening operator over-approximates to � whenever the upper-
bound on the definition set is growing. This yields a huge loss of information
however this numerical domain is designed as a tool domain used by a higher
level abstraction in charge of stabilizing the environment before applying the
widening, so that this case will not be used in practice.

Subsequent tree abstractions require the definition of the following operators:

– 〈N �, l, u〉|−x
Δ= 〈N �

|u\{x}, l \ {x}, u \ {x}〉 and 〈N �, l, u〉|+x
Δ= 〈N �

|u∪{x}, l ∪
{x}, u ∪ {x}〉 which respectively removes (adds) a variable to the numerical
environment.

– 〈N �, l, u〉|S is computed by adding variables in S and not in u and removing
variables in u that are not in S.

4.2 Representation of Maps over Potentially Unbounded Sets

In this subsection we focus on the problem of defining abstract numerical envi-
ronments on potentially infinite environments. A classical method we use here is
variable summarization (see [13]). This is based on the folding of several concrete
objects (a potentially infinite number) to an abstract element which summarizes
all concrete objects. The folding is encoded in a function f mapping summa-
rized variables to the set of concrete variables they abstract. Given an abstract
numerical environment N � and a mapping from summary variables: V ′ to sets of
concrete variables f ∈ V ′ → ℘(V) where f(v1) ∩ f(v2) �= ∅ ⇒ v1 = v2, we define
the collapsing of a partial map ρ ∈ V � Z under a summarizing function f :

↓f (ρ) = {ρ′ ∈ V ′
� Z |∀v′ ∈ V ′, (f(v′) ∩ def(ρ) = ∅ ∧ ρ′(v′) = undefined)

∨ (∃v ∈ V, v ∈ f(v′) ∩ def(ρ) ∧ ρ′(v′) = ρ(v))}

An Abstract Domain for Trees with Numeric Relations 737

Example 10. Consider V ′ = {x, y, z, t} and V = {a, b, c, d, g, h}, the environment
ρ = (a �→ 0, b �→ 1, c �→ 2, d �→ 3) and finally the summarizing function f = (x �→
{a}, y �→ {b, c}, z �→ {d}, t �→ {g}). Collapsing environment ρ under f yields the
set of environments: (x �→ 0, y �→ 1, z �→ 3) and (x �→ 0, y �→ 2, z �→ 3).

Given a summarizing function f we can now define an extension of the con-
cretization function γ of the previous subsection in the following manner:

γ[f](N �) = {ρ ∈ V � Z |↓f (ρ) ⊆ γ(N �)}

Example 11. Going back to Example 10 and considering the numerical abstract
element: N � = 〈{x ≤ y}, {x}, {x, y}〉, we have: γ(N �) = {(x �→ α) | α ∈
Z} ∪ {(x �→ α, y �→ β) | α ≤ β}. We have: m ∈ γ[f](N �) ⇔↓f (m) ⊆
γ(N �) ⇒ {x} ⊆ def(↓f (m)) ⊆ {x, y}. Therefore if we assume m defined on d
then f(z) ∩ def(m) �= ∅ hence there would be an element in ↓f (m) defined
on z. Hence m is not defined on d, similarly for g. Moreover {x} ⊆ def(↓f (m))
implies that m is defined on a. Finally: defining S = {(a �→ α) | α ∈ Z} ∪ {(a �→
α, b �→ β) | α ≤ β} ∪ {(a �→ α, c �→ β) | α ≤ β} ∪ {(a �→ α, b �→ β, c �→ γ) | α ≤
β ∧ α ≤ γ}. We have: γ[f](N �) = S ∪ (

⋃
f∈S{f
 (h �→ δ) | δ ∈ Z}).

The abstract domains we will define in the following sections will employ this
summarization framework. The manipulation of summarized variables requires
the definition of a fold(E, x,S) (resp. expand(E, x,S)) operator yielding a
new environment where x is used as a summary variable for S (resp. where
a summary variable x is desummarized into a set of variables S). Let S
and S ′ be two finite sets of elements such that S ′ ∩ S ⊆ {x}, we define:
expand0(N �, x,S ′′) =

�
v∈S′′ N �[x �→ v]|(S\{x})∪S′′ and fold0(N �, x,S ′′) =

⊔
v∈S′′ N �[v �→ x]|(S\S′′)∪{x} (which generalize the one introduced in [13]). These

operations are lifted as operators on elements of M�:

expand(〈N �, l, u〉, x,S) Δ= 〈expand0(N
�, x,S), l \ {x}, (u \ {x}) ∪ S〉

fold(〈N �, l, u〉, x,S) Δ= 〈fold0(N �, x,S),
{

(l \ S) ∪ {x} if S ⊆ l
(l \ S) otherwise , (u \ S) ∪ {x}〉

5 Natural Term Abstraction by Numerical Constraints

We are now able to represent sets of maps with heterogeneous supports and to
lift their concretization (modulo a summarization function) to sets of maps with
infinite and heterogeneous supports. Given a tree shape (in the sense of Sect. 3),
we can associate a numeric variable to each numeric leaf, and use a numeric
abstract element to represent the possible values of these leaves. We will name
the variable of each leaf as the path from the root to the leaf, i.e., V is a set of
words in {0, ..., n − 1} where n is the maximum arity of the considered ranked
alphabet. In order to avoid confusion such paths will be denoted �0, 1, 1� for the
word (0, 1, 1). A summarized variable then represents a set of such paths. We
will abstract such sets as regular expressions. Using the summarization extended

738 M. Journault et al.

to heterogeneous supports presented in the previous section, it will be possible
to represent, using a single numeric abstract element, a set of contraints over
the numeric leaves of an infinite set of unbounded trees of arbitrary shape.

5.1 Hole Positions and Numerical Constraints

The presentation of our computable abstraction able to represent numerical val-
ues in trees is broken down (for presentation purposes) into two consecutive
abstractions. The first one is not computable, as natural terms are abstracted as
partial environments over tree paths to numerical values. This abstraction looses
most of the tree shapes but focuses on their numerical environment. A second
abstraction will show how partial environments over paths are abstracted into
numerical abstract elements defined over a regular expression environment.

In the following, when R is a ranked alphabet of maximum arity n, we call
words sequences of integers, w = (w0, . . . , wp−1) ∈ {0, . . . , (n−1)}p will be called
a word of length p (denoted |w|), wi denotes the i-th integer of the sequence,
w = (w1, . . . , wp−1) is the tail of word w, W(R) = {0, . . . , (n− 1)}� is the set of
all words over {0, . . . , n − 1} of arbitrary size.

Definition 13 (Position in a term). Given a natural term t and a word w
we inductively define the subterm of t at position w (denoted t|w) to be:

t|w =

⎧
⎨

⎩

(tw0)|w when |w| > 0 ∧ t = f(t0, . . . , tp−1) with w0 < p
t when |w| = 0
undefined otherwise

Moreover we denote by numeric(t) = {w ∈ N
� | t|w ∈ Z}.

Definition 14 (Positioning lattice with exact numerical constraints).
We define C(R) Δ= ℘(W(R) � Z), an element of C(R) is therefore a set of
partial maps that are acceptable bindings of positions to integers.

Proposition 7 (Galois connection with natural terms). When t is a
natural term, tZ is the partial map: λ|numeric(t)w.tw. We have the following

Galois connection: (℘(TZ(R)),⊆) −−−−−−→←−−−−−−
αC(R)

γC(R)
(C(R),⊆), with:

γC(R)(Γ) = {t ∈ TZ(R) | tZ ∈ Γ} αC(R)(T) = {tZ | t ∈ T }

Example 12. Consider our running example (introduced in Example 2), V =
{+(x,+(z, y)) | x ≤ y ∧ z ≤ y}, we have αC(R)(V) = {�0� �→ α, �1, 0� �→
γ, �1, 1� �→ β | α ≤ β ∧ γ ≤ β}. The concretization of which is exactly V .

Example 13. Consider however the ranked alphabet {f(2), g(2), a(0)}, and the
tree a. Its abstraction contains only the empty map, the concretization of which
is the set of all terms that do not contain any numerical value. For example:
f(g(a, a), a), g(a, a), This emphasizes that we loose information on:

An Abstract Domain for Trees with Numeric Relations 739

– the labels in the natural terms: we only have the path from the root of the
term to leaves with numerical labels, not the actual symbols along the path.

– the shape of the natural terms: we do not keep any information on subterms
that do not contain numerical values.

Now that we have abstracted away the shape of the terms, we are left with
numerical environments with potentially infinite dimensions (that are words over
the alphabet {0, . . . , n−1}) and different definition sets. Therefore following the
idea of Sect. 4 we want to define a summarization for sets of words over the
alphabet {0, . . . , n − 1}. A summarization of such a language can be expressed
as a partition into sub-languages. The set of regular languages over the alpha-
bet {0, . . . , n − 1} is a subset of the set of languages over this alphabet, that is
closed under common set operations. Hence given a set {r1, . . . , rm} of regular
expressions (with respective recognized language {L1, . . . , Lm}), we summarize
all words in Li inside a common variable ri and therefore ↑ {r1, . . . , rm} denotes
the summarization function: λri.Li. In the following, Regn denotes the set of
regular expressions over the alphabet An = {0, . . . , n − 1}. As for tree regular
expressions, (Regn,⊂,∩,∪, .c, ∅, A�

n) is a (non complete) complemented lattice
of infinite height, upon which we can define a widening operator � (see [10]) in
a similar manner as for tree regular expressions (this widening is also parame-
terized by an integer constant). We recall moreover that operators ⊂,∩,∪ and
complementation (.c) are computable, and that every finite set of words is regu-

lar. Moreover we have the following representation: (A�
n,�)

γRegn=Id←−−−−−− (Regn,�).
Finally in order to disambiguate regular expressions from integers we will typeset
them within .! in a bold font as in: 0 + 0.1�!.
Example 14. Using notations from Sect. 4.2, V ′ = Regn and V = W(R).
Consider our running example (introduced in Example 2), natural terms from
V = {+(x,+(z, y)) | x ≤ y∧z ≤ y} contain three paths to numerical values: �0�,
�1, 0� and �1, 1�. Numerical constraints on �0� and �1, 0� are similar, therefore
the two paths are summarized into one regular expression: 0 + 1.0!, �1, 1� is
left alone in its regular expression: 1.1!. The two constraints x ≤ y ∧ z ≤ y can
now be expressed as one: 0 + 1.0! ≤ 1.1!.

In Example 14, we saw that tree paths with similar numerical constraints can
be summarized in one regular expression. However, for precision purposes, we
do not want to summarize all tree paths into one regular expression. Hence, we
will keep several disjoint regular expressions, which we call a subpartitioning.

Definition 15 (Subpartitioning). Given a regular expression s, a subparti-
tioning of s is a set {s1, . . . , sn} of regular expressions such that ∀i �= j, si∩sj =
∅ and

⋃n
i=1 si ⊆ s. We note P (s) the set of all subpartitioning of s. Moreover if

S = {s1, . . . , sn} is a set of regular expressions, [S]∅ = S \ {∅}.
Remark 7. Contrary to a partitioning of s, we do not require that the set of
partitions covers s. Indeed when a set of tree paths is unconstrained we can
just remove it from the partitioning, therefore no dimension in the numerical
abstract environment will be allocated for this path.

740 M. Journault et al.

S�
0

S�
1

unify join

a
b

S�
0

S�
1

S�
0 support

S�
0 partitions

S�
1 support

S�
1 partitions

shared partitions

Fig. 6. Unification operator

Definition 16 (Positioning lattice with numerical abstraction). Given
a ranked alphabet R, where the maximum arity of symbols is n, we define
C�(R) = {〈s, p, R�〉 | s ∈ Regn, p ∈ P (s), R� ∈ M�

p}. Therefore C�(R) are triples
containing:

– s: (called support) a regular expression coding for positions at which numerical
values can be located.

– p: a subpartitioning of s. Elements of the same partition are subject to the
same numerical constraints. Note that these partitions are regular.

– R�: an abstract numeric element where a dimension is associated to each
partition, this dimension plays the role of a summary dimension.

Remark 8. In the following, numerical abstract elements described in the form
{c}, where c is a set of constraints, refer to 〈c,vars(c),vars(c)〉 ∈ M�.

Algorithm 2. unify join operator
Input : 〈s, {p1, . . . , pn}, R�〉, 〈s′, {p′

1, . . . , p
′
m}, R�′〉 two abstract elements

Output: two unified abstract elements
1 (ci,j)i≤n,j≤m ← pi ∩ p′

j ;

2 (pi)i≤n ← pi ∩ s′c;
3 (p′

j)j≤m ← p′
j ∩ sc;

4 (qi)i≤n ← pi ∩ s′ ∩ (∪j≤mci,j)
c;

5 (q′
j)j≤m ← p′

j ∩ s ∩ (∪i≤nci,j)
c;

6 R� ← R� ;

7 R�′ ← R�′ ;
8 for i = 1 to n do

9 R� ← expand(R�, pi, [{ci,j}j≤m ∪ {pi} ∪ {qi}]∅);
10 for j = 1 to m do

11 R�′ ← expand(R�′, p′
j , [{ci,j}i≤n ∪ {p′

j} ∪ {q′
j}]∅);

12 return 〈s,⋃i≤n,j≤m[{qi, pi, ci,j}]∅, R
�〉, 〈s′,

⋃
i≤n,j≤m[{q′

i, p
′
j , ci,j}]∅, R

�′〉;

An Abstract Domain for Trees with Numeric Relations 741

Unification. The previous definition shows that two elements U � = 〈s, p, R�〉
and V � = 〈s′, p′, R�′〉 can have different subpartitionings (p and p′). However the
partitions in p and in p′ might overlap, thus giving constraints to similar tree
paths. Therefore in order to define the classical operators: �,� and �, we need
to unify the two abstract elements (U � and V �) so that given a tree path and the
partition in which it is contained in U �, it is contained in the same partition in
V �. This will enable us to rely on abstract operators on the numerical domain.
In order to perform unification, we rely on the expand and fold operators.
Indeed consider our running example, U � = 〈 0 + 1!, { 0!, 1!}, { 0! ≤ 1!}〉
and V � = 〈 0+1.(0+1)!, { 0+1.0!, 1.1!}, { 0+1.0! ≤ 1.1!}〉. We see that
constraints on tree path �0� is given: in U � by partition 0! and in V � by partition
 0+ 1.0!. However we can split the partition 0+ 1.0! into two partitions: 0!
and 1.0!, and expand variable 0+1.0! into the two variables 0! and 1.0! in
the numeric component: expand({ 0+1.0! ≤ 1.1!}, 0+1.0!, { 0!, 1.0!}) =
{ 0! ≤ 1.1!, 1.0! ≤ 1.1!}. Once U � and V � are unified we can rely on the
numerical join to soundly abstract the union. Note that splitting partitions is
more precise than merging them. Indeed, consider the example where: in U � we
have 0! ≥ 0 and 1! ≤ 0 and in V � we have 0 + 1! = 0. Splitting partition
in V � yields: 0! = 0, 1! = 0, after joining we get 0! ≥ 0, 1! ≤ 0. Whereas
merging partitions in U � yields 0 + 1! unconstrained, after joining we also get
that 0+1! is unconstrained. However unifying by splitting or merging partitions
in both abstract elements might result in an over-approximation of the initial
elements. This does not pose a threat to the soundness of the join operator, but
it does for the inclusion test. Unifying by splitting partitions induces an increase
in the number of partitions which we want to avoid when trying to stabilize
abstract elements in the widening. Hence, we define three unification operators:

– An operator unify join that splits partitions from U � and V �, this operator
might induce an over-approximation for both U � and V � and is used in the
join operation. This operator is presented in Algorithm2, and illustrated in
Fig. 6.

– An operator unify subset that does not modify V � (in order to avoid over-
approximated it), we only split and merge (using the fold operator) partitions
from U � as, if the over-approximated U � is smaller than V �, then so is the
original U �.

– An operator unify widen that unifies U � and V � by only merging partitions
so that the number of partitions does not increase. This operator is used in
the widening definition.

Operators unify subset and unify widen are very similar to unify join.

Definition 17 (Comparison �C�(R)). Using unify subset we define a rela-
tion on C�(R): �C�(R)= {(U �, V �) | (〈s, p, N �〉, 〈s′, p′, N �′〉) = unify subset(U �,

V �) ⇒ s ⊆ s′ ∧ ∀b ∈ p′, (b ⊆ sc ∨ ∃!a ∈ p, b ∩ s = a) ∧ N � � N �′[φ]} where φ is
the renaming from p′ into p that renames b to a when such an a exists.

742 M. Journault et al.

Example 15. Going back to our running example: U � = 〈 0 + 1!, { 0!, 1!},
{ 0! ≤ 1!}(= A�)〉 and V � = 〈 0+ 1.(0+ 1)!, { 0+ 1.0!, 1.1!}, { 0+ 1.0! ≤
 1.1!}〉. We have s �⊆ s′ hence U � �� V �. However if we now consider W �:
〈 (ε+1).(0+1)!, { (ε+1).0!, (ε+1).1!}, { (ε+1).0! ≤ (ε+1).1!}(= B�)〉. W �

is already unified with U �, we have s ⊆ s′ and φ : ((ε+1).0! �→ 0, (ε+1).1! �→
 1!). Moreover A� � B�[φ] = { 0! ≤ 1!}. Hence U � � W �.

Proposition 8. We have: (C(R),�C(R))
γ1←− (C�(R),�C�(R)), where: γ1(〈s, p,

R�〉) = {f | def(f) ⊆ γRegn
(s) ∧ f ∈ γ[↑ p](R�)}. By composition we get:

(℘(TZ(R)),⊆)
γ2←− (C�(R),�C�R), with γ2 = γC(R) ◦ γ1.

Example 16. Going back to our running example: V � = 〈 0 + 1.(0 +
1)!, { 0 + 1.0!, 1.1!}, { 0 + 1.0! ≤ 1.1!}〉. We have: ↑ p = (0 + 1.0! �→
{�0�, �1, 0�}, 1! �→ �1�). Hence, γ1(V �) = {(�0� �→ α, �1� �→ β) | α ≤
β} ∪ {(�1, 0� �→ α, �1� �→ β) | α ≤ β} ∪ {(�0� �→ α, �1, 0� �→ γ, �1� �→ β) |
α ≤ β ∧ γ ≤ β}. The product with tree automata refines this result so that only
the last set is left.

We now define the � operator that relies on the unify join operator of Algo-
rithm2. Once elements are unified we can distinguish three kinds of partitions:
(1) Partitions found in both abstract elements (e.g. in Fig. 6). (2) Partitions
found in only one of the two, which do not overlap over the support of the other
abstract element (denoted uo), these are outer-partitions. Information on such
partitions can be soundly kept when joining two abstract elements (e.g. partition
a in Fig. 6). (3) Partitions found in only one of the two, which overlap over the
support of the other abstract element, these are inner-partitions. Information
on such partitions can not be soundly kept when joining two abstract elements.
(e.g. partition b in Fig. 6). Therefore in the following definition of the join oper-
ator, we compute (once elements are unified) the common partitions and both
outer-partitions and merge them to form the resulting subpartitioning.

Definition 18 (Union abstract operator). Given U �, V � ∈ C�(R), if
(〈s, p, R�〉, 〈s′, p′, R�′〉) = unify join(U �, V �), let c be p ∪ p′, let uo (U � outer-
partition) be {e ∈ p | e ⊆ s′c}, let vo (V � outer-partition) be {e ∈ p′ | e ⊆ sc},
we then define:

U � �C�(R) V � = 〈s ∪ s′, c ∪ uo ∪ vo, R�
|c∪uo � R�′

|c∪vo〉

Proposition 9. We have: γ1(U �) ∪ γ1(V �) ⊆ γ1(U � �C�(R) V �).

Example 17. Consider the two following abstract elements (this is the par-
ticular case of our running example where all numerical values are equal):
V � = 〈 0 + 1.(0 + 1)!(= s), { 0 + 1.0!(= a), 1.1!(= b), {a = b}}〉, and U � =
〈 0 + 1!(= s′), { 0!(= c), 1!(= d)}, {c = d}〉. Intuitively U � could encode the
term (x+x) and V � the term (x+(x+x)). The unification of those two elements
is: V �

1 = 〈s, {c, b, 1.0!(= e)}, R�〉 where R� = 〈{c = b, e = b}, {b}, {c, b, e}〉 and
U �
1 = U �, moreover the common environment (c in previous definition) is: {c},

An Abstract Domain for Trees with Numeric Relations 743

�1� = 1

�0� = 0

U �

�(ε + 1).1� = 1

�(ε + 1).0� = 0

V �

�(ε + 1).1� = 1

�(ε + 1).0� = 0

?

Z�
1 = U ��V �

�1�.1� = 1

�1�.0� = 0

Z�
2 = U ��V �

Fig. 7. Widening illustration

V � outer-partitioning is {e, f}, U � outer-partitioning is {d}. Hence: the numer-
ical component resulting of the join is: 〈{c = d}, {c, d}, {c, d}〉 � 〈{c = b, e =
b}, {b}, {c, b, e}〉 which is: 〈{c = b, e = b, c = d}, ∅, {c, d, e, b}〉. We see here that
using a naive numerical join operator, we would not have been able to get such
a precise result (the numerical join would have yielded �).

unify widen C�(R) contains infinite increasing chains, therefore, we need to
provide a widening operator. As for the other operators, widening is computed
on unified abstract elements. A unify widen operator is defined: it produces U �

and V �, over-approximations of its inputs with the same number of partitions.
Moreover it ensures that each partition of U � intersects exactly one partition of
V �. This can be obtained by iterative merging partitions that overlap in both
arguments until the abstract elements have the exact same partitions. Therefore
from the result of unify widen we can extract a list of pairs (a, b) where a is a
partition from U �, b is a partition from V � and a∩b �= ∅. This defines a bijection
from partitions of U � onto partitions of V �.

compose. In order to ensure stabilization we first need to stabilize the supports
on which abstract elements are defined. This is easily done using the automaton
widening (s1�s2 in Algorithm 3). Figure 7 illustrates the following simple exam-
ple: U � is an abstract element with support 0 + 1!, two partitions u = 0!
and u′ = 1!, and numerical constraints u′ = 1 and u = 0. V � is an abstract
element with support (ε + 1).(0 + 1)!, two partitions v = (ε + 1).0! and
v′ = (ε + 1).1! with the numerical constraints that v = 0 and v′ = 1. Sup-
ports are unstable, therefore we start by widening them, which yields a new
support: 1�.(0 + 1)!. The unification of U � and V � leaves subpartitionings
unchanged and yields the bijection (u �→ v, u′ �→ v′). Given this information
we now need to provide a new subpartitioning for the result of the widening.
We see in this example that we could soundly use the subpartitioning from V �,
this would produce the abstract element Z�

1 depicted in Fig. 7. However due to
the widening of the support, paths of the form �1, 1, 1, 0� are in the support of
the result but are left unconstrained as they are not in any of the partitions.
Therefore we need to use the opportunity of the extension of the support to
place constraints on the newly added paths. In order to do so we would like to
force the extension of the existing partitions from U � and V � into the new sup-
port. Therefore we need to define a compose operator that produces a sound
new partition, given: (1) a pair a, b of partitions (such as the one produced by

744 M. Journault et al.

Algorithm 3. widening operator
Input : U �, V � two abstract elements

1 (〈s1, p1, R�
1〉, 〈s2, p2, R�

2〉) ← unify widen(U �, V �) ;
2 s ← s1�s2;
3 r ← s \ (s1 ∪ s2);
4 foreach a ∈ p1 do
5 b ← the unique element from p2 such that b ∩ a
= ∅;
6 p ← compose(a, b, s1, s2, r);
7 p ← {p} ∪ p;

8 R��
1 ← R��

1 [a �→ p];

9 R��
2 ← R��

1 [b �→ p];
10 r ← r \ p;

11 if p = p1 then

12 return 〈s, p, R��
1 �R��

2 〉;
13 else

14 return 〈s, p, R��
1 � R��

2 〉;

unify widen), (2) the support s1 (resp s2) in which a (resp. b) lives and (3)
a space to occupy r. The following criteria must be verified by the resulting
partition p in order to be sound and to terminate: p ∩ s1 = a, p ∩ s2 = b and
p \ (s1 ∪ s2) ⊆ r. A variety of compose operators could be defined, we chose:
compose(a, b, s1, s2, r) = a∪(b∩(s2\s1))∪((a�(a∪b))∩r). The idea is the follow-
ing: we keep a (as it is always sound thanks to the definition of the unify widen
operator), we keep the part from b that satisfies the soundness condition, and we
extend into the space left to occupy according to the automata widening of a and
a∪ b. In our example, considering the pair (u, v), this would translate as: a = 0,
b∩(s2\s1) = 1.0! and (a�(a∪b))∩r = 0!� (ε+1).0!∩ 1≥2(0+1)! = 1≥2.0!.
We get the new partition: 1�.0!. Doing the same with the pair (v, v′) yields
 1�.1!. Finally we get the abstract element Z�

2 from Fig. 7, which is more precise
than Z�

1.

Definition 19 (Widening). Algorithm3 provides the definition of a widen-
ing operator using the unify widen operator and parameterized by a compose
function.

Widening Stabilization. Our abstraction contains three components: (1) a sup-
port that describes the set of paths (2) a subpartitioning of this support and (3)
a numerical component giving constraints on partitions in the subpartitioning.
We show how the widening operator stabilizes all three components.

– Regular expression widening is used on supports when widening is called.
Therefore ensuring support stabilization.

– Once supports are stable (this means s2 ⊆ s1), we have p = a for every pair
(a, b) of partitions. Meaning that once shapes stabilize, the only modifications

An Abstract Domain for Trees with Numeric Relations 745

allowed on the subpartitionings are those made by the unify widen operator.
Each partition resulting from the operator is the union of input partitions,
hence the subpartitioning will stabilize.

– Once subpartitionings are stable (p1 = p in Algorithm 3) numerical widening
is applied on the numerical component in order to ensure stabilization.

Example 18 (Numerical example). Consider the simple example where: R =
{f(2)}, U � = 〈 0 + 1!, { 0!, 1!}, { 1! = 0!}〉 and V � = 〈 0 + 1!, { 0!, 1!},
{ 1! ≥ 0!, 1! ≤ 0!+1}〉. U � and V � have the same shape, therefore widening
will be performed on the numerical component of the abstraction, therefore:
U ��V � = 〈 0 + 1!, { 0!, 1!}, { 1! ≥ 0!}〉.

Reducing Dimensionality and Improving Precision. As emphasized by the pre-
vious examples, definitions and illustrations, the numerical component of an
abstract state is used as a container for constraints on regular expressions, every
node in a regular expression must then satisfy all numerical constraints on the
underlying regular expression. Therefore when two nodes of a tree satisfy the
same constraints, they should be stored in the same partition so as to reduce the
dimension of the numerical domain (thus improving efficiency). Moreover the
widening operator provided in Algorithm3 relies (for precision) on the fact that
partitions are built by similarity of constraints, therefore partition merging, when
it does not result in an over-approximation, also leads to a precision gain. The
unification operator defined in Algorithm2 tends to split partitions whereas the
widening operator defined in Algorithm3 tends to merge them. In order to reduce
dimensionality, we would like to define a reduce : C�(R) → C�(R) operator, that
folds variables with similar constraints into one. Please note that ∀S ∩S′ ⊆ {x},
x ∈ S and R� ∈ NS , we have that R� �NS

expand(fold(R�, x, S′), x, S′).
This means that when variables are folded into one, expanding them after-
wards would yield a bigger abstract element. For example, consider the octagon
R� = {x ≥ 2, y ≥ 2, x = y} then fold(R�, z, {x, y}) = {z ≥ 2}(Δ= R�′)
and expand(R�′, z, {x, y}) = {x ≥ 2, y ≥ 2}. However if we consider R� =
{x ≥ 2, y ≥ 2} then fold(expand(R�, z, {x, y}), z, {x, y}) = R�. Therefore if
we assume given a score function score(R�, x, S′) ranging in [0, 1] such that
score(R�, x, S′) = 1 ⇔ R� = expand(fold(R�, x, S′), x, S′), we are able to
define a generic reduce operator parameterized by a value α. This reduce
operator merges partitions until no more set of partitions has a high enough
score according to the score function. Finding a good score function is a
work in progress. As a first approximation we used the following trivial one:
score0(R�, S) = 1 when expand(fold(R�, x, S), x, S) = R� and 0 otherwise.
This score0 guarantees there is no loss of precision, but can miss opportuni-
ties for simplification.

Example 19. Consider the following example: U � = 〈 0 + 1!, { 0!, 1!}, { 0! =
0, 1! = 0}〉. Relations on 0! and 1! can be expressed in one relation using
the summarizing variable 0 + 1!. This yields: reduce(U �) = 〈 0 + 1!, { 0 +
1!}, { 0 + 1! = 0}〉. Note that expand({ 0 + 1! = 0}, 0 + 1!, { 1!, 0!}) =
{ 0! = 0, 1! = 0}. Therefore no information is lost.

746 M. Journault et al.

Abstract Semantic of Operators. As for tree automata, abstract semantic of
operators defined in Sect. 2 can be defined as simple transformations on regular
automata. Indeed the make symbolic(s ∈ R) (resp. get son) operator, amounts
to adding (resp. removing) an integer letter to: (1) the partitions in the subpar-
titioning and (2) the support. make integer(e ∈ expr) amounts to building an
abstract element with support ε! and a subpartitioning containing only { ε!},
on which we put the constraint that it is equal to e. is symbol needs only split
the support and each partition, in the two language L = {ε} and A�

n \L. Indeed
in order to restrict to terms having only an integer as root, the support must
be reduced to ε. The get sym head operator always yields the whole ranked
alphabet (as this was abstracted away and will be refined by the automaton
abstraction). Finally for get num head: (1) if the empty path �� is in the sup-
port we produce the set of integers satisfying the numerical constraints on the
partition containing ε, and � in case no such partition could be found, and (2)
otherwise we know that no numerical value is produced.

5.2 Product of Tree Automata and Numerical Constraints

The abstraction by tree automata defined in Sect. 3 and the abstraction by
numerical constraints on tree paths defined in Sect. 5.1 provide non compara-
ble information on the set of terms they abstract. Indeed the former describes
precisely the shape of the term but can not express numerical constraints whereas
the latter abstracts away most of the shape and focuses on numerical constraints.
To benefit from both kinds of information, we use a reduced product between the
two domains. Both abstractions in the product contain information on potential
integer positions. The position of the � symbol in the tree automaton abstrac-
tion and the support in the numerical constraints abstractions both yield this
information. We remove the support component from the product as the infor-
mation can be retrieved from the tree abstraction. The definitions of the abstract
operators in Sect. 5.1 require the support to be a regular language. We show in
this subsection how to retrieve the support of a tree automaton with holes and
that it is regular.

Given a FTA(Q,R, Qf , δ) over a ranked alphabet R with maximum arity
n. We assume that every node in Q is reachable. Consider the following system
over variables vp for p ∈ Q with values in the set of languages over the alphabet
An (. designates the classical concatenation operator lifted to languages):

{vp =
⋃

(s,(q1,...,qm),q)∈δ|qi=p

vq.{i} ∪
{

{ε} if p ∈ Qf

∅ otherwise | p ∈ Q}

Every language {i} for i ∈ N is regular and does not contain ε, moreover
∅ and {ε} are regular languages. By application of Arden’s rule (see [18]) and
Gauss elimination we can compute the unique solution of this system, moreover
every vp is regular. Variable vp is defined so that: w ∈ vp if and only if there
exists a tree t recognized by the automaton such that p ∈ reach(t|w). If � ∈ R
we have that the regular language: ∪(�,(),p)∈δvp represents exactly the potential
positions of integers in trees accepted by the tree automaton.

An Abstract Domain for Trees with Numeric Relations 747

Height and Size. The product is enriched with a simple height and size abstrac-
tion: numerical variables (encoding heights and sizes) are added to the numerical
component of the abstraction.

5.3 Environment Abstraction

In the previous section, we designed abstractions for sets of trees. However in
order to be able to tackle the examples from the introductory section (Sect. 1) we
need to design an abstraction able to represent maps from a set of variables to
natural terms. In Sect. 3 we have shown how to lift abstractions on natural terms
to abstractions of environments over a given finite set of finite term variables T .
We apply the same mechanism here to lift the product presented in Sect. 5.2.
However lifting the product would result in abstract environments being maps
from natural term variables to abstractions containing a numerical environment.
In order to be able to express numerical relations between two sets of natural
terms or even between numerical program variables and numerical values of
natural terms we factor away the numerical environment so that it is shared
by all natural term abstractions in the term environment and by the program
variables in the numerical environment. Therefore the final abstraction is a pair
(m,R�) where: (1) m is a map from T to an abstract element that is a product
of the automaton abstraction and the hole positioning abstraction. Moreover
as all the numerical constraints are stored in a common numerical environment
the product abstraction amounts to a pair (A, p) where A is an element of the
automaton abstraction and p is a partitioning of its support. (2) R� is an element
of M� binding in the same numerical element: numerical program variables and
all partitions found in the mapping m.

6 Implementation and Example

6.1 Implementation

The analyzer was implemented in OCaml (∼5000 loc) in the novel and still
in development Mopsa framework (see [21]). Mopsa enables a modular devel-
opment of static analyzers defined by abstract interpretation. An analyzer is
built by choosing abstract domains, and combining them according to the user
specification. Mopsa comes with pre-existing iterators and domains (e.g. inter-
procedural analysis, loop iterators, numerical domains, . . .), and new ones can
be added (e.g. tree abstract domain). A key feature of Mopsa is the ability
of an abstract domain to use the abstract knowledge it maintains to trans-
form dynamically expressions into other expressions that can be manipulated
more easily by further domains, providing a flexible way to combine relational
domains. For instance, assume that a domain abstracts arrays by associat-
ing a scalar variable a0, a1, . . . , to each element a[0], a[1], ..., of an array a,
and delegating the abstraction of the array contents to a numeric domain for
scalars. It can then evaluate E

�[[2 ∗ a[i] + i]](i �→ [0, 1]) into the disjunction

748 M. Journault et al.

(2 ∗ a0 + i, i �→ [0, 0])∨ (2 ∗ a1 + i, i �→ [1, 1]), indicating that 2 ∗ a[i] + i is equiv-
alent to 2 ∗ a0 + i in the sub-environment where i = 0 and to 2 ∗ a1 + i in the
sub-environment where i = 1. Each term of the disjunction contains an array-free
expression that can be handled by the scalar domain in the corresponding sub-
environment. In the abstract, expressions can be evaluated by induction on the
syntax into symbolic expressions to retain the full power of relational domains
and disjunctive reasoning (see [21] for more details). We exploit this feature in
our implementation to combine our tree abstractions. We implemented (in the
Mopsa framework) libraries for regular and tree regular languages that offer the
usual lattice interface enriched with a widening operator. These libraries can be
reused for the definition of other abstract domains. The overall complexity of
the analysis is driven by the complexity of the lattice operations in the regular
and tree regular libraries. These are exponential in the number of states of the
considered automata, which is bounded by the widening parameter.

6.2 Examples of Analysis

Numerical variables of the form t.x, where t is a natural term variable, represent
a variable allocated for tree t. For example: t.r where r is a regular expression
is the variable allocated for partition r in tree t.

C Introductory Example. Let us consider the introductory example Pro-
gram 4. The loop invariant inferred with our analysis is the following
abstract element: U � = (y �→ (A, { 0.(0.0)�.1!(= r)}), R�), with A =
〈{a, b, c, d}, {∗(1),+(2),�(0), (p, 0)}, {c}, {∗(d) → c,+(c, a) → d,�() → a, p →
c}〉, and R� satisfies the constraints: {i ≥ 0, i ≤ n, y.r = 4}. This describes pre-
cisely the set of terms of the form: p, ∗(p+4), ∗(∗(p+4)+4), As mentioned in
Sect. 6.1 evaluations of tree expressions yield pairs containing an expression and
an abstract environment. Tree expressions are pairs (A, p), partitions in p are
bound by the adjoined environment. Let us now present the result of the evalua-
tion of the make integer(4) expression in the abstract environment U �. Here we
get the expression (A′, { ε!}) (where A′ recognizes only �) in the environment:
(y �→ (A, {r}), R�′) where R�′ = R� ∪ { ε! = 4}. This emphasizes how the envi-
ronment is used to give constraints on the adjoined expression. This transports
numerical relations from the leafs of the expression up to the assigned variable t.

OCaml Introductory Example. Let us now consider the introductory exam-
ple Program 5. The inferred loop invariant is the following (r = (1.1)�.0!
and r′ = (1.1)�.1.0!): (t �→ (A, {r, r′}), R�) and R� satisfies the con-
straints: {t.r′ = x − 1, t.r = t.r′ + 2, i ≥ 0, i ≤ n} and A =
({a, b, c, d}, {Cons(2), Nil(0),�(0)}, {a}, {Cons(c, a) → d, Cons(c, d) → a, Nil →
a,� → c}). Please note that at the end of the while loops the two numerical
environments that need to be joined are not defined over the same set of vari-
ables (in the environments that have not gone through the loop, variables t.r′

and t.r are not present). However thanks to the �� operator, we do not have to

An Abstract Domain for Trees with Numeric Relations 749

loose the numerical relations between these variables and x. Hence we are able
to prove that the assertion holds.

The analyzer was able to successfully analyze and infer the expected invari-
ants for both examples.

7 Related Works

Previous works on sets of trees abstractions [20] were able to recognize larger
classes of tree languages than tree automata. However we focused here on the
abstraction of trees labeled with numerical values, therefore the work closest to
ours would be [12]. Indeed it defines tree automata where leaves can be elements
of a lattice (for example an interval). They are therefore able to represent sets
of natural terms, but can not express numerical relations between the leaves of
trees. Moreover they rely on a partitioning of the leaf lattice for tree automata
operations. In [1] (and [2]) tree automata and regular automata are used for
the model checking of programs manipulating C pointers and structures. Other
uses have been made of tree automata in verification: shape analysis of C pro-
grams as in [15], computation of an over-approximation of terms computable by
attackers of cryptographic protocols as in [24]. Widening regular languages by
the computation of an equivalence relation of bounded index is also done in [9]
and in [11]. As mentioned, variable summarization is often used to represent
unbounded memory locations as in [17] or [14]. Moreover numerical abstract
domains able to handle optional variables have been defined such as [19]. Finally
termination analyses have been proposed for the analysis of programs manipu-
lating tree structures (AVL, red-black trees) see [16].

8 Conclusion

In this article we presented a relational abstract environment for sets of trees over
a finite algebra, with numerically labeled leaves. We emphasized the potential
applications of being able to describe such trees: description of reachable memory
zones, tracking symbolic equalities between program variables, description of tree
like structures. In order to improve the precision of the analysis while not blowing
up its cost we defined a novel abstraction for sets of maps with heterogeneous
supports. This numeric abstraction is able to represent optional dimensions in
numerical domains without losing relations with optional variables. All domains
presented in the article were implemented as a library in the Mopsa framework.

750 M. Journault et al.

References

1. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006). https://doi.org/10.1007/
11823230 5

2. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 29

3. Bourdoncle, F.: Sémantiques des Langages Impératifs d’Ordre Supérieur et
Interprétation Abstraite. Ph.D. thesis, Ecole polytechnique (1992)

4. Comon, H., et al.: Tree automata techniques and applications (2007). Release
October, 12th 2007

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL, pp. 238–252. ACM (1977)

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software, pp. 77–94 (1977)

7. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 13

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL, pp. 84–96. ACM Press (1978)

9. Feret, J.: Abstract interpretation-based static analysis of mobile ambients. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 412–430. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 24

10. Le Gall, T.: Abstract lattices for the verification of systèmes with stacks and
queues. Ph.D. thesis, University of Rennes 1, France (2008)

11. Le Gall, T., Jeannet, B., Jéron, T.: Verification of communication protocols using
abstract interpretation of FIFO queues. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 204–219. Springer, Heidelberg (2006). https://doi.org/
10.1007/11784180 17

12. Genet, T., Le Gall, T., Legay, A., Murat, V.: Tree regular model checking for
lattice-based automata. CoRR, abs/1203.1495 (2012)

13. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with sum-
marized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol.
2988, pp. 512–529. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24730-2 38

14. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: Proceedings of POPL, pp. 338–350. ACM (2005)

15. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 34

16. Habermehl, P., Iosif, R., Rogalewicz, A., Vojnar, T.: Proving termination of tree
manipulating programs. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura,
Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 145–161. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75596-8 12

17. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Proceedings of PLDI, pp. 339–348. ACM (2008)

https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/11823230_5
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-47764-0_24
https://doi.org/10.1007/11784180_17
https://doi.org/10.1007/11784180_17
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-642-22110-1_34
https://doi.org/10.1007/978-3-642-22110-1_34
https://doi.org/10.1007/978-3-540-75596-8_12

An Abstract Domain for Trees with Numeric Relations 751

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.,
Inc, Boston (2006)

19. Liu, J., Rival, X.: Abstraction of optional numerical values. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 146–166. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 9

20. Mauborgne, L.: Representation of sets of trees for abstract interpretation. Ph.D.
thesis, Ecole polytechnique (1999)

21. Miné, A., Ouadjaout, A., Journault, M.: Design of a modular platform for
static analysis. In: The Ninth Workshop on Tools for Automatic Program Anal-
ysis (TAPAS 2018), Fribourg-en-Brisgau, Germany, August 2018. https://hal.
sorbonne-universite.fr/hal-01870001/file/mine-al-tapas18.pdf

22. Miné, A.: The octagon abstract domain. In: Proceedings of WCRE, p. 310. IEEE
Computer Society (2001)

23. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 23

24. Monniaux, D.: Abstracting cryptographic protocols with tree automata. In:
Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 149–163. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48294-6 10

25. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of 17th IEEE (LICS 2002), pp. 55–74. IEEE Computer Society (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-26529-2_9
https://hal.sorbonne-universite.fr/hal-01870001/file/mine-al-tapas18.pdf
https://hal.sorbonne-universite.fr/hal-01870001/file/mine-al-tapas18.pdf
https://doi.org/10.1007/11609773_23
https://doi.org/10.1007/3-540-48294-6_10
http://creativecommons.org/licenses/by/4.0/

A Static Higher-Order Dependency
Pair Framework

Carsten Fuhs1(B) and Cynthia Kop2(B)

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, London, UK

carsten@dcs.bbk.ac.uk
2 Department of Software Science, Radboud University Nijmegen,

Nijmegen, The Netherlands
c.kop@cs.ru.nl

Abstract. We revisit the static dependency pair method for proving
termination of higher-order term rewriting and extend it in a number
of ways: (1) We introduce a new rewrite formalism designed for general
applicability in termination proving of higher-order rewriting, Algebraic
Functional Systems with Meta-variables. (2) We provide a syntactically
checkable soundness criterion to make the method applicable to a large
class of rewrite systems. (3) We propose a modular dependency pair
framework for this higher-order setting. (4) We introduce a fine-grained
notion of formative and computable chains to render the framework more
powerful. (5) We formulate several existing and new termination proving
techniques in the form of processors within our framework.

The framework has been implemented in the (fully automatic) higher-
order termination tool WANDA.

1 Introduction

Term rewriting [3,48] is an important area of logic, with applications in many dif-
ferent areas of computer science [4,11,18,23,25,36,41]. Higher-order term rewrit-
ing – which extends the traditional first-order term rewriting with higher-order
types and binders as in the λ-calculus – offers a formal foundation of functional
programming and a tool for equational reasoning in higher-order logic. A key
question in the analysis of both first- and higher-order term rewriting is termi-
nation; both for its own sake, and as part of confluence and equivalence analysis.

In first-order term rewriting, a hugely effective method for proving termina-
tion (both manually and automatically) is the dependency pair (DP) approach
[2]. This approach has been extended to the DP framework [20,22], a highly
modular methodology which new techniques for proving termination and non-
termination can easily be plugged into in the form of processors.

In higher-order rewriting, two DP approaches with distinct costs and ben-
efits are used: dynamic [31,45] and static [6,32–34,44,46] DPs. Dynamic DPs
are more broadly applicable, yet static DPs often enable more powerful analy-
sis techniques. Still, neither approach has the modularity and extendability of
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 752–782, 2019.
https://doi.org/10.1007/978-3-030-17184-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_27

A Static Higher-Order Dependency Pair Framework 753

the DP framework, nor can they be used to prove non-termination. Also, these
approaches consider different styles of higher-order rewriting, which means that
for all results certain language features are not available.

In this paper, we address these issues for the static DP approach by extend-
ing it to a full higher-order dependency pair framework for both termination and
non-termination analysis. For broad applicability, we introduce a new rewriting
formalism, AFSMs, to capture several flavours of higher-order rewriting, includ-
ing AFSs [26] (used in the annual Termination Competition [50]) and pattern
HRSs [37,39] (used in the annual Confluence Competition [10]). To show the
versatility and power of this methodology, we define various processors in the
framework – both adaptations of existing processors from the literature and
entirely new ones.

Detailed Contributions. We reformulate the results of [6,32,34,44,46] into a DP
framework for AFSMs. In doing so, we instantiate the applicability restriction of
[32] by a very liberal syntactic condition, and add two new flags to track proper-
ties of DP problems: one completely new, one from an earlier work by the authors
for the first-order DP framework [16]. We give eight processors for reasoning in
our framework: four translations of techniques from static DP approaches, three
techniques from first-order or dynamic DPs, and one completely new.

This is a foundational paper, focused on defining a general theoretical frame-
work for higher-order termination analysis using dependency pairs rather than
questions of implementation. We have, however, implemented most of these
results in the fully automatic termination analysis tool WANDA [28].

Related Work. There is a vast body of work in the first-order setting regarding
the DP approach [2] and framework [20,22,24]. We have drawn from the ideas
in these works for the core structure of the higher-order framework, but have
added some new features of our own and adapted results to the higher-order
setting.

There is no true higher-order DP framework yet: both static and dynamic
approaches actually lie halfway between the original “DP approach” of first-
order rewriting and a full DP framework as in [20,22]. Most of these works
[30–32,34,46] prove “non-loopingness” or “chain-freeness” of a set P of DPs
through a number of theorems. Yet, there is no concept of DP problems, and the
set R of rules cannot be altered. They also fix assumptions on dependency chains
– such as minimality [34] or being “tagged” [31] – which frustrate extendability
and are more naturally dealt with in a DP framework using flags.

The static DP approach for higher-order term rewriting is discussed in, e.g.,
[34,44,46]. The approach is limited to plain function passing (PFP) systems. The
definition of PFP has been made more liberal in later papers, but always con-
cerns the position of higher-order variables in the left-hand sides of rules. These
works include non-pattern HRSs [34,46], which we do not consider, but do not
employ formative rules or meta-variable conditions, or consider non-termination,
which we do. Importantly, they do not consider strictly positive inductive types,
which could be used to significantly broaden the PFP restriction. Such types
are considered in an early paper which defines a variation of static higher-order

754 C. Fuhs and C. Kop

dependency pairs [6] based on a computability closure [7,8]. However, this work
carries different restrictions (e.g., DPs must be type-preserving and not introduce
fresh variables) and considers only one analysis technique (reduction pairs).

Definitions of DP approaches for functional programming also exist [32,33],
which consider applicative systems with ML-style polymorphism. These works
also employ a much broader, semantic definition than PFP, which is actually
more general than the syntactic restriction we propose here. However, like the
static approaches for term rewriting, they do not truly exploit the computability
[47] properties inherent in this restriction: it is only used for the initial generation
of dependency pairs. In the present work, we will take advantage of our exact
computability notion by introducing a computable flag that can be used by
the computable subterm criterion processor (Theorem 63) to handle benchmark
systems that would otherwise be beyond the reach of static DPs. Also in these
works, formative rules, meta-variable conditions and non-termination are not
considered.

Regarding dynamic DP approaches, a precursor of the present work is [31],
which provides a halfway framework (methodology to prove “chain-freeness”)
for dynamic DPs, introduces a notion of formative rules, and briefly translates a
basic form of static DPs to the same setting. Our formative reductions consider
the shape of reductions rather than the rules they use, and they can be used as
a flag in the framework to gain additional power in other processors. The adap-
tation of static DPs in [31] was very limited, and did not for instance consider
strictly positive inductive types or rules of functional type.

For a more elaborate discussion of both static and dynamic DP approaches
in the literature, we refer to [31] and the second author’s PhD thesis [29].
Organisation of the Paper. Section 2 introduces higher-order rewriting using
AFSMs and recapitulates computability. In Sect. 3 we impose restrictions on
the input AFSMs for which our framework is soundly applicable. In Sect. 4 we
define static DPs for AFSMs, and derive the key results on them. Section 5
formulates the DP framework and a number of DP processors for existing and
new termination proving techniques. Section 6 concludes. Detailed proofs for all
results in this paper and an experimental evaluation are available in a technical
report [17]. In addition, many of the results have been informally published in
the second author’s PhD thesis [29].

2 Preliminaries

In this section, we first define our notation by introducing the AFSM formalism.
Although not one of the standards of higher-order rewriting, AFSMs combine
features from various forms of higher-order rewriting and can be seen as a form
of IDTSs [5] which includes application. We will finish with a definition of com-
putability, a technique often used for higher-order termination methods.

A Static Higher-Order Dependency Pair Framework 755

2.1 Higher-Order Term Rewriting Using AFSMs

Unlike first-order term rewriting, there is no single, unified approach to higher-
order term rewriting, but rather a number of similar but not fully compatible
systems aiming to combine term rewriting and typed λ-calculi. For generality,
we will use Algebraic Functional Systems with Meta-variables: a formalism which
admits translations from the main formats of higher-order term rewriting.

Definition 1 (Simple types). We fix a set S of sorts. All sorts are simple
types, and if σ, τ are simple types, then so is σ → τ .

We let → be right-associative. Note that all types have a unique representa-
tion in the form σ1 → . . . → σm → ι with ι ∈ S.

Definition 2 (Terms and meta-terms). We fix disjoint sets F of function
symbols, V of variables and M of meta-variables, each symbol equipped with
a type. Each meta-variable is additionally equipped with a natural number. We
assume that both V and M contain infinitely many symbols of all types. The set
T (F ,V) of terms over F ,V consists of expressions s where s : σ can be derived
for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ

Meta-terms are expressions whose type can be derived by those clauses and:
(M) Z〈s1, . . . , sk〉 : σk+1 → . . . → σm → ι

if Z : (σ1 → . . . → σk → . . . → σm → ι, k) ∈ M and s1 : σ1, . . . , sk : σk

The λ binds variables as in the λ-calculus; unbound variables are called free, and
FV (s) is the set of free variables in s. Meta-variables cannot be bound; we write
FMV (s) for the set of meta-variables occurring in s. A meta-term s is called
closed if FV (s) = ∅ (even if FMV (s) �= ∅). Meta-terms are considered modulo
α-conversion. Application (@) is left-associative; abstractions (Λ) extend as far
to the right as possible. A meta-term s has type σ if s : σ; it has base type if
σ ∈ S. We define head(s) = head(s1) if s = s1 s2, and head(s) = s otherwise.

A (meta-)term s has a sub-(meta-)term t, notation s � t, if either s = t or
s � t, where s � t if (a) s = λx.s′ and s′ � t, (b) s = s1 s2 and s2 � t or (c)
s = s1 s2 and s1 � t. A (meta-)term s has a fully applied sub-(meta-)term t,
notation s � t, if either s = t or s � t, where s � t if (a) s = λx.s′ and s′ � t,
(b) s = s1 s2 and s2 � t or (c) s = s1 s2 and s1 � t (so if s = x s1 s2, then x
and x s1 are not fully applied subterms, but s and both s1 and s2 are).

For Z : (σ, k) ∈ M, we call k the arity of Z, notation arity(Z).

Clearly, all fully applied subterms are subterms, but not all subterms are
fully applied. Every term s has a form t s1 · · · sn with n ≥ 0 and t = head(s) a
variable, function symbol, or abstraction; in meta-terms t may also be a meta-
variable application F 〈s1, . . . , sk〉. Terms are the objects that we will rewrite;
meta-terms are used to define rewrite rules. Note that all our terms (and meta-
terms) are, by definition, well-typed. For rewriting, we will employ patterns:

756 C. Fuhs and C. Kop

Definition 3 (Patterns). A meta-term is a pattern if it has one of the forms
Z〈x1, . . . , xk〉 with all xi distinct variables; λx.� with x ∈ V and � a pattern; or
a �1 · · · �n with a ∈ F ∪ V and all �i patterns (n ≥ 0).

In rewrite rules, we will use meta-variables for matching and variables
only with binders. In terms, variables can occur both free and bound, and
meta-variables cannot occur. Meta-variables originate in very early forms of
higher-order rewriting (e.g., [1,27]), but have also been used in later formalisms
(e.g., [8]). They strike a balance between matching modulo β and syntactic
matching. By using meta-variables, we obtain the same expressive power as
with Miller patterns [37], but do so without including a reversed β-reduction as
part of matching.

Notational Conventions: We will use x, y, z for variables, X,Y,Z for meta-
variables, b for symbols that could be variables or meta-variables, f, g, h or more
suggestive notation for function symbols, and s, t, u, v, q, w for (meta-)terms.
Types are denoted σ, τ , and ι, κ are sorts. We will regularly overload notation
and write x ∈ V, f ∈ F or Z ∈ M without stating a type (or minimal arity).
For meta-terms Z〈〉 we will usually omit the brackets, writing just Z.

Definition 4 (Substitution). A meta-substitution is a type-preserving func-
tion γ from variables and meta-variables to meta-terms. Let the domain of γ
be given by: dom(γ) = {(x : σ) ∈ V | γ(x) �= x} ∪ {(Z : (σ, k)) ∈ M |
γ(Z) �= λy1 . . . yk.Z〈y1, . . . , yk〉}; this domain is allowed to be infinite. We let
[b1 := s1, . . . , bn := sn] denote the meta-substitution γ with γ(bi) = si and
γ(z) = z for (z : σ) ∈ V \ {b1, . . . , bn}, and γ(Z) = λy1 . . . yk.Z〈y1, . . . , yk〉 for
(Z : (σ, k)) ∈ M \ {b1, . . . , bn}. We assume there are infinitely many variables x
of all types such that (a) x /∈ dom(γ) and (b) for all b ∈ dom(γ): x /∈ FV (γ(b)).

A substitution is a meta-substitution mapping everything in its domain to
terms. The result sγ of applying a meta-substitution γ to a term s is obtained by:
xγ = γ(x) if x ∈ V (s t)γ = (sγ) (tγ)
fγ = f if f ∈ F (λx.s)γ = λx.(sγ) if γ(x) = x ∧ x /∈

⋃
y∈dom(γ) FV (γ(y))

For meta-terms, the result sγ is obtained by the clauses above and:
Z〈s1, . . . , sk〉γ = γ(Z)〈s1γ, . . . , skγ〉 if Z /∈ dom(γ)
Z〈s1, . . . , sk〉γ = γ(Z)〈〈s1γ, . . . , skγ〉〉 if Z ∈ dom(γ)

(λx1 . . . xk.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xk := tk]
(λx1 . . . xn.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xn := tn] tn+1 · · · tk if n < k

and s is not an abstraction

Note that for fixed k, any term has exactly one of the two forms above
(λx1 . . . xn.s with n < k and s not an abstraction, or λx1 . . . xk.s).

Essentially, applying a meta-substitution that has meta-variables in its
domain combines a substitution with (possibly several) β-steps. For exam-
ple, we have that: deriv (λx.sin (F 〈x〉))[F := λy.plus y x] equals
deriv (λz.sin (plus z x)). We also have: X〈0, nil〉[X := λx.map (λy.x)] equals
map (λy.0) nil.

A Static Higher-Order Dependency Pair Framework 757

Definition 5 (Rules and rewriting). Let F ,V,M be fixed sets of function
symbols, variables and meta-variables respectively. A rule is a pair � ⇒ r of
closed meta-terms of the same type such that � is a pattern of the form f �1 · · · �n

with f ∈ F and FMV (r) ⊆ FMV (�). A set of rules R defines a rewrite relation
⇒R as the smallest monotonic relation on terms which includes:
(Rule) �δ ⇒R rδ if � ⇒ r ∈ R and dom(δ) = FMV (�)
(Beta) (λx.s) t ⇒R s[x := t]

We say s ⇒β t if s ⇒R t is derived using a (Beta) step. A term s is terminating
under ⇒R if there is no infinite reduction s = s0 ⇒R s1 ⇒R . . . , is in normal
form if there is no t such that s ⇒R t, and is β-normal if there is no t with
s ⇒β t. Note that we are allowed to reduce at any position of a term, even below
a λ. The relation ⇒R is terminating if all terms over F ,V are terminating. The
set D ⊆ F of defined symbols consists of those (f : σ) ∈ F such that a rule
f �1 · · · �n ⇒ r exists; all other symbols are called constructors.

Note that R is allowed to be infinite, which is useful for instance to model
polymorphic systems. Also, right-hand sides of rules do not have to be in β-
normal form. While this is rarely used in practical examples, non-β-normal rules
may arise through transformations, and we lose nothing by allowing them.

Example 6. Let F ⊇ {0 : nat, s : nat → nat, nil : list, cons : nat → list →
list, map : (nat → nat) → list → list} and consider the following rules R:

map (λx.Z〈x〉) nil ⇒ nil
map (λx.Z〈x〉) (cons H T) ⇒ cons Z〈H〉 (map (λx.Z〈x〉) T)

Then map (λy.0) (cons (s 0) nil) ⇒R cons 0 (map (λy.0) nil) ⇒R cons 0 nil.
Note that the bound variable y does not need to occur in the body of λy.0 to
match λx.Z〈x〉. However, a term like map s (cons 0 nil) cannot be reduced,
because s does not instantiate λx.Z〈x〉. We could alternatively consider the
rules:

map Z nil ⇒ nil
map Z (cons H T) ⇒ cons (Z H) (map Z T)

Where the system before had (Z : (nat → nat, 1)) ∈ M, here we
assume (Z : (nat → nat, 0)) ∈ M. Thus, rather than meta-variable appli-
cation Z〈H〉 we use explicit application Z H. Then map s (cons 0 nil) ⇒R
cons (s 0) (map s nil). However, we will often need explicit β-reductions; e.g.,
map (λy.0) (cons (s 0) nil) ⇒R cons ((λy.0) (s 0)) (map (λy.0) nil) ⇒β

cons 0 (map (λy.0) nil).

Definition 7 (AFSM). An AFSM is a tuple (F ,V,M,R) of a signature and
a set of rules built from meta-terms over F ,V,M; as types of relevant variables
and meta-variables can always be derived from context, we will typically just refer
to the AFSM (F ,R). An AFSM implicitly defines the abstract reduction system
(T (F ,V),⇒R): a set of terms and a rewrite relation on this set. An AFSM is
terminating if ⇒R is terminating (on all terms in T (F ,V)).

758 C. Fuhs and C. Kop

Discussion: The two most common formalisms in termination analysis of higher-
order rewriting are algebraic functional systems [26] (AFSs) and higher-order
rewriting systems [37,39] (HRSs). AFSs are very similar to our AFSMs, but
use variables for matching rather than meta-variables; this is trivially translated
to the AFSM format, giving rules where all meta-variables have arity 0, like
the “alternative” rules in Example 6. HRSs use matching modulo β/η, but the
common restriction of pattern HRSs can be directly translated into AFSMs,
provided terms are β-normalised after every reduction step. Even without this
β-normalisation step, termination of the obtained AFSM implies termination of
the original HRS; for second-order systems, termination is equivalent. AFSMs
can also naturally encode CRSs [27] and several applicative systems (cf. [29,
Chapter 3]).

Example 8 (Ordinal recursion). A running example is the AFSM (F ,R) with
F ⊇ {0 : ord, s : ord → ord, lim : (nat → ord) → ord, rec : ord → nat →
(ord → nat → nat) → ((nat → ord) → (nat → nat) → nat) → nat} and R
given below. As all meta-variables have arity 0, this can be seen as an AFS.

rec 0 K F G ⇒ K
rec (s X) K F G ⇒ F X (rec X K F G)

rec (lim H) K F G ⇒ G H (λm.rec (H m) K F G)

Observant readers may notice that by the given constructors, the type nat in
Example 8 is not inhabited. However, as the given symbols are only a subset of F ,
additional symbols (such as constructors for the nat type) may be included. The
presence of additional function symbols does not affect termination of AFSMs:

Theorem 9 (Invariance of termination under signature extensions).
For an AFSM (F ,R) with F at most countably infinite, let funs(R) ⊆ F be
the set of function symbols occurring in some rule of R. Then (T (F ,V),⇒R) is
terminating if and only if (T (funs(R),V),⇒R) is terminating.

Proof. Trivial by replacing all function symbols in F \funs(R) by corresponding
variables of the same type. ��

Therefore, we will typically only state the types of symbols occurring in the
rules, but may safely assume that infinitely many symbols of all types are present
(which for instance allows us to select unused constructors in some proofs).

2.2 Computability

A common technique in higher-order termination is Tait and Girard’s com-
putability notion [47]. There are several ways to define computability predicates;
here we follow, e.g., [5,7–9] in considering accessible meta-terms using strictly
positive inductive types. The definition presented below is adapted from these
works, both to account for the altered formalism and to introduce (and obtain
termination of) a relation �C that we will use in the “computable subterm cri-
terion processor” of Theorem 63 (a termination criterion that allows us to handle

A Static Higher-Order Dependency Pair Framework 759

systems that would otherwise be beyond the reach of static DPs). This allows
for a minimal presentation that avoids the use of ordinals that would otherwise
be needed to obtain �C (see, e.g., [7,9]).

To define computability, we use the notion of an RC-set :

Definition 10. A set of reducibility candidates, or RC-set, for a rewrite rela-
tion ⇒R of an AFSM is a set I of base-type terms s such that: every term in I
is terminating under ⇒R; I is closed under ⇒R (so if s ∈ I and s ⇒R t then
t ∈ I); if s = x s1 · · · sn with x ∈ V or s = (λx.u) s0 · · · sn with n ≥ 0, and for
all t with s ⇒R t we have t ∈ I, then s ∈ I (for any u, s0, . . . , sn ∈ T (F ,V)).

We define I-computability for an RC-set I by induction on types. For s ∈
T (F ,V), we say that s is I-computable if either s is of base type and s ∈ I; or
s : σ → τ and for all t : σ that are I-computable, s t is I-computable.

The traditional notion of computability is obtained by taking for I the set of
all terminating base-type terms. Then, a term s is computable if and only if (a)
s has base type and is terminating; or (b) s : σ → τ and for all computable t : σ
the term s t is computable. This choice is simple but, for reasoning, not ideal:
we do not have a property like: “if f s1 · · · sn is computable then so is each si”.
Such a property would be valuable to have for generalising termination proofs
from first-order to higher-order rewriting, as it allows us to use computability
where the first-order proof uses termination. While it is not possible to define
a computability notion with this property alongside case (b) (as such a notion
would not be well-founded), we can come close to this property by choosing
a different set for I. To define this set, we will use the notion of accessible
arguments, which is used for the same purpose also in the General Schema [8],
the Computability Path Ordering [9], and the Computability Closure [7].

Definition 11 (Accessible arguments). We fix a quasi-ordering �S on S
with well-founded strict part �S := �S \ �S .1 For a type σ ≡ σ1→ . . .→σm →κ
(with κ ∈ S) and sort ι, let ι �S

+ σ if ι �S κ and ι �S
− σi for all i, and let

ι �S
− σ if ι �S κ and ι �S

+ σi for all i.2

For f : σ1 → . . . → σm → ι ∈ F , let Acc(f) = {i | 1 ≤ i ≤ m ∧ ι �S
+ σi}.

For x : σ1 → . . . → σm → ι ∈ V, let Acc(x) = {i | 1 ≤ i ≤ m ∧ σi has the form
τ1 → . . . → τn → κ with ι �S κ}. We write s �acc t if either s = t, or s = λx.s′

and s′ �acc t, or s = a s1 · · · sn with a ∈ F ∪ V and si �acc t for some i ∈ Acc(a)
with a /∈ FV (si).

With this definition, we will be able to define a set C such that, roughly, s
is C-computable if and only if (a) s : σ → τ and s t is C-computable for all C-
computable t, or (b) s has base type, is terminating, and if s = f s1 · · · sm then
si is C-computable for all accessible i (see Theorem 13 below). The reason that
Acc(x) for x ∈ V is different is proof-technical: computability of λx.x s1 · · · sm

1 Well-foundedness is immediate if S is finite, but we have not imposed that require-
ment.

2 Here ι �S
+ σ corresponds to “ι occurs only positively in σ” in [5,8,9].

760 C. Fuhs and C. Kop

implies the computability of more arguments si than computability of f s1 · · · sm

does, since x can be instantiated by anything.

Example 12. Consider a quasi-ordering �S such that ord �S nat. In Example 8,
we then have ord �S

+ nat → ord. Thus, 1 ∈ Acc(lim), which gives lim H�accH.

Theorem 13. Let (F ,R) be an AFSM. Let f s1 · · · sm �I si t1 · · · tn if both
sides have base type, i ∈ Acc(f), and all tj are I-computable. There is an RC-
set C such that C = {s ∈ T (F ,V) | s has base type ∧ s is terminating under
⇒R ∪ �C ∧ if s ⇒∗

R f s1 · · · sm then si is C-computable for all i ∈ Acc(f)}.

Proof (sketch). Note that we cannot define C as this set, as the set relies on
the notion of C-computability. However, we can define C as the fixpoint of a
monotone function operating on RC-sets. This follows the proof in, e.g., [8,9]. ��

The complete proof is available in [17, Appendix A].

3 Restrictions

The termination methodology in this paper is restricted to AFSMs that satisfy
certain limitations: they must be properly applied (a restriction on the number
of terms each function symbol is applied to) and accessible function passing (a
restriction on the positions of variables of a functional type in the left-hand sides
of rules). Both are syntactic restrictions that are easily checked by a computer
(mostly; the latter requires a search for a sort ordering, but this is typically
easy).

3.1 Properly Applied AFSMs

In properly applied AFSMs, function symbols are assigned a certain, minimal
number of arguments that they must always be applied to.

Definition 14. An AFSM (F ,R) is properly applied if for every f ∈ D there
exists an integer k such that for all rules � ⇒ r ∈ R: (1) if � = f �1 · · · �n then
n = k; and (2) if r � f r1 · · · rn then n ≥ k. We denote minar(f) = k.

That is, every occurrence of a function symbol in the right-hand side of a rule
has at least as many arguments as the occurrences in the left-hand sides of rules.
This means that partially applied functions are often not allowed: an AFSM with
rules such as double X ⇒ plus X X and doublelist L ⇒ map double L is not
properly applied, because double is applied to one argument in the left-hand
side of some rule, and to zero in the right-hand side of another.

This restriction is not as severe as it may initially seem since partial
applications can be replaced by λ-abstractions; e.g., the rules above can be
made properly applied by replacing the second rule by: doublelist L ⇒
map (λx.double x) L. By using η-expansion, we can transform any AFSM to
satisfy this restriction:

A Static Higher-Order Dependency Pair Framework 761

Definition 15 (R↑). Given a set of rules R, let their η-expansion be given by
R↑ = {(� Z1 · · · Zm)↑η ⇒ (r Z1 · · · Zm)↑η| � ⇒ r ∈ R with r : σ1 → . . . → σm →
ι, ι ∈ S, and Z1, . . . , Zm fresh meta-variables}, where

– s↑η= λx1 . . . xm.s (x1↑η) · · · (xm↑η) if s is an application or element of V ∪F ,
and s↑η= s otherwise;

– f = f for f ∈ F and x = x for x ∈ V, while Z〈s1, . . . , sk〉 = Z〈s1, . . . , sk〉
and (λx.s) = λx.(s↑η) and s1 s2 = s1 (s2↑η).

Note that � ↑η is a pattern if � is. By [29, Thm. 2.16], a relation ⇒R is
terminating if ⇒R↑ is terminating, which allows us to transpose any methods to
prove termination of properly applied AFSMs to all AFSMs.

However, there is a caveat: this transformation can introduce non-termination
in some special cases, e.g., the terminating rule f X ⇒ g f with f : o → o and
g : (o → o) → o, whose η-expansion f X ⇒ g (λx.(f x)) is non-terminating.
Thus, for a properly applied AFSM the methods in this paper apply directly.
For an AFSM that is not properly applied, we can use the methods to prove
termination (but not non-termination) by first η-expanding the rules. Of course,
if this analysis leads to a counterexample for termination, we may still be able
to verify whether this counterexample applies in the original, untransformed
AFSM.

Example 16. Both AFSMs in Example 6 and the AFSM in Example 8 are prop-
erly applied.

Example 17. Consider an AFSM (F ,R) with F ⊇ {sin, cos : real →
real, times : real → real → real, deriv : (real → real) → real → real}
and R = {deriv (λx.sin F 〈x〉) ⇒ λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)}.
Although the one rule has a functional output type (real → real), this AFSM is
properly applied, with deriv having always at least 1 argument. Therefore, we do
not need to use R↑. However, if R were to additionally include some rules that did
not satisfy the restriction (such as the double and doublelist rules above), then
η-expanding all rules, including this one, would be necessary. We have: R↑ =
{deriv (λx.sin F 〈x〉) Y ⇒ (λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)) Y }.
Note that the right-hand side of the η-expanded deriv rule is not β-normal.

3.2 Accessible Function Passing AFSMs

In accessible function passing AFSMs, variables of functional type may not occur
at arbitrary places in the left-hand sides of rules: their positions are restricted
using the sort ordering �S and accessibility relation �acc from Definition 11.

Definition 18 (Accessible function passing). An AFSM (F ,R) is accessi-
ble function passing (AFP) if there exists a sort ordering �S following Definition
11 such that: for all f �1 · · · �n ⇒ r ∈ R and all Z ∈ FMV (r): there are variables
x1, . . . , xk and some i such that �i �acc Z〈x1, . . . , xk〉.

762 C. Fuhs and C. Kop

The key idea of this definition is that computability of each �i implies com-
putability of all meta-variables in r. This excludes cases like Example 20 below.
Many common examples satisfy this restriction, including those we saw before:

Example 19. Both systems from Example 6 are AFP: choosing the sort order-
ing �S that equates nat and list, we indeed have cons H T �acc H and
cons H T �acc T (as Acc(cons) = {1, 2}) and both λx.Z〈x〉 �acc Z〈x〉 and
Z �acc Z. The AFSM from Example 8 is AFP because we can choose ord �S

nat and have lim H �acc H following Example 12 (and also s X �acc X
and K �acc K, F �acc F, G �acc G). The AFSM from Example 17 is AFP,
because λx.sin F 〈x〉 �acc F 〈x〉 for any �S : λx.sin F 〈x〉 �acc F 〈x〉 because
sin F 〈x〉 �acc F 〈x〉 because 1 ∈ Acc(sin).

In fact, all first-order AFSMs (where all fully applied sub-meta-terms of the
left-hand side of a rule have base type) are AFP via the sort ordering �S that
equates all sorts. Also (with the same sort ordering), an AFSM (F ,R) is AFP if,
for all rules f �1 · · · �k ⇒ r ∈ R and all 1 ≤ i ≤ k, we can write: �i = λx1 . . . xni

.�′

where ni ≥ 0 and all fully applied sub-meta-terms of �′ have base type.
This covers many practical systems, although for Example 8 we need a non-

trivial sort ordering. Also, there are AFSMs that cannot be handled with any �S .

Example 20 (Encoding the untyped λ-calculus). Consider an AFSM with F ⊇
{ap : o → o → o, lm : (o → o) → o} and R = {ap (lm F) ⇒ F} (note that
the only rule has type o → o). This AFSM is not accessible function passing,
because lm F �acc F cannot hold for any �S (as this would require o �S o).

Note that this example is also not terminating. With t = lm (λx.ap x x), we
get this self-loop as evidence: ap t t ⇒R (λx.ap x x) t ⇒β ap t t.

Intuitively: in an accessible function passing AFSM, meta-variables of a
higher type may occur only in “safe” places in the left-hand sides of rules. Rules
like the ones in Example 20, where a higher-order meta-variable is lifted out of
a base-type term, are not admitted (unless the base type is greater than the
higher type).

In the remainder of this paper, we will refer to a properly applied, accessible
function passing AFSM as a PA-AFP AFSM.

Discussion: This definition is strictly more liberal than the notions of “plain
function passing” in both [34] and [46] as adapted to AFSMs. The notion in
[46] largely corresponds to AFP if �S equates all sorts, and the HRS formalism
guarantees that rules are properly applied (in fact, all fully applied sub-meta-
terms of both left- and right-hand sides of rules have base type). The notion
in [34] is more restrictive. The current restriction of PA-AFP AFSMs lets us
handle examples like ordinal recursion (Example 8) which are not covered by
[34,46]. However, note that [34,46] consider a different formalism, which does
take rules whose left-hand side is not a pattern into account (which we do not
consider). Our restriction also quite resembles the “admissible” rules in [6] which

A Static Higher-Order Dependency Pair Framework 763

are defined using a pattern computability closure [5], but that work carries addi-
tional restrictions.

In later work [32,33], Kusakari extends the static DP approach to forms of
polymorphic functional programming, with a very liberal restriction: the defi-
nition is parametrised with an arbitrary RC-set and corresponding accessibility
(“safety”) notion. Our AFP restriction is actually an instance of this condition
(although a more liberal one than the example RC-set used in [32,33]). We have
chosen a specific instance because it allows us to use dedicated techniques for
the RC-set; for example, our computable subterm criterion processor (Theorem
63).

4 Static Higher-Order Dependency Pairs

To obtain sufficient criteria for both termination and non-termination of AFSMs,
we will now transpose the definition of static dependency pairs [6,33,34,46] to
AFSMs. In addition, we will add the new features of meta-variable conditions,
formative reductions, and computable chains. Complete versions of all proof
sketches in this section are available in [17, Appendix B].

Although we retain the first-order terminology of dependency pairs, the set-
ting with meta-variables makes it more suitable to define DPs as triples.

Definition 21 ((Static) Dependency Pair). A dependency pair (DP) is a
triple � � p (A), where � is a closed pattern f �1 · · · �k, p is a closed meta-term
g p1 · · · pn, and A is a set of meta-variable conditions: pairs Z : i indicating that
Z regards its ith argument. A DP is conservative if FMV (p) ⊆ FMV (�).

A substitution γ respects a set of meta-variable conditions A if for all Z : i in
A we have γ(Z) = λx1 . . . xj .t with either i > j, or i ≤ j and xi ∈ FV (t). DPs
will be used only with substitutions that respect their meta-variable conditions.

For � � p (∅) (so a DP whose set of meta-variable conditions is empty), we
often omit the third component and just write � � p.

Like the first-order setting, the static DP approach employs marked function
symbols to obtain meta-terms whose instances cannot be reduced at the root.

Definition 22 (Marked symbols). Let (F ,R) be an AFSM. Define F � :=
F � {f� : σ | f : σ ∈ D}. For a meta-term s = f s1 · · · sk with f ∈ D and
k = minar(f), we let s� = f� s1 · · · sk; for s of other forms s� is not defined.

Moreover, we will consider candidates. In the first-order setting, candidate
terms are subterms of the right-hand sides of rules whose root symbol is a defined
symbol. Intuitively, these subterms correspond to function calls. In the current
setting, we have to consider also meta-variables as well as rules whose right-hand
side is not β-normal (which might arise for instance due to η-expansion).

Definition 23 (β-reduced-sub-meta-term, �β, �A). A meta-term s has a
fully applied β-reduced-sub-meta-term t (shortly, BRSMT), notation s �β t, if
there exists a set of meta-variable conditions A with s�A t. Here s�A t holds if:

– s = t, or
– s = λx.u and u �A t, or

764 C. Fuhs and C. Kop

– s = (λx.u) s0 · · · sn and some si �A t, or u[x := s0] s1 · · · sn �A t, or
– s = a s1 · · · sn with a ∈ F ∪ V and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and ti �A t for some i ∈ {1, . . . , k} with (Z : i) ∈ A.

Essentially, s �A t means that t can be reached from s by taking β-reductions
at the root and “subterm”-steps, where Z : i is in A whenever we pass into
argument i of a meta-variable Z. BRSMTs are used to generate candidates:

Definition 24 (Candidates). For a meta-term s, the set cand(s) of candi-
dates of s consists of those pairs t (A) such that (a) t has the form f s1 · · · sk

with f ∈ D and k = minar(f), and (b) there are sk+1, . . . , sn (with n ≥ k) such
that s �A t sk+1 · · · sn, and (c) A is minimal: there is no subset A′ � A with
s �A′ t.

Example 25. In AFSMs where all meta-variables have arity 0 and the right-
hand sides of rules are β-normal, the set cand(s) for a meta-term s consists
exactly of the pairs t (∅) where t has the form f s1 · · · sminar(f) and t occurs as
part of s. In Example 8, we thus have cand(G H (λm.rec (H m) K F G)) =
{ rec (H m) K F G (∅) }.

If some of the meta-variables do take arguments, then the meta-variable
conditions matter: candidates of s are pairs t (A) where A contains exactly
those pairs Z : i for which we pass through the ith argument of Z to reach t in s.

Example 26. Consider an AFSM with the signature from Example 8 but a rule
using meta-variables with larger arities:

rec (lim (λn.H〈n〉)) K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ⇒
G〈λn.H〈n〉, λm.rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉)〉

The right-hand side has one candidate:

rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ({G : 2})

The original static approaches define DPs as pairs �� � p� where � ⇒ r is a
rule and p a subterm of r of the form f r1 · · · rm – as their rules are built using
terms, not meta-terms. This can set variables bound in r free in p. In the current
setting, we use candidates with their meta-variable conditions and implicit β-
steps rather than subterms, and we replace such variables by meta-variables.

Definition 27 (SDP). Let s be a meta-term and (F ,R) be an AFSM. Let
metafy(s) denote s with all free variables replaced by corresponding meta-
variables. Now SDP(R) = {�� � metafy(p�) (A) | � ⇒ r ∈ R∧p (A) ∈ cand(r)}.

Although static DPs always have a pleasant form f� �1 · · · �k �
g� p1 · · · pn (A) (as opposed to the dynamic DPs of, e.g., [31], whose right-hand
sides can have a meta-variable at the head, which complicates various techniques

A Static Higher-Order Dependency Pair Framework 765

in the framework), they have two important complications not present in first-
order DPs: the right-hand side p of a DP � � p (A) may contain meta-variables
that do not occur in the left-hand side � – traditional analysis techniques are not
really equipped for this – and the left- and right-hand sides may have different
types. In Sect. 5 we will explore some methods to deal with these features.

Example 28. For the non-η-expanded rules of Example 17, the set SDP(R) has
one element: deriv� (λx.sin F 〈x〉) � deriv� (λx.F 〈x〉). (As times and cos are
not defined symbols, they do not generate dependency pairs.) The set SDP(R↑)
for the η-expanded rules is {deriv� (λx.sin F 〈x〉) Y � deriv� (λx.F 〈x〉) Y }.
To obtain the relevant candidate, we used the β-reduction step of BRSMTs.

Example 29. The AFSM from Example 8 is AFP following Example 19; here
SDP(R) is:

rec� (s X) K F G � rec� X K F G (∅)
rec� (lim H) K F G � rec� (H M) K F G (∅)

Note that the right-hand side of the second DP contains a meta-variable that is
not on the left. As we will see in Example 64, that is not problematic here.

Termination analysis using dependency pairs importantly considers the
notion of a dependency chain. This notion is fairly similar to the first-order
setting:

Definition 30 (Dependency chain). Let P be a set of DPs and R a set of
rules. A (finite or infinite) (P,R)-dependency chain (or just (P,R)-chain) is
a sequence [(�0 � p0 (A0), s0, t0), (�1 � p1 (A1), s1, t1), . . .] where each �i �
pi (Ai) ∈ P and all si, ti are terms, such that for all i:

1. there exists a substitution γ on domain FMV (�i) ∪ FMV (pi) such that si =
�iγ, ti = piγ and for all Z ∈ dom(γ): γ(Z) respects Ai;

2. we can write ti = f u1 · · · un and si+1 = f w1 · · · wn and each uj ⇒∗
R wj.

Example 31. In the (first) AFSM from Example 6, we have SDP(R) =
{map� (λx.Z〈x〉)(cons H T) � map� (λx.Z〈x〉) T}. An example of
a finite dependency chain is [(ρ, s1, t1), (ρ, s2, t2)] where ρ is the one
DP, s1 = map� (λx.s x) (cons 0 (cons (s 0) (map (λx.x) nil)))
and t1 = map� (λx.s x) (cons (s 0) (map (λx.x) nil)) and s2 =
map� (λx.s x) (cons (s 0) nil) and t2 = map� (λx.s x) nil.

Note that here t1 reduces to s2 in a single step (map (λx.x) nil ⇒R nil).

We have the following key result:

Theorem 32. Let (F ,R) be a PA-AFP AFSM. If (F ,R) is non-terminating,
then there is an infinite (SDP(R),R)-dependency chain.

Proof (sketch). The proof is an adaptation of the one in [34], altered for the more
permissive definition of accessible function passing over plain function passing
as well as the meta-variable conditions; it also follows from Theorem 37 below.

��

766 C. Fuhs and C. Kop

By this result we can use dependency pairs to prove termination of a given
properly applied and AFP AFSM: if we can prove that there is no infinite
(SDP(R),R)-chain, then termination follows immediately. Note, however, that
the reverse result does not hold: it is possible to have an infinite (SDP(R),R)-
dependency chain even for a terminating PA-AFP AFSM.

Example 33. Let F ⊇ {0, 1 : nat, f : nat → nat, g : (nat → nat) → nat} and
R = {f 0 ⇒ g (λx.f x), g (λx.F 〈x〉) ⇒ F 〈1〉}. This AFSM is PA-AFP, with
SDP(R) = {f� 0 � g� (λx.f x), f� 0 � f� X}; the second rule does not cause the
addition of any dependency pairs. Although ⇒R is terminating, there is an infi-
nite (SDP(R),R)-chain [(f� 0 � f� X, f� 0, f� 0), (f� 0 � f� X, f� 0, f� 0), . . .].

The problem in Example 33 is the non-conservative DP f� 0 � f� X,
with X on the right but not on the left. Such DPs arise from abstractions in
the right-hand sides of rules. Unfortunately, abstractions are introduced by the
restricted η-expansion (Definition 15) that we may need to make an AFSM prop-
erly applied. Even so, often all DPs are conservative, like Examples 6 and 17.
There, we do have the inverse result:

Theorem 34. For any AFSM (F ,R): if there is an infinite (SDP(R),R)-chain
[(ρ0, s0, t0), (ρ1, s1, t1), . . .] with all ρi conservative, then ⇒R is non-terminating.

Proof (sketch). If FMV (pi) ⊆ FMV (�i), then we can see that si ⇒R · ⇒∗
β t′i for

some term t′i of which ti is a subterm. Since also each ti ⇒∗
R si+1, the infinite

chain induces an infinite reduction s0 ⇒+
R t′0 ⇒∗

R s′
1 ⇒+

R t′′1 ⇒∗
R ��

The core of the dependency pair framework is to systematically simplify a set
of pairs (P,R) to prove either absence or presence of an infinite (P,R)-chain,
thus showing termination or non-termination as appropriate. By Theorems 32
and 34 we can do so, although with some conditions on the non-termination
result. We can do better by tracking certain properties of dependency chains.

Definition 35 (Minimal and Computable chains). Let (F ,U) be an AFSM
and CU an RC-set satisfying the properties of Theorem 13 for (F ,U). Let F
contain, for every type σ, at least countably many symbols f : σ not used in U .

A (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] is U-computable if: ⇒U ⊇ ⇒R,
and for all i ∈ N there exists a substitution γi such that ρi = �i � pi (Ai) with
si = �iγi and ti = piγi, and (λx1 . . . xn.v)γi is CU -computable for all v and B
such that pi �B v, γi respects B, and FV (v) = {x1, . . . , xn}.

A chain is minimal if the strict subterms of all ti are terminating under ⇒R.

In the first-order DP framework, minimal chains give access to several pow-
erful techniques to prove absence of infinite chains, such as the subterm criterion
[24] and usable rules [22,24]. Computable chains go a step further, by building
on the computability inherent in the proof of Theorem 32 and the notion of
accessible function passing AFSMs. In computable chains, we can require that
(some of) the subterms of all ti are computable rather than merely terminating.

A Static Higher-Order Dependency Pair Framework 767

This property will be essential in the computable subterm criterion processor
(Theorem 63).

Another property of dependency chains is the use of formative rules, which
has proven very useful for dynamic DPs [31]. Here we go further and con-
sider formative reductions, which were introduced for the first-order DP frame-
work in [16]. This property will be essential in the formative rules processor
(Theorem 58).

Definition 36 (Formative chain, formative reduction). A (P,R)-chain
[(�0 � p0 (A0), s0, t0), (�1 � p1 (A1), s1, t1), . . .] is formative if for all i, the
reduction ti ⇒∗

R si+1 is �i+1-formative. Here, for a pattern �, substitution γ and
term s, a reduction s ⇒∗

R �γ is �-formative if one of the following holds:

– � is not a fully extended linear pattern; that is: some meta-variable occurs
more than once in � or � has a sub-meta-term λx.C[Z〈s〉] with x /∈ {s}

– � is a meta-variable application Z〈x1, . . . , xk〉 and s = �γ
– s = a s1 · · · sn and � = a �1 · · · �n with a ∈ F � ∪ V and each si ⇒∗

R �iγ by an
�i-formative reduction

– s = λx.s′ and � = λx.�′ and s′ ⇒∗
R �′γ by an �′-formative reduction

– s = (λx.u) v w1 · · · wn and u[x := v] w1 · · · wn ⇒∗
R �γ by an �-formative

reduction
– � is not a meta-variable application, and there are �′ ⇒ r′ ∈ R, meta-variables

Z1 . . . Zn (n ≥ 0) and δ such that s ⇒∗
R (�′ Z1 · · · Zn)δ by an (�′ Z1 · · · Zn)-

formative reduction, and (r′ Z1 · · · Zn)δ ⇒∗
R �γ by an �-formative reduction.

The idea of a formative reduction is to avoid redundant steps: if s ⇒∗
R

�γ by an �-formative reduction, then this reduction takes only the steps
needed to obtain an instance of �. Suppose that we have rules plus 0 Y ⇒
Y, plus (s X) Y ⇒ s (plus X Y). Let � := g 0 X and t := plus 0 0. Then the
reduction g t t ⇒R g 0 t is �-formative: we must reduce the first argument to
get an instance of �. The reduction g t t ⇒R g t 0 ⇒R g 0 0 is not �-formative,
because the reduction in the second argument does not contribute to the non-
meta-variable positions of �. This matters when we consider � as the left-hand
side of a rule, say g 0 X ⇒ 0: if we reduce g t t ⇒R g t 0 ⇒R g 0 0 ⇒R 0, then
the first step was redundant: removing this step gives a shorter reduction to the
same result: g t t ⇒R g 0 t ⇒R 0. In an infinite reduction, redundant steps may
also be postponed indefinitely.

We can now strengthen the result of Theorem 32 with two new properties.

Theorem 37. Let (F ,R) be a properly applied, accessible function passing
AFSM. If (F ,R) is non-terminating, then there is an infinite R-computable
formative (SDP(R),R)-dependency chain.

Proof (sketch). We select a minimal non-computable (MNC) term s := f s1 · · · sk

(where all si are CR-computable) and an infinite reduction starting in s. Then we
stepwise build an infinite dependency chain, as follows. Since s is non-computable
but each si terminates (as computability implies termination), there exist a rule

768 C. Fuhs and C. Kop

f �1 · · · �k ⇒ r and substitution γ such that each si ⇒∗
R �iγ and rγ is non-

computable. We can then identify a candidate t (A) of r such that γ respects
A and tγ is a MNC subterm of rγ; we continue the process with tγ (or a term
at its head). For the formative property, we note that if s ⇒∗

R �γ and u is
terminating, then u ⇒∗

R �δ by an �-formative reduction for substitution δ such
that each δ(Z) ⇒∗

R γ(Z). This follows by postponing those reduction steps not
needed to obtain an instance of �. The resulting infinite chain is R-computable
because we can show, by induction on the definition of �acc, that if � ⇒ r
is an AFP rule and �γ is a MNC term, then γ(Z) is CR-computable for all
Z ∈ FMV (r). ��

As it is easily seen that all CU -computable terms are ⇒U -terminating and
therefore ⇒R-terminating, every U-computable (P,R)-dependency chain is also
minimal. The notions of R-computable and formative chains still do not suffice
to obtain a true inverse result, however (i.e., to prove that termination implies
the absence of an infinite R-computable chain over SDP(R)): the infinite chain
in Example 33 is R-computable.

To see why the two restrictions that the AFSM must be properly applied and
accessible function passing are necessary, consider the following examples.

Example 38. Consider F ⊇ {fix : ((o → o) → o → o) → o → o} and R =
{fix F X ⇒ F (fix F) X}. This AFSM is not properly applied; it is also
not terminating, as can be seen by instantiating F with λy.y. However, it does
not have any static DPs, since fix F is not a candidate. Even if we altered the
definition of static DPs to admit a dependency pair fix� F X � fix� F , this
pair could not be used to build an infinite dependency chain.

Note that the problem does not arise if we study the η-expanded rules R↑ =
{fix F X ⇒ F (λz.fix F z) X}, as the dependency pair fix� F X � fix� F Z
does admit an infinite chain. Unfortunately, as the one dependency pair does
not satisfy the conditions of Theorem 34, we cannot use this to prove non-
termination.

Example 39. The AFSM from Example 20 is not accessible function passing,
since Acc(lm) = ∅. This is good because the set SDP(R) is empty, which would
lead us to falsely conclude termination without the restriction.

Discussion: Theorem 37 transposes the work of [34,46] to AFSMs and extends
it by using a more liberal restriction, by limiting interest to formative, R-
computable chains, and by including meta-variable conditions. Both of these
new properties of chains will support new termination techniques within the DP
framework.

The relationship with the works for functional programming [32,33] is less
clear: they define a different form of chains suited well to polymorphic systems,
but which requires more intricate reasoning for non-polymorphic systems, as
DPs can be used for reductions at the head of a term. It is not clear whether
there are non-polymorphic systems that can be handled with one and not the
other. The notions of formative and R-computable chains are not considered
there; meta-variable conditions are not relevant to their λ-free formalism.

A Static Higher-Order Dependency Pair Framework 769

5 The Static Higher-Order DP Framework

In first-order term rewriting, the DP framework [20] is an extendable framework
to prove termination and non-termination. As observed in the introduction, DP
analyses in higher-order rewriting typically go beyond the initial DP approach
[2], but fall short of the full framework. Here, we define the latter for static DPs.
Complete versions of all proof sketches in this section are in [17, Appendix C].

We have now reduced the problem of termination to non-existence of certain
chains. In the DP framework, we formalise this in the notion of a DP problem:

Definition 40 (DP problem). A DP problem is a tuple (P,R,m, f) with P
a set of DPs, R a set of rules, m ∈ {minimal, arbitrary} ∪ {computableU |
any set of rules U}, and f ∈ {formative, all}.3

A DP problem (P,R,m, f) is finite if there exists no infinite (P,R)-chain
that is U-computable if m = computableU , is minimal if m = minimal, and is
formative if f = formative. It is infinite if R is non-terminating, or if there
exists an infinite (P,R)-chain where all DPs used in the chain are conservative.

To capture the levels of permissiveness in the m flag, we use a transitive-
reflexive relation � generated by computableU � minimal � arbitrary.

Thus, the combination of Theorems 34 and 37 can be rephrased as:
an AFSM (F ,R) is terminating if (SDP(R),R, computableR, formative) is
finite, and is non-terminating if (SDP(R),R,m, f) is infinite for some m ∈
{computableU , minimal, arbitrary} and f ∈ {formative, all}.4

The core idea of the DP framework is to iteratively simplify a set of DP
problems via processors until nothing remains to be proved:

Definition 41 (Processor). A dependency pair processor (or just processor)
is a function that takes a DP problem and returns either NO or a set of DP
problems. A processor Proc is sound if a DP problem M is finite whenever
Proc(M) �= NO and all elements of Proc(M) are finite. A processor Proc is
complete if a DP problem M is infinite whenever Proc(M) = NO or contains an
infinite element.

To prove finiteness of a DP problem M with the DP framework, we proceed
analogously to the first-order DP framework [22]: we repeatedly apply sound DP
processors starting from M until none remain. That is, we execute the following
rough procedure: (1) let A := {M}; (2) while A �= ∅: select a problem Q ∈ A and
a sound processor Proc with Proc(Q) �= NO, and let A := (A \ {Q}) ∪ Proc(Q).
If this procedure terminates, then M is a finite DP problem.

3 Our framework is implicitly parametrised by the signature F� used for term forma-
tion. As none of the processors we present modify this component (as indeed there
is no need to by Theorem 9), we leave it implicit.

4 The processors in this paper do not alter the flag m, but some require minimality
or computability. We include the minimal option and the subscript U for the sake of
future generalisations, and for reuse of processors in the dynamic approach of [31].

770 C. Fuhs and C. Kop

To prove termination of an AFSM (F ,R), we would use as initial DP problem
(SDP(R),R, computableR, formative), provided that R is properly applied
and accessible function passing (where η-expansion following Definition 15 may
be applied first). If the procedure terminates – so finiteness of M is proved by
the definition of soundness – then Theorem 37 provides termination of ⇒R.

Similarly, we can use the DP framework to prove infiniteness: (1) let A :=
{M}; (2) while A �= NO: select a problem Q ∈ A and a complete processor Proc,
and let A := NO if Proc(Q) = NO, or A := (A \ {Q}) ∪ Proc(Q) otherwise. For
non-termination of (F ,R), the initial DP problem should be (SDP(R),R,m, f),
where m, f can be any flag (see Theorem 34). Note that the algorithms coin-
cide while processors are used that are both sound and complete. In a tool,
automation (or the user) must resolve the non-determinism and select suitable
processors.

Below, we will present a number of processors within the framework. We will
typically present processors by writing “for a DP problem M satisfying X, Y , Z,
Proc(M) = . . . ”. In these cases, we let Proc(M) = {M} for any problem M not
satisfying the given properties. Many more processors are possible, but we have
chosen to present a selection which touches on all aspects of the DP framework:

– processors which map a DP problem to NO (Theorem 65), a singleton set
(most processors) and a non-singleton set (Theorem 42);

– changing the set R (Theorems 54, 58) and various flags (Theorem 54);
– using specific values of the f (Theorem 58) and m flags (Theorems 54, 61, 63);
– using term orderings (Theorems 49, 52), a key part of many termination

proofs.

5.1 The Dependency Graph

We can leverage reachability information to decompose DP problems. In first-
order rewriting, a graph structure is used to track which DPs can possibly follow
one another in a chain [2]. Here, we define this dependency graph as follows.

Definition 42 (Dependency graph). A DP problem (P,R,m, f) induces a
graph structure DG, called its dependency graph, whose nodes are the elements
of P. There is a (directed) edge from ρ1 to ρ2 in DG iff there exist s1, t1, s2, t2
such that [(ρ1, s1, t1), (ρ2, s2, t2)] is a (P,R)-chain with the properties for m, f .

Example 43. Consider an AFSM with F ⊇ {f : (nat → nat) → nat → nat} and
R = {f (λx.F 〈x〉) (s Y) ⇒ F 〈f (λx.0) (f (λx.F 〈x〉) Y)〉}. Let P := SDP(R) =

{
(1) f� (λx.F 〈x〉) (s Y) � f� (λx.0) (f (λx.F 〈x〉) Y) ({F : 1})
(2) f� (λx.F 〈x〉) (s Y) � f� (λx.F 〈x〉) Y ({F : 1})

}

The dependency graph of (P,R, minimal, formative) is:

(1) (2)

A Static Higher-Order Dependency Pair Framework 771

There is no edge from (1) to itself or (2) because there is no substitution γ
such that (λx.0)γ can be reduced to a term (λx.F 〈x〉)δ where δ(F) regards its
first argument (as ⇒∗

R cannot introduce new variables).

In general, the dependency graph for a given DP problem is undecidable,
which is why we consider approximations.

Definition 44 (Dependency graph approximation [31]). A finite graph Gθ

approximates DG if θ is a function that maps the nodes of DG to the nodes of
Gθ such that, whenever DG has an edge from ρ1 to ρ2, Gθ has an edge from
θ(ρ1) to θ(ρ2). (Gθ may have edges that have no corresponding edge in DG.)

Note that this definition allows for an infinite graph to be approximated
by a finite one; infinite graphs may occur if R is infinite (e.g., the union of all
simply-typed instances of polymorphic rules).

If P is finite, we can take a graph approximation Gid with the same nodes
as DG . A simple approximation may have an edge from �1 � p1 (A1) to �2 �
p2 (A2) whenever both p1 and �2 have the form f� s1 · · · sk for the same f and
k. However, one can also take the meta-variable conditions into account, as we
did in Example 43.

Theorem 45 (Dependency graph processor). The processor ProcGθ
that

maps a DP problem M = (P,R,m, f) to {({ρ ∈ P | θ(ρ) ∈ Ci},R,m, f) | 1 ≤
i ≤ n} if Gθ is an approximation of the dependency graph of M and C1, . . . , Cn

are the (nodes of the) non-trivial strongly connected components (SCCs) of Gθ,
is both sound and complete.

Proof (sketch). In an infinite (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .], there is
always a path from ρi to ρi+1 in DG. Since Gθ is finite, every infinite path in
DG eventually remains in a cycle in Gθ. This cycle is part of an SCC. ��

Example 46. Let R be the set of rules from Example 43 and G be the graph given
there. Then ProcG(SDP(R),R, computableR, formative) = {({f� (λx.F 〈x〉)
(s Y) � f� (λx.F 〈x〉) Y ({F : 1})},R, computableR, formative)}.

Example 47. Let R consist of the rules for map from Example 6 along with f L ⇒
map (λx.g x) L and g X ⇒ X. Then SDP(R) = {(1) map� (λx.Z〈x〉) (cons H T)
� map� (λx.Z〈x〉) T, (2) f� L � map� (λx.g x) L, (3) f� L � g� X}. DP (3)
is not conservative, but it is not on any cycle in the graph approximation Gid

obtained by considering head symbols as described above:

(3) (2) (1)

As (1) is the only DP on a cycle, ProcSDPGid
(SDP(R),R, computableR,

formative) = { ({(1)},R, computableR, formative) }.

772 C. Fuhs and C. Kop

Discussion: The dependency graph is a powerful tool for simplifying DP prob-
lems, used since early versions of the DP approach [2]. Our notion of a depen-
dency graph approximation, taken from [31], strictly generalises the original
notion in [2], which uses a graph on the same node set as DG with possibly
further edges. One can get this notion here by using a graph Gid. The advantage
of our definition is that it ensures soundness of the dependency graph processor
also for infinite sets of DPs. This overcomes a restriction in the literature [34,
Corollary 5.13] to dependency graphs without non-cyclic infinite paths.

5.2 Processors Based on Reduction Triples

At the heart of most DP-based approaches to termination proving lie well-
founded orderings to delete DPs (or rules). For this, we use reduction triples
[24,31].

Definition 48 (Reduction triple). A reduction triple (�,�,�) consists of
two quasi-orderings � and � and a well-founded strict ordering � on meta-terms
such that � is monotonic, all of �,�,� are meta-stable (that is, � � r implies
�γ � rγ if � is a closed pattern and γ a substitution on domain FMV (�) ∪
FMV (r), and the same for � and �), ⇒β ⊆ �, and both � ◦ � ⊆ � and
� ◦ � ⊆ �.

In the first-order DP framework, the reduction pair processor [20] seeks to
orient all rules with � and all DPs with either � or �; if this succeeds, those
pairs oriented with � may be removed. Using reduction triples rather than pairs,
we obtain the following extension to the higher-order setting:

Theorem 49 (Basic reduction triple processor). Let M = (P1 �
P2,R,m, f) be a DP problem. If (�,�,�) is a reduction triple such that

1. for all � ⇒ r ∈ R, we have � � r;
2. for all � � p (A) ∈ P1, we have � � p;
3. for all � � p (A) ∈ P2, we have � � p;

then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). For an infinite (P1 � P2,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] the
requirements provide that, for all i: (a) si � ti if ρi ∈ P1; (b) si � ti if ρi ∈ P2;
and (c) ti � si+1. Since � is well-founded, only finitely many DPs can be in P1,
so a tail of the chain is actually an infinite (P2,R,m, f)-chain. ��

Example 50. Let (F ,R) be the (non-η-expanded) rules from Example 17, and
SDP(R) the DPs from Example 28. From Theorem 49, we get the following
ordering requirements:

deriv (λx.sin F 〈x〉) � λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)
deriv� (λx.sin F 〈x〉) � deriv� (λx.F 〈x〉)

A Static Higher-Order Dependency Pair Framework 773

We can handle both requirements by using a polynomial interpretation J to
N [15,43], by choosing Jsin(n) = n + 1, Jcos(n) = 0, Jtimes(n1, n2) = n1,
Jderiv(f) = Jderiv�(f) = λn.f(n). Then the requirements are evaluated to:
λn.f(n) + 1 ≥ λn.f(n) and λn.f(n) + 1 > λn.f(n), which holds on N.

Theorem 49 is not ideal since, by definition, the left- and right-hand side of
a DP may have different types. Such DPs are hard to handle with traditional
techniques such as HORPO [26] or polynomial interpretations [15,43], as these
methods compare only (meta-)terms of the same type (modulo renaming of
sorts).

Example 51. Consider the toy AFSM with R = {f (s X) Y ⇒ g X Y, g X ⇒
λz.f X z} and SDP(R) = {f� (s X) Y � g� X, g� X � f� X Z}. If f and g
both have a type nat → nat → nat, then in the first DP, the left-hand side has
type nat while the right-hand side has type nat → nat. In the second DP, the
left-hand side has type nat → nat and the right-hand side has type nat.

To be able to handle examples like the one above, we adapt [31, Thm. 5.21]
by altering the ordering requirements to have base type.

Theorem 52 (Reduction triple processor). Let Bot be a set {⊥σ : σ |
σ a type} ⊆ F � of unused constructors, M = (P1 � P2,R,m, f) a DP prob-
lem and (�,�,�) a reduction triple such that: (a) for all � ⇒ r ∈ R, we have
� � r; and (b) for all � � p (A) ∈ P1 � P2 with � : σ1 → . . . → σm → ι and
p : τ1 → . . . → τn → κ we have, for fresh meta-variables Z1 : σ1, . . . , Zm : σm:

– � Z1 · · · Zm � p ⊥τ1 · · · ⊥τn
if � � p (A) ∈ P1

– � Z1 · · · Zm � p ⊥τ1 · · · ⊥τn
if � � p (A) ∈ P2

Then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). If (�,�,�) is such a triple, then for R ∈ {�,�} define R′

as follows: for s : σ1 → . . . → σm → ι and t : τ1 → . . . → τn → κ, let
s R′ t if for all u1 : σ1, . . . , um : σm there exist w1 : τ1, . . . , wn : τn such that
s u1 · · · um R t w1 · · · wn. Now apply Theorem 49 with the triple (�,�′,�′). ��

Here, the elements of Bot take the role of minimal terms for the ordering. We
use them to flatten the type of the right-hand sides of ordering requirements,
which makes it easier to use traditional methods to generate a reduction triple.

While � and � may still have to orient meta-terms of distinct types, these
are always base types, which we could collapse to a single sort. The only relation
required to be monotonic, �, regards pairs of meta-terms of the same type. This
makes it feasible to apply orderings like HORPO or polynomial interpretations.

Both the basic and non-basic reduction triple processor are difficult to use for
non-conservative DPs, which generate ordering requirements whose right-hand
side contains a meta-variable not occurring on the left. This is typically difficult
for traditional techniques, although possible to overcome, by choosing triples
that do not regard such meta-variables (e.g., via an argument filtering [35,46]):

774 C. Fuhs and C. Kop

Example 53. We apply Theorem 52 on the DP problem (SDP(R),R,
computableR, formative) of Example 51. This gives for instance the following
ordering requirements:

f (s X) Y � g X Y f� (s X) Y � g� X ⊥nat

g X � λz.f X z g� X Y � f� X Z

The right-hand side of the last DP uses a meta-variable Z that does not occur on
the left. As neither � nor � are required to be monotonic (only � is), function
symbols do not have to regard all their arguments. Thus, we can use a polynomial
interpretation J to N with J⊥nat

= 0, Js(n) = n + 1 and Jh(n1, n2) = n1 for
h ∈ {f, f�, g, g�}. The ordering requirements then translate to X + 1 ≥ X and
λy.X ≥ λz.X for the rules, and X + 1 > X and X ≥ X for the DPs. All
these inequalities on N are clearly satisfied, so we can remove the first DP. The
remaining problem is quickly dispersed with the dependency graph processor.

5.3 Rule Removal Without Search for Orderings

While processors often simplify only P, they can also simplify R. One of the
most powerful techniques in first-order DP approaches that can do this are usable
rules. The idea is that for a given set P of DPs, we only need to consider a subset
UR(P,R) of R. Combined with the dependency graph processor, this makes it
possible to split a large term rewriting system into a number of small problems.

In the higher-order setting, simple versions of usable rules have also been
defined [31,46]. We can easily extend these definitions to AFSMs:

Theorem 54. Given a DP problem M = (P,R,m, f) with m � minimal and
R finite, let UR(P,R) be the smallest subset of R such that:

– if a symbol f occurs in the right-hand side of an element of P or UR(P,R),
and there is a rule f �1 · · · �k ⇒ r, then this rule is also in UR(P,R);

– if there exists � ⇒ r ∈ R or � � r (A) ∈ P such that r�F 〈s1, . . . , sk〉 t1 · · · tn
with s1, . . . , sk not all distinct variables or with n > 0, then UR(P,R) = R.

Then the processor that maps M to {(P,UR(P,R), arbitrary, all)} is sound.

For the proof we refer to the very similar proofs in [31,46].

Example 55. For the set SDP(R) of the ordinal recursion example (Examples 8
and 29), all rules are usable due to the occurrence of H M in the second DP.
For the set SDP(R) of the map example (Examples 6 and 31), there are no
usable rules, since the one DP contains no defined function symbols or applied
meta-variables.

This higher-order processor is much less powerful than its first-order version:
if any DP or usable rule has a sub-meta-term of the form F s or F 〈s1, . . . , sk〉
with s1, . . . , sk not all distinct variables, then all rules are usable. Since applying
a higher-order meta-variable to some argument is extremely common in higher-
order rewriting, the technique is usually not applicable. Also, this processor

A Static Higher-Order Dependency Pair Framework 775

imposes a heavy price on the flags: minimality (at least) is required, but is lost;
the formative flag is also lost. Thus, usable rules are often combined with reduc-
tion triples to temporarily disregard rules, rather than as a way to permanently
remove rules.

To address these weaknesses, we consider a processor that uses similar ideas
to usable rules, but operates from the left-hand sides of rules and DPs rather
than the right. This adapts the technique from [31] that relies on the new for-
mative flag. As in the first-order case [16], we use a semantic characterisation
of formative rules. In practice, we then work with over-approximations of this
characterisation, analogous to the use of dependency graph approximations in
Theorem 45.
Definition 56. A function FR that maps a pattern � and a set of rules R to
a set FR(�,R) ⊆ R is a formative rules approximation if for all s and γ: if
s ⇒∗

R �γ by an �-formative reduction, then this reduction can be done using only
rules in FR(�,R).

We let FR(P,R) =
⋃

{FR(�i,R) | f �1 · · · �n � p (A) ∈ P ∧ 1 ≤ i ≤ n}.
Thus, a formative rules approximation is a subset of R that is sufficient for

a formative reduction: if s ⇒∗
R �γ, then s ⇒∗

FR(,R) �γ. It is allowed for there to
exist other formative reductions that do use additional rules.
Example 57. We define a simple formative rules approximation: (1) FR(Z,R) =
∅ if Z is a meta-variable; (2) FR(f �1 · · · �m,R) = FR(�1,R) ∪ · · · ∪ FR(�m,R)
if f : σ1 → . . . → σm → ι and no rules have type ι; (3) FR(s,R) = R otherwise.
This is a formative rules approximation: if s ⇒∗

R Zγ by a Z-formative reduction,
then s = Zγ, and if s ⇒∗

R f �1 · · · �m and no rules have the same output type as
s, then s = f s1 · · · sm and each si ⇒∗

R �iγ (by an �i-formative reduction).
The following result follows directly from the definition of formative rules.

Theorem 58 (Formative rules processor). For a formative rules approxi-
mation FR, the processor ProcFR that maps a DP problem (P,R,m, formative)
to {(P,FR(P,R),m, formative)} is both sound and complete.

Proof (sketch). A processor that only removes rules (or DPs) is always complete.
For soundness, if the chain is formative then each step ti ⇒∗

R si+1 can be replaced
by ti ⇒∗

FR(P,R) si+1. Thus, the chain can be seen as a (P,FR(P,R))-chain. ��
Example 59. For our ordinal recursion example (Examples 8 and 29), none
of the rules are included when we use the approximation of Example 57
since all rules have output type ord. Thus, ProcFR maps (SDP(R),R,
computableR, formative) to (SDP(R), ∅, computableR, formative). Note: this
example can also be completed without formative rules (see Example 64). Here
we illustrate that, even with a simple formative rules approximation, we can
often delete all rules of a given type.

Formative rules are introduced in [31], and the definitions can be adapted to a
more powerful formative rules approximation than the one sketched in Example
59. Several examples and deeper intuition for the first-order setting are given in
[16].

776 C. Fuhs and C. Kop

5.4 Subterm Criterion Processors

Reduction triple processors are powerful, but they exert a computational price:
we must orient all rules in R. The subterm criterion processor allows us to
remove DPs without considering R at all. It is based on a projection function
[24], whose higher-order counterpart [31,34,46] is the following:

Definition 60. For P a set of DPs, let heads(P) be the set of all symbols f that
occur as the head of a left- or right-hand side of a DP in P. A projection function
for P is a function ν : heads(P) → N such that for all DPs � � p (A) ∈ P, the
function ν with ν(f s1 · · · sn) = sν(f) is well-defined both for � and for p.

Theorem 61 (Subterm criterion processor). The processor Procsubcrit that
maps a DP problem (P1 � P2,R,m, f) with m � minimal to {(P2,R,m, f)} if
a projection function ν exists such that ν(�) � ν(p) for all � � p (A) ∈ P1 and
ν(�) = ν(p) for all � � p (A) ∈ P2, is sound and complete.

Proof (sketch). If the conditions are satisfied, every infinite (P,R)-chain induces
an infinite � · ⇒∗

R sequence that starts in a strict subterm of t1, contradicting
minimality unless all but finitely many steps are equality. Since every occurrence
of a pair in P1 results in a strict � step, a tail of the chain lies in P2. ��
Example 62. Using ν(map�) = 2, Procsubcrit maps the DP problem ({(1)},
R, computableR, formative) from Example 47 to

{
(∅,R, computableR,

formative)
}
.

The subterm criterion can be strengthened, following [34,46], to also handle
DPs like the one in Example 28. Here, we focus on a new idea. For computable
chains, we can build on the idea of the subterm criterion to get something more.

Theorem 63 (Computable subterm criterion processor). The proces-
sor Procstatcrit that maps a DP problem (P1 � P2,R, computableU , f) to
{(P2,R, computableU , f)} if a projection function ν exists such that ν(�) � ν(p)
for all � � p (A) ∈ P1 and ν(�) = ν(p) for all � � p (A) ∈ P2, is sound
and complete. Here, � is the relation on base-type terms with s � t if s �= t
and (a) s �acc t or (b) a meta-variable Z exists with s �acc Z〈x1, . . . , xk〉 and
t = Z〈t1, . . . , tk〉 s1 · · · sn.

Proof (sketch). By the conditions, every infinite (P,R)-chain induces an infinite
(�CU ∪ ⇒β)∗· ⇒∗

R sequence (where CU is defined following Theorem 13). This
contradicts computability unless there are only finitely many inequality steps.
As pairs in P1 give rise to a strict decrease, they may occur only finitely often.

��
Example 64. Following Examples 8 and 29, consider the projection function
ν with ν(rec�) = 1. As s X �acc X and lim H �acc H, both s X � X
and lim H � H M hold. Thus Procstatc(P,R, computableR, formative) =
{(∅,R, computableR, formative)}. By the dependency graph processor, the
AFSM is terminating.

The computable subterm criterion processor fundamentally relies on the new
computableU flag, so it has no counterpart in the literature so far.

A Static Higher-Order Dependency Pair Framework 777

5.5 Non-termination

While (most of) the processors presented so far are complete, none of them can
actually return NO. We have not yet implemented such a processor; however, we
can already provide a general specification of a non-termination processor.

Theorem 65 (Non-termination processor). Let M = (P,R,m, f) be a DP
problem. The processor that maps M to NO if it determines that a sufficient
criterion for non-termination of ⇒R or for existence of an infinite conservative
(P,R)-chain according to the flags m and f holds is sound and complete.

Proof. Obvious. ��

This is a very general processor, which does not tell us how to determine
such a sufficient criterion. However, it allows us to conclude non-termination as
part of the framework by identifying a suitable infinite chain.

Example 66. If we can find a finite (P,R)-chain [(ρ0, s0, t0), . . . , (ρn, sn, tn)]
with tn = s0γ for some substitution γ which uses only conservative DPs,
is formative if f = formative and is U-computable if m = computableU ,
such a chain is clearly a sufficient criterion: there is an infinite chain
[(ρ0, s0, t0), . . . , (ρ0, s0γ, t0γ), . . . , (ρ0, s0γγ, t0γγ), . . .]. If m = minimal and we
find such a chain that is however not minimal, then note that ⇒R is non-
terminating, which also suffices.

For example, for a DP problem (P,R, minimal, all) with P = {f� F X �
g� (F X), g� X � f� h X}, there is a finite dependency chain: [(f� F X �
g� (F X), f� h x, g� (h x)), (g� X � f� h X, g� (h x), f� h (h x))]. As f� h (h x)
is an instance of f� h x, the processor maps this DP problem to NO.

To instantiate Theorem 65, we can borrow non-termination criteria from first-
order rewriting [13,21,42], with minor adaptions to the typed setting. Of course,
it is worthwhile to also investigate dedicated higher-order non-termination
criteria.

6 Conclusions and Future Work

We have built on the static dependency pair approach [6,33,34,46] and formu-
lated it in the language of the DP framework from first-order rewriting [20,22].
Our formulation is based on AFSMs, a dedicated formalism designed to make
termination proofs transferrable to various higher-order rewriting formalisms.

This framework has two important additions over existing higher-order DP
approaches in the literature. First, we consider not only arbitrary and minimally
non-terminating dependency chains, but also minimally non-computable chains;
this is tracked by the computableU flag. Using the flag, a dedicated processor
allows us to efficiently handle rules like Example 8. This flag has no counterpart
in the first-order setting. Second, we have generalised the idea of formative rules
in [31] to a notion of formative chains, tracked by a formative flag. This makes
it possible to define a corresponding processor that permanently removes rules.

778 C. Fuhs and C. Kop

Implementation and Experiments. To provide a strong formal groundwork, we
have presented several processors in a general way, using semantic definitions of,
e.g., the dependency graph approximation and formative rules rather than syn-
tactic definitions using functions like TCap [21]. Even so, most parts of the DP
framework for AFSMs have been implemented in the open-source termination
prover WANDA [28], alongside a dynamic DP framework [31] and a mechanism
to delegate some ordering constraints to a first-order tool [14]. For reduction
triples, polynomial interpretations [15] and a version of HORPO [29, Ch. 5] are
used. To solve the constraints arising in the search for these orderings, and also to
determine sort orderings (for the accessibility relation) and projection functions
(for the subterm criteria), WANDA employs an external SAT-solver. WANDA
has won the higher-order category of the International Termination Competi-
tion [50] four times. In the International Confluence Competition [10], the tools
ACPH [40] and CSIˆho [38] use WANDA as their “oracle” for termination proofs
on HRSs.

We have tested WANDA on the Termination Problems Data Base [49], using
AProVE [19] and MiniSat [12] as back-ends. When no additional features are
enabled, WANDA proves termination of 124 (out of 198) benchmarks with static
DPs, versus 92 with only a search for reduction orderings; a 34% increase. When
all features except static DPs are enabled, WANDA succeeds on 153 benchmarks,
versus 166 with also static DPs; an 8% increase, or alternatively, a 29% decrease
in failure rate. The full evaluation is available in [17, Appendix D].
Future Work. While the static and the dynamic DP approaches each have their
own strengths, there has thus far been little progress on a unified approach,
which could take advantage of the syntactic benefits of both styles. We plan to
combine the present work with the ideas of [31] into such a unified DP framework.

In addition, we plan to extend the higher-order DP framework to rewriting
with strategies, such as implicit β-normalisation or strategies inspired by func-
tional programming languages like OCaml and Haskell. Other natural directions
are dedicated automation to detect non-termination, and reducing the number of
term constraints solved by the reduction triple processor via a tighter integration
with usable and formative rules with respect to argument filterings.

References

1. Aczel, P.: A general Church-Rosser theorem. Unpublished Manuscript, University
of Manchester (1978)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

3. Baader, F., Nipkow, F.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Logic Comput. 4(3), 217–247 (1994). https://doi.org/
10.1093/logcom/4.3.217

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1093/logcom/4.3.217

A Static Higher-Order Dependency Pair Framework 779

5. Blanqui, F.: Termination and confluence of higher-order rewrite systems. In: Bach-
mair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 47–61. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721975 4

6. Blanqui, F.: Higher-order dependency pairs. In: Proceedings of the WST 2006
(2006)

7. Blanqui, F.: Termination of rewrite relations on λ-terms based on Girard’s notion
of reducibility. Theor. Comput. Sci. 611, 50–86 (2016). https://doi.org/10.1016/j.
tcs.2015.07.045

8. Blanqui, F., Jouannaud, J., Okada, M.: Inductive-data-type systems. Theor.
Comput. Sci. 272(1–2), 41–68 (2002). https://doi.org/10.1016/S0304-
3975(00)00347-9

9. Blanqui, F., Jouannaud, J., Rubio, A.: The computability path ordering. Logical
Methods Comput. Sci. 11(4) (2015). https://doi.org/10.2168/LMCS-11(4:3)2015

10. Community. The International Confluence Competition (CoCo) (2018). http://
project-coco.uibk.ac.at/

11. Dershowitz, N., Kaplan, S.: Rewrite, rewrite, rewrite, rewrite, rewrite. In: Confer-
ence Record of the Sixteenth Annual ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, USA, 11–13 January 1989, pp. 250–259. ACM
Press (1989). https://doi.org/10.1145/75277.75299

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

13. Emmes, F., Enger, T., Giesl, J.: Proving non-looping non-termination automati-
cally. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 225–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31365-3 19

14. Fuhs, C., Kop, C.: Harnessing first order termination provers using higher order
dependency pairs. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS (LNAI), vol. 6989, pp. 147–162. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24364-6 11

15. Fuhs, C., Kop, C.: Polynomial interpretations for higher-order rewriting. In: Tiwari,
A. (ed.) 23rd International Conference on Rewriting Techniques and Applications
(RTA 2012) , RTA 2012. LIPIcs, vol. 15, Nagoya, Japan, 28 May–2 June 2012. pp.
176–192. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012). https://doi.
org/10.4230/LIPIcs.RTA.2012.176

16. Fuhs, C., Kop, C.: First-order formative rules. In: Dowek, G. (ed.) RTA 2014.
LNCS, vol. 8560, pp. 240–256. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08918-8 17

17. Fuhs, C., Kop, C.: A static higher-order dependency pair framework (extended
version). Technical report arXiv:1902.06733 [cs.LO], CoRR (2019)

18. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM Trans. Comput. Logic 18(2), 14:1–14:50 (2017). https://
doi.org/10.1145/3060143

19. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reasoning 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-
016-9388-y

20. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-32275-7 21

https://doi.org/10.1007/10721975_4
https://doi.org/10.1016/j.tcs.2015.07.045
https://doi.org/10.1016/j.tcs.2015.07.045
https://doi.org/10.1016/S0304-3975(00)00347-9
https://doi.org/10.1016/S0304-3975(00)00347-9
https://doi.org/10.2168/LMCS-11(4:3)2015
http://project-coco.uibk.ac.at/
http://project-coco.uibk.ac.at/
https://doi.org/10.1145/75277.75299
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.1007/978-3-642-24364-6_11
https://doi.org/10.1007/978-3-642-24364-6_11
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1007/978-3-319-08918-8_17
https://doi.org/10.1007/978-3-319-08918-8_17
http://arxiv.org/abs/1902.06733
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-540-32275-7_21

780 C. Fuhs and C. Kop

21. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/
11559306 12

22. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/
10.1007/s10817-006-9057-7

23. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

24. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features.
Inf. Comput. 205(4), 474–511 (2007). https://doi.org/10.1016/j.ic.2006.08.010

25. Hoe, J.C., Arvind: Hardware synthesis from term rewriting systems. In: Silveira,
L.M., Devadas, S., Reis, R. (eds.) VLSI: Systems on a Chip. IFIPAICT, vol. 34,
pp. 595–619. Springer, Boston (2000). https://doi.org/10.1007/978-0-387-35498-
9 52

26. Jouannaud, J., Rubio, A.: The higher-order recursive path ordering. In: 14th
Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5 July
1999, pp. 402–411. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.
1999.782635

27. Klop, J., Oostrom, V.V., Raamsdonk, F.V.: Combinatory reduction systems: intro-
duction and survey. Theor. Comput. Sci. 121(1–2), 279–308 (1993). https://doi.
org/10.1016/0304-3975(93)90091-7

28. Kop, C.: WANDA - a higher-order termination tool. http://wandahot.sourceforge.
net/

29. Kop, C.: Higher order termination. Ph.D. thesis, VU Amsterdam (2012)
30. Kop, C., van Raamsdonk, F.: Higher order dependency pairs for algebraic func-

tional systems. In: Schmidt-Schauß, M. (ed.) Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, RTA 2011. LIPIcs, vol. 10,
Novi Sad, Serbia, 30 May–1 June 2011, pp. 203–218. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2011). https://doi.org/10.4230/LIPIcs.RTA.2011.203

31. Kop, C., van Raamsdonk, F.: Dynamic dependency pairs for algebraic functional
systems. Logical Methods Comput. Sci. 8(2), 10:1–10:51 (2012). https://doi.org/
10.2168/LMCS-8(2:10)2012

32. Kusakari, K.: Static dependency pair method in rewriting systems for functional
programs with product, algebraic data, and ML-polymorphic types. IEICE Trans.
96-D(3), 472–480 (2013). https://doi.org/10.1587/transinf.E96.D.472

33. Kusakari, K.: Static dependency pair method in functional programs. IEICE
Trans. Inf. Syst. E101.D(6), 1491–1502 (2018). https://doi.org/10.1587/transinf.
2017FOP0004

34. Kusakari, K., Isogai, Y., Sakai, M., Blanqui, F.: Static dependency pair method
based on strong computability for higher-order rewrite systems. IEICE Trans. Inf.
Syst. 92(10), 2007–2015 (2009). https://doi.org/10.1587/transinf.E92.D.2007

35. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999). https://doi.org/10.1007/10704567 3

36. Meadows, C.A.: Applying formal methods to the analysis of a key management
protocol. J. Comput. Secur. 1(1), 5–36 (1992). https://doi.org/10.3233/JCS-1992-
1102

https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1016/j.ic.2006.08.010
https://doi.org/10.1007/978-0-387-35498-9_52
https://doi.org/10.1007/978-0-387-35498-9_52
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
http://wandahot.sourceforge.net/
http://wandahot.sourceforge.net/
https://doi.org/10.4230/LIPIcs.RTA.2011.203
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.1587/transinf.E96.D.472
https://doi.org/10.1587/transinf.2017FOP0004
https://doi.org/10.1587/transinf.2017FOP0004
https://doi.org/10.1587/transinf.E92.D.2007
https://doi.org/10.1007/10704567_3
https://doi.org/10.3233/JCS-1992-1102
https://doi.org/10.3233/JCS-1992-1102

A Static Higher-Order Dependency Pair Framework 781

37. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Logic Comput. 1(4), 497–536 (1991). https://doi.
org/10.1093/logcom/1.4.497

38. Nagele, J.: CoCo 2018 participant: CSI∧ho 0.2 (2018). http://project-coco.uibk.
ac.at/2018/papers/csiho.pdf

39. Nipkow, T.: Higher-order critical pairs. In: Proceedings of the Sixth Annual Sym-
posium on Logic in Computer Science (LICS 1991), Amsterdam, The Netherlands,
15–18 July 1991, pp. 342–349. IEEE Computer Society (1991). https://doi.org/10.
1109/LICS.1991.151658

40. Onozawa, K., Kikuchi, K., Aoto, T., Toyama, Y.: ACPH: system description for
CoCo 2017 (2017). http://project-coco.uibk.ac.at/2017/papers/acph.pdf

41. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of Java Bytecode by term rewriting. In: Lynch, C. (ed.) Proceedings of the
21st International Conference on Rewriting Techniques and Applications, RTA
2010. LIPIcs, vol. 6, Edinburgh, Scottland, UK, 11–13 July 2010, pp. 259–276.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010). https://doi.org/10.
4230/LIPIcs.RTA.2010.259

42. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. Theor.
Comput. Sci. 403(2–3), 307–327 (2008). https://doi.org/10.1016/j.tcs.2008.05.013

43. van de Pol, J.: Termination of higher-order rewrite systems. Ph.D. thesis, Univer-
sity of Utrecht (1996)

44. Sakai, M., Kusakari, K.: On dependency pair method for proving termination of
higher-order rewrite systems. IEICE Trans. Inf. Syst. E88-D(3), 583–593 (2005)

45. Sakai, M., Watanabe, Y., Sakabe, T.: An extension of the dependency pair method
for proving termination of higher-order rewrite systems. IEICE Trans. Inf. Syst.
E84-D(8), 1025–1032 (2001)

46. Suzuki, S., Kusakari, K., Blanqui, F.: Argument filterings and usable rules in
higher-order rewrite systems. IPSJ Trans. Program. 4(2), 1–12 (2011)

47. Tait, W.: Intensional interpretation of functionals of finite type. J. Symbolic Logic
32(2), 187–199 (1967)

48. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

49. Wiki: Termination Problems DataBase (TPDB). http://termination-portal.org/
wiki/TPDB

50. Wiki: The International Termination Competition (TermComp) (2018). http://
termination-portal.org/wiki/Termination Competition

https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
http://project-coco.uibk.ac.at/2018/papers/csiho.pdf
http://project-coco.uibk.ac.at/2018/papers/csiho.pdf
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.1109/LICS.1991.151658
http://project-coco.uibk.ac.at/2017/papers/acph.pdf
https://doi.org/10.4230/LIPIcs.RTA.2010.259
https://doi.org/10.4230/LIPIcs.RTA.2010.259
https://doi.org/10.1016/j.tcs.2008.05.013
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition

782 C. Fuhs and C. Kop

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Coinduction in Uniform: Foundations
for Corecursive Proof Search

with Horn Clauses

Henning Basold1(B), Ekaterina Komendantskaya2(B), and Yue Li2

1 CNRS, ENS Lyon, Lyon, France
henning.basold@ens-lyon.fr

2 Heriot-Watt University, Edinburgh, UK
{ek19,yl55}@hw.ac.uk

Abstract. We establish proof-theoretic, constructive and coalgebraic
foundations for proof search in coinductive Horn clause theories. Opera-
tional semantics of coinductive Horn clause resolution is cast in terms of
coinductive uniform proofs; its constructive content is exposed via sound-
ness relative to an intuitionistic first-order logic with recursion controlled
by the later modality; and soundness of both proof systems is proven rel-
ative to a novel coalgebraic description of complete Herbrand models.

Keywords: Horn clause logic · Coinduction · Uniform proofs ·
Intuitionistic logic · Coalgebra · Fibrations · Löb modality

1 Introduction

Horn clause logic is a Turing complete and constructive fragment of first-order
logic, that plays a central role in verification [22], automated theorem proving [52,
53,57] and type inference. Examples of the latter can be traced from the Hindley-
Milner type inference algorithm [55,73], to more recent uses of Horn clauses in
Haskell type classes [26,51] and in refinement types [28,43]. Its popularity can
be attributed to well-understood fixed point semantics and an efficient semi-
decidable resolution procedure for automated proof search.

According to the standard fixed point semantics [34,52], given a set P of
Horn clauses, the least Herbrand model for P is the set of all (finite) ground
atomic formulae inductively entailed by P . For example, the two clauses below
define the set of natural numbers in the least Herbrand model.

κnat0 : nat 0
κnats : ∀x.natx → nat (s x)

This work is supported by the European Research Council (ERC) under the EU’s
Horizon 2020 programme (CoVeCe, grant agreement No. 678157) and by the EPSRC
research grants EP/N014758/1, EP/K031864/1-2.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 783–813, 2019.
https://doi.org/10.1007/978-3-030-17184-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_28

784 H. Basold et al.

Formally, the least Herbrand model for the above two clauses is the set of ground
atomic formulae obtained by taking a (forward) closure of the above two clauses.
The model for nat is given by N = {nat 0, nat (s 0), nat (s (s 0)), . . .}.

We can also view Horn clauses coinductively. The greatest complete Herbrand
model for a set P of Horn clauses is the largest set of finite and infinite ground
atomic formulae coinductively entailed by P . For example, the greatest complete
Herbrand model for the above two clauses is the set

N ∞ = N ∪ {nat (s (s (· · ·)))},

obtained by taking a backward closure of the above two inference rules on the set
of all finite and infinite ground atomic formulae. The greatest Herbrand model is
the largest set of finite ground atomic formulae coinductively entailed by P . In
our example, it would be given by N already. Finally, one can also consider the
least complete Hebrand model, which interprets entailment inductively but over
potentially infinite terms. In the case of nat, this interpretation does not differ
from N . However, finite paths in coinductive structures like transition systems,
for example, require such semantics.

The need for coinductive semantics of Horn clauses arises in several scenarios:
the Horn clause theory may explicitly define a coinductive data structure or a
coinductive relation. However, it may also happen that a Horn clause theory,
which is not explicitly intended as coinductive, nevertheless gives rise to infinite
inference by resolution and has an interesting coinductive model. This commonly
happens in type inference. We will illustrate all these cases by means of examples.

Horn Clause Theories as Coinductive Data Type Declarations. The following
clause defines, together with κnat0 and κnats, the type of streams over natural
numbers.

κstream : ∀xy.natx ∧ stream y → stream (scons x y)

This Horn clause does not have a meaningful inductive, i.e. least fixed point,
model. The greatest Herbrand model of the clauses is given by

S = N ∞ ∪ {stream(scons x0 (scons x1 · · ·)) | natx0,natx1, . . . ∈ N ∞}

In trying to prove, for example, the goal (streamx), a goal-directed proof
search may try to find a substitution for x that will make (streamx) valid
relative to the coinductive model of this set of clauses. This search by resolu-

tion may proceed by means of an infinite reduction streamx
κstream:[scons y x′/x]�

nat y ∧ streamx′ κnat0:[0/y]� streamx′ κstream:[scons y′ x′′/x′]� · · · , thereby gen-
erating a stream Z of zeros via composition of the computed substitutions:
Z = (scons 0 x′)[scons 0x′′/x′] · · · . Above, we annotated each resolution step
with the label of the clause it resolves against and the computed substitution. A
method to compute an answer for this infinite sequence of reductions was given
by Gupta et al. [41] and Simon et al. [69]: the underlined loop gives rise to the

Coinduction in Uniform 785

circular unifier x = scons 0 x that corresponds to the infinite term Z. It is proven
that, if a loop and a corresponding circular unifier are detected, they provide an
answer that is sound relative to the greatest complete Herbrand model of the
clauses. This approach is known under the name of CoLP.

Horn Clause Theories in Type Inference. Below clauses give the typing rules of
the simply typed λ-calculus, and may be used for type inference or type checking:

κt1 : ∀xΓ a.varx ∧ findΓ xa → typedΓ xa

κt2 : ∀xΓ amb. typed [x : a|Γ]mb → typedΓ (λxm) (a → b)
κt3 : ∀Γ amn b. typedΓ m (a → b) ∧ typedΓ na → typedΓ (app mn) b

It is well known that the Y -combinator is not typable in the simply-typed
λ-calculus and, in particular, self-application λx. x x is not typable either. How-
ever, by switching off the occurs-check in Prolog or by allowing circular unifiers
in CoLP [41,69], we can resolve the goal “typed [] (λx (app xx)) a” and would
compute the circular substitution: a = b → c, b = b → c suggesting that an
infinite, or circular, type may be able to type this λ-term. A similar trick would
provide a typing for the Y -combinator. Thus, a coinductive interpretation of the
above Horn clauses yields a theory of infinite types, while an inductive interpre-
tation corresponds to the standard type system of the simply typed λ-calculus.

Horn Clause Theories in Type Class Inference. Haskell type class inference does
not require circular unifiers but may require a cyclic resolution inference [37,51].
Consider, for example, the following mutually defined data structures in Haskell.

data OddList a = OCons a (EvenList a)
data EvenList a = Ni l | ECons a (OddList a)

This type declaration gives rise to the following equality class instance declara-
tions, where we leave the, here irrelevant, body out.

instance (Eq a , Eq (EvenList a)) => Eq (OddList a) where
instance (Eq a , Eq (OddList a)) => Eq (EvenList a) where

The above two type class instance declarations have the shape of Horn clauses.
Since the two declarations mutually refer to each other, an instance inference
for, e.g., Eq (OddList Int) will give rise to an infinite resolution that alternates
between the subgoals Eq (OddList Int) and Eq (EvenList Int). The solution
is to terminate the computation as soon as the cycle is detected [51], and this
method has been shown sound relative to the greatest Herbrand models in [36].
We will demonstrate this later in the proof systems proposed in this paper.

The diversity of these coinductive examples in the existing literature shows
that there is a practical demand for coinductive methods in Horn clause logic,
but it also shows that no unifying proof-theoretic approach exists to allow for a
generic use of these methods. This causes several problems.

Problem 1. The existing proof-theoretic coinductive interpretations
of cycle and loop detection are unclear, incomplete and not uniform.

786 H. Basold et al.

Table 1. Examples of greatest (complete) Herbrand models for Horn clauses
γ1, γ2, γ3. The signatures are {a} for the clause γ1 and {a, f} for the others.

To see this, consider Table 1, which exemplifies three kinds of circular phenom-
ena in Horn clauses: The clause γ1 is the easiest case. Its coinductive models
are given by the finite set {p a}. On the other extreme is the clause γ3 that,
just like κstream, admits only an infinite formula in its coinductive model. The
intermediate case is γ2, which could be interpreted by an infinite set of finite
formulae in its greatest Herbrand model, or may admit an infinite formula in
its greatest complete Herbrand model. Examples like γ1 appear in Haskell type
class resolution [51], and examples like γ2 in its experimental extensions [37].
Cycle detection would only cover computations for γ1, whereas γ2, γ3 require
some form of loop detection1. However, CoLP’s loop detection gives confusing
results here. It correctly fails to infer p a from γ3 (no unifier for subgoals p a and
p (f a) exists), but incorrectly fails to infer p a from γ2 (also failing to unify p a
and p (f a)). The latter failure is misleading bearing in mind that p a is in fact in
the coinductive model of γ2. Vice versa, if we interpret the CoLP answer x = f x
as a declaration of an infinite term (f f . . .) in the model, then CoLP’s answer
for γ3 and p x is exactly correct, however the same answer is badly incomplete for
the query involving p x and γ2, because γ2 in fact admits other, finite, formulae
in its models. And in some applications, e.g. in Haskell type class inference, a
finite formula would be the only acceptable answer for any query to γ2.

This set of examples shows that loop detection is too coarse a tool to give
an operational semantics to a diversity of coinductive models.

Problem 2. Constructive interpretation of coinductive proofs in
Horn clause logic is unclear. Horn clause logic is known to be a construc-
tive fragment of FOL. Some applications of Horn clauses rely on this property
in a crucial way. For example, inference in Haskell type class resolution is con-
structive: when a certain formula F is inferred, the Haskell compiler in fact
constructs a proof term that inhabits F seen as type. In our earlier example
Eq (OddList Int) of the Haskell type classes, Haskell in fact captures the cycle
by a fixpoint term t and proves that t inhabits the type Eq (OddList Int).

1 We follow the standard terminology of [74] and say that two formulae F and G form
a cycle if F = G, and a loop if F [θ] = G[θ] for some (possibly circular) unifier θ.

Coinduction in Uniform 787

Fig. 1. Cube of logics covered by CUP

Although we know from [36] that these computations are sound relative to great-
est Herbrand models of Horn clauses, the results of [36] do not extend to Horn
clauses like γ3 or κstream, or generally to Horn clauses modelled by the greatest
complete Herbrand models. This shows that there is not just a need for coinduc-
tive proofs in Horn clause logic, but constructive coinductive proofs.

Problem 3. Incompleteness of circular unification for irregular coin-
ductive data structures. Table 1 already showed some issues with incomplete-
ness of circular unification. A more famous consequence of it is the failure of cir-
cular unification to capture irregular terms. This is illustrated by the following
Horn clause, which defines the infinite stream of successive natural numbers.

κfrom : ∀x y. from (s x) y → fromx (scons x y)

The reductions for from 0 y consist only of irregular (non-unifiable) formulae:

from 0 y
κfrom:[scons 0 y′/y]� from (s 0) y′ κfrom:[scons (s 0) y′′/y′]� · · ·

The composition of the computed substitutions would suggest an infinite term
as answer: from 0 (scons 0 (scons (s 0) . . .)). However, circular unification no
longer helps to compute this answer, and CoLP fails. Thus, there is a need for
more general operational semantics that allows irregular coinductive structures.

A New Theory of Coinductive Proof Search in Horn Clause Logic

In this paper, we aim to give a principled and general theory that resolves
the three problems above. This theory establishes a constructive foundation for
coinductive resolution and allows us to give proof-theoretic characterisations of
the approaches that have been proposed throughout the literature.

To solve Problem 1, we follow the footsteps of the uniform proofs by Miller
et al. [53,54], who gave a general proof-theoretic account of resolution in first-
order Horn clause logic (fohc) and three extensions: first-order hereditary Har-
rop clauses (fohh), higher-order Horn clauses (hohc), and higher-order heredi-
tary Harrop clauses (hohh). In Sect. 3, we extend uniform proofs with a general
coinduction proof principle. The resulting framework is called coinductive uni-
form proofs (CUP). We show how the coinductive extensions of the four logics of
Miller et al., which we name co-fohc, co-fohh, co-hohc and co-hohh, give a precise

788 H. Basold et al.

proof-theoretic characterisation to the different kinds of coinduction described
in the literature. For example, coinductive proofs involving the clauses γ1 and
γ2 belong to co-fohc and co-fohh, respectively. However, proofs involving clauses
like γ3 or κstream require in addition fixed point terms to express infinite data.
These extentions are denoted by co-fohcfix, co-fohhfix, co-hohcfix and co-hohhfix.

Section 3 shows that this yields the cube in Fig. 1, where the arrows show the
increase in logical strength. The invariant search for regular infinite objects done
in CoLP is fully described by the logic co-fohcfix, including proofs for clauses like
γ3 and κstream. An important consequence is that CUP is complete for γ1, γ2,
and γ3, e.g. p a is provable from γ2 in CUP, but not in CoLP.

In tackling Problem 3, we will find that the irregular proofs, such as those
for κfrom, can be given in co-hohhfix. The stream of successive numbers can be
defined as a higher-order fixed point term sfr = fix f. λx. scons x (f (s x)), and
the proposition ∀x. fromx (sfr x) is provable in co-hohhfix. This requires the use
of higher-order syntax, fixed point terms and the goals of universal shape, which
become available in the syntax of Hereditary Harrop logic.

In order to solve Problem 2 and to expose the constructive nature of the
resulting proof systems, we present in Sect. 4 a coinductive extension of first-
order intuitionistic logic and its sequent calculus. This extension (iFOL�) is
based on the so-called later modality (or Löb modality) known from provability
logic [16,71], type theory [8,58] and domain theory [20]. However, our way of
using the later modality to control recursion in first-order proofs is new and
builds on [13,14]. In the same section we also show that CUP is sound relative
to iFOL�, which gives us a handle on the constructive content of CUP. This
yields, among other consequences, a constructive interpretation of CoLP proofs.

Section 5 is dedicated to showing soundness of both coinductive proof systems
relative to complete Herbrand models [52]. The construction of these models is
carried out by using coalgebras and category theory. This frees us from having to
use topological methods and will simplify future extensions of the theory to, e.g.,
encompass typed logic programming. It also makes it possible to give original
and constructive proofs of soundness for both CUP and iFOL� in Sect. 5. We
finish the paper with discussion of related and future work.

Originality of the Contribution

The results of this paper give a comprehensive characterisation of coinductive
Horn clause theories from the point of view of proof search (by expressing coin-
ductive proof search and resolution as coinductive uniform proofs), constructive
proof theory (via a translation into an intuitionistic sequent calculus), and coal-
gebraic semantics (via coinductive Herbrand models and constructive soundness
results). Several of the presented results have never appeared before: the coin-
ductive extension of uniform proofs; characterisation of coinductive properties of
Horn clause theories in higher-order logic with and without fixed point operators;
coalgebraic and fibrational view on complete Herbrand models; and soundness of
an intuitionistic logic with later modality relative to complete Herbrand models.

Coinduction in Uniform 789

2 Preliminaries: Terms and Formulae

In this section, we set up notation and terminology for the rest of the paper.
Most of it is standard, and blends together the notation used in [53] and [11].

Definition 1. We define the sets T of types and P of proposition types by the
following grammars, where ι and o are the base type and base proposition type.

T � σ, τ ::= ι |σ → τ P � ρ ::= o |σ → ρ, σ ∈ T

We adapt the usual convention that → binds to the right.

Fig. 2. Well-formed terms

Fig. 3. Well-formed formulae

Definition 2. A term signature Σ is a set of pairs c : τ , where τ ∈ T, and a
predicate signature is a set Π of pairs p : ρ with ρ ∈ P. The elements in Σ and
Π are called term symbols and predicate symbols, respectively. Given term and
predicate signatures Σ and Π, we refer to the pair (Σ,Π) as signature. Let Var
be a countable set of variables, the elements of which we denote by x, y, . . . We
call a finite list Γ of pairs x : τ of variables and types a context. The set ΛΣ of
(well-typed) terms over Σ is the collection of all M with Γ � M : τ for some
context Γ and type τ ∈ T, where Γ � M : τ is defined inductively in Fig. 2. A
term is called closed if � M : τ , otherwise it is called open. Finally, we let Λ−

Σ

denote the set of all terms M that do not involve fix.

Definition 3. Let (Σ,Π) be a signature. We say that ϕ is a (first-order) formula
in context Γ , if Γ � ϕ is inductively derivable from the rules in Fig. 3.

790 H. Basold et al.

Definition 4. The reduction relation −→ on terms in ΛΣ is given as the
compatible closure (reduction under applications and binders) of β- and fix-
reduction:

(λx.M)N −→ M [N/x] fix x.M −→ M [fix x.M/x]

We denote the reflexive, transitive closure of −→ by . Two terms M and
N are called convertible, if M ≡ N , where ≡ is the equivalence closure of −→.
Conversion of terms extends to formulae in the obvious way: if Mk ≡ M ′

k for
k = 1, . . . , n, then p M1 · · · Mn ≡ p M ′

1 · · · M ′
n.

We will use in the following that the above calculus features subject reduction
and confluence, cf. [61]: if Γ � M : τ and M ≡ N , then Γ � N : τ ; and M ≡ N
iff there is a term P , such that M P and N P .

The order of a type τ ∈ T is given as usual by ord(ι) = 0 and ord(σ → τ) =
max{ord(σ) + 1, ord(τ)}. If ord(τ) ≤ 1, then the arity of τ is given by ar(ι) = 0
and ar(ι → τ) = ar(τ)+1. A signature Σ is called first-order, if for all f : τ ∈ Σ
we have ord(τ) ≤ 1. We let the arity of f then be ar(τ) and denote it by ar(f).

Definition 5. The set of guarded base terms over a first-order signature Σ is
given by the following type-driven rules.

x : τ ∈ Γ ord(τ) ≤ 1
Γ �g x : τ

f : τ ∈ Σ

Γ �g f : τ

Γ �g M : σ → τ Γ �g N : σ

Γ �g M N : τ

f : σ ∈ Σ ord(τ) ≤ 1 Γ, x : τ, y1 : ι, . . . , yar(τ) : ι �g Mi : ι 1 ≤ i ≤ ar(f)

Γ �g fix x. λ y . f M : τ

General guarded terms are terms M , such that all fix-subterms are guarded base
terms, which means that they are generated by the following grammar.

G ::= M (with �g M : τ for some type τ) | c ∈ Σ |x ∈ Var |GG |λx.G

Finally, M is a first-order term over Σ with Γ � M : τ if ord(τ) ≤ 1 and the
types of all variables occurring in Γ are of order 0. We denote the set of guarded
first-order terms M with Γ � M : ι by ΛG,1

Σ (Γ) and the set of guarded terms in
Γ by ΛG

Σ(Γ). If Γ is empty, we just write ΛG,1
Σ and ΛG

Σ , respectively.

Note that an important aspect of guarded terms is that no free variable
occurs under a fix-operator. Guarded base terms should be seen as specific fixed
point terms that we will be able to unfold into potentially infinite trees. Guarded
terms close guarded base terms under operations of the simply typed λ-calculus.

Example 6. Let us provide a few examples that illustrate (first-order) guarded
terms. We use the first-order signature Σ = {scons : ι → ι → ι, s : ι → ι, 0 : ι}.

1. Let sfr = fix f. λx. scons x (f (s x)) be the function that computes the
streams of numerals starting at the given argument. It is easy to show that
�g sfr : ι → ι and so sfr 0 ∈ ΛG,1

Σ .

Coinduction in Uniform 791

2. For the same signature Σ we also have x : ι �g x : ι. Thus x ∈ ΛG,1
Σ (x : ι)

and s x ∈ ΛG,1
Σ (x : ι).

3. We have x : ι → ι �g x 0 : ι, but (x 0) �∈ ΛG,1
Σ (x : ι → ι).

The purpose of guarded terms is that these are productive, that is, we can
reduce them to a term that either has a function symbol at the root or is just
a variable. In other words, guarded terms have head normal forms: We say that
a term M is in head normal form, if M = f

#—

N for some f ∈ Σ or if M = x
for some variable x. The following lemma is a technical result that is needed to
show in Lemma 8 that all guarded terms have a head normal form.

Lemma 7. Let M and N be guarded base terms with Γ, x : σ �g M : τ and
Γ �g N : σ. Then M [N/x] is a guarded base term with Γ �g M [N/x] : τ .

Lemma 8. If M is a first-order guarded term with M ∈ ΛG,1
Σ (Γ), then M

reduces to a unique head normal form. This means that either (i) there is a
unique f ∈ Σ and terms N1, . . . , Nar(f) with Γ �g Nk : ι and M f

#—

N , and

for all L if M f
#—

L, then
#—

N ≡ #—

L; or (ii) M x for some x : ι ∈ Γ .

We end this section by introducing the notion of an atom and refinements
thereof. This will enable us to define the different logics and thereby to analyse
the strength of coinduction hypotheses, which we promised in the introduction.

Definition 9. A formula ϕ of the shape � or p M1 · · · Mn is an atom and a

– first-order atom, if p and all the terms Mi are first-order;
– guarded atom, if all terms Mi are guarded; and
– simple atom, if all terms Mi are non-recursive, that is, are in Λ−

Σ .

First-order, guarded and simple atoms are denoted by At1, Atg
ω and Ats

ω. We
denote conjunctions of these predicates by Atg

1 = At1∩Atg
ω and Ats

1 = At1∩Ats
ω.

Note that the restriction for Atg
ω only applies to fixed point terms. Hence, any

formula that contains terms without fix is already in Atg
ω and Atg

ω ∩Ats
ω = Ats

ω.
Since these notions are rather subtle, we give a few examples

Example 10. We list three examples of first-order atoms.

1. For x : ι we have stream x ∈ At1, but there are also “garbage” formulae like
“stream (fix x. x)” in At1. Examples of atoms that are not first-order are
p M , where p : (ι → ι) → o or x : ι → ι � M : τ .

2. Our running example “from 0 (sfr 0)” is a first-order guarded atom in Atg
1.

3. The formulae in Ats
1 may not contain recursion and higher-order features.

However, the atoms of Horn clauses in a logic program fit in here.

792 H. Basold et al.

3 Coinductive Uniform Proofs

This section introduces the eight logics of the coinductive uniform proof frame-
work announced and motivated in the introduction. The major difference of
uniform proofs with, say, a sequent calculus is the “uniformity” property, which
means that the choice of the application of each proof rule is deterministic and
all proofs are in normal form (cut free). This subsumes the operational semantics
of resolution, in which the proof search is always goal directed. Hence, the main
challenge, that we set out to solve in this section, is to extend the uniform proof
framework with coinduction, while preserving this valuable operational property.

We begin by introducing the different goal formulae and definite clauses that
determine the logics that were presented in the cube for coinductive uniform
proofs in the introduction. These clauses and formulae correspond directly to
those of the original work on uniform proofs [53] with the only difference being
that we need to distinguish atoms with and without fixed point terms. The
general idea is that goal formulae (G-formulae) occur on the right of a sequent,
thus are the goal to be proved. Definite clauses (D-formulae), on the other hand,
are selected from the context as assumptions. This will become clear once we
introduce the proof system for coinductive uniform proofs.

Definition 11. Let Di be generated by the following grammar with i ∈ {1, ω}.

Di ::= Ats
i | G → D | D ∧ D | ∀x : τ.D

Table 2. D- and G-formulae for coinductive uniform proofs.

The sets of definite clauses (D-formulae) and goals (G-formulae) of the four
logics co-fohc, co-fohh, co-hohc, co-hohh are the well-formed formulae of the
corresponding shapes defined in Table 2. For the variations co-fohhfix etc. of these
logics with fixed point terms, we replace upper index “s” with “g” everywhere in
Table 2. A D-formula of the shape ∀ #—x .A1∧· · ·∧An → A0 is called H-formula or
Horn clause if Ak ∈ Ats

1, and Hg-formula if Ak ∈ Atg
1. Finally, a logic program

(or program) P is a set of H-formulae. Note that any set of D-formulae in fohc
can be transformed into an intuitionistically equivalent set of H-formulae [53].

Coinduction in Uniform 793

We are now ready to introduce the coinductive uniform proofs. Such proofs
are composed of two parts: an outer coinduction that has to be at the root of
a proof tree, and the usual the usual uniform proofs by Miller et al. [54]. The
latter are restated in Fig. 4. Of special notice is the rule decide that mimics the
operational behaviour of resolution in logic programming, by choosing a clause
D from the given program to resolve against. The coinduction is started by
the rule co-fix in Fig. 5. Our proof system mimics the typical recursion with a
guard condition found in coinductive programs and proofs [5,8,19,31,40]. This
guardedness condition is formalised by applying the guarding modality 〈 〉 on
the formula being proven by coinduction and the proof rules that allow us to
distribute the guard over certain logical connectives, see Fig. 5. The guarding
modality may be discharged only if the guarded goal was resolved against a clause
in the initial program or any hypothesis, except for the coinduction hypotheses.
This is reflected in the rule decide〈〉, where we may only pick a clause from P ,
and is in contrast to the rule decide, in which we can pick any hypothesis. The
proof may only terminate with the initial step if the goal is no longer guarded.

Note that the co-fix rule introduces a goal as a new hypothesis. Hence,
we have to require that this goal is also a definite clause. Since coinduction
hypotheses play such an important role, they deserve a separate definition.

Definition 12. Given a language L from Table 2, a formula ϕ is a
coinduction goal of L if ϕ simultaneously is a D- and a G-formula of L.

Note that the coinduction goals of co-fohc and co-fohh can be transformed
into equivalent H- or Hg-formulae, since any coinduction goal is a D-formula.

Let us now formally introduce the coinductive uniform proof system.

Fig. 4. Uniform proof rules

794 H. Basold et al.

Fig. 5. Coinductive uniform proof rules

Definition 13. Let P and Δ be finite sets of, respectively, definite clauses and
coinduction goals, over the signature Σ, and suppose that G is a goal and ϕ
is a coinduction goal. A sequent is either a uniform provability sequent of the
form Σ;P ;Δ =⇒ G or Σ;P ;Δ D=⇒ A as defined in Fig. 4, or it is a coinductive
uniform provability sequent of the form Σ;P � ϕ as defined in Fig. 5. Let L be
a language from Table 2. We say that ϕ is coinductively provable in L, if P is a
set of D-formulae in L, ϕ is a coinduction goal in L and Σ;P � ϕ holds.

The logics we have introduced impose different syntactic restrictions on D-
and G-formulae, and will therefore admit coinduction goals of different strength.
This ability to explicitly use stronger coinduction hypotheses within a goal-
directed search was missing in CoLP, for example. And it allows us to account for
different coinductive properties of Horn clauses as described in the introduction.
We finish this section by illustrating this strengthening.

The first example is one for the logic co-fohc, in which we illustrate the
framework on the problem of type class resolution.

Example 14. Let us restate the Haskell type class inference problem discussed
in the introduction in terms of Horn clauses:

κi : eq i
κodd : ∀x. eq x ∧ eq (even x) → eq (odd x)
κeven : ∀x. eq x ∧ eq (odd x) → eq (even x)

To prove eq (odd i) for this set of Horn clauses, it is sufficient to use this
formula directly as coinduction hypothesis, as shown in Fig. 6. Note that this
formula is indeed a coinduction goal of co-fohc, hence we find ourselves in the
simplest scenario of coinductive proof search. In Table 1, γ1 is a representative
for this kind of coinductive proofs with simplest atomic goals.

It was pointed out in [37] that Haskell’s type class inference can also give rise
to irregular corecursion. Such cases may require the more general coinduction

Coinduction in Uniform 795

Fig. 6. The co-fohc proof for Horn clauses arising from Haskell Type class examples.
ϕ abbreviates the coinduction hypothesis eq (odd i). Note its use in the branch ♠.

hypothesis (e.g. universal and/or implicative) of co-fohh or co-hohh. The below
set of Horn clauses is a simplified representation of a problem given in [37]:

κi : eq i
κs : ∀x. (eq x) ∧ eq (s (g x)) → eq (s x)
κg : ∀x. eq x → eq (g x)

Trying to prove eq (s i) by using eq (s i) directly as a coinduction hypothesis
is deemed to fail, as the coinductive proof search is irregular and this coinduction
hypothesis would not be applicable in any guarded context. But it is possible
to prove eq (s i) as a corollary of another theorem: ∀x. (eq x) → eq (s x).
Using this formula as coinduction hypothesis leads to a successful proof, which
we omit here. From this more general goal, we can derive the original goal by
instantiating the quantifier with i and eliminating the implication with κi. This
second derivation is sound with respect to the models, as we show in Theorem 34.

We encounter γ2 from Table 1 in a similar situation: To prove p a, we first
have to prove ∀x. p x in co-fohh, and then obtain p a as a corollary by appealing
to Theorem 34. The next example shows that we can cover all cases in Table 1
by providing a proof in co-hohhfix that involves irregular recursive terms.

Example 15. Recall the clause ∀x y. from (s x) y → from x (scons x y)
that we named κfrom in the introduction. Proving ∃y. from 0 y is again not
possible directly. Instead, we can use the term sfr = fix f. λx. scons x (f (s x))
from Example 6 and prove ∀x. from x (sfr x) coinductively, as shown in Fig. 7.
This formula gives a coinduction hypothesis of sufficient generality. Note that
the correct coinduction hypothesis now requires the fixed point definition of an

796 H. Basold et al.

infinite stream of successive numbers and universal quantification in the goal.
Hence the need for the richer language of co-hohhfix. From this more general goal
we can derive our initial goal ∃ y.from 0 y by instantiating y with sfr 0.

Fig. 7. The co-hohhfix proof for ϕ = ∀x. from x (sfr x). Note that the last step of the
leftmost branch involves from c (scons c (sfr (s c))) ≡ from c (sfr c).

There are examples of coinductive proofs that require a fixed point definition
of an infinite stream, but do not require the syntax of higher-order terms or
hereditary Harrop formulae. Such proofs can be performed in the co-fohcfix logic.
A good example is a proof that the stream of zeros satisfies the Horn clause
theory defining the predicate stream in the introduction. The goal (stream s0),
with s0 = fix x. scons 0 x can be proven directly by coinduction. Similarly, one
can type self-application with the infinite type a = fix t. t → b for some given
type b. The proof for typed [x : a] (app x x) b is then in co-fohcfix. Finally, the
clause γ3 is also in this group. More generally, circular unifiers obtained from
CoLP’s [41] loop detection yield immediately guarded fixed point terms, and
thus CoLP corresponds to coinductive proofs in the logic co-fohcfix. A general
discussion of Horn clause theories that describe infinite objects was given in [48],
where the above logic programs were identified as being productive.

4 Coinductive Uniform Proofs and Intuitionistic Logic

In the last section, we introduced the framework of coinductive uniform proofs,
which gives an operational account to proofs for coinductively interpreted logic
programs. Having this framework at hand, we need to position it in the existing
ecosystem of logical systems. The goal of this section is to prove that coinductive
uniform proofs are in fact constructive. We show this by first introducing an
extension of intuitionistic first-order logic that allows us to deal with recursive

Coinduction in Uniform 797

Fig. 8. Intuitionistic rules for standard connectives

proofs for coinductive predicates. Afterwards, we show that coinductive uniform
proofs are sound relative to this logic by means of a proof tree translation. The
model-theoretic soundness proofs for both logics will be provided in Sect. 5.

We begin by introducing an extension of intuitionistic first-order logic with
the so-called later modality, written �. This modality is the essential ingredient
that allows us to equip proofs with a controlled form of recursion. The later
modality stems originally from provability logic, which characterises transitive,
well-founded Kripke frames [30,72], and thus allows one to carry out induction
without an explicit induction scheme [16]. Later, the later modality was picked up
by the type-theoretic community to control recursion in coinductive program-
ming [8,9,21,56,58], mostly with the intent to replace syntactic guardedness
checks for coinductive definitions by type-based checks of well-definedness.

Formally, the logic iFOL� is given by the following definition.

Definition 16. The formulae of iFOL� are given by Definition 3 and the rule:

Γ � ϕ

Γ � � ϕ

Conversion extends to these formulae in the obvious way. Let ϕ be a formula and
Δ a sequence of formulae in iFOL�. We say ϕ is provable in context Γ under
the assumptions Δ in iFOL�, if Γ | Δ � ϕ holds. The provability relation � is
thereby given inductively by the rules in Figs. 8 and 9.

Fig. 9. Rules for the later modality

798 H. Basold et al.

The rules in Fig. 8 are the usual rules for intuitionistic first-order logic and
should come at no surprise. More interesting are the rules in Fig. 9, where the rule
(Löb) introduces recursion into the proof system. Furthermore, the rule (Mon)
allows us to to distribute the later modality over implication, and consequently
over conjunction and universal quantification. This is essential in the translation
in Theorem 18 below. Finally, the rule (Next) gives us the possibility to proceed
without any recursion, if necessary.

Note that so far it is not possible to use the assumption �ϕ introduced in
the (Löb)-rule. The idea is that the formulae of a logic program provide us the
obligations that we have to prove, possibly by recursion, in order to prove a
coinductive predicate. This is cast in the following definition.

Definition 17. Given an Hg-formula ϕ of the shape ∀ #—x . (A1 ∧ · · · ∧ An) → ψ,
we define its guarding ϕ to be ∀ #—x . (� A1 ∧ · · · ∧� An) → ψ. For a logic program
P , we define its guarding P by guarding each formula in P .

The translation given in Definition 17 of a logic program into formulae
that admit recursion corresponds unfolding a coinductive predicate, cf. [14]. We
show now how to transform a coinductive uniform proof tree into a proof tree
in iFOL�, such that the recursion and guarding mechanisms in both logics
match up.

Theorem 18. If P is a logic program over a first-order signature Σ and the
sequent Σ;P � ϕ is provable in co-hohhfix, then P � ϕ is provable in iFOL�.

To prove this theorem, one uses that each coinductive uniform proof tree
starts with an initial tree that has an application of the co-fix-rule at the
root and that eliminates the guard by using the rules in Fig. 5. At the leaves
of this tree, one finds proof trees that proceed only by means of the rules in
Fig. 4. The initial tree is then translated into a proof tree in iFOL� that starts
with an application of the (Löb)-rule, which corresponds to the co-fix-rule, and
that simultaneously transforms the coinduction hypothesis and applies introduc-
tion rules for conjunctions etc. This ensures that we can match the coinduction
hypothesis with the guarded formulae of the program P .

The results of this section show that it is irrelevant whether the guarding
modality is used on the right (CUP-style) or on the left (iFOL�-style), as the
former can be translated into the latter. However, CUP uses the guarding on the
right to preserve proof uniformity, whereas iFOL� extends a general sequent
calculus. Thus, to obtain the reverse translation, we would have to have an
admissible cut rule in CUP. The main ingredient to such a cut rule is the ability to
prove several coinductive statements simultaneously. This is possible in CUP by
proving the conjunction of these statements. Unfortunately, we cannot eliminate
such a conjunction into one of its components, since this would require non-
deterministic guessing in the proof construction, which in turn breaks uniformity.
Thus, we leave a solution of this problem for future work.

Coinduction in Uniform 799

5 Herbrand Models and Soundness

In Sect. 4 we showed that coinductive uniform proofs are sound relative to the
intuitionistic logic iFOL�. This gives us a handle on the constructive nature of
coinductive uniform proofs. Since iFOL� is a non-standard logic, we still need
to provide semantics for that logic. We do this by interpreting in Sect. 5.4 the
formulae of iFOL� over the well-known (complete) Herbrand models and prove
the soundness of the accompanying proof system with respect to these mod-
els. Although we obtain soundness of coinductive uniform proofs over Herbrand
models from this, this proof is indirect and does not give a lot of information
about the models captured by the different calculi co-fohc etc. For this reason,
we will give in Sect. 5.3 a direct soundness proof for coinductive uniform proofs.
We also obtain coinduction invariants from this proof for each of the calculi,
which allows us to describe their proof strength.

5.1 Coinductive Herbrand Models and Semantics of Terms

Before we come to the soundness proofs, we introduce in this section (complete)
Herbrand models by using the terminology of final coalgebras. We then utilise
this description to give operational and denotational semantics to guarded terms.
These semantics show that guarded terms allow the description and computation
of potentially infinite trees.

The coalgebraic approach has been proven very successful both in logic and
programming [1,75,76]. We will only require very little category theoretical
vocabulary and assume that the reader is familiar with the category Set of
sets and functions, and functors, see for example [12,25,50]. The terminology of
algebras and coalgebras [4,47,64,65] is given by the following definition.

Definition 19. A coalgebra for a functor F : Set → Set is a map c : X → FX.
Given coalgebras d : Y → FY and c : X → FX, we say that a map h : Y → X
is a homomorphism d → c if Fh ◦ d = c ◦ h. We call a coalgebra c : X → FX
final, if for every coalgebra d there is a unique homomorphism h : d → c. We will
refer to h as the coinductive extension of d.

The idea of (complete) Herbrand models is that a set of Horn clauses deter-
mines for each predicate symbol a set of potentially infinite terms. Such terms
are (potentially infinite) trees, whose nodes are labelled by function symbols and
whose branching is given by the arity of these function symbols. To be able to
deal with open terms, we will allow such trees to have leaves labelled by variables.
Such trees are a final coalgebra for a functor determined by the signature.

Definition 20. Let Σ be first-order signature. The extension of a first-order
signature Σ is a (polynomial) functor [38] �Σ� : Set → Set given by

�Σ�(X) =
∐

f∈Σ Xar(f),

where ar : Σ → N is defined in Sect. 2 and Xn is the n-fold product of X. We
define for a set V a functor �Σ�+V : Set → Set by (�Σ�+V)(X) = �Σ�(X)+V ,
where + is the coproduct (disjoint union) in Set.

800 H. Basold et al.

To make sense of the following definition, we note that we can view Π as a
signature and we thus obtain its extension �Π�. Moreover, we note that the final
coalgebra of �Σ� + V exists because �Σ� is a polynomial functor.

Definition 21. Let Σ be a first-order signature. The coterms over Σ are the
final coalgebra rootV : Σ∞(V) → �Σ�(Σ∞(V)) + V . For brevity, we denote the
coterms with no variables, i.e. Σ∞(∅), by root : Σ∞ → �Σ�(Σ∞), and call it the
(complete) Herbrand universe and its elements ground coterms. Finally, we let
the (complete) Herbrand base B∞ be the set �Π�(Σ∞).

The construction Σ∞(V) gives rise to a functor Σ∞ : Set → Set, called
the free completely iterative monad [5]. If there is no ambiguity, we will drop the
injections κi when describing elements of Σ∞(V). Note that Σ∞(V) is final with
property that for every s ∈ Σ∞(V) either there are f ∈ Σ and #—

t ∈ (Σ∞(V))ar(f)

with rootV (s) = f(#—
t), or there is x ∈ V with rootV (s) = x. Finality allows us

to specify unique maps into Σ∞(V) by giving a coalgebra X → �Σ�(X) + V . In
particular, one can define for each θ : V → Σ∞ the substitution t[θ] of variables
in the coterm t by θ as the coinductive extension of the following coalgebra.

Σ∞(V) rootV−−−−→ �Σ�(Σ∞(V)) + V
[id,root◦θ]−−−−−−→ �Σ�(Σ∞(V))

Now that we have set up the basic terminology of coalgebras, we can give
semantics to guarded terms from Definition 5. The idea is that guarded terms
guarantee that we can always compute with them so far that we find a function
symbol in head position, see Lemma 8. This function symbol determines then
the label and branching of a node in the tree generated by a guarded term. If
the computation reaches a constant or a variable, then we stop creating the tree
at the present branch. This idea is captured by the following lemma.

Lemma 22. There is a map [[−]]1 : ΛG,1
Σ (Γ) → Σ∞(Γ) that is unique with

1. if M ≡ N , then [[M]]1 = [[N]]1, and
2. for all M , if M f

#—

N then rootΓ ([[M]]1) = f
(# —

[[N]]1
)
, and if M x then

rootΓ ([[M]]1) = x.

Proof (sketch). By Lemma 8, we can define a coalgebra on the quotient of
guarded terms by convertibility c : ΛG,1

Σ (Γ)/≡ → �Σ�
(
ΛG,1

Σ (Γ)/≡
)

+ Γ with

c[M] = f [
#—

N] if M f
#—

N and c[M] = x if M x. This yields a homo-

morphism h : ΛG,1
Σ (Γ)/≡ → Σ∞(Γ) and we can define [[−]]1 = h ◦ [−]. The rest

follows from uniqueness of h.

5.2 Interpretation of Basic Intuitionistic First-Order Formulae

In this section, we give an interpretation of the formulae in Definition 3, in
which we restrict ourselves to guarded terms. This interpretation will be relative
to models in the complete Herbrand universe. Since we later extend these models
to Kripke models to be able to handle the later modality, we formulate these
models already now in the language of fibrations [17,46].

Coinduction in Uniform 801

Definition 23. Let p : E → B be a functor. Given an object I ∈ B, the fibre
EI above I is the category of objects A ∈ E with p(A) = I and morphisms
f : A → B with p(f) = idI . The functor p is a (split) fibration if for every
morphism u : I → J in B there is functor u∗ : EJ → EI , such that id∗

I = IdEI

and (v ◦ u)∗ = u∗ ◦ v∗. We call u∗ the reindexing along u.

To give an interpretation of formulae, consider the following category Pred.

Pred =

{
objects : (X, P) withX ∈ Set and P ⊆ X
morphisms : f : (X, P) → (Y, Q) is a map f : X → Y with f(P) ⊆ Q

The functor P : Pred → Set with P(X,P) = X and P(f) = f is a split fibration,
see [46], where the reindexing functor for f : X → Y is given by taking preimages:
f∗(Q) = f−1(Q). Note that each fibre PredX is isomorphic to the complete
lattice of predicates over X ordered by set inclusion. Thus, we refer to this
fibration as the predicate fibration.

Let us now expose the logical structure of the predicate fibration. This will
allow us to conveniently interpret first-order formulae over this fibration, but it
comes at the cost of having to introduce a good amount of category theoretical
language. However, doing so will pay off in Sect. 5.4, where we will construct
another fibration out of the predicate fibration. We can then use category theo-
retical results to show that this new fibration admits the same logical structure
and allows the interpretation of the later modality.

The first notion we need is that of fibred products, coproducts and exponents,
which will allow us to interpret conjunction, disjunction and implication.

Definition 24. A fibration p : E → B has fibred finite products (1,×), if each
fibre EI has finite products (1I ,×I) and these are preserved by reindexing: for
all f : I → J , we have f∗(1J) = 1I and f∗(A ×J B) = f∗(A) ×I f∗(B). Fibred
finite coproducts and exponents are defined analogously.

The fibration P is a so-called first-order fibration, which allows us to interpret
first-order logic, see [46, Def. 4.2.1].

Definition 25. A fibration p : E → B is a first-order fibration if2

– B has finite products and the fibres of p are preorders;
– p has fibred finite products (�,∧) and coproducts (⊥,∨) that distribute;
– p has fibred exponents →; and
– p has existential and universal quantifiers ∃I,J � π∗

I,J � ∀I,J for all projections
πI,J : I × J → I.

A first-order λ-fibration is a first-order fibration with Cartesian closed base B.

2 Technically, the quantifiers should also fulfil the Beck-Chevalley and Frobenius con-
ditions, and the fibration should admit equality. Since these are fulfilled in all our
models and we do not need equality, we will not discuss them here.

802 H. Basold et al.

The fibration P : Pred → Set is a first-order λ-fibration, as all its fibres are
posets and Set is Cartesian closed; P has fibred finite products (�,∩), given by
�X = X and intersection; fibred distributive coproducts (∅,∪); fibred exponents
⇒, given by (P ⇒ Q) = { #—

t | if #—
t ∈ P , then #—

t ∈ Q}; and universal and
existential quantifiers given for P ∈ PredX×Y by

∀X,Y P = {x ∈ X | ∀y ∈ Y. (x, y) ∈ P} ∃X,Y P = {x ∈ X | ∃y ∈ Y. (x, y) ∈ P}.

The purpose of first-order fibrations is to capture the essentials of first-order
logic, while the λ-part takes care of higher-order features of the term language.
In the following, we interpret types, contexts, guarded terms and formulae in
the fibration P : Pred → Set: We define for types τ and context Γ sets �τ� and
�Γ �; for guarded terms M with Γ � M : τ we define a map �M� : �Γ � → �τ� in
Set; and for a formula Γ � ϕ we give a predicate �ϕ� ∈ Pred�Γ �.

The semantics of types and contexts are given inductively in the Cartesian
closed category Set, where the base type ι is interpreted as coterms, as follows.

We note that a coterm t ∈ Σ∞(V) can be seen as a map (Σ∞)V → Σ∞ by
applying a substitution in (Σ∞)V to t: σ �→ t[σ]. In particular, the semantics of a
guarded first-order term M ∈ ΛG,1

Σ (Γ) is equivalently a map [[M]]1 : �Γ � → Σ∞.
We can now extend this map inductively to �M� : �Γ � → �τ� for all guarded
terms M ∈ ΛG

Σ(Γ) with Γ � M : τ by

�M�(γ)
(#—

t
)

= [[M #—x]]1
([

#—x �→ #—
t
]) �g M : τ with ar(τ) =

∣
∣ #—
t
∣
∣ =

∣
∣ #—x

∣
∣

�c�(γ)
(#—

t
)

= c
#—
t

�x�(γ) = γ(x)

�M N�(γ) = �M�(γ)
(
�N�(γ)

)

�λx.M�(γ)(t) = �M�(γ[x �→ t])

Lemma 26. The mapping �−� is a well-defined function from guarded terms to
functions, such that Γ � M : τ implies �M� : �Γ � → �τ�.

Since P : Pred → Set is a first-order fibration, we can interpret inductively
all logical connectives of the formulae from Definition 3 in this fibration. The only
case that is missing is the base case of predicate symbols. Their interpretation
will be given over a Herbrand model that is constructed as the largest fixed point
of an operator over all predicate interpretations in the Herbrand base. Both the
operator and the fixed point are the subjects of the following definition.

Definition 27. We let the set of interpretations I be the powerset P(B∞) of
the complete Herbrand base. For I ∈ I and p ∈ Π, we denote by I|p the
interpretation of p in I (the fibre of I above p)

I|p =
{ #—

t ∈ (Σ∞)ar(p)
∣
∣ p(#—

t) ∈ I
}
.

Coinduction in Uniform 803

Given a set P of Hg-formulae, we define a monotone map ΦP : I → I by

ΦP (I) = {[[ψ]]1[θ] | (∀ #—x .
∧n

k=1 ϕk → ψ) ∈ P, θ : | #—x | → Σ∞,∀k. [[ϕk]]1[θ] ∈ I},

where [[−]]1[θ] is the extension of semantics and substitution from coterms to the
Herbrand base by functoriality of �Π�. The (complete) Herbrand model MP of
P is the largest fixed point of ΦP , which exists because I is a complete lattice.

Given a formula ϕ with Γ � ϕ that contains only guarded terms, we define
the semantics of ϕ in Pred from an interpretation I ∈ I inductively as follows.

�Γ � p
—

M�I =
(

—

�M�
)∗

(I|p)
�Γ � ��I = ��Γ �

�Γ � ϕ � ψ�I = �Γ � ϕ�I � �Γ � ψ�I � ∈ {∧,∨,→}
�Γ � Qx : τ. ϕ�I = Q�Γ �,�τ� �Γ, x : τ � ϕ�I Q ∈ {∀,∃}

Lemma 28. The mapping �−�I is a well-defined function from formulae to pred-
icates, such that Γ � ϕ implies �ϕ�I ⊆ �Γ � or, equivalently, �ϕ�I ∈ Pred�Γ �.

This concludes the semantics of types, terms and formulae. We now turn to
show that coinductive uniform proofs are sound for this interpretation.

5.3 Soundness of Coinductive Uniform Proofs for Herbrand Models

In this section, we give a direct proof of soundness for the coinductive uniform
proof system from Sect. 3. Later, we will obtain another soundness result by
combining the proof translation from Theorem 18 with the soundness of iFOL�
(Theorems 39 and 42). The purpose of giving a direct soundness proof for uniform
proofs is that it allows the extraction of a coinduction invariant, see Lemma 32.

The main idea is as follows. Given a formula ϕ and a uniform proof π for
Σ;P � ϕ, we construct an interpretation I ∈ I that validates ϕ, i.e. �ϕ�I = �,
and that is contained in the complete Herbrand model MP . Combining these
two facts, we obtain that �ϕ�MP

= �, and thus the soundness of uniform proofs.
To show that the constructed interpretation I is contained in MP , we use

the usual coinduction proof principle, as it is given in the following definition.

Definition 29. An invariant for K ∈ I is a set I ∈ I, such that K ⊆ I and I
is a ΦP -invariant, that is, I ⊆ ΦP (I). If K has an invariant, then K ⊆ MP .

Thus, our goal is now to construct an interpretation together with an invari-
ant. This invariant will essentially collect and iterate all the substitutions that
appear in a proof. For this we need the ability to compose substitutions of
coterms, which we derive from the monad [5] (Σ∞, η, μ) with μ : Σ∞Σ∞ ⇒ Σ∞.

Definition 30. A (Kleisli-)substitution θ from V to W , written θ : V W , is
map V → Σ∞(W). Composition of θ : V W and δ : U V is given by

θ � δ = U
δ−→ Σ∞(V)

Σ∞(θ)−−−−→ Σ∞(Σ∞(W))
μW−−→ Σ∞(W).

804 H. Basold et al.

The notions in the following definition will allow us to easily organise and
iterate the substitutions that occur in a uniform proof.

Definition 31. Let S be a set with S = {1, . . . , n} for some n ∈ N. We call
the set S∗ of lists over S the set of substitution identifiers. Suppose that we
have substitutions θ0 : V ∅ and θk : V V for each k ∈ S. Then we can
define a map Θ : S∗ → (Σ∞)V , which turns each substitution identifier into a
substitution, by iteration from the right:

Θ(ε) = θ0 and Θ(w : k) = Θ(w) � θk

After introducing these notations, we can give the outline of the soundness
proof for uniform proofs relative to the complete Herbrand model. Given an
Hg-formula ∀ #—x . ϕ, we note that a uniform proof π for Σ;P � ∀ #—x . ϕ starts with

#—c : ι, Σ;P ;Δ =⇒ 〈ϕ[#—c / #—x]〉 #—c : ι /∈ Σ ∀R〈〉
Σ;P ;∀ #—x . ϕ =⇒ 〈∀ #—x . ϕ〉

co-fix
Σ;P � ∀ #—x . ϕ

where the eigenvariables in #—c are all distinct. Let Σc be the signature #—c : ι, Σ
and C the set of variables in #—c . Suppose the following is a valid subtree of π.

Σc;P ;Δ
ϕ[

#—
N/ #—x]

=====⇒ A ∀L
Σc;P ;Δ

∀ #—x . ϕ∈Δ
=====⇒ A

decide
Σc;P ;Δ =⇒ A

This proof tree gives rise to a substitution δ : C C by δ(c) = �Nc�, which we
call an agent of π. We let D ⊆ Atg

1 be the set of atoms that are proven in π:

D = {A | Σc;P ;Δ =⇒ 〈A〉 or Σc;P ;Δ =⇒ A appears in π}
From the agents and atoms in π we extract an invariant for the goal formula.

Lemma 32. Suppose that ϕ is an Hg-formula of the form ∀ #—x .A1 ∧ · · · ∧ An →
A0 and that there is a proof π for Σ;P � ϕ. Let D be the proven atoms in π and
θ0, . . . , θs be the agents of π. Define Ac

k = Ak[#—c / #—x] and suppose further that I1
is an invariant for {Ac

k[Θ(ε)] | 1 ≤ k ≤ n}. If we put

I2 =
⋃

w∈S∗
D [Θ (w)]

then I1 ∪ I2 is an invariant for Ac
0[Θ(ε)].

Once we have Lemma 32 the following soundness theorem is easily proven.

Theorem 33. If ϕ is an Hg-formula and Σ;P � ϕ, then �ϕ�MP
= �.

Finally, we show that extending logic programs with coinductively proven
lemmas is sound. This follows easily by coinduction.

Coinduction in Uniform 805

Theorem 34. Let ϕ be an Hg-formula of the shape ∀ #—x . ψ1 → ψ2, such that,
for all substitutions θ if [[ψ1]]1[θ] ∈ MP,ϕ, then [[ψ1]]1[θ] ∈ MP . Then Σ;P � ϕ
implies MP∪{ϕ} = MP , that is, P ∪ {ϕ} is a conservative extension of P with
respect to the Herbrand model.

As a corollary we obtain that, if there is a proof for Σ;P � ϕ, then a proof
for Σ;P,ϕ � ψ is sound with respect to MP . Indeed, by Theorem 34 we have
that MP = MP∪ϕ and by Theorem 33 that Σ;P,ϕ � ψ is sound with respect
to MP∪{ϕ}. Thus, the proof of Σ;P,ϕ � ψ is also sound with respect to MP .
We use this property implicitly in our running examples, and refer the reader
to [15,49] for proofs, further examples and discussion.

5.4 Soundness of iFOL� over Herbrand Models

In this section, we demonstrate how the logic iFOL� can be interpreted over
Herbrand models. Recall that we obtained a fixed point model from the mono-
tone map ΦP on interpretations. In what follows, it is crucial that we construct
the greatest fixed point of ΦP by iteration, c.f. [6,32,77]: Let Ord be the class
of all ordinals equipped with their (well-founded) order. We denote by Ordop

the class of ordinals with their reversed order and define a monotone function←−
ΦP : Ordop → I, where we write the argument ordinal in the subscript, by

(←−
ΦP

)
α

=
⋂

β<α
ΦP

(←−
ΦP β

)
.

Note that this definition is well-defined because < is well-founded and because
ΦP is monotone, see [14]. Since I is a complete lattice, there is an ordinal α such
that

←−
ΦP α = ΦP

(←−
ΦP α

)
, at which point

←−
ΦP α is the largest fixed point MP of ΦP .

In what follows, we will utilise this construction to give semantics to iFOL�.
The fibration P : Pred → Set gives rise to another fibration as follows. We let

Pred be the category of functors (monotone maps) with fixed predicate domain:

Pred =

⎧
⎪⎨

⎪⎩

objects: u : Ordop → Pred, such that P ◦ u is constant
morphisms: u → v are natural transformations f : u ⇒ v,

such that Pf : P ◦ u ⇒ P ◦ v is the identity

The fibration P : Pred → Set is defined by evaluation at any ordinal (here 0),
i.e. by P(u) = P(u(0)) and P(f) = (Pf)0, and reindexing along f : X → Y by
applying the reindexing of P point-wise, i.e. by f#(u)α = f∗(uα).

Note that there is a (full) embedding K : Pred → Pred that is given by
K(X,P) = (X,P) with Pα = P . One can show [14] that P is again a first-order
fibration and that it models the later modality, as in the following theorem.

Theorem 35. The fibration P is a first-order fibration. If necessary, we denote
the first-order connectives by �̇, ∧̇ etc. to distinguish them from those in Pred.
Otherwise, we drop the dots. Finite (co)products and quantifiers are given point-
wise, while for X ∈ Set and u, v ∈ PredX exponents are given by

(v ⇒̇ u)α =
⋂

β≤α
(vβ ⇒ uβ).

806 H. Basold et al.

There is a fibred functor � : Pred → Pred with π ◦ � = π given on objects by

(� u)α =
⋂

β<α
uβ

and a natural transformation next : Id ⇒ � from the identity functor to �. The
functor � preserves reindexing, products, exponents and universal quantification:
�(f#u) = f#(� u), �(u∧v) = � u∧� v, �(uv) → (� u)� v, �

(∀nu
)

= ∀n(� u).
Finally, for all X ∈ Set and u ∈ PredX , there is löb : (� u ⇒̇ u) → u in PredX .

Using the above theorem, we can extend the interpretation of formulae to
iFOL� as follows. Let u : Ordop → I be a descending sequence of interpreta-
tions. As before, we define the restriction of u to a predicate symbol p ∈ Π by(
u|p

)
α

= uα|p =
{ #—

t
∣
∣ p

(#—
t
) ∈ uα

}
. The semantics of formulae in iFOL� as

objects in Pred is given by the following iterative definition.

�Γ � p
—

M�u =
(

—

�M�
)#

(u|p)
�Γ � ��u = �̇�Γ �

�Γ � ϕ � ψ�u = �Γ � ϕ�u � �Γ � ψ�u � ∈ {∧,∨,→}
�Γ � Qx : τ. ϕ�u = Q�Γ �,�τ� �Γ, x : τ � ϕ�u Q ∈ {∀,∃}

�Γ � � ϕ�u = ��Γ � ϕ�u

The following lemma is the analogue of Lemma 28 for the interpretation of
formulae without the later modality.

Lemma 36. The mapping �−�u is a well-defined map from formulae in iFOL�
to sequences of predicates, such that Γ � ϕ implies �ϕ�u ∈ Pred�Γ �.

Lemma 37. All rules of iFOL� are sound with respect to the interpretation
�−�u of formulae in Pred, that is, if Γ | Δ � ϕ, then

(∧
ψ∈Δ�ψ�u ⇒̇ �ϕ�u

)
= �̇.

In particular, Γ � ϕ implies �ϕ�u = �̇.

The following lemma shows that the guarding of a set of formulae is valid in
the chain model that they generate.

Lemma 38. If ϕ is an H-formula in P , then �ϕ�←−−
ΦP

= �̇.

Combining this with soundness from Lemma 37, we obtain that provability
in iFOL� relative to a logic program P is sound for the model of P .

Theorem 39. For all logic programs P , if Γ | P � ϕ then �ϕ�←−−
ΦP

= �̇.

The final result of this section is to show that the descending chain model,
which we used to interpret formulae of iFOL�, is sound and complete for the
fixed point model, which we used to interpret the formulae of coinductive uniform
proofs. This will be proved in Theorem 42 below. The easiest way to prove this
result is by establishing a functor Pred → Pred that maps the chain

←−
ΦP to

the model MP , and that preserves and reflects truth of first-order formulae
(Proposition 41). We will phrase the preservation of truth of first-order formulae
by a functor by appealing to the following notion of fibrations maps, cf. [46, Def.
4.3.1].

Coinduction in Uniform 807

Definition 40. Let p : E → B and q : D → A be fibrations. A fibration map
p → q is a pair (F : E → D, G : B → A) of functors, s.t. q ◦ F = G ◦ p and F
preserves Cartesian morphisms: if f : X → Y in E is Cartesian over p(f), then
F (f) is Cartesian over G(p(f)). (F,G) is a map of first-order (λ-)fibrations, if
p and q are first-order (λ-)fibrations, and F and G preserve this structure.

Let us now construct a first-order λ-fibration map Pred → Pred. We note
that since every fibre of the predicate fibration is a complete lattice, for every
chain u ∈ PredX there exists an ordinal α at which u stabilises. This means
that there is a limit lim u of u in PredX , which is the largest subset of X, such
that ∀α. lim u ⊆ uα. This allows us to define a map L : Pred → Pred by

L(X,u) = (X, lim u)
L(f : (X,u) → (Y, v)) = f.

In the following proposition, we show that L gives us the ability to express
first-order properties of limits equivalently through their approximating chains.
This, in turn, provides soundness and completeness for the interpretation of the
logic iFOL� over descending chains with respect to the largest Herbrand model.

Proposition 41. L : Pred → Pred, as defined above, is a map of first-order
fibrations. Furthermore, L is right-adjoint to the embedding K : Pred → Pred.
Finally, for each p ∈ Π and u ∈ PredB∞ , we have L

(
u|p

)
= L(u)|p.

We get from Proposition 41 soundness and completeness of
←−
ΦP for Herbrand

models. More precisely, if ϕ is a formula of plain first-order logic (�-free), then
its interpretation in the coinductive Herbrand model is true if and only if its
interpretation over the chain approximation of the Herbrand model is true.

Theorem 42. If ϕ is �-free (Definition 3) then �ϕ�←−−
ΦP

= �̇ if and only if
�ϕ�MP

= �.

Proof (sketch). First, one shows for all �-free formulae ϕ that L(�ϕ�←−−
ΦP

) =
�ϕ�MP

by induction on ϕ and using Proposition 41. Using this identity and
K � L, the result is then obtained from the following adjoint correspondence.

6 Conclusion, Related Work and the Future

In this paper, we provided a comprehensive theory of resolution in coinductive
Horn-clause theories and coinductive logic programs. This theory comprises of a
uniform proof system that features a form of guarded recursion and that provides

808 H. Basold et al.

operational semantics for proofs of coinductive predicates. Further, we showed
how to translate proofs in this system into proofs for an extension of intuitionistic
FOL with guarded recursion, and we provided sound semantics for both proof
systems in terms of coinductive Herbrand models. The Herbrand models and
semantics were thereby presented in a modern style that utilises coalgebras and
fibrations to provide a conceptual view on the semantics.

Related Work. It may be surprising that automated proof search for coinductive
predicates in first-order logic does not have a coherent and comprehensive theory,
even after three decades [3,60], despite all the attention that it received as pro-
gramming [2,29,42,44] and proof [33,35,39,40,45,59,64–67] method. The work
that comes close to algorithmic proof search is the system CIRC [63], but it can-
not handle general coinductive predicates and corecursive programming. Induc-
tive and coinductive data types are also being added to SMT solvers [24,62].
However, both CIRC and SMT solving are inherently based on classical logic
and are therefore not suited to situations where proof objects are relevant, like
programming, type class inference or (dependent) type theory. Moreover, the
proposed solutions, just like those in [41,69] can only deal with regular data,
while our approach also works for irregular data, as we saw in the from-example.

This paper subsumes Haskell type class inference [37,51] and exposes that
the inference presented in those papers corresponds to coinductive proofs in
co-fohc and co-hohh. Given that the proof systems proposed in this paper are
constructive and that uniform proofs provide proofs (type inhabitants) in normal
form, we could give a propositions-as-types interpretation to all eight coinductive
uniform proof systems. This was done for co-fohc and co-hohh in [37], but we
leave the remaining cube from the introduction for future work.

Future Work. There are several directions that we wish to pursue in the future.
First, we know that CUP is incomplete for the presented models, as it is intu-
itionistic and it lacks an admissible cut rule. The first can be solved by moving
to Kripke/Beth-models, as done by Clouston and Goré [30] for the propositional
part of iFOL�. However, the admissible cut rule is more delicate. To obtain
such a rule one has to be able to prove several propositions simultaneously by
coinduction, as discussed at the end of Sect. 4. In general, completeness of recur-
sive proof systems depends largely on the theory they are applied to, see [70]
and [18]. However, techniques from cyclic proof systems [27,68] may help. We also
aim to extend our ideas to other situations like higher-order Horn clauses [28,43]
and interactive proof assistants [7,10,23,31], typed logic programming, and logic
programming that mix inductive and coinductive predicates.

Acknowledgements. We would like to thank Damien Pous and the anonymous
reviewers for their valuable feedback.

Coinduction in Uniform 809

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. TCS 342(1), 3–27 (2005). https://doi.org/10.1016/j.tcs.2005.06.002

2. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: POPL 2013, pp. 27–38 (2013). https://doi.org/10.
1145/2429069.2429075

3. Aczel, P.: Non-well-founded sets. Center for the Study of Language and Informa-
tion, Stanford University (1988)

4. Aczel, P.: Algebras and coalgebras. In: Backhouse, R., Crole, R., Gibbons, J. (eds.)
Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.
LNCS, vol. 2297, pp. 79–88. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-47797-7 3

5. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. TCS 300(1–3), 1–45 (2003). https://doi.org/10.1016/
S0304-3975(02)00728-4

6. Adámek, J.: On final coalgebras of continuous functors. Theor. Comput. Sci.
294(1/2), 3–29 (2003). https://doi.org/10.1016/S0304-3975(01)00240-7

7. P.L. group on Agda: Agda Documentation. Technical report, Chalmers and
Gothenburg University (2015). http://wiki.portal.chalmers.se/agda/, version
2.4.2.5

8. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL, pp. 109–122. ACM (2007). https://
doi.org/10.1145/1190216.1190235

9. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
ICFP, pp. 197–208. ACM (2013). https://doi.org/10.1145/2500365.2500597

10. Baelde, D., et al.: Abella: a system for reasoning about relational specifications. J.
Formaliz. Reason. 7(2), 1–89 (2014). https://doi.org/10.6092/issn.1972-5787/4650

11. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Cam-
bridge University Press, Cambridge (2013)

12. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall Inter-
national Series in Computer Science, 2nd edn. Prentice Hall, Upper Saddle River
(1995). http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html

13. Basold, H.: Mixed inductive-coinductive reasoning: types, programs and logic.
Ph.D. thesis, Radboud University Nijmegen (2018). http://hdl.handle.net/2066/
190323

14. Basold, H.: Breaking the Loop: Recursive Proofs for Coinductive Predicates in
Fibrations. ArXiv e-prints, February 2018. https://arxiv.org/abs/1802.07143

15. Basold, H., Komendantskaya, E., Li, Y.: Coinduction in uniform: foundations for
corecursive proof search with horn clauses. Extended version of this paper. CoRR
abs/1811.07644 (2018). http://arxiv.org/abs/1811.07644

16. Beklemishev, L.D.: Parameter free induction and provably total com-
putable functions. TCS 224(1–2), 13–33 (1999). https://doi.org/10.1016/S0304-
3975(98)00305-3

17. Bénabou, J.: Fibered categories and the foundations of naive category theory. J.
Symb. Logic 50(1), 10–37 (1985). https://doi.org/10.2307/2273784

18. Berardi, S., Tatsuta, M.: Classical system of Martin-Löf’s inductive definitions is
not equivalent to cyclic proof system. In: Esparza, J., Murawski, A.S. (eds.) FoS-
SaCS 2017. LNCS, vol. 10203, pp. 301–317. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54458-7 18

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1007/3-540-47797-7_3
https://doi.org/10.1007/3-540-47797-7_3
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(01)00240-7
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.6092/issn.1972-5787/4650
http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html
http://hdl.handle.net/2066/190323
http://hdl.handle.net/2066/190323
https://arxiv.org/abs/1802.07143
http://arxiv.org/abs/1811.07644
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.2307/2273784
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1007/978-3-662-54458-7_18

810 H. Basold et al.

19. Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types
qua fixed points on universes. In: LICS, pp. 213–222. IEEE Computer Society
(2013). https://doi.org/10.1109/LICS.2013.27

20. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. In: Proceedings
of LICS 2011, pp. 55–64. IEEE Computer Society (2011). https://doi.org/10.1109/
LICS.2011.16

21. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49630-5 2. https://arxiv.org/abs/1601.01586

22. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

23. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform
(co)datatypes for Higher-Order Logic. In: LICS 2017, pp. 1–12. IEEE Computer
Society (2017). https://doi.org/10.1109/LICS.2017.8005071

24. Blanchette, J.C., Peltier, N., Robillard, S.: Superposition with datatypes and
codatatypes. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS
(LNAI), vol. 10900, pp. 370–387. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 25

25. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, vol. 1.
Cambridge University Press, Cambridge (2008)

26. Bottu, G., Karachalias, G., Schrijvers, T., Oliveira, B.C.D.S., Wadler, P.: Quanti-
fied class constraints. In: Haskell Symposium, pp. 148–161. ACM (2017). https://
doi.org/10.1145/3122955.3122967

27. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011). https://doi.org/10.1093/logcom/exq052

28. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses for ver-
ification. PACMPL 2(POPL), 11:1–11:28 (2018). https://doi.org/10.1145/3158099

29. Capretta, V.: General Recursion via Coinductive Types. Log. Methods Comput.
Sci. 1(2), July 2005. https://doi.org/10.2168/LMCS-1(2:1)2005

30. Clouston, R., Goré, R.: Sequent calculus in the topos of trees. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 133–147. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 9

31. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

32. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pac.
J. Math. 82(1), 43–57 (1979). http://projecteuclid.org/euclid.pjm/1102785059

33. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 26

34. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. J. Assoc. Comput. Mach. 23, 733–742 (1976). https://doi.org/10.1145/
321978.321991

35. Endrullis, J., Hansen, H.H., Hendriks, D., Polonsky, A., Silva, A.: A coinductive
framework for infinitary rewriting and equational reasoning. In: RTA 2015, pp.
143–159 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.143

https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/978-3-662-49630-5_2
https://arxiv.org/abs/1601.01586
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1109/LICS.2017.8005071
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1145/3158099
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
http://projecteuclid.org/euclid.pjm/1102785059
https://doi.org/10.1007/11944836_26
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://doi.org/10.4230/LIPIcs.RTA.2015.143

Coinduction in Uniform 811

36. Farka, F., Komendantskaya, E., Hammond, K.: Coinductive soundness of corecur-
sive type class resolution. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOP-
STR 2016. LNCS, vol. 10184, pp. 311–327. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63139-4 18

37. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
126–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3 9

38. Gambino, N., Kock, J.: Polynomial functors and polynomial monads. Math.
Proc. Cambridge Phil. Soc. 154(1), 153–192 (2013). https://doi.org/10.1017/
S0305004112000394

39. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-
016-9388-y

40. Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055070

41. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-
ming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol.
4670, pp. 27–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74610-2 4

42. Hagino, T.: A typed lambda calculus with categorical type constructors. In: Pitt,
D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science.
LNCS, vol. 283, pp. 140–157. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18508-9 24

43. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint optimiza-
tion. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 199–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 12

44. Howard, B.T.: Inductive, coinductive, and pointed types. In: Harper, R., Wexelblat,
R.L. (eds.) Proceedings of ICFP 1996, pp. 102–109. ACM (1996). https://doi.org/
10.1145/232627.232640

45. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization
in coinductive proof. In: Proceedings of POPL 2013, pp. 193–206. ACM (2013).
https://doi.org/10.1145/2429069.2429093

46. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

47. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316823187.
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

48. Komendantskaya, E., Li, Y.: Productive corecursion in logic programming. J.
TPLP (ICLP 2017 post-proc.) 17(5–6), 906–923 (2017). https://doi.org/10.1017/
S147106841700028X

49. Komendantskaya, E., Li, Y.: Towards coinductive theory exploration in horn clause
logic: Position paper. In: Kahsai, T., Vidal, G. (eds.) Proceedings 5th Workshop on
Horn Clauses for Verification and Synthesis, HCVS 2018, Oxford, UK, 13th July
2018, vol. 278, pp. 27–33 (2018). https://doi.org/10.4204/EPTCS.278.5

50. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press, Cambridge (1988)

51. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: ICFP 2005, pp. 204–215. ACM (2005). https://doi.org/10.
1145/1086365.1086391

https://doi.org/10.1007/978-3-319-63139-4_18
https://doi.org/10.1007/978-3-319-63139-4_18
https://doi.org/10.1007/978-3-319-29604-3_9
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/BFb0055070
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/232627.232640
https://doi.org/10.1145/232627.232640
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1017/CBO9781316823187
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.4204/EPTCS.278.5
https://doi.org/10.1145/1086365.1086391
https://doi.org/10.1145/1086365.1086391

812 H. Basold et al.

52. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-83189-8

53. Miller, D., Nadathur, G.: Programming with Higher-order logic. Cambridge Uni-
versity Press, Cambridge (2012)

54. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic 51(1–2), 125–157 (1991). https://
doi.org/10.1016/0168-0072(91)90068-W

55. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

56. Møgelberg, R.E.: A type theory for productive coprogramming via guarded
recursion. In: CSL-LICS, pp. 71:1–71:10. ACM (2014). https://doi.org/10.1145/
2603088.2603132

57. Nadathur, G., Mitchell, D.J.: System description: Teyjus—a compiler and abstract
machine based implementation of λProlog. CADE-16. LNCS (LNAI), vol. 1632, pp.
287–291. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 25

58. Nakano, H.: A modality for recursion. In: LICS, pp. 255–266. IEEE Computer
Society (2000). https://doi.org/10.1109/LICS.2000.855774

59. Niwinski, D., Walukiewicz, I.: Games for the μ-Calculus. TCS 163(1&2), 99–116
(1996). https://doi.org/10.1016/0304-3975(95)00136-0

60. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

61. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977). https://doi.org/10.1016/0304-3975(77)90044-5

62. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 5

63. Roşu, G., Lucanu, D.: Circular coinduction: a proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2 10

64. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000).
https://doi.org/10.1016/S0304-3975(00)00056-6

65. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

66. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 25

67. Santocanale, L.: μ-bicomplete categories and parity games. RAIRO - ITA 36(2),
195–227 (2002). https://doi.org/10.1051/ita:2002010

68. Shamkanov, D.S.: Circular proofs for the Gödel-Löb provability logic. Math. Notes
96(3), 575–585 (2014). https://doi.org/10.1134/S0001434614090326

69. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8 42

70. Simpson, A.: Cyclic arithmetic is equivalent to Peano arithmetic. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 17

71. Smoryński, C.: Self-Reference and Modal Logic. Universitext. Springer, New York
(1985). https://doi.org/10.1007/978-1-4613-8601-8

https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1007/3-540-48660-7_25
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1051/ita:2002010
https://doi.org/10.1134/S0001434614090326
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-1-4613-8601-8

Coinduction in Uniform 813

72. Solovay, R.M.: Provability interpretations of modal logic. Israel J. Math. 25(3),
287–304 (1976). https://doi.org/10.1007/BF02757006

73. Sulzmann, M., Stuckey, P.J.: HM(X) type inference is CLP(X) solving. J. Funct.
Program. 18(2), 251–283 (2008). https://doi.org/10.1017/S0956796807006569

74. Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
75. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-

meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60675-0 35

76. van den Berg, B., de Marchi, F.: Non-well-founded trees in categories. Ann. Pure
Appl. Logic 146(1), 40–59 (2007). https://doi.org/10.1016/j.apal.2006.12.001

77. Worrell, J.: On the final sequence of a finitary set functor. Theor. Comput. Sci.
338(1–3), 184–199 (2005). https://doi.org/10.1016/j.tcs.2004.12.009

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF02757006
https://doi.org/10.1017/S0956796807006569
https://doi.org/10.1007/3-540-60675-0_35
https://doi.org/10.1016/j.apal.2006.12.001
https://doi.org/10.1016/j.tcs.2004.12.009
http://creativecommons.org/licenses/by/4.0/

Author Index

Accattoli, Beniamino 410
Ahman, Danel 30
Alvarez-Picallo, Mario 525
Ariola, Zena M. 119

Balzer, Stephanie 611
Basold, Henning 783
Besson, Frédéric 499
Bi, Xuan 381
Blazy, Sandrine 499
Bocchi, Laura 583
Boutillier, Pierre 176
Buro, Samuele 293

Castellan, Simon 322
Chopra, Nikita 697
Cristescu, Ioana 176

D’Souza, Deepak 697
Dal Lago, Ugo 263
Dang, Alexandre 499
Downen, Paul 119
Dumitrescu, Victor 30

Eyers-Taylor, Alex 525

Feret, Jérôme 176
Fisher, Kathleen 205
Frumin, Dan 60
Fuhs, Carsten 752

Garg, Deepak 469
Gavazzo, Francesco 263
Giannarakis, Nick 30
Giarrusso, Paolo G. 553
Gilbert, Frederic 440
Gondelman, Léon 60
Gordon, Colin S. 88
Guerrieri, Giulio 410

Hawblitzel, Chris 30
Höfner, Peter 668
Hriţcu, Cătălin 30

Igarashi, Atsushi 353

Jensen, Thomas 499
Jourdan, Jacques-Henri 3
Journault, Matthieu 724

Komendantskaya, Ekaterina 783
Kop, Cynthia 752
Krebbers, Robbert 60
Kuru, Ismail 88

Leberle, Maico 410
Li, Yue 783

Markl, Michael 668
Martínez, Guido 30
Mastroeni, Isabella 293
McDermott, Dylan 235
Mével, Glen 3
Miné, Antoine 724
Murgia, Maurizio 583
Mycroft, Alan 235

Narasimhamurthy, Monal 30

Oliveira, Bruno C. d. S. 381
Ong, C.-H. Luke 525
Orchard, Dominic 147
Ouadjaout, Abdelraouf 724

Pai, Rekha 697
Paquet, Hugo 322
Paraskevopoulou, Zoe 30
Patrignani, Marco 469
Peyton Jones, Michael 525

Peyton Jones, Simon 119
Pfenning, Frank 611
Pit-Claudel, Clément 30
Pottier, François 3
Protzenko, Jonathan 30

Ramananandro, Tahina 30
Rastogi, Aseem 30
Régis-Gianas, Yann 553

Sakayori, Ken 640
Schrijvers, Tom 381
Schuster, Philipp 553
Sekiyama, Taro 353
Sullivan, Zachary 119
Swamy, Nikhil 30

Toninho, Bernardo 611
Tsukada, Takeshi 640

van Glabbeek, Rob 668
Vasconcelos, Vasco Thudichum 583
Vesely, Ferdinand 205

Wang, Meng 147
Wilke, Pierre 499

Xia, Li-yao 147
Xie, Ningning 381

Yoshida, Nobuko 583

816 Author Index

	ETAPS Foreword
	Preface
	Organization
	From Quadcopters to Helicopters: Formal Verification to Eliminate Exploitable Bugs (Abstract of Invited Talk)
	Contents
	Program Verification
	Time Credits and Time Receipts in Iris
	1 Introduction
	2 A User's Overview of Time Credits and Time Receipts
	2.1 Time Credits
	2.2 Time Receipts

	3 HeapLang and the Tick Translation
	4 Iris with Time Credits
	5 Iris with Time Receipts
	6 Marrying Time Credits and Time Receipts
	7 Application: Thunks in Iris-with-Time-Credits
	7.1 Concurrency and Reentrancy
	7.2 Implementation of Thunks
	7.3 Specification of Thunks in Iris-with-Time-Credits
	7.4 Proof of Thunks in Iris-with-Time-Credits

	8 Application: Union-Find in Iris$
	9 Discussion
	10 Related Work
	11 Conclusion
	References

	Meta-F: Proof Automation with SMT, Tactics, and Metaprograms
	1 Introduction
	2 Meta-F by Example
	2.1 Tactics for Individual Assertions and Partial Canonicalization
	2.2 Tactics for Entire VCs and Separation Logic
	2.3 Metaprogramming Verified Low-Level Parsers and Serializers

	3 The Design of Meta-F
	3.1 An Effect for Metaprogramming
	3.2 Executing Meta-F Metaprograms
	3.3 Syntax Inspection, Generation, and Quotation
	3.4 Specifying and Verifying Metaprograms

	4 Meta-F, Formally
	4.1 Correctness and Trusted Computing Base (TCB)
	4.2 Extracting Individual Assertions

	5 Executing Metaprograms Efficiently
	5.1 CBN and CBV Strong Reductions
	5.2 Native Plugins and Multi-language Interoperability

	6 Experimental Evaluation
	6.1 A Reflective Tactic for Partial Canonicalization
	6.2 Combining SMT and Tactics for the Parser Generator

	7 Related Work
	8 Conclusions
	References

	Semi-automated Reasoning About Non-determinism in C Expressions
	1 Introduction
	2 lMC: A Monadic Definitional Semantics of C
	2.1 The Source Language lMC
	2.2 The Target Language HeapLang
	2.3 The Monadic Definitional Semantics of lMC

	3 Separation Logic with Weakest Preconditions for lMC
	4 Soundness of Weakest Preconditions for lMC
	4.1 Weakest Preconditions for HeapLang
	4.2 Weakest Preconditions for Monadic Expressions
	4.3 Modeling the Heap
	4.4 Deriving the lMC Rules

	5 A Symbolic Executor for lMC
	5.1 Rules for Symbolic Execution
	5.2 An Algorithm for Symbolic Execution

	6 A Verification Condition Generator for lMC
	7 Discussion
	8 Related Work
	References

	Safe Deferred Memory Reclamation with Types
	1 Introduction
	2 Background and Motivation
	3 Semantics
	4 Type System and Programming Language
	4.1 RCU Type System for Write Critical Section
	4.2 Types in Action
	4.3 Type Rules

	5 Evaluation
	6 Soundness
	6.1 Proof

	7 Discussion and Related Work
	8 Conclusions
	References

	Language Design
	Codata in Action
	1 Introduction
	2 The Many Faces of Codata
	2.1 Church Encodings and Object-Oriented Programming
	2.2 Demand-Driven Programming
	2.3 Abstraction Mechanism
	2.4 Representing Pre- and Post-Conditions

	3 Inter-compilation of Core Calculi
	3.1 Syntax and Semantics
	3.2 Compiling Data to Codata: The Visitor Pattern
	3.3 Compiling Codata to Data: Tabulation
	3.4 Correctness
	3.5 Call-by-Value: Correcting the Evaluation Order
	3.6 Indexed Data and Codata Types: Type Equalities

	4 Compilation in Practice
	5 Related Work
	6 Conclusion
	References

	Composing Bidirectional Programs Monadically
	1 Introduction
	1.1 Further Examples of BX

	2 Monadic Bidirectional Programming
	2.1 Monadic Biparsers

	3 A Unifying Structure: Monadic Profunctors
	3.1 Constructing Monadic Profunctors
	3.2 Deriving Biparsers as Monadic Profunctor Pairs

	4 Reasoning about Bidirectionality
	4.1 Compositional Properties of Monadic Bidirectional Programming
	4.2 Quasicompositionality for Monadic Profunctors

	5 Monadic Bidirectional Programming for Lenses
	6 Monadic Bidirectional Programming for Generators
	7 Discussion and Related Work
	References

	Counters in Kappa: Semantics, Simulation, and Static Analysis
	1 Introduction
	2 Kappa
	2.1 Signature
	2.2 Site-Graphs
	2.3 Sliding Embeddings
	2.4 Rules

	3 Encoding Counters
	3.1 Encoding the Value of Counters as Unbounded Chains of Agents
	3.2 Encoding the Value of Counters as Circular Lists of Agents
	3.3 Correspondence
	3.4 Benchmarks

	4 Generic Abstraction of Reachable States
	4.1 Collecting Semantics
	4.2 Generic Abstraction
	4.3 Coalescent Product

	5 Numerical Abstraction
	5.1 Encoding States and Preconditions
	5.2 Encoding Rules
	5.3 Generic Numerical Abstract Domain
	5.4 Numerical Abstraction
	5.5 Benchmarks

	6 Conclusion
	References

	One Step at a Time
	1 Introduction
	2 Overview
	3 Big-Step Specifications
	3.1 Evaluator Definition Language

	4 Transformation Steps
	4.1 CPS Conversion
	4.2 Generalization of Continuations
	4.3 Argument Lifting in Continuations
	4.4 Continuations Switch Control Directly
	4.5 Defunctionalization
	4.6 Remove Self-recursive Tail-Calls
	4.7 Convert Continuations to Terms
	4.8 Inlining, Simplification and Conversion to Direct Style
	4.9 Removing Vacuous Continuations
	4.10 Detour: Generating Pretty-Big-Step Semantics
	4.11 Pretty-Printing
	4.12 Correctness

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Program Semantics
	Extended Call-by-Push-Value: Reasoning About Effectful Programs and Evaluation Order
	1 Introduction
	2 Extended Call-by-Push-Value
	2.1 Syntax
	2.2 Type System
	2.3 Equational Theory

	3 Call-by-Name and Call-by-Need
	3.1 The Equivalence at the Object (Internal) Level
	3.2 The Meta-level Equivalence

	4 An Effect System for Extended Call-by-Push-Value
	4.1 Effects
	4.2 Effect System and Signature
	4.3 Exploiting Effect-Dependent Equivalences

	5 Related Work
	6 Conclusions and Future Work
	References

	Effectful Normal Form Bisimulation
	1 Introduction
	2 From Applicative to Normal Form Bisimilarity
	3 Preliminaries: Monads and Algebraic Operations
	3.1 Algebraic Operations

	4 A Computational Call-by-value Calculus with Algebraic Operations
	5 Relators
	6 Effectful Eager Normal Form (Bi)simulation
	6.1 Congruence and Precongruence Theorems
	6.2 Soundness for Effectful Applicative (Bi)similarity
	6.3 Eager Normal Form (Bi)simulation Up-to Context
	6.4 Weak Head Normal Form (Bi)simulation

	7 Related Work
	8 Conclusion
	References

	On the Multi-Language Construction
	1 Introduction
	2 Background
	3 Combining Order-Sorted Theories
	3.1 The Initial Term Model

	4 Refining the Construction
	4.1 Subsort Polymorphic Boundary Functions
	4.2 Semantic-Only Boundary Functions

	5 Reduction to Order-Sorted Algebra
	6 An Example of Multi-Language Construction
	7 Concluding Remarks
	References

	Probabilistic Programming Inference via Intensional Semantics
	1 Introduction
	2 Probabilistic Programming
	2.1 Conditioning and Posterior Distribution
	2.2 A First-Order Probabilistic Programming Language
	2.3 Measure-Theoretic Semantics of Programs
	2.4 Exact Inference

	3 Approximate Inference via Intensional Semantics
	3.1 An Introduction to Approximate Inference
	3.2 Capturing Probabilistic Dependencies Using Event Structures
	3.3 Runtime Values and Dataflow Graphs
	3.4 Quantitative Dataflow Graphs

	4 Programs as Labelled Event Structures
	4.1 Composition of Probablistic Event Structures
	4.2 Interpretation of Programs

	5 An Inference Algorithm
	5.1 A Concrete Presentation of Probabilistic Dataflow Graphs
	5.2 Metropolis-Hastings
	5.3 Our Proposal Kernel

	6 Conclusion
	References

	Types
	Handling Polymorphic Algebraic Effects
	1 Introduction
	2 Overview
	2.1 Monomorphic Algebraic Effects and Handlers
	2.2 Polymorphic Algebraic Effects and Handlers
	2.3 Problem in Naive Combination with Let-Polymorphism
	2.4 Our Solution

	3 Surface Language: efflet
	3.1 Syntax
	3.2 Type System

	4 Intermediate Language: eff
	4.1 Syntax
	4.2 Semantics
	4.3 Type System
	4.4 Elaboration
	4.5 Properties

	5 Related Work
	5.1 Polymorphic Effects and Let-Polymorphism
	5.2 Algebraic Effects and Handlers

	6 Conclusion
	References

	Distributive Disjoint Polymorphism for Compositional Programming
	1 Introduction
	2 Compositional Programming
	2.1 A Finally Tagless Encoding in Haskell
	2.2 The SEDEL Encoding

	3 Semantics of the Fi+ Calculus
	3.1 Syntax and Semantics
	3.2 Disjointness
	3.3 Elaboration and Type Safety

	4 Algorithmic System and Decidability
	4.1 Algorithmic Subtyping Rules
	4.2 Decidability

	5 Establishing Coherence for Fi+
	5.1 The Challenge
	5.2 Impredicativity and Disjointness at Odds
	5.3 The Canonicity Relation for Fi+
	5.4 Establishing Coherence

	6 Related Work
	7 Conclusion and Future Work
	References

	Types by Need
	1 Introduction
	2 Closed -Calculi
	3 Preliminaries About Multi Types
	4 Types by Name
	4.1 CbN Correctness
	4.2 CbN Completeness
	4.3 CbN Model

	5 Types by Value
	5.1 CbV Correctness
	5.2 CbV Completeness

	6 Types by Need
	6.1 CbNeed Correctness
	6.2 CbNeed Completeness

	7 A New Fundamental Theorem for Call-by-Need
	8 Conclusions
	References

	Verifiable Certificates for Predicate Subtyping
	1 Introduction
	1.1 Extending Higher-Order Logic with Predicate Subtyping
	1.2 Contributions
	1.3 Related Works

	2 PVS-Core: A Minimal Extension of HOL with Predicate Subtyping
	2.1 Definitions
	2.2 A Minimal System Expressing Predicate Subtyping

	3 PVS-Cert: Verifiable Certificates for PVS-Core
	3.1 Definitions
	3.2 An Extension of -HOL
	3.3 Expressing Predicate Subtyping

	4 Properties of PVS-Cert
	5 Stratification in PVS-Cert
	6 A Type Preserving Reduction
	7 Strong Normalization and Cut Elimination
	7.1 Strong Normalization
	7.2 Cut Elimination in PVS-Cert

	8 Type-Checking in PVS-Cert
	9 Expressing PVS-Core in PVS-Cert
	9.1 An Erasing Function from PVS-Cert to PVS-Core
	9.2 Expressing PVS-Core Derivations as PVS-Cert Judgements
	9.3 Relating Conversion in PVS-Core and PVS-Cert
	9.4 Soundness of the Synthesis of Certificates

	10 Using PVS-Cert as a System of Verifiable Certificates for PVS-Core
	References

	Security and Incremental Computation
	Robustly Safe Compilation
	1 Introduction
	2 Robustly Safe Compilation
	2.1 Safety and Robust Safety
	2.2 Robustly Safe Compilation

	3 RSC via Trace-Based Backtranslation
	3.1 The Source Language RoyalBlueLU
	3.2 The Target Language RedOrangeLP
	3.3 Compiler from RoyalBlueLU to RedOrangeLP

	4 RSC via Bisimulation
	4.1 The Source Language RoyalBlueL
	4.2 The Target Language RedOrangeL
	4.3 Compiler from RoyalBlueL to RedOrangeL

	5 Fully Abstract Compilation
	5.1 Formalising Fully Abstract Compilation
	5.2 Towards a Fully Abstract Compiler from RoyalBlueLU to RedOrangeLP

	6 Related Work
	7 Conclusion
	References

	Compiling Sandboxes: Formally Verified Software Fault Isolation
	1 Introduction
	1.1 Software Fault Isolation
	1.2 Software Fault Isolation Through Compilation
	1.3 Challenges in Formally Verified SFI
	1.4 Contributions

	2 Background
	2.1 CompCert
	2.2 Portable Software Fault Isolation

	3 A Thread-Aware Sandbox
	4 Memory-Safe Masking
	4.1 Standard SFI Masking of Addresses
	4.2 Specialised Masking for 32-Bit Sandboxes
	4.3 Towards Well-Defined Pointer Arithmetic
	4.4 Arithmetisation of the Heap

	5 Enforcement of Control-Flow Integrity
	5.1 Relaxation of the Cminor SFI Property
	5.2 Control-Flow Integrity of Indirect Calls

	6 Safety and Security Proofs
	6.1 Security Proof
	6.2 Safety Proof

	7 SFI Runtime and Library
	7.1 Loading the SFI Application
	7.2 Monitoring Calls to the Runtime Library
	7.3 Communication via Global Variables

	8 Experiments
	8.1 Porting Quake
	8.2 PSFI Overhead: Impact of Sandboxing Primitives
	8.3 PSFI Overhead: Impact of Compiler Back-End
	8.4 PSFI Versus (P)NaCl

	9 Related Work
	10 Conclusion
	References

	Fixing Incremental Computation
	1 Introduction
	2 Change Actions and Derivatives
	2.1 Change Actions
	2.2 Derivatives
	2.3 Useful Facts About Change Actions and Derivatives
	2.4 Comparing Change Actions

	3 Posets and Boolean Algebras
	3.1 Posets
	3.2 Boolean Algebras

	4 Derivatives for Non-recursive Datalog
	4.1 Semantics of Datalog Formulae
	4.2 Differentiability of Datalog Formula Semantics
	4.3 Extensions to Datalog

	5 Changes on Functions
	5.1 Pointwise Functional Change Actions

	6 Directed-Complete Partial Orders and Fixpoints
	6.1 Dcpos
	6.2 Fixpoints

	7 Derivatives for Recursive Datalog
	7.1 Semantics of Datalog Programs
	7.2 Incremental Evaluation of Datalog

	8 Related Work
	8.1 Change Actions and Incremental Computation
	8.2 Datalog
	8.3 Differential -calculus
	8.4 Higher-Order Automatic Differentiation

	9 Conclusions and Future Work
	References

	Incremental -Calculus in Cache-Transfer Style
	1 Introduction
	2 ILC and CTS Primer
	2.1 Incrementalizing average via ILC
	2.2 Self-maintainability and Efficiency of Derivatives

	3 Formalization
	3.1 Syntax for λL
	3.2 The Source Language λAL
	3.3 Static Differentiation from λAL to λIAL
	3.4 A New Soundness Proof for Static Differentiation
	3.5 CTS Conversion
	3.6 Semantics of λCAL and λICAL
	3.7 Soundness of CTS Conversion

	4 Incrementalization Case Studies
	4.1 Averaging Bags of Integers
	4.2 Nested Loops over Two Sequences
	4.3 Indexed Joins of Two Bags
	4.4 Limitations and Future Work

	5 Related Work
	6 Conclusion
	References

	Concurrency and Distribution
	Asynchronous Timed Session Types
	1 Introduction
	2 Asynchronous Timed Session Types
	2.1 Type Formation

	3 Asynchronous Session Types Semantics and Subtyping
	3.1 Types in Isolation
	3.2 Asynchronous Timed Subtyping
	3.3 Types with Queues, and Their Composition

	4 Timed Asynchronous Duality
	5 A Calculus for Asynchronous Timed Processes
	6 Typing for Asynchronous Timed Processes
	7 Subject Reduction and Time Safety
	8 Conclusion and Related Work
	References

	Manifest Deadlock-Freedom for Shared Session Types
	1 Introduction
	2 Manifest Sharing
	3 Manifest Deadlock-Freedom
	3.1 Competition and Collaboration
	3.2 Type System
	3.3 Dining Philosophers in SILLS+
	3.4 Dynamics

	4 Extended Example: An Imperative Shared Queue
	5 Semantics
	5.1 Configuration Typing and Preservation
	5.2 Progress

	6 Additional Discussion
	7 Related Work
	8 Concluding Remarks
	References

	A Categorical Model of an i/o-typed -calculus
	1 Introduction
	2 A Polyadic, Asynchronous -calculus with i/o-types
	2.1 The F-calculus
	2.2 Equivalences on Processes

	3 Categorical Semantics
	3.1 Overview
	3.2 Compact Closed Freyd Category
	3.3 Interpretation
	3.4 Term Model
	3.5 Theory/Model Correspondence

	4 A Concurrent -calculus and (de)compilation
	4.1 The ch-calculus
	4.2 Translations Between ch and F
	4.3 Relation to Other Calculi and Translations

	5 Discussions
	6 Related Work
	7 Conclusion and Future Work
	References

	A Process Algebra for Link Layer Protocols
	1 Introduction
	2 A Non-probabilistic Subalgebra
	2.1 A Language for Sequential Processes
	2.2 A Language for Node Expressions
	2.3 A Language for Networks
	2.4 Results on the Process Algebra

	3 An Algebra for Link Layer Protocols
	4 Formalising Liveness Properties of Link Layer Protocols
	5 Modelling and Analysing the CSMA/CA Protocol
	5.1 A Formal Model for CSMA/CA
	5.2 The Hidden Station Problem
	5.3 A Formal Model for CSMA/CA with Virtual Carrier Sensing
	5.4 The Exposed Station Problem

	6 Related Work
	7 Conclusion
	References

	Program Analysis and Automated Verification
	Data Races and Static Analysis for Interrupt-Driven Kernels
	1 Introduction
	2 Overview
	3 Interrupt-Driven Programs
	4 Data Races and Happens-Before Ordering
	4.1 Data Races
	4.2 Disjoint Blocks and the Happens-Before Relation

	5 Sync-CFG Analysis for Interrupt-Driven Programs
	5.1 Sync-CFG
	5.2 Value Set Analysis

	6 Translation to Classical Lock-Based Programs
	6.1 Execution-Preserving Lock Translation
	6.2 A Lightweight Lock-Translation
	6.3 Lockset Analysis for Race Detection

	7 Analyzing the FreeRTOS Kernel Library
	7.1 Race Detection
	7.2 Region-Based Relational Analysis

	8 Related Work
	9 Conclusion
	References

	An Abstract Domain for Trees with Numeric Relations
	1 Introduction
	2 Syntax and Concrete Semantics
	3 Natural Term Abstraction by Tree Automata
	3.1 Value Abstraction
	3.2 Environment Abstraction

	4 Numerical Abstractions
	4.1 Heterogeneous Support
	4.2 Representation of Maps over Potentially Unbounded Sets

	5 Natural Term Abstraction by Numerical Constraints
	5.1 Hole Positions and Numerical Constraints
	5.2 Product of Tree Automata and Numerical Constraints
	5.3 Environment Abstraction

	6 Implementation and Example
	6.1 Implementation
	6.2 Examples of Analysis

	7 Related Works
	8 Conclusion
	References

	A Static Higher-Order Dependency Pair Framework
	1 Introduction
	2 Preliminaries
	2.1 Higher-Order Term Rewriting Using AFSMs
	2.2 Computability

	3 Restrictions
	3.1 Properly Applied AFSMs
	3.2 Accessible Function Passing AFSMs

	4 Static Higher-Order Dependency Pairs
	5 The Static Higher-Order DP Framework
	5.1 The Dependency Graph
	5.2 Processors Based on Reduction Triples
	5.3 Rule Removal Without Search for Orderings
	5.4 Subterm Criterion Processors
	5.5 Non-termination

	6 Conclusions and Future Work
	References

	Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses
	1 Introduction
	2 Preliminaries: Terms and Formulae
	3 Coinductive Uniform Proofs
	4 Coinductive Uniform Proofs and Intuitionistic Logic
	5 Herbrand Models and Soundness
	5.1 Coinductive Herbrand Models and Semantics of Terms
	5.2 Interpretation of Basic Intuitionistic First-Order Formulae
	5.3 Soundness of Coinductive Uniform Proofs for Herbrand Models
	5.4 Soundness of iFOL`3́9`42`"̇613A``45`47`"603A over Herbrand Models

	6 Conclusion, Related Work and the Future
	References

	Author Index

