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Abstract

Residential segregation is a wide-spread phenomenon that can be observed in almost every major
city. In these urban areas residents with different racial or socioeconomic background tend to form
homogeneous clusters. Schelling’s famous agent-based model for residential segregation explains how
such clusters can form even if all agents are tolerant, i.e., if they agree to live in mixed neighborhoods.
For segregation to occur, all it needs is a slight bias towards agents preferring similar neighbors.
Very recently, Schelling’s model has been investigated from a game-theoretic point of view with
selfish agents that strategically select their residential location. In these games, agents can improve
on their current location by performing a location swap with another agent who is willing to swap.

We significantly deepen these investigations by studying the influence of the underlying topology
modeling the residential area on the existence of equilibria, the Price of Anarchy and on the
dynamic properties of the resulting strategic multi-agent system. Moreover, as a new conceptual
contribution, we also consider the influence of locality, i.e., if the location swaps are restricted to
swaps of neighboring agents. We give improved almost tight bounds on the Price of Anarchy for
arbitrary underlying graphs and we present (almost) tight bounds for regular graphs, paths and
cycles. Moreover, we give almost tight bounds for grids, which are commonly used in empirical
studies. For grids we also show that locality has a severe impact on the game dynamics.
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1 Introduction

Today’s metropolitan areas are populated by a diverse set of residential groups which differ
along ethnical, socioeconomic and other traits. A common finding is that cityscapes are
not well-mixed, i.e., the different groups of agents tend to separate themselves into largely
homogeneous neighborhoods.1 This phenomenon is well-known as residential segregation and
is a subject of study in sociology, mathematics and computer science for at least five decades.
The most important scientific model addressing residential segregation was proposed by
Schelling [31, 32] who simply considered two types of residential agents who are located on a
line or on a checkerboard. Each agent is aware of the agents in her neighborhood and is
content with her location, if and only if the fraction of neighbors being of her own type is
above the tolerance parameter τ , for some 0 < τ ≤ 1. Discontent agents simply move to
another location. Using this basic model Schelling showed that starting from an initially
mixed state over time segregated neighborhoods will emerge. While this is to be expected for
high τ , Schelling’s finding was that this also happens for tolerant agents, i.e., if τ ≤ 1

2 . Thus,
only a slight bias towards favoring similar neighbors leads to the emergence of segregation.

Schelling proposed his model as a random process. This has led to an abundance of
empirical studies that simulated this process, see, e.g., [20, 13] and the references to chapter 4
in [16]. In these studies, the commonly used underlying topology for modeling the residential
area are grid graphs (often toroidal grids where vertices of borders on opposite sides are
identified), paths and cycles. A recent line of work [34, 35, 36, 21, 10, 4, 6, 5, 23, 30] rigorously
analyzed variants of this random process on paths or grid graphs and it was shown that
residential segregation occurs with high probability. However, in reality agents would not
move randomly, instead they would move to a location that maximizes their utility.

To address this selfish behavior, a very recent line of work [14, 18, 17, 1] initiated the
study of residential segregation from a game-theoretic point of view. The residential area
is modeled as a multi-agent system consisting of selfish agents who occupy vertices of an
underlying graph and try to maximize their utility, which depends on the agents’ types in
their immediate neighborhood, by strategically selecting locations. Also strategic segregation
in social network formation was considered [2].

This paper sets out to significantly improve and deepen the results on game-theoretic
residential segregation for the model investigated in [1] which allows pairs of discontent agents
of different type to swap their locations to maximize their utility. This variant of Schelling’s
model becomes more and more realistic as in many cities the percentage of vacant housing is
below 1%. In such settings, location swaps become the only way for agents to improve on
their current housing situation. For the model in [1] we consider the influence of the given
topology that models the residential area on core game-theoretic questions like the existence
of equilibria, the Price of Anarchy and the game dynamics. We thereby focus on popularly
studied topologies like grids, paths and cycles. Moreover, we follow-up on a proposal by
Schelling [32] to restrict the movement of agents locally and we investigate the influence of
this restriction. Such local swaps are realistic since people want to stay close to their working
place or important facilities like schools. This also holds when considering dynamics where
agents repeatedly perform local moves since these dynamics can be understood as a process
which happens over a long timespan and agents adapt to their new neighborhoods over time.

1 For example, see https://demographics.virginia.edu/DotMap/.

https://demographics.virginia.edu/DotMap/
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1.1 Model, Definitions and Notation
We consider a strategic game played on a given underlying connected, unweighted and
undirected graph G = (V,E), with V the set of vertices and E the set of edges. We denote
the cardinalities of V and E with n and m, respectively.

For any vertex v ∈ V we denote the neighborhood of v in G as Nv = {u ∈ V : {v, u} ∈ E}
and δv = |Nv| denotes the degree of v in G. Let ∆(G) = maxv∈V δv and δ(G) = minv∈V δv
be the maximum and minimum degree of vertices in G, respectively. We call a graph G

α-almost regular if ∆(G)− δ(G) = α and we call α-almost regular graphs regular if α = 0
and almost regular when α = 1. Grid graphs will play a prominent role. We will consider
grid graphs with 4-neighbors (4-grids) which are formed by a two-dimensional lattice with l
rows and h columns and every vertex is connected to the vertex on its left, top, right and
bottom, respectively, if they exist. In grid graphs with 8-neighbors (8-grids), vertices are
additionally also connected to their top-left, top-right, bottem-left and bottom-right vertices,
respectively, if they exist.

For a positive integer k, let [k] denote the set {1, . . . , k}, moreover, given a graph
G = (V,E), let Tk(G) denote the set of k-tuples of positive integers summing up to n = |V |.

A Swap Schelling Game with k types (k-SSG) (G, t) is defined by a graph G = (V,E)
and a k-tuple t = (t1, . . . , tk) ∈ Tk(G). There are n strategic agents that need to choose
vertices in V in such a way that every vertex is occupied by exactly one agent. Every agent
belongs to exactly one of the k types and there are ti agents of type i, for every i ∈ [k].
When |ti| = |tj | for each i, j ∈ [k], we say that the game is balanced. For convenience and in
all of our illustrations, we associate each agent type i ∈ [k] with a color. When k = 2, we
use colors blue and orange and denote by b and o = n− b the number of blue and orange
agents, respectively. Additionally, in case of a game with k = 2, we will assume that o ≤ b,
i.e., orange is the color of the minority type. For any graph G and any k-dimensional type
vector t ∈ Tk(G), let c : [n]→ [k] denote the function which maps any agent i ∈ [n] to her
color c(i) ∈ [k].

The strategy of an agent is her location on the graph, i.e., a vertex of G. A feasible
strategy profile σ is an n-dimensional vector whose i-th entry corresponds to the strategy of
the i-th agent and where all strategies are pairwise disjoint, i.e., σ is a permutation of V ,
and we will treat σ as a bijective function mapping agents to vertices, with σ−1 being its
inverse function. Thus, any feasible strategy profile σ corresponds to a coloring of G such
that for each i ∈ [k] exactly ti vertices of G are colored with the i-th color. We say that
agent i occupies vertex v in σ if the i-th entry of σ, denoted as σ(i), is v and, equivalently,
if σ−1(v) = i. It will become important to distinguish if two agents i, j occupy neighboring
vertices under σ. For this, we will use the notation 1ij(σ) with 1ij(σ) = 1 if agents i and j
occupy neighboring vertices under σ and 1ij(σ) = 0 otherwise.

For an agent i and any feasible strategy profile σ, we denote by Ci(σ) = {v ∈ V :
c(σ−1(v)) = c(i)} the set of vertices of G which are occupied by agents having the same
color as agent i. The utility of agent i in σ is defined as Ui(σ) = |Nσ(i)∩Ci(σ)|

δσ(i)
, i.e., as the

ratio of the number of agents with the same type which occupy neighboring vertices and the
total number of neighboring vertices, and each agent aims at maximizing her utility.

Agents can change their strategies only by swapping vertex occupation with another agent.
Consider two strategic agents i and j which occupy vertices σ(i) and σ(j), respectively.
After performing a swap both agents exchange their occupied vertex which yields a new
feasible strategy profile σij , which is identical to σ except that the i-th and the j-th entries
are exchanged. Thus, in the induced coloring of G, the coloring corresponding to σij is
identical to the coloring corresponding to σ except that the colors of vertices σ(i) and σ(j)
are exchanged. We say that a swap is local if the swapping agents occupy neighboring vertices,
i.e., if 1ij(σ) = 1.

MFCS 2020
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As agents are strategic and want to maximize their utility, we will only consider profitable
swaps by agents, i.e., swaps which strictly increase the utility of both agents involved in
the swap. It follows that profitable swaps can only occur between agents of different colors.
We call a feasible strategy profile σ a swap equilibrium, or simply, equilibrium, if σ does
not admit profitable swaps, that is, if for each pair of agents i, j, we have Ui(σ) ≥ Ui(σij)
or Uj(σ) ≥ Uj(σij). We call σ a local swap equilibrium, or simply local equilibrium, if no
profitable local swap exists under σ. If agents are restricted to performing only local swaps,
then we call the corresponding strategic game Local Swap Schelling Game with k types (local
k-SSG). Clearly, any swap equilibrium σ is also a local swap equilibrium but the converse is
not true. Thus the set of local swap equilibria is a superset of the set of swap equilibria.

We measure the quality of a feasible strategy profile σ by its social welfare U(σ),
which is the sum over the utilities of all agents, i.e., U(σ) =

∑n
i=1 Ui(σ). For any game

(G, t), let σ∗(G, t) denote a feasible strategy profile which maximizes the social welfare and
let SE(G, t) and LSE(G, t) denote the set of swap equilibria and local swap equilibria for
(G, t), respectively. We will study the impact of the agents’ selfishness on the obtained
social welfare for games played on a given class of underlying graphs G with k agent
types by analyzing the Price of Anarchy (PoA) [26], which is defined as PoA(G, k) =
maxG∈G maxt∈Tk(G)

U(σ∗(G,t))
minσ∈SE(G,t) U(σ) . Analogously, we define the Local Price of Anarchy

(LPoA)2 as the same ratio but with respect to local swap equilibria.3 It follows that, for any
k ≥ 2 and class of graphs G, we have PoA(G, k) ≤ LPoA(G, k).

We will also investigate the dynamic properties of the (local) k-SSG, i.e., we analyze if
the game has the finite improvement property (FIP) [29]. In our model, a game possesses
the FIP if every sequence of profitable (local) swaps is finite. Since every instance of the
(local) k-SSG has a constant minimum improvement per agent, this is equivalent to the
existence of an ordinal potential function which guarantees that sequences of profitable
(local) swaps will converge to a (local) swap equilibrium of the game. The FIP can be
disproved by showing the existence of an improving response cycle (IRC), which is a sequence
of feasible strategy profiles σ0,σ1, . . . ,σ`, with σ` = σ0, where σq+1 is obtained by a
profitable swap by two agents in σq, for q ∈ [`− 1]. For investigating the FIP, the following
function Φ mapping feasible strategy profiles to natural numbers will be important: Φ(σ) =∣∣{{u, v} ∈ E | c(σ−1(u)) = c(σ−1(v))

}∣∣ . Hence, Φ(σ) is the number of edges of G whose
endpoints are occupied by agents of the same color under the feasible strategy profile σ. We
will denote such edges as monochromatic edges and Φ(σ) as the potential of σ. We will see
that potential-preserving profitable swaps exist. For analyzing such swaps, we will consider
the extendend potential Ψ(σ) which essentially is Φ(σ) augmented with a tie-breaker. It is
defined as Ψ(σ) = (Φ(σ), n − z(σ)), where z(σ) is the number of agents having utility 0
under σ. We compare Ψ for different strategy profiles σ and σ′ lexicographically, i.e., on the
one hand we have Ψ(σ) > Ψ(σ′) if Φ(σ) > Φ(σ′) or Φ(σ) = Φ(σ′) and z(σ) < z(σ′). On
the other hand we have Ψ(σ) < Ψ(σ′) if Φ(σ) < Φ(σ′) or Φ(σ) = Φ(σ′) and z(σ) > z(σ′).
Note that any profitable swap which increases (decreases) the potential Φ also increases
(decreases) the extended potential Ψ.

2 In the literature the abreviation LPoA is sometimes also used for the Liquid Price of Anarchy. However,
the concepts of the Liquid Price of Anarchy and the Local Price of Anarchy are not related.

3 We define PoA(G, k) =∞ or LPoA(G, k) =∞ if the respective denominator is zero.
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1.2 Related Work
We focus on related work on game-theoretic segregation models.

Zhang [35, 36] was the first who introduced a game-theoretic model related to Schelling’s
original model. There, agents having a noisy single peaked utility function and preferring
to be in a balanced neighborhood were employed. Later, Chauhan et al. [14] introduced
a game-theoretic model which is much closer to Schelling’s formulation. In their model
there are two types of agents and the utility of an agent depends on the type ratio in her
neighborhood. An agent is content if the fraction of own-type neighbors is above τ ∈ (0, 1].
Additionally, agents may have a preferred location. To improve their utility, agents can
either swap with another agent who is willing to swap (Swap Schelling Game) or jump to
an unoccupied vertex (Jump Schelling Game). Their main contribution is an investigation
of the convergence properties of many variants of the model. Moreover they provide basic
properties of stable placements and their efficiency. Echzell et al. [17] strengthen these results
but omitted location preferences. Instead they extended the model to more than two agent
types and studied the computational hardness of finding optimal placements.

Elkind et al. [18] investigated a similar model with k types where agents are either
strategic or stubborn. Only strategic agents are willing to move and strive for maximizing
the fraction of own-type neighbors by jumping to a suitable unoccupied location. This
corresponds to the jump version of Chauhan et al. [14] with τ = 1. They show that equilibria
are not guaranteed to exist, they analyze the complexity of finding optimal placements and
they prove that the PoA can be unbounded. Recently, Agarwal et al. [1] considered swap
games in the model of Elkind et al. [18]. They show that on underlying trees equilibria may
not exist and that deciding equilibrium existence and the existence of a state with at least a
given social welfare is NP-hard. They also establish that the PoA is in Θ(n) on underlying
star graphs if there are at least two agents of each type and between 2.0558 and 4 for balanced
games on any graph. Moreover, for k ≥ 3 the PoA can be unbounded even in balanced
games. Additionally, they give a constant lower bound on the Price of Stability and show
that it equals 1 on regular graphs. Finally, they introduce a new benchmark for measuring
diversity by counting the number of agents having at least one neighbor of different type.
In the present paper, we focus on this recent model by Agarwal et al. [1] and extend and
improve their PoA results.

Very recently, Kanellopoulos et al. [24] investigated a novel variant of the Jump Schelling
Game where the main new aspect is that an agent is included when counting its neighborhood
size. This subtle change leads to agents preferring locations with more own-type neighbors.

Hedonic games [15, 9] are related to Schelling games. In particular, Schelling games share
a number of properties with fractional hedonic games [7, 27, 3, 12, 28], hedonic diversity
games [11] and FEN-hedonic games [22, 19, 25]. However, one of the main differences is that
in Schelling games the neighborhoods of coalitions overlap while in hedonic games agents
form disjoint coalitions with identical neighborhoods for all agents within the same coalition.

Investigating a local variant of Schelling’s model, although proposed by Schelling [32]
himself, seems to be a novel approach. To the best of our knowledge, local moves have only
been addressed briefly by Vinković and Kirnan [33] in a model which can be understood as a
continuous physical analogue of Schelling’s model.

1.3 Our Contribution
We follow the model of Agarwal et al. [1], that is, we consider Swap Schelling Games and
investigate, on the one hand, the existence of equilibria and the game dynamics and, on
the other hand, the quality of the equilibria in terms of the PoA. The novel feature of our

MFCS 2020



15:6 Topological Influence and Locality in Swap Schelling Games

analysis is our focus on the influence of the underlying graph and that we also investigate
the impact of restricting the agents to performing only local swaps. See Table 1 for a result
overview.

While in [1] it was proven that equilibria may fail to exist for arbitrary underlying graphs
and in [17] equilibrium existence was shown for regular graphs, we extend and refine these
results by investigating almost regular graphs as well as paths, 4-grids and 8-grids. We
establish equilibrium existence for all these graph classes and all our results yield polynomial
time algorithms for computing an equilibrium. Moreover, we study the PoA in-depth. Since it
was shown in [1] that the PoA can be unbounded for k ≥ 3, we focus on the PoA of the (local)
2-SSG. We give tight or almost tight bounds on the PoA for all mentioned graph classes which
in many cases are significant improvements on the Θ(n) bound proven in [1]. In particular,
we also improve the upper bound for balanced games on arbitrary graphs and we give PoA
bounds which depend on the minimum and maximum degree in the underlying graph.

Besides analyzing equilibria in the general model of Agarwal et al. [1], we introduce and
analyze a local variant of the model, which was already suggested by Schelling [32] but to the
best of our knowledge has not yet been explored for Schelling’s model. Our results indicate
that the local variant has favorable properties. For instance, equilibria are guaranteed to
exists on trees in the local version while in [1] it was shown that this is not the case for the
general model. Moreover, for many cases we can show that the PoA in the local version
deteriorates only slightly compared to the global version.

We refer to [8] for all details which were omitted due to space constraints.

2 Equilibrium Existence and Dynamics

We start by providing a precise characterization which ties equilibria in 2-SSGs with the sum
of the utilities experienced by any two agents of different colors.

I Lemma 1. A strategy profile σ for a 2-SSG is an equilibrium if and only if, for any two
agents i and j with c(i) 6= c(j) and δσ(i) ≤ δσ(j), it holds that Ui(σ) + Uj(σ) ≥ 1− 1ij(σ)

δσ(i)
.

Proof. Fix an equilibrium σ and consider two agents i and j such that c(i) 6= c(j) and
δσ(i) ≤ δσ(j). Assume w.l.o.g that i is orange and j is blue. Let oi be the number of
orange neighbors of σ(i) and bj be the number of blue neighbors of σ(j). It holds that
Ui(σ) = oi

δσ(i)
, Uj(σ) = bj

δσ(j)
and Ui(σij) = δσ(j)−bj−1ij(σ)

δσ(j)
, Uj(σij) = δσ(i)−oi−1ij(σ)

δσ(i)
.

As σ is an equilibrium, it must be either Ui(σ) ≥ Ui(σij) or Uj(σ) ≥ Uj(σij). In the first
case, we get Ui(σ)+Uj(σ) ≥ 1− 1ij(σ)

δσ(j)
, in the second one, we get Ui(σ)+Uj(σ) ≥ 1− 1ij(σ)

δσ(i)
.

Thus, given that δσ(i) ≤ δσ(j), in any case we have that Ui(σ) + Uj(σ) ≥ 1− 1ij(σ)
δσ(i)

.
Now fix a strategy profile σ such that, for any two agents i and j with c(i) 6= c(j) and

δσ(i) ≤ δσ(j), it holds that Ui(σ) + Uj(σ) ≥ 1 − 1ij(σ)
δσ(i)

. Assume, by way of contradiction,
that σ is not an equilibrium. Then, there exist an orange agent i and a blue agent j such
that Ui(σ) < Ui(σij) and Uj(σ) < Uj(σij). Let oi be the number of orange neighbors of σ(i)
and bj be the number of blue neighbors of σ(j). It holds that Ui(σ) = oi

δσ(i)
, Uj(σ) = bj

δσ(j)

and Ui(σij) = δσ(j)−bj−1ij(σ)
δσ(j)

, Uj(σij) = δσ(i)−oi−1ij(σ)
δσ(i)

.

By Ui(σ) < Ui(σij), we obtain Ui(σ)+Uj(σ) ≥ 1− 1ij(σ)
δσ(j)

. Similarly, by Uj(σ) < Uj(σij),

we obtain Ui(σ) + Uj(σ) ≥ 1− 1ij(σ)
δσ(i)

. At least one of the two derived inequalities contradicts
the assumption on σ. Thus, σ is an equilibrium. J
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By exploiting the potential Φ, Echzell et al. [17] show that, for any k ≥ 2, k-SSGs played on
regular graphs have the FIP and that any sequence of profitable swaps has length at most m.
This result can be extended to α-almost regular graphs for some values of α.

I Theorem 2. For any k ≥ 2, k-SSGs played on almost regular graphs has the FIP. Moreover,
at most m profitable swaps are sufficient to reach an equilibrium starting from any initial
strategy profile.

Theorem 2 cannot be extended beyond almost regular graphs as Agarwal et al. [1] provide a
2-SSG played on a 2-almost regular graph (more precisely, a tree) admitting no equilibria.
However, in the next theorem, we show that positive results can be still achieved in games
played on 2-almost regular graphs obeying some additional properties.

I Theorem 3. Let G be a 2-almost regular graph such that ∆(G) ≤ 4 and every vertex
of degree δ is adjacent to at most δ − 1 vertices of degree ∆(G). Then, for any k ≥ 2,
every k-SSG played on G possesses the FIP. Moreover, at most O(nm) profitable swaps are
sufficient to reach an equilibrium starting from any initial strategy profile.

As 4-grids meet the conditions required by Theorem 3, we get the following corollary.

I Corollary 4. For any k ≥ 2, every k-SSG played on a 4-grid possesses the FIP. Moreover,
at most O(nm) profitable swaps are sufficient to reach an equilibrium starting from any initial
strategy profile.

As mentioned before, Agarwal et al. [1] pointed out that 2-SSGs played on trees are not
guaranteed to admit equilibria. We show that this is no longer the case in local k-SSGs for
any value of k ≥ 2.

I Theorem 5. For any k ≥ 2, every local k-SSG played on a tree has an equilibrium which
can be computed in polynomial time.

Proof. Root the tree T at a vertex r. We will place the agents color by color, starting with
color 1 and ending with color k. Before we place an agent at an inner vertex v all of v’s
descendants in T have to be occupied. Hence, we place the agents starting from the leaves,
and the root r′ of every subtree T ′ is the last vertex in T ′ which will be occupied. Thus, we
ensure that, if the root r′ of a subtree T ′ is occupied by an agent of color i ∈ [k], T ′ contains
only agents of color i′ ≤ i. Clearly, this construction yields a feasible strategy profile, that
we denote by σ, and can be implemented in polynomial time.

Consider two agents i and j of different colors that occupy two adjacent vertices u and v,
respectively. Without loss of generality, we assume that u is the parent of v in T . Since
c(j) < c(i), the subtree of T rooted at v contains no vertex of color c(i). As a consequence
Ui(σij) = 0. Hence σ is a LSE. J

Note that, as we move from 4-grids to 8-grids, Corollary 4 does not apply any more. In fact,
for 8-grids, we show that the FIP is guaranteed to hold only for local games.

I Theorem 6. Any local 2-SSG played on an 8-grid possesses the FIP.

Proofsketch. It turns out that there are a few local swaps which are improving for both
involved agents but which can preserve or decrease Φ. For proving guaranteed convergence
we show that after such a Φ-preserving or Φ-decreasing swap a number of swaps must happen
before at the same pair of vertices another Φ-preserving or Φ-decreasing swap can occur.
This implies that in total the extended potential Ψ increases which then implies the FIP. J
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Now we will see that compared to the local k-SSG, the k-SSG on 8-grids behaves differently.
There the FIP does not hold.

I Theorem 7. There cannot exist a potential function for the k-SSG played on an 8-grid,
for any k ≥ 2.

Proofsketch. We prove the statement by providing an example of an IRC. See Figure 1 for
an illustration. J

a b

c

d

(1)

(a) Initial strategy
profile

a c

b

d
(2)

(b) Strategy profile
after the first swap

d c

b

a

(3)

(c) Strategy profile
after the second swap

d a

b

c
(4)

(d) Strategy profile
after the third swap

Figure 1 An improving response cycle for the k-SSG played on a 8-grid. The agent types are
marked orange and blue.

However, even if convergence to an equilibrium is not guaranteed for k ≥ 2, they are
guaranteed to exist for k = 2.

I Theorem 8. Every 2-SSG played on an 8-grid has an equilibrium which can be computed
in polynomial time.

Proofsketch. Assume w.l.o.g. that h ≤ l. We distinguish between two cases. If o ≥ 2h, then
an equilibrium can be obtained by filling the grid with orange agents, starting from the upper-
left corner and proceeding sequentially row by row. If o < 2h, a more involved construction is
needed. We place an orange agent in upper-left corner and proceed essentially along diagonal
lines with some careful treatment of the way incomplete diagonals are constructed. J

3 Price of Anarchy

In this section, we consider the efficiency of equilibrium assignments and bound the PoA for
different classes of underlying graphs. In particular, besides investigating general graphs,
we analyze regular graphs, cycles, paths, 4-grids and 8-grids. Agarwal et al. [1] already
proved that the PoA for the 2-SSG is in Θ(n) on underlying star graphs if there are at least
two agents of each type and between 921

448 and 4 for the balanced version, i.e., o = n
2 . We

improve this result by providing an upper bound of 3 which tends to 2 for n going to infinity.
Furthermore, the authors of [1] showed that the PoA can be unbounded for k ≥ 3. Therefore,
we concentrate on the (local) 2-SSG for several graph classes.

3.1 General Graphs
Remember that for a 2-SSG game, we assume that o is the less frequent color.

We significantly improve and generalize the results of [1] by providing a general upper
bound of no(n−o)−n

o(o−1)(n−o) for the case of o > 1. For balanced games, it yields an upper bound of
2(n+2)
n which shows that the PoA tends to 2 as the number of vertices increases. Moreover,

if bo ∈ O(1), the PoA is constant. With the help of Lemma 1, we can now prove our general
upper bound for the 2-SSG.

MFCS 2020
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I Theorem 9. The PoA of 2-SSGs with o > 1 is at most no(n−o)−n
o(o−1)(n−o) . Hence, PoA ∈ O

(
b
o

)
.

Proof. Fix a 2-SSG with o > 1 orange agents played on a graph G with n vertices. First, we
observe that the social welfare of a social optimum is at most n− 2 + o−1

o + b−1
b = n− 1

o −
1
b ,

as there must be at least one orange vertex that is adjacent to at least one blue vertex, thus
getting utility at most o−1

o , and at least one blue vertex that is adjacent to at least one
orange vertex, thus getting utility at most b−1

b .
Given a strategy profile σ′, a feasible pair is a pair of vertices (u, v) such that u and v are

occupied by agents of different colors in σ′ and {u, v} /∈ E(G), i.e., u and v are not adjacent.
Now fix a swap equilibrium σ and consider a maximum cardinality matching M of feasible
pairs. Clearly 0 ≤ |M | ≤ o. Hence, |M | = o−x for some 0 ≤ x ≤ o. If x > 0, then, there are
exactly x orange and at least x blue leftover vertices of V that do not belong to any feasible
pair in M . As M has maximum cardinality, each orange leftover vertex has to be adjacent to
all leftover blue ones and vice-versa. That is, for each leftover vertex u, we have δu(G) ≥ x.
Let T be a set of pairs of vertices obtained by matching each leftover orange vertex with a
leftover blue one. By Lemma 1, it holds for each (u, v) ∈M , Uσ−1(u)(σ) + Uσ−1(v)(σ) ≥ 1
and for each (u, v) ∈ T , Uσ−1(u)(σ) + Uσ−1(v)(σ) ≥ 1− 1

x . Thus, the social welfare of σ is
at least o− x+ x(1− 1

x ) = o− 1. J

I Corollary 10. The PoA of 2-SSGs is constant if b
o is constant.

We want to emphasize that in particular for the case where both colors are perfectly balanced,
the PoA is constant and tends to 2 which improves the bound by [1]. As for n = 2 the
2-SSG is trivial and PoA = 1, we get the following corollary.

I Corollary 11. The PoA of balanced 2-SSGs is at most min
{

3, 2(n+2)
n

}
.

We will now show that in contrast to the balanced 2-SSG, the balanced local k-SSG has a
much higher LPoA.

I Theorem 12. The LPoA of local balanced 2-SSGs with o > 1 is between 2n+ 8
n − 8 and

2n− 8
n .

If the underlying graph G does not contain leaf vertices, i.e., all vertices have at least degree 2,
we can prove a smaller LPoA. In particular, if the ratio between the maximum and minimum
degree of vertices in G is constant, we achieve a constant LPoA.

I Theorem 13. The LPoA of local 2-SSGs on a graph G with minimum degree δ ≥ 2 and
maximum degree ∆ is at most 2

(
1 + ∆+1

δ−1

)
.

Proof. Fix a local swap equilibrium σ on G with δ(G) ≥ 2. Let ρ := δ−1
2δ and let o′ and b′

be the numbers of orange and blue agents that have a utility strictly less than ρ, respectively.
Clearly, o− o′ and b− b′ are the numbers of orange and blue agents that have a utility of at
least ρ, respectively. We first prove that b− b′ ≥ δo′

∆ as well as that o− o′ ≥ δb′

∆ and show
then how these two inequalities imply the theorem statement.

We only prove the first inequality, i.e., b− b′ ≥ δo′

∆ as the proof of the other inequality
is similar. Let i and j, respectively, be a blue agent and an orange agent that occupy two
adjacent vertices in G, say σ(i) = u and σ(j) = v, and such that Uj(σ) < ρ. By Lemma 1,
we have that Ui(σ) + Uj(σ) ≥ 1− 1

δ , from which we derive Ui(σ) > 1− 1
δ −

δ−1
2δ = δ−1

2δ = ρ.
Let G′ be the subgraph of G containing all the non-monochromatic edges, i.e., each edge

of G′ connects a vertex occupied by an orange agent with a vertex occupied by a blue agent.
Clearly, G′ is bipartite. Consider the vertex-induced subgraph H of G′ in which we have
all the o′ orange agents having a utility strictly less than ρ on one side and all the b − b′
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blue agents having a utility of at least ρ on the other side. Since for each vertex v of H
occupied by an orange agent, there are at least (1− ρ)δv ≥ δ+1

2 vertices adjacent to u that
are occupied by blue agents and each such blue agent have a utility of at least ρ, the degree
of v in H is at least δ+1

2 . Therefore, |E(H)| ≥ δ+1
2 o′.

Furthermore, since each edge of H is incident to a blue agent that has a utility of at
least ρ, the degree in H of every vertex u that is occupied by a blue agent is at most
(1− ρ)δu ≤ δ+1

2δ ∆. Therefore, |E(H)| ≤ ∆(δ+1)
2δ (b− b′). Merging the two bounds of |E(H)|

and simplifying gives b− b′ ≥ δ
∆o
′.

Finally, we show how b − b′ ≥ δo′

∆ and o − o′ ≥ δb′

∆ imply the theorem statement. The
average utility of all the agents in H is at least ρ(b−b′)

o′+(b−b′) ≥
ρ δ∆

1+ δ
∆

= δ−1
2(δ+∆) . Similarly, the

average utility of the b′ blue agents whose utilities are strictly less than ρ and the o − o′
orange agents whose utilities are of at least ρ is also at least δ−1

2(δ+∆) . Therefore, the LPoA is

at most 2(δ+∆)
δ−1 = 2

(
1 + ∆+1

δ−1

)
. J

We observe that the LPoA on a graph with minimum degree δ(G) = 1 can be unbounded.
Consider the star graph with ∆ leaves and let σ be a strategy profile where the unique orange
agent occupies the star center, while all the blue agents occupy the leaves. This is clearly a
swap equilibrium of 0 social welfare. Any configuration in which a blue agent occupies the
star center has strictly positive social welfare.

However, as the following theorem shows, the LPoA can be upper bounded by a function
of ∆ if we force n ≥ ∆ + 2, i.e., we avoid the pathological star graph of ∆ + 1 vertices.

I Theorem 14. For every ε > 0, the LPoA of local 2-SSGs on a graph G with maximum
degree ∆ ≤ n− 2 is between ∆(∆−1)

2 − ε and 4(∆2 −∆ + 1).

As shown in the next corollary, the lower bound to the PoA shown in Theorem 14 holds even
for the class of trees.

I Corollary 15. For every ε > 0, the LPoA of the local 2-SSG on a tree G with ∆(G) ≤ n−2
is at least ∆(∆−1)

2 − ε.

3.2 Regular Graphs
In this section we provide upper and lower bounds to the LPoA for regular graphs, i.e., for
graphs where all vertices have the same degree. The key is the following technical lemma.

I Lemma 16. Let σ be a local swap equilibrium, and let ∆ = 2α + β, with α ∈ N and
β ∈ {0, 1}. Let X ⊆ V be a subset of vertices such that δv = ∆ for every v ∈ NX :=

⋃
x∈X Nx.

Finally, let Z ⊆ NX be the set of vertices occupied by the agents that have a utility strictly
larger than ρ := α

2α+1 . Then, the average utility of the agents that occupy the vertices in
X ∪ Z is at least ρ.

I Corollary 17. The LPoA of local 2-SSG on a regular graph G with ∆(G) = 2α+ β, with
α ≥ 1 and β ∈ {0, 1} is at most 2 + 1

α .

Proof. The corollary follows from Lemma 16 by X = V . J

The matching lower bound is provided in the following.

I Theorem 18. The LPoA of local 2-SSG on a regular graph G with ∆(G) = 2α+ β, with
α ≥ 1 and β ∈ {0, 1} is equal to 2 + 1

α .

MFCS 2020
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Proof. For a fixed degree ∆ ≥ 3, we define the ∆-regular graph G(∆) := G as follows. There
are q := t(∆ + 1) gadgets G1, . . . , Gq. For each i ∈ [q], gadget Gi is obtained from a complete
graph of ∆ + 1 vertices, denoted as v1

0 , . . . , v
i
∆, by removing edge {vi0, vi∆}. Observe that,

by construction, for any i ∈ [q], each vertex vij , with 1 ≤ j ≤ ∆ − 1, has degree ∆, while
vertices vi0 and vi∆ have degree ∆− 1. We obtain G by connecting the q gadgets through
edges {vi∆, v

i+1
0 } for each i ∈ [q − 1] and edge {vq∆, v1

0}. Call these edges extra-gadget edges.
Thus, G is connected and ∆-regular. Consider now the local 2-SSG played on G in which
there are d∆+1

2 eq blue agents and b∆+1
2 cq orange ones.

On the one hand, the social optimum is at least n− 4
∆ = q(∆ + 1)−4∆, as in the strategy

profile in which all vertices of the first d∆+1
2 et gadgets are colored blue and all vertices of

the remaining b∆+1
2 ct gadgets are colored orange there are n− 4 vertices getting utility 1

and 4 vertices getting utility ∆−1
∆ .

On the other hand, the strategy profile σ in which the first d∆+1
2 e vertices of each gadget

are colored blue and the remaining ones are colored orange is a swap equilibrium. In fact,
as extra-gadget edges connect vertices of different colors, every blue vertex is adjacent to
d∆+1

2 e − 1 blue ones, while every orange vertex is adjacent to d∆+1
2 e blue ones. If a blue

vertex swaps with an adjacent orange one, it ends up being adjacent to d∆+1
2 e − 1 blue

vertices. Thus, no profitable swap exists in σ.
As the social welfare of σ is

q

∆

(⌈
∆ + 1

2

⌉(⌈
∆ + 1

2

⌉
− 1
)

+
⌊

∆ + 1
2

⌋(⌊
∆ + 1

2

⌋
− 1
))

=


q(∆2−1)

2∆ if q is odd,
q∆
2 if q is even,

we get that the LPoA of the game is lower bounded by 2∆(q(∆+1)−4∆)
q(∆2−1) when ∆ is odd and

by 2(q(∆+1)−4∆)
q∆ when ∆ is even. By letting q going to infinity, we get 2∆

∆−1 and 2(∆+1)
∆ ,

respectively. By using ∆ = 2α+ 1 in the first case, and ∆ = 2α in the second one, we finally
obtain the lower bound of 2 + 1

α . J

Next, we provide a full characterization of the (L)PoA of cycles.

I Theorem 19. The PoA of 2-SSGs played on cycles with n ≥ 3 vertices and o = 2α+ β

orange agents, where α ∈ N, β ∈ {0, 1}, and b ≥ o, is equal to 1, if o = 1; and by n−2
b+β ,

otherwise.

Proofsketch. The social welfare of the social optimum is equal to n− 2. Let σ be a swap
equilibrium. Let ` be the number of maximal vertex-induced (sub)paths whose vertices are
occupied by orange agents only. Clearly, ` is also the number of maximal vertex-induced
(sub)paths whose vertices are occupied by blue agents only. We claim that ` ≤ α by showing
that every agent has a strictly positive utility in σ (i.e., each of the 2` maximal paths formed
by monochromatic edges contains 2 or more vertices). For the sake of contradiction, assume
w.l.o.g that there is an orange agent i such that Ui(σ) = 0.

For the matching lower bound, it is enough to consider the strategy profile in which ` = α,
i.e., there are α− 1 maximal vertex-induced paths occupied by orange (resp. blue) agents
only of length 2 each, and one maximal vertex-induced path occupied by orange (resp. blue)
agents only of length 2 + β (resp., b − 2α + 2). In this case, the social welfare is equal to
1
22α+ β + α

2 + (b− 2α) = b+ β. J

The following theorem provides almost tight upper bounds to the LPoA for cycles.
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I Theorem 20. The LPoA of local 2-SSGs played on cycles with n = 3α+ β vertices and b
blue agents, where α ∈ N, β ∈ {0, 1, 2}, and b ≥ o, is upper bounded by 1, if o = 1; by n−2

b−o ,
if o ≥ 2 and b ≥ 2o; and by n−2

α+β , otherwise, i.e., o ≥ 2 and b < 2o). The upper bounds are
tight when (i) o = 1 and (ii) o ≥ 2 and b ≥ 2o.

We prove similar results for paths which can be found in [8].

3.3 Grids
We now turn our focus to grid graphs with 4- and 8-neighbors. First, we investigate 2-SSGs
in 4-grids and start by characterizing the PoA for the case in which one type has a unique
representative.

I Theorem 21. The PoA of 2-SSGs played on a 4-grid in which one type has cardinality 1
is equal to 25

22 .

Clearly, if one type has only one representative, this agent will receive utility zero. However,
this is not possible in equilibrium assignments when there are at least two agents of each type.

I Lemma 22. In any equilibrium for a 2-SSG played on a 4-grid in which both types have
cardinality larger than 1 all agents get positive utility.

When no agent gets utility zero, the minimum possible utility is 1
4 . Thus, Lemma 22 imply

an upper bound of 4 on the PoA. However, a much better result can be shown.

I Theorem 23. The PoA of 2-SSGs played on 4-grids is at most 2.

We now show a matching lower bound.

I Theorem 24. The PoA of 2-SSGs played on 4-grids is at least 2, even when both types
have the same cardinality.

Proofsketch. Fix a 2-SSG played on an n × n grid G, with n being an even number. We
define a strategy profile σ by giving a coloring rule for any frame of G. There are n

2 frames
in G that we number from 1 to n

2 , with frame 1 corresponding to the outer one. Frame i,
whose size is ni := n− 2(i− 1), is colored as follows: all vertices in the left column and all
vertices in the right column except for the first and the last are of the basic color of i, all
other vertices take the other color. The basic color of frame i is orange if i is odd and blue
otherwise, see Figure 2 for a pictorial example. Observe that every frame evenly splits its
vertices between the two colors. We show that σ is an equilibrium. J

Figure 2 Visualization of the first three frames of G with the coloring induced by the strategy
profile defined in the proof of Theorem 24.

We now show matching upper and lower bounds on the LPoA for local 2-SSGs played on
grids. By inspecting all the possibilities, the LPoA of local 2-SSGs played on 2× 2 grids is 1.
Indeed, assuming b ≥ o, for o = 1, all the configurations are isomorphic to each other, while,
for o = 2, the unique (local) swap equilibrium – up to isomorphisms – is

[
o b
o b

]
.

MFCS 2020
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I Theorem 25. The LPoA of local 2-SSGs played on 2 × h 4-grids, with h ≥ 3 is 3.
Furthermore, for every ε > 0, there is a value h0 such that, for every h ≥ h0, the PoA of
2× h 4-grid is at least 3− ε.

I Theorem 26. The LPoA of local 2-SSG played on 3 × h 4-grids, with h ≥ 3 is 36
13 .

Furthermore, for every ε > 0, there is a value h0 such that, for every h ≥ h0, the PoA of
2× h 4-grid is at least 36

13 − ε.

I Theorem 27. For every ε > 0, the LPoA of local 2-SSG played on l × h 4-grids, with
`, h ≥ 8 + 20

ε is in the interval
( 5

2 − ε,
5
2 + ε

]
.

We prove similar results for 8-grids which can be found in [8].

4 Conclusion and Open Problems

We have shed light on the influence of the underlying graph topology on the existence of
equilibria, the game dynamics and the Price of Anarchy in Swap Schelling Games on graphs.
Moreover, we have studied the impact of restricting agents to local swaps. We present tight
or almost tight bounds for a variety of graph classes.

Clearly, improving on the non-tight bounds is an interesting challenge for future work.
Regarding the local Swap Schelling Game, we leave some interesting problems open. Among
them is the question whether local swap equilibria are guaranteed to exist for all graph
classes and if the local k-SSG always has the finite improvement property. So far, we are
not aware of any counter-examples for both questions and extensive agent-based simulations
indicate that both equilibrium existence and guaranteed convergence of improving response
dynamics may hold. Another interesting line of study is to analyze the Jump Schelling Game
with respect to varying underlying graphs and locality.
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