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Abstract 

Introduction: Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer 

diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and 

enabling robust determination of complex biomarkers in a single analysis.  

Methods: To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens 

and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 

21 NGS centers in Germany, each employing local wet-lab and bioinformatics investigating somatic 
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and germline variants, copy-number alteration (CNA), and different complex biomarkers. Somatic 

variant calling was performed in 494 diagnostically relevant cancer genes. In addition, all raw data 

were re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability.  

Results: The mean positive percentage agreement (PPA) of somatic variant calling was 76% and 

positive predictive value (PPV) 89% compared a consensus list of variants found by at least five 

centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter 

criteria and re-analysis increased the PPA to 88% for all and 97% for clinically relevant variants. 

CNA calls were concordant for 82% of genomic regions. Calls of homologous recombination 

deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were 

concordant for 94%, 93%, and 93% respectively. Variability of CNAs and complex biomarkers did 

not increase considerably using the central pipeline and was hence attributed to wet-lab 

differences.  

Conclusion: Continuous optimization of bioinformatic workflows and participating in round robin 

tests are recommend. 

Keywords: whole exome sequencing; molecular pathology; multi-centric inter-laboratory test; 

clinical exome; precision oncology 

 

Introduction 

Currently, the implementation of clinical Whole Exome Sequencing (WES) in predictive molecular 

cancer diagnostics is expedited by decreasing sequencing costs and government reimbursement 

schemes in Germany. WES offers several substantial advantages1 over sequencing panels, such as 

eliminating the risk to miss targetable alterations in the coding sequences of the genome and 
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enabling post-hoc retrospective research in an unrestricted manner once new putative targets 

emerge. Further, using WES provides a more robust measurement of complex biomarkers2,3. 

 

To evaluate reproducibility between different pipelines and uncover opportunities for 

improvement of workflows, we compared an unprecedented number of diagnostic centers 

regarding their initial implementation of WES analysis. Previous WES implementation studies with 

clinical focus were either single center4–6, or focused on limited metrics, such as single complex 

biomarkers or only variant calling7–17. An earlier study performed in Germany included a smaller 

number of laboratories investigated WES of fresh frozen tissue samples1. WES for cancer patients 

from FFPE samples has not been compared between a large number of centers before. 

 

Six clinical FFPE tissue specimens and four commercial reference samples of matched tumor and 

normal DNA samples were analyzed in the German National Initiative for Personalized Medicine 

(DNPM) at 21 participating centers, using locally established wet-lab workflows and dry-lab 

bioinformatics pipelines. Somatic and germline mutations in diagnostically relevant genes, complex 

biomarkers, and copy-number alterations (CNAs) were reported and evaluated for concordance. 

Discrepancies were cooperatively assessed to identify relevant factors for optimization and 

harmonization of WES in clinical cancer diagnostics. Additionally, raw sequencing data sets were 

re-analyzed using a central bioinformatic pipeline to separate wet- and dry-lab variability. This 

study presents the results of a national comprehensive FFPE tissue specimen based evaluation for 

WES analysis in a clinical routine diagnostic setting. 
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Material and Methods 

Six FFPE tissue specimens were selected to represent various cancer types and biological features 

(Table 1). Broad consent was given by the patients and all analysis were performed in line with the 

Declaration of Helsinki. Further, four reference samples were included with two cases of low and 

high tumor mutational burden (TMB), as well as two cases of low and high Homologous 

Recombination Deficiency (HRD) score. Matched tumor-normal DNA from FFPE tissue specimens 

was extracted centrally. DNA from the FFPE specimen and the reference samples were shipped to 

the 21 participants for wet- and dry-lab analysis. 

 

Each center used their wet and dry-lab protocols to analyze a defined set of parameters, including 

somatic and germline variants, CNA, and complex biomarkers. Next, the results were gathered and 

compared for concordance and against the known values of the reference samples. Raw data was 

collected as unfiltered variant calls and unaligned reads. Those were re-analyzed using the pipeline 

of Center-5 to separate effects of wet and dry-lab. Detailed information can be found in the 

Supplementary Methods. 

 

Results 

WES was performed using local wet-lab and bioinformatic pipelines (Supplementary Table 1). Most 

centers successfully sequenced all of the samples, while Center-1 and Center-11 excluded samples 

3 and 16 because of sequencing quality issues. 
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Across 18 centers and the sequenced tumor samples, the median mean target coverage was 268x 

(lower quartile 218, upper quartile 354). A total of 154 (88%) samples were covered with >100x for 

at least 80% of the target region (Supplementary Figure 1). Of the remaining three centers, two 

(Center-10 and Center-12) had a lower mean coverage (87x and 73x), while Center-19 had a 

considerably higher coverage (1374x). 

 

Somatic variants 

Somatic variants in the predefined list of 454 diagnostically relevant cancer genes (Supplementary 

Table 2) were compared by chromosomal position and base alteration. Based on a total of 1014 

unique non-synonymous somatic variants detected by 5,799 variant calls, we defined a consensus 

list of 321 variants that were called by at least five centers (Figure 1a). The distribution of missed 

variant calls shows that more variant calls (60%) where missed by few (1-5 centers), while 40% of 

calls where missed by more centers (Supplementary Figure 2a). Across centers, a positive 

percentage agreement of 76% (5,000 variant calls) was reached with respect to this list. By 

contrast, a total of 1,590 (24%) variant calls were missed by one or more centers which were 

examined in an in-depth analysis to uncover the causes for the discrepancies (Figure 1a). Of the 

missed variants, 750 (47%) could be found by reviewing the unfiltered variant calls and were 

reported to the respective centers for review. Variant filters, including PASS filter (18.3%) and low 

variant allele fraction (24.4%) were reported as predominant causes for not reporting (Figure 1b). 

Furthermore, we uncovered several local filter rules that were only used in a single or in few 

centers (Supplementary Figure 2b). Finally, several missed calls were found to be due to incorrect 

filter rules and reported as erroneous. 
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For 31% of the reported variant calls the VAF was below 5% VAF. In the consensus list only four 

variants (1%) were below this threshold as many centers filtered with a fixed VAF threshold. We 

evaluated the influence of a central VAF cut-off on PPV and PPA. For a 5% VAF cut-off the mean 

PPV increased from 89% to 91%, due to the removal of possible false-positives, the mean PPA 

increased from 74% to 75%. For a 10% VAF cut-off the mean PPV increased further to 95%, while 

the mean PPA increased from 74% to 80% as more consensus variants were found between 5-10% 

VAF (55 Variants, 17%). 

 

Of the remaining 829 missed calls, 580 (70%) could be identified by the re-analysis of raw-data 

with the central bioinformatics pipeline. An additional 127 variants were found but filtered out by 

either depth, variant allele fraction (VAF) or PASS filter. Overall, only 122 (1.9%) of all expected 

somatic variant calls were not identified by either initial analysis, raw variant calls or re-analysis. 

Those variants showed a low mean VAF of 2.4%. The fractions of found to miss ratio varied among 

the centers (Figure 1c). The set of missed variant calls showed a significant enrichment of InDels 

(Supplementary Figure 3a). The missed InDels were often located at homopolymer sites (120 of 

144 = 83%). Further, a negative correlation of PPA with the sample sequencing depth was observed 

(slope=-0.011, p=0.007, Supplementary Figure 3b). 

 

A total of 628 variants were only reported by single centers (Figure 1a) of which all but 21 variants 

could be classified as either low VAF (< 5% or < 10%), low depth (< 100 reads), InDels or variants at 

homopolymer sites. Most of these variants were reported by centers 11, 13, 16, 20 and especially 

19, which reported the most variants which was in line with a much higher sequencing coverage. 
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In the absence of a gold-standard for somatic variants in the analyzed cases different consensus 

lists were selected based on the number of missed calls. For each of the lists, PPA and positive 

predictive value (PPV) were determined. The median PPA for the five-center consensus list (16 

missed calls allowed) was 75%, while a median PPV of 89% was reached, (Figure 2a,b).  

Considerably lower PPVs were observed for the five centers that submitted the highest numbers of 

variants (listed above). 

 

Based on the five-center consensus list, the unfiltered variant calls of each center were searched 

for the missed calls. Including these variants lead to a considerable increase of PPA for previously 

lower performing centers (Figure 2c, middle). Re-analysis of raw data using the same 

bioinformatics pipeline further increased the PPA to a mean of 88%. This correction especially 

improved the worst performing centers (Figure 2c, right). Clustering of centers by detected somatic 

variants showed no relation to wet- or dry-lab procedures (Supplementary Figure 4). No 

correlation between self-reported experience with WES analysis and variant calling performance 

(PPA, PPV) was observed (p values between 0.3 - 0.6). 

 

The five center consensus list was screened for druggable targets using OncoKB without 

considering cancer type18. Altogether, there were 31 druggable variants, of which on average 80% 

were identified by the centers (523 calls). An additional 17% (111 calls) could be found either in 

the list of raw variant calls or with the re-analysis of raw-data as described previously, resulting in 

total of 97% of the druggable variants that were identified (Figure 3). 
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Germline variants 

In total, 10 centers reported pathogenic and likely pathogenic germline variants and their 

classification. The consensus results, i.e., variants identified by at least five centers, included two 

(likely) pathogenic variants in PMS2 (p.E504X) and BRCA1 (p.Q1756Pfs*74) and two variants 

classified as (likely) benign or of unknown significance (VUS) in RET (p.Y791F) and TP53 (p.R283C), 

reported as likely pathogenic by one center (Supplementary Figure 5a). The BRCA1 variant was 

identified by all centers. The PMS2 variant was not reported by two centers due to a pseudogene 

filter. The variants in RET and TP53 were each identified by all but one center. 

 

All of the centers classified the germline variants according to ACMG criteria. Classification of the 

BRCA1 variant was concordant and reported as pathogenic by nine centers and as likely pathogenic 

by the remaining center. The classification of the PMS2 variant was more heterogeneous, with a 

consensus classification as likely pathogenic (pathogenic: 2 centers, likely pathogenic: 6 centers, 

quality filtered: 2 centers). The consensus classification for the variants in RET and TP53 was benign 

(7 out of 10 centers in each case), while being reported as either VUS or likely pathogenic by two 

centers. ACMG criteria for the pathogenic variants in BRCA1 and PMS2 showed high similarity 

(Supplementary Figure 5b), with differences leading to differential classification of the PMS2 variant 

as pathogenic or likely pathogenic. In line with the detected (likely) pathogenic variants in BRCA1 

and PMS2, high HRD and MSI scores were observed for the corresponding tumors, respectively. 
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Somatic copy number alterations 

Genome-wide allele-specific CNA segments with absolute CN were submitted by 18 centers. 

Pairwise comparison of genomic regions across the whole genome lead to an agreement of 61% of 

bases with 11% of bases matching when accounting for genome duplications, 28% of bases 

showed divergent values (Figure 4a). Re-analysis of raw data with a single pipeline improved the 

concordance to 72% match and while duplication match decreased to 7% (Supplementary Figure 

6a). Hierarchical clustering of CNA revealed three main clusters, which can be attributed to 

differences by bioinformatics tools (Figure 4b), re-analysis of raw data with a central pipeline led to 

a clustering by panel for most centers (Supplementary Figure 6b). 

 

Concordance of gene amplifications, deep deletion and LOH calls was calculated in reference to 

alterations found by at least five centers in genes of the somatic gene list. While the mean PPA for 

the detection of amplifications was moderate (59%), a mean PPV of 77% was achieved. 

Concordance of deep and LOH calls were observed to be higher with a mean PPV of 81% and mean 

PPV of 82% (Figure 4d). Re-analysis of raw data with a single pipeline improved the PPA for 

detection of amplifications only by 10%, while the PPV did not change. Similarly, PPA for the 

detection of deletions was improved by only 1%, PPV remained unchanged (Supplementary Figure 

6c,d). 

 

Gene specific copy number alterations were investigated for genes with level 1-4 of OncoKb18 and 

found two elevated CN for MDM2 and MET, as well as two high-level amplifications: sample 3 

FGFR1 with a median of 17 copies found by 16 of 18 centers and ERBB2 in sample 20 with a 
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median of 19 copies found by 16 of 18 centers (Supplementary Figure 7a). A deep deletion of 

CDKN2A was found by 6 centers in sample 3 as well as a varying counts of losses for CDKN2A in 

sample 17 and TP53 in sample 20 (Supplementary Figure 7b). 

 

 

Complex biomarkers 

HRD scores were determined using eight different bioinformatics segmentation tools (Figure 5a) 

and three different methods to count genomic scars. Fourteen centers reported results using the 

commonly used cut-off of 42 inferred from breast and ovarian carcinoma19, one center used a cut-

off of 65, while the six remaining centers did not perform HRD classification (Supplementary Table 

1). Unanimous status calls were observed for four of 10 samples. Overall, 134 (93%) of the status 

calls were consistent across centers. Identical status calls were reported for the reference samples 

(Figure 5a). Correlations of HRD scores between centers showed a mean of 0.88 ± 0.18 with a 75% 

percentile above 0.98, with only Center-1 showing correlations below 0.69, which applied a 

different cut-off and used a different bioinformatics tool (Supplementary Figure 8).  

 

Overall, 163 TMB status calls (93%) showed agreement, based on the cut-off 10 Mut/Mb for TMB-

high vs. low (Figure 5b). Most centers were in agreement of the status calls, but some center-

specific discordance were observed: Center-11 showed overall lower TMB values, this center also 

had the most missed somatic variant calls. Center-20 showed considerably higher TMB values. 

Other deviations from the consensus were close to the cut-off point.  For the two reference 

samples, 33 status calls (86%) were concordant over all centers. Correlation of TMB values showed 

a mean of 0.89 ± 0.2 with 99% of calls in the 75% percentile. 
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Four different bioinformatics tools were utilized for the calculation of MSI scores in 20 centers, one 

center did not submit MSI values. MSI status was determined with different cut-off values. Six 

centers did not submit a cut-off value. In seven samples full concordance was observed, while 

overall 132 (94%) status calls were concordant (Figure 5c). The majority status calls were consistent 

with assay-based (qPCR or gold standard fragment length analysis) and TSO500 status calls. MSI 

values showed the highest mean correlation (0.96 ± 0.07) with only Center-9 displaying a 

correlation coefficient below 0.9. 

 

Re-analysis of biomarkers from the raw data with the central pipeline revealed an improvement of 

status calls concordance for MSI (+2%pt), while no improvement for TMB (+0%pt) and decrease for 

HRD status calls (-3%pt) were observed (Supplementary Figure 9). Comparative Interclass 

correlation (ICC) between original and central bioinformatics showed varying results for the 

original data (TMB: 0.30, MSI: 0.59, HRD: 0.77). The largest impact on variance was found to be 

center-specific as TMB and MSI were improved distinctly by removing two highly variant centers in 

TMB (Center-11 and Center-20, increased ICC from 0.30 to 0.77) and five centers with different cut-

offs in MSI (increased from 0.59 to 0.72) (Figure 5d). Changes in ICC between original and central 

bioinformatics were comparable to the improvements of status calls discussed before with better 

concordance for MSI (0.59/0.72 to 0.92) and slight changes in TMB (0.30/0.77 to 0.77) and HRD 

(0.77 to 0.77) (Figure 5d). 

 

A total of 67 different single base substitution (SBS) signatures were submitted by 10 centers using 

three different bioinformatics tools showing a mean ICC of 0.36 (Figure 5e, original). Re-analysis of 

all raw data with two bioinformatics tools substantially improved the mean ICC to 0.73 and 0.88 
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(Figure 5e, central). ICC comparing both central methods shows high correlation for the signatures 

SBS2, SBS4 and SBS13. Lower ICC was observed for the more prevalent signatures SBS1 and SBS5. 

The signature SBS6 was called, yet, in different samples (Figure 5e, central). 

 

HLA class I status was determined by 10 centers using six different bioinformatic tools. Overall, 576 

of 660 (87%) HLA calls were concordant. Hierarchical clustering indicated a strong correlation of 

HLA predictions for all but one tool (Supplementary Figure 10). 

Discussion 

As data on inter-center comparability of diagnostic WES using FFPE material are scarce1, we 

initiated a national benchmark study involving 21 major cancer centers in Germany. The DNA of six 

paired tumor and normal specimen and four reference samples was analyzed with local wet-lab 

workflows and bioinformatics pipelines, as well as a central bioinformatics pipeline to allow 

separation between wet-lab and dry-lab variability. 

 

Somatic variant calls showed an average PPA of 76% compared to the five-center consensus list. 

Deviations could largely be explained by different variant filter rules. Re-analysis revealed that in 

principle an average PPA of 98% was achievable from the raw-data. Therapeutically relevant 

variants reached an average PPA of 80%, which potentially could be improved to 97%. An influence 

of FFPE on concordances was not observed1. 

 

Based on unfiltered somatic variant calls and re-analysis we were able to determine the main 

factors for the four centers with overall lower concordance:  Center-1 used different bioinformatics 

tools (Supplementary Table 1) and most variant calls could be found in the re-analysis (Figure 1c). 
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Center-10 missed most variant calls due to lower coverage (87x) as variants were found, but often 

not labeled as PASS (Supplementary Figure 2a). Center-3 implied a strict manual filter accountable 

for about two-thirds of missed calls while most others were filtered due to a misconfigured 

pipeline (Supplementary Figure 2b). Center-20 implied strict variant filtering and variants could 

often be found in the unfiltered calls (Figure 2c).  

 

Four germline variants in cancer risk genes were identified and classified with high concordance 

between centers, with some notable exceptions. Two centers did not report the variant in PMS2, 

which lies in a homologous region on exon 11 (repetitive due to pseudogene PMS2CL) and was 

therefore removed by the center’s quality filters. While most centers agreed that the variants in 

RET and TP53 are (likely) benign, one center classified the variants as likely pathogenic. At the time 

of the round robin test the two variants were annotated as likely pathogenic in at least one of the 

three databases OnkoKB, CKB and LOVD used by the center and reported with the highest 

observed class. In the meantime, the RET variant class was reduced to 2-3 in all three databases, 

while the TP53 variant remained a class 4 only in CKB, showing that pathogenicity classification is 

highly dependent on utilized databases. 

 

CNA concordance was observed for 72% of the genomic regions, which was very similar to 76% of 

matching regions observed in the earlier study in fresh frozen tissue specimens1.  

Deviations between bioinformatic tools were also observed, a results that ties well with a 

systematic evaluation of wet-lab influences and bioinformatics evaluation on CNV calling20. The 

differences between centers were not resolved by using the same bioinformatics tools as seen for 

SNVs. Therefore, the underlying cause appears to be wet-lab driven. In line with this notion, a 
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recent study showed that WES and FFPE processing had a large impact on CNV concordance, 

especially on losses20. 

 

Status calls for HRD, TMB, and MSI agreed for 93%, 93%, and 94% across samples and centers, 

respectively, even though different bioinformatics tools were used. The results align with previous 

results in fresh frozen tissue specimens (HRD: 96%, TMB: 99%, MSI: 100%). Re-analysis in the 

central pipeline did not increase the concordances beyond well-aligned wet- and dry-lab 

procedures. The estimation of HRD scores is strongly influenced by the estimation of tumor purity 

and ploidy21. For the artificial reference sample 17 different ploidy solutions between 1.8 and 4.4 

were chosen, which presumably lead to deviant results of the HRD score estimation while results 

were around the cut-off value of 42 further increasing the discrepancies. The re-analysis showed a 

higher concordance but the values are also scatter around the cut-off (Supplementary Figure 9). 

The influence of the segmentation tool, as shown in Figure 2a, seems to be minor, except for 

Center-1, as neither a systematic deviation is apparent between the tools, nor did the re-analysis 

improve HRD scores. Re-analysis of MSI still showed large deviations in status for sample 14, where 

also a high variance in bioinformatically estimated tumor purity between 10-100% were observed, 

emphasizing the difficulties in evaluating this sample (Supplementary Figure 9). 

 

Aside from the center-specific deviations described before, increasing sequencing depth correlated 

with less missed variant calls (Supplementary Figure 3). However, no clustering by sequencing 

depth was observed (Supplementary Figure 4), indicating that low sequencing depth lead to less 

variant identification, yet, beyond a certain depth, it does not increase concordance. No significant 

correlation between sequencing depth and PPV or PPA of CNA were found (p values between 0.2 - 

0.6). 
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Findings in this study are limited by the absence of a gold standard for somatic mutations, complex 

biomarkers or CNA for most cases. Missed somatic variants could be recovered in unfiltered VCFs, 

however, this approach needs to be balanced with false positive detection. Furthermore, it should 

be noted that the central bioinformatics pipeline used in the re-analysis of raw data only 

represents a single possible approach. Other bioinformatics tools could improve the concordance 

further.  

 

Previous studies have laid the foundation for clinical WES22 and highlighted the benefits of moving 

from gene panels to WES, which allows for rapid and flexible expansion of the reportable gene list 

and precise measurement of complex biomarkers while reducing the burden of assay 

revalidation23. Our multicentric benchmark study, which is to our best knowledge the largest of its 

kind, closes a significant gap in the field, supports the implementation of decentralized WES in 

clinical diagnostics for cancer patients and demonstrates its fundamental feasibility. The 

results also highlight processes in the dry laboratory that require further standardization and 

harmonization. Furthermore, our study also provides a basis and blueprint for the design of 

standardized EQA schemes for clinical WES. 

Data Availability 

The datasets generated during the current study are available from the corresponding authors on 
reasonable request. 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



 

References 
 

1.  Menzel M, Ossowski S, Kral S, et al. Multicentric pilot study to standardize clinical whole 
exome sequencing (WES) for cancer patients. NPJ Precis Oncol. 2023;7(1):106. 
doi:10.1038/s41698-023-00457-x 

2.  Rempel E, Kluck K, Beck S, et al. Pan-cancer analysis of genomic scar patterns caused by 
homologous repair deficiency (HRD). Npj Precis Oncol. 2022;6(1):1-13. doi:10.1038/s41698-022-
00276-6 

3.  Budczies, J et al. Optimizing panel-based tumor mutational burden (TMB) measurement. 
Annals of oncology : official journal of the European Society for Medical Oncology vol. 30,9 (2019): 
1496-1506. doi:10.1093/annonc/mdz205 

4.  Ramarao-Milne P, Kondrashova O, Patch A-M, et al. Comparison of actionable events detected 
in cancer genomes by whole-genome sequencing, in silico whole-exome and mutation panels. 
ESMO Open. 2022;7(4):100540. doi:10.1016/j.esmoop.2022.100540 

5.  Auzanneau C, Bacq D, Bellera C, et al. Feasibility of high-throughput sequencing in clinical 
routine cancer care: lessons from the cancer pilot project of the France Genomic Medicine 2025 
plan. ESMO Open. 2020;5(4). doi:10.1136/esmoopen-2020-000744 

6.  Massard C, Michiels S, Ferté C, et al. High-Throughput Genomics and Clinical Outcome in 
Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017;7(6):586-
595. doi:10.1158/2159-8290.CD-16-1396 

7.  Cai L, Yuan W, Zhang Z, He L, Chou K-C. In-depth comparison of somatic point mutation callers 
based on different tumor next-generation sequencing depth data. Sci Rep. 2016;6(1):36540. 
doi:10.1038/srep36540 

8.  Krøigård AB, Thomassen M, Lænkholm A-V, Kruse TA, Larsen MJ. Evaluation of Nine Somatic 
Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data. 
PLOS ONE. 2016;11(3):1-15. doi:10.1371/journal.pone.0151664 

9.  Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error 
probabilities. Genome Res. 1998;8(3):186-194. 

10.  Zhao Y, Fang LT, Shen T-W, et al. Whole genome and exome sequencing reference datasets 
from a multi-center and cross-platform benchmark study. Sci Data. 2021;8(1):296. 
doi:10.1038/s41597-021-01077-5 

11.  Xiao W, Ren L, Chen Z, et al. Toward best practice in cancer mutation detection with whole-
genome and whole-exome sequencing. Nat Biotechnol. 2021;39(9):1141-1150. 
doi:10.1038/s41587-021-00994-5 

12.  Barbitoff YA, Abasov R, Tvorogova VE, Glotov AS, Predeus AV. Systematic benchmark of state-
of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence 
variant discovery. BMC Genomics. 2022;23(1):155. doi:10.1186/s12864-022-08365-3 

Jo
ur

na
l P

re
-p

ro
of



 

13.  Gabrielaite M, Torp MH, Rasmussen MS, et al. A Comparison of Tools for Copy-Number 
Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers. 
2021;13(24). doi:10.3390/cancers13246283 

14.  Merino DM, McShane LM, Fabrizio D, et al. Establishing guidelines to harmonize tumor 
mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic 
platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother 
Cancer. 2020;8(1):e000147. doi:10.1136/jitc-2019-000147 

15.  Vega DM, Yee LM, McShane LM, et al. Aligning tumor mutational burden (TMB) quantification 
across diagnostic platforms: phase II of the Friends of Cancer Research TMB Harmonization 
Project. Ann Oncol Off J Eur Soc Med Oncol. 2021;32(12):1626-1636. 
doi:10.1016/j.annonc.2021.09.016 

16.  Lambin S, Lambrechts D, De Rop C, et al. 33P - Tumour mutational burden ring trial: 
Evaluation of targeted next-generation sequencing platforms for implementation in clinical 
practice. Abstr Book ESMO Immuno-Oncol Congr 2019 11–14 Dec 2019 Geneva Switz. 
2019;30:xi10. doi:10.1093/annonc/mdz447.031 

17.  Velasco A, Tokat F, Bonde J, et al. Multi-center real-world comparison of the fully automated 
IdyllaTM microsatellite instability assay with routine molecular methods and immunohistochemistry 
on  formalin-fixed paraffin-embedded tissue of colorectal cancer. Virchows Arch Int J Pathol. 
2021;478(5):851-863. doi:10.1007/s00428-020-02962-x 

18.  Chakravarty D, Gao J, Phillips S, et al. OncoKB: A Precision Oncology Knowledge Base. JCO 
Precis Oncol. 2017;(1):1-16. doi:10.1200/PO.17.00011 

19.  Telli ML, Timms KM, Reid J, et al. Homologous Recombination Deficiency (HRD) Score Predicts 
Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative 
Breast Cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22(15):3764-3773. 
doi:10.1158/1078-0432.CCR-15-2477 

20. Masood, D., Ren, L., Nguyen, C. et al. Evaluation of somatic copy number variation detection 
by NGS technologies and bioinformatics tools on a hyper-diploid cancer genome. Genome Biol 25, 
163 (2024). https://doi.org/10.1186/s13059-024-03294-8 

 

21. Menzel M, Endris V, Schwab C, et al. Accurate tumor purity determination is critical for the 
analysis of homologous recombination deficiency (HRD). Translational oncology vol. 35 (2023): 
101706. doi:10.1016/j.tranon.2023.101706 

22. Van Allen EM, Wagle N, Stojanov P, et al. Whole-exome sequencing and clinical interpretation 
of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat 
Med. 2014;20(6):682-688. doi:10.1038/nm.3559 

23. Shah PS, Hughes EG, Sukhadia SS, et al. Validation and Implementation of a Somatic-Only 
Tumor Exome for Routine Clinical Application. J Mol Diagn. Published online July 6, 2024. 
doi:10.1016/j.jmoldx.2024.05.013 

Jo
ur

na
l P

re
-p

ro
of



 

Acknowledgments 
We thank Twist Bioscience, Qiagen, IDT, Illumina, and Agilent for the partial provisioning of 

sequencing reagents and Seracare for the partial provisioning of reference material and GenXPro 

for individual bioinformatic service. We thank the QuIP (Ms. Ilm) for sample handling and logistics. 

 

Author contributions 
MM, MMT, HGO, DK, NP, JB, and AS planned and supervised the study. MM, DK, NP, JB, and AS 

drafted the manuscript. MM, MMT, HGO, ET, JS, ON, MB, AFI, JR, EM, AJA, SMB, WW, PS, DK, NP, JB, 

AS provided samples. MM, MMT, HGO, A.O., ET, JS, LS, NOB, AM, KVL, MB, ME, RM, SD, RC, JMK, EB, 

MMO, MJ, MBE, PB, FH, VT, TG, OK, RP, DW, KH, WG, SuS, AB, CB, SJ, LY, EAM, MGC, FF, LT, S.W., E.A., 

U.M., TR, JUD, UL, GS, SB, WH, SH, ND, KG, RB, SHA, AFI, MB, ON, JR, MK, JM, NH, PJ, AM, JK, AJ, EM, 

AJA, MT, SK, KF, CR, DH, AI, WD, T.B.H., RM, AF, JN, UG, TE, PG, SA, KM, JD, YJ, DJ, BM, DB, DHO, ALW, 

DA, M.W., KRJ, PST, BA, FS, SMB, Usi, WR, SL, FK, NTG, WW, ME, S.A-E., S.O., CS, CPS, NM, PS, DK, NP, 

JB, and AS contributed and analyzed data, contributed to the writing and approved the final 

manuscript. 

 

Funding 

This study was partly supported by the DNPM. 

 

Figure captions 

Figure 1: Somatic variant calls. a: Variants separated by occurrence. b: Reasons reported by centers 
for missed variants. c: Fractions of missed variants found by another method or not found 
separated by center. 
 
Figure 2: Positive percentage agreement (PPA) and positive predictive values (PPV) of variant calls. 
a: PPA in relation to allowed missed calls and inversely to the consensus counts. For zero missed 
calls a consensus of all 21 centers is found, for 16 allowed misses a consensus of five centers is 
found. The consensus counts were created by selecting the variants missed by at most the number 
of centers annotated at the bottom. The top shows the number of variants for each of the 
consensus counts. b: PPV in relation to decreasing consensus counts. c: Change in PPA for 
unfiltered calls (middle), or the single re-analysis with basic filters (PASS filter, VAF >= 3.5%, 
depth >= 100) in relation to the five center consensus. 
 
Figure 3: Variants filtered for possible therapeutic targets.  Each box shows a reported calls, they 
are colored for better samples separation. 51 missed variant calls were found in the raw calls and 
were annotated with the reason for the miss as reported by the respective center. Further 60 

Jo
ur

na
l P

re
-p

ro
of



 

variants were found using the central bioinformatic pipeline. White fields indicate that neither 
local nor central could find the variant call. 
 
Figure 4: Comparison of CNA calls. a: Pairwise comparison of CN profiles by sample and separated 
into segments with matching (green), not matching (red), and matching when normalized for 
genome duplications (purple). b: Hierarchical clustering of CN profiles annotated with 
bioinformatic segmentation tool. c: Gene amplification calls by center in relation to the five center 
consensus. d: Gene deep deletion or LOH calls in relation to the five center consensus. 
 
Figure 5: Reported values for complex biomarkers. a: HRD scores ordered by segmentation tool, 
cut-off 42 was used in all but Center-1. b: Missense TMB values colored by TMB status with 10 
Mut/MB cut-off. c: MSI percentage unstable sites ordered by bioinformatic tool with the cut-off 
value. The rightmost column shows the fraction of instable sites by MSI assay. d: Interclass 
correlation (ICC) for the three biomarkers from both bioinformatic pipelines. e: ICC for the main 
mutational signatures from the original data, the two algorithms from the central pipeline, and 
between the two algorithms. 

 

Tables 

 
Table 1: Samples used in the pilot study with previously determined characteristics from TSO500 
(samples 3 - 16) and reference material (samples 17 – 20). Complex biomarker were were not 
determined (N.D.) for all samples. *CytoSNP; +confirmed by Marker panel; ‡determined by Seraseq. 

Sample ID Entity / Reference Pathological tumor purity (%) HRD TMB MSI (%) 

3 
Undifferentiated pleomorphic sarcoma 
of the lateral femur 90 70* 3.6 1.23 

4 
SMARCA4 deficient undifferentiated 
uterine sarcoma (SDUS) 80 N.D. 39.4 56.3+ 

9 Breast cancer of no special type (NST) 80 N.D. 3.2 1.65 
13 Endometrioid carcinoma grade 2 80 N.D. 77.3 58.5+ 

14 
Moderately differentiated 
adenocarcinoma of the colon 50 2 44.7 20.34+ 

16 
Moderately differentiated 
adenocarcinoma of the colon 80 11 48.6 62.6+ 

17 Seraseq TMB Mix Score 7 66 N.D. 7‡ N.D. 
18 Seraseq TMB Mix Score 13 66 N.D. 13‡ N.D. 
19 Seraseq gDNA HRD Low-Positive 66 58‡ N.D. N.D. 
20 Seraseq gDNA HRD Negative 66 33‡ N.D. N.D. 
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Highlights 

 

· WES analysis of 10 samples at 21 diagnostic centers resulting in 420 datasets 

· Inter-center concordance of somatic and germline variant calling was high 

· Most variant calling discordances were explainable by different variant filtering 

· Copy number alteration calling was challenging and requires further standardization 

· Complex biomarkers were mostly concordant, even using different bioinformatic tools 
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