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1 Introduction

P. W. Anderson coined the term quantum spin liquid (QSL) in 1973 when he introduced
his idea of a resonating valence bond solid on the triangular lattice [1]. Today, the
analogy to an ordinary liquid is still popularly employed to convey an illustrative
understanding of the complex nature of a QSL. Thus, QSLs are described as systems
of highly correlated spins which evade conventional magnetic order even at zero
temperature. Naturally, this description does not fully capture the nature of the
QSLs, where the spins also need to be quantum-mechanically entangled and facilitate
quantum fluctuations.
Initially, the driving force behind the interest in QSLs is its connection to high-
temperature superconductivity. Until today, the perception of the quantum spin
liquid has changed and adapted multiple times from its introduction in 1973, resulting
in a plethora of proposed theoretical models describing this novel state of matter.
Therefore, the QSL is now well established as an interesting and many-faceted research
field of its own, which entails among others fractional excitations and topological
properties. [2–4]

Despite the large interest in QSLs, also in light of potential application in quantum
technology, the search for real-life materials proves to be challenging and is an ongoing
process. Sample preparation and crystal growth are the starting point in the endeavor
of synthesizing spin-liquid materials and has been practiced and improved for centuries.

The first records of crystal preparation date back to 77–79 AD as part of the
Historia Naturalis, an encyclopedia consisting of 37 books aiming to summarize the
knowledge of natural science of the time. Author of this impressive and unique work,
that also offers invaluable insights into the culture of ancient Roman times, is the
roman scholar and natural scientist Gaius Plinius Secundus, known as Pliny the Elder.
While at the time of Pliny the Elder crystals are retrieved with comparatively simple
methods, like the extraction of vitriol by evaporating mine or spring waters, many
different technically advanced and more complicated methods of growing crystals are
employed today. However, they are still based on the same mechanisms, e.g. melt,
solution and vapor growth, that have already been known for many centuries. [5, 6]

Until the 17th century the rock-crystals were widely believed to be an organic
material that is formed by bacteria in the soil. This opinion was first challenged
by the Danish scientist Nicolaus Steno, also known as Niels Stensen, who argued
that crystals grow in an inorganic process at high temperatures, where tiny particles
are formed in an aqueous solution and assemble into crystals. Niels Stensen is also
regarded as one of the founders of crystallography, with his observation of constant
interfacial angles independent of the shapes of investigated quartz crystals. [5, 7]
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1 Introduction

Although Niels Stensen assertion on the formation of crystals fundamentally re-
shaped the perspective on crystal growth, aspirations to answer the question why
crystals form and what mechanisms underlie the process only arose much later. Today,
a manifold of techniques of growing single crystals can be employed, which can be
tailored to meet required properties like size, purity and control of the defect structure.
The crystal growth techniques can be roughly divided in three categories, depending
on the nature of their nutrient phase, which can be either liquid (melt or solution),
vaporous (condensation, sublimation or reaction) or a strained solid. [5]
The growth of a crystal from a nutrient phase takes place in three stages. First a
driving force needs to be present, which leads to a departure of the system from
its equilibrium condition by forming a supersaturated or supercooled state. In the
nucleation stage, clusters of particles spontaneously form and dissociate in the nutrient
phase. When the clusters by chance become larger than the critical size, the growth
stage is entered, where the particles grow into crystals. [7]

Many advances in crystal growth were made in the 20th century and the invention of
different methods enabled the growth of single crystals of more and more complicated
compounds. In the category of melt growth, zone melting was first implemented in
1928 by P. Kapitza to grow a Bi single crystal. The growth of high-quality single
crystals of Bi was a hot topic at the time and crystal growth methods and research
was advanced, among others, by L. Shubnikov who observed the Shubnikov-de Haas
effect in such Bi single crystals in 1930 together with W. J. de Haas [8]. The basic
mechanism behind zone melting, is creating a molten zone in a bar of material via a
movable heater and creating two opposing interfaces. One of the interfaces serves as a
feeding rod, where material is dissolved, while the second interface is used as a seeding
rod, where the material recrystallizes and the single crystal is formed. In recent times,
the promising quantum spin-liquid candidate YbMgGaO4 was synthesized in single
crystalline form with the zone melting method. [5, 9]
YbMgGaO4 fitted right into the model proposed for triangular lattice antiferromag-

nets by P. W. Anderson. Therefore, YbMgGaO4 was introduced as a prospect QSL in
2015, not least because it fulfilled the most comprehensible and essential requirement
of evading long-range magnetic order to lowest temperatures. However a structural
peculiarity of the material finally disputed the initial interpretation as a spin liquid
candidate. The complexity of real-life materials is a common difficulty faced in the
search for QSL materials. [2, 10]

Nevertheless, the triangular lattice remains a viable host for potential QSLs and
the investigation of YbMgGaO4 turned the interest to the related compound family
of AYbX2 (A: alkaline metal, X: chalcogen). The synthesis, characterization and
investigation of multiple members of this family is the focal point of this thesis.
In contrast to YbMgGaO4 the synthesis of AYbX2 single crystals is based on a solution
growth method. The premise of solution growth is to solve the material in a liquid
medium, with a subsequent recrystallization under controlled conditions that allow
the formation of single crystals [5]. For AYbX2 generally a high-temperature self-flux
method is applied that simultaneously uses ACl as flux and for providing the respective
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alkaline metal ion. In contrast to the floating zone method used for YbMgGaO4,
substantially smaller crystals are produced in this way for AYbX2. Therefore, the one
of the goals of this thesis is to produce crystals large enough for specific measurements.
While for many measurements performed in this work the achieved sample size is
sufficient, samples are also provided for low-temperature dilution fridge measurements
as well as potential future INS measurements and need to fulfill the specifications of
those measurements, which are in general dependent on larger crystal size.

The structure of the thesis is as follows. In Chapter 2 the fundamentals of magnetism
are reviewed and an introduction to the QSL physics is presented, both tailored
to the specific case of the family of Yb-based triangular antiferromagnets AYbX2.
Additionally, the concept of heat capacity and its connection to magnetic entropy is
discussed.
In the subsequent Chapter 3 the measurement techniques employed in the preparation
of this work are covered, which includes methods for sample characterization like
X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) as well as
measurements addressing the magnetic properties.
The up-to-date research on YbMgGaO4 is summarized in Chapter 4, illuminating the
extensive investigation necessary to identify or disprove a QSL.
The following Chapters 5-9 address the synthesis, characterization and low-temperature
(T > 0.4K) investigation of the spin-liquid candidates NaYbO2, KYbO2, KYbS2

and NaYbSe2 as well as the doping series KYb(SxSe1−x)2. For all compounds a
short summary of the current state of research is presented in the beginning of the
respective chapter. The characterization of the crystal structure is done by performing
Rietveld refinements on powder XRD measurements. For investigation of the magnetic
and physical properties low-temperature and high-field magnetization, susceptibility,
electron spin resonance (ESR) and specific heat measurements are performed on
most compounds and summarized in a preliminary phase diagram. For the previously
studied NaYbO2 (Chapter 5) results of the aforementioned measurements are available
from literature and my master thesis [11]. In this work a pressure study entailing
synchrotron XRD, susceptibility and µSR measurements of NaYbO2 is presented. In
Chapter 6 the results for the so far less investigated KYbO2 are compared to NaYbO2

to understand the influence of exchanging the alkaline metal of AYbO2. The results
obtained on KYbO2 in this thesis are published in Ref. [12]. For KYbS2 only basic
measurements are reported in literature up to now, which are complemented and
extended to lower temperatures in Chapter 7. NaYbSe2, on the other hand, is also
well studied in literature and revisited in Chapter 8 mainly for the purpose of synthesis
and characterization of samples for complementary, low-temperature dilution fridge
measurements, which are not part of this work. Chapter 9 comprises the synthesis
and investigation of the doping series KYb(SxSe1−x)2, with the goal to research the
influence of introducing structural randomness on the AYbX2 compounds.
A comparison and summary of all investigated compounds are presented in Chapter 10
and Chapter 11.
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2 Background

2.1 Magnetism of Free Ions

The magnetism in solids is mainly mediated via electrons, while the contribution of the
nucleus is neglectable in most cases at least for temperatures above 1 K [13]. The orbital
angular momentum l and the spin angular momentum s are two intrinsic properties of
electrons. In classical approaches the orbital angular momentum is derived from the
orbital motion of an electron around the nucleus, while a precession of the electron
around its own axis was presumed to be the origin of the spin angular momentum.
However, the classical view of magnetism is rather limited, as it prohibits magnetic
moments in systems in thermal equilibrium, contradicting experimental observations.
The classical approach is therefore not applicable to magnetism, an inherently quantum
mechanical phenomenon. Although the initial, classical interpretation of the orbital
and spin angular momentum is incorrect, it was shown that they can be translated
into the quantum picture. The electronic state which is occupied by the electron then
defines the angular momentum l̂, with the eigenvalues of l̂2 = l(l + 1) and l̂z = ml.
The latter is the z component of l̂. Additionally, electrons have an intrinsic magnetic
moment which is related to the intrinsic angular momentum, namely the spin of the
electron ŝ. Analogous to l̂, the eigenvalue of ŝ2 and the z component are s(s+ 1) and
ms, respectively. The quantum number s of an electron is 1

2
and ms = ±1

2
. [14, 15]

To determine the magnetic moment of an atom the contribution of all electrons need
to be considered. Since the filled shells have no net angular momentum, the decisive
contribution is given by the partially filled shells of the atom. For these not completely
filled shells the individual electrons contribute to the total orbital angular momentum
L̂ =

∑
l̂ and the total spin angular momentum Ŝ =

∑
ŝ. In addition to that, one

needs to consider a coupling between the orbital angular and spin momentum. If this
spin-orbit interaction is weak one can define the total angular momentum Ĵ = Ŝ + L̂,
where the eigenvalues of Ĵ2 is j(j + 1) and of Ĵz is mj . The energy eigentstates of the
atom without considering the spin-orbit interactions are determined by the values of
S and L, leading to (2L + 1)(2S + 1)-fold degeneracy of the energy levels. Taking
the spin-orbit interaction into account, the degeneracy is lifted into the so called fine
structure determined by the value of J , with a (2J + 1)-fold degeneracy of energy
levels. [14, 15]

The total orbital angular momentum L and the total spin angular momentum S
take values that minimize the energy of the atom. A guideline for minimizing the
energy of an atom and determining its ground state is defined by the three Hund’s
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2 Background

rules.
According to Hund’s rules, the first quantum number to be determined is the total spin
quantum number S. For electrons the Pauli exclusion principle needs to be considered
to achieve a minimization of the Coulomb energy. Therefore the first Hund’s rule
requires a maximization of S.
Next, the total orbital angular momentum quantum number L also needs to be
maximized. This rule is again based on the need to minimize the Coulomb repulsion.
The third rule thrives to minimize the spin-orbit energy. The value of J therefore
depends on the filling degree of the shell. For a less than half filled shell J is determined
by J = |L− S|, while for a more than half filled shell J is given by J = |L+ S|.
The application of Hund’s rules is not universal, however. While they give a very
good estimation for rare earth ions, other systems like the transition metal ions show
deviations from the third rule. In the case of the transition metal ions the crystal field
dominates the energy scale and leads to the violation of the third Hund’s rule. [14]

The rare earth ions, on the other hand, are well described by Hund’s rules, since
crystal-field splittings are small compared to the spin-orbit coupling. Yb3+ serves as
a convenient example for their application. A Yb3+ ion contains thirteen 4f electrons,
hence a total spin angular momentum quantum number of S = 1

2
is obtained in

accordance with Hund’s first rule. The orbital angular momentum quantum number is
maximized with L = 3 for the nearly completely filled 4f shell. Lastly, J = |3+ 1

2
| = 7

2

is derived for a more than half filled shell. The (2L+ 1)(2S + 1) = 14-fold degeneracy
of the spin and orbital angular momenta is lifted by the spin-orbit coupling. The
resulting (2J + 1) = 8-fold degeneracy of the ground state of the isolated ion can
be further reduced by smaller terms like the crystal field, as will be discussed in the
following chapter. [14]

With the total angular momentum Ĵ the magnetic moment of an atom or ion can
be calculated

µ̂ = −gJµBĴ, (2.1)

with the Bohr magneton µB. The g-factor gJ is determined as

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.2)

Since the magnetic moment is dependent on the value of the total angular momentum
J only ions and atoms with partially filled electronic shells have a magnetic moment.
Fully filled shells lead to J = 0. [14, 16]

2.2 Crystal Electric Field
In a solid the magnetic ions cannot be viewed as isolated and one needs to consider
the influence of their environment on the magnetic properties. Magnetic ions that are
incorporated into a crystal structure are exposed to the electric field of the surrounding
anions, which is called the crystal electric field (CEF). The crystal field theory is a
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2.2 Crystal Electric Field

convenient approach to explaining the effect of the crystal field on the magnetic ions by
modeling the orbitals of the neighboring ions as point charges. A more accurate view
on the influence of the environment on the magnetic ions can be obtained through the
ligand field theory, based on the molecular orbital theory. For the scope of this work
the crystal field theory is sufficient since the f-orbitals of the Yb3+ ions are localized
and do not hybridize with the p-orbitals of the ligands. The effect of the crystal field
on the magnetic ion is heavily dependent on the symmetry of the crystal and therefore
on the arrangement of the anions surrounding the magnetic ion. In addition to that,
it is also dependent on the magnetic ion itself. Two prominent groups of magnetic
ions can be differentiated: the 3d transition metal ions and the 4f rare earth ions. The
reason for their different behaviors lies in the nature of their orbitals. In the case of
4f elements the orbitals are closer to the nucleus and are shielded from the crystal
field by the 5s and 5p shells. The 3d transition metals, on the other hand, feel the full
force of the crystal field to the point that the spin-orbit coupling is diminished and
Hund’s third rule doesn’t apply. This becomes evident when the effective magnetic
moments are calculated and compared to the experimentally determined values. For
the 4f elements good agreement between experiment and calculation is observed,
while the 3d transition metals show a rather large deviation, with the exceptions
of the half filled and fully filled shells where L = 0. The experimental effective
moment of the 3d elements is much better reciprocated if the orbital momentum is
disregarded: µeff = 2µB

√
S(S + 1). This quenching of the orbital momentum is a

direct consequence of the change in the order of the energy levels, where the spin-orbit
coupling is replaced by the crystal field interaction in significance.

The octahedral environment imposed on a 3d transition metal is a prominent
example for the effect of the crystal field, as depicted in Fig. 2.1. In this case the
magnetic ion is often surrounded by non-magnetic ions, i.e. oxygen. For the free atom

x

y

z

x

y

z
(b)

eg

t2g

(a) (c) (d) (e)

E

Figure 2.1: Splitting of the ground state energy levels under the influence of an octahedral
crystal field. The dx2−y2 (a) and the dxy (b) orbital in the octahedral environment are shown
exemplarily. (c) The eg orbitals (dx2−y2 , dz2) are raised in energy while the t2g orbitals (dxy,
dxz, dyz) become energetically favorable. (d),(e) High- and low-spin configuration depending
on the crystal field strength compared to the pairing energy. Adapted from Ref. [14].
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2 Background

the orbitals are (2L + 1) = 5-fold degenerate while for a magnetic ion in a crystal
this degeneracy can be lifted by the crystal field. In the octahedral crystal field the
t2g orbitals, which comprises the dxy, dxz and dyz orbitals, are energetically favorable
since the angular distribution of their charge density points between the x-, y- and
z-axis and experience less overlap with the neighboring p orbitals [see Fig. 2.1(a)].
In comparison, the eg orbitals, which contains the dz2 and dx2−y2 orbitals, are raised
in energy since their orientation along the z- axis for the dz2 orbital and the x- and
y-axis for the dx2−y2 orbital shown in Fig. 2.1(b), generates a larger overlap with the p
orbitals of the oxygen ions. The lifting of the 5-fold degenerate ground state into the
eg and t2g orbitals is depicted in Fig. 2.1(c). For the transition metal ions with only
partially filled 3d shells the electrons can populate the no longer degenerate orbitals
in two ways. As stated in the first Hund’s rule the electrons strive to singly occupy
the orbitals in order to minimizes the Coulomb energy. If the crystal field energy is
smaller than the so called pairing energy the first Hund’s rule is obeyed resulting in a
high spin state, which is known as the weak field case [see Fig. 2.1(d)]. On the other
hand, if the crystal field energy is larger than the pairing energy the low spin state
(strong-field case) is achieved. The lower energy orbitals are then doubly filled before
electrons are elevated to the higher energy orbitals, as shown in Fig. 2.1(e). [14, 16]

Although the crystal field interaction is not strong enough to overcome the spin-orbit
coupling for the 4f elements, it still has a significant impact on their energy levels and
hence their ground state. The J(J + 1)-fold degeneracy of the 4f ions is lifted in the
crystal field, resulting in two possible scenarios for the splitting of the energy levels
depending on the symmetry of the crystal field and the value of J . The Kramers
theorem provides a general rule for the splitting of the energy levels in accordance to
the value of J : Systems with an even number of electrons (i.e. an integer value of J)
can split into singlets, while a half-integer value of J (i.e. an odd number of electrons)
keeps the energy levels at least two-fold degenerate. [14, 17]

L=3, S=1/2 J=7/2

S=1/2

SOC CFE

Yb3+: 4f13

CEF

Jeff=1/2

Figure 2.2: Splitting of the 14-fold spin and orbital degeneracy by the spin-orbit coupling to
the 8-fold degenerate ground state of the J = 7

2 Yb3+ ion. In the crystal field of the D3d

point group the 8-fold degeneracy is then split into four doublets with an effective Jeff = 1
2

ground state. Adapted from Ref. [18].
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2.3 Dia- and Paramagnetism

The ground state of a free Yb3+ according to Hund’s rules is determined in Chap-
ter 2.1 with S = 1

2
and L = 3. The spin orbit coupling in Yb3+ compounds is around

0.36 eV, while the crystal field splitting is typically at least one order of magnitude
smaller (YbMgGaO4 ≈ 0.036 eV), confirming that the spin-orbit coupling needs to
be considered before the crystal field splitting [9, 19,20]. It lifts the 14-fold spin and
orbital degeneracy to a 8-fold degenerate state with J = 7

2
(see Fig. 2.2). For Yb3+

ions in the crystal field of the D3d point group the 8-fold degeneracy is further split
into four doublet states in agreement with the statements of the Kramers theorem.
Due to the rather large separation between the Kramers doublets the ground state
of YbMgGaO4 and other Yb3+ based triangular antiferromagnets is dominated by
the lowest Kramers doublet and these systems can be treated as effective spin-1

2

systems. [18]

2.3 Dia- and Paramagnetism

In addition to the CEF of neighboring atoms, magnetic moments can also be influenced
by externally applied magnetic fields. The magnetic susceptibility χ describes the
change of the magnetization M, the magnetic moment per volume, induced by an
external magnetic field H: χ = ∂M/∂H. If the correlation between M and H is
linear this can be simplified to χ = M/H. [21]

Magnetic materials can have different responses to the application of a magnetic
field.
Diamagnetism is encountered in all materials, although its contribution is generally
rather weak. It is characterized by a negative susceptibility. A general understanding
of diamagnetism can be obtained from the classical point of view through Lenz’s law.
An externally applied magnetic field affects the orbital motion of the electrons, which
in turn induces a magnetic field that opposes the external field.
Paramagnetism is associated with a positive susceptibility. The Pauli paramagnetism
of the conduction electrons in metals and the van Vleck contribution of excited states
give temperature independent contributions to the paramagnetism of a material. Van
Vleck paramagnetism is also observed in systems with J = 0 ground state, where no
magnetic response is expected if a magnetic field is applied. The paramagnetism in
those systems stems from the excitation to states with J ̸= 0.
In addition to the rather small temperature independent parts permanent, localized
magnetic moments contribute a temperature-dependent paramagnetic response to the
susceptibility [see Fig.2.3(a)], described in the Langevin theory of paramagnetism.
The randomly oriented magnetic moments are inclined to align in the direction of an
externally applied magnetic field, leading to an increase of the magnetization M . The
influence of a magnetic field on the magnetization is given by

M = MsatBJ(y) (2.3)
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2 Background

and depicted in Fig. 2.3(b). The saturation magnetization Msat = ngJµBJ (n: number
of spins per unit volume) is reached when all spins are aligned parallel to the magnetic
field. The Brillouin function BJ(y), with y = gjµBJB/kBT , describes the shape of
the magnetization curve:

BJ(y) =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

( y

2J

)
(2.4)

For small magnetic fields and high temperatures (y << 1) the Brillouin function
can be simplified using the Taylor expansion and the molar susceptibility can be
deduced in the simple form of the Curie law:

χ =
M

H
=

nµ0µ
2
eff

3kBT
=

C

T
. (2.5)

Here µ0 is the vacuum magnetic permeability and C = nµ0µ
2
eff/3kB is the Curie

constant. The effective magnetic moment µeff can therefore be determined from
measurements of the susceptibility,

µeff =

√
3kB
nµ0

C, (2.6)

and compared to the effective moment expected from the the value of J which is
calculated as

µeff = −gJµB

√
J(J + 1). (2.7)

(b)(a)

Figure 2.3: (a) Magnetic susceptibility (black) and inverse magnetic susceptibility (red) of
a paramagnet. Plotting the inverse susceptibility allows to linearly fit the data with the Curie
law. (b) Brillouin-like magnetization curve of a paramagnetic material. The dashed line
indicates the maximum magnetization (Msat) that is reached in the fully polarized regime.
Adapted from Ref. [16].
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Conventionally the effective magnetic moment is expressed in terms of µB and has
no units. An alternative name for the effective moment frequently encountered in
literature therefore is the Bohr magneton number. [14,16]

The Curie law well describes the susceptibility of a paramagnetic material and yields
valuable information on the magnetic moments. In practice, commonly the inverse
susceptibility is analyzed with the Curie law by applying a linear fit [see Fig. 2.3(a)].

2.4 Exchange Interactions

2.4.1 Origin of Exchange

So far interactions between magnetic moments within solids have not been considered,
however, they are essential for explaining the phenomena of long-range magnetic
order and spin liquid formation. First the interaction between two magnetic dipoles is
considered. The energy that characterizes the interplay of the two dipoles µ1 and µ2

with a distance r between them is given by

E =
µ0

4πr3

[
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

]
. (2.8)

For two moments with µ ≈ 1µB and a distance of 1Å between them, the magnetic
dipolar interaction is estimated to be about 1K. Therefore, the dipolar interaction
is too weak to explain the appearance of magnetic order in most materials and may
only become relevant for systems that order in the millikelvin range. [14]

The relevant exchange interactions prompting the formation of long-range order
therefore must have a different origin. A simple two-electron model is a convenient
starting point to understand the mechanism behind the exchange interactions. The
spin part of the electron wave function can either consist of a singlet or a triplet state.
The energy difference between the triplet and singlet state ES −ET determines which
state is favorable. The triplet state is favored in the case of the two electron model,
leading to a ferromagnetic exchange between the electrons in agreement with the
Pauli exclusion principle. If the electrons are located on different atoms like in the
hydrogen molecule, i.e. the distance between the nuclei is small and the orbitals show
significant overlap, the situation is reversed. The singlet state becomes energetically
favorable due to the energy gain generated by the formation of a chemical bond that
exceeds the energy loss due to repulsion between electrons. The triplet state cannot
experience this energy gain since the Pauli principle precludes two electrons of the
same spin to be in the same place. [14,15]

For isolators the virtual hopping process provides another point of view on the
interaction between magnetic moments. If two electrons are on the same site, they
experience a strong Coulomb repulsion, which is called Hubbard U in analogy to the
Hubbard model. A system thrives to minimize the on-site Coulomb energy, e.g. in
the half filled limit the electrons singly occupy each lattice site and for U = ∞ this is
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the ground state of the system. If U is large but not infinite, there is a probability
t for the electron to hop between two neighboring sites, provided that the spins are
oriented antiparallel. The hopping process leads to an energetic saving and makes
the singlet state energetically favorable to the triplet state, where the hopping is not
possible due to the parallel alignment of spins. [14,15]

The exchange mechanisms provide the basis for the magnetic interactions in insu-
lating materials. The easiest imaginable process in which the electrons of neighboring
magnetic atoms interact is the direct exchange. However, a sufficient direct overlap
of the magnetic orbitals is necessary in this case, which is often not realized in real
materials. Especially the 4f elements, with their strongly localized electrons which lie
close to the nucleus, are not amenable to the direct exchange mechanism. [14]
The magnetic exchange in rare earth and other insulating transition-metal compounds
has to be mediated. The Goodenough-Kanamori-Anderson rules describe the magnetic
exchange between non-neighboring magnetic ions (M) mediated by a non-magnetic
intermediate ion (ligand, L). Two scenarios are possible depending on the interaction
geometry. If the magnetic ions and the mediating ion are arranged in a 180◦ geometry,
the d-orbitals of the magnetic ions directly overlap with the same p-orbital of the
ligand, as depicted in Fig. 2.4(a) and (b). For simplicity it is assumed that the orbitals
of the magnetic ions are occupied by only a single electron each. In the case of an
antiferromagnetic arrangement of spins in the magnetic ions, the electrons of the

Figure 2.4: (a),(b) Illustration of the 180° superexchange. Hopping of the ligand electrons
is only allowed for antiparallel arrangement of the spins of the magnetic ions. On the other
hand, in the case of 90° superexchange hopping is only possible for parallel oriented spins in
the magnetic ions (c) and forbidden for antiparallel oriented spins (d).

12



2.4 Exchange Interactions

ligand are free to hop from the p-orbitals into the d-orbitals and gain energy in the
process. On the other hand, the hopping process is forbidden if the spins in the
magnetic ions are oriented parallel. The 180◦ superexchange therefore promotes an
anitparallel (antiferromagnetic) coupling between the magnetic ions.
Another way magnetic interaction can be mediated is through the 90◦ coupling geom-
etry where the d-orbitals overlap with two different p-orbitals [see Fig. 2.4(c) and (d)].
The hopping process in this case is possible for antiparallel and parallel arrangement
of the spin of the magnetic ion. If the spins of the magnetic ions are antiparallel, the
electrons in the p-orbitals of the ligand have antiparallel spins. Parallel spins in the
d-orbitals of the magnetic ion, on the other hand, lead to a parallel arrangement of
spins in the p-orbitals of the ligand, which is in accordance with the maximization of
S required by the first Hund’s rule. The parallel spin arrangement is therefore accom-
panied by an energy gain and the 90◦ super exchange favors a parallel (ferromagnetic)
spin arrangement. [14, 15]

2.4.2 Heisenberg Model

The interactions between all spins in a system can be described with the Heisenberg
spin Hamiltonian

H =
∑
⟨ij⟩

JijŜiŜj. (2.9)

Jij is the exchange integral or coupling constant describing the interaction between
spin i and spin j and should not be confused with the total angular momentum J. Ŝi

and Ŝj are spin operators. Although their notation indicates that they represent the
spin angular momentum they may, in fact, represent any angular momentum operator
(Ŝ, L̂ or Ĵ).

In general the exchange interactions are not isotropic and the exchange integral is
not a scalar but a matrix Jij:

H =
∑
⟨ij⟩

ŜiJijŜj. (2.10)

Common examples for direction dependent interactions are the Ising case, where
interactions are restricted to the z-components,

HIsing =
∑
⟨ij⟩

JijŜ
z
i Ŝ

z
j (2.11)

and the XY spin Hamiltonian

HXY =
∑
⟨ij⟩

Jij

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j

)
, (2.12)

for interactions in the x-y plane.
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The general Hamiltonian given Eq. 2.10 can also depend on the bond direction.
Therefore it can be instructive to split the Hamiltonian into symmetric and antisym-
metric parts:

H = Hsym +Hasym =
∑
⟨ij⟩

ŜiΓijŜj +
∑
⟨ij⟩

Dij

(
Ŝi × Ŝj

)
. (2.13)

The symmetric part of the Hamiltonian implicates the interactions which do not
depend on the bond direction. The asymmetric term is the Dzyaloshinsky-Moriya
interaction which induces a sign change upon changing the bond direction. [15]

For the materials discussed in this work the Dzyaloshinsky-Moriya interactions are
forbidden due to the inversion centers between the magnetic ions [22].

2.5 Ferro- und Antiferromagetism
Interactions between localized magnetic moments lead to collective magnetism and
the formation of long-range order or more exotic ground states. Two prominent cases
of magnetic order are ferromagnetism and antiferromagnetism.

In ferromagnets the magnetic moments spontaneously align parallel to each other
below the ordering temperature Tc. This leads to a non-zero magnetization even
when no magnetic field is applied. Ferromagnetism corresponds to a positive coupling
constant Jij in the Heisenberg spin Hamiltonian.

Antiferromagnetism is associated with a negative exchange integral Jij and leads
to an antiparallel alignment of the magnetic moments. The Néel temperature TN

indicates the transition between the paramagnetic high-temperature behavior and the
magnetically ordered phase. Antiferromagnetism is often viewed in the sense of two
interpenetrating sublattices, where one sublattice only contains spins pointing up and
the other spins pointing down. The net magnetization of the antiferromagnet is zero
if both sublattices contain the same amount of magnetic moments.

The temperature of the transition to the magnetically ordered phase, Tc or TN,
depends for both cases of magnetic order on the competition between the exchange
interactions and the thermally driven paramagnetic behavior. At high temperatures
the thermal energy is larger than the energy gain achieved through the formation
of magnetic order. In the paramagnetic regime the susceptibility of ferro- and
antiferromagnets therefore follows a Curie-like behavior which can be deduced from
the mean-field approach. The mean-field approach introduces a molecular field that
is produced by the neighboring spins. The interactions between magnetic moments
are then substituted by the interaction between spins and the molecular field. This
approach leads to the deduction of the Curie-Weiss law, a modification of the previously
introduced Curie law:

χ =
C

T − θCW

. (2.14)

The Curie-Weiss temperature θCW is positive for ferromagnetic interactions and
negative for antiferromagnets. For θCW = 0 the Curie law for the pure paramagnet is
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(a) (b)

Figure 2.5: (a) Susceptibility and (b) inverse susceptibility of a para-, antiferro- and
ferromagnet. At high temperatures the susceptibility of all three cases of magnetism follows a
Curie-like behavior. When approaching the respective ordering temperatures at low
temperatures the susceptibilities of the antiferromagnet and the ferromagnet deviate from the
Curie-Weiss law. Adapted from Ref. [14].

retrieved. In Fig. 2.5 typical susceptibility curves for a paramagnet, antiferromagnet
and ferromagnet are shown. The Curie-Weiss law is only valid at high temperatures,
at low temperatures close to the respective ordering temperatures TN or Tc deviations
from the Curie-Weiss law are expected. While θCW = Tc is applicable to some extend,
although Tc represents only an estimation in the limits of the mean-field approach,
θCW = −TN is incorrect in most cases even in the mean-field approach.

The behavior of an antiferromagnet close to the ordering temperature is best
understood in the picture of the two intertwined sublattices mentioned before. The
spins in each sublattice are parallel to each other but antiparallel to the spins of the
other sublattice. Two scenarios are differentiated based on the direction in which an
external field is applied.
If the field is applied perpendicular to the spin directions, the spins of both sublattices
are slightly tilted from their (anti-)parallel orientation. This corresponds to a non-zero
net magnetization in the direction of the applied magnetic field and therefore results
in a constant, non-zero susceptibility χ⊥ at low temperatures.
On the other hand, if the magnetic field is applied (anti-)parallel to the magnetic
moments of the sublattices, the magnetization of one of the sublattices is enhanced
compared to the other sublattice. The susceptibility χ∥ is therefore temperature
dependent and becomes zero at T = 0K. [14]

In literature the Néel temperature is often associated with the kink in the magnetic
susceptibility at low temperatures, similar to the observation of a lambda-like anomaly
in the specific heat. In Ref. [23] the connection between the specific heat and the
susceptibility of antiferromagnets was investigated. It was shown that the magnetic
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contribution to the specific heat is proportional to the temperature derivative of the
susceptibility:

CM(T ) ⋍ A
∂

∂T
[Tχ(T )] . (2.15)

A is the proportionality constant that is only weakly temperature dependent. An
anomaly in the specific heat therefore elicits a similar anomaly in ∂χT/∂T , but this
anomaly is actually located above TN. According to Eq. 2.15, the lambda-like anomaly
at the transition temperature in the specific heat is connected to a positively infinite
gradient in the susceptibility. Therefore, the maximum of the temperature derivative
of χ(T ) and not the kink in χ(T ) has to be considered to correctly determine the
ordering temperature from measurements of the susceptibility.

2.6 Influence of the Crystal Field

The crystal electric field influences the magnetic properties of a material. As mentioned
before, Yb3+ ions in the crystal field of the D3d point group exhibit four Kramers
doublets with a rather large energy gap between the ground state and the first exited
doublet, hence the ground state behaves like a spin-1

2
state. This analogy facilitates

the use of the much simpler spin Hamiltonian of a free ion with spin-1
2

to describe the
behavior of the Yb3+ ions in a magnetic field:

Heff = gµBB · Jeff . (2.16)

While g would be equal to 2 for a real spin-1
2

electron, an effective g-factor has to be
assumed to make Eq. 2.16 applicable to the Yb3+ pseudospin-1

2
systems. Since each

of the Kramers doublets is composed of a combination of states with different Jz, the
interaction between spin and magnetic field is anisotropic and an effective g-tensor
has to be used. [14,24]

The contribution of the four Kramers doublets to the susceptibility is a statistical
average

χvv = NLµ0(gjµB)
2
∑
n

∑
m ̸=n

M0
nm

p0n − p0m
E0

m − E0
n

, (2.17)

M0
nm =

∑
αα′

|⟨n0,α|Ja|m0,α′⟩|2; p0n =
exp[−E0

n/(kBT )]

2
∑

n exp[−E0
n/(kBT )]

,

with the Landé g-factor gj = 8
7
. The summation over the CEF doublets with

energies E0
m and E0

n is expressed through the indices m and n, while the sum over the
degenerate states of a doublet is indicated by Greek indices α and α′. p0n represents
the thermal population of a doublet n. The partition function of the CEF doublets is
included in the denominator of p0n. Ja is the projection of the total angular momentum
operator in the direction of the magnetic field field.
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At sufficiently low temperatures (T << ∆CEF) mostly the lowest Kramers doublet
is populated, but thermal excitations to higher-lying doublets give rise to a deviation
from the simple Curie behavior. This deviation becomes better visible if the inverse
susceptibility χ−1 is considered, see Fig. 2.6(a), and is accounted for by a constant,
van Vleck-like term χvv:

χ =
C

T − θ
+ χvv. (2.18)

By fitting the low-temperature part of the data with this formula the ground state
properties can be more accurately determined. An example of the application of
Eq. 2.18 is shown in Fig. 2.6(a).

At high temperatures all CEF levels contribute to the magnetization and the
susceptibility is well described by the Curie-Weiss law, as depicted in Fig. 2.6(a).
However, the values for the Curie-Weiss temperature θHT and Curie constant C
determined at high temperatures do not reflect the ground state properties, since
the determined Curie constant is related to the J = 7

2
state. Therefore the effective

moment determined at high temperatures is expected to be in agreement with the
calculated value for free Yb3+ ions µeff = 4.56µB.

In magnetization measurements the van Vleck contribution becomes apparent in
a linear increase of M(H) above the saturation field. In Fig. 2.6(b) a comparison
between the standard Brillouin-like magnetization curve of a paramagnet with and
without a van Vleck contribution is shown. The van Vleck contribution and the

(a) (b)

Figure 2.6: (a) Inverse magnetic susceptibility of a system with a sizable van Vleck
contribution. The blue line is a fit to the low-temperature part of the susceptibility using
Eq. 2.18. The high-temperature part shows a linear behavior and is fitted with the standard
Curie-Weiss law (red line). (b) Field-dependent magnetization with (red) and without (blue)
a van Vleck contribution. The blue and red lines represent linear fits to the magnetization in
the fully polarized regimes.
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saturation magnetization Msat can be obtained from a linear fit to the magnetization
in the fully polarized regime.

2.7 Frustration
Another factor that influences the interactions between magnetic atoms is the geometry
of the magnetic lattice. In special cases the interplay of exchange interactions and
lattice geometry create a setting, where not all interactions can be satisfied at the same
time. Antiferromagnetically coupled Ising spins on the triangular lattice, for example,
are unable to fulfill all interactions at the same time. This is illustrated in Fig. 2.7(a)
where spin 1 and 2 are antiparallel to each other, fulfilling their antiferromagnetic
interactions. Spin 3, on the other hand, can only be antiparallel to spin 1 or spin 2
and is therefore unable to simultaneously satisfy both interactions. This phenomenon
is called geometric frustration.

Frustration of a magnetic system can also be caused by competing and random
magnetic interactions. In Fig. 2.7(b) this kind of frustration is exemplified for antifer-
romagnetically coupled spins on the square lattice. If one of the antiferromagnetic
bonds is replaced by a ferromagnetic, spin 4 is not able to satisfy both interactions at
the same time. This kind of magnetic frustration is often observed in spin glasses.

Magnetic frustration leads to a degeneracy of the ground state, i.e. in the case
of the antiferromagnetically coupled Ising spins on the triangular lattice frustration
the ground state is sixfold degenerate. The degeneracy can fuel fluctuations, even at
temperatures where magnetic interactions would usually overcome thermal fluctuations.
This causes a shift of the ordering temperature TN to lower temperatures and motivates
the definition of the frustration parameter f ,

f =
|θCW|
TN

, (2.19)
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Figure 2.7: (a) Geometrical frustration on the example of antiferromagnetically coupled
Ising spins on the triangular lattice. (b) Exchange frustration on the example of
antiferromagnetically coupled Ising spins on the square lattice, where one antiferromagnetic
interaction is replaced by a ferromagnetic one. Adapted from Ref. [25].
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that is used to compare the level of frustration of different systems. If a system is
not frustrated TN is usually comparable to the Curie-Weiss temperature θCW and
therefore f ≈ 1. A frustration parameter larger than one indicates that some degree of
frustration is present and for f > 10 a system is classified as strongly frustrated. [25,26]

2.8 Spin Liquids

Frustration leads to a degeneracy of the ground state and the degeneracy leads to
persisting (quantum) fluctuations even at low temperatures. The fluctuations, however,
are not random (like at higher temperatures) but restricted to the ground states of the
system. In the case of the Ising spins on the triangular lattice with antiferromagnetic
exchange interactions considered previously, six different ground states are available
and the spins fluctuate between the different configurations. These kind of systems
with highly correlated but still fluctuating spins are called spin liquids in analogy to
ordinary liquids. [26]

2.8.1 Fluctuations

Concerning the fluctuations of the spins classical and quantum fluctuations are
distinguished. The thermal fluctuations are driven by the thermal energy kBT of
the system. To understand the origin of the quantum fluctuations it is instructive
to consider the Heisenberg model for a spin dimer consisting of two arbitrary spins
S1 = S2 = S with the exchange interaction J : H = JŜ1Ŝ2. For ferromagnetic
interactions (J < 0) a ground state energy of −|J |S2 is obtained independent of
whether the spins in Eq. 2.9 are treated in the classical approximation, i.e. as
vectors, or quantum mechanically, i.e. as operators. The same does not hold true
for antiferromagnetic interactions, where the classical ground state is degenerate;
both |S, − S⟩ and |S, − S⟩ are eigenstates with the energy −JS2. In contrast, the
quantum treatment yields a non-degenerate ground state with an energy of −JS(S+1),
rendering antiferromagnetism an inherently quantum mechanical phenomenon. The
eigenstate is a superposition of different |Sz

1 ,S
z
2⟩ states, for example 1√

2
(| ↑↓⟩ − | ↓↑⟩)

in the case of the spin-1
2

dimer. In the quantum ground state one cannot differentiate
between the | ↑↓⟩ and | ↓↑⟩ states and the spins can fluctuate between them giving rise
to quantum fluctuations that persist down to 0 K. In frustrated magnets the quantum
fluctuations are enhanced and can lead to the formation of spin liquids.
To what degree spins can be viewed as classical depends on the size of the spin.
The difference between the two scenarios ,−JS2 and −JS(S + 1), becomes more
insignificant the larger the spins are. Therefore, large spins (S ≥ 2) allow for a
classical treatment, while small spins, especially spin-1

2
systems, are of quantum

nature. [15, 26,27]
The nature of the fluctuations divides the realm of spin liquids in those of the

classical and the quantum spin liquids.
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2.8.2 Classical Spin Liquids

Classical spin liquids are found in the form of spin ice materials like Dy2Ti2O7,
Ho2Sn2O7 and Ho2Ti2O7. For these materials the magnetic rare earth ions form a
pyrochlore lattice consisting of corner-sharing tetrahedra. The effective ferromagnetic
exchange Jeff between nearest-neighbors results in frustration due to the Ising nature
of the spins. Spin ice compounds follow the so called ice rules, where the ground
states are composed of all possible configurations with two spins pointing inward to
the center of the tetrahedra and two spins pointing out of the tetrahedra. At low
temperatures (kBT << Jeff) the spins fluctuate between the six degenerate ground
states. Since the fluctuations are thermally driven for large spins (Dy3+: S = 3.5,
L = 0, J = 3.5, Ho3+: S = 4.5, L = 5, J = 9.5), below a certain temperature the
energy necessary to traverse between the spin ice configurations is no longer available.
The fluctuations slow down and finally freeze. [26]

2.8.3 Quantum Spin Liquids

The quantum spin liquid (QSL) proves to be much more elusive than its classical
counterpart. In 1973 P. W. Anderson proposed a QSL ground state for Heisenberg
spins on the triangular lattice [1]. The classical ground state for antiferromagnetically
coupled spins on the triangular lattice is the long-range ordered 120◦ state. Anderson
introduced so called valence bonds where two spins quantum-mechanically couple to
form a spin-0 singlet and gain energy in the process. A valence bond solid occurs
when each spin of a system is coupled to one specific other spin and these pairs do
not change with time. As a result the valence bonds are static and localized and the
system has a non-magnetic ground state. Although the spins are highly entangled
with their valence bond partner, a valence bond solid is not a quantum spin liquid
since it lacks long-range entanglement and breaks lattice symmetry.
To construct a quantum spin liquid one must go a step further and allow quantum
mechanical fluctuations between different valence bonds [see Fig. 2.8(a)]. The ground

(a) (b)

Figure 2.8: (a) Nearest-neighbor RVB. The valence bonds are not static and the ground
state is a superposition of all possible valence bond configurations. (b) RVB state with short-
and long-range valence bonds. Adapted from Ref. [26].
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state is a superposition of all possible valence bond configurations. Valence bonds
are not restricted to their direct neighbors but can also be formed between second
neighbors and so on, as shown in Fig. 2.8(b). Such a system is called a resonating
valence bond (RVB) state. [2, 26]

The RVB state facilitates the formation of so called spinons. The spinons origin
from the excitations of the valence bonds, where the spin dimer state is excited into
a triplet state. As seen before, the triplet state is characterized by a parallel spin
arrangement and in the RVB state those two spins can separate. Since the RVB
ground state facilitates all possible arrangements of valence bonds the two spins can
independently move from one lattice site to the other. The formation of a spinon is
illustrated in Fig. 2.9. [2]

Figure 2.9: Process of spinon formation. The excitation of a valence bond (red) causes the
valence bond to break and creates two unpaired spins. The two spins can move through the
lattice independent of each other and therefore represent spin-12 excitations [2].

Depending on the range over which the valence bonds are formed two types of
spin liquids can be differentiated. The gapped Z2 spin liquids are characterized by
short-ranged valence bonds because a finite amount of energy is required to break
one such bond and create an excitation. For the gapless U(1) QSL the valence bond
are also formed between distant neighbors. In experiment both types of spin liquids
are expected to show a continuum of spinon excitation that is observed in inelastic
neutron scattering (INS). They can be differentiated by the behavior of their specific
heat. In the case of a gapped spin liquid an exponential behavior is expected in
specific heat measurements (as well as in measurements of the magnetic susceptibility).
The gapless U(1) spin liquid in a triangular system, on the other hand, is expected to
show a sublinear T 2/3 power-law behavior in measurements of the specific heat. [2]

In general, a quantum spin liquid is often defined by the absence of magnetic
order at low temperatures, fueled by the quantum fluctuations of strongly interacting
spins. However, the absence of magnetic order is not unique to quantum spin liquids,
but can also be attributed to disordered magnets, like cooperative paramagnets. To
single out a spin liquid, one needs to find other criteria that are characteristic to the
spin-liquid phase. The differentiation between quantum spin liquids and magnets with
randomness is a challenging endeavor due to the subtleties in their magnetic behaviors
and the need for advanced experimental techniques. A fist step in the uncovering a
potential QSL are measurements of the low-temperature specific heat, to reveal the
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presence of fractionalized excitations. Different theoretical predictions exist for the low-
temperature behavior of the specific heat, depending on the ground state of the spin-
liquid, like the aforementioned sublinear T 2/3 power-law for the gapless U(1) spin liquid
in a triangular system. Similarly, thermal transport measurements can be used to probe
the mobility of the fractionalized (spinon) excitations in insulating QSL materials.
Another important technique to identify a QSL and distinguish it from disordered
magnets is inelastic neutron scattering to exclude the presence of static correlations.
In QSL candidates a continuous excitation spectrum is expected, indicating dynamic,
fluctuating spins. Nuclear magnetic resonance (NMR) measurements are used to
investigate the local magnetic envirionments. A sharp, featureless NMR line shape
unaffected by cooling to low temperatures indicates that no static magnetism, caused
by a static disordered state, is present in the system. Finally, µSR measurements,
sensitive to internal magnetic fields, can provide insight in the presence of static or
dynamic moments. [2, 28]

2.8.4 Spin Hamiltonian of the Triangular Lattice

Although Anderson originally proposed the QSL ground state for triangular lattice
antiferromagnets (TLAFs) for systems with purely nearest-neighbor interactions, it
was later shown that the true ground state of these systems indeed is the long-range
ordered 120° state [29, 30]. The TLAFs need some additional ingredient to facilitate a
QSL ground state. Anisotropic exchange interactions are one way to realize a QSL
on the triangular lattice. Another possibility is found in the J1-J2 Heisenberg model,
where next nearest neighbor exchange interactions are introduced and a spin-liquid
phase is expected for J2/J1 ≃ 0.07− 0.15.

The model Hamiltonian for QSL candidates in triangular antiferromagnets therefore
has to take anisotropic exchange and interactions beyond nearest neighbors into
account:

H =
∑
m

[
HXXZ

m +H±±
m +Hz±

m

]
. (2.20)

The summation over m describes the nearest neighbor interactions for m = 1, next-
nearest neighbor interactions for m = 2, and so on.

The XXZ Hamiltonian HXXZ
m expresses the anisotopy between the xy plane, which is

assumed to be isotopic, and the z direction of the triangular lattice, with Jx
m = Jy

m = Jm
and Jz

m = δJm:
HXXZ

m = Jm
∑
⟨ij⟩

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j + δŜz

i Ŝ
z
j

)
. (2.21)

The second and third term in Eq. 2.20 describe bond-dependent components that
are not covered by the XXZ model. H±±

m accounts for the anisotropy in the xy plane

H±±
m =

∑
⟨ij⟩

2J±±
m

[(
Ŝx
i Ŝ

x
j − Ŝy

i Ŝ
y
j

)
cosϕα −

(
Ŝx
i Ŝ

y
j + Ŝy

i Ŝ
x
j

)
sinϕα

]
(2.22)
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and Hz±
m includes the off-diagonal anisotropy

Hz±
m =

∑
⟨ij⟩

Jz±
m

[(
Ŝy
i Ŝ

z
j − Ŝz

i Ŝ
y
j

)
cosϕα −

(
Ŝx
i Ŝ

z
j + Ŝz

i Ŝ
x
j

)
sinϕα

]
. (2.23)

The pre-factor ϕα = 0, ± 2π/3 accounts for the bond dependency. For δ = 1 and
J±±
m = Jz±

m = 0 in Eq. 2.20 the isotropic Heisenberg Hamiltonian given in Eg. 2.9 is
restored. [2]

Based on the Hamiltonian in Eq. 2.20 a phase diagram (see Fig. 2.10) for the
triangular lattice is constructed in Ref. [31] using the density-matrix renormalization
group (DMRG). The phase diagram shows the anisotropic J1-only model (m = 1 in
Eq. 2.20) in the back panel and the isotropic J1–J2–J±± model (Jz± = 0) in the lower
panel. The two models show similarly constructed phase diagrams that facilitate a
collinear stripe order at higher J2/J1 or Jz±/J±±. A spin-liquid region is also present
in both phase diagrams, which appear to be connected, offering even more potential
playground for tuning materials toward a quantum spin-liquid phase. [2, 31]

Figure 2.10: Theoretical phase diagram of triangular lattice antiferromagnets. The back
panel is constructed from the anisotropic J1-only model, while the lower panel is based on the
isotropic J1–J2 model. Both models exhibit a spin-liquid (SL) phase. [31]
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2 Background

2.9 Heat Capacity

The heat capacity of a material is a powerful tool to reveal phase transitions and
gain insights into low-temperature excitations. It quantifies the amount of heat ∂Q
(i.e. energy) needed to raise the temperature ∂T of a system. The heat capacity
is therefore intimately connected to the exitations, which contribute to the amount
of (thermal) energy the investigated material can absorb in a specific temperature
interval. [32]

One differentiates between the heat capacity at constant pressure Cp = (∂Q/∂T )p
and at constant volume CV = (∂Q/∂T )V = (∂U/∂T )V, with the internal energy U .
While the former is experimentally accessible, the latter is more fundamental and
conveniently used in theoretical considerations. They are connected via (Cp − CV ) =
αV V TB, with the volume expansion coefficient αv and the compression coefficient
B. In solids the difference between Cp and CV is small since the thermal expansion
coefficient is negligible. [13,33]

Thermodynamic considerations reveal a direct connection between heat capacity at
constant magnetic field and pressure and entropy

Cp = T

(
∂S

∂T

)
B

. (2.24)

The heat capacity consists of different contributions, depending on what kind of
excitation are present in a material in a specific temperature range. In crystalline
materials exitations of the lattice in form of phonons play an important role. In a
classical setting the lattice vibrations are treated as independent, classical harmonic
oscillators. From these considerations the Dulong-Petit law is retrieved

CV,DP = 3RN = N · 25 J

molK
, (2.25)

with the universal gas constant R and the number of atoms N per formula unit. While
the Dulong-Petit law provides an upper limit for the heat capacity of materials, it
is temperature-independent and therefore fails to describe the decrease of the heat
capacity with decreasing temperature observed in measurements. [13,32]
Einstein provided a theory to describe the temperature dependence of the specific heat
in 1907 by treating the atoms of a solid as free harmonic oscillators, however, their
energy is not continuous but quantized. With this model, the decrease of the heat
capacity towards low temperatures was successfully described, but at low temperatures
the model falls below the measurement values.
In the Debye model the approach of Einstein is improved by taking a coupling between
the atoms into account. For a solid with only one atomic species, this is achieved by
introducing a linear dispersion relation ω = vq, with the sound velocity v and the
wave vector q. Furthermore, Debye assumed a cut-off frequency ωD, which represents
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2.9 Heat Capacity

an upper limit of the phonon frequency without differentiating between longitudinal
and transverse phonons. With these assumptions the specific heat is calculated as

CV =
∂U

∂T
= 9NkB

(
T

θ

)∫ xD

0

x4 exp(x)

(exp(x)− 1)2
dx, (2.26)

with x = ℏω/kBT , xD = ℏωD/kBT and the Debye temperature θ, which is defined by
kBθ = ℏωD. For high temperatures (T → ∞, x → 0) the Dulong-Petit law is retrieved
(Eq. 2.25). In the low-temperature limit (T → 0, x → ∞) one obtains

CV =
12π4

5
NkB

(
T

θ

)3

. (2.27)

This T 3-temperature dependence is in excellent agreement with heat capacity mea-
surements of non-metallic materials at low temperatures. [13,32,34]
In metals, an additional contribution from the conduction electrons has to be con-
sidered that can be obtained by treating them as a Fermi gas. This yields a linear
temperature dependence CV = γT , with the Sommerfeld coefficient γ. The focus of
this work is on insulating materials, therefore the electron contribution to the specific
heat is not relevant in this context. [13, 32,34]
Due to its T 3-nature the lattice contribution to the heat capacity becomes insignificant
at low temperatures. However, not only phonons contribute to the heat capacity and
at sub-Kelvin temperatures, the nuclear and magnetic contributions come into play.
The nuclear contribution is based on the specific heat of a two level system

CV = kB

(
∆

kBT

)2
exp(∆/kBT )

(exp(∆)/kBT + 1)2
, (2.28)

with an energy difference of ∆ between the two levels. The driving force behind this
contribution is the hyperfein splitting of the nuclear spin, which can either origin from
an electric field gradient in combination with a nuclear electric quadrupolar moment
or from internal and external magnetic fields. The resulting maximum in the specific
heat, which is often referred to as the Schottky anomaly, increases exponentially
coming from low temperatures, followed by a decrease that follows a T−2 dependency.
Typically, the Schottky anomaly becomes relevant only at temperatures below 10−2 K
due to the small nuclear magnetic moment. In most measurements only the high-
temperature part is observed and accounted for by a T 2 behavior. [13, 32,34]
For insulating materials, like the AYbX2 compounds, the specific heat is composed of
the following contributions:

Cp = Clattice + Cnuc + Cmag. (2.29)

If the behavior of Clattice and Cnuc is known, the magnetic contribution of the heat
capacity can be extracted from measurements and analyzed.
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2 Background

In ordered magnets excitations in form of spin waves contribute to the specific
heat. Depending on the type of magnetic order the heat capacity shows a different
temperature dependence. For magnon excitations in 3D ferromagnets a T 3/2 behavior
is expected well below the ordering temperature. In 3D antiferromagnets a T 3

dependence is predicted. In both cases, internal magnetic fields can lead to the
formation of a gap in the energy spectrum at very low temperatures, which causes an
exponential temperature dependence of the heat capacity. [34]

In the context of spin liquids the heat capacity can give insights on the nature of the
spin-liquid ground state as well. Different temperature dependencies are theoretically
predicted. An exponential behavior points towards a gapped state, while various power-
law behaviors Cm ∝ Tα are possible for gapless systems. Prominent examples are the
linear-in-temperature dependence of the spinon Fermi surface QSL [35], that can be
reduced to a sublinear T 2/3 behavior in triangular antiferromagnets in combination
with ring exchange. [3, 28,36]

The experimentally determined heat capacity is often normalized to make it inde-
pendent of sample specific properties and is therefore referred to as the specific heat
capacity [37]. In this work the heat capacity is normalized in relation to the molar
number n

Cp,mol =
Cp

n
=

CpM

m
, (2.30)

with the sample mass m and the molar mass M .
Via equation 2.24 the entropy is directly accessible through measurements of the

specific heat

S =

∫ T

0

CV

T ′ dT
′. (2.31)

By isolating the magnetic specific heat and retrieving the magnetic entropy via Eq. 2.31
information on the ground state of a system can be obtained by comparing it to the
entropy derived from the free energy F

S = −
(
∂F

∂F

)
V

. (2.32)

For a system with z energy levels this approach leads to an entropy of R ln z in the
high-temperature limit. [34]
Therefore, an experimentally determined entropy that approaches R ln 2 indicates a
two-level system. The AYbX2 compounds behave like such two-level systems at low
temperatures due to the lifting of the 8-fold degeneracy of the Yb3+ ions (J = 7

2
) by

the crystal field and the resulting gap between the Jeff = 1
2

ground state doublet and
the first excited doublet.
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3 Measurement Techniques

3.1 Powder X-Ray Diffraction
X-ray diffraction (XRD) measurements are used for initial characterization and
detection of impurity phases, especially for the polycrystalline samples. A Rigaku
Mini Flex 600 (40 kV, 15 mA) diffractometer and an Empyrean diffractometer (40 kV,
40 mA) by Panalytical are utilized for the sample characterization in this work. Both
diffractometers are equipped with a Cu X-ray tube yielding the wave length of the
λ(Kα1)/λ(Kα2) doublet (λ(Kα1) = 1.5406Å; λ(Kα2) = 1.5444Å).

The laboratory XRD measurements are performed employing the standard Bragg-
Brentano geometry. Information about the crystal structure, the existence of potential
impurity phases, sample quality, site disorder, etc. can be obtained from XRD
measurements. The basic concept behind those measurements is described by the
Bragg equation:

2d sin θ = nλ. (3.1)

The equation is derived under the assumption that a crystal consists of parallel planes
separated by the distance d, see Fig. 3.1(a). Depending on the wavelength λ of the
X-rays and the distance d constructive interference occurs between the diffracted
X-ray beams for certain angles θ. A maximum of the intensity is detected for those
angles that fulfill the Bragg equation.

θ θ
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incident X-ray

re
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sample

quartz

(b) (c)

Figure 3.1: (a) Schematic picture of X-ray diffraction from two lattice planes (adapted
from Ref. [38]). (b), (c) Sample holder for the SXRD measurements of KYb(SxSe1−x)2 at
the ESRF in Grenoble. The powdered sample is fixed in the top part of the capillary by filling
the rest of the capillary with crushed quartz glass.
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Most samples were also investigated with high-intensity, monochromatic synchrotron
XRD (SXRD) at the European Synchrotron Radiation Facilities (ESRF) in Grenoble
and at the synchrotron facility ALBA in Spain. KYbS2 and KYb(SxSe1−x)2 crushed
single crystals were measured at the ID22 beamline at the ESRF (λ = 0.35432Å). All
compounds were measured at approximately 290K. The KYbS2 sample was addition-
ally measured at 5K, however, due to a broken cryostat window the measurement
is contaminated with ice. The polycrystalline KYbO2 was measured at the MSPD
beamline at ALBA (λ = 0.32525Å) at 10K.

The synchrotron radiation is created by deflecting electrons via a magnetic field.
The electrons are generated in an electron gun and accelerated in the linear accelerator
to a speed close to the speed of light. After the initial acceleration the electrons access
the booster synchrotron. They travel around this large ring, e.g. a circumference of
300 m at the ESRF, to gain even more speed before they proceed to the storage ring.
In the storage ring (circumference 844m, ESRF) the electrons travel at the speed
of light under ultra-high vacuum conditions. Different kinds of magnets are used to
keep the electrons on their path (bending magnets), keep the electron beam focused
and as narrow as possible (focusing magnets) and produce high intensity synchrotron
radiation (undulators). Although it is not the main purpose of the bending magnets,
they also produce synchrotron radiation due to the energy loss of the electrons when
they change direction. This radiation is emitted tangentially to the path of the
electrons and is used for the for X-ray scattering and spectroscopy experiments. [39]

The synchrotron X-ray diffraction measurements are performed using an experi-
mental setup especially designed for high resolution powder diffraction. The samples
are finely ground and placed into thin-walled glass capillaries [see Fig. 3.1(b),(c)]. To
ensure the powder is fixated at the tip of the capillary it is topped of with crushed
quartz glass and the open end of the capillary is sealed with vacuum grease. During
the measurements the capillary is spun to reduce preferred-orientation effects.

3.2 Energy Dispersive X-Ray Spectroscopy

Energy dispersive X-ray spectroscopy (EDX) is based on the characteristic X-ray
emission spectra of the elements. In a compound EDX provides information on the
exact composition of elements in a sample, especially useful in the case of doped
substances. To generate the characteristic X-rays an electron beam is used to eject an
electron in the inner shell, i.e. the K shell [see Fig. 3.2(a)]. The occurring vacancy is
subsequently filled by an electron from an outer shell. Only electrons that fulfill the
selection rule ∆l = ±1 and ∆j = 0,±1 are able to transition into the hole. Depending
on the shell the electron originates from, X-rays of characteristic energy are released,
corresponding to the energy difference between the two electron shells [see Fig. 3.2(b)].

The characteristic X-rays are termed for the shell the corresponding electron
transitions to (K, L, M, ...) and a subscript (α, β, ...). The Greek subscript indicates
from which shell above the vacancy the replacing electron originates, i.e. the radiation
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3.2 Energy Dispersive X-Ray Spectroscopy

emitted if an electron transitions from the L shell to the K shell is termed Kα radiation.
The influence of the fine structure of the electron shell is indicated by a subscript
number, Kα1. [40–42]

EDX measurements are performed to analyze the composition of the KYb(SxSe1−x)2
single crystals and verify the homogeneity of the substitution throughout the individual
crystals. The single crystals are fixed on the sample holder using silver epoxy, as
shown in Fig. 3.2(c), where an EDX sample holder with an array of crystals prepared
for the EDX measurement is depicted. To check the homogeneity different areas of
the crystal are investigated separately, the obtained energy spectra are analyzed using
the AZtec software. An electron picture of a crystal is shown in Fig. 3.2(e) where the
different investigated areas are displayed as well. Fig. 3.2(d) shows a typical energy
spectrum determined for KYb(SxSe1−x)2 single crystals.

e-

e-

e-

e-

K shell

L shell
M shell

Kα

LαX-ray Kβ

(a) (b) (c)

(d)

Figure 3.2: (a) An electron beam (blue) generates a vacancy by ejecting an electron from
the inner shell (red) (adapted from Ref. [40]). (b) An outer shell electron (grey) fills the
vacancy and emits characteristic X-ray radiation (green) (adapted from Ref. [40]).
(c) KYb(SxSe1−x)2 single crystals fixed with silver epoxy on a sample holder. (d) Typical
EDX energy spectra of a KYb(SxSe1−x)2 crystal, the inset (e) shows the electron picture of
the measured crystal with the different investigated areas.
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3.3 Electron Spin Resonance Spectroscopy

Electron spin resonance (ESR) measurements are used to investigate the local mag-
netism of magnetic ions in solids. Fig. 3.3(a) shows the schematic setup for an ESR
measurement. The sample is placed in a cavity, microwave radiation can be introduced
via a wave guide and a static magnetic field transverse to the microwave radiation is
supplied by the magnet. While the frequency of the microwave radiation is fixed to a
specific value (hν) the static magnetic field applied to the sample is swept during the
measurement.

The magnetic field lifts the (2J + 1)-degeneracy of the investigated atom [see
Fig. 3.3(b)]. According to the Zeeman effect, the splitting of the energy levels depends
on the applied magnetic field:

E = gµBmJB. (3.2)

ESR measurements are based on dipole transitions (∆mJ = ±1) between the different
Zeeman levels of an atom. Transitions are induced via the microwave field when the
energy difference between two adjacent Zeeman levels is ∆E = gµBB = hν. The
absorption from the transverse magnetic microwave field is measured as a function of
magnetic field, see Fig. 3.3(c).
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Figure 3.3: (a) Illustration of the experimental setup of the ESR measurement.
(b) Splitting of the degenerate energy levels in a magnetic field on the example of an ion with
J=1. (c), (d) Absorption spectrum and first derivative of the absorption spectrum. Adapted
from Ref. [14]
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3.4 Magnetic Property Measurement System

To improve the signal-to-noise ratio a lock-in technique is used that adds a small
oscillating magnetic field in the sample space and records the derivative dP/dH of
the absorbed power P [see Fig. 3.3(d)].

3.4 Magnetic Property Measurement System

A standard SQUID magnetometer from Quantum Design (MPMS) is used to perform
susceptibility χ(T ) and field-dependent magnetization M(H) measurements. Suscep-
tibility is measured under an applied magnetic field of 1T from 2K to 300K and
magnetization measurements are performed at 2 K between 0 an 7T. Additionally, a
3He refrigerator is used to extend the temperature range of the MPMS measurements
down to 0.4 K.

For performing the measurements solid, polycrystalline samples are fixated in a
plastic capillary using cotton filament. To measure ground polycrystalline samples
the powder is filled in a specifically designed capillary. The capillary is attached to a
brass sample holder or fixed inside a plastic straw.
Fig. 3.4 shows the different preparation methods for the individual single crystal
measurements. Single crystals are glued to a glass sample holder using varnish for
standard 4He measurements and either fixed inside a plastic straw with a small piece

(a)

(c) (e)

(b)

(d)

Figure 3.4: Sample holders used for the M(T ) and M(H) measurements with the MPMS.
(a) Single crystal of KYb(SxSe1−x)2 fixed to a quartz glass sample holder using varnish for
H ⊥ c measurements between 2 and 300K. KYb(SxSe1−x)2 sample fixed in a plastic straw
with a piece of a plastic straw (b) or glued to the plastic straw using varnish (c) for 3He
measurements with H ⊥ c. (d) KYbS2 single crystal attached to a Torlon disk using varnish.
(e) Torlon disk with attached KYbS2 single crystal pushed into a plastic straw for H ∥ c
measurements with 3He. The samples for the 2-300K MPMS measurements with H ∥ c were
prepared in a similar manner.
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3 Measurement Techniques

of plastic straw or glued to the plastic straw using varnish for the 3He measurement.
For measurements with H ⊥ c the single crystals are glued onto a Torlon disk with
varnish and fixed inside a plastic straw. The background signal caused by the magnetic
response of the Torlon disk is measured and subtracted from the measured signal.

In a SQUID (Superconducting Quantum Interference Device) magnetometer the
magnetic response of a material to an applied magnetic field is measured by moving
the sample through superconducting detection coils. As schematically shown in
Fig. 3.5(a), the detection coils consist of two outward coils with counter-clockwise
winding and the two inner coils are winding clockwise. This second-order gradiometer
setup ensures that the applied magnetic field is not influencing the measurement of
the sample signal, since the coils are only sensitive to changes of the magnetic field.
By moving the sample through the detection coils the change of the magnetic flux
induces a current in the pick-up coils. The current is transformed into a voltage curve
by the SQUID and depicted as a function of the sample position. By fitting with an
expected response function the magnetic moment of the sample is determined.

The SQUID consists of a superconducting ring with two Josephson junctions [see
Fig. 3.5(b)]. A Josephson junction consists of two superconductors separated by a thin
insulating barrier. The change of magnetic field detected by the detection coils of the
MPMS is conveyed as a flux through the superconducting ring via a flux transformer.
The magnetic flux through a superconducting ring is quantized by the flux quantum
Φ0 = h/2e = 2.07 · 10−15 Wb (h: Planck’s constant, e: electronic charge), therefore
only integer multiples of the flux quantum can be enclosed by the superconducting
loop. By applying a bias current to the superconducting ring Cooper pairs tunnel
through the Josephson junctions. A change of flux through the superconducting
ring changes the phase difference at the two junctions that alters the flow of Cooper
pairs and therefore the current of the SQUID. If a gradual change of flux is applied
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Figure 3.5: (a) Schematic picture of the MPMS measurement setup. The detection coils
pick up on the signal created by moving the sample up and down. The green arrows indicate
the winding direction of the coils. The current signal is transformed into a voltage signal by
the SQUID (adapted from Ref. [43]). (b) Schematic picture of a SQUID (adapted from
Ref. [44]).
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to the SQUID an oscillation of the current is observed, showing a maximum if the
flux through the superconducting ring is an integer value of the flux quantum and
a minimum if the flux is equal to a half integer value of Φ0. For the analysis of the
sample signal in the MPMS not the change of current in the SQUID is observed, but
the influence the changing magnetic field has on the voltage across the SQUID. [44]

Since the SQUID is a very sensitive device it is located outside of the sample
chamber and screened by a superconducting shield to ensure that the magnetic field
in the sample chamber and any influences of the environment are negligible.

To investigate the influence of pressure on the magnetic properties susceptibility
measurements using a miniature ceramic-anvil high-pressure cell [45–48], which is
compatible with the standard MPMS setup, are performed. Fig. 3.6(a) shows a
schematic picture of the pressure cell. Pressures of up to 7.9GPa can be achieved
with this opposed anvil high-pressure cell, depending on the sample space and culet

locking nut 
(CuBe)

cylinder
(CuBe)

CuBe gasket

 piston 
(CuBe)

composite
ceramic anvil sample

Pb

(a) (b)

(c)

Figure 3.6: (a) Schematic picture of the miniature ceramic-anvil high-pressure cell used for
the susceptibility measurements on NaYbO2 under pressure (adapted from Ref. [45]).
(b) Measurements of the superconducting transition of the Pb pieces outside of and inside the
pressure cell. The transition temperature of the Pb piece outside of the pressure cell remains
at 7.2K, while the transition temperature of the Pb inside the pressure cell is shifted to lower
temperatures with increasing pressure. (c) Comparison of the pressure applied to the pressure
cell and the pressure inside the pressure cell determined from the transition temperature of
Pb.
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diameter of the anvil. Naturally, a smaller sample space correlates to higher maximum
pressure but places strong limitations on the sample size and has to be attuned with
the magnetic response of the investigated material. The background magnetization of
the cell is small in comparison to similar pressure cells made from different materials.

The sample is placed in the small cut out in the CuBe gasket together with a small
piece of Pb and the sample space is filled with Daphne oil as the pressure-transmitting
medium. The Pb piece is used to determine the pressure within the sample space by
tracking the superconducting transition of Pb that is shifted from about TSC = 7.2K
at ambient pressure to lower temperatures with increasing pressure. For better
comparability an additional Pb piece is glued to the outside of the pressure cell
using varnish. Fig. 3.6(b) shows an exemplary measurement of the superconducting
transition temperature of the Pb. The first transition at about 7.2K corresponds to
the reference Pb piece outside the pressure cell. The Pb piece was detached before
the measurement at 7MPa, therefore only the transition at about 6.5K is observed.
The data of the 7 MPa measurement was shifted for better comparison with the other
measurements. The pressure is determined from the temperature difference of the
superconducting transition via [49]

p =
TSC(0)− TSC(p)

0.365± 0.003
. (3.3)

Fig. 3.6(c) shows a comparison between the pressure applied to the pressure cell and
the pressure within the sample space. Interestingly, the pressure within the cell seems
unaffected by applying an external pressure of 4MPa to the cell. A sharp increase
of the internal pressure is only observed at an external pressure of 5.5MPa, where a
large shift between the superconducting transition of the Pb piece outside and inside
the mCAC can be observed in Fig. 3.6(b).
Pressure in the sample space of the gasket is induced by placing the assembled pressure
cell with unscrewed locking nut in a press, applying pressure and tightening the locking
nut at the top. To determine the background magnetization caused by the magnetic
response of the pressure cell and the Pb piece, measurements without a sample
are performed beforehand at ambient pressure. The background measurements are
performed using the same measurement specifications as for the sample measurements.
The extraction of the sample data is done with the MPMS Analyzer program developed
by M. Seidler, via point-by-point subtraction of the background signal [50].

In the measurements performed in this work the largest available culet d = 0.9mm
diameter is chosen to allow the use of a maximum size NaYbO2 sample to generate
the highest possible measurement signal. Despite these preconditions, the sample
used in the measurement has a mass of only 0.79mg.

In addition to MPMS measurements magnetization up to 50T was measured in
the High Magnetic Field Laboratory Dresden (HLD). The measurements on KYbO2

and KYbS2 were performed at about 0.5K in a triply compensated extraction mag-
netometer within a 50 T mid-length-pulse magnet. The polycrystalline KYbO2 was
ground in a glovebox and fixed between two wooden pieces in a small capton tube [see
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Figure 3.7: Sample preparation for the high-field magnetization measurements. (a) Ground
polycrystalline KYbO2 sample fixed in a capton tube using two pieces of wood. (b) All the
KYbS2 crystals used for the measurements. (c)Stacking of crystals into the groove of the
sample holder for the H ⊥ c measurement for a single layer of crystals and (d) for all
crystals stacked in the sample holder for the measurement. (e) KYbS2 single crystals stacked
for the H ∥ c measurement. (f) Sample holder with the arranged single crystals partially
inserted into the capton tube for the measurement.

Fig. 3.7(a)]. The KYbS2 single crystals were stacked in a small sample holder using
vacuum grease to keep them in place. The sample holder was then pushed inside a
capton tube, see Fig. 3.7(b)-(f).

3.5 Physical Property Measurement System

Heat capacity and VSM magnetization measurements are performed utilizing a stan-
dard PPMS (Physical Property Measurement System) from Quantum Design.

The measurements of the specific heat are performed at 0T between 0.5 and
10K with the 3He refrigerator and up to 300K with the regular PPMS set-up.
The polycrystalline KYbO2 is measured in various applied fields between 0.5 and
10K. For KYbS2 only 0T measurements are performed since the sample platform is
oriented perpendicular to the applied magnetic field. Due to the platelet-like shape
of the crystals and the resulting limited thickness (<< 1mm) attaching the crystals
perpendicular to the field is not possible. No field-induced magnetic order is observed
for H ∥ c in the field range of the PPMS (0− 14T).

The samples were attached to the platform using N-grease to ensure a good thermal
contact [see Fig. 3.8(b)]. For each sample measurement an individual addenda was
created by measuring the heat capacity puck with N-grease applied to the platform
without the sample using the same temperature set-points as for the subsequent
sample measurements. This enables an exact background subtraction.

Fig. 3.8 shows a schematic picture of the heat capacity puck. Platinum wires connect
the otherwise freely suspended sample platform to the puck frame and function as the
connection to the heater, thermometer and thermal contact. The measurements are
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performed under vacuum conditions and a cap on top of the puck prevents further
environmental influences on the measurement.

The specific heat is determined by applying a heat pulse to the sample platform,
which transmits a known amount of heat with constant power to the sample. After a
fixed amount of time the heat pulse is interrupted and the sample is allowed to cool
down for the same duration as the heat pulse. By measuring the temperature of the
heating and cooling cycle and fitting with a theoretical model the heat capacity at
constant pressure is determined:

Cp =

(
dQ

dT

)
p

. (3.4)

sample
apiezon greaseplatinum wire
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(puck frame)
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(puck frame)
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Figure 3.8: (a) Schematic picture of the heat capacity puck [51]. (b) Two KYbS2 single
crystals fixed to the sample platform of the 3He heat capacity puck using a small amount of
N-grease. Two crystals were used in an attempt to compensate the low sample mass,
however, due to the low thermal conductivity of the insulating material this approach did not
yield better results as the measurements of only one single crystal.
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4 Yb-Based Triangular
Antiferromagnets

Anderson’s proposal of RVB physics for spin-1
2

Heisenberg triangular lattice anti-
ferromagnets in 1973 and their connection to high-temperature superconductivity
recognized in 1987 led to an increased interest in the search for real life materials.

One promising material is YbMgGaO4, which was first investigated by Li et al. [10]
in 2015 with a detailed study on polycrystalline samples. The results of the study
suggest YbMgGaO4 to be a QSL candidate which fits right into the model introduced
by Anderson. Shortly after large single crystals were available, making YbMgGaO4

an even more interesting candidate to investigate the spin-liquid physics [9].
In the R3̄m symmetry the Yb3+ ions are located on a perfect triangular lattice in the
ab plane, separated by double layers of nonmagnetic Mg/Ga triangular bipyramids.
The large distance between the magnetic layers prohibits intralayer magnetic couplings
and therefore constricts the magnetism to two dimensions. Site-mixing is inhibited by
the large size difference between the magnetic Yb3+ and the nonmagnetic Mg+2/Ga+3

ions. Additionally, the antisymmetric Dzyaloshinskii-Moriya interactions are forbidden
due to inversion symmetry. The interplay of strong spin-orbit coupling and CEF
splitting leads to an effective spin-1

2
ground state in YbMgGaO4. [9, 10,52]

The standard thermodynamic measurements performed on YbMgGaO4 are reported
in several publications, the key results of the measurements relevant for this work
are given in Tab. 4.1. A summary of the experimental findings, highlighting the
peculiarities of YbMgGaO4, is given in the following, including brief overviews on
measurements like inelastic neutron scattering (INS), µSR and thermal conductivity
κ(T ) which help to shed light on the true ground state of YbMgGaO4.

The field-dependent magnetization M(H) exhibits a rather broad saturation feature
and shows a linear increase above the saturation magnetization for both field directions,
H ∥ c and H ⊥ c, which was ascribed to the influence of van Vleck paramagnetism [9,
10]. At low temperatures the magnetization shows an untypical deviation from linearity
at 2 T, which corresponds to a plateau feature in its field derivative χ(H) = dM/dH.
A possible explanation for this feature is a suppressed 1

3
magnetization plateau,

indicating an up-up-down (uud) magnetically ordered phase, of the nearest-neighbor
triangular Heisenberg antiferromagnet [53] that is destroyed due to the strong easy-
plane anisotropy [10]. Similarly, an up-up-up-down (uuud) phase characterized by a
1
2

plateau was considered as the origin of the non linearity [54,55].
Heat capacity measurements in zero magnetic field display no signs of magnetic

order down to 60mK, however, a broad hump is observed at 2.4K which is shifted
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4 Yb-Based Triangular Antiferromagnets

to higher temperatures with increasing magnetic field, which is possibly linked to a
crossover into a QSL state. The low-temperature part of the magnetic specific heat in
zero field follows a power law (αT γ) with γ = 0.7, which is close to the theoretically
predicted T 2/3 behavior of an U(1) QSL. The exponent increases with increasing
magnetic field and reaches a value of 2.7 at 9T. [10]
The thermal expansion α(T ) mirrors the temperature dependence of C(T ), as stated
by the Grüneisen relation α(T ) = ΓC(T ) , with the Grüneisen constant Γ, and shows
a similar power law behavior at low temperatures (α(T ) ∝ T 0.8) [54].
µSR studies on single crystals confirmed the absence of spin freezing down to at

least 22mK and showed clear deviation from typical spin glass behavior [56,57].
Despite its many advantages as a potential spin-liquid material, YbMgGaO4 has one

big imperfection: a disorder of Mg2+ and Ga3+ ions in the nonmagnetic layers, that
was already briefly mentioned in the very first publication in 2015. The importance
of this disorder was only revealed much later through investigations of the CEF
excitations that display an unusual broadness [58, 59]. The broadening of the CEF
excitations was traced back to the disorder in the non-magnetic layer, which leads to
a distribution of g-values by causing the position of the Yb to vary from the ideal
position [59]. Subsequent INS measurements under high magnetic fields (7.8T and
8T) revealed a broad excitation continuum. In this field regime YbMgGaO4 is in
the fully polarized sate and, contrary to the experimental observation, narrow spin
wave excitations are expected [58,59]. The random distribution of Mg2+ and Ga3+
ions therefore has influence on the effective spin-1

2
g-factors as well as the magnetic

couplings [59]. However, the broad continuum was also interpreted as signatures of
a spinon-Fermi-surface U(1) QSL, based on the observation of a V-shaped splitting
of the excitation continuum at the Γ point. This interpretation is further supported
by the good agreement of the measured and theoretically predicted behavior of the
V-shaped splitting under the influence of a weak magnetic field [60, 61]. Another
approach to explain the (gapped) high energy excitations is based on nearest-neighbor
RVB-type correlations. In this case, the high energy excitations are ascribed to the
breaking of nearest-neighbor valence bonds, while at low energies gapless excitations
are caused by the rearrangement of valence bonds and the concurrent propagation of
unpaired spins [62].

The dispute on the ground state of YbMgGaO4 is further fueled by measurements
of the thermal conductivity κ(T ), where the existence of a magnetic contribution, and
therefore the presence of magnetic excitations (i.e. gapless spinons), is debated [63,64].
The absence of a magnetic contribution to the thermal conductivity would imply that
no gapless spinons are present in YbMgGaO4, although the large magnetic specific
heat suggest the presence of magnetic excitations. An alternative interpretation is
that the spinons do not contribute to the thermal transport for some reason [63].
X. Rao et al. [64], on the other hand, observed a magnetic contribution to the thermal
conductivity, even though it is very small, indicating that magnetic excitations are
indeed present in YbMgGaO4. Furthermore, applying a magnetic field leads to an
increase of the thermal conductivity at low temperatures caused by phonons scattering
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at magnetic exitations. The small magnetic contribution to the thermal conductivity
therefore might be due to the fact that the spinons do not carry heat, instead the
phononic heat transport might be hindered by the magnetic exitations present in
YbMgGaO4.

A frequency dependent peak at 0.099(6)K observed in measurements of the ac-
susceptibility, which represents a clear signature of a spin glass, furthers the doubts
on the QSL interpretation of YbMgGaO4. Free impurities or the freezing of only a
small fraction of spins, with most spins remaining dynamic, are considered as the
origin of the spin glass signature in the ac-susceptibility. [62, 64,65]

Applying hydrostatic pressure to YbMgGaO4 results in an uniform compression of
the structure. Both the Yb-O distances and the Yb-O-Yb bridging angles shrink as a
result, while the structural randomness is not impacted. An increase of J1 is assumed
from the structural changes, while J2 should not be affected. The µSR measurements
at 2.6GPa do not show any significant changes compared to the measurements at
ambient pressure in zero field. In an applied longitudinal field a change of the scaling
behavior is observed, indicating an evolution towards a frozen state in line with the
ac-susceptibility measurements. However, bulk spin freezing at ambient pressure is
excluded by dc-susceptibility and µSR measurements. Overall, the spin dynamics of
YbMgGaO4 appear collective and are not affected by pressure. [66]

The nature of the ground state of YbMgGaO4 is the center of an ongoing debate.
Several experimental findings, like the absence of magnetic order [10, 54, 58], the
Cp ∝ T 0.7 behavior of the low-temperature specific heat [10,58], and the excitation
continuum observed in INS measurement [58, 67, 68] initially pointed towards an
intrinsic gapless QSL ground state. In this line of thought the spinon Fermi surface
QSL [67], a RVB-like state [68], or a J1-J2 driven QSL state [58,69–72] were proposed.
The question of the presence or absence of a magnetic contribution to the thermal
conductivity [63], the broad transition to saturation at low temperatures in M(H)
measurement [54], the frequency dependent peak in the ac-susceptibility [65], etc.,
however, emphasize the importance of the Mg+2/Ga+2 disorder. In this pathway
the possibility of the mimicry of a QSL was proposed, where the signatures pointing
towards a QSL are ascribed to the structural disorder and the resulting randomness
of exchange couplings [31,73,74].

The investigation of YbMgGaO4 as a potential QSL and the complications due to
the disorder in the non-magnetic layer roused the interest in a compound family that
is closely related to YbMgGaO4. The AYbX2 compounds consist of an alkaline metal
in the A position and a chalcogen in the X position. Most members of the AYbX2

compound family have the same R3̄m space group as YbMgGaO4, although there are
some exceptions, like CsYbSe2 [75], CsYbO2 [76] and TlYbS2 [77] which crystallize in
the hexagonal P63/mmc space group.
In the R3̄m space group the magnetic ions are arranged on a triangular lattice. The
individual magnetic layers are separated by a single layer, which consists of only one
nonmagnetic element: the alkaline metal A. Therefore, disorder is evaded in these
materials. The polycrystalline NaYbO2 was the first member of the AYbX2 family
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4 Yb-Based Triangular Antiferromagnets

which was extensively studied, but was quickly followed by multiple sister compounds,
like NaYbSe2, which are also available in single crystalline from. Not all of these
compounds proved to be spin-liquid candidates. KYbSe2 for example exhibits magnetic
order at low temperatures [78, 79]. Nevertheless, the AYbX2 compound family is
providing a diverse playground for the investigation of triangular antiferromagnets
which show a wide range of phenomena and phases. In the following, some rather well
studied compounds (NaYbO2, NaYbSe2) will be revisited, adding some complementary
or reviewed information. Additionally, more in-depth investigations of less investigated
members of the AYbX2 family, like KYbO2 and KYbS2, are provided. The influence
of disorder on the potential QSL candidate KYbS2 is studied by doping with Se
towards the magnetically ordered KYbSe2.

Table 4.1: Overview of the characteristic properties of YbMgGaO4. The measurements in
Ref. [10] are performed on polycrystals, therefore, only averaged values are determined. The
low-temperature (LT) susceptibility in Ref. [10] and Ref. [67] was fitted with the standard
Curie-Weiss law. In Ref. [9] the van Vleck contribution χvv determined from the
magnetization measurements was subtracted before fitting with the Curie-Weiss law.

XRD Susceptiblity (LT) Magnetization

lattice parameter (Å) θCW (K) χvv

(
emu
mol

)
a (Å) c (Å) H ∥ c H ⊥ c H ∥ c H ⊥ c

[10] 3.40212(8) 25.1191(6) −4.11(2) (av.) 0.00681(6) (av.)

[9] 3.4061(22) 25.130(16) −1.47 −2.7 0.0150(2) 0.00382(8)

[67] – – −3.2 −4.78 0.00899(6) 0.000469(2)

Magnetization

Msat (µB) Hsat (T) g

H ∥ c H ⊥ c H ∥ c H ⊥ c H ∥ c H ⊥ c

[10] 1.600(2) (av.) – – 3.2 (av.)

[9] 1.860(3) 1.530(2) – – 3.721(6) 3.06(4)

[67] – – – 3.819(2) 3.004(1)

[54] 1.860(3) 1.530(2) 5 7 – –

[64] 1.8 1.45 5 7 – –
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5 NaYbO2

NaYbO2 was one of the first members of the AYbX2 family that was extensively
studied. Hence, numerous publications containing standard analysis methods as
well as more specialized techniques are available [11, 80–85]. Prior to the start of
my PhD work I contributed in the compilation of Ref. [80] and the investigation of
NaYbO2 was the focus point of my Master thesis [11]. In this chapter, the already
available information on NaYbO2 is summarized and extended by low-temperature
susceptibility data as well as a detailed investigation of the influence of hydro-static
pressure on the structural and magnetic properties of NaYbO2 via susceptibility,
SXRD and µSR measurements.

5.1 Literature Results

The synthesis of NaYbO2 is a straight forward solid state reaction that is either based
on stoichiometric mixtures of Na2O and Yb2O3 [83–85] or Na2CO3 and Yb2O3 [11,
80–82]. The starting materials are filled into aluminum oxide crucibles heated at
700-1000 ◦C for 8 h to 4 days depending on the synthesis, including a regrinding and
subsequent reheating step.

Neutron powder diffraction [81] and SXRD [80] measurements revealed the absence
of impurities in NaYbO2 while the R3̄m symmetry is retained. Additionally, the ab-
sence of disorder in the nonmagnetic layer in NaYbO2 compared to YbMgGaO4 makes
NaYbO2 an ideal candidate to study QSL physics on the triangular lattice. A compar-
ison of the lattice parameters from different studies on NaYbO2 is given in Tab. 5.1
together with other characteristic values determined from standard measurements.

Field-dependent magnetization measurements showed saturation above 12 T, with
a linear increase above the saturation field due to the van Vleck magnetism. At low
temperatures a plateau was observed between 4 and 5T, however the exact value of
the plateau is debated, with both Msat/3 and Msat/2 as likely candidates [80,84,85].
Both kinds of plateaus are expected in triangular antiferromagnets, corresponding to
a uud [86] or a uuud [55] ordered phase, respectively.

Measurements of the magnetic susceptibility showed no bifurcation between ZFC
and FC as would be expected for a spin glass system [80, 85]. No sign of magnetic
order was observed down to 0.5K at fields below 2T. In magnetic fields larger than
2 T magnetic order appears, indicated by a kink at low temperatures [84]. The inverse
susceptibility follows a linear behavior at high temperatures, with a change of slope
below 100K due to the CEF splitting and the increasing population of the ground
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5 NaYbO2

state doublet. A depiction of the inverse susceptibility can be found in Ref. [82]. Both,
high and low-temperature regimes (H < 2T ), were investigated with the Curie-Weiss
law. The negative values for the Curie-Weiss temperature confirms antiferromagnetic
interactions [11, 80,81,84,85].

The ESR measurements on polycrystalline samples revealed a rather strong g-factor
anisotropy in NaYbO2, indicated by an additional shoulder in the ESR spectra, which
made it possible to determine g⊥ and g∥ separately. The effective moment and Curie-
Weiss temperature obtained from ESR measurements are in good agreement with the
results of the susceptibility measurements. The ESR linewidth gives an estimate of
the energy gap between ground state and first excited crystal field level, ∆ = 320K,
that is similar to the one determined from INS measurements of the CEF levels
(∆ = 400K [80]) and supports the assumed pseudospin-1

2
scenario. [81, 84]

The three CEF excitations observed in the INS measurement are sharp and resolu-
tion limited with no indication of structural disorder [80, 82]. Low energy neutron
diffraction measurements confirmed the presence of gapless excitation in NaYbO2 and
the absence of magnetic order in zero field, while in an applied field of 5 T uud order
was observed [80,81].

µSR and ac-susceptibility measurements showed no signs of spin freezing down to
50mK and further supported the absence of magnetic order [80].

The absence of magnetic order in zero field was further confirmed by heat capacity
measurements down to 70 mK. Similar to YbMgGaO4, a broad maximum was observed
in the specific heat. It is located at 1 K in zero field and shifts to higher temperatures
if a magnetic field is applied. The appearance of magnetic order was observed at
magnetic fields larger than 2 T in the form of a λ-shaped peak, that is initially shifted
to higher temperatures with increasing the field up to 4T. Above 4T the magnetic
ordering temperatures slowly decreases with further increasing magnetic field up to
9T. At 6T an additional feature was observed, that can be interpreted as a second
ordering peak [84]. The analysis of the low-temperature behavior of the specific heat
revealed a power law behavior suggesting gapless excitations with an exponent of
γ ≈ 2 for weak applied magnetic fields [80]. In zero field a more complex behavior was
observed. While in Ref. [81] the T 2 behavior was postulated for zero field as well, a
linear T-dependence of the low-temperature specific heat was determined in Ref. [84].
The analysis in Ref. [80] covers the largest-temperature regime, containing data points
down to 70 mK, but found both linear and quadratic temperature dependence fail to
describe the low-temperature behavior. Instead an unusual two power-law approach
was employed to achieve a satisfactory match: aT p + bT q, with p = 2.9 and q = 0.5.
The first exponent might be related to the T 3 behavior observed for magnons in long-
range ordered antiferromagnets, while the sublinear power-law behavior is reminiscent
of the behavior of the low-temperature specific heat in YbMgGaO4.

The magnetic entropy was calculated from the specific heat and reaches a value
close to R ln 2 at 40K, another feature of the pseudospin-1

2
ground state [84].

Although NaYbO2 is already well studied, the thermodynamic measurements are
revisited in this work to gather reference data for the comparison with the newly studied
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5.1 Literature Results

Table 5.1: Characteristic properties of NaYbO2 compiled from the literature. The
susceptibility at high temperatures (HT) was fitted with the Curie-Weiss law in Ref. [11] and
with the modified Curie-Weiss law in the case of Ref. [84] and Ref. [85]. To describe the
low-temperature (LT) behavior the modified Curie-Weiss law was applied in Ref. [11],
Ref. [85] and Ref. [81]. In Ref. [80] the low-temperature susceptibility was fitted linearly
after the van Vleck contribution from the high-field magnetization was subtracted. In the case
of Ref. [84] the susceptibility was also corrected for χvv and fitted linearly but it is unclear
from which measurement χvv is obtained.

XRD Susceptibility (HT)

lattice parameter (Å) θCW (K) χvv

(
emu
mol

)
µeff (µB)

[84] a = 3.35 c = 16.63 −100 1.6 · 10−5 4.5

[85] a = 3.348 c = 16.6527 −120 0.00366 4.5

[80] a = 3.34799(5) c = 16.4812(4) – – –

[81] a = 3.34556(3) c = 16.4559(3) – – –

[11] a = 3.344768(9) c = 16.45823(8) −110 – 4.66

Susceptibility (LT) Magnetization

θCW (K) χvv

(
emu
mol

)
µeff (µB) µ0Hsat (T) χvv

(
emu
mol

)
Ms (µB)

[84] −6 0.000517 2.6 12 0.00559 1.36

[85] −10 0.00446 2.4 – 0.0117(4) 1.24

[80] −5.64(1) – 2.84(2) 16 0.00564 1.75

[81] −10.3(8) 0.0053(3) 2.63(8) – – –

[11] −9.3 0.00576 2.65 – – –

ESR

g⊥ g∥ gav µESR (µB) θESR (K) ∆ (K)

[84] 3.28(8) 1.75(3) 2.86 2.4 −9 320

[81] 3.294(8) 1.726(9) – – – –
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5 NaYbO2

KYbO2. In addition to that, NaYbO2 is investigated under pressure to gain insights on
the influence of pressure on the exchange couplings. The modification of the exchange
coupling by applying pressure might ultimately induce long-range order in NaYbO2,
simliar to the spin-liquid candidates Yb2Ti2O7 [87] and herbertsmithite [88] where
pressure induced magnetic order is observed at 0.1GPa and 2.5GPa, respectively.

5.2 Low-Temperature Magnetization
In the magnetization measurements at low temperatures the formation of the afore-
mentioned plateau is observed between 3.5 and 5T at 0.65µB, see Fig. 5.1(a). The
plateau is most pronounced at 0.4K and smears out with increasing temperature.
The temperature evolution is best observed in the second field derivative of M(H),
where the beginning and end of the plateau can be traced via the respective minimum
and maximum as shown in Fig. 5.1(b). A slight shrinking of the field range of the
plateau is observed in the d2M/dH2 plot. Also, the flattening of the plateau with
increasing temperature is displayed in the shrinking of the minima and maxima in
the second derivative.

In other members of the AYbX2 family magnetization plateaus have been observed
as well. With a value of about Msat/3 it is ascribed to an up-up-down ordered phase [53,
79, 89]. For NaYbO2 a range of saturation magnetizations between 1.24µB [85] to
1.75µB [80] are reported (see Tab. 5.1). Therefore, the plateau can be interpreted
as a Msat/2 as well as a Msat/3 plateau and both interpretations are discussed as
likely scenarios in the literature. A Msat/2 plateau would indicate the formation of an
up-up-up-down (uuud) [55] order between 3.5 and 5T. However, neutron diffraction
measurements are available for NaYbO2 where an uud order was observed in Ref. [81].
Anisotropy of the Yb3+ moments might be the origin of this dissonance [81].
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Figure 5.1: (a) Low-temperature magnetization of NaYbO2 with the plateau feature located
between 3.5 and 5T. (b) Second field derivative of M(H) for determination of the beginning
and end of the plateau region via the respective minima and maxima.
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5.2 Low-Temperature Magnetization

The susceptibility of NaYbO2 was measured down to 0.4 K to observe the transition
to the magnetically ordered phase. At low temperatures a kink in the inverse suscep-
tibility is visible [see Fig. 5.2(a)] and the phase transition is located at the inflection
point. Therefore, the transition to the magnetically ordered state is best traced by
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Figure 5.2: (a) Low-temperature inverse susceptibility of NaYbO2. The transition to the
magnetically ordered state is observed as a kink and marked with a star. (b)-(e) First
derivative of χ−1(T ) calculated to determine the exact temperature of the transition via the
maxima or minima of the derivative. At 5T two peaks are observed in the derivative for the
first time. With increasing field the minima become less distinct and the transition
temperatures are harder to determine.
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calculating the first derivative of χ−1 and identifying the respective maximum or
minimum as shown in Fig. 5.2(b). The phase transition appears for the first time at
2 T and 0.42 K, then shifts up to 1 K at 4.5 T. For higher magnetic fields two transitions
are observed in the derivative of χ−1. While the first transition temperature only
decreases weakly from 1 K at 5 T to 0.94 K at 7 T, the second phase transition is more
temperature dependent and decreases to 0.75 K at 7 T. The temperature evolution of
the magnetic phase with increasing field traced by the susceptibility measurements
is in good agreement with the observations of magnetic order in the specific heat
in Ref. [84]. Ranjith et al. [84] also observe two phase transition above 5T in the
specific heat, where an additional, less pronounced peak appears below the original
anomaly, and a kink in the susceptibility measurements down to 0.5K. In Ref. [12]
the second transition in the specific heat is also observed, although not as a distinct,
additional peak but as a shoulder feature below the lambda-like anomaly of the first
phase transition.

The information gained from the low-temperature measurements in this chapter is
used to complement the phase diagram presented in Ref. [12] and will be discussed in
Chapter 6.8.

5.3 Pressure Study

The influence of hydrostatic pressure on NaYbO2 is investigated in the following via
SXRD, susceptibility and µSR measurements. A similar study was performed on
YbMgGaO4 as was mentioned in Chapter 4.

5.3.1 Synchrotron XRD

The SXRD measurements at the MSPD beamline (ALBA, Spain) [90] were performed
by Alexander Tsirlin and Ece Uykur (HZDR). The data were analyzed by the author.
To apply pressure to the sample a diamond-anvil cell loaded with methanol-ethanol
mixture was used, which allowed measurements between ambient pressure and 5 GPa.
In Fig. 5.3(a) an exemplary SXRD measurement at 4.1GPa is shown. Applying
pressure leads to a shift of the reflection peaks to higher angles, as can be seen on the
example of the (003) peak in Fig. 5.3(b).

The R3̄m crystal symmetry remains unchanged up to the highest pressure of the
measurement. Same as for YbMgGaO4, two parameters are essential to investigate
the influence of pressure on the system: the Yb-O distance and the O-Yb-O angle
β. The angle β is equal by symmetry to the Yb-O-Yb angle α, which mediates the
nearest neighbor superexchange interaction.

Le Bail refinements were performed to obtain the lattice parameters, which are the
starting point for studying the evolution of the local structure under pressure via DFT
relaxations. In this way the Yb-O distances and Yb-O-Yb angles were determined
by Alexander Tsirlin. Both lattice parameters a and c are found to decrease with
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Figure 5.3: (a) SXRD pattern of NaYbO2 collected in the diamond anvil cell under the
pressure of 4.1GPa. (b) Shift of the (003) peak to higher angles with increasing pressure.

increasing pressure, however, the decrease is more prominent for c. In comparison, the
shrinkage of the lattice parameters for YbMgGaO4 is rather uniform. The pressure
evolution of the lattice parameters is shown in Fig. 5.4(a). The pressure evolution of
the unit-cell volume as well as the lattice parameters a and c is analyzed by fitting
with the second-order Birch-Murnaghan equation of state

p(V ) =
3B0

2

[(
V0

V

) 7
3

−
(
V0

V

) 5
3

]
. (5.1)

This fit was done using the EoSFIT routine [91] determining a bulk modulus of
B0 = 105(5)GPa and unit-cell volume of V0 = 160.2(2)Å3 For comparison the same
fit as for the unit-cell volume V was applied to a3 and c3, yielding B0,a = 150(8)GPa
and B0,c = 70(4)GPa for the bulk modulus, respectively. The bulk modulus obtained
for YbMgGaO4, B0 = 142(2)GPa [66], is somewhat larger than that of NaYbO2,
rendering NaYbO2 more compressible than YbMgGaO4.

Both, the Yb-O-Yb angle and the Yb-O distances show a decrease with increasing
pressure [see Fig. 5.4(b),(c)]. At the maximum pressure of the µSR measurements of
2.4 GPa the Yb-O distances shrinks by 0.2% and by 0.5% at 5.3 GPa. The Yb-O-Yb
(α = β) angle becomes closer to 90° with increasing pressure, a decrease of α by 0.22◦

up to 2.4 GPa and 0.44◦ at 5.3 GPa is determined. This observation stands in contrast
to the ones made for YbMgGaO4 [66], where applying pressure had a stronger impact
on the the Yb-O distances in YbMgGaO4, with a shrinkage of 0.6% at 2.6GPa. On
the other hand, the Yb-O-Yb (α = β) angle only decreases by 0.07◦ at 2.6GPa and
0.2◦ at 10 GPa for YbMgGaO4, much less than in the case of NaYbO2. This dissimilar
behavior can be explained by the anisotropic nature of the compression in the case of
NaYbO2, where c decreases much faster than a.
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Figure 5.4: Pressure evolution of the lattice parameters a and c and the unit cell volume V
(a), Yb-O distances (b) and Yb-O-Yb angle α (c) determined from Le Bail refinements and
DFT relaxation. The solid lines in (a) represent fits with the second-order Birch-Murnaghan
equation of state, while the dashed lines in (b) and (c) are guides to the eye.

5.3.2 Susceptibility

The mCAC allows measurements under applied pressure in the standard MPMS
setup. For NaYbO2 a maximum pressure of 2.03 GPa was achieved. The susceptibility
measurements are corrected for the background of the pressure cell and are plotted
in Fig. 5.5 together with a measurement of NaYbO2 without the pressure cell. The
measurements with and without pressure cell show some deviation, as can be seen
in Fig. 5.5(a). This can be caused by the restriction to a quite small sample mass
(< 1mg) due to the limited sample space of the mCAC. Although we took great care
to determine the exact background of the mCAC for the background subtraction a
slight discrepancy between the background measurement of the empty mCAC and
the background of the sample measurement is unavoidable. This might be another
factor leading to discord between the measurements. Therefore, the low-temperature
part of the measurement at ambient pressure with the mCAC was fitted to the one
without the mCAC by multiplying χ with a factor of 1.28 and introducing of an
offset of 0.0013 emu

mol
. All measurements with the mCAC were adapted in this way [see

Fig. 5.5(b)].
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Figure 5.5: (a) Inverse susceptibility at different applied pressures measured with the
mCAC. For comparison a measurement without the pressure cell is shown as well (black
hexagons). (b) Susceptibility measurements corrected by fitting the 0GPa measurement to
the measurement without the mCAC.

After the correction, the susceptibility measurements are fitted with the modified
Curie-Weiss law between 10 and 35 K. In Fig. 5.6 the determined van Vleck contribution
and Curie-Weiss temperatures are shown as a function of the applied pressure. The van
Vleck contribution decreases continuously with increasing pressure from 0.00567 emu

mol

at 0 GPa to 0.00378 emu
mol

at 2 GPa. This decrease goes hand in hand with the decrease
of the Yb-O distances, which leads to an increase of the crystal field on the Yb3+

ions. The consequent enhancement of the CEF splitting leads to the decrease of the
van Vleck contribution. The Curie-Weiss temperature starts off at −7.1K at ambient
pressure and increases to around −6.6K at about 1 GPa and remains rather constant
up to the maximum pressure. Since the Curie-Weiss temperature is a measure of the
strength of the exchange coupling, a decrease of the absolute value of θCW indicates a
decrease of the exchange couplings. This stands in contrast to the shrinking of the
Yb-O distances and Yb-O-Yb angle that indicate an increase of exchange interactions,
as was observed in the comparison of YbMgGaO4, KYbO2 and NaYbO2 in Ref. [12].
In this case the shrinking of the Yb-O-Yb angle from 100.36° (YbMgGaO4) to 96.75°
(KYbO2) to 95.72° (NaYbO2) was accompanied by a decrease of the absolute value of
θCW (YbMgGaO4: 2.3 K, KYbO2: 5.4 K, NaYbO2: 6.4 K). Using these three values as
reference points a change of the Curie-Weiss temperature of about 0.9 K is expected for
a 1° change of the Yb-O-Yb angle. For the 0.2° change of the Yb-O-Yb angle inflicted
by the applied hydrostatic pressure of 2GPa an increase of about 0.2K is expected
for the absolute value of θCW of NaYbO2. When comparing the values obtained in
the pressure cell this is not observed, but the change lies within the error bar.

It is noteworthy, that there is a discrepancy between the Curie-Weiss temperature
determined without (θCW = −6.4K) and with pressure cell at ambient pressure
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Figure 5.6: Van Vleck contribution χvv (a) and Curie-Weiss temperature θCW (b)
determined from the fit with the modified Curie-Weiss law to the susceptibility measurements.

(θCW = −7.1K) as well as between the Yb-O-Yb angle determined from the DFT
relaxation based on the experimental lattice parameters of NaYbO2 (∡(Yb-O-Yb) =
95.72°) and the one determined for ambient pressure from the SXRD measurement
under pressure (∡(Yb-O-Yb) = 96.46°). The latter is a reflection of a systematic error
of the DFT calculations. Additionally, distinctly different values for χvv and θCW

are obtained for the measurement at ambient pressure, i.e. the measurement where
0MPa is externally applied to the pressure cell, and the measurement where 4MPa
are applied. In both cases the pressure within the pressure cell was determined to be
still at 0GPa from the Pb superconducting transition, as described in Chapter 3.4.
Most likely the background subtraction is the cause of the deviation of the results
for 0GPa compared to the other pressure cell measurements. Since the pressure to
the pressure cell is applied manually utilizing a rather rough manometer scale, it is
difficult to accomplish exactly the same pressure for the background and the sample
measurement. The measurements with an applied pressure at and above 4 MPa might
be better comparable to the background measurements than the 0 MPa measurement,
considering the conditions in the sample space of the pressure cell. The effective
moment is found to be 2.57µB for all applied pressures.

5.3.3 µSR Measurements

The spin dynamics of a system can be revealed via muon spin relaxation (µSR)
measurements. µSR measurements on NaYbO2 at ambient pressure were already
performed observing persistent spin dynamics down to 100 mK which also survive in
an applied longitudinal field [80]. Here the influence of pressure on the spin dynamics
is investigated at 0.26K in zero field (ZF) and in an applied longitudinal field (LF),
where the magnetic field is applied parallel to the spin of the implanted muons.
Measurements at ambient pressure and at 2.4GPa are performed and compared to
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identify any changes in the spin dynamics. The measurements were performed by
Mayukh Majumder at the PSI (Villigen, Switzerland).

The ZF measurements revealed no change of the magnetic ground state in the µSR
time spectra under pressure compared to the measurement at ambient pressure and
no oscillations are observed. The absence of oscillations indicates that no magnetic
order is induced by applying pressure.

To determine the temperature-dependent relaxation rate the ZF µSR time spectra
are fitted with

A(t) = A0 [f1 exp(−λ1t) + (1− f1) exp(−λ2t)] +B0. (5.2)

A0 is the initial anisotropy, B0 the background of the pressure cell. The muon spin
relaxation rates λ1 and λ2 correspond to the muons implanted at two sites near O2−.
The fraction of muons spins at the two sites is denoted as f1.

In Fig. 5.7(a) the temperature dependence of the relaxation rates are shown.
The temperature development of λ1 is in good agreement with the measurement
in Ref. [80]. At high temperatures (T > 20K) NaYbO2 is in the paramagnetic
regime and the relaxation rate λ1 is temperature independent. The step-like increase
below 10K indicates the formation of spin-spin correlations. At low temperatures
the relaxation rate becomes level again as the correlations are fully developed below
1 K. The measurement performed in the scope of the pressure study apparently reach
this state at a slightly lower temperature compared to Ref. [80], where λ1 becomes
constant at about 3 K already. No obvious difference between the measurement under

(a) (b)

Figure 5.7: (a) Zero field µSR relaxation rate λ1 at ambient pressure and 2.4GPa. For
comparison the µSR measurement at ambient pressure without a pressure cell performed in
Ref. [80] is shown as well. The inset shows the temperature dependence of λ2.
(b) Longitudinal field µSR relaxation rate λ1 at ambient pressure and at 2.4GPa is fitted
with the same power-law. The measurement at higher temperature in Ref. [80] follows a
power-law as well, although with a smaller exponent. The graphs were prepared by Mayukh
Majumder.
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pressure and at ambient pressure is observed and even similar absolute values are
retrieved.
For λ2, shown in the inset of Fig. 5.7(a), no temperature dependence is observed,
however the absolute values are rather similar to the background of the pressure cell
and difficult to determine with great accuracy.

The LF measurements are performed to investigate the field dependence of the
relaxation rate λ(H). To identify the relaxation rate the LF measurements were
fitted with a stretched exponential exp

[
−(λ(H)t)β

]
, taking the time-independent

and field-independent background, caused by the sample holder and pressure cell,
into account. For the measurement at ambient pressure as well as under 2.4GPa a
power law behavior λ(H) = H−γ with γ = 0.8 is determined [see Fig. 5.7(b)]. Such
a power-law behavior is a manifestation of the universal scaling that was initially
introduced for system with glassy dynamics by Keren et al. [92]. For comparison, the
field-dependent relaxation rate determined in Ref. [80] at 1.5 K is shown in Fig. 5.7(b),
as well, which follows a power law with a smaller exponent. Since the measurements
in the pressure study where performed at a much lower temperature of 0.26 K a higher
exponent is expected.

For YbMgGaO4 applying pressure led to an increase of γ from 0.3 at ambient
pressure to 0.8 at 2.6GPa. Such an increase of the scaling parameter is usually
observed in glass-like system when the spins start to freeze. The possibility of spin
freezing in YbMgGaO4 is excluded by dc-susceptibility and µSR measurements at
ambient pressure. Instead the increase of γ is ascribed the structural randomness and
its role in the persistence of the collective spin dynamics. The constant value for γ
with increasing pressure in the disorder-free NaYbO2 supports this interpretation. [66]
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After many promising results were obtained on the easy to prepare NaYbO2 the focus
broadened to closely related compounds of the AYbX2 family. One of them is KYbO2

which was already briefly studied in 2008 by Dong et al. [93] before the discovery of
YbMgGaO4 as a potential QSL and the subsequent enhanced interest in the family
of AYbX2 compounds. In the context of this work, KYbO2 is utilized to investigate
the influence of the alkaline metal A on the magnetism of the AYbO2 compounds.
Therefore, the results presented in the following chapter are directly compared to
NaYbO2 using available, unpublished data [11] as well as data from Ref. [80] and
Ref. [12]. In the latter, the results on KYbO2 obtained throughout my PhD work are
published.

6.1 Literature Results

Despite the availability of a synthesis report by Dong et al. [93] the preparation of
KYbO2 proved to be sensitive and challenging. Dong et al. [93] prepared polycrystalline
samples via a deceivingly simple solid state reaction and carried out powder XRD,
susceptibility, and heat capacity measurements.

For the sample preparation in Ref. [93] Yb2O3 and KO2 were used as starting
materials, with an 50% excess of KO2. The reactants were handled in a glove box
to prevent a reaction of KO2 with the air moisture. They were mixed, enclosed in
a gold tube and finally sealed in an evacuated quartz tube with a piece of TiO as
an oxygen getter. Thereafter, they were heated at 650 ◦C for 16 h. Powder XRD
measurements revealed small amount of extant KO2 and Yb2O3. The KYbO2 samples
need to be stored in a glovebox and exposure to the atmosphere should be kept at a
minimum due to the extraordinary sensitivity of KYbO2 to moisture, which will lead
to a decomposition within minutes.
The synthesis of KYbO2 was part of my Master thesis [11] and the samples prepared
there are further investigated in this work. The synthesis was based on the method
used by Dong et al. [93] but differs in a few points, since the original approach yielded
no satisfactory results. The same starting materials were used but the excess of
KO2 was amplified to 75%. Instead of a gold tube a platinum crucible was utilized.
Since an ampule based synthesis was not successful the platinum crucible with the
reactants inside was placed in a horizontal furnace and the synthesis was carried out
at 650 °C for 16 h under an argon flow of 20 sccm. The resulting sample showed a
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small Yb2O3 impurity, as will be discussed in Chapter 6.1, and needed to be stored in
argon atmosphere due to rapid decomposition in contact with air moisture.

The powder XRD measurements in Ref. [93] confirmed the R3̄m space group, the
determined lattice parameters are displayed in Tab. 6.1.

Susceptibility was measured between 2 and 300K. The high-temperature part can
be nicely described by the Curie-Weiss law, yielding similar values for the Curie-
Weiss temperatures θHT and the effective moments µeff in Ref. [93] and Ref. [11] (see
Table 6.1). The effective magnetic moment is close to the calculated value of 4.54µB

for free Yb3+ in both cases. At lower temperatures the susceptibility deviates from
the Curie-Weiss law due to the CEF effect. The analysis of the low-temperature part
yielded smaller values for the Curie-Weiss temperature and effective moments (shown
in Table 6.1), offering a more realistic description of the low-temperature ground state
properties. In Ref. [11] the low-temperature susceptibility was fitted with modified
Curie-Weiss law (Eq. 2.18) allowing for an additional χvv term to account for the
van Vleck contribution. All fits, at low and high temperatures, resulted in negative
Curie-Weiss temperatures indicating antiferromagnetic exchange interaction but no
sign of magnetic order was observed down to at least 2 K.

The absence of magnetic order was confirmed by specific heat measurements down
to 2K in Ref. [11] and down to at least 0.5K in Ref. [93]. Instead of a sharp peak
indicating a phase transition a broad maximum was observed, similar to NaYbO2 and
YbMgGaO4, signaling the presence of short range correlations.

Table 6.1: Characteristic properties of KYbO2 from Ref. [93] and Ref. [11]. Both, the
high-temperature (HT) and low-temperature (LT) susceptibilities, were fitted with the
standard Curie-Weiss law in Ref. [93]. In Ref. [11] the high-temperature behavior of the
susceptibility was fitted with the standard Curie-Weiss law, while at low temperatures the
modified Curie-Weiss law was applied.

XRD Susceptibility HT

lattice parameter θCW (K) µeff (µB)

[93] a = 3.4001(2)Å c = 18.497(1)Å −77(3) 4.31(5)

[11] – – −90 4.32

Susceptibility LT

θCW (K) χvv

(
emu
mol

)
µeff (µB) g

[93] −8.5(5) – – –

[11] −5.02 0.00456 2.64 3.05
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The frustration parameters f = 17 and f = 10 are calculated using the lowest
measured temperature of the heat capacity measurement 0.5K and the respective
Curie-Weiss temperatures determined in Ref. [93] and Ref. [11], respectively.

6.2 Synchrotron XRD

The high-energy synchrotron X-ray diffraction measurements yield information on
the sample quality and allow to identify the space group of the material. As afore-
mentioned, SXRD measurements for KYbO2 at 10K were carried out at the MSPD
beamline [94] (ALBA, Spain) by Alexander Tsirlin and Aleksandr Zubtsovskii uti-
lizing a multianalyzer setup, suitable for powder diffraction measurements, with a
wavelength of λ = 0.32525Å.

According to the SXRD measurements KYbO2 possesses the same R3̄m space group
as NaYbO2 and YbMgGaO4, as was already reported in Ref. [93]. The narrow peaks
indicate high crystallinity of the sample [see Fig. 6.1(a)]. In the SXRD spectrum
two minor impurity phases are observed which are identified as Yb2O3 and KOH ·
H2O [see Fig. 6.2(b)]. Since KYbO2 is prone to decompose if handled outside of an
inert gas atmosphere, these impurities are inevitable and need to be considered in
the interpretation of any measurements performed on KYbO2. As a consequence,
the contact of KYbO2 to air moisture needs to be kept at a minimum and diligent
sample handling is required when performing measurements to keep the influence of
the impurities as small as possible.

Rietveld refinement of the SXRD data returns low atomic displacement parameters
(ADPs). The high ADP of Yb was the first indication of structural disorder in
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Figure 6.1: (a) Structure refinement of the synchrotron diffraction data acquired at 10K.
(b) Reflections of the impurity phases marked with stars are better observed in the
enlargement of the angular range between 5 and 12°. Adapted from Ref. [12].
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Table 6.2: (a) Atomic displacement parameters (Uiso) and atomic positions of KYbO2

obtained from the Rietveld structure refinement of the SXRD pattern measured at 10K [12].
(b) For comparison the ADPs and atomic positions of NaYbO2 from Ref. [80] are shown as
well. Table adapted from Ref. [12].

(a) KYbO2 (b) NaYbO2

atom x/a y/b z/c Uiso (Å2) atom x/a y/b z/c Uiso (Å2)

O 0 0 0.2288(3) 0.005(1) O 0 0 0.2375(1) 0.0007(4)

Yb 0 0 0.5 0.0015(2) Yb 0 0 0.5 0.00015(3)

K 0 0 0 0.0046(5) Na 0 0 0 0.0032(3)

YbMgGaO4 (Uiso(Y b) ≈ 0.01 Å2 at 100 K [9]). The Yb ADPs of KYbO2 and NaYbO2,
on the other hand, are well below 0.01 Å2 at 10 K (see Tab. 6.2), therefore no disorder
is expected in these compounds.

The obtained lattice parameters are in good agreement with the previous study [93].
In comparison to NaYbO2 (see Tab. 6.3) the lattice parameters of KYbO2 are a bit
larger, due to replacement of the smaller Na+-ions (r = 1.02Å) by larger K+ ions
(r = 1.38Å) [95]. This change is more prominent for the c direction with an increase
of 12.1%. The lattice parameter a, and therefore the Yb-Yb intralayer distance,
d(Yb-Yb) = a, changes only slightly by 1.6%. The effect of the increase of a is twofold.
First, the [YbO2] layers expand, as can be discerned by the 0.8% increase of the Yb-O
distance. Second, the Yb-O-Yb angle increases as well. Together, the expansion of
the [YbO2] layer and the increase of the Yb-O-Yb angle accounts for the overall 1.6%
increase of the Yb-Yb distance. The flattening of the Yb-O-Yb angle (which is equal
by symmetry to the O-Yb-O angle) directly influences the local environment of the
Yb3+.
The exchange of K by Na leads to a similar effect as the application of hydrostatic
pressure on NaYbO2. The larger K atoms have the effect of negative pressure applied
to the crystal structure. The anisotopic impact on the crystal structure observed in the
pressure study on NaYbO2 is mirrored and enhanced in the comparison of NaYbO2

Table 6.3: Comparison of the lattice parameters, Yb-O and A-Yb (A =Na, K) distances
(given in Å) and Yb-O-Yb bridging angles of NaYbO2 and KYbO2. Table adapted from
Ref. [12].

a c Yb-O dist. ∡Yb-O-Yb A-Yb dist.

NaYbO2 [80] 3.34481(4) 16.4585(2) 2.25537(3) 95.723(1)° 3.35466(3)

KYbO2 [12] 3.39731(4) 18.453(3) 2.27232(3) 96.756(1)° 3.64786(5)
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6.3 ESR Measurements

and KYbO2. While for the lattice parameter a nearly the same relative change as for
an applied pressure of 5.3 GPa is observed, the relative change of the lattice parameter
c upon substitution with K is tenfold larger than through hydrostatic pressure.

6.3 ESR Measurements
ESR measurements probe the local magnetism of the Yb3+ ions. The measurements
were performed and analyzed by Hans-Albrecht Krug von Nidda and Mamoun Hem-
mida. As shown in Fig. 6.2(a), fitting with the field derivative of a single Lorentzian
gives a satisfactory description of the Yb-ESR line at all measured temperatures
(5− 30K). An additional field derivative of a Lorentzian accounts for the shoulder
at low fields that is most likely due to the Yb2O3 impurity observed in SXRD mea-
surements. Also, slight deviations are observed between 2.8 and 3.5 kOe that can be
ascribed to insufficient background subtraction due to a slight mismatch of the quality
factor between sample and background measurement.

Generally, the ESR measurements of the AYbX2 compounds reveal strong easy-
plane anisotropy, especially compounds that are available in the single crystalline
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Figure 6.2: (a)-(c) ESR measurements of KYbO2 taken at the X-band frequency at 30K,
15K and 5K. The spectra are fitted with the field derivative of a symmetric Lorentz line
(black solid line). (d,e) ESR linewidth fitted with a combination of Orbach process at high
temperatures and two possible models (BKT and critical) at low temperatures. Adapted from
Ref. [12].
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form, as for example KYbS2 that will be discussed in the following chapter. But
even the polycrystalline NaYbO2, for which direction dependent measurements are
not possible, reveals an additional shoulder in the ESR measurement that can be
ascribed to a sizable anisotropy of the g-factor [84]. The ESR measurement of KYbO2,
on the other hand, appears to be purely isotropic with a g-factor of g = 3.08(3).
Considering the structural changes observed in the SXRD measurements, a change of
the ground-state Kramers doublet of Yb3+ compared to NaYbO2 is to be expected.
The anisotropic lattice expansion and the corresponding change in the [YbO2] layers
influence the g-value and anisotropy of the g-tensor.

The ESR linewidth as a function of temperature increases at high temperatures due
to an Orbach process that can be described as ∆H ∝ exp(−∆/T ). An Orbach process
involves the population of the first excited CEF doublet, separated from the ground-
state doublet by an energy gap ∆ via phonon absorption and subsequent emission
of a phonon [96–98]. The energy gap determined from the high-temperature fit is
∆ ≃ 350K. Similar values are found for NaYbO2 (∆ = 350K [96], ∆ = 320K [84]).

The low-temperature part of the ESR linewidth is investigated in two ways. On
one hand, a classical critical behavior in the vicinity of a phase transition is employed
to describe the increase at low temperatures: ∆H ∝ (T/Tc − 1)−p, with the critical
temperature Tc. The fit yields a critical temperature of Tc = 0.15K and a critical
exponent p = 0.77, closely related to the T−0.75 power-law behavior observed in sibling
compounds [96,99]. On the other hand, the behavior can be ascribed to the proximity
to a Berezinskii-Kosterlitz-Thouless (BKT) transition. The low-temperature behavior
is then described as ∆H ∝ exp[3b/((T/TKT) − 1)0.5], with the Kosterlitz-Thouless
(KT) temperature TKT and b = π/2 [100]. The fits are visibly indistinguishable and
have nearly identical values for χ2 and R2. The critical temperatures obtained from
the two different models TKT = 0.14K and Tc = 0.15K are nearly identical. However,
the description of the low-temperature ESR linewidth with the BKT scenario is a
bit uncertain, since its application to another family of triangular antiferromagnets,
ACrO2 (A = H, Li, Na) [101], was challenged in recent years [102]. Further information
would be necessary to justify the application of BKT scenario in this case.

6.4 High-Field Magnetization

High-field magnetization measurements are performed at the HLD to determine the
temperature-independent van Vleck contribution. Since Yb3+ is a Kramers ion its
J = 7

2
multiplet is split into four doublets by the CEF, creating the effective pseudospin-

1
2

ground state. At low temperatures the magnetism of KYbO2 is dominated by this
pseudospin-1

2
ground state, but the influence of higher lying CEF level needs to be

considered in the form of the van Vleck contribution. In magnetization measurements
the van Vleck contribution becomes visible as a linear increase above the saturation
field, see Fig. 6.3(a). Therefore a simple linear fit in the saturated field region can
be used to determine the van Vleck contribution. For KYbO2 this fit was applied
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Figure 6.3: (a) High-field magnetization of KYbO2 and NaYbO2 measured up to 40T at
0.54K and up to 20T at 0.45K, respectively. The increase above the saturation
magnetization is fitted linearly to determine the van Vleck contribution. For NaYbO2 the
high-field magnetization data was taken from Ref. [80]. (b) Second derivative of M(H) used
to determine the saturation fields.

between 27 and 40 T yielding χvv = 0.00715µB/T= 0.00399 emu
mol

. A slightly larger van
Vleck contribution is found for NaYbO2 (χvv ≈ 0.0056 emu

mol
) [80,84]. By correcting the

magnetization for the van Vleck contribution a saturation magnetization of 1.47µB/f.u.
is obtained, comparable to the saturation magnetization calculated from the ESR
g-value: Msat,ESR = g S = 1.54µB/f.u., S = 1

2
.

In Fig. 6.3 the magnetization of KYbO2 is directly compared to NaYbO2 using data
from Ref. [80]. The high-field magnetization measurement of NaYbO2 was fitted to the
low-temperature MPMS magnetization measurement performed as part of this work,
in the same way that the high-field magnetization was scaled for KYbO2, resulting in a
much lower saturation magnetization Msat = 1.36µB compared to Ref. [80]. This value
is in perfect agreement with the ones determined in other studies [84, 85], suggesting
the scaling of the high-field data in Ref. [80] might be off.

The saturation field is determined via the respective minimum in the second
derivative of M(H) as shown in Fig. 6.3(b). As is already obvious from the M(H)
measurement, KYbO2 reaches saturation at about 9T, slightly before NaYbO2 at
about 11 T.

In contrast to NaYbO2, no plateau feature is observed in the high-field measurement
of KYbO2.

6.5 Susceptibility

The susceptibility of KYbO2 measured between 2 and 300K shows the behavior
typical for the AYbX2 family, with a linear behavior at high temperatures that
evolves into a gradual change of slope below 150K, as depicted in Fig. 6.4(a). The
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Figure 6.4: (a) Measurement of the susceptibility and inverse susceptibility of KYbO2

between 2 and 300K at 1T. Between 150 and 300K a linear Curie-Weiss fit was applied
(green line). At lower temperatures the data is fitted with the modified Curie-Weiss law
between 10 and 35K (b) Inverse susceptibility of KYbO2 and NaYbO2 after correction for
the van Vleck contribution. A linear behavior is observed and fitted with the Curie-Weiss law.
Adapted from Ref. [12].

high-temperature behavior above 150 K was previously reported [11,93], therefore the
analysis here focuses on the low temperatures behavior that reflects the magnetism of
the pseudospin-1

2
ground state.

To investigate the low-temperature behavior one needs to consider the influence
of the van Vleck contribution. This can be done in two ways. On one hand the
low-temperature part of the susceptibility can be fitted with the modified Curie-
Weiss law (Eq. 2.18), as was done in Ref. [11]. On the other hand, the van Vleck
contribution determined from the high-field magnetization measurements can be
subtracted, yielding a linear behavior between 10 and 50K [see Fig. 6.4(b)]. In
Tab. 6.4 the results of the fits for KYbO2 are given and compared to those of
NaYbO2. For KYbO2 rather similar Curie-Weiss temperatures and effective moments
are obtained with the two different methods. The van Vleck susceptibility determined
from the high-field magnetization measurement is a bit smaller compared to the fit with
the modified Curie-Weiss law. The negative value of the Curie-Weiss temperatures
corresponds to antiferromagnetic interactions and the effective magnetic moment
µLT
eff = 2.68µB is in excellent agreement with the one calculated from ESR g-value

g = 3.08: µESR
eff = g

√
S(S + 1) = 2.67µB, with S = 1

2
.

Compared to NaYbO2, the slope of (χ− χvv)
−1 of KYbO2 is less steep, as can be

clearly seen in Fig. 6.4(b). Since the g-value of KYbO2 (g = 3.08) is larger than the
powder-averaged g-factor of NaYbO2 (gav = 2.86) KYbO2 also has a higher effective
moment resulting in a less steep slope.

The Curie-Weiss temperatures are useful to evaluate the strength of the magnetic
interactions. The absolute value of the Curie-Weiss temperature is larger for NaYbO2
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Table 6.4: Results of the low-temperature analysis of the susceptibility for KYbO2 and
NaYbO2. (a) Susceptibility between 10 and 35K was fitted with the modified Curie-Weiss
law. (b), (c) Van Vleck contribution determined from the high-field magnetization was
subtracted from the susceptibility and a linear fit was applied to the corrected measurements.
The corresponding van Vleck contributions are the ones determined from the magnetization
measurements.

(a) KYbO2 [11] (b) KYbO2 (c) NaYbO2

χvv (emu
mol

) 0.00457(11) 0.00399(1) 0.00564(6) [80]

θLT (K) −5.0(1) −5.4(2) −6.4(6)

µLT
eff (µB) 2.64(3) 2.68(6) 2.56(6)

than for KYbO2 indicating stronger interactions in the former compound. This is
further validated by the higher saturation field of NaYbO2 (11 T) compared to KYbO2

(9T). Since the magnetic interactions are weaker in KYbO2 a smaller magnetic field
is sufficient to overcome these interactions and align the magnetic moments. An
explanation for the decline of the interaction strength is found in the structural
changes observed in the SXRD measurements when substituting Na by K, namely
the increase of the Yb-O-Yb angle. Since the magnetic interactions are mediated via
this angle, the change has a direct influence on the interaction strength.

6.6 Low-Temperature Magnetization

At temperatures below 0.7K a plateau feature is observed in the magnetization
measurements of KYbO2, see Fig. 6.5. To determine the field range of the plateau
the second field derivative of M(H) is calculated where the beginning and end of the
plateau are indicated by a minimum and maximum, respectively. As mentioned before
no magnetization plateau is observed in the high-field magnetization measurement,
although the data is obtained at 0.54K. In the MPMS data the plateau feature is
already clearly observed at this temperature. Reasons for the absence of the plateau
feature in the high-field measurements might be a slight sample heating caused by
the very short magnetic pulse or the extended exposure to air moisture that was
unavoidable during the sample mounting. In contrast to sibling compounds like
AYbSe2 (A = Na, K, Rb, Cs) in which such a magnetization plateau was observed
on single crystals for magnetic fields applied in the ab-plane, the plateau in KYbO2

is not centered at 1
3

of the saturation magnetization [103, 104]. The plateau in
KYbO2 is formed at about 0.7µB/f.u. which is close to 1

2
of the saturation value

(Msat = 1.47µB/f.u.). While the 1
3

plateau is confirmed via neutron scattering
experiments in applied magnetic fields to correspond to an up-up-down (uud) ordered
phase [79,89], the 1

2
plateau would indicate the formation of a up-up-up-down (uuud)
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Figure 6.5: (a) Comparison of the magnetization measured up to 7T with the MPMS (at
0.4 to 1K) and up to 14T with PPMS VSM option (at 2K). A plateau at about half the
saturation magnetization is observed for low temperatures (≤ 0.7K). (b) Second derivative of
M(H) at 0.4K (MPMS) and 2K (PPMS). Beginning and end of the plateau region as well
as the onset of saturation can be determined from the respective minima and maxima.
(c) Magnetization plateau for multiple temperatures. With increasing temperature the plateau
becomes less distinct. (d) Second derivative of M(H) in the plateau region. The fading of
the plateau is reflected in the less pronounced minma and maxima with increasing
temperature. Adapted from Ref. [12].

ordered phase, which is supported by the isotropic nature of the Yb3+ moments. The
plateau feature weakens with increasing temperature. The smearing out of the plateau
can also be well observed in the second field derivative of M(H), where the maxima
and minma indicating the beginning and end of the plateau become less pronounced
with increasing temperature. A narrowing of the field range of the plateau becomes
apparent from d2M/dH2, as well. Above 0.7K no clear extrema are discernible
anymore suggesting the breaking down of the uuud ordered state.

Low-temperature susceptibility measured in various applied magnetic fields reveals
further evidence of field-induced magnetic order in KYbO2. A kink in the susceptibility
is observed at the transition to the magnetically ordered phase as shown in Fig. 6.6(a).
The kink changes curvature between 3.25 and 3.5 T. At lower fields the susceptibility
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Figure 6.6: (a) Inverse susceptibility of KYbO2 measured between 0.4 and 1.8K under
various applied magnetic fields. The temperatures of the magnetic phase transitions are
marked with stars. (b)-(e) Examples for the determination of the transition temperature
from the minimum or maximum of the first derivative of χ−1(T ) at 4.25T and 2.75T.
Adapted from Ref. [12].
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follows a downward curvature and above 3.5T an upward curvature is observed. As
described in Chapter 5.2, the transition to the magnetically ordered phase is located at
the inflection point, that coincides with a maximum or minimum in the first derivative
of χ−1(T ). Therefore the temperature derivative of χ−1(T ) is used to determine the
exact position of the transition temperature. The correlation between the inflection
point in χ−1(T ) and the extrema in dχ−1/dT can be nicely observed in Fig. 6.6(b).
In contrast to NaYbO2, the maxima and minima are more unambiguously identified
and no additional features are observed up to 5 T. The first transition is observed at
0.49K in an applied field of 2.25T and subsequently shifted to higher temperatures
with increasing magnetic field until it reaches 0.71K at 3.25T. For higher applied
magnetic fields the transition temperatures decreases. Above 4.75 K the kink is shifted
below 0.4K the minimum temperature available for the measurement.

6.7 Specific Heat Measurements

The magnetic order observed in the low-temperature, field-dependent magnetization
and susceptibility measurements can be further investigated by measurements of the
specific heat. Those measurements were performed with the 3He refrigerator insert of
the PPMS to achieve temperatures below 0.8K necessary to observe the magnetic
order. In zero applied magnetic field no magnetic order intrinsic to KYbO2 is observed
down to the lowest measured temperature of 0.5 K [see Fig. 6.7(a)]. However, a small
anomaly at 2.3 K is present in the measurement. The temperature of this small peak
is too high to be connected to the uuud order indicated by the M(H) measurements,
however, it is in good agreement with the magnetic ordering transition temperature of
the Yb2O3 impurity phase [105]. The peak is only observed in 0 T and suppressed in
applied magnetic fields. The broad maximum observed in heat capacity measurements
of all members of the AYbX2 compound family at low temperatures is also present
in KYbO2 and indicates the development of short-range interactions. By applying
magnetic fields a shift of the broad maximum to higher temperatures is observed.
Magnetic order is first observed for 2.5T at slightly above 0.5K. The λ-shaped
peak is shifted to higher temperatures with increasing magnetic field up to 3T [see
Fig. 6.7(b),(c)]. Above 3 T the ordering peak is shifted to lower temperatures again and
disappears below the measurement range in an applied field of 5 T. These observations
are in good agreement with the low-temperature susceptibility measurements.

The specific heat of NaYbO2 reveals a similar behavior to KYbO2 with no magnetic
order observed in zero field and a first indication of field-induced magnetic order
appearing at 2T. The ordering peak becomes more pronounced with increasing
magnetic field and shifts to higher temperatures up to 5T, then is shifted to lower
temperatures again with further increasing magnetic field. In contrast to KYbO2 an
additional shoulder is observed for NaYbO2 at high magnetic fields (6-8 T) that might
indicate another magnetic transition as was suggested in Ref. [84] where the anomaly
is observed in the form of a second, smaller peak.
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Figure 6.7: Specific heat of KYbO2 (a)-(c) and NaYbO2 (d)-(f) in zero field and applied
magnetic fields [12].

6.8 Phase Diagram

The field-temperature phase diagram of KYbO2 is composed by taking into account
all anomalies and phase transitions observed in magnetization, susceptibility and
specific heat measurements described previously. In the same way the phase diagram
of NaYbO2 is deduced for comparison. A side-by-side depiction is shown in Fig. 6.8
highlighting the changes introduced by the substitution of K by Na.

In general, the layout of the phase diagrams of NaYbO2 and KYbO2 are very similar.
Both compounds show a field-induced magnetically ordered phase, that is divided into
different parts. Starting from low fields a small region of an ordered phase preceding
the plateau phase is indicated by the peaks in specific heat and low-temperature
susceptibility measurements. In the single crystalline sister compounds this phase was
ascribed to a 120° ordered phase [103]. At slightly higher magnetic fields, the plateau
phase is identified from the field-dependent magnetization measurements. Above
the plateau phase magnetic order is still observed in susceptibility and heat capacity
measurements. For NaYbO2 this phase can be traced up to 9T, while for KYbO2 it
is only hinted at before the anomalies disappear below the respective measurement
range. This phase is most likely a noncollinear V-type phase. Although no direct
evidence of this V-type phase has been provided in AYbX2 compounds, a similar
phase has been observed and identified in Co-based triangular antiferromagnets [106].
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Additionally, the V-type phase is predicted by theory [107,108]. In this part of the
magnetically ordered phase the only significant difference between the phase diagrams
is located. In the low-temperature susceptibility as well as the specific heat a second
ordering peak is observed for NaYbO2. This leads to the additional area in the V-type
phase of NaYbO2. The high-field magnetization measurements provide the saturation
field that restricts the magnetically ordered phase and marks the beginning of the
fully polarized region. At low temperatures and low magnetic fields no magnetic order
is observed, therefore this region potentially hosts a quantum spin-liquid phase.

Aside from the additional phase observed in NaYbO2 the differences between the
two phase diagrams are more subtle. Overall, a shift of all phases to lower fields is
observed when substituting Na by K. While magnetic order is first observed around
2T for both compounds, the onset of the uuud phase is located at lower fields for
KYbO2. In addition, the field range of the plateau phase is more narrow compared to
NaYbO2 (∆H = 0.5K). As mentioned before, a rather large margin of the saturation
magnetization is determined for NaYbO2, allowing for a Msat/2 as well as Msat/3
plateau interpretation, expected for the uud state. In contrast, the plateau in KYbO2

is rather unambiguously located at Msat/2 indicating the formation of a uuud phase.
The assumed V-type phase has a similar field range for both compounds. Finally,
KYbO2 enters the fully polarized phase at a lower magnetic field than NaYbO2. The
differences between NaYbO2 and KYbO2 are in line with the observation of weakening
magnetic interactions observed in KYbO2, indicated by the smaller absolute value of
θLTCW compared to NaYbO2.
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Figure 6.8: Direct comparison of the phase diagrams of NaYbO2 (a) and KYbO2 (b). Both
compounds show field induced magnetic order but no signs of magnetic order are observed for
small applied magnetic fields. Adapted from Ref. [12].
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Although the investigation of NaYbO2 and KYbO2 offers many insights into the
physics of the AYbX2 family, the polycrystalline nature of those compounds presents
a limitation. Fortunately, with exception of the oxides, several members of the AYbX2

compounds are available in single crystalline form. Most of these materials have been
extensively studied by other groups as my PhD work developed. KYbS2 received less
attention so far, although small single crystals were synthesized for the first time in
2020 and the performed standard measurements indicate that KYbS2 is a promising
candidate for further investigation [109]. In this chapter, detailed insights into the
improvement of the crystal growth are provided. The crystals are investigated using
SXRD, ESR, magnetization and susceptibility measurements to determine a detailed
phase diagram. The absence of magnetic order in zero field is confirmed by specific
heat measurements down to 0.4K.

7.1 Literature Results

Synthesis and standard measurements of KYbS2 were first published by Iizuka et
al. [109] in 2020. They succeeded in growing small single crystals (approximately
0.5× 0.5× 0.01mm3) using a self-flux method. The KYbS2 crystals were investigated
using single-crystal XRD, magnetization and heat capacity measurements. All relevant
results and characteristic properties are summarized in Tab. 7.1.

Single crystal XRD confirmed that KYbS2 crystallizes in the R3̄m space group.
Susceptibility was measured in an applied field of 0.1T for both field directions,

H ⊥ c and H ∥ c, between 1.9 and 300 K and displays no signs of magnetic order. For
H ⊥ c the susceptibility behaves similarly to the polycrystalline compounds NaYbO2

and KYbO2 discussed before. A linear behavior was observed at high temperatures
and a Curie-Weiss temperature of θHT,⊥ = −91.8K and an effective magnetic moment
of µeff = 4.54µB by a linear fit. An analogue analysis at high temperatures for
H ∥ c was not possible due to the non-linear behavior which was ascribed to the
influence of the CEF. The low-temperature behavior of the susceptibility for both
field directions was fitted with the modified Curie-Weiss law (Eq. 2.18) which takes
the van Vleck contribution into account and yielded a more realistic estimate for the
Curie-Weiss temperature and the effective moment at low temperatures (see Tab. 7.1).
The negative Curie-Weiss temperatures indicate predominantly antiferromagnetic
interactions and the difference between H ⊥ c and H ∥ c hints at the anisotropic
nature of the exchange interactions.
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Table 7.1: Characteristic properties of KYbS2 from Ref. [109]. The high-temperature (HT)
susceptibility is fitted with the standard Curie-Weiss law and the susceptibility at low
temperatures (LT) with the modified Curie-Weiss law.

XRD Susceptibility (HT)

lattice parameter θCW (K) µeff (µB)

a = 3.9415(3)Å c = 21.748(2)Å H ⊥ c −91.9 4.54

Susceptibility (LT)

θCW (K) χvv

(
emu
mol

)
µeff (µB) g gav Ms (µB)

H ⊥ c −12 0.0044 3.16 3.6
3.2

1.83

H ∥ c −5 0.019 1.79 2.07 1.0

Anisotropy is also evidenced in the field-dependent magnetization measurements for
H ⊥ c and H ∥ c. Saturation is not reached in the measurements up to 7 T performed
in Ref. [109] for both field directions. In fact, after the magnetization was corrected
by the van Vleck contribution from the low-temperature fit to the susceptibility, the
magnetization only reached half of Ms = gS at 7T for the respective field directions.

The heat capacity was measured down to 0.4K and did not display any signs of
magnetic order. The characteristic broad maximum featured in all members of the
AYbX2 is also present in KYbS2, but appears to consist of two peaks rather than
a single peak. In Ref. [109] this double peak structure was linked to the 2D spin-1

2

Ising-like anisotropic Heisenberg model and a formation of a semi-classical liquid state.
To calculate the magnetic specific heat the phonon contribution was fitted with a
combination of Debye and Einstein model. With the magnetic specific heat the
magnetic entropy can be determined, which was found to exhibit a plateau at R ln 2
around 30 K.
The absence of magnetic order down to at least 0.4K evidenced by the specific heat
measurement allowed the calculation of a minimal frustration parameter f = |θ|/TN

for both field directions. Since no magnetic order was observed the lowest measured
temperature is used for TN: f⊥ ≥ 30 and f∥ ≥ 12.

7.2 Synthesis

The synthesis of KYbS2 single crystals is done analogous to Ref. [109]. The reagents
are weighed in the ratio KCl : Yb : S = 80 : 2 : 3. The S pieces are ground and
mixed with the KCl powder; the Yb metal is cut into small pieces, placed at the
bottom of a quartz glass and covered with the KCl-S mixture [see Fig. 7.1(a)]. The
ampules are alternately evacuated and filled with argon gas three times, then filled
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with approximately 200 mbar argon to ensure an inert gas atmosphere for the reaction.
In a box furnace the ampules are heated to 850 °C over four hours, held at that
temperature for two weeks and subsequently cooled down to room temperature over
160 h. After the reaction the solidified flux has a green shimmer if the synthesis was
successful [left sample in Fig. 7.1(b)] and dark green crystals on the inside of the
ampule wall are discernible [see Fig. 7.1(c)]. If the synthesis was not successful the
flux inside the ampule has a yellowish color [middle and right sample in Fig. 7.1(b)].
The ampules are broken and the shards are placed in water to dissolve the flux. The
crystals are attached to the wall of the ampule and can be easily plucked of after
dissolving the flux. In general a vast number of rather small crystals grow in the
synthesis with a few larger ones in between [see Fig. 7.1(d)-(g)]. In the first attempts
following this procedure a maximum crystal size of 0.6mm× 0.7mm was obtained.

To improve the crystal size the synthesis was altered in two directions.
On one hand, the temperature at which the synthesis is performed was varied.
Since the synthesis temperature is already quite close to the melting point of Yb
(819 °C) decreasing the temperature significantly was not considered. Increasing the
temperature to 875 °C and 900 °C still yields a successful synthesis, however compared
to the synthesis at 850 °C significantly less crystals grow and they are smaller in
size. To verify if the temperature within the furnace matches the set temperature of
850 °C, a thermocouple was inserted to determine the exact temperature where the
samples are located in the furnace. This yielded a temperature of 860 °C, therefore
the temperature of the synthesis was corrected to 840 °C.
On the other hand, the influence of the holding time at the synthesis temperature on
the crystal size was investigated. Shortening the holding time to one week yielded
no crystals. Increasing the holding time, however, leads to an overall increase of the
crystal size, i.e. more crystals of mediocre size with the occasional crystal larger than
1× 1mm2, see Fig. 7.1(h). The best results were obtained for extended holding times
of up to two months.

When considering these improvements of the crystal growth one needs to keep in
mind that, despite ensuring the correct synthesis conditions, many synthesis attempts
did not work. This might have various possible reasons, like the change from the
originally used Yb-metal to another batch of Yb-metal (most consistent and success
results seemed to be achieved by using 99.99% Yb from the MPC of Ames University)
or simply switching from one box furnace to another. However, this does not explain
why out of two samples, which were prepared the exact same way (same ratio, similar
absolute weight of reactants, same batch of starting materials), placed together in the
same furnace for the same amount of time, only one sample would contain multiple
and large crystals while the other would not contain any crystals. With this in mind,
an influence of the size of the quartz glass or changes in the gas atmosphere within the
ampule are also considered as potential reasons for the inconsistent synthesis results.
Out of 49 synthesis attempts fulfilling the standard requirements of a minimum two
week holding time at 840 °C/850 °C only 19 attempts were successful in growing
crystals (not considering crystal size). Ten out of the 19 successful attempts contained

69



7 KYbS2

Figure 7.1: (a) Starting materials for the single crystal synthesis in the quartz glass during
evacuation of the ampule. At the top of the ampule a thin neck was fashioned through which
the atmosphere is pumped out. After evacuation approximately 200mbar Argon gas is filled
into the ampule. (b) Three samples from the same synthesis attempt (left to right: 19, 23,
20). All samples were prepared in the same way, with the same batch of starting material
and were annealed in the same furnace for 50 days. Only for sample 19 the synthesis was
successful, as is already externally discernible by the green color of the ampule compared to
the yellow colored ampules of samples 23 and 20. (c) Bottom part of sample 19. Small green
points on the inside of the ampule are already visible from the outside before removing the
flux. (d) Crystals on the wall of the quartz glass under the solidified flux. (e)-(g) Crystals on
quartz glass shards after dissolving the flux in water. (h) KYbS2 single crystal on mm-paper
as an example for the maximum achieved crystal size. This crystal is from sample 74 that
was kept at 840 °C for two month.
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larger crystals, all but one of those ten synthesis attempts had a holding time of
at least three weeks. Overall successful synthesis are most likely achieved through
consistently using the same furnace, the same temperature profile and, if possible, the
same starting materials.

For µSR measurements polycrystalline KYbS2 was synthesized by following the first
step of the KErSe2 single crystal synthesis described in Ref. [110]. Single crystals of
KErSe2 were prepared in a two-step method where first the polycrystalline material
were synthesized and then combined with KCl flux to produce single crystals.
As starting materials K, Yb and S are used with the ratio K : Yb : S = 1.1 : 1 : 2. Due
to the high reactivity of K with water, all synthesis preparations have to take place
under argon atmosphere. The starting materials are weighed in a glove box and filled
into an aluminum crucible or glassy carbon crucible (no difference in the synthesis
result was observed when switching the crucible material), see Fig. 7.2(a) and (b).
The crucible is placed in a quartz glass ampule. To seal the ampule it has to be taken
out of the glove box, therefore a disposable glove is fixed on top of the quartz glass
with a cable tie to keep the argon atmosphere in the ampule intact. An oxyhydrogen
blowpipe is used for closing the ampule. Since the synthesis is supposed to take place
under vacuum one first needs to shape the top of the quartz glass into a thin neck.
Then the glove is removed and the ampule is connected to a pump for evacuation.
The transition to the pump has to happen fast and precise otherwise the K will react
with the air moisture, which, in the worst case, leads to an explosion of the crucible.
After evacuation the quartz glass is closed by melting the thin neck. The ampules

Figure 7.2: (a),(b) Starting materials for the synthesis of polycrystalline KYbS2 in an
aluminum crucible sealed in a quartz glass before the synthesis. (c),(d) After the reaction the
inside of the quartz glass is opaque, the (glassy carbon) crucible contains a mixture of
different colored granules. (e)-(g) Examples for the results of different syntheses. (h) Larger
granules are often black on the inside and are discarded. (g) Light green KYbS2 powder after
sorting, grinding and checking via XRD.
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are placed in a box furnace and slowly (10K/h) heated to 220 °C and kept at this
temperature of 24 h to achieve equilibrium. Subsequently, the temperature is raised to
900 °C (10 K/h) and held for three days before cooling down to room temperature over
24 h. After the synthesis the inner wall of the quartz glass is opaque due to a reaction
with K. The resulting material is an inhomogeneous mix of green, yellow/orange and
white chunks [see Fig. 7.2(e)-(g)]. The material is sorted by color and ground in small
batches for XRD measurements. The obtained polycrystalline KYbS2 is of light green
color as shown in Fig. 7.2(i). Before the µSR measurement the polycrystalline powder
is additional susceptibility measurements are performed to confirm its quality and
exclude the presence of foreign phases.

7.3 Synchrotron XRD

For investigation of the structural properties of KYbS2, synchrotron XRD measure-
ments were performed by Alexander Tsirlin on powdered single crystals at the ID22
beamline at the ESRF in Grenoble with a wavelength of λ = 0.35432Å. Measurements
were carried out at 250K and 5K to exclude the possibility of structural changes
at low temperatures. Indeed, no signs of a structural transition are observed when
cooling down. The low-temperature measurement was contaminated with ice, due to
technical difficulties during the measurement. Therefore only the higher temperature
measurement was analyzed via Rietveld refinement. The result of the refinement and
the measured spectrum is shown in Fig. 7.3.
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Figure 7.3: SXRD measurement of KYbS2 (red line). The measured spectrum is fitted with
a Rietveld refinement (black line). The blue line shows the difference between calculated an
measured data and the green strokes mark the position of the reflexes of KYbS2.
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7.4 ESR Measurements

Table 7.2: Atomic displacement parameters (Uiso) and positions as well as lattice
parameters, characteristic distances and Yb-S-Yb angle of KYbS2 determined from the
Rietveld structure refinement of the SXRD measurement at 250K.

atom x/a y/b z/c Uiso (Å2)

S 0 0 0.23255(8) 0.008(5)

Yb 0 0 0.5 0.007(2)

K 0 0 0 0.0151(7)

a c Yb–S dist. K–Yb dist. ∡ Yb–S–Yb

3.96369(3) 21.8711(2) 2.7043(9) 4.30398(6) 94.2499(6)°

The R3̄m space group is confirmed for KYbS2. Narrow peaks indicate high crys-
tallinity of the sample and no impurity phases are observed in the spectrum. Although
the crystals were ground thoroughly with ethanol for the experiment the overestima-
tion of the (00l) intensities could not be prevented, a feature commonly observed in
XRD measurements of the AYbX2 compound family. The Rietveld analysis returned
satisfactorily low ADPs (Uiso) excluding the presence of the off-center displacements
in KYbS2. Results of the structure refinement, including ADPs, are given in Tab. 7.2.

7.4 ESR Measurements

ESR measurements on KYbS2 single crystals were performed to investigate the local
magnetism of the Yb3+ ions. The measurements were carried out and analyzed by
Hans-Albrecht Krug von Nidda and Mamoun Hemmida. ESR g-values are obtained
by fitting the angular dependence of the g-value with g(θ) = g2∥ cos

2(θ) + g2⊥ sin2(θ),
as shown in Fig. 7.4(a). The g-values reflect the large anisotropy already obvious
when looking at the measurement of the angular dependence, with a much larger
g⊥ = 3.24(1) compared to the parallel component g∥ = 0.80(2). The field derivative
of a single Lorentzian is sufficient to describe the field derivative of the Yb ESR lines
for both field directions (H ⊥ c and H ∥ c), see insets in Fig. 7.4(a).
The ESR g-values can be used to calculate the saturation magnetization via Msat = gS,
with S = 1

2
, and the effective magnetic moment via µeff = g

√
S(S + 1). This results

in a saturation magnetization of M⊥
sat = 1.62µB for H ⊥ c and M

∥
sat = 0.35µB for

H ∥ c. The effective magnetic moments for H ⊥ c are determined as µ⊥
eff = 2.81µB

and for H ∥ c as µ∥
eff = 0.69µB. KYbS2 therefore exhibits a much stronger anisotropy

compared to NaYbO2, suggesting a distinctly different macroscopic regime.
By analyzing the intensity of the ESR line, which is directly proportional to the

the magnetic susceptibility, further magnetic properties of KYbS2 can be deduced,
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7 KYbS2

see Fig. 7.4(b). The inverse susceptibility for H ⊥ c, shown in the inset of Fig. 7.4(b),
is fitted linearly at low temperatures and gives a Curie-Weiss temperature of θESRLT =
−12K.

By fitting the high-temperature part of the ESR linewidth with an Orbach process
the energy gap between the ground state Kramers doublet and the first excited doublet
can be determined. To analyze the temperature dependence of the ESR linewidth
over the whole measured temperature spectrum, the Orbach fit is combined with two
different models describing the low-temperature part, as was done for KYbO2. In
Fig. 7.4(c) the BKT model is applied to fit the low-temperature ESR linewidth, while
in Fig. 7.4(d) the classical critical behavior in the vicinity of a phase transition is
assumed to describe the ESR linewidth at lower temperatures.
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Figure 7.4: (a) Angular dependence of the g-value. The insets show the field derivative of
the ESR lines for H ⊥ c and H ∥ c fitted with the field derivative of a single Lorentzian line.
(b) ESR intensity of KYbS2 proportional to the magnetic susceptibility; the inverse intensity
is shown in the inset. (c),(d) Temperature dependence of the ESR linewidth fitted with two
different models (see text for details).
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7.5 High-Field Magnetization

For both fitting models the same value for the energy gap of 232K is retrieved,
which is a smaller compared to KYbO2 and NaYbO2 (∆ = 350K). Since S2− is less
electronegative than O2− a smaller CEF is expected. Nevertheless, the sizable value
of ∆ supports the effective spin-1

2
ground state assumed for the AYbX2 compounds.

Concerning the low-temperature part, two very similar critical temperatures are
obtained, TKT = 0.20K and Tc = 0.13K. Although, visually both fits describe the
data equally good, only four fitting parameters are necessary to describe the data in
the case of the BKT scenario, while a comparable fit quality for the critical behavior
is only achieved when using six fitting parameters. This slight advantage of the BKT
scenario is naturally no unambiguous proof for the applicability of the BKT theory to
the AYbX2 family, as previously discussed for KYbO2. The critical exponent p = 0.85
determined from the fit with the critical behavior is a bit larger but still comparable
to KYbO2 and similar compounds investigated in Ref. [96,99].

7.5 High-Field Magnetization

The high-field magnetization of KYbS2 was measured to determine the saturation field
and magnetization as well as the van Vleck contribution. The measurements up to 30 T
were performed at 0.55K at the HLD in collaboration with Yurii Skourski (HZDR).
For H ⊥ c two characteristic features are observed in Fig. 7.5(a): a magnetization
plateau around 4T and a kink at about 10T. The second field derivative of M(H)
is calculated to determine the exact field position of the features [see Fig. 7.5(b)].
Compared to the measurement on KYbO2, in which no plateau feature is observed
in the high-field measurement, the plateau is clearly visible between 3.1 and 5T in
the single crystal measurement of KYbS2, although it is not as distinct as in the
MPMS measurement. Since the magnetization plateau is well in the range of the
MPMS measurements it is investigated in detail with the 3He refrigerator option (see
Chapter 7.7).

The kink at higher fields indicates the transition to the fully polarized state. From
the second field derivative a saturation field of Hsat = 10.3T is determined. Above
the saturation field, M(H) increases linearly due to the van Vleck paramagnetism.
The van Vleck contribution and the saturation magnetization are obtained by linearly
fitting the high-field magnetization between 14.6 and 29T. This yields a van Vleck
contribution of χvv = 0.0126 emu

mol
. For single crystalline NaYbSe2 the van Vleck

contribution was determined in a similar manner but yielded a significantly smaller
van Vleck term χvv = 0.00765 emu

mol
[103]. For KYbO2 and NaYbO2 much smaller van

Vleck contributions are obtained as well. Furthermore, the saturation magnetization
determined from high-field M(H) measurements after subtracting the van Vleck term
M⊥

sat = 1.4µB is smaller than the one calculated from the ESR g-value (1.6µB).
In the case of H ∥ c, also shown in Fig. 7.5, the magnetization is much lower

compared to H ⊥ c and increases gradually up to at least 30 T without showing signs
of saturation or other unusual features. According to ESR measurements a saturation
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Figure 7.5: (a) High-field magnetization measurement of KYbS2 for H ⊥ c (red) and H ∥ c
(blue). A linear fit (green line) is applied to the high-field part for H ⊥ c to determine the
van Vleck contribution. (b) Second field derivative of M(H) to determine the confines of the
magnetization plateau and the position of the saturation field.

magnetization of M∥
sat = 0.35µB is expected for H ∥ c, however, this value is exceeded

without development of the characteristic change of slope observed for H ⊥ c.

Overall, the high-field measurement is in excellent agreement with the low-temperature
measurements performed with the MPMS for both field directions. They confirm the
substantial g-tensor anisotropy inferred from the ESR analysis. This anisotropy is
so strong that the H ∥ c signal is dominated by the linear term and does not show
any clear signatures of saturation. In Ref. [103] a similar behavior of the high-field
magnetization was observed for NaYbSe2 and the linearity of the H ∥ c curve is con-
nected to a gradual tilting of the spins out of the ab plane leading to a three-sublattice
umbrella-like state.
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7.6 Susceptibility

7.6 Susceptibility

Magnetic susceptibility was measured between 2 and 300K at a magnetic field of
1T for both field directions. A markedly different behavior is observed depending
on the direction in which the magnetic field is applied, see Fig. 7.6. The inverse
susceptibility for H ∥ c shows a distinct change of slope at about 25 K. For H ⊥ c the
inverse susceptibility behaves linearly at high temperatures in accordance with the
Curie-Weiss law and deviates from the Curie-Weiss law at lower temperatures. The
high-temperature part is therefore fitted with the Curie-Weiss law returning a Curie-
Weiss temperature of θHT = −67(7)K and an effective moment of µeff = 4.72(20)µB.
The effective moment is in good agreement with the free electron value for Yb3+,
µeff = 4.54µB. In Ref. [109] a slightly higher Curie-Weiss temperature of −92K was
determined from the linear high-temperature behavior.

The Curie-Weiss law, however, yields overestimated values for θCW in this tempera-
ture region and does not accurately reflect the size of the magnetic interactions of the
ground state of KYbS2. The reason for this discrepancy is the crystal field splitting,
which changes the nature of the electronic state with decreasing temperature and
subsequently leads to the change of slope in the susceptibility at low temperatures.
To accurately determine the magnetic properties, the low-temperature susceptibility
needs to be investigated. This can be done in two ways: by fitting the low-temperature
part with the modified Curie-Weiss law (Eq. 2.18), which takes the van Vleck contribu-
tion into account, or by subtracting the van Vleck contribution determined from the
high-field magnetization measurement and fitting the corrected susceptibility linearly.
It proved to be difficult to apply the latter method to KYbS2, since subtracting
the van Vleck contribution yields a linear behavior only over a small temperature
region (T < 17K), see Fig.7.6(b). At higher temperatures the corrected susceptibil-
ity deviates from the linear behavior, indicating that the effect of the excited CEF
levels cannot be described by the T-independent term. Nevertheless, the corrected
susceptibility was fitted linearly between 2 and 17 K resulting in an effective magnetic
moment of 2.83(10)µB, in excellent agreement with the one determined from the
ESR measurement (µESR

eff = 2.81µB), and a Curie-Weiss temperature of −7.3(9)K.
The absolute Curie-Weiss temperature is therefore smaller than the one determined
from the ESR intensity (θESRLT = −12K). A dissonance between the Curie-Weiss
temperatures obtained from ESR and susceptibility measurements for H ⊥ c is also
observed in the case of NaYbSe2 and NaYbO2. For NaYbSe2 and NaYbS2 an even
larger difference between the Curie-Weiss temperatures from ESR and susceptibility is
found for H ∥ c. It is also worth noting, that the Curie-Weiss temperatures determined
from ESR measurements do not reflect the pronounced anisotropy observed in the
susceptibility measurements.
Additionally, the second analysis method is applied by fitting the low-temperature part
of the susceptibility with the modified Curie-Weiss law [see Fig. 7.6(a)]. The effective
moment, calculated from the ESR g⊥-value, is used to constrain the fit and make it
less ambiguous. This yields a Curie-Weiss temperature of θ⊥LT = −5.4(3)K, which
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Figure 7.6: (a) Inverse magnetic susceptibility of KYbS2 for both field directions. At high
temperatures the susceptibility for H ⊥ c is fitted with a linear Curie-Weiss law (green line).
The low-temperature part for both field directions is fitted with the modified Curie-Weiss law
(H ⊥ c: yellow line; H ∥ c: grey line). (b) Inverse susceptibility corrected by the van Vleck
contribution determined from the high-field M(H) measurement (green triangles) and from
the low-temperature fit to the susceptibility (blue triangles).

providing an even smaller absolute value of θLT than determined from the corrected
susceptibility. The fit with the modified Curie-Weiss law also returns a smaller van
Vleck contribution of χvv = 0.0095(3) emu

mol
compared to the high-field magnetization

measurement.
A fit with the modified Curie-Weiss law treating all parameters as free parameters
yields a Curie-Weiss temperature of −8.8(1)K, in between the ones determined from
the ESR measurement and the susceptibility corrected based on the high-field measure-
ment. In this case, a much lower van Vleck contribution of 0.0056(2) emu

mol
is obtained,

which is not even half of the one determined from the high-field magnetization mea-
surement. For comparison, the susceptibility was corrected with the van Vleck value
determined form the fit with the modified Curie-Weiss and all free parameters [see
Fig. 7.9(b)]. This yields a linear behavior of χ(T ) over a much larger temperature
range and an effective moment of 3.15µB, which is a bit larger compared to the
findings of the ESR measurement (µESR

eff = 2.81µB) but in excellent agreement with
Ref. [109].

The low-temperature susceptibility for H ∥ c was also fitted with the modified Curie-
Weiss law, leaving all fit parameters free, see Fig. 7.6(a). A Curie-Weiss temperature of
θ
∥
LT = −1.8(1)K, a van Vleck contribution of 0.02188(5) emu

mol
and an effective moment

of µeff = 1.22(1)µB are determined from this fit. The effective moment is considerably
larger compared to the one determined from the ESR g-value of µeff = 0.69µB.
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7.7 Low-Temperature Magnetization

Antiferromagnetic exchange interactions are implied by the negative Curie-Weiss
temperatures for both field directions. The significant difference between the Curie-
Weiss temperature for H ⊥ c and H ∥ c reflects the strong easy-plane anisotropy
inferred from the ESR measurements.

7.7 Low-Temperature Magnetization

The high-field magnetization measurements for KYbS2 already gave a good impression
of the low-temperature behavior, which will be discussed in more detail in this chapter.

For H ∥ c no unusual features at low temperatures and no changes with increasing
temperature are observed in agreement with the measurements to high magnetic fields,
see Fig. 7.7(a).
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Figure 7.7: (a) Low-temperature magnetization of KYbS2 for H ⊥ c and H ∥ c. A plateau
is observed for H ⊥ c while the magnetization continuously increases for H ∥ c. (b) Second
derivative of M(H) to determine the field limits of the magnetization plateau via the
respective minimum and maximum. (c)-(e) Second derivative of M(H) before and after
smoothing.
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7 KYbS2

The presence of a magnetization plateau for H ⊥ c is already observed in the
high-field magnetization measurements discussed previously. At 0.4K this plateau
feature is very distinct in the field range between 3.2 and 5.1T, although it still is
slightly tilted. As shown in Fig. 7.8(a), subtracting the χvv term obtained from the
high-field magnetization results in a completely flat plateau feature. The plateau
becomes less pronounced and its width decreases with increasing temperature. This
development is nicely observable in the second derivative of M(H), see Fig. 7.7(b).
Since the derivative of the original data is rather noisy, the derivative is smoothed to
determine the position of the minimum and maximum in d2M/dH2, which marks the
beginning and end of the plateau feature. In Fig. 7.7(c)-(e) the derivatives for different
temperatures provide a comparison between the original and smoothed curves. For
0.4K and up to 0.9K the maxima and minima are clearly discernible in the original
as well as the smoothed derivative. At 1K the plateau feature is no longer visually
discernible in the magnetization and in the derivative one can hardly discern any
extrema, however the smoothed curve still provides two rather wobbly extrema. A
similar behavior is observed in the analysis of the magnetization plateau of other
compounds in this work. At higher temperatures, weakly pronounced extrema are
still observed in the derivative of the magnetization, although the plateau feature in
the magnetization not observable by eye anymore.

The plateau feature is located at 0.51µB which is 36% of the saturation magneti-
zation determined from the high-field magnetization measurement and 31% of the
Msat determined from ESR measurements. In the comparable compounds AYbSe2
(A = K, Rb, Na, Cs) the plateau feature is claimed to be a 1

3
plateau indicative of

uud order [103, 104]. For NaYbSe2 the plateau is found above the 1
3
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Figure 7.8: (a) Original high-field and low-temperature measurements and measurements
after subtraction of the van Vleck contribution. (b) Comparison of two magnetization
measurements of KYbS2 at 0.39K for two different in-plane orientations. The difference
between the two orientations is about 0.6% at the plateau field as well as at 7T.
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7.7 Low-Temperature Magnetization

saturation magnetization at 40%, but was still ascribed to the uud order in Ref. [103].
For NaYbSe2 and KYbSe2 INS measurements in the field range of the plateau phase
provide prove of the uud order [111]. In the case of KYbS2 the saturation value is
close to Msat/3 and therefore a uud order is also the most likely interpretation of the
plateau feature for KYbS2.

A KYbS2 single crystal was measured in two different in-plane orientations with
virtually no difference observed between the measurements, rendering KYbS2 free of
in-plane anisotropy [see Fig. 7.8(b)].

The field-induced magnetic order in KYbS2 can also be traced in the low-temperature
magnetic susceptibility. At the transition to the magnetically ordered phase the
susceptibility shows a kink. In Fig. 7.9(a) the susceptibility for different applied
magnetic fields is shown and the transition temperature is marked by a star. Same
as observed in NaYbO2 and KYbO2 the inverse susceptibility initially exhibits a
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determine the position of the magnetic transition.
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downward curvature at the transition temperature at low fields, that changes to an
upward curvature above 4.25 T. The exact position of the transition is determined by
calculating the first derivative and identifying the respective maximum or minimum
[see Fig. 7.9(b)]. This yields insights into the development of the field-induced magnetic
order beyond the uud ordered phase. Magnetic order in the susceptibility measurement
is first observed for 2.5 T and can be traced up to 6.5 T, at the maximum field of 7 T
the transition is already below the minimum temperature of 0.4K attainable in the
measurement. Starting from 2.5 T at about 0.57 K the magnetic order shifts to higher
temperature up to 4.25 T reaching a maximum temperature of 0.94 K. At higher fields
the magnetic transition temperature becomes smaller until it is below 0.4 K at 7T.

The low-temperature susceptibility clearly outlines a magnetic field induced ordered
phase in which the uud ordered plateau phase is included. Due to the restrictions of
the available magnetic field strength and temperature range, the susceptibility only
partially reveals the extend of the magnetically ordered phase.

7.8 Specific Heat Measurements

The specific heat was measured down to 0.4K at zero field in the PPMS. In field
measurements with the available setup are only possible for H ∥ c and were performed
up to 6 T without any sign of magnetic order. Dilution fridge measurements performed
by Sebastian Bachus are available in Ref. [112] and proofed that no magnetic order
appears up to at least 13.5T down to 0.4K for H ∥ c.

In Fig. 7.10 the zero field measurement for KYbS2 is shown. The 3He refrigerator
of the PPMS was used to measure the low-temperature specific heat between 0.4 and
10K while the standard PPMS setup is used to measure the specific heat between 2
and 300 K. The 4He measurement up to 90 K is relatively stable, with the three data
points taken at each temperature being rather consistent, but they start to disperse
with further increasing temperature. Most likely this development towards higher
temperatures is due to the small mass of the single crystals (< 1mg). Therefore, the
data was reviewed rejecting the unreasonable data points. The rejection of data points
is based on the value of χ2 which accounts for the fit quality in the heat capacity
measurement and is unusually large for the respective second and third measurement
at each temperature. The comparison between the original and reviewed data is shown
in Fig. 7.10(a). At 300 K the specific heat reaches a value of 93.4 J/molK close to the
classically expected Dulong-Petit value of C = 3nR = 100.3 J/molK, with the number
of atoms per formula unit n = 4 and the molar gas constant R. As can be seen in
Fig. 7.10(b) the overlap area between 3He and 4He measurements is not completely
identical, with the 3He measurement slightly above the 4He measurement. At low
temperatures the 3He option provides more accurate measurements, therefore the 3He
data is preferred up to 10K where both data sets match up.

In zero field, no lambda-like peak indicating magnetic order is observed. A broad
maximum centered at about 2K is present, as was already observed in Ref. [109]
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7.8 Specific Heat Measurements

where a double peak structure is reported which is not discernible here. Analogous
to Ref. [109] the specific heat was fitted with a combination of Einstein CE(T ) and
Debye CD(T ) models to determine the phonon contribution to the specific heat:

Cph(T ) = (1− p)CD(T ) + pCE(T ), (7.1)

with

CD(T ) = 9nR

(
T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx (7.2)

and

CE(T ) = 3nR

(
θE
T

)2
e

θE
T

(e
θE
T − 1)2

. (7.3)

θE and θD are the respective Einstein and Debye temperatures. The parameter p in
Eg. 7.1 scales the relative contributions of the Einstein and Debye model.

The fit shows good agreement at low temperatures and up to 160 K, see Fig. 7.10(a).
At higher temperatures the data points deviate more from the fit. The Einstein
and Debye temperatures are determined as 342K and 193K, respectively, in good
agreement to the values determined in Ref. [109] (θE = 391K and θD = 212K). The
ratio p between the Debye and Einstein models is obtained as 0.57. The phonon
contribution determined by the fit can be used to calculate the magnetic specific
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Figure 7.10: (a) Specific heat of KYbS2 measured between 0.4 and 300K in zero applied
magnetic field. The red data points are the original data, the blue data points is the reviewed
data after sorting out the unreasonable measurements. The light blue line is the phonon fit
Cph to the specific heat. (b) Comparison between 3He and 4He measurement at low
temperatures. (c) Magnetic specific heat and entropy of KYbS2.
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7 KYbS2

heat of KYbS2. Below 3K the phononic contribution to the specific heat becomes
negligible as can be observed in Fig. 7.10(b).

The magnetic part of the specific heat and the magnetic entropy of KYbS2 are
shown in Fig. 7.10(c). Cmag is calculated by subtracting the determined phonon
contribution from the specific heat data. This way of obtaining the magnetic specific
heat is not ideal, since Cmag becomes negative above 20K. An improvement of the
fit function used to determine the phonon contribution and better measurements of
the specific heat measurement at high temperatures are necessary to remedy this
non-physical behavior. Nevertheless, the magnetic entropy is calculated by integrating
Cmag/T for T < 20K. The entropy saturates at about 80% of the value expected for
a pseudospin-1

2
system, S = R ln 2. A saturation at about 90% R ln 2 is achieved if

the measurements presented in this work are extended by available dilution fridge
measurements below 0.4 K.

7.9 Phase Diagram

The phase diagram depicted in Fig. 7.11 is constructed from the high-field and low-
temperature magnetization measurements as well as the low-temperature susceptibility
measurements. Further measurements in a dilution refrigerator were performed on
KYbS2. Field- and temperature-dependent specific heat and magnetic Grüneisen
parameter measurements were carried out by Sebastian Bachus [112] and thermal
expansion and magnetostriction measurements were performed by Noah Oefele. These
measurements are not part of this thesis and are therefore not included in the
phase diagram, nevertheless, they confirm the phase boundaries of the uud phase
determined from the magnetization plateau (red striped area in Fig. 7.11) as well
as the transition to the fully polarized state above 10.3T, indicated as the blue
colored area. The development of the field-induced magnetic order observed in
susceptibility measurements between 2.5 and 6.5T is also confirmed by the dilution
fridge measurements and can even be traced up to the polarized state due to the
availability of higher magnetic fields and lower temperatures. An additional phase
transition between the potential QSL state and the magnetically ordered phase is
observed in magnetostriction measurements. The magnetically ordered phase is
therefore clearly enclosed in the red colored area depicted in Fig. 7.11.

The magnetically ordered phase in KYbS2 is subdivided into three areas, out of
which only the uud phase is identified so far. The phase below the uud phase is
most likely a kind of 120° order, in NaYbSe2 a similar phase below the uud phase is
assumed to be of an oblique 120° (Y-coplanar) ordered nature [103]. In accordance to
NaYbSe2, KYbSe2 and RbYbSe2, the phase above the uud order is probably a V-type
(2:1 coplanar) order induced by the the increasing magnetic field [103,104].

As discussed in Chapter 7.7, the magnetization plateau can be traced even at
temperatures above the magnetically ordered phase. A similar observation was made
in Ref. [104] for KYbSe2 and RbYbSe2, where this phenomenon was ascribed to
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7.9 Phase Diagram

strong spin fluctuations. The constant width of the plateau phase with increasing
temperature indicates that thermal fluctuations have no influence on the plateau
phase.

At low temperatures and magnetic fields no magnetic order is observed. In zero field
the absence of magnetic order is verified by heat capacity measurements down to at
least 50 mK. In the additional dilution fridge and µSR measurements also no apparent
magnetic order is observed. Therefore, a potential QSL state might be realized in
KYbS2 in this area of the phase diagram.
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Figure 7.11: Phase diagram of KYbS2 for H ⊥ c containing all phase transitions observed
in magnetization and susceptibility measurements. The red area marks the magnetically
ordered phase determined from the magnetic transition observed in the susceptibility. Within
the magnetically ordered phase the uud phase is identified via the magnetization plateau.
The areas directly above and below the uud phase are most likely a Y- and V-type phase.
Above the magnetically ordered phase the saturation observed in the high-field magnetization
reveals the fully polarized phase (blue). At low fields and low temperatures the potential QSL
phase is indicated as the green colored area.
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8 NaYbSe2

In contrast to KYbS2, NaYbSe2 is already quite well studied in literature. The
primary goal for this compound is not to investigate the general properties but
to verify the present results and extend them to lower temperatures and by more
exotic investigation methods such as magnetic Grüneisen parameter measurement at
millikelvin temperatures, which are not reported in literature so far. The results of
these measurements are especially valuable for the comparison to KYbS2 to better
understand the influence of the surrounding atoms on the magnetism of the AYbX2

compounds. In this line of thought, dilution fridge measurements are of great interest,
but they go beyond the scope of the present work. Instead the focus is on the crystal
growth and characterization, as well as preparatory MPMS measurements down to
0.4 K for the dilution fridge measurements, which also serve as an indicator of crystal
quality and provide a preliminary layout of the phase diagram of NaYbSe2.

8.1 Literature Results

Like KYbS2, NaYbSe2 is available in single crystalline form. NaYbSe2 grows into
crystals of the size of multiple millimeter, although the crystals remain very thin.
While for KYbS2 the thickness of crystals is usually larger than 0.1 mm, the thickness
of NaYbSe2 is only a fraction of this value.
The synthesis of NaYbSe2 crystals was first described by Gray et al. [113] in 2003.
There, a molten chalcogenide flux reaction with Yb, Ge, Se and Na2Se2 as starting
materials was carried out which produced small hexagonal shaped red-orange platelets.
As a result of the increased interest in the AYbX2 family following the discovery of
YbMgGaO4, the compound was revisited in 2019 using the same self-flux method
applied to KYbS2, with NaCl, as flux and Na source, as well as elementary Yb and Se
as starting materials [103]. However, instead of placing the starting materials directly
into the quartz glass, a quartz glass with an internal glassy carbon crucible was used.
In this way mm-sized crystals were synthesized.

A summary of the results of the standard experimental analysis is given in Tab. 8.1.
XRD measurements confirmed the R3̄m space group and the absence of disorder

was evidenced by narrow ESR lines. The g-values for both field directions were
determined from ESR measurements and the energy gap between ground state and
first excited doublet were derived from the ESR linewidth. Additionally, the Curie-
Weiss temperatures were determined from the ESR intensity. [96,103]
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8.1 Literature Results

Table 8.1: Characteristic properties of NaYbSe2. The high-temperature (HT) susceptibility
in Ref. [103] was fitted with a modified Curie-Weiss law. At low temperatures (LT) the van
Vleck contribution χvv obtained from the high-field magnetization measurements was
subtracted and the Curie-Weiss law was applied for both field directions. In Ref. [114] the
high- and low-temperature susceptibilities were both analyzed using the modified Curie-Weiss
law.

XRD Susceptibility (HT)

lattice parameter θCW (K) µeff (µB) χvv (emu
mol

)

[103] – – H ⊥ c −66 4.5 1.6 · 10−5

[114] a = 4.07Å c = 20.77Å H ⊥ c −51 – 2 · 10−4

Susceptibility (LT) Magnetization

µeff (µB) θ (K) Hsat (T) χvv (emu
mol

) Ms (µB)

[103] H ⊥ c 2.43 −7 12 0.00765 1.5

[103] H ∥ c 1.1 −3.5 25 0.0144 0.49

[114] H ⊥ c – −13 – – –

ESR

g⊥ g∥ ∆ (K) θESR
⊥ (K) θESR

∥ (K)

[96] 3.13(4) 1.01(1) 160(30) −14 −14.3

Measurements of the susceptibility showed the distinctly different behavior of χ(T )
when the magnetic field is applied perpendicular or parallel to c. The susceptibilities
above 70K were fitted with the modified Curie-Weiss law, however, considering a
temperature independent core diamagnetic contribution as well as the van Vleck
susceptibility, χ0 = χdia + χvv. For the low-temperature (T < 70K) analysis the van
Vleck contribution was determined from the high-field magnetization measurements
via a linear fit in the fully saturated field range (µ0H > 13T for H ⊥ c, µ0H > 22T
for H ∥ c). After subtracting the van Vleck contribution the effective magnetic
moment and the Curie-Weiss temperature for both field directions were determined
by linearly fitting the corrected susceptibility data.
In small applied fields no signs of long-range magnetic order were observed down to
0.5K in the susceptibility. When applying a magnetic field larger than 2T a kink
in χ(T ) was observed, indicating a magnetic phase transition. In addition to that,
a plateau feature appeared between 3 and 5T in the field-dependent magnetization
measurements at about one third of the saturation magnetization, reminiscent of an
uud ordered state. No magnetic order was observed in χ(T ) and M(H) for fields
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8 NaYbSe2

applied along H ∥ c, which is explained by the spins being gradually canted out of
the ab plane and the consequently unbroken threefold rotational symmetry. [103]

The absence of magnetic order in zero field was further supported by measurements
of the specific heat in zero field down to 50 mK. A superposition of two maxima at 1.1 K
and 1.2 K was described in Ref. [103] and associated with a high degree of frustration
in the triangular lattice. The magnetic specific heat revealed a linear power-law
behavior, indicating a gapless QSL ground state. The entropy was calculated from
the magnetic specific heat and reaches R ln 2 at 15 K, as expected for a pseudospin-1

2

system. In applied magnetic fields (H ⊥ c) the specific heat develops a lambda like
anomaly above 2 T which shifts to higher temperatures with increasing the field up to
5T. Above 5T the trend is reversed until the magnetic order disappears above 9T.
For H ∥ c magnetic order is established at a much larger field of 9T and vanishes
above 21T. [103]

CEF levels were determined from INS measurement. Three resolution limited peaks
were observed further evidencing the absence of structural disorder. INS measurements
also excluded the presence of short and long-range order down to 40mK. [103,114]

Ac susceptibility measurements in combination with µSR measurements excluded
the possibility of spin ordering or freezing down to 0.1K [115].

8.2 Synthesis

Jens Maier assisted in the synthesis of the crystals as part of his Bachelor work,
however he was not involved in selecting and cleaning of crystals and performing
measurements.

The synthesis of NaYbSe2 single crystals was done similar to Ref. [103] by filling
the reagents (NaCl : Yb : Se = 20 : 1 : 2.4) into a glassy carbon crucible which was
subsequently inserted into a standard quartz tube. Instead of sublimed Se used in
Ref. [103] purchased Se granules were used for the synthesis. The Se was ground
and mixed with the NaCl; the Yb metal was cut into small pieces and placed at the
bottom of the crucible and covered with the NaCl-Se mixture. Then the crucible was
inserted into a quartz glass which was subsequently sealed under vacuum conditions
and placed into a box furnace. The same heating procedure as in Ref. [103] was
used with an initial heating step to 400 °C with 180K/h and a holding time at this
temperature of two hours to ensure equilibrium. After this, the temperature is slowly
raised (20K/h) to 850 °C and held there for one week, then cooled down to room
temperature with 40K/h. The crystals obtained after dissolving the flux in water
are very thin and covered with a black residue (see Fig.8.1). Most of the crystals are
quite small (< 1mm2) with only a few larger ones with lateral dimensions of up to
2mm. Finding a crystal suitable for measurements is challenging and those crystals
have to be painstakingly cleaned by scratching the dirt of the surface with a scalpel.

Changes of the ratio of the reagents (i.e.: NaCl : Yb : Se = 20 : 1 : 2, NaCl :
Yb : Se = 20 : 1 : 1.8, NaCl : Yb : Se = 20 : 1 : 2.2) did not lead to a significant
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8.2 Synthesis

improvement of crystal size and quality. Similar, no obvious improvements were
observed when changing the maximum temperature (900 °C, 950 °C) of the synthesis.
The holding time was only varied insignificantly (up to 12 days) therefore no statement
on the influence of a longer holding time can be made. For the synthesis of KYbS2

a longer holding time had a positive impact on the crystal size, however a similar
trend is not expected for NaYbSe2 based on experiences made during the synthesis
of KYb(SxSe1−x)2. For KYb(SxSe1−x)2 an extended holding time does not appear to
have a significant impact on the size of crystals with dominant Se content.

Attempting the synthesis according to Ref. [116] yielded similar results. The ratio
for the starting materials in this case is NaCl : Yb : Se = 10 : 2 : 3. Again Se granules
were used, in accordance with Ref. [116], crushed and mixed with the NaCl. The
reagents were directly filled into a quartz glass, sealed with an argon atmosphere of
200mbar, and heated to 850 °C or 950 °C for one week or up to 11 days.

Another synthesis attempt was made by deploying the method used for KYbS2

and adjusting it to NaYbSe2. The ratio was significantly different in this case with a
bigger surplus of NaCl flux: NaCl : Yb : Se = 80 : 2 : 3. The reactants were directly
filled into the quartz glass. A synthesis under vacuum as well as 200mbar argon
atmosphere was performed, no difference was observed between the two methods. The
furnace program was altered as well, the reagents were directly heated to 840 °C over
four hours and held at that temperature for two weeks, then cooled down to room
temperature over 160 h. The crystals grow on the walls of the quartz glass and have
to be carefully broken to remove them. The crystals are rather large but very thin

(a) (b) (c)

(d) (e) (f)

Figure 8.1: NaYbSe2 crystals synthesized directly in the quartz glass similar to KYbS2.
The synthesis using a glassy carbon crucible yielded similar results. (a)-(c) NaYbSe2 crystals
grown on the wall of the quartz glass. (d),(e) Crystals extracted from the quartz glass wall,
before cleaning. (f) Same crystal as in (e) after cleaning.
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8 NaYbSe2

and still quite dirty, see Fig. 8.1. Fig. 8.1(e) and (d) show the same crystals before
and after cleaning.

8.3 Characterization

Powder XRD measurements on several small, cleaned single crystals were performed
with the Empyrean and did not reveal the presence of any impurity phases. The (00l)
reflexes are dominant in the XRD spectrum due to the plate-like structure of the
crystals and the observed reflexes are in good agreement with literature.

A Rietveld refinement of the powder XRD data (see Fig. 8.2) yielded reasonable
values for the atomic displacement parameters and the obtained lattice parameters
are comparable to literature [113]. The characteristic parameters determined from
the Rietveld refinement are given in Tab. 8.2.

Since the purity of the single crystals is hard to judge only by visual examination
and XRD performed on single crystals, promising candidates were further investigated
in the MPMS using the 3He refrigerator. The results of those measurements are shown
in Fig. 8.3. For the crystals shown in Fig. 8.3(a) and (b) the low-field part of the
M(H) measurements show a clear deviation from the expected behavior, although
the plateau feature anticipated in NaYbSe2 is present. These deviations are not
necessarily connected to an impurity phase, since the investigated crystals are very
thin and light (m < 0.1mg) and therefore the signal at low fields might simply be too
weak to be correctly detected. No unusual behavior is observed in the only slightly
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Figure 8.2: Rietveld refinement of the lab powder XRD measurement on multiple crushed
single crystals. Although the crystals were thoroughly ground using ethanol the (00l) reflexes
are still significantly overestimated.
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8.4 Susceptibility

Table 8.2: Atomic displacement parameters (Uiso) and atomic positions as well as lattice
parameters, characteristic distances and Yb-Se-Yb angle of NaYbSe2 determined from the
Rietveld structure refinement of the lab XRD measurement.

atom x/a y/b z/c Uiso (Å2)

Se 0 0 0.244062(99) 0.0055(13)

Yb 0 0 0.5 0.0099(11)

Na 0 0 0 0.0113(55)

a c Yb–Se dist. Na–Yb dist. ∡Yb–Se–Yb

4.0539(3) 20.761(1) 2.8390(1) 4.1774(2) 91.118(5)°

heavier (0.11mg) crystal shown in Fig. 8.3(c). From the M(H) measurement this
crystal would be judged sufficient for further measurements, although it is still rather
light and relatively small so its usability is limited. The crystals shown in Fig. 8.3(d)
and (e), on the other hand, show a nice plateau feature with no deviation from the
expected behavior of the M(H) measurements, they are large enough to be used
for more challenging measurements, i.e. measurements of the specific heat using
a dilution refrigerator where a thermometer (approximately 0.5 × 0.7mm2) has to
be glued directly to the surface of the crystals. Lastly, the crystal in Fig. 8.3(d) is
comparatively heavy but does not develop a distinct plateau feature at the lowest
measured temperature 0.4 K. Therefore it is not considered for further measurements.

8.4 Susceptibility
For H ⊥ c the susceptibility shows the same behavior as observed for KYbS2, KYbO2

and NaYbO2. The linear high-temperature behavior is again fitted with the Curie-
Weiss law between 150 and 300K [see Fig. 8.4(a)]. An effective magnetic moment
of µeff = 4.59(9)µB, close to the calculated effective moment of free Yb3+ ions
µeff = 4.54µB, and a Curie-Weiss temperature of θHT

CW = −55(4)K are obtained. Both
values are in good agreement with previous studies (see Tab. 8.1).

The low-temperature part of the susceptibility is initially fitted with the modified
Curie-Weiss law, the results of the fit are summarized in Tab. 8.3. Compared to
the values determined in Ref. [103] (θLT = −7, µESR

eff = 2.43µB) the values of the
Curie-Weiss temperature θLT = −12.9(3)K and the effective moment µeff = 3.02(1)µB

are larger here. However, the effective moment derived from the ESR g-value is in
between the effective moments determined from the susceptibility measurements
(µESR

eff = 2.71µB) [96]. Furthermore, the obtained Curie-Weiss temperature is in rather
good agreement with the one found in Ref. [114] and the one determined from the
ESR intensity θESRCW = −14K [103].
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Figure 8.3: Exemplary M(H) measurements of the NaYbSe2 single crystals to determine
the crystal quality and usability for further measurements. (a),(b) Although the crystals
appear clean to the eye and develop a distinct plateau the magnetization shows an
uncharacteristic behavior at low magnetic fields. (c)-(e) The crystals show a distinct plateau
and no irregularities are observed in the measurements. (d) The plateau phase at 0.4K is
noticeably less pronounced in this measurement than for the other crystals.

Fitting the low-temperature susceptibility with the modified Curie-Weiss with a
fixed effective moment calculated from the ESR g-value from literature [96] returns
a Curie-Weiss temperature of −9.6(3)K. This value is closer to but still larger than
the one in Ref. [103] and a considerably larger van Vleck contribution is obtained,
χvv = 0.0103(3).

For comparison the low-temperature part susceptibility was also investigated after
subtracting the van Vleck contribution χvv. As shown in Fig. 8.4(b) the susceptibility

92



8.4 Susceptibility

10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

 cvv from LT fit to c(T)
 cvv from HF M(H) [101]

(c
-c

vv
)-

1  (
m

ol
/e

m
u)

T (K)

(b) H c

c-
1  (

m
ol

/e
m

u)

T (K)

(a) H c

Figure 8.4: (a) Inverse susceptibility of NaYbSe2 (H ⊥ c) fitted with a Curie-Weiss law at
high temperatures (150-300K) and with a modified Curie-Weiss law at low temperatures.
(b) Low-temperature susceptibility after correction with the van Vleck contribution χvv. The
red data points are corrected with χvv obtained from the low-temperature fit to the
susceptibility, the blue curve is corrected with χvv from the fit to the high-field magnetization
in Ref. [103].

was on one hand corrected using χvv determined from the high-field magnetization
measurement in Ref. [103] and on the other hand using the van Vleck contribution
obtained from the modified Curie-Weiss law. In contrast to KYbS2 the van Vleck
contribution form the magnetization and the low-temperature fit to the susceptibility
are quite simliar, therefore only a marginal difference in slope is observed between the

Table 8.3: Results of the low-temperature analysis of the susceptibility. (a) Susceptibility
between 10 and 35K (H ⊥ c) or 2 and 35K (H ∥ c) was fitted with the modified Curie-Weiss
law. For (b) the effective moment calculated form the ESR g-value was fixed in the fit with
the modified Curie-Weiss law for H ⊥ c. Van Vleck contribution determined from the
high-field magnetization (c) and from the low-temperature fit (d) was subtracted from the
susceptibility and a linear fit was applied to the corrected measurements.

H ⊥ c H ∥ c

χvv (emu
mol

) θLT (K) µLT
eff (µB) χvv (emu

mol
) θLT (K) µLT

eff (µB)

(a) 0.0071(4) −12.9(3) 3.02(1) 0.0178(4) −8.6(8) 1.52(5)

(b) 0.0103(3) −9.6(3) 2.72

(c) 0.00765 [103] −12.3(5) 2.97(2) 0.0144 [103] −22(1) 2.12(1)

(d) 0.0071(4) −12.9(9) 3.02(4) 0.0178(4) −9.4(4) 1.57(1)
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8 NaYbSe2

two methods. Linear behavior is observed above 10K and nearly identical values of
θCW and µeff are determined, as shown in Tab. 8.3.

The behavior of the susceptibility for H ∥ c is shown in Fig. 8.5(a). For comparison
the H ⊥ c measurement is also included in the graph, revealing a much better
agreement between H ⊥ c and H ∥ c at high temperatures compared to KYbS2. The
low-temperature behavior for H ∥ c is analyzed using the modified Curie-Weiss law
yielding a Curie-Weiss temperature of −8.6K, a van Vleck contribution of 0.01782 emu

mol

and an effective moment of 1.52µB. Fitting with the modified Curie-Weiss law with
a fixed effective moment calculated from the ESR g-value does not describe the
low-temperature behavior accurately.

Analogue to the H ⊥ c analysis, the low-temperature susceptibility was corrected
for the van Vleck contribution using χvv determined from the fit with the modified
Curie-Weiss law as well as the χvv from the high-field magnetization measurement
in Ref. [103], see Fig. 8.5. In contrast to H ⊥ c, a large difference between the two
methods is observed, with the second yielding only a small linear regime and an
unrealistic value of θCW = −23.1K. This indicates, that the van Vleck contribution
from the high-field magnetization is too small and doesn’t account for the complete
paramagnetic contribution of the susceptibility measurement in this work. In Ref. [103]
this is not the case and the corrected susceptibility shows a linear behavior below 30 K.
A much smaller Curie-Weiss temperature is obtained there (θCW = −3.5K), however
the fit range is also rather small. Reasons for the discrepancy between Ref. [103]
and this work might be a slight, unavoidable sample dependence. However, the
determination of χvv from the high-field magnetization for H ∥ c, where no saturation
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Figure 8.5: (a) Inverse susceptibility of NaYbSe2 for H ∥ c analyzed with the modified
Curie-Weiss law at low temperatures. (b) Low-temperature susceptibility after correction with
the van Vleck contribution χvv. The green data points are corrected with χvv obtained from
the low-temperature fit to the susceptibility, the blue curve is corrected with χvv from the fit
to the high-field magnetization in Ref. [103].
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8.5 Low-Temperature Magnetization

is observed up to the maximum field of the experiment, makes the linear fit at high
fields rather ambiguous and may add to the dissonance, as well.

Overall, the Curie-Weiss temperatures obtained from the low-temperature analysis of
the susceptibility for H ⊥ c and H ∥ c indicate a less pronounced exchange anisotoropy
in NaYbSe2 compared to the closely related NaYbS2, with θCW = −13.5K for H ⊥ c
and θ∥ = −4.5K for H ∥ c, and KYbSe2, with θCW = −12.6K for H ⊥ c and
θ∥ = −4.7K for H ∥ c [104, 117]. The van Vleck contribution to the susceptibility
for H ⊥ c is larger in NaYbSe2 (χvv = 0.0071(4) emu

mol
l) compared to NaYbO2, in

accordance with the reduction of the energy gap ∆ between ground state and first
excited doublet, determined from the ESR measurements when exchanging O by Se.
On the other hand, a difference of 50K between the energy gaps of KYbSe2 and
NaYbSe2 appears to have no notable effect on the van Vleck contribution, resulting
in nearly identical values of χvv (χvv(KYbSe2) = 0.00112(3) emu

mol
). This comparison is

made based on the van Vleck contributions determined from fitting the susceptibility
measurement with the modified Curie-Weiss law and fixing the effecitve moment
calculated from the ESR g-value. Taking the van Vleck contribution determined
from the high-field magnetization measurements in Ref. [103] into account a much
smaller χvv = 0.00765 emu

mol
is retrieved for NaYbSe2. Unfortunately, a comparable

measurement is not available for KYbSe2 so far.

8.5 Low-Temperature Magnetization

As already mentioned in Chapter 8.3 the low-temperature magnetization of NaYbSe2
exhibits a plateau, confirming the observation in Ref. [103]. Fig. 8.6(a) shows the
plateau located at about 0.65µB between 4 and 6T, in excellent agreement with
Ref. [103]. In Ref. [103] the plateau is argued to be a 1

3
plateau that indicates the

formation of the uud order, as was confirmed by neutron scattering experiments for
similar spin-1

2
triangular lattice compounds [79, 89]. Although the uud order is the

most likely origin of the feature in the magnetization, the plateau is located at about
40% of the saturation magnetization, a slightly higher value as expected for the uud
order. For KYbS2 the plateau was located slightly above Msat/3, as well. Neutron
diffraction measurements would be desirable to validate the uud order of the plateau
phase in these compounds as well.

The plateau feature is naturally most prominent at the lowest measured temperature
of 0.4 K and becomes less distinct with increasing temperature, but it is still observed
up to 1K. Although, the plateau is well pronounced at 0.4K, is not completely flat
due to the van Vleck contribution, similar to the observations made for KYbS2. In
the case of KYbS2 subtracting the linear-in-temperature van Vleck contribution from
the low-temperature measurement returned a completely flat plateau feature. To
determine the beginning and end of the plateau at each temperature, the second
field-derivative of M(H) was calculated as shown in Fig. 8.6(b). The beginning and
end of the plateau is characterized by a distinct minimum and maximum in d2M/dH2,
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Figure 8.6: (a) Low-temperature field-dependent magnetization measured between 0.4 and
1.1K. A very distinct plateau feature is observed at about 0.65µB between 4 and 6T.
(b) Second field derivative of M(H) used to determine the beginning and end of the plateau
feature in M(H) by tracing the respective minima and maxima. (c)-(e) Low-temperature
susceptibility measurement for tracing the magnetic order up to 7T. The stars indicate the
transition to the magnetically ordered phase.

respectively. The extrema become less pronounced with increasing temperatures,
however, the second derivative of M(H) still shows a weak maximum and minimum
at 1.1K, although no plateau is visually discernible in the magnetization at this
temperature anymore. The plateau spans a field range of 4 to 6T, therefore it is
shifted to higher magnetic fields compared to KYbS2, NaYbO2 and KYbO2. This
is in agreement with the higher θCW for H ⊥ c of NaYbSe2 determined from the
susceptibility measurements, indicating stronger exchange interactions in NaYbSe2
compared to the other investigated compounds.

The temperature-dependent magnetization at low temperatures can give additional
information about the magnetically ordered phase in NaYbSe2. The magnetic order is
best traced via the temperature derivative of χ(T ), as was previously done for NaYbO2,
KYbO2 and KYbS2. The stars in Fig. 8.6(c)-(e) mark the transition temperatures
which are determined from the derivative. A change of slope is first observed for
2.75T at about 0.5K and shifts to higher temperatures with increasing magnetic
field up to 1.1K for 5T. The magnetic transition can be traced up to the maximum
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8.6 Phase Diagram

field of 7T available for the measurement at about 0.7K. This magnetically ordered
phase well incorporates the uud phase indicated by the magnetization plateau. The
low-temperature χ(T ) measurements for NaYbSe2 closely resemble those of KYbS2,
although the phase transitions are more pronounced in the latter. The transition
temperatures, on the other hand, are slightly higher for NaYbSe2, with the highest
transition temperature at 1.1K and 5T, compared to 0.9K and 4.25T for KYbS2.

8.6 Phase Diagram

The low-temperature magnetization measurements are used to assemble a H-T phase
diagram for NaYbSe2 shown in Fig. 8.7. For comparison, the magnetic phase transition
observed in specific heat and low-temperature susceptibility measurements in Ref. [103]
are included in Fig. 8.7 as well. All data points paint a coherent picture of the low-
temperature magnetism in NaYbSe2, which agrees well with the phase diagrams
determined for related AYbX2 compounds. Field-induced magnetic order is observed
from 2 to 8T via specific heat and susceptibility measurements. The magnetically
ordered phase is segmented into at least three sub-phases. Between 4 and 6T
the uud phase is identified from the 1

3
magnetization plateau in the magnetization

measurements. The other two phases are located below and above the uud phase.
Most likely a Y-type magnetic order is established at lower fields, which transitions
to the observed uud phase at 4 T. Above the uud phase the increasing magnetic field
favors the formation of a V-type order that finally transitions to the fully polarized
state above 12T.

In comparison to KYbS2 magnetic order appears at about the same magnetic field of
2 T. The uud phase of both compounds span about the same range of magnetic fields,
with the plateau phase of NaYbSe2 beginning at slightly higher fields (3.8 T) compared
to KYbS2 (3.1 T). For KYbS2 the presumable V-type phase above the uud phase can
be traced up to the fully polarized state at 10.5 T via dilution fridge measurements. In
the case of NaYbSe2 a similar behavior can be expected, however the maximum field
of the low-temperature magnetization measurements is limited to 7 T in this work and
is only slightly extended to 8 T in Ref. [103]. Saturation is reached at 12 T in NaYbSe2
according to high-field magnetization measurements [103]. The shift of the uud and
the fully polarized phase to higher magnetic fields in NaYbSe2 compared to KYbS2

is due to the increased exchange interactions present in NaYbSe2. The exchange
interactions are directly related to the absolute value of the Curie-Weiss temperatures,
which range from 12.9(3) to 9.6(3)K for NaYbSe2 and from 8.8(1) to 5.4(3)K for
KYbS2, depending on the method applied to determine the low-temperature behavior
of the susceptibility. Comparing the respective methods the Curie-Weiss temperature
of KYbS2 is at least 4K smaller than the one of NaYbSe2.

To further complete the phase diagram measurements in the dilution refrigerator for
NaYbSe2 would be desirable to access lower temperatures and higher magnetic fields,
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extending the magnetic field range up to the fully polarized phase, and identifying
additional phase boundaries.
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Figure 8.7: Phase diagram of NaYbSe2 for H ⊥ c compiled from magnetization and
susceptibility measurements at low temperatures. Additionally specific heat and
low-temperature susceptibility measurements from Ref. [103] are implemented in the phase
diagram for comparison.
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9 KYb(SxSe1−x)2

So far only the influence of exchanging the alkaline metal A of AYbX2 was considered.
In this chapter the local environment of the Yb3+ ions is altered by substituting the
ligand ion X. To this end the sister compounds KYbS2 and KYbSe2 were selected,
in the former no signs of magnetic order are observed so far, while the later was
found to exhibit magnetic order at 0.29K in zero field in INS and specific heat
measurement [78, 118]. In contrast to the as well attempted substitution of the
alkaline metal (NaxK1−xYbS2), where proofed to be more complicated and hard to
control due to the excessive amount of NaCl/KCl flux used in the self-flux synthesis
method, it was possible to gradually increase the amount of Se in the compounds and
synthesize single crystals for the complete doping series. Since KYbS2 was already
thoroughly discussed previously, the first part of this chapter focuses on the already
available results for KYbSe2 before highlighting challenges of synthesis and sample
characterization of the doped compounds. Synchrotron XRD, ESR, susceptibility and
low-temperature magnetization and susceptibility measurements are performed for
the different substitution levels to construct preliminary phase diagrams which reveal
the effect of Se doping on the magnetism of KYbS2.

9.1 KYbSe2 Literature Results

The synthesis of the KYbSe2 single crystals in Ref. [104] differs from the ones described
previously in this work. A two step method was applied, in which polycrystalline
KYbSe2 was produced first using K, Yb, and Se as starting materials. Subsequently,
the obtained powder was mixed with KCl flux to grow single crystal. With the ratio
of KYbSe2 : KCl = 1 : 10 a considerably smaller amount of flux is used in this kind of
synthesis compared to the single crystal growth of KYbS2 and NaYbSe2.

XRD measurements confirmed the R3̄m space group. Lattice parameters as well as
Yb-Yb distance and the Yb-Se-Yb angle are given in Tab. 9.1.

In measurements of the susceptibility no magnetic order was observed down to
0.4 K in zero field. The typical anisotropy encountered in AYbX2 compounds becomes
apparent below 50K when comparing the measurements for H ⊥ c and H ∥ c. For
both field directions a broad maximum was observed at low temperatures indicating
short range correlations. Applying a magnetic field (H ⊥ c) larger than 2.5 T induces
magnetic order as indicated by a kink in the susceptibility measurements. The
formation of uud order is evidenced by a 1

3
plateau in M(H) measurements at 0.42 K.

For H ∥ c no magnetic long-range order was observed up to 7T. The low field
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9 KYb(SxSe1−x)2

susceptibility was fitted with a linear Curie-Weiss behavior between 200 and 250K
for both field directions. The Curie-Weiss temperatures and the effective moments
obtained from the fits are shown in Tab. 9.1. The low-temperature behavior was
analyzed using the modified Curie-Weiss law, the Curie-Weiss temperatures determined
for both field directions are much smaller compared to the high-temperature fits and
give a more realistic representation of the magnetic interactions in the ground state.

Specific heat measurements down to 0.4K provided no indication of long-range
magnetic order as well. Short range correlations are indicated by a broad maximum,
as was observed in other members of the AYbX2 triangular antiferromagnets. The
field induced magnetic order was observed in the specific heat measurements in
applied magnetic fields larger than 2T in accordance with the observations in the
low-temperature susceptibility. [104]

The standard measurements down to 0.4K described so far painted KYbSe2 as a
possible QSL candidate, mainly due to the absence of magnetic order. In INS studies
however magnetic Bragg peaks were observed below TN = 290mK, indicating magnetic
120◦ long-range order, which was subsequently observed in specific heat measurements
down to 30 mK in Ref. [118], as well. The J2/J1 ratio was also estimated to be within
the 120◦ ordered phase, but close to the QSL phase rendering KYbSe2 an interesting
material to explore exotic behaviors. Additionally, the closeness to the QSL phase
makes it the perfect candidate to investigate the influence of doping and possibly
enter the QSL regime by adjusting the J2/J1 ratio.

Table 9.1: Characteristic properties of KYbSe2 from Ref. [104]. The high-temperature (HT)
susceptibility for both field directions is analyzed by fitting with the Curie-Weiss law. At low
temperatures (LT) the modified Curie-Weiss law is applied.

XRD

a (Å2) c (Å2) dinter(Yb–Yb) (Å2) ∡ Yb–Se–Yb

[104] 4.1149(5) 22.6911(4) 7.56 93.13(2)◦

Susceptibility (HT)

µeff (µB) θHT (K) µeff (µB) θHT (K)

[104] H ⊥ c 4.87 −73.5 H ∥ c 5.08 −40.3

Susceptibility (LT)

µeff (µB) θ (K) χvv

(
emu
mol

)
[104] H ⊥ c 3.41 −12.6 0.002

[104] H ∥ c 0.65 −4.7 0.027
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9.2 Synthesis

The INS measurements were analyzed by calculating Quantum Fischer information
and revealed multipartite entanglement of the KYbSe2 ground state. [78,79]

Field- and temperature-dependent specific heat and measurements of the magne-
tocaloric effect at low-temperature were investigated in Ref. [118] and revealed a
detailed phase diagram. Five phases were distinguished in the H-T phase diagram.
The magnetic order observed in the zero field specific heat measurements below 300 mK
invokes a 120° phase in the low-field region. The uud phase and the Y-phase typical
for the AYbX2 compound family are identified in the low-temperature measurements
of KYbSe2, as well. The nature of the additional two phases is not yet evident. They
develop below 0.4K, similar to the 120° ordered phase, and have therefore not been
observed in previous measurements.

9.2 Synthesis

KYb(SxSe1−x)2 single crystals were prepared analogous to KYbS2 by altering the ratio
of the starting materials stoichiometrically, KCl : Yb : S : Se = 80 : 2 : 3x : 3(1− x).
The Se granules and S pieces were ground, mixed with the KCl flux and filled on
top of the Yb pieces into the quartz tube in a glove box under argon atmosphere.
For the sealing procedure the quartz glass was closed with a disposable glove and a
zip tie before removing it from the glove box. This was mainly done to ensure that
no potentially toxic substances evaporate while fashioning of the thin neck. For the
synthesis the ampules were either sealed with the argon atmosphere preserved from
the glove box evacuated and filled with 200mbar argon atmosphere. The difference
between the two methods was neither significant nor systematic. The same heat
treatment as for KYbS2 was used and only the impact of altering the holding time on
crystal growth and quality was investigated. Longer holding times at 850 °C appeared
to only impact the growth of the crystals with larger S content. Here, similar to
KYbS2, larger crystals can be connected to longer holding times. The holding time was
increased to up to seven weeks. The Se dominant crystals, on the other hand, showed
no improvement of size or thickness and even appeared to be negatively impacted
concerning the crystal quality by an elongated holding time.

After dissolving the flux, crystals are found on the inner wall of the quartz tube.
Similar to NaYbSe2, the crystals are often coated with a black residue which is not
soluble in water and has to be mechanically cleaned using a scalpel. Therefore the
surface of the crystals often appears rather opaque due to scratch marks and not
polished as might be expected from single crystals. An array of crystals over the
whole doping series is shown in Fig. 9.1. Starting from the green, hexagonally shaped
KYbS2 crystals a change of color is observed already for small amounts of Se content.
The crystals with around 90% S have a dark yellow color, but retain the regular form
and considerable thickness of the KYbS2 crystals. With increasing Se content the
color changes from yellowish to orange. The crystals still have a regular shape and
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35% 20%

14%  9%
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42%
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 0%

31%

Figure 9.1: Comparison of different crystals with increasing Se content. The green color of
the pure KYbS2 crystal already changes to a yellowish tint for small Se contributions. With
increasing Se doping the color changes from orange to a deep red for KYbSe2. While the
crystals with dominant S content have a smaller diameter, they are considerably thicker
compared to the crystals with higher Se content.

sizable thickness up to 30% S. For higher Se doping levels they become significantly
thinner and adopt the plate-like, irregular form of the KYbSe2 and NaYbSe2 crystals.

9.3 Characterization

After cleaning and identifying visually promising crystals EDX spectroscopy was per-
formed on each individual crystal to determine the Se content. This is an extraordinary
effort, since every crystal needs to be manually attached to the sample holder with
silver epoxy, investigated, detached, cleaned and labeled according to the respective
EDX measurements. This is aggravated by the huge number of investigated crystals
and the large fraction of those crystals which are found to have an inhomogeneous
Se distribution and are therefore not usable. Fig. 9.2 gives an overview of the ratio
of crystals with homogeneous versus inhomogeneous Se distribution on the example
of 640 EDX measurements. Out of those 640 ostensibly untainted crystals 41% have
an inhomogeneous Se distribution. The other 59% are interpreted as homogeneous,
however the actual Se content often differs from the Se content targeted in the respec-
tive synthesis. Crystals found to be homogeneous are in many cases not implicitly
usable for measurements. While larger crystals are more prone to inhomogeneity
than smaller crystals, smaller crystals are often not usable in the experimental setup
because of their size or mass. For example, out of the 30 homogeneous crystals with
90% targeted S content, 13 show an actual S content which deviates less than 5% from
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Figure 9.2: Summary of the EDX measurement results of 640 crystals. The crystals are
selected via visual assessment and cleaned of any synthesis residue not dissolvable in water.
The individual crystals are investigated via EDX in several small areas on the crystal surface.
A deviation of the S content of less than 5% between the different areas is allowed for
crystals to be judged as homogeneous.

the targeted S content and only 5 are large enough to be utilized for single crystal
measurements in the MPMS as well as in the dilution fridge.

Generally, a better agreement between the targeted and achieved Se content is
observed for the synthesis containing larger amounts of Se. In particular, for those
crystals where the S:Se ratio close to 1:1 is intended, a larger deviation occurs, as
shown in Fig. 9.3(a). The comparison only includes crystals which were found to be
homogeneous in the EDX measurements.
Overall, the grown crystals, irrespective of the S content targeted in the synthesis, cover
nearly the complete spectrum of the doping series enabling a detailed investigation.

In Fig. 9.3(b) the quantity of usable crystals according to EDX analysis is depicted
in dependence of their diameter (ab plane). The statistic only includes crystals which
are judged suitable for measurements. Crystals with high Se concentration generally
have a larger surface (ab plane) but are very thin. Large S content on the other hand
yields smaller crystals which are much thicker compared to the Se rich crystals. In
terms of mass small, S rich crystals are often comparable to the larger surfaced Se
rich crystals. Moreover, the statistic does not include the larger, S rich crystals grown
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Figure 9.3: (a) Comparison of the S content targeted in the synthesis and the S content
determined from EDX measurements. For this comparison only crystals are considered which
show a homogeneous Se distribution. (b) Statistic of crystal size for the different doping
levels. Only crystals considered suitable for measurements are considered and thickness of
the crystals is not regarded.

with an elongated holding time at 850 °C, since those syntheses were performed at a
later point and are not investigated via EDX at this time.

Remarkably, crystals with an intended S content of 70% are especially elusive. As
can be seen in Fig. 9.2, already very little crystals are obtained from this synthesis, and
out of the nine crystals only three show a homogeneous Se distribution. Two of them
are barely within 5% deviation from the targeted 70% S content [see Fig. 9.3(a)], but
none of them are considered suitable for measurements in accordance with Fig.9.3(b).
Similarly, growing crystals with a S content between 90% and 100% has not been
achieved.

9.4 Synchrotron Measurements

Synchrotron measurements were performed on both end members, KYbS2 and KYbSe2,
and six intermediate substitutions at the ID22 beamline at the ESRF in Grenoble.
A multianalyzer setup was utilized to investigate the crystals at the wavelength of
λ = 0.35432Å. Since multiple ground crystals had to be used to fill the capillary for
the SXRD measurement, the crystals had to be thoroughly investigated via EDX
in advance to determine their exact doping level. Crystals with (nearly) identical
composition were selected and finely ground using ethanol for the measurements. In
Fig. 9.4(a) an exemplary SXRD measurement for 60% S is shown and fitted with
a Rietveld refinement. The doped compounds crystallize with the same R3̄m space
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Figure 9.4: (a) SXRD measurement and Rietveld refinement for crystals with 60% S
content. (b) Comparison of the normalized (003) peaks, which is gradually shifted to higher
angles with increasing the S content. The S content given in the graph is determined from
EDX measurements. For S = 91% an additional peak is observed which is matched to a
second KYb(SxSe1−x)2 phase with S = 78%. (c) S content determined via EDX compared to
the one obtained from the Rietveld refinement of the SXRD measurements.
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group as the end members KYbS2 and KYbSe2. No impurity phases are observed
for all compounds and high crystallinity of the samples is indicated by narrow peaks
in the SXRD measurements. The plate like structure of the crystals leads to an
overestimation of the (00l) reflexes which is slightly more prominent in the Se rich
compounds, due to their tendency to grow with significantly more lateral expansion.
A first, visual impression of the effect of the replacement of S with Se is obtained from
the comparison of the (003) peaks of the normalized SXRD measurement in Fig. 9.4(b).
Starting from the pure KYbSe2 compound, the (003) peaks are continuously shifted
to higher angles with increasing the S content. For the measurement with S= 91%
additional peaks in the spectra are observed which are much smaller and located
slightly below the distinct reflexes corresponding to the 91% S crystals. In the case
of the (003) peak shown in Fig. 9.4(b) the smaller, additional peak of the 91% S
measurement is located close to the (003) peak of 78% S sample. Indeed, the additional
peaks in the 91% sample are well described by adding a second KYb(SxSe1−x)2 phase
with 78% S to the Rietveld refinement. The most likely explanation for the additional
peaks therefore is the contamination of the ground 91% S crystals by a 78% S crystal.

From the Rietveld refinement the S content can be determined as well and is
compared to the values obtained from EDX measurement in Fig. 9.4(c). Overall, the
two methods show good agreement with slight deviations for the S content of 37%
(EDX), which was found to be slightly higher in the SXRD measurements (41.5%), and
the S content of 67% (EDX), which is found to be much lower (57%). The discrepancy
of the EDX and SXRD measurement for the SEDX = 67% is already apparent in
Fig. 9.4(b) where the (003) peak for 67% S is below the peak for 60% S. This is not
surprising considering the 70% S crystals are more difficult to synthesize than for
other doping levels.

In Fig. 9.5 the development of the lattice parameters, Yb-Yb intralayer distances
and Yb-(S/Se)-Yb angles with increasing the S content determined from the SXRD
Rietveld analysis are depicted. A decrease of c can be observed from 22.78 Å in KYbSe2
to 21.87Å in KYbS2. The lattice parameter a decreases as well, although not as
significantly, causing a decrease of the cell volume with increasing the S content. This
overall shrinkage is well expected when exchanging a larger Se2+ ion (rSe = 1.84Å [95])
with a smaller S2+ ion (rS = 1.70Å [95]). The decrease of the lattice parameter c
results in a decrease of the Yb interlayer distance by 0.3Å from KYbSe2 to KYbS2.
A nearly linear decrease is also observed for the intralayer distance between the two
neighboring Yb ions (Yb–Yb distance) and the distance between the Yb ion and its
surrounding S or Se ion (Yb–(S/Se) distance), see Fig. 9.5(b) and (c), respectively.

In contrast to the aforementioned distances, the Yb-(S/Se)-Yb angle initially shows
a slight decrease up to 50% followed by an increase towards higher doping levels.
The Yb-(S/Se)-Yb angle is influenced by two factors: the Yb–Yb distance and the
Yb–(S/Se) distance. Both of those distances decrease, but while the decrease of
the Yb-Yb distance results in a shrinkage of the Yb–(S/Se)–Yb angle, a decreasing
Yb-(S/Se) distance leads to the opposite effect. Therefore, the decrease of the Yb-
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Figure 9.5: Results of the Rietveld analysis of the SXRD measurements of KYb(SxSe1−x)2.
The lattice parameters a and c (a) as well as the Yb-Yb distances (b) and the (Se/S)-Yb
distances (c) decrease with increasing the S content. (d) The Yb–(S/Se)-Yb angles slightly
decrease up to 50% and increase for higher S doping.

(S/Se)-Yb angle at lower doping levels is compensated by the increase at higher S
content and results in an overall increase of the Yb-(S/Se)–Yb angle towards KYbS2.

9.5 ESR Measurements

The ESR measurements give information on the local magnetism of the Yb3+ ions.
The measurements were performed and analyzed by Hans-Albrecht Krug von Nidda
and Mamoun Hemmida. The angular dependence of the g-value was investigated for
several members of the doping series, an exemplary measurement for the S content of
53% is shown in Fig. 9.6(a). A large anisotropy is observed in those measurements
and the respective g-values for H ⊥ c and H ∥ c are determined by fitting the angular

107



9 KYb(SxSe1−x)2

0 45 90 135 180 225

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

3.12

3.16

3.20

3.24

0.4

0.8

1.2

1.6
g-

fa
ct

or

g^ = 3.21(3)
g|| = 0.40(1)

H ^ c

 

 

q (deg.)

H || c

n = 9.35 GHz
15 K
53% S(a)

g ^
S content

g |
|

(b)

Figure 9.6: (a) Exemplary measurement of the angle-dependent g-factor for S=53% fitted
with g(θ) = g2∥ cos

2(θ) + g2⊥ sin2(θ) (red line) . (b), (c) g⊥ and g∥ determined from fitting the
angle dependent g-value. g⊥ increases only slightly while the change of g∥ with increasing the
S content is more significant.

dependence with g(θ) = g2∥ cos
2(θ)+ g2⊥ sin2(θ). Fig. 9.6(b) depicts the development of

g⊥ and g∥ as a function of the S content in the crystals. g⊥ shows a slight increase by
1.2% from g⊥ = 3.20 for KYbSe2 to g⊥ = 3.24 for KYbS2. The overall increase of g⊥
is interrupted by a minimum at 44% S. A more substantial development is observed
for g∥ where a clear minimum is formed at 44% S. Starting from g∥ = 1.05 for pure
KYbSe2 the g∥ value decreases to g∥ = 0.29 at 44% and then gradually increases to
g∥ = 0.8 for KYbS2. The behavior of g∥ qualitatively follows the development of
the Yb-(S/Se)-Yb angle. A similar change of the g-values is observed for NaYbS2

when S is replaced by Se. Only a minor decrease of g⊥ from 3.19 for NaYbS2 to
3.13 for NaYbSe2 is determined, while the change of g∥ from 0.57 for NaYbS2 to 1.01
for NaYbSe2 is more substantial. Interestingly, a much weaker g-tensor anisotropy,
g⊥ = 3.0(2) and g∥ = 1.8(6), is obtained for KYbSe2 from INS measurements. [119]

Generally, the doping at the X site of AYbX2 compounds is expected to impact the
exchange couplings since the metal-ligand-metal bond angle determines the exchange
energy, as was illustrated in Chapter 6 through the comparison of NaYbO2 and KYbO2,
whereas g-values of the end members are rather similar to each other. Therefore, not
much variance is anticipated in the g-values throughout the doing series, which holds
true for g⊥ where only a slight increase is observed. However, the change of g∥ towards
the intermediate doping levels is not insignificant.

By measuring the temperature dependence of the ESR linewidth and fitting the
high-temperature part with an Orbach process (∆H ∝ exp(−∆/T )) the energy gap
∆ between the ground-state Kramers doublet and the first excited CEF level can be
obtained. The Orbach process, which describes only the high-temperature part of the
linewidth, is again combined with two different models to fit the whole temperature
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Figure 9.7: (a), (b) Fit of the ESR linewidth ∆H with two different models (see text for
details) on the example of 53% S content for H ⊥ c. (c) Energy gap obtained from the
Orbach fit to the high-temperature part of the ESR linewidth, depending on the fit model at
low temperatures slightly different values for ∆ are obtained. (d) ESR linewidth of pure
KYbSe2 with an only weakly developed low-temperature part. The high-temperature part is
fitted with an Orbach process. (e) Comparison of the critical temperatures determined from
fitting with the BKT (TKT) and the classical critical behavior (Tc), showcasing a significant
difference between TKT and Tc. (f) Residual linewidth of KYb(SxSe1−x)2 determined by
fitting the high-temperature part analogous to the fit of KYbSe2 in (c).
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evolution of ∆H. The fit with the first model, assuming the Berezinskii-Kosterlitz-
Thouless (BKT) transition at low temperatures, is depicted in Fig. 9.7(a), while in
Fig. 9.7(b) the classical critical behavior in the proximity of a phase transition is
applied to fit the low-temperature part. Both fit functions describe the data well
and visually no difference is observed. Energy gaps between about 200 and 400 K are
observed [shown in Fig. 9.7(c)]. The obtained values are slightly influenced by the
model used to describe the low-temperature part of the ESR linewidth, with the 75%
S sample showing the most significant disagreement. The energy gap of KYbSe2 from
the ESR measurement (∆ = 212K) is in good agreement with the one determined
via INS measurements of the CEF excitations in Ref. [119], ∆ = 200K. The critical
temperatures TKT and Tc determined from the fits are compared in Fig. 9.7(e). In
contrast to the results for pure KYbS2, where the critical temperatures are nearly
identical, a significant difference between TKT and Tc is found for the doped compounds.
The critical temperatures Tc range between about 0.2 to 3K and are much larger
than TKT which are below 0.5 K. Nevertheless, the critical temperatures show similar
qualitative behavior with a maximum at about 50% S [see Fig. 9.7(e)]. In the case
of pure KYbSe2 the low-temperature part is only weakly pronounced as can be seen
in Fig. 9.7(d). Measurements to lower temperatures would be necessary to make a
cogent analysis. Therefore KYbSe2 was only fitted with an Orbach process at high
temperatures.
Compared to other AYbX2 compounds, where a T−0.75 power-law was observed, the
critical exponents of the doped compounds are much smaller (approximately 0.35) [96].
While the Kosterlitz-Thouless temperature and the critical temperature of KYbO2

(TKT = 0.14K and TC = 0.15K) and KYbS2 (TKT = 0.2K and TC = 0.13K) were
rather closely matched, a large diffrence between TKT and TC is determined for the
substitution series. The TKT remains somewhat comparable to KYbS2 for the doped
crystals, while TC increases by a factor of 10.

The residual linewidth of KYb(SxSe1−x)2 is determined by only fitting the high
temperature part of ∆H(T ) with an Orbach process, in analogy to the analysis of
KYbSe2. While for the border compounds a rather small residual linewidth is observed,
the value obtained for the doped compounds is much higher [see Fig. 9.7(f)]. The
broadening of the ESR linewidth compared to the undoped samples is a sign of a
distribution of g-values for H ⊥ c. A distribution of g-values, on the other hand,
implies that g⊥ is not unaffected by the changing environment of the Yb3+ ions, as
can be assumed based on the only slight change of angle-dependent measurements of
the average g⊥-value discussed previously.

9.6 Susceptibility

To determine the magnetic properties of KYb(SxSe1−x)2 the magnetic susceptibility is
investigated. The inverse susceptibility (H ⊥ c) for S = 50% is shown in Fig. 9.8 (a).
All members of the doping series show a similar behavior with a linear high-temperature
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Figure 9.8: (a) Inverse magnetic susceptibility of KYb(SxSe1−x)2 for x = 0.5 showing a
linear behavior at high temperatures fitted with a Curie-Weiss law (red line) and a deviation
from the Curie-Weiss behavior at low temperatures due to the van Vleck contribution which
is fitted with the modified Curie-Weiss law (blue line). (b),(c) θHT and µeff determined from
the linear fit to the inverse susceptible at high temperatures. (d), (e) θLT and χvv determined
from the low-temperature fit with the modified Curie-Weiss law with the effective moment
fixed from the ESR g-value.

behavior and the change of slope towards lower temperatures which is typical for the
AYbX2 compounds. By linearly fitting the high-temperature part the Curie-Weiss
temperature θHT and the effective moment µeff are obtained. The high-temperature
Curie-Weiss temperature shows an overall decrease from −53(5)K for KYbSe2 to
−67(7)K for KYbS2, see Fig. 9.8(b). The effective moment is close to the value or
free Yb3+ ions, µeff = 4.54µB, throughout the whole doping series, as is depicted in
Fig. 9.8(c). At low temperatures the magnetism is dominated by the pseudospin-1

2

properties of the ground state Kramers doublet and results in a deviation from the
Curie-Weiss law. The measurements are therefore fitted with the modified Curie-Weiss
law (Eq. 2.14) between 15 and 35 K taking the influence of the van Vleck contribution
χvv into account. χvv is treated as a free parameter, while the g-factor is used to fix
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9 KYb(SxSe1−x)2

the effective magnetic moment. Fig. 9.8(d) and (e) show the values of θLT and χvv

determined from the low-temperature fit. Compared to Ref. [104], with θLT = −12.6K,
here a higher Curie-Weiss temperature of θLT = −6.1(3)K is obtained for KYbSe2.
The Curie-Weiss temperature determined from the low-temperature behavior of the
susceptibility remains rather constant at about −6K for the whole doping series,
with two dips at 20% and 50% S content to about −7.5K. For KYbS2 the highest
Curie-Weiss temperature θLT = −5.4(3)K is found, however the comparison with
θLT determined from the ESR intensity, θESRLT = −12K, and from the susceptibility
corrected by χvv (from the high-field magnetization measurement),θLT = −7.3(9)K,
indicates a rather wide window for the Curie-Weiss temperature of KYbS2. No obvious
trend is observed and overall a variance of only 2K is determined for the θLT of the
doping series. Interestingly, the behavior of the Curie-Weiss temperature and the
van Vleck contribution displays some similarity. χvv appears to decrease only slightly
from 0.0112(3) emu

mol
for KYbSe2 towards 0.0095(3) emu

mol
for KYbS2, but two dips are

observed at 20% and 50% S, as is the case for θLT. In the case of KYbSe2 a rather large
discrepancy to the van Vleck contribution determined in Ref. [104] is observed. Xing
et al. [104] obtained a much smaller van Vleck contribution of 0.002 emu

mol
. However,

this value appears to be uncharacteristically small compared to the other AYbX2

compounds.
Since the van Vleck contribution is related to excitations to higher CEF levels, it

depends on the size of the energy gap ∆ between the ground state doublet and the
first excited CEF level determined in the ESR measurement. A larger CEF energy gap
should lead to a smaller van Vleck contribution and vice versa. As shown in Fig. 9.7
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Figure 9.9: (a) Inverse magnetic susceptibility of KYb(SxSe1−x)2 for x = 0.44 and H ∥ c.
The pronounced downward curve at low temperatures is fitted with the modified Curie-Weiss
law (blue line). (b),(c) θHT and µeff determined from the low-temperature fit.
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the energy gap possess two maxima at about 25% and 50% S which corresponds nicely
with the two minima observe for χvv.

For H ∥ c only the low-temperature behavior of the susceptibility is investigated
by fitting with the modified Curie-Weiss law, see Fig. 9.9. Similar to H ⊥ c, the
low-temperature Curie-Weiss temperature stays rather constant at around −3K.
The van Vleck contribution shows a qualitatively similar behavior compared to the
van Vleck contribution for H ⊥ c with a slight decrease from KYbSe2 to KYbS2,
although the second minimum is located higher at about 75% S. The Curie-Weiss
temperature obtained for KYbSe2 with H ∥ c is smaller than the one reported
in literature, θLT = −4.7K, but a similar van Vleck contribution is determined
χvv = 0.027 emu

mol
[104].

9.7 Low-Temperature Magnetization

The plateau phase detected in the low-temperature magnetization measurements
of KYbS2 and KYbSe2 is also observed throughout the doping series. While the
plateau at 0.4K is very distinct for the end members, it fades towards the more
equally composed samples (see Fig. 9.10). Starting from KYbSe2, the weakening of
the plateau feature is rather unobtrusive and a well defined plateau is still observed for
up to 14% S content. A clear smearing out of the plateau is noticeable at 22% S which
continues up to 31%. For higher S content a change of the plateau feature is hardly
discernible from the magnetization measurement and also in the second derivative
of M(H) [see Fig. 9.10(b)-(d)] only a weak change is observed for 31-50% S. It is
noteworthy that the plateau never disappears completely for the measured degrees of
substitution. Further increasing the S content results only in a weak enhancement of
the plateau phase up to 88% followed by an abrupt change to the distinct plateau
feature observed for KYbS2. Since the crystals with small Se content are more difficult
to grow, no crystals with a substitution level between 88% and 100% S were available
to observe this change in more detail.

For the individual magnetization measurements a smearing out of the plateau feature
with increasing temperature is observed, as was described for the other compounds
investigated in this work. The weakening of the plateau feature towards intermediate
S/Se content indicates the shift of the plateau phase to lower temperatures, which
makes it harder to investigate with the present temperature limitation of 0.4 K. Such
a shift of the assumed uud ordered phase to lower temperatures could be caused
by decreasing exchange interactions. However, the θLT determined from the low-
temperature susceptibility for H ⊥ c does not suggest such a significant change of the
exchange interactions. In NaYbS2 and NaYbSe2 the maximum temperature of the
uud phase changes only by 0.15K for a 1K change of the Curie-Weiss temperature.
Therefore, the relatively small change of the Curie-Weiss temperature is most likely
not the sole origin of the shift of the uud phase towards lower temperatures when
increasing the disorder at the X site.
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9 KYb(SxSe1−x)2

As was described in Chapter 7.7, the magnetic order in KYbS2 is nicely traceable
through the low-temperature susceptibility measurements. The same holds true
for the second end member KYbSe2, see Fig. 9.11. The magnetic order is clearly
observed as a distinct kink in χ−1, curving downwards for magnetic fields up to 4T
and upwards for larger magnetic fields. The magnetic order is first observed for a
field of 2.25T slightly below 0.5K and shifts to higher temperatures with increasing
magnetic fields. It reaches a maximum temperature of about 0.9K at 4T and is
subsequently shifted to lower temperatures again with further increasing field. Above
6T the magnetic transition disappears below 0.4T. The stars in Fig. 9.11 mark the
transition temperatures which are located at the inflection points. As mentioned
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Figure 9.10: (a) Comparison of the field-dependent magnetization measurements for the
KYb(SxSe1−x)2 doping series. All measurements were performed between 0 and 7T, for
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before, the inflection point is much easier to trace by the respective maximum or
minimum in the first derivative of χ−1 as is shown in Fig. 9.11(b).

Tracing the magnetic order in the low-temperature measurements of the suscepti-
bility becomes more challenging for the intermediate compounds.

For 9% S content the magnetic transition is still well observable, but already
noticeably less distinct [see Fig. 9.12(a)-(f)]. However, in the calculated first derivative
of χ−1 the respective maxima and minima are still clearly observed, especially for lower
magnetic field. Magnetic order is observed between 2.5T and 5.25T. Starting from
2.5T, the magnetic ordering temperature is shifted up to 0.8K at 4T and decreases
again for higher magnetic fields.

For 22% S the transition is even less distinct and shifted to a lower temperature
regime [see Fig. 9.12(g)-(j)]. Magnetic order is first observed for 2.75 T and disappears
below 0.4 K for fields larger than 4.75 T. The maximal transition temperature is reached
again around 4 T at 0.6 K. Same as for the 9% sample, the transition temperature in
the first derivative of χ−1 is better observable for smaller magnetic fields, while at the
higher fields the minimum is increasingly hard to discern.
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Figure 9.11: (a)-(c) Inverse magnetic susceptibility of KYb(SxSe1−x)2 in different applied
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115



9 KYb(SxSe1−x)2

11.5

12.0

12.5

13.0

13.5

11.5

12.0

12.5

13.0

13.5

14.0

0.4 0.6 0.8 1.0 1.2

13.5

14.0

0

1

2

3

4

2

1

0

1

2

3

4

0.4 0.6 0.8 1.0 1.2

2

1

0

11.4

11.7

12.0

12.3

0.4 0.6 0.8 1.0 1.2
11.4

11.7

12.0

12.3

12.6

0

1

2

0.4 0.6 0.8 1.0 1.2

1

0

1

2

 2.5 T
 2.75 T
 3 T
 3.25 Tc-1

 (m
ol

/e
m

u)

(a)

S =  9%

H c

 3.25 T
 3.5 T
 3.75 T
 4 T
 4.25 T
 4.5 T
 4.75 T

c-1
 (m

ol
/e

m
u)

(b)
S =  9%

T (K)

 4.75 T
 5 T
 5.25 T

c-1
 (m

ol
/e

m
u)

(c) S =  9%

 2.5 T
 2.75 T
 3 T
 3.25 T

dc
-1

/d
T

(d) S =  9%

 3.25 T
 3.5 T
 3.75 T
 4 T
 4.25 T
 4.5 T
 4.75 T

dc
-1

/d
T

(e) S =  9%

T (K)

 4.75 T
 5 T
 5.25 Tdc

-1
/d
T (f)

S =  9%

 2.75 T
 3 T
 3.25 Tc-1

 (m
ol

/e
m

u)

(g)

S =  22%

H c

 3.25 T
 3.5 T
 3.75 T
 4 T
 4.125  T
 4.25 T
 4.5 T
 4.75 T

c-1
 (m

ol
/e

m
u)

T (K)

(h) S =  22%

 2.75 T
 3 T
 3.25 T

dc
-1

/d
T

(i) S =  22%

 3.25 T
 3.5 T
 3.75 T
 4 T
 4.125  T
 4.25 T
 4.5 T
 4.75 T

dc
-1

/d
T

T (K)

(j) S =  22%

Figure 9.12: (a)-(c) Low-temperature inverse susceptibility and (d)-(f) derivative of χ−1
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S = 22%. The stars mark the temperature where the magnetic transition is located.
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The weakest transition feature is observed for the S content of 44%, shown in
Fig. 9.13. The χ−1 curves only show a weak downward curvature for fields smaller
than 4 T and upward curvature for larger fields. The transition temperatures can only
be determined by looking at the first derivative of χ−1, but also there the maxima are
only weakly pronounced and the minima are nearly not discernible. Magnetic order is
first observed at a magnetic field of 3T only slightly above 0.4K. The transition is
shifted to higher temperatures up to 3.75 T at about 0.55 K, whereupon the transition
temperature decreases again and is observed at 4.5T and 0.46K for the last time
before the transition disappears below 0.4K.

For S = 88% the magnetic transition is slightly better observable again (see
Fig. 9.13), comparable to the susceptibility measurement with the 22% S content.
The respective maxima and minima of the first derivative of χ−1 are well pronounced
again. The minimum magnetic field for which magnetic order is observed is lowered
to 2.75 T again. The transition temperature shifts up to 0.6 K at 4 T, then decreases
with further increasing magnetic field. Above 5.5T the transition temperature is
located below 0.4K and cannot be observed anymore.

Overall, the low-temperature susceptibility reflects the shift of the magnetically
ordered phase towards lower temperatures, which was already observed in the magne-
tization measurements.

The development of the magnetic phase traced by the susceptibility measurements
and the uud ordered phase, observed in the magnetization, is discussed in the next
chapter and illustrated in a H-T phase diagram.

9.8 Phase Diagram

The phase transitions observed in magnetization and susceptibility measurements
are separately depicted in Fig. 9.14 and nicely illustrate the change evoked by the
substitution of the X atom in AYbX2. In Fig. 9.14(a) and (b) the phase transitions
determined from the susceptibility measurement reveal a shift of the magnetically
ordered phase to lower temperatures with increasing the S/Se content in the com-
pounds. Additionally, the dome-like shape of the magnetically ordered phase leads to
a narrowing of the field range. These effects reaches their apex at about 50% S/Se
content.
The decreasing temperature stability of the magnetization plateau observed in M(H)
towards intermediate doping levels also reflects the shift of the magnetically ordered
phase towards lower temperatures [see Fig. 9.14(c), (d)]. Here, the field range over
which the uud order expands becomes more narrow towards 50% S/Se content, as
well.

The end members show a quite similar behavior in the phase diagram. The uud
phase extends over nearly exactly the same field region (3.25− 5T) and the dome-
shaped magnetically ordered phase reaches a maximum at about 0.9K. For KYbSe2
the phase diagram prepared via susceptibility and magnetization measurements down
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Figure 9.14: Phase transitions determined from magnetization and susceptibility
measurements of KYb(SxSe1−x)2. The magnetically ordered phase observed in the
susceptibility is shifted towards lower temperatures with increasing the S content from 0% to
44% (a) then to higher temperatures again up to 100% (b). In the same way, the width of
the uud phase determined from the field-dependent magnetization decreases upon
approaching 44% (c) and increases towards 100% S (d).

to 0.4K in this work is in good agreement with the more detailed phase diagram
extracted from low-temperature dilution fridge measurements of the specific heat and
the magnetocaloric effect in Ref. [118].

The shift of the magnetically ordered phase towards lower temperatures appears
rather gradually from KYbSe2 to 44% S. In contrast, both the change from a quite
soft plateau to a very distinct plateau observed in the M(H) measurement and the
significant increase of the magnetic transition temperatures from Tmax = 0.6K to
Tmax = 0.9K in the susceptibility are much more abrupt from 88% S to KYbS2.

As aforementioned, a significant reduction of the Curie-Weiss temperatures and
therefore the exchange couplings towards intermediate degrees of substitutions is not
observed in the analysis of the susceptibility measurements. However, the determined
Curie-Weiss temperature is an average parameter and therefore only provides informa-
tion on the average exchange energy, which remains constant upon doping. Similarly,
the average value of g⊥ appears to remain rather unaffected by the Se doping. On the
other hand, the shift of the magnetically ordered phase demonstrates the influence of
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9 KYb(SxSe1−x)2

the structural randomness introduced by doping. A distribution of exchange couplings
with the same mean value might be a likely explanation for the observed behaviors.
Additionally, a distribution of g⊥ might be present in the compounds.

However, the phase diagram shown in Fig. 9.14 only depicts a small area and leaves
many open questions, especially in the low-field, low-temperature region where a
potential QSL phase might be located for KYbS2, while magnetic order was found in
INS and low-temperature specific heat measurements of KYbSe2 [78, 79, 118]. The
KYb(SxSe1−x)2 doping series therefore appears to be an ideal candidate to investigate
the influence of doping on a potential QSL towards a magnetically ordered sister
compound and to shed light on the question what role the disorder induced by the
doping is playing in the QSL formation. In YbMgGaO4 disorder was initially neglected,
however, it proofed to play a crucial role in the QSL-like behavior of the compound.
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10 Comparison

A large part of this work is the sample preparation and improvement of crystal growth.
Two main synthesis approaches can be differentiated, one for polycrystal and one
for single crystal preparation. While for the former the synthesis is tailored to the
specific compound that is prepared, the single crystal synthesis follows nearly the
same procedure for all compounds.

The preparation of polycrystalline samples is based on a solid state reaction which
was implemented for the preparation of NaYbO2, KYbO2 and KYbS2. While the
synthesis of NaYbO2 is rather straight forward, the preparation of KYbO2 is more
challenging. For NaYbO2 the high chemical stability of starting materials and products
allow for simple handling of chemicals and heat treatment in a standard box furnace.
In contrast, the educts as well as the synthesized KYbO2 itself is prone to react with
water. Contact with air moisture influences the reaction and leads to a significant
decomposition of KYbO2 in a short amount of time.
The synthesis of polycrystalline KYbS2 is even more challenging than KYbO2, due to
the high reactivity of elemental potassium used in the preparation process. Contact
with air moisture can cause an active oxidation reaction and has to be prevented.
In addition to the extremely sensitive synthesis, the outcome of the synthesis is
ambiguous. The products are not homogeneous and have to be carefully sorted to
obtain a impurity free KYbS2 sample.

The synthesis of single crystals of the AYbX2 compound family was mostly done via
the self-flux method described for KYbS2 [109]. Although variations of this method
were implemented in literature for NaYbSe2 and KYbSe2, the method applied to
KYbS2 proofed to be the most practicable in this work due to omitting an additional
crucible which has to be inserted in the quartz glass and the advantage of following an
already accustomed process for all synthesis. Additionally, the results of the different
synthesis attempts, i.e. with or without a crucible or changes of the heating program,
revealed rather similar outcomes considering crystals size and overall quality of the
crystals. The biggest impact on crystal size for KYbS2 and KYb(SxSe1−x)2, for the S
dominant samples, was found in the holding time at 840 °C/850 °C. For the Se-heavy
KYbSe2 and NaYbSe2 no such optimization was observed when varying the synthesis
parameters. In contrary, a longer holding time at the maximum temperature seemed
to lower the crystal quality.

All compounds investigated in this study possess the R3̄m space group according
to (S)XRD measurements. The lattice parameters, characteristic distances and the
Yb-X-Yb angles are obtained from Rietveld analysis of powder (S)XRD measurements
(see Tab. 10.1). The lattice parameters a are smallest for the AYbO2 compounds
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Table 10.1: Comparison of characteristic distances and the Yb-X-Yb angle obtained from
Rietveld analysis of the (S)XRD measurements. The lattice parameters and distances are
given in Å.

a c Yb-X dist. A-Yb dist. ∡ Yb-X-Yb

NaYbO2 3.34481(4) 16.4585(2) 2.25537(3) 3.35466(3) 95.723(1)◦

KYbO2 3.39731(4) 18.453(3) 2.27232(3) 3.64786(5) 96.756(1)◦

KYbS2 3.96369(3) 21.8711(2) 2.7043(9) 4.30398(6) 93.13(2)◦

KYbSe2 4.12142(4) 22.7766(4) 2.83609(3) 4.48022(6) 93.2047(9)◦

NaYbSe2 4.0539(3) 20.761(1) 2.8390(1) 4.1774(2) 91.118(5)◦

and largest for the AYbSe2 compounds. The larger K atom naturally yields a larger
lattice parameter a for KYbO2 and KYbSe2 compared to NaYbSe2 and NaYbO2.
Similarly, the lattice parameter c is distinctly smaller for AYbO2 compared to KYbS2

and AYbSe2. However, the value of c for KYbS2 is smaller than that of KYbSe2, with
rS < rSe, but larger than NaYbSe2, with rK > rNa. The Yb-X distance and the A-Yb
distance follow the same qualitative behavior as c. The Yb-X-Yb angle α mediates
the super exchange coupling, a smaller angle leads to a stronger exchange coupling.
The smallest angle is observed for NaYbSe2 and increases slightly for KYbSe2 and
KYbS2. For the oxides α increases further, with the maximum angle for KYbO2.

The results of the ESR measurements are presented in Tab. 10.2. For the single
crystalline samples strongly anisotropic g-values are obtained from ESR measurements
and also for the polycrystalline NaYbO2 an easy-plane anisotropy is observed. In
contrast, KYbO2 revealed a rather isotropic ESR line. While g⊥ is about 3.2 for
all compounds, more variation is observed in the value of g∥ ranging from 1.8 for
NaYbO2 to about 1 for AYbSe2 and 0.8 for KYbS2. Additionally, the energy gap
∆ between the ground state doublet and first excited doublet is determined from

Table 10.2: Comparison of the g-values, energy gap and θCW determined from
measurements of the ESR spectra, linewidth and intensity. The data for NaYbSe2 is taken
from Ref. [96].

NaYbO2 KYbO2 KYbS2 KYbSe2 NaYbSe2 [96]

g⊥ 3.28(8) [84]
3.08(3)

3.24(1) 3.20(2) 3.13(4)

g∥ 1.75(3) [84] 0.80(2) 1.05(2) 1.01(1)

∆ (K) 350 [96] 350 232 212 160(30)

θCW (K) – – −12 – −14
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the ESR linewidth. The large values for ∆ of about 220K for KYbX2 and 160K
for NaYbSe2 confirm the pseudospin-1

2
ground state of the AYbX2 compounds. For

KYbS2 and KYbSe2 the ESR intensity is fitted with a Curie-Weiss law to obtain the
Curie-Weiss temperature.

A lot of valuable information can be obtained from the magnetization and suscepti-
bility measurements which are summarized in Tab. 10.3.
High-field magnetization measurements are performed to determine the saturation
magnetization and field as well as the van Vleck contribution to the susceptibility.
The saturation field is indicated by a noticeable change of slope in the magnetization
measurement. In the case of the AYbX2 compound family the magnetization in
the fully polarized phase is not constant but further increases linearly, with a less
steep slope, due to the van Vleck contribution. By fitting this increase the saturation
magnetization and the van Vleck contribution are determined. Compared to the
other compounds, an unusually large van Vleck contribution is determined for KYbS2

Table 10.3: Comparison of the results obtained from high-field magnetization (H ⊥ c) and
low-temperature susceptibility measurements. For H ⊥ c the susceptibility was, on one hand,
analyzed by linearly fitting the susceptibility corrected by the van Vleck contribution from the
high-field magnetization, χcor. On the other hand, the low-temperature part of the
susceptibility was directly fitted with the modified Curie-Weiss law with µeff fixed from the
ESR g-value for H ⊥ c and with all parameters free for H ∥ c. The data marked with (a) is
taken from Ref. [84], (b) from Ref. [80] and (c) from Ref. [103].

high-field M(H) (H ⊥ c) low-temp. χcor(T ) (H ⊥ c)

Msat (µB) Hsat (T) χvv

(
emu
mol

)
θCW (K) µeff (µB)

NaYbO2 1.36(a) 11 0.00564(b) −6.4(6) 2.56(6)

KYbO2 1.47 8.6 0.00399 −5.4(2) 2.68(6)

KYbS2 1.4 10.3 0.0126 −7.3(9) 2.83(10)

NaYbSe2 1.5(c) 12(c) 0.00765(c) −12.3(5) 2.97(2)

low-temp. χ(T ) (H ⊥ c) low-temp. χ(T ) (H ∥ c)

θCW (K) χvv

(
emu
mol

)
θCW (K) χvv

(
emu
mol

)
µeff (µB)

NaYbO2 −9.6(3) 0.0026(2) – – –

KYbO2 −5.26(2) 0.00418(2) – – –

KYbS2 −5.4(2) 0.0095(3) −1.8(1) 0.02188(5) 1.22(1)

KYbSe2 −6.1(3) 0.0071(3) −3.6(5) 0.0232(2) 1.11(3)

NaYbSe2 −9.6(3) 0.0103(3) -8.6(8) 0.0178(4) 1.52(5)
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from the high-field magnetization. While the kink marking the transition to the fully
polarized phase is quite distinct for the single crystalline materials, a more gradual
change of slope is observed for the polycrystalline samples, especially NaYbO2. This
makes it more difficult to determine the exact saturation field for KYbO2 and NaYbO2.
For NaYbO2 the broadening of the transition can be explained by the anisotropic
nature of the Yb3+ spins which is observed in the ESR spectra. In the magnetization
measurement of the polycrystalline material it cannot be differentiated between H ⊥ c
and H ∥ c and therefore both contribute to the resulting magnetization curve. The
saturation magnetizations for H ⊥ c are rather similar for all investigated compounds
and range between 1.36 and 1.5µB, in accordance with the similar g⊥ values. The
largest saturation field (H ⊥ c) is found for NaYbSe2 at 12T [103].
The low-temperature part of the susceptibility is analyzed in different manners for
H ⊥ c. On one hand, the van Vleck contribution determined from the high-field mag-
netization is subtracted from the susceptibility measurement and the low-temperature
part is fitted linearly according to the Curie-Weiss law. On the other hand, the
low-temperature susceptibility is fitted directly with the modified Curie-Weiss law. To
constrain the fit with the modified Curie-Weiss law, the effective moment is fixed to the
value of µESR

eff calculated form the ESR g-value. For KYbO2 the different approaches
show excellent agreement, while for NaYbO2, KYbS2 and NaYbO2 a discrepancy of
at least 2K is observed for θLT.

The Curie-Weiss temperature and the saturation field can be used to estimate the
strength of the exchange interaction.
Both, the in-plane, θ⊥ = −3

2
Jxy, as well as the z-component, θ∥ = −3

2
Jz, of the

exchange coupling can be calculated from the Curie-Weiss temperature. For the
determination of Jxy, both ways of obtaining the Curie-Weiss temperature from the
susceptibility are considered. Jz was calculated based on the fit of the low-temperature
susceptibility with the modified Curie-Weiss law. The results are given in Tab. 10.4.
Additionally, Jxy and Jz can be obtained from the saturation field. The saturation
field is related to the nearest-neighbor exchange interaction via

µ0H
⊥
sat =

9SJxykB
µBg⊥

(10.1)

and
µ0H

∥
sat =

3S(2Jz + Jxy)kB
µBg∥

. (10.2)

Jxy represents the component of the exchange coupling in the ab plane and Jz describes
the z-component of the exchange, in accordance with the XXZ model of the triangular
lattice introduced in Chapter 2.8.4 [103]. Due to the strong easy-plane anisotropy of
the g-tensor only Jxy can be obtained from the high field magnetization measurements.
The continuous increase of the magnetization for H ∥ c does not allow a simple
determination of the saturation field as is the case for H ⊥ c. The exchange couplings
are summarized in Tab. 10.4 and illustrated in Fig. 10.1(a).
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Table 10.4: Exchange interactions calculated from the Curie-Weiss temperature and
saturation fields. For (a) Jz and Jxy are calculated from the susceptibility by fitting with the
modified Curie-Weiss law. For (b) the calculation of Jxy is based on the susceptibility
corrected by the van Vleck contribution from the high-field magnetization. For (c) the
saturation field is used to calculate Jxy.

NaYbO2 KYbO2 KYbS2 KYbSe2 NaYbSe2

(a)
Jz (K) – – 1.2(1) 2.4(3) 5.7(5)

Jxy (K) 6.4(3) 3.54(1) 3.6(1) 4.1(2) 6.4(2)

(b) Jxy (K) 4.3(4) 3.6(1) 4.9(6) – 8.2(3)

(c) Jxy (K) 5.4(2) 4.0(1) 5.0(1) – 5.6(2)

As aforementioned, Jz can only be determined for the single crystalline samples
and is generally smaller than the respective Jxy value in the AYbX2 compound family
due to the strong easy-plane anisotropy. Here, a considerable difference between
Jz and Jxy is observed for KYbS2 and KYbSe2. For NaYbSe2 very similar values
for Jz and Jxy, calculated from the saturation field, are determined. However, the
saturation field used for the calculation of Jxy is taken from Ref. [103] and some
dissonance between the results in this work and literature has already been addressed
in Chapter 8. Therefore, the comparison of Jz and Jxy is probably more reliable
considering the calculation of Jxy from the Curie-Weiss temperatures, where some
anisotropy is observed. Still, calculating the exchange couplings from the Curie-Weiss
temperatures obtained in Ref. [103] indicates a much stronger exchange anisotropy
compared to the findings of this work.
An excellent agreement between Jxy calculated from the corrected susceptibility and
the saturation field is found for KYbS2, while a slightly lower Jxy is obtained for
the calculation based on the modified Curie-Weiss law. For KYbO2 the Jxy values
obtained from the Curie-Weiss temperatures and the saturation field are in rather good
agreement, as well. For NaYbO2 and NaYbSe2 the different methods of calculating Jxy

show a larger variance. Over all, the exchange couplings Jxy appear to increase in the
order KYbO2, KYbS2, KYbSe2, NaYbO2 and NaYbSe2, see Fig. 10.1(a). Exchanging
K by Na leads to an increase of the exchange couplings for AYbO2 and AYbSe2
(A =Na, K). Considering Jxy = 9K and Jz = 3K calculated from the Curie-Weiss
temperatures for NaYbS2 [117] this trend is also true for the AYbS2 compounds.
In Fig. 10.1(b) the in-plane component of the exchange coupling Jxy is compared to
the Yb-X-Yb bridging angle, which mediates the super exchange coupling. For Jxy

the average value was calculated from Tab. 10.4. The correlation between exchange
coupling and briding angle is nicely illustrated: a decreasing Yb-X-Yb angle leads to
an increase of Jxy.
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Figure 10.1: (a) Comparison of the exchange interactions Jz and Jxy of the different
investigated compounds. Jz (gray) is calculated from the Curie-Weiss temperature obtained
from the fit of the susceptibility for H ∥ c with the modified Curie-Weiss law. Jxy is, on the
one hand, calculated from the Curie-Weiss temperature based on fit with the modified
Curie-Weiss law (red) or on the linear fit of the corrected susceptibility (blue) and, on the
other hand, calculated from the saturation field (green). (b) Average Jxy compared to the
Yb-X-Yb angle.

All investigated compounds possess a plateau feature in the low-temperature mag-
netization. Signatures of magnetic order are observed in the susceptibility in higher
magnetic fields, while no magnetic order is observed in zero field down to 0.4K.

From the position of the magnetization plateau with respect to the saturation
magnetization the nature of the magnetic order can be deduced. A Msat/3 plateau
indicates the formation of an uud magnetic order in the field region of the plateau,
while a Msat/2 plateau is a sign of uuud order. In Tab. 10.5 the calculated Mplat/Msat

ratio is shown, both Mplat and Msat are corrected by the van Vleck contribution. For
KYbO2, KYbS2, NaYbO2 and NaYbSe2 the results of the high-field magnetization
measurements are used to determine the corrected values of Mplat and Msat. In
the case of KYbSe2 no high-field magnetization measurements are available so far,
therefore the van Vleck contribution determined from the susceptibility measurement
is used for the correction of the plateau magnetization value and the saturation
magnetization is obtained form the ESR g⊥-value. For all compounds a value larger
than 1

3
is obtained. Indeed, for KYbO2 and NaYbO2 the plateau is close to 1

2
of the

saturation magnetization, although neutron diffraction measurements point toward
an uud order in NaYbO2 [81]. On the other hand, a uuud order appears to be more
likely for KYbO2. In the case of the single crystalline samples the ratio of Mplat/Msat

is closer to 1
3

than 1
2
. KYbS2, with its rather large χvv obtained from the high-field

magnetization, is closest to the expected value for the uud order. The plateaus of
NaYbSe2 and KYbSe2 are located closer to 1

3
Msat, as well, indicating the formation

of an uud order in the respective field range. This field range is nearly identical for
NaYbO2, KYbS2 and KYbSe2. For KYbO2 the plateau begins and ends at slightly
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Table 10.5: Comparison of the plateau feature in the magnetization measured at 0.4K and
the maximum temperature of the phase transitions observed in the susceptibility
measurements. The value of Mplat was determined after subtracting the van Vleck
contribution from high-field magnetization measurements for all compounds except KYbSe2.
For KYbSe2 the van Vleck contribution obtained from the susceptility measurement was used
and the saturation magnetization was calculated from the ESR g-value.

plateau feature (0.4K) phase transition χ(T )

Mplat Mplat/Msat Hstart Hend TN,max H(TN,max)

NaYbO2 0.61µB 0.45 3.4T 5.2T 1.00K 4.50T

KYbO2 0.71µB 0.48 2.6T 4.0T 0.71K 4.50T

KYbS2 0.506µB 0.36 3.2T 5.0T 0.94K 4.25T

KYbSe2 0.64µB 0.40 3.2T 5.1T 0.90K 4.00T

NaYbSe2 0.6µB 0.40 3.9T 6.0T 1.10K 5.00T

lower magnetic field, while it is placed at slightly higher fields for NaYbSe2 showing a
clear correlation with the strength of the nearest-neighbor exchange coupling.

From the susceptibility measurements the magnetically ordered phase can be traced
beyond the uud or uuud phase. For all compounds the magnetic phase remains stable
to the highest temperature in the middle of the plateau phase. The magnetically
ordered phase of NaYbSe2 reaches the highest temperature of 1.1 K at 5 T, while the
magnetic order in KYbO2 is only sustained up to a maximum temperature of 0.71K
at 4.5T. This again correlates with the strength of the nearest-neighbor exchange
coupling.

All magnetic phenomena observed in the investigated compounds can only be
traced down to 0.4K in this work. Measurements to lower temperatures using
dilution refrigerators are highly desirable to further investigate the properties of these
compounds, as was already done for heat capacity measurements of NaYbSe2 [103]
and NaYbO2 [80]. Measurements of the magnetic Grüneisen parameter, thermal
expansion, magnetostriction and field-dependent specific heat can further contribute
to the compilation of a detailed phase diagram down to millikelvin temperatures, but
are beyond the scope of this work.

The phase diagrams presented in this work are mostly deduced from the magnetiza-
tion and susceptibility measurements. The behavior of the whole AYbX2 compound
series is rather similar, resulting in phase diagrams which only differ in subtle details,
like the onset of the different phases or the maximum temperature up to which
magnetic order persists.
All phase diagrams contain an uud/uuud ordered phase which is flanked by magneti-
cally ordered phases at higher and lower fields.
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The region of the magnetically ordered phase below the plateau phase is expected to
be rather narrow, at least in NaYbO2 and KYbS2 where µSR suggests the absence of
long-range order in zero field and in NaYbSe2 where heat capacity did not show any
indications of the magnetic ordering. Most likely a Y-phase is located in this area.
Above the plateau phase a V-type magnetic order is a probable candidate, which
presumably extends up to the fully polarized state. At low magnetic fields no magnetic
order is observed, indicating a possible QSL phase at low temperatures in this region.
Measurements to lower temperatures might disprove this claim, however, as was the
case for KYbSe2 where magnetic order was found at 290mK.
A variation in the phase diagram is observed for NaYbO2, where an additional phase
in the magnetically ordered area above the plateau phase is indicated by susceptibility
measurements. The nature and origin of this additional phase is unclear at this time.
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11 Summary and conclusion

Overall the behavior of the AYbX2 family members investigated here is rather similar.
Exchange interactions of several Kelvin are determined for all compounds. A clear
dependence of nearest-neighbor exchange on the Yb-X-Yb bond angle is observed,
where an decrease of the Yb-X-Yb angle corresponds to an increase of exchange
coupling. No magnetic order is observed in this work and in literature for the AYbX2

compounds ( A =K, Na and X =S, Se, O), with the exception of KYbSe2. The mag-
netic ordering temperature of KYbSe2 is below the lowest temperature investigated
in this work, TN = 0.290K [119], therefore, magnetic order can also not be excluded
in the investigated AYbX2 compounds based on the measurements included here.
Unfortunately, the nature of the KYbO2 samples, namely the severe moisture sensitiv-
ity and the porosity of the material, makes measurements towards lower temperatures
with a dilution fridge setup complicated. For NaYbO2 and NaYbSe2 low-temperature
experiments are available in literature excluding magnetic order down to 50mK and
40mK, respectively [80,103,114].
Similar, dilution fridge measurements are available for KYbS2 which show no clear
signs of magnetic order down to 50 mK, although some so far unclassified features are
observed in the specific heat [112] and thermal expansion at low temperatures. The na-
ture of these features is the focus of current investigations, including imminent neutron
diffraction measurements on single crystals at low temperatures. KYbSe2 was already
investigated by Scheie et al. [78] in the temperature range of the magnetically ordered
phase via INS and heat capacity measurements. Remarkably, the manifestation of
magnetic order is quite subtle in the specific heat, despite the relatively large sample
mass of 2.3 mg. Nearly no indication of magnetic order is observed in a lighter sample
(m = 1.2mg) investigated in the same study. The low-temperature measurements on
KYbS2 are performed on a comparatively light sample (m =0.33mg), which might
obscure the traces of the magnetic order in zero field. Therefore, INS measurements
are highly desirable to shed light on the low-temperature behavior of KYbS2 and the
synthesis of sizable samples (1× 1mm2) achieved in this work makes them viable.

The impact of exchanging the alkaline ion in the A position is investigated on
the example of NaYbO2 and KYbO2. A prominent difference between NaYbO2 and
KYbO2 is the g-factor anisotropy, which is quite distinct in the AYbX2 compound
family. This holds true for NaYbO2, but the anisotropy vanishes for KYbO2 resulting
in a nearly isotropic g-value. Substituting Na by K also leads to an anisotropic
expansion of the crystal structure, resulting in a decrease of exchange couplings
due to the increase of the Yb-O-Yb angles. The comparison of the phase diagrams
visualizes the shift of the different magnetically ordered phases towards lower fields
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11 Summary and conclusion

and temperatures for KYbO2 compared to NaYbO2. The reduction of the magnetic
exchange interactions is also observed in the decrease of the saturation field of KYbO2.
The investigation of KYbO2 and NaYbO2 therefore presents a pathway to tuning
the magnetic interactions by partial substitution of the A position of the AYbX2

compounds. [12]
In a similar line of thought, it was attempted to directly influencing the environment

of the Yb3+ ions by gradually substituting the ions in the X position. The complete
doping series of KYb(SxSe1−x)2 was successfully synthesized for the first time in this
work enabling the investigation of the effects of structural randomness in AYbX2

compounds. SXRD measurements showed a gradual and systematic change of the
crystal structure. The slight change of the average value of g⊥ in combination with
a more drastic change of the average g∥-value throughout the doping series leads to
an amplified g-factor anisotropy at intermediate S/Se content. No drastic changes of
the average low-temperature Curie-Weiss temperature for both field directions are
observed. Although, both the average coupling energy as well as the average g⊥-value
appear to be unaffected by the introduced randomness, it obviously has impact on
the formation of the plateau phase in the magnetization, which is gradually shifted
towards lower temperatures when approaching intermediate doping levels. A possible
explanation for this incoherent behavior is a distribution of the exchange coupling
with the same mean value accompanied by a distribution of the g⊥-value, indicated
by the increased residual linewidth for the doped compounds. Measurements towards
lower temperatures and INS measurements are desirable to further investigate the
suppression of the magnetically ordered phase and to clarify if long-range magnetic
order in zero field is present in KYbS2 as well as in KYbSe2.
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