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Abstract
Traditional navigation services find the fastest route for a single driver. Though always using
the fastest route seems desirable for every individual, selfish behavior can have undesirable effects
such as higher energy consumption and avoidable congestion, even leading to higher overall and
individual travel times. In contrast, strategic routing aims at optimizing the traffic for all agents
regarding a global optimization goal. We introduce a framework to formalize real-world strategic
routing scenarios as algorithmic problems and study one of them, which we call Single Alternative
Path (SAP), in detail. There, we are given an original route between a single origin–destination
pair. The goal is to suggest an alternative route to all agents that optimizes the overall travel time
under the assumption that the agents distribute among both routes according to a psychological
model, for which we introduce the concept of Pareto-conformity. We show that the SAP problem
is NP-complete, even for such models. Nonetheless, assuming Pareto-conformity, we give multiple
algorithms for different variants of SAP, using multi-criteria shortest path algorithms as subroutines.
Moreover, we prove that several natural models are in fact Pareto-conform. The implementation
and evaluation of our algorithms serve as a proof of concept, showing that SAP can be solved in
reasonable time even though the algorithms have exponential running time in the worst case.
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1 Introduction

Commuting is part of our daily lives. Street congestion, traffic jams and pollution became an
increasingly large issue in the last few decades. In German cities, these effects caused costs
of about 3 billion euros in 2019 [11]. Many traffic jams in cities could have been avoided by
better route choice. Partly this is because of non-optimal route choices by individuals due
to bounded rationality and route preferences other than “fastest” [30]. However, even with
individually optimal route choice, average travel time can be substantially worse compared to
a system optimum where all routes are centrally assigned [22]. Thus, there is an opportunity
for improving traffic via strategic routing where (re)routing recommendations are created by
traffic authorities and taken into account by the driver’s routing system. More precisely, we
speak of strategic routing when two conditions are met:
(i) One or more routes are calculated to be proposed to more than one agent, and
(ii) the quality of a set of proposed routes is being defined by a shared scoring rather than

scoring each agent individually.
Recent research indicates that many drivers would accept individually slower routes if this
contributes to an overall reduction in traffic [27, 14]; additionally, incentives such as free
parking could be granted to those accepting these routes, and future autonomous vehicles
may be more amenable to centralized control. Thus, (re)routing recommendations can have
a strong impact since they might be followed by a significant fraction of all drivers.

In the ongoing pilot research project Socrates 2.0, strategic routing is employed in the
area of Amsterdam [25]. For this, experts predefine alternative routes and traffic conditions
that trigger their recommendation. This requires extensive work and monitoring, and does
not capture well unusual traffic situations where there might be several incidents at once
causing delays. Thus, it is desirable to automate this by formalizing strategic routing and
finding algorithms that calculate strategic routes.

Our Contribution. Strategic routing as defined above is not a single algorithmic problem but
rather a concept capturing numerous scenarios leading to different problems. In Section 2, we
provide a framework to guide the process of formalizing real-world strategic routing scenarios.
We apply it to one specific scenario, namely Single Alternative Path (SAP). This scenario is
inspired by the Amsterdam use case mentioned above where congestion can be prevented by
suggesting one alternative route to all agents, e.g., via a variable-message sign. We consider
different psychological models to determine how many agents follow the suggestion. Moreover,
we consider variants of the SAP problem that require the alternative to be more or less
disjoint from the original route. See Section 2.2 for a formal definition.

To tackle SAP algorithmically, we introduce the concept of Pareto-conformity of psy-
chological models and, based on this, give various algorithms in Section 3. As they use
multi-criteria shortest path algorithms as subroutine, they have an exponential worst-case
running time but turn out to be sufficiently efficient in practice; see our evaluation in Section 5.
Moreover, in this generality, we cannot hope for better worst-case bounds as SAP is NP-hard,
even for Pareto-conform psychological models; see the full version [4] for a proof. In Section 4,
we prove the Pareto-conformity of three natural psychological models. Our proofs actually
hold for the more general and abstract Quotient Model that captures various additional
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models. We evaluate our algorithms in Section 5. It serves as a proof of concept that our
algorithms have reasonable practical run times and yield promising travel time improvements
for instances in the traffic network of Berlin. Missing proofs and some additional evaluation
can be found in the full version of this paper [4].

Related Work. There has been no unique understanding of strategic routing in research
until this point. Van Essen [27] uses a choice-theoretical approach and concludes that
individual route choice and travel information that stimulates non-selfish user behavior have
a large impact on the network efficiency. Kröller et al. [14] investigate due to what kind
of incentives agents would deviate from the shortest-path route. Their results show that
certain incentives can increase the drivers’ willingness of taking detours. Moreover, they show
that there is a high interest in services providing alternative routes, and strategic routing is
considered to have the potential of solving traffic issues such as congestion and pollution.

For standard algorithmic techniques in efficient route planning, we refer to the survey
of Bast et al. [2]. Köhler et al. [15] deal with finding static and also time-dependent traffic
flows minimizing the overall travel time. Also, as stated by Strasser [26], routing with
predicted congestion is well-studied, e.g., by Delling and Wagner [8], Demiryurek et al. [9],
Delling [6] and Nannicini et al. [19]. Route planning with alternative routes was investigated
by Abraham et al. [1] and Paraskevopoulos and Zaroliagis [21]. They propose algorithms
that find alternative routes by evaluating properties with regard to an original route.

Lastly, we emphasize that strategic routing is very different from selfish routing as
proposed by Roughgarden and Tardos [23]. In contrast to our global optimization approach,
in selfish routing individual strategic agents select their routes to optimize their own travel
times, given the route choices of other agents. While often static flows are considered in selfish
routing, Sering and Skutella [24] analyzed selfish driver behavior for a dynamic flow-over-time
model. Another related selfish routing variant is Stackelberg routing [13, 5, 12, 3], where an
altruistic central authority controls a fraction of the traffic and first routes it in a way to
improve the travel times for all other selfish agents which choose their route afterwards.

2 A Framework for Strategic Routing

In the following, we provide a framework that supports the formalization of a given strategic
routing scenario. We employ a two-step process. The first step categorizes the scenario by
distilling its crucial aspects. The second step transforms it into an algorithmic problem.

2.1 Categorization
Categorizing a scenario at hand boils down to answering the following questions.

What is the goal we aim to achieve? There are different objectives one can pursue when
routing strategically. A city might be interested in reducing particulate matter emission in a
certain region. As a routing service provider, the goal could be to minimize the travel time
for as many customers as possible. A system of centrally controlled autonomous vehicles
might want to achieve a minimum overall travel time.

How can we influence the agents? How we recommend routes determines which agents
we can influence and whether we can make different suggestions to different agents. A city
administration can put up signs to influence all vehicles in a certain area, making the same
suggestion to each agent. Navigation providers, on the other hand, can influence only a
limited number of vehicles but could make different suggestions to different agents.

ATMOS 2020



10:4 A Strategic Routing Framework and Algorithms for Computing Alternative Paths

How much control do we have over the agents? The willingness of users to follow an
alternative route depends on the use case. While a navigation provider cannot force its users
to use a specific route, and the acceptance of detouring depends heavily on the additional
length, there are scenarios where the suggested route will always be accepted or agents end
up in an equilibrium or in a system-optimal distribution on the suggested routes.

What is the starting situation? We either assume that there is already existing traffic, or
that we design traffic from scratch. Although the former is certainly more common, the
latter applies to, e.g., the scenario of centrally controlled autonomous vehicles.

How do the uninfluenced agents react? If only a fraction of the traffic is routed stra-
tegically, the remaining traffic might react with respect to the change. For instance, it is a
valid assumption that after some time, all traffic settles in an equilibrium. Another simple
assumption is that the other traffic does not change at all.

2.2 Problem Formalization

In this section, we first propose a generic formalization whose degrees of freedom can then be
filled to reflect a specific scenario. We focus on the Single Alternative Path (SAP) scenario,
which we study algorithmically in Section 3. We use it as an example how fixing answers to
the questions raised in Section 2.1 naturally fills the degrees of freedom.

Generic Strategic Routing Considerations. Let G = (V,E) be a directed graph. For every
pair of nodes (s, t) ∈ V 2, the demand d : V 2 → Q denotes the amount of traffic flow that
has to be routed from s to t. For every edge e ∈ E, let τe : Q≥0 → Q>0 be a monotonically
increasing cost function. For x ∈ Q≥0, τe(x) describes the costs for a single agent traversing
an edge e ∈ E while there is a traffic flow of x vehicles per unit of time on e.

The solution to a strategic routing problem is a traffic distribution to paths in the network
that routes agents according to d. Let P be the set of all simple paths in G. By f : P → Q≥0
we denote the flow, where f(P ) states the amount of traffic flow using path P . Extending
the notion, let f(e) =

∑
e∈P f(P ) be the total traffic flow on an edge e. For all x ∈ Q≥0, let

τP (x) =
∑
e∈P τe(x) be the costs per agent on P assuming that the total traffic on P is x.

Paths are denoted as tuples of vertices, i.e., (v1, . . . , vk) with vi ∈ V is a path if for
1 < i ≤ k, (vi−1, vi) ∈ E . In addition, we consider paths as edge sets and use set
operators, which also translates to the notion of cost functions, e.g., for paths P and Q let
τP∩Q(x) =

∑
e∈P∩Q τe(x).

Means of Influence. In the SAP problem, we assume that we can influence all agents on a
given original st-path Q and suggest a single alternative st-path P .

Starting Situation and Uninfluenced Traffic. We assume that there is existing traffic that
satisfies all demands and that uninfluenced agents stick with their previous routes. Note
that this allows us to integrate the uninfluenced traffic into the cost functions. Thus, we can
formalize it as if there was no initial traffic and that all demands are equal to 0 except for
the traffic on the original route Q which satisfies the demand d(s, t) > 0. For brevity, we
denote d = d(s, t).
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Level of Control. We assume that agents make their own decisions. Given an original
route Q and alternative P a psychological model determines the amount of flow xP on P .
The flow on Q is then d − xP . We consider the following three psychological models; see
Section 4 for formal definitions. The System Optimum assumes agents distribute optimally
with respect to the optimization criterion defined below. In the User Equilibrium [28] agents
act selfishly leading to an equilibrium where no agent can improve by unilaterally changing
their route [23]. In the Linear Model we assume that the willingness to choose P is linearly
dependent on the ratio of the costs on Q and P .

Optimization Criterion. The optimization criterion formalizes the goal to be achieved,
which is the overall travel time for SAP. Hence, we interpret the cost functions τe as latency
functions, i.e., the time a single agent needs to traverse the edge e. In the SAP problem,
we only consider one alternative P to an original route Q. Assume that we have a flow of
x ∈ [0, d] on P . Then, the edges in P \Q have flow x, the edges of Q \ P have flow d− x
and the edges of P ∩Q have flow d. Thus, the overall cost is

CP (x) = x · τP\Q(x) + (d− x) · τQ\P (d− x) + d · τP∩Q(d). (1)

For the value xP determined by the psychological model, the actual cost of an alternative
route P is CP (xP ), which we abbreviate with CP . Let P be a set of alternative paths.
Computing the path P in P with optimal CP is called scoring P.

Summary and Problem Variants. To sum up the SAP problem, given a route Q from s

to t, a demand d of agents per unit of time and a psychological model, the SAP problem
asks for the optimal alternative route P such that the overall travel time CP is minimized.

In general P can have arbitrarily many overlaps with Q. Additionally, we consider two
variants of SAP, where we require the routes to be more or less disjoint. Disjoint Single
Alternative Path (D-SAP) requires P and Q to be completely disjoint. Moreover, 1-Disjoint
Single Alternative Path (1D-SAP) requires P \Q to be a single connected path, i.e., P diverts
from Q at most once but can share the edges at the start and the end with Q.

3 Algorithms for Single Alternative Path

Consider two alternative paths P1 and P2 with cost functions τP1 and τP2 , respectively.
Assume that for any amount of traffic x ∈ [0, d], the cost of P1 is not larger than of P2, i.e.,
τP1(x) ≤ τP2(x). It seems intuitive that it is never worse to choose P1 over P2. However, this
is not quite right for two reasons. First, it does not hold for arbitrary psychological models,
which determine the amount of agents (potentially in a somewhat degenerate fashion) who
choose P1 and P2, respectively, instead of the original route Q. Secondly, if the alternative
route P1 shares many edges with the original route Q it has only little potential to distribute
traffic, whereas the seemingly worse alternative P2 could do better in this regard.

We resolve the first issue by defining a property that we call (weak) Pareto-conformity.
Moreover, in Section 4, we show for various psychological models that they are in fact
Pareto-conform. To resolve the second issue with shared edges, we introduce a notion of
dominance between paths that takes the overlap with Q into account.

ATMOS 2020



10:6 A Strategic Routing Framework and Algorithms for Computing Alternative Paths

Let τ1 and τ2 be two cost functions defined on the interval [0, d] and let τ ′i denote the
derivative of τi.1 For two alternative paths P1 and P2, we say that P1 dominates P2, denoted
by P1 � P2, if τP1 ≤ τP2 and τ ′P1∩Q ≤ τ ′P2∩Q. Note that, if P1 ∩ Q = P2 ∩ Q, then this
simplifies to τP1 ≤ τP2 . With this, we can define the above-mentioned Pareto-conformity.

I Definition 1. A psychological model is Pareto-conform if P1 � P2 implies CP1 ≤ CP2 . It
is weakly Pareto-conform if this holds for paths that have equal intersection with Q.

To simplify notation, we assume without loss of generality that there are no two different
paths P1 and P2 with P1 � P2 and P2 � P1. This can, e.g., be achieved by slight perturbation
of the cost functions, or by resolving every tie arbitrarily.

In the following we give different algorithms for the SAP, 1D-SAP and D-SAP problems.
The algorithms involve solving one or more multi-criteria shortest path problems as subroutine.
Algorithms for this problem range from the fundamental examination of the bicriteria case [10]
to the usage of speed-up techniques [7, 16] in the multi-criteria case. One such algorithm
is the multi-criteria Dijkstra, which has exponential run time in the worst case [17] but is
known to be efficient in many practical applications [18].

The algorithms we present first (Sections 3.1–3.3) require solving only a single multi-
criteria shortest path problem, with the D-SAP setting requiring fewer criteria than SAP
and 1D-SAP. In Sections 3.4 and 3.5, we propose approaches that require multiple such
searches. Though the former seems preferable, the latter has some advantages. It requires
fewer criteria in the multi-criteria sub-problems, it requires only weak Pareto-conformity for
the 1-disjoint setting, and it allows for easy parallelization. Our experiments in Section 5
indicate that the variants requiring fewer criteria are often faster for long routes.

3.1 Reduction to Multi-Criteria Shortest Path
We are now ready to solve SAP. Definition 1 directly yields the following lemma.

I Lemma 2. For any instance of SAP with a Pareto-conform psychological model, there
exists an optimal solution that is not dominated by any other alternative.

Thus, to solve SAP, it suffices to find all alternative paths that are not dominated by other
paths, and then choose the best among these potential solutions. We reduce the problem of
computing the set of potential solutions to a multi-criteria shortest path problem. In such a
problem, each path corresponds to a point p ∈ Qk, where the entry at the i-th position of p
is the cost of the path with respect to the i-th criterion. One then searches for all solutions
that are not Pareto dominated by other solutions. For two points p1, p2 ∈ Qk, p1 Pareto
dominates p2 if p1 ≤ p2 component-wise. Finding all solutions that are not Pareto dominated
is the previously mentioned multi-criteria shortest path problem. How the transformation to
a multi-criteria problem exactly works depends on the cost functions.

Assume for now that τ(x) = ax2 + b for positive a and b. We call the family of cost
functions of this form canonical cost functions. It is closed under addition. Thus, the cost
function of each path is also a canonical cost function. Note that two different canonical
cost functions intersect in at most one point on [0, d]. Thus, we have τ1 ≤ τ2 if and only
if τ1(0) ≤ τ2(0) and τ1(d) ≤ τ2(d). It follows that requiring τ1 ≤ τ2 is equivalent to saying
that (τ1(0), τ1(d)) Pareto dominates (τ2(0), τ2(d)). Additionally, the function τ1 + τ2 can be
represented by (τ1(0) + τ2(0), τ1(d) + τ2(d)). Similarly, with τ ′1(x) = 2a1x and τ ′2(x) = 2a2x

we have τ ′1 ≤ τ ′2 if and only if a1 ≤ a2. Addition works again as expected.

1 In the remainder, we implicitly assume all cost functions to be only defined on [0, d], e.g., τ1 ≤ τ2 means
τ1(x) ≤ τ2(x) for all x ∈ [0, d]. Also, we implicitly assume functions to be differentiable.
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v1 v2 vq−1 vq. . .

. . . . . .. . . . . .
v1 v2 vq−1 vq

v′2 v′q−1

. . .

. . .

. . . . . .. . .

. . . . . .

. . .

Figure 1 Graph transformation for the 1D-SAP algorithm. Blue edges represent an arbitrary
number of incoming edges, red edges an arbitrary number of outgoing edges.

To generalize this concept, consider a class of functions T that is closed under addition.
We say that T has Pareto dimension k if the following holds. There exists a function
p : T → Qk such that τ1 dominates τ2 if and only if p(τ1) Pareto dominates p(τ2), and such
that p(τ1 +τ2) = p(τ1)+p(τ2). We call p the Pareto representation of T . The above canonical
cost functions have Pareto dimension 2 and their derivatives have Pareto dimension 1.

With this, P1 � P2 reduces to having p(τP1) ≤ p(τP2) and p′(τ ′P1∩Q) ≤ p′(τ ′P2∩Q), where p′
is a Pareto representation of the class of all derivatives of functions in T . This is equivalent
to the concatenation of p(τP1) and p′(τ ′P1∩Q) Pareto dominating the concatenation of p(τP2)
and p′(τ ′P2∩Q). Thus, dominance of paths reduces to Pareto dominance.

I Theorem 3. SAP with Pareto-conform psychological model and cost functions with Pareto
dimension k whose derivatives have Pareto dimension ` reduces to solving a multi-criteria
shortest path problem with k + ` criteria and scoring the result.

3.2 Enforcing 1-Disjoint Routes

1D-SAP can be solved by modifying the graph and then applying the same approach as above.
Let Q = (v1, . . . , vq) with s = v1, t = vq. We consider the graph G′, which is a copy of G
where for each vi ∈ {v2, . . . , vq−1} a node v′i is added. Moreover, vi in G′ has all outgoing
edges of vi in G, but only the incoming edge from vi−1. Similarly, v′i in G′ has all incoming
edges of vi in G, but only the outgoing edge to v′i+1; see Figure 1. With this, computing all
non-dominated 1-disjoint paths in G reduces to computing all non-dominated paths in G′.

I Theorem 4. Theorem 3 also holds for 1D-SAP.

3.3 Fewer Criteria for Disjoint SAP

We now consider the D-SAP variant whose major advantage is that we can solve it with fewer
criteria in the multi-criteria shortest path part of the algorithm. Analogously to Lemma 2,
the following lemma follows from Definition 1.

I Lemma 5. For any instance of D-SAP with a weakly Pareto-conform psychological model,
there exists an optimal solution that is not dominated by any other alternative disjoint from Q.

To guarantee that we only find paths disjoint from Q, we remove Q from the graph. For
two paths P1 and P2 in the resulting graph, the dominance P1 � P2 simplifies to τP1 ≤ τP2 .
This observation together with Lemma 5 gives us the following theorem. Note that we only
need weak Pareto-conformity here, as all paths have no intersection with Q.

ATMOS 2020



10:8 A Strategic Routing Framework and Algorithms for Computing Alternative Paths

I Theorem 6. D-SAP with a weakly Pareto-conform psychological model and cost functions
with Pareto dimension k reduces to solving a multi-criteria shortest path problem with k

criteria and scoring the result.

3.4 Fewer Criteria for 1-Disjoint SAP
We start by deleting the edges of Q = (v1, . . . , vq) from the graph. In the resulting graph,
for every pair 1 ≤ i < j ≤ q, we calculate the set Pi,j of all routes between vi and vj that
are minimal with respect to dominance. We define the corresponding augmented path for a
path P ∈ Pi,j as P̃ = (v1, . . . , vi−1) ∪ P ∪ (vj+1 . . . , vq), which is a 1-disjoint path from s to
t. We denote the set of paths from s to t obtained by augmenting all paths in Pi,j by P̃i,j .

I Lemma 7. For an instance of 1D-SAP with weakly Pareto-conform psychological model,
there exists an optimal solution among the paths in the sets P̃i,j.

From Section 3.3, we know that we can compute all non-dominated paths from vi to vj by
using a multi-criteria shortest path algorithm. Thus, 1D-SAP reduces to solving

(
q
2
)
∈ Θ(q2)

multi-criteria shortest path problems, one for each pair of vertices vi, vj ∈ Q. We note that
many shortest path algorithms actually solve a more general problem by computing paths
from a single start to all other vertices. Thus, instead of Θ(q2) shortest path problems, we
can solve q multi-target shortest path problems, using each vertex in Q as start once.

I Theorem 8. 1D-SAP with weakly Pareto-conform psychological model and cost functions
with Pareto dimension k reduces to solving q multi-criteria multi-target shortest path problems
with k criteria and scoring the resulting augmented paths.

3.5 Fewer Criteria for SAP
We now provide an algorithm for the SAP problem that requires fewer criteria. We use a
dynamic program that combines non-dominated subpaths to obtain the optimal solution.
To formalize this, we need the following additional notation. For vi, vj ∈ Q with i < j, a
path from vi to vj is called Q-path or more specifically Qi,j-path. A set A of Qi,j-paths is
reduced if no path in A is dominated by another path in A. Let A and B be two reduced
sets of Qi,j-paths. Their reduced union is obtained by eliminating from A ∪B all paths that
are dominated by another path in A∪B. Moreover, let A and B be two reduced sets of Qi,j
and Qj,k-paths, respectively. Then their reduced join is obtained by concatenating every
path in A with every path in B and eliminating all dominated paths.

We start by applying the algorithm from Section 3.4, computing the sets Pi,j for all
1 ≤ i ≤ j ≤ q, which are the reduced sets of all Qi,j-paths that are disjoint from Q. Then,
we compute sets Pj of Q1,j-paths and one can show that Pj is in fact the reduced set of all
Q1,j-paths. We initialize P1 = {(v1)}. Now, assume we have computed Pi for all i < j. We
obtain Pj as the reduced union of the following sets of Q1,j-paths: the reduced join of Pi
and Pi,j for every i < j, and the reduced join of Pj−1 and {(vj−1, vj)}.

I Lemma 9. For an instance of SAP with a Pareto-conform psychological model, there exists
an optimal solution among the paths in Pq.

After computing the sets Pi,j as in Section 3.4, it remains to compute Θ(q2) reduced
joins and Θ(q2) reduced unions between reduced sets of Q-paths. Then, it only remains to
score the result Pq. The shortest path computations from Section 3.4 use k criteria where k
is the Pareto-dimension of the cost functions. The reduced joins and unions are with respect
to k + ` criteria, where ` is the Pareto dimension of the derivatives of the cost functions.
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I Theorem 10. SAP with Pareto-conform psychological model and cost functions with Pareto
dimension k whose derivatives have Pareto dimension ` reduces to solving q multi-target
shortest path problems with k parameters, executing Θ(q2) reduced join and union operations
with respect to k + ` criteria between reduced sets of Q-paths, and scoring the result Pq.

4 Psychological Models and Pareto-Conformity

In this section, we formally define the models mentioned in Section 2.2 and show their
Pareto-conformity. After considering the System Optimum Model, we define the Quotient
Model, which is a generalization of the User Equilibrium Model and the Linear Model. We
give conditions under which a Quotient Model is Pareto-conform and thereby prove that the
User Equilibrium Model and the Linear Model are both Pareto-conform.

The System Optimum Model assumes that agents distribute optimally, i.e., xP ∈ [0, d]
minimizes CP (xP ). We get that P1 � P2 implies CP1(x) ≤ CP2(x) for each x ∈ [0, d].

I Theorem 11. The System Optimum Model is Pareto-conform.

For the Quotient Model, let c(x) be non-decreasing, non-negative on [0, d] with c(d) > 0.
If

τQ\P (d− x) + τP∩Q(d)
τP\Q(x) + τP∩Q(d) = c(x) (2)

has a solution in [0, d], it is unique for the following reason. The numerator and denominator
are the cost of Q and P , which are decreasing and increasing in x, respectively. Thus, the
quotient is decreasing, while c(x) is non-decreasing, which makes the solution unique. The
Quotient Model sets xP to this unique solution if it exists. If no solution exists, then the
left-hand side is either smaller or larger than c(x) for every x ∈ [0, d], in which case we set
xP = 0 or xP = d, respectively. This is the natural choice, as xP = 0 and xP = d maximizes
and minimizes the left-hand side, respectively. We note that c specifies how conservative
the agents are. If c(x) = 1, the agents distribute on Q and P such that both paths have the
same cost. If c is smaller, then agents take the alternative route, if it is not too much longer.

Recall from Equation (1) that the cost function CP (x) is a combination of the three
functions τP\Q, τQ\P , and τP∩Q. If Equation (2) has a solution xP , we know how τP\Q(x)
and τQ\P (x) relate to each other at x = xP . In other words, solving Equation (2) for
τP\Q(xP ) or τQ\P (xP ) and replacing their occurrence in CP = CP (xP ) with the result lets
us eliminate τQ\P or τP\Q, respectively, from CP . We do this in the following two lemmas,
which additionally take the special cases xP = 0 and xP = d into account.

I Lemma 12. Let gP (x) = (d− x) · c(x) + x. Then CP ≤ gP (xP ) ·
(
τP\Q(xP ) + τP∩Q(d)

)
.

If xP > 0, then equality holds.

We note that c(xP ) > 0 holds for the following reason. For xP = d this is true by
definition. For xP < d, the left-hand side of Equation (2) is equal to its right-hand side or
less (in which case xP = 0). As the right-hand side is c(xP ) and the left-hand side is positive,
we get c(xP ) > 0. Thus it is fine to divide by c(xP ) in the following lemma.

I Lemma 13. Let gQ(x) = d+ x/c(x)− x. Then CP ≤ gQ(xP ) ·
(
τQ\P (d− xP ) + τP∩Q(d)

)
.

If xP < d, then equality holds.

The following lemma provides the core inequalities we need when comparing the cost of
two alternative paths. Note how the inequalities in parts 1 and 2 of the lemma resemble the
representation of the cost CP in Lemma 12 and Lemma 13, respectively.
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I Lemma 14. Let P1 and P2 be alternative paths with P1 � P2 and let x1, x2 ∈ [0, d]. Then
1. τP1\Q(x1) + τP1∩Q(d) ≤ τP2\Q(x2) + τP2∩Q(d) if x1 ≤ x2, and
2. τQ\P1(d− x1) + τP1∩Q(d) ≤ τQ\P2(d− x2) + τP2∩Q(d) if x1 ≥ x2.

Proof sketch. Recall that P1 � P2 means that for all x ∈ [0, d], τP1(x) ≤ τP2(x) and
τ ′P1∩Q(x) ≤ τ ′P2∩Q(x), where τ ′ denotes the derivative of τ . For the first case x1 ≤ x2, we get

τP1\Q(x1) + τP1∩Q(d) = τP1\Q(x1) + τP1∩Q(x1)− τP1∩Q(x1) + τP1∩Q(d)
= τP1(x1) + τP1∩Q(d)− τP1∩Q(x1),

using that τP1(x) ≤ τP2(x) and τ ′P1∩Q(x) ≤ τ ′P2∩Q(x)

≤ τP2(x1) + τP2∩Q(d)− τP2∩Q(x1)
= τP2\Q(x1) + τP2∩Q(x1) + τP2∩Q(d)− τP2∩Q(x1)
= τP2\Q(x1) + τP2∩Q(d).

As τP2\Q is an increasing function and x2 ≥ x1, we obtain τP2\Q(x1) ≤ τP2\Q(x2), which
concludes this case. The case x1 ≥ x2 works very similar. J
Applying the previous three lemmas and dealing with the additional functions gP (x) and
gQ(x) in Lemma 12 and Lemma 13, respectively, yields the following.

I Theorem 15. The Quotient Model is Pareto-conform if c(d) ≤ 1 and, for all x ∈ [0, d],
c(x) · (1− c(x))− x · c′(x) ≤ 0.

The User Equilibrium Model is obtained by setting c(x) = 1 in Equation (2). The Linear
Model is defined by setting c(x) to an increasing linear function, i.e., c(x) = c · x/d for c > 0.

I Corollary 16. The User Equilibrium and Linear Model with c ≤ 1 are Pareto-conform.

The Linear Model with c ≤ 1 is less conservative than the User Equilibrium Model, i.e.,
more agents use the alternative path, in particular if only few agents use it based on its cost.

5 Empirical Evaluation

In this section we fix implementation details and evaluate the proposed algorithms. Our
evaluation focuses on the following aspects.
Performance. Are the algorithms sufficiently efficient for practical problem instances? How

do the different algorithms compare in terms of run time?
Strategic Improvement. How much does strategic routing improve the overall travel time?

How does the requirement of disjoint or 1-disjoint alternatives impact this improvement?

Figure 2 Visualization of example routes: original route (blue), optimal alternative routes with
respect to the User Equilibrium for SAP (green), for 1D-SAP (black), and D-SAP (orange).
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Figure 3 Left: Absolute run times. Each point represents one OD-pair for demand d = 2000. For
D-SAP, we excluded the OD-pairs that did not have a solution that was disjoint from the original
route. Right: Speedup of SAP-FC over SAP, with one point for each OD-pair and each value of d.

Additional evaluation regarding the psychological models can be found in the full version [4].
For now, we fix the psychological model to be the User Equilibrium.

We model cost functions τe as proposed by the U.S. Bureau of Public Roads [20], i.e., for
parameters α, β ≥ 0, we have τe(x) = `e/se · (1 + α(x/ce)β) where se, ce, and `e denote free
flow speed, capacity and length of e. We set α = 0.15 and β = 2. Thus, for appropriate a
and b, we get canonical cost functions of the form τe(x) = ax2 + b as defined in Section 3.

For solving the multi-criteria shortest path problem, we implement a multi-criteria A*
variant [16]. As lower bound, we use the distances in the parameters a and b to t. These
distances are calculated using two runs of Dijkstra’s algorithm. We note that A* solves a
multi-target shortest path problem, which we need for two algorithms; see Section 3.4. For
calculating the Pareto-frontiers we use the simple cull algorithm [29].

We use the following naming scheme. We abbreviate the algorithms from Sections 3.1
and 3.2 with SAP and 1D-SAP, respectively. We denote the fewer criteria (FC) approaches
with D-SAP (Section 3.3) 1D-SAP-FC (Section 3.4) and SAP-FC (Section 3.5). To evaluate
the strategic improvement, we compare them to the solution of proposing only the shortest
path to all agents, assuming either one single agent (1-SP) or d agents (d-SP) on every edge.

We test our implementations on the street network of Berlin, Germany with 75 origin–
destination pairs (OD-pairs), randomly chosen from real-world OD-pairs. The OD-pairs as
well as the network were provided by TomTom. For every OD-pair, we set Q to the shortest
route for a single agent and run all algorithms for our psychological models and demands
d ∈ {100, 500, 1000, 1500, 2000, 2500, 3000}. One unit of demand represents 7–20 vehicles per
hour. The imprecision is due to the fact that the exact penetration rate of TomTom devices
is unknown and that the map data is given with respect to only TomTom users.

All experiments have been conducted on a machine with two Intel Xeon Gold 5118
(12-core) CPUs with 64GiB of memory. The multi-criteria shortest-path calculations of
SAP-FC and 1D-SAP-FC have been parallelized to 20 threads.

Run Time. Figure 3 shows the run times of our algorithms, depending on the length of
the original route. The main takeaways from Figure 3 (left) are that requiring disjoint
routes makes the problem easier and that the algorithms requiring fewer criteria but more
multi-criteria shortest path queries are faster for instances with long original routes. Figure 3
(right) shows the speedup of SAP-FC over SAP. One can see that SAP is actually faster than
SAP-FC for most instances, sometimes up to two orders of magnitude. However, these are
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Figure 4 The plots show the travel time per agent depending on the demand d, where each data
point is averaged over all OD-pairs. Absolute values are shown on the left, relative values with
respect to the d-SP solution are shown on the right.

the instances with short original route, which have low run times anyways. On the other
hand, SAP-FC is up to one order of magnitude faster than SAP on some instances with
long original path. We note that the multi-criteria shortest path queries in SAP-FC can
be parallelized, and we used 20 threads in our experiments. However, this parallelization
cannot explain such high speedups. In Figure 3 (left), one can see that SAP-FC actually has
rather consistent run times compared to SAP and never exceeded 30 minutes. Thus, our
observations show that we can feasibly solve the problems SAP and even more so 1D-SAP in
the context of small distance queries, e.g., in city networks, despite the worst-case exponential
running time.

Strategic Improvement. We assess how much strategic routing gains in terms of travel
time with respect to different disjointedness. Figure 2 shows solutions for SAP, 1D-SAP and
D-SAP routes. The resulting travel times are shown in Figure 4. We see that the larger the
number of agents, the more we benefit from strategic routing. The plots show that, in direct
comparison to the shortest path assuming d agents per edge (d-SP), the SAP algorithms
yield results of about 50 % reduced travel time for growing values of d. Constraining the
alternative route to be 1-disjoint from the original only has a slight disadvantage (on average
1D-SAP is worse by 2.2 %). Thus, taking into account that 1D-SAP can be solved faster,
solving 1D-SAP might give a good trade-off between run time and quality of the solution.
Demanding full disjointedness leads to much worse travel times, as in 62.3% of our test cases,
no fully disjoint alternative exists, due to the graph structure. In this case, we assume that
all agents use the original route. Restricted to the instances that allow for a fully disjoint
solution, the solution to D-SAP on average leads to a 11.4 % higher travel time per agent
compared to 1D-SAP.

6 Conclusion

Besides providing a framework for formalizing strategic routing scenarios, we gave different
algorithms solving SAP. Both of these contributions open the door to future research.
Concerning SAP, we have seen that different psychological models can lead to different
alternative routes, and it would be interesting to study how people actually behave depending
on the exact formulation of the suggestion and on potential additional incentives to take a
longer route. It is promising to study models that lie in-between the User Equilibrium and the
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Linear Model. By setting, e.g., c(x) = tanh(a · x/d) in the Quotient Model (Equation (2)),
we obtain a model that behaves like the Linear Model for small x and approaches the User
Equilibrium Model for larger x, where the constant a controls how quickly that happens.
We note that this choice of c(x) satisfies the conditions of Theorem 15, implying that the
resulting model is Pareto-conform, which makes the algorithms from Section 3 applicable.
Concerning algorithmic performance, we have seen that our proof-of-concept implementation
yields reasonable run times. Our implementation uses techniques such as A* to speed
up computation. Beyond that, there is still potential for engineering, e.g., by employing
preprocessing techniques. Beyond the SAP problem, our framework gives rise to various
problems in the context of strategic routing that are worth studying algorithmically.
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