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When designing social robots for educational settings, there is often an
emphasis on domain knowledge. This presents challenges: 1) Either robots must
autonomously acquire domain knowledge, a currently unsolved problem in
HRI, or 2) the designers provide this knowledge implying re-programming the
robot for new contexts. Recent research explores alternative, relatively easier to
port, knowledge areas like student rapport, engagement, and synchrony though
these constructs are typically treated as the ultimate goals, when the final goal
should be students’ learning. Our aim is to propose a shift in how engagement
is considered, aligning it naturally with learning. We introduce the notion of a
skilled ignorant peer robot: a robot peer that has little to no domain knowledge
but possesses knowledge of student behaviours conducive to learning, i.e.,
behaviours indicative of productive engagement as extracted from student
behavioral profiles. We formally investigate how such a robot’s interventions
manipulate the children’s engagement conducive to learning. Specifically, we
evaluate two versions of the proposed robot, namely, Harry and Hermione,
in a user study with 136 students where each version differs in terms of the
intervention strategy. Harry focuses on which suggestions to intervene with
froma pool of communication, exploration, and reflection inducing suggestions,
while Hermione also carefully considers when and why to intervene. While the
teams interacting with Harry have higher productive engagement correlated
to learning, this engagement is not affected by the robot’s intervention
scheme. In contrast, Hermione’s well-timed interventions, deemedmore useful,
correlate with productive engagement though engagement is not correlated to
learning. These results highlight the potential of a social educational robot as
a skilled ignorant peer and stress the importance of precisely timing the robot
interventions in a learning environment to be able to manipulate moderating
variable of interest such as productive engagement.

KEYWORDS

social robots, productive engagement, autonomous social robots, learningcompanions,
educational robots, engagement

1 Introduction

Social educational robots are gaining momentum because of the advantages and impact
they bring over software systems thanks to their physical and social abilities as an embodied
agent. Current applications envision the robot to fill roles such as tutor (Kennedy et al.,
2016; Ramachandran et al., 2019; Donnermann et al., 2022), peer (Baxter et al., 2017; Kory-
Westlund and Breazeal, 2019), mediator (Gillet et al., 2020; Tozadore et al., 2022) or even
tutee (Lemaignan et al., 2016; Pareto et al., 2022) and span diverse learning scenarios
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such as mathematics (Ligthart et al., 2023; Smakman et al., 2021;
Hindriks and Liebens, 2019), computational thinking (Nasir et al.,
2020; Stower and Kappas, 2021), second language learning
(Gordon et al., 2016; van den Berghe et al., 2019) or early language
learning (Kanero et al., 2018), story telling (Elgarf et al., 2022b; a)
and even handwriting (Chandra et al., 2019; Tozadore et al., 2022).

Simply put, the ultimate aim of social educational robots is
to improve the learning gain of the students. The traditional,
straightforward approach to achieve this goal is to endow the
robots with the domain knowledge needed to understand students’
actions and enhance their learning gain. In contrast to general
knowledge, domain knowledge is the knowledge of a specialized
field and context. One way for a social robot to acquire domain
knowledge is via interacting with its environment through trial and
error, e.g., relying on a reinforcement learning framework. While
recent advancements in deep learning reassure about its potential
for autonomous learning on well-defined problems (Sarker, 2021),
enabling robots to autonomously acquire domain knowledge in
academic subjects that can be later used in interactions with humans
is still an open challenge. Even more challenging is to endow
AI/robots with the ability to learn how humans acquire knowledge of
academic subjects, which is necessary to effectively support human
learners in the learning process.

An alternative, more practical but less elegant, method to endow
robots with domain knowledge envisions the researchers to simply
equip the robot with all the relevant knowledge about the learning
problem at hand. This can be done in an offline manner (which is
usually the case), for example, in (Ramachandran et al., 2019; Stower
and Kappas, 2021; Norman et al., 2022; Ligthart et al., 2023) or in
an online manner (Senft et al., 2019). While promising, especially
the latter, this solution also presents some drawbacks. In addition to
the fact that such robots, by design, are not easily portable from one
activity to another withoutmajor alterations, the domain knowledge
itself is also usually heavily contextualized, typically due to the use of
a specific learning platform (Senft et al., 2019; Norman et al., 2022).
Hence, the knowledge provided in this manner is typically not only
limited to one particular domain, but also one particular learning
scenario and paradigm within that domain. As a consequence,
manually-programmed social educational robots with only domain
knowledge require a significant amount of work, for a limited
usability.

Building on research coming out of the learning analytics and
psychology communities (Wolters et al., 1996; Fredricks et al., 2004;
Kardan and Conati, 2011; Deci, 2017), roboticists are pursuing
alternate designs for social educational robots, that seek to bypass
the problem of mastering domain knowledge. For example, research
has shown that engagement and rapport (particularly during
collaborative activities) between the students positively impacts
learning (Brown et al., 2013; Chi and Wylie, 2014; Leite et al., 2014;
Gordon et al., 2016; Olsen and Finkelstein, 2017; Madaio et al.,
2018; Ligthart et al., 2020). Focusing on these constructs thus still
allows to follow learning (albeit under an assumption that there is
a directly proportional relationship between the modelled construct
and learning) without requiring vasts amount of domain knowledge.
While these constructs are still known to be influenced, to some
extent, by the context, core characteristics could remain indicative
over multiple, similar, learning contexts. For example, speech
behaviours indicative of conflict resolution and mutual regulation,

markers of good collaboration, i.e., collaboration behaviors that help
with learning (Blaye, 1988; Schwarz et al., 2000), and in extension
markers indicative of student engagement that is conducive
to learning in a collaborative setting, can transfer across two
collaborative learning tasks with very different underlying learning
contexts. Robots relying on these constructs to monitor learning
could thus be relatively more versatile and portable.

State-of-the-art methods, typically working post hoc, for the
modelling of such domain-agnostic constructs quite surprisingly
do not take the learning gain into account (Lytridis et al., 2020).
For example, the very common approach of having expert coders
rate synchrony or engagement in pre-recorded data, for example,
in (Leite et al., 2015; Engwall et al., 2022), to build a training set
for ML methods, typically neglects whether, and to what extent,
the students ended up learning and could thus lead to incomplete
and possibly misleading notions of engagement, synchrony, etc.
This neglect can become especially problematic in open-ended
activities where exploring, failing, reflecting and finally exploiting the
knowledge acquired from all these activities is an essential part of
the learning process. In such settings, students’ performance in the
learning activity, a more visible phenomenon to the expert coders,
does not necessarily translate into their learning (for example,
as shown in (Nasir et al., 2020)). A robot tracking and aiming to
maximising a construct which is not intrinsically correlated with
learning, especially in contexts where the relationship between
behaviour and learning is multi-faceted and complex, might thus
end up achieving the same performance of one that acts randomly.

In an attempt to contribute to solving this limitation, in previous
works we introduced the concept of Productive Engagement (PE)
(Nasir et al., 2021a; c), an engagement metric that is construed
on students’ observable behaviours and positively correlated
with learning gain which, in simple words, can be thought
of as the engagement that is conducive to learning. For this
type of engagement, we look at both social and task-related
student behaviors, as further explained in (Nasir et al., 2021a)
which is a common distinction made in HRI (Corrigan et al.,
2013; Oertel et al., 2020) particularly in learning settings
(Zaga et al., 2015; de Haas et al., 2022). Building on the concept
of Productive Engagement, in this paper we propose a robot
intervention scheme that tries to reconcile the efficacy of solutions
relying only on domain knowledge with the portability of solutions
relying on domain-agnostic knowledge.

Such a robot will be able to adequately assess the students’
Productive Engagement, on the basis of the students’ learning
profiles such as interactive action patterns as well as their speech
quantity and quality, and use this information in a way that will
allow it to interact with the students in a helpful-towards-learning
manner. This intervention scheme yields a robot which does not
fit in the classical roles of tutor, peer or tutee, which are typically
defined on the basis of the different level of domain knowledge
the robot possesses.

A robot relying on Productive Engagement (and only on it) to
drive its interventions, possesses no direct domain knowledge, and
a certain amount of knowledge of the student behaviours conducive
to learning: we term such a robot a skilled ignorant peer. Concretely,
such a robot is clueless as to how to solve a problem, but knows
what behaviours are likely to help the students learn, and thus find
said solution by themselves. Figure 1 displays the depth of domain
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FIGURE 1
The skilled ignorant peer robots Harry and Hermione, that we propose in this work, placed in the space of domain knowledge and behaviour
knowledge. The robot Harry knows what student behaviours could be conducive to learning, while the robot Hermione also knows when to intervene
to induce the desired behaviours in the learner. Both robots rely on the concept of Productive Engagement to assess the learner’s state during the
interaction.

knowledge possessed by the robot on the vertical axis and the
depth of knowledge it possesses about students’ behaviour that are
conducive to learning on the horizontal axis. A number of examples
of skilled ignorant peer social educational robots can already be
found in the literature. One example is a robot that perceives and
tries to influence the affective states of the children to provide
social support based on the assumption that being in a certain
affective state will help improve learning, for example, in a second
language learning scenario or a chess playing scenario with children
in (Leite et al., 2014; Gordon et al., 2016) respectively, although it is
important to notice that the validity of this assumption has not been
investigated.

More concretely, the goal of this work is to explore whether
skilled ignorant peer social robots, relying on the construct of
Productive Engagement, can be effective for promoting learning. In
pursuit of that, we:

• conceptualize the notion of skilled ignorant peer social robots
that instead of relying on domain knowledge rely on the
construct of Productive Engagement;
• propose a technical framework for quantifying Productive
Engagement as PE score

• propose two intervention schemes for skilled ignorant peer
social robots, one that focuses on the content of the
intervention, and another that additionally also carefully
chooses the timing of the intervention and then evaluate the
two skilled ignorant peer social robots in a user study with
136 students;
• propose an experimental method that tries to surface both of

the following relationships:
1. Between the robot interventions and Productive

Engagement (to validate whether the proposed
intervention scheme effectively positively influences the
students’ behaviour)

2. Between Productive Engagement and the learning gain of
the students (to validate whether the students’ behaviour,
subject to the real-time interventions of the robot, is still
positively correlated with their learning).

To the best of our knowledge, no other work in the literature
has formally investigated the two afore-mentioned relationships,
i.e., whether or not the robot interventions manipulate the relevant
variables of interest which in turn manipulate learning. To better
assess the first relationship described above, in this work we propose

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1385780
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nasir et al. 10.3389/frobt.2024.1385780

two skilled ignorant peer social educational robots, referred to
throughout the article as Harry and Hermione1.

The reason for designing two robots is the argument that the
timing of an intervention is as important as the content of the
intervention, when it comes to nudging students towards behaviours
expected to conduce to learning. Hence, the difference between
Harry and Hermione is the fact that the former is equipped with
an intervention scheme that knows what interventions are likely to
positively affect students’ behaviour, but calls them randomly, while
the latter is equipped with an intervention scheme that seeks to
determine when it is best to intervene, and how.

Indeed, previous works in the domain of social educational
robots have already emphasized the importance of the appropriate
timing of interventions, for example, in the context of suggesting
pauses (Ramachandran et al., 2017). The authors compared a robot
suggesting children involved in a math activity to make pauses
on the basis of a personalization framework with one suggesting
to make pauses at fixed intervals and found that the personalized
strategy yielded higher learning gains. Then, in (Kennedy et al.,
2015), the authors found that caution is needed when designing
social behaviors for robots as a too engaging robot, i.e., overly
interactive robot, may be distracting for student’s learning gain and
eventually counterproductive for the learning process.

In our work, the content of the interventions is shaped by
the knowledge on what student behavioural profiles might help
in better understanding the learning concepts (that we built
in previous works (Nasir et al., 2021c)), while the timing of
interventions is shaped by the robot’s ability to detect the absence
of the desired student behaviours in real time and trigger the
corresponding interventions accordingly. We hypothesize that a
robot endowed with this knowledge of when-and-how-to-intervene
(Hermione) will not only promote higher learning gains, but also
minimize the disruption of the students’ learning process due to
unnecessary interventions, compared to another (Harry) which
provides randomly picked interventions from the same pool but at
fixed times.

2 Materials and methods

In this section, we take the reader in-depth into the background,
study design and implementation details.The background and study
design sections are written such that the readers can go to the
results and discussion sections directly if they wish to skip the
implementation details.

1 The names were chosen by the first two authors, who are avid fans of the

Harry Potter books, in a lively and thoroughly enjoyable discussion. The

authors argue that, throughout the book series, Harry displays a rather

intuitive understanding of what is the right thing to do and spends little

time dwelling onto why it is so. Conversely, the know-it-all Hermione

always knows what to do, and why, and when. Please note the names are

only for us (and the research community hereafter) to refer to different

variants. The students are never exposed to the names to avoid any biases.

In experimental settings, the robot always introduces itself to all students

as QTrobot.

2.1 Background

A previous study we conducted using the baseline version of the
sameplatform thatweused in the current study,with 92 children and
a baseline robot Ron (Nasir et al., 2021c) allowed us to identify three
unique sets of student behaviours (in terms of team’s communication
behaviour such as speech activity, overlapping or interjecting speech,
pauses; their problem solving strategies; facial expressions as well
as gaze behaviours), two of which were correlated with higher
learning gains. We thus defined: 1) two behavioural profiles for high
learning students, respectively denoted as Expressive Explorers and
CalmTinkerers, which are characterized by different problem solving
strategies (global vs. local exploration and reflection) but the same
communicative behaviour, involving higher speech activity, many
interjections and fewer long pauses; and 2) one behavioural profile
associated with low learning students, labelled Silent Wanderers,
which is characterized by the lack of a clear problem solving strategy,
low or no reflection and limited communication, with lower speech
activity, few interjections and a higher number of long pauses.

The robot interventions as well as the intervention schemes
presented in this paper make use of these findings. More specifically,
the aforementioned data corpus, which is publicly available
(Nasir et al., 2021b), is used as training dataset in this work
for modelling the PE Score, for generating the problem solving
strategy profiles of Expressive Explorers and Calm Tinkerers, for
defining thresholds, for normalizing incoming data, etc. as will
be seen in section 2.3.

2.2 Study design

2.2.1 Study introduction
2.2.1.1 JUSThink-Pro: a collaborative robot mediated game
platform

In our study children aged 9–14 interact with JUSThink-Pro, an
interactive and collaborative human-human-robot game platform
for helping to improve computational thinking skills. JUSThink-Pro
is an extension of the baseline version JUSThink (Nasir et al., 2020),
which specifically enhances it with (i) the addition of real-time
assessment modules that enable the robot to gauge the Productive
Engagement state of the children and (ii) the integration of real-time
robot interventions, driven by the Productive Engagement analysis.
The game is designed as a collaborative problem-based learning
activity for the learning goal of gaining conceptual understanding
about minimum spanning trees2 (more details about JUSThink
are given in (Nasir et al., 2020)).

In this collaborative game, the learning concept is embedded in
a fictional scenario set in Switzerland where goldmines, represented

2 Let G = (V,E) denote a connected, undirected, edge-weighted graph. V is

the set of nodes, E ⊆ V×V is the set of edges that connects node pairs, and

c:E→ℝ is the edge cost function for G. A subgraph of G is said to “span”

the graph G if it connects all nodes of G, i.e., each node is reachable from

every other. The problem is to find a subgraph T of G that spans G and

minimises oT(T) = ∑e∈ETc(e). An optimal solution T is called a minimum

spanning tree for G.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1385780
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nasir et al. 10.3389/frobt.2024.1385780

FIGURE 2
Robot control architecture for Harry and Hermione.

as mountains named after Swiss cities, need to be connected by rail-
tracks while spending the least amount of money. The game makes
players experience two views, with different purposes: the figurative
view allows a student to interact with the graph and edit (add or
remove) tracks (App one in Figure 2), while the abstract view allows
a student to see the cost of existing tracks as well as all of the team’s
previous solutions (App two in Figure 2). The two views swap every
two edits, allowing the two students composing a team to experience
them both equally. A team is allowed to build and submit as many
solutions as they want within the 30 min allocated for the game.

In each session, the robot (Harry or Hermione) welcomes
the team of two students and provides instructions for the
session. This is followed by a pre-test that students perform
individually. Then, the children collaboratively play JUSThink-Pro
for 30 min, before concluding with the individual post-test and
a questionnaire.

2.2.1.2 Experimental protocol
Our experimental protocol includes two conditions designed

to assess the effect of the two robots Harry and Hermione on the
Productive Engagement and learning gain of the students. Both
robots, using the same basic module shown in Figure 2, automate
the entire interaction, guide the learners between the various phases

of the session, and provide basic motivational feedback as well as
the score of each submitted solution. Conversely, the two robots use
different control modules to generate their real-time interventions.
In the case of Harry, the control module randomly picks at fixed
time intervals one among the interventions previously identified
(via training data) as correlated with behaviours conducive to
learning, from the interventions library. In the case of Hermione,
as shown in Figure 2, the control module can rely on additional
information about the students provided by the PE score generation
pipeline, which tracks in real-time the Productive Engagement
state of the students, and the profile comparison pipeline, which
monitors their problem solving strategy. Concretely, whenever the
PE score of a team goes below a certain threshold, Hermione
picks from the same interventions library used by Harry the
most appropriate intervention considering the phase of the
activity as well as the problem solving strategy at the time
followed by the team. The interventions library includes three
types of interventions, namely, communication inducing, exploration
inducing, and reflection inducing that are meant to induce,
as the names suggest, communication between the two team
members, an exploration of the available options or reflections
on the current and past solutions, respectively. The design of
these interventions, which is further elaborated in Section 2.3, is
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FIGURE 3
Children interacting with JUSThink-Pro at the six schools that participated in the study.

inspired by the learning profiles and analyses presented in our
previous work (Nasir et al., 2021c).

Notice how our skilled ignorant peer social educational robots
rely on a mix of domain-agnostic information (the PE score
and triggering mechanism for robot interventions, as well as
the communication-inducing robot interventions) and pseudo-
domain-specific information (robot interventions meant to
induce exploratory or reflective behaviours that are transversal
competencies grounded in the context), and the latter are used
within a framework led by the former to support generalizability.

2.2.1.3 Data collection
The study3 took place over 2 months and involved six private

international schools across Switzerland. Figure 3 shows students
from the various schools interacting with JUSThink-Pro. 136
students (74 male, 62 female) with the age range 9–14 years (median
age: 12 years old) interacted with the JUSThink-Pro activity for a
total of over 70 h in the form of dyads where each dyad interacted
only once with the activity for an hour. This gave us a total of
68 teams, out of which some teams were used for validation of
the system’s parameters, and due to missing data, two teams were
discarded from the experimental set, giving us a total of 52 teams
with 26 teams per condition. We have made the data from this study
available at (Nasir et al., 2023).

2.2.2 Evaluation metrics
We evaluated the two robot conditions by looking at (i) the

students’ learning gains, (ii) their in-task performance, (iii) their PE
scores, (iv) their evaluation of the robot’s competence (both during
and after the task in the questionnaire).

For the learning gain, we consider the joint absolute learning
gain (T_LG_joint_abs) which is calculated as the difference between

3 Ethical approval for this study was obtained from the EPFL Human

Research Ethics Committee (051–2019/05.09.2019).

the number of questions that both of the team members answered
correctly in the post-test and in the pre-test.The reason for using this
learning gain is that it captures the shared understanding between
the team members that, as established in (Nasir et al., 2021c), is
a relevant factor for collaborative learning. The normalized joint
absolute learning gain ranges between 0 and 1. For the in-task
performance, we consider the last error of the team, intended as
the error of the last submitted solution. In the case a team finds
an optimal solution (error = 0) the game stops, therefore making
last error = 0. The PE score is a quantification of the Productive
Engagement state of the team, computed on the basis of quantifiable
observable behaviours found conducive to learning. Further details
on the real-time computation of the PE score are given in Section 2.3.
To evaluate the students’ perception of the robot competence during
the task, whenever a robot intervention is triggered, a pop-up
dialogue box appears on the screen of each team member, asking
them whether they found the suggestion useful or not. Their joint
answers compose a suggestion usefulness score with values 1, 0, 0.5
if both found the suggestion useful, not useful, or if they differed in
their evaluation, respectively. To evaluate the students’ perception of
the robot competence after the end of the task, the students were
asked to rate the statements “I think the robot was giving us the
right suggestions” (right suggestions) and “I think the robot gave
us suggestions at the right time” (right timing) on a five-points
Likert scale.

2.2.3 Hypotheses
Concretely, the study aimed to verify the following hypotheses:

• H1: (a) Hermione will lead to higher learning gains as well as
(b) a higher number of teams achieving a higher learning gain
as compared to Harry.

• H2: Teams that interact with Hermione will display higher
Productive Engagement scores compared to the teams that
interact with Harry.

• H3: Hermione will be rated higher than Harry on competence.
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• H4: Robot interventions will have a positive effect on the PE
score in both robot conditions.

• H5: Robot interventions will have the desired effect (increase)
on learner behaviours in both conditions.

• H6: The PE score will be positively correlated with the learning
gain in both conditions.

With H1, H2 and H3 we look at general variables of
interest such as learning gain, productive engagement, and robot
perception and seek to assess the effectiveness of the two proposed
intervention schemes for skilled ignorant peer social educational
robots. H4, H5 and H6 allow for evaluating the two relationships
introduced in Section 1: withH4 andH5we evaluate the relationship
between robot interventions (RI) and productive engagement (RI to
PE), while H6 evaluates the relationship between the PE score and
learning gains (PE to LG).

2.3 Implementation

2.3.1 Robot interventions design
Each robot intervention is comprised of verbal and non-verbal

components, where the non-verbal component consists of gestures
and facial expressions (some of them are shown in Figure 4). Each
intervention is designed to induce one of the behaviours that have
been found to be conducive to learning in this activity (i.e., that
were displayed by teams labelled as Expressive Explorers and Calm
Tinkerers, see (Nasir et al., 2021c) for more details). Specifically, the
interventions can be categorized into the following three types:

1. Exploration inducing: these interventions seek to induce the
behaviour of Edge Addition in the learners, i.e., nudge them
towards exploring different options to connect goldmines to
one another.

2. Reflection inducing: these interventions seek to induce
the behaviours of Edge Deletion, History (check previous
solutions), A_A_add (add back an edge immediately after
deleting it), A_A_delete (delete an edge immediately after
adding it), A_B_add (add back an edge immediately after
your team member deleted it), and A_B_delete (delete an
edge immediately after your team member added it). All
such actions imply some form of reflection, on the current
solution or on the comparison with previous actions and
solutions (Nasir et al., 2021c).

3. Communication inducing: these interventions seek to induce
Speech Activity and generally communication between the
team members.

It must be noted that, while interventions were designed to
explicitly elicit one particular student behaviour, it is not impossible
that they also, implicitly induce other behaviours. For example,
Exploration inducing and Reflection inducing interventions can
indirectly induce an increase in communication between the team
members, as a by-product of attracting students’ attention towards a
certain action. Similarly,Communication inducing interventions can
indirectly induce exploration or reflection actions, as the students
share their ideas concerning the next steps or their understanding
of the problem. Please note that the robot does not have any idea
about what the correct solution is or what would be the best next

action to take. Lastly, the style in which each suggestion is conveyed
is always supportive and positive. A few examples of interventions
are shown in Table 1.

Beside interventions, we also designed a pool of idle, non-verbal
robot behaviours, consisting of gestures and facial expressions.
These behaviours are randomly triggered every few seconds to give
students the feeling of interacting with a lively robot and to provide
a more natural feel to the interaction. These behaviours are only
executed when no other task of a higher priority is being executed.
Examples of idle behaviours include: 1) the robot looking side to side
to the two team members, 2) the robot scratching its head, 3) the
robot looking confused, 4) the robot folding arms behind its back as
if observing the situation.

2.3.2 Productive engagement score
The productive engagement score (PE Score) is designed as a

linear combination of the features thatwe found to be discriminatory
between the high-learning teams (henceforth also referred to as
“gainers”) and the low-learning teams (henceforth also referred to as
“non-gainers”), described in Section 2.1. Discriminant features are
“Speech” (S), “Overlap_to_Speech_Ratio” (SO) and “Long_Pauses”
(LP). The PE Score is thus computed as a linear combination of these
features (with positive or negative sign to ensure that higher values of
thePE Score correspond to a higher learning gain) and each feature is
weighted by a factor proportional to the contribution of that feature
to the variance in the training data4. The PE score is this defined
as shown in Equation 1 below:

PE Score = S ∗
α (SO) + β (1− LP)

α+ β
(1)

where β = α/2 as LP contributes half as much as SO to the
variance in the data. The signs of SO and LP are due to the fact that
high-learning teams are linked to higher amount of SO and lower
amount of LP.

The PE Score can take a value ∈ [0,1]. Figure 5 illustrates how
our proposed equation for the PE Score behaves as a function of its
three contributing factors.

To validate the PE score, we consider the training dataset
and generate the PE score for every 10-s time window for team
interactions with the JUSThink game. We perform several tests to
verify if the score can be considered a legitimate form of evaluating
the productively engaged state of the teams, i.e., whether the PE
Score of high-learning teams is consistently, significantly higher than
the PE Score of the low-learning teams. To this end, depending
if the assumptions for a parametric test are met, we firstly do an
unpaired sample t-test analysis between the averages of the PE
Scores and a Wilcoxon rank-sum test between all the points in
a PE Score sequence for all the high-learning teams versus the
low-learning teams, both of the tests yield statistically significant
differences with p-values < 0.01 (details in Table 2). Secondly, we
do a Wilcoxon rank-sum test between the Dynamic Time Warping
(DTW) distances of every high-learning team 1) with every low-
learning team and 2) with every other high-learning team, as well

4 Note that a linear combination is one possible way and the most

straightforward way but may not be the only way of modelling productive

engagement in the form of a PE score.
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FIGURE 4
Facial expressions of QTrobot in horizontal order from the top-left corner: neutral, smiling, happy, sad, confused, surprised, bored/yawning, puffing
cheeks/being cute, and winking.

as between the DTW distances of every low-learning team 1) with
every high-learning team and 2)with every other low-learning team.
Both of these tests yield statistically significant differences with
p-values < 0.01 (see details in Table 3).

2.3.3 Generation of the PE score in real-time
For the generation of the PE score in real-time, we employ the

pipeline shown in Figure 6A. We must note that in this pipeline,
by real-time, we mean that the PE score is updated every 10 s. The
audio stream of each team member collected from the laptops’
microphones is analysed by a Voice Activity Detector (VAD) (we

use the open-source python wrapper for Google WebRTC VAD5).
For every 10 s, the VAD returns a vector for each team member
that consists of voiced and unvoiced frames (a vector with 0’s
and 1’s). These vectors are then used by our feature extraction
module to generate the relevant features such as Speech Activity,
SpeechOverlap, andLong Pauses (see (Nasir et al., 2021a) for details).
The features are normalized with respect to the training dataset.

5 https://webrtc.org/
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TABLE 1 Examples of robot interventions.

Type Robot’s speech Facial expression Gesture

Exploration Inducing Guys, we may not be exploring all the
rail-tracks. Why don’t we connect more
gold mines to see how much they cost?

Puffing its cheeks Putting both arms ahead to gesture
while moving head side to side to look
at both learners

Exploration Inducing Are there some tracks we have not
explored yet? If yes, why don’t we
explore other tracks too?

Smile Moving head side to side to convey
looking at both learners

Reflection Inducing (Edge Deletion) Guys! I have this idea. Why don’t we
remove the rail-tracks we don’t need?
What do you think?

Puffing its cheeks Moving head side to side while swiping
its arm from left to right

Reflection Inducing (History) Oh hey, may be we have already
explored some of these rail-tracks.
Should we check our history? I think we
did not look at it much in the last few
minutes

Smile Moving head side to side while pointing
at the front

Reflection Inducing (A_A_add) Guys, I am a bit lost. I would like you to
tell me why is it that you removed the
last rail-track?

Confused Moving head side to side while putting
its arms at the back on the hips

Communication Inducing So Alice, why don’t you tell us about
what you think we need to do, and then
Bob, you tell us what you think

Neutral expression Moving head side to side while swiping
the right arm

Communication Inducing So my friends, based on the last few
minutes, I feel like we are not
communicating much with each other,
and that may be important for us to
solve this problem

Confused Moving head side to side while shifting
the left arm in a natural movement

Finally, the PE Score is calculated with these normalized features as
described by Equation 1 discussed above.

As introduced in Section 2.2.1 when describing the intervention
scheme of Hermione, the PE score of a team is compared
against a threshold to determine whether an intervention is
needed or not. Equation 2 defines how the threshold is generated:

τPE =
a+ b
2

(2)

where a is the average PE score of the high-learning teams in the
training dataset, and b is the average PE score of the low-learning
teams in the training dataset. In our study, the value for τPE is
set to 0.32.

2.3.4 Profile generation and comparison
The profile comparison pipeline can be seen in Figure 6B.

Every time a team member performs an action in the JUSThink
activity, the application notifies the log features extraction module.
For every 10 s, this module generates all the log-related features
of relevance, i.e., those corresponding to the behaviours that
the robot interventions seek to trigger, such as Edge Addition,
Edge Deletion, History, A_A_add, A_A_delete, A_B_add, A_B_
delete (see (Nasir et al., 2021b)). The current feature values are then
fed to the profile comparison module, that buffers all incoming
features until a 5-min timer expires. Then, the module computes the
average of each feature until that point in time (on the basis of the
values in the buffer and the previous average) and normalizes it with

respect to the training data. After that, the module computes the
euclidean distance between the normalized log features vector and
the reference log features vectors of the Expressive Explorers (EE),
and Calm Tinkerers (CT), generated from our training data. This
comparison allows to classify the team’s current problem solving
strategy as closer to the global exploratory approach followed by the
Expressive Explorers, or the local exploratory approach followed by
the Calm Tinkerers, or neither of the two.

The comparison unfolds as follows. At each time t ∈
[10,15,20,25] minutes, the euclidean distance dgt of the current
feature vector cvt of a team from each of the two reference profiles pgt
where g ∈ [EE,CT] is computed, and the lower distance is identified.
The current feature vector cvt is classified as matching a gainer
profile if and only if the lower distance dgt is lower than a threshold
τgt shown in Equation 3 as:

cpt = arg min [dgt (cvt,p
g
t)] ⟺ min dgt < τ

g
t (3)

In the case that a profile is chosen, the profile comparison
module lists the log features from the one in which the incoming
vector is farthest to the reference to the one where it is closest.
The intuition motivating this choice is that, by triggering a
robot intervention aiming to elicit the behaviour corresponding
to the farthest feature (i.e., the one that the team is displaying
the least), the robot can help the student better align with
the problem solving strategy they are already inclining towards,
and thus ultimately learn better (the intervention scheme is
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FIGURE 5
Behaviour of the proposed PE score equation. (A) PE Score when keeping Speech level at 0, 0.5 and 1, respectively. (B) PE Score when keeping the
Overlap_to_Speech_Ratio level at 0, 0.5 and 1, respectively. (C) PE Score when keeping the Long_Pauses level at 0, 0.5 and 1, respectively.

discussed in detail in Section 2.3.8). In the case none of the
distances dgt is close enough to the corresponding reference,
the robot continues focusing on the communication behaviour
of the team.

The thresholds τgt are generated a-priori on the basis of the
training dataset. Specifically, the threshold for each gainer type g ∈
[EE,CT] is computed according to Equation 4 as:

τgt =
dintrat + d

inter
t

2
(4)

where dintrat is the average intra group (teams belonging to the
same learner profile g) euclidean distance with the centroid profile
vector vt for the type of gainers at time t ∈ [10,15,20,25] minutes
and dintert is the average inter group (teams within the other gainer
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TABLE 2 Validation test 1: unpaired sample t-test and Wilcoxon
rank-sum tests, respectively, for the averages (test 1a) as well as for all
the points (test 1b) in PE score sequences of the gainers (G) and
non-gainers (NG).

Test 1a

Group Mean Standard deviation n

G 0.40 0.09 26

NG 0.23 0.03 6

p-value = 0.0001

Test 1b

Group Mean Standard deviation n

G 0.40 0.18 3,741

NG 0.23 0.15 935

p-value = 4.823950e−140

TABLE 3 Validation test 2: Wilcoxon rank-sum tests between the DTW
distances of gainers (G) with the two groups (test 2a) as well as the
non-gainers (NG) with the two groups (test 2b).

Test 2a

Group Mean Standard deviation n

G 1.51 0.46 676

NG 1.69 0.54 156

p-value = 0.000134

Test 2b

Group Mean Standard deviation n

G 1.69 0.54 156

NG 1.01 0.47 36

p-value = 5.897200e−15

group) euclidean distance with the centroid profile vector vt for the
type of gainers at time t ∈ [10,15,20,25]minutes.

The rational for computing the profiles 10 min after the
beginning of the interaction, and then every 5 min from then on,
stems from an analysis of the training dataset. On those data, we
noticed that the profiles generated every 5 min after time t = 10
minutes are always consistent with the average profile of that team,
over the entire activity.Thismeans that even if within a type of gainer
(EE or CT), there are fluctuations over time, when compared with
the other profile type at the same time mark, the differences are
consistent. For example, the feature of opening up history (T_hist)
always has a higher value in EE profiles compared to CT profiles at
every 5 min mark. However, within the EE profiles at the different
time marks, the value for the feature changes.

Let us walk through an example for profile comparison module.
At time t = 15 minutes, the profile comparison module analyses the
feature values it has buffered and computes the distances between
the current feature vector of the team and the two reference feature
vectors. Let us suppose that the distances dEE15 and dCT15 of cv15 are
0.57 and 0.83, respectively. The distance dEE15 = 0.57 is the lowest,
and also lower than the threshold τEE15 = 0.613. Hence, the team is
classified as adopting a global exploratory strategy and, in case a
robot intervention is triggered in the following 5 min, it will take this
information into consideration and try to nudge children towards
behaviours that are aligned with this strategy.

2.3.5 Validation of the thresholds for the profile
comparison module and the PE score module

We used the first 19 teams of the 68 teams that participated in
our study for validating the thresholds (τPE, τ

g
t for t ∈ [10,15,20,25]

minutes). Please note that five of these teams interacted with Harry
and were thus kept in the experimental set since the intervention
selection scheme ofHarry does not rely on the thresholds; hence, the
validation of these thresholds only matters for Hermione. The other
14 teams, that interacted with Hermione, were conversely discarded
from the experimental data. For τPE, we wanted to make sure that
the values in the validation data span between the entire range of
0 and 1 as it did in the training data, since the behaviour of the
validation data replicated the training data behaviour, the threshold
for the PE Score was kept as is. For the various τgt , we were interested
to observe the number of times an incoming profile was detected
to be close enough, to ensure that the system was not too strict and
never classifying an incoming profile as either Expressive Explorers
or Calm Tinkerers. With the threshold values computed over the
training set (τ for EE at t = 10, 15, 20, and 25 min = 0.532, 0.613,
0.703, and 0.638, respectively; τ for CT at t = 10, 15, 20, and 25 min =
0.818, 0.759, 0.771, and 0.797, respectively), around 30%–40% teams
were classified at least once as either of the two gainer profiles. By
analysing the teams in the validation set, we decided to increase
the thresholds of the type τgt by 20% (τ for EE at t = 10, 15, 20,
and 25 min = 0.638, 0.735, 0.843, and 0.765, respectively; τ for CT
at t = 10, 15, 20, and 25 min = 0.981, 0.910, 0.925, and 0.956,
respectively) to allow for at least 50% of the teams being classified
as either of the two gainer type at least once during the course of
interaction.

2.3.6 Robot architecture
As shown in Figure 2, the robot control architecture of both

Harry and Hermione includes two modules: 1) a basic module, and
2) a control module, both sending commands to the robot. The
basic module is responsible for automating the entire activity and
for handling fixed events occurring during the game play, while the
control module is responsible for the selection and triggering of the
robot interventions as well as the idle behaviours during the game
play. The whole architecture is implemented in ROS.

The automation of the activity includes tasks such as guiding
the team through the different stages of the activity pipeline
(explained in Section 2.2.1), explaining what each stage requires
the students to do, and giving supportive comments during the
game play. Every time a solution is submitted by a team, the basic
module computes its total cost, which is then verbalized by the
robot. In addition to this, the robot randomly reminds the students
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FIGURE 6
Real time modules for the robot intervention scheme adopted for Hermione. (A) PE score generation pipeline. (B) Profile comparison pipeline.

of the possibility of submitting multiple solutions as well as of the
remaining time (the game play is limited to 30 min). The basic
module is also responsible for pausing the game (i.e., disabling
user events) whenever an intervention is triggered by the control
module, to ensure that students pay attention to the robot. For
both Harry and Hermione, the basic module receives information
from the two apps as well as from the control module and sends
commands to the robot via its built-in service controllers. Upon
sending a command to the robot, the basic module notifies the
control module, to prevent it from concurrently issuing commands
to the robot.

While Harry and Hermione use exactly the same basic
module, their control modules differ. The control module of Harry
implements the intervention selectionAlgorithm 1, described below
in Section 2.3.7. Conversely, the control module of Hermione
receives information from the PE score generation module and
the profile comparison module and selects interventions following
the algorithm described in Section 2.3.8. The two control modules,
however, use the same algorithm to generate idle behaviours that
is after every 30 s if the robot resources are free, an idle behaviour
is executed. For both robots, the control module sends commands
to the robot via its built-in service controllers and, upon issuing a

command, notifies the basic module to prevent it from concurrently
issuing commands. After every robot intervention i the following
metrics, detailed in the following sections, are evaluated and stored:
i) the gain in PE score PEgaini ; ii) the associated weight wi; and iii)
the suggestion_usefulness score sui. On the basis of the suggestion_
usefulness score, the robot reacts with comments such as “Good to
know we all agree on the suggestion” or “Oh, so you guys do not agree
with my suggestion” before reprising the game play.

2.3.7 Intervention selection scheme of Harry
The intervention selection scheme of Harry, described in

Algorithm 1, is rather straightforward: every time a timer set to
rand(0,2) minutes expires (line 4), an intervention is randomly
selected from the intervention library and sent for execution to the
robot (lines 5–6) and a 2-min countdown is started (line 7). After
these 2 min, the timer is reset to a new value rand(0,2). Concretely,
Harry will trigger the first intervention within 2 min from the start
of the game play, and subsequent interventions with an interval of
2–4 min one from the other. The choice of a gap of a minimum
of 2 min between two interventions is arbitrary and meant to let
“a reasonable amount of time” pass before another intervention is
triggered, to allow to gauge the effectiveness of the intervention.
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1:  a = Exploration inducing interventions

2:  b = Reflection inducing interventions

3:  c = Communication inducing interventions

4:  Every rand(0,2) minutes:

5:    Pick an intervention i by rand(a,b,c)

6:    Harry executes i

7:    Wait for 2 min

8:    Calculate and store wi, PE
gain

i
, sui

9:    Reset timer

Algorithm 1. Intervention Selection Scheme for Harry.

Lastly, while Harry does not make use of the outcomes of the
PE score generation module and the profile comparison module for
the selection of its interventions, their output is still processed and
stored for the post-study comparison with Hermione.

2.3.8 Intervention Selection Scheme for
Hermione

The intervention selection scheme for Hermione is
described in Algorithm 2. On the basis of the team’s PE score,
computed every 10 s by the PE score generation module, the
algorithm computes the exponentially weighted moving average
(EWMA) of the PE score, over a sliding window of 2 min. This value
is chosen to ensure that, as in the case of Harry, at least 2 min pass
in between one intervention and another.

The EWMA PE score is then compared to the threshold τPE
(line 5): if it is above the threshold, the robot does not intervene
in order not to disrupt the student’s Productive Engagement state
(line 6). If the EWMA PE score is lower than the threshold, the
algorithmconsiders the phase of the activity and the problem solving
strategy adopted by the team to determine the type of intervention to
trigger. More precisely, in the first 10 min of game play, or whenever
the team’s profile is not close enough to any of the two reference
profiles (line 8), Hermione picks one of the communication inducing
behaviour. Conversely, after 10 min of game play, whenever the
team’s current profile matches either the Expressive Explorers or the
Calm Tinkerers (line 20), Hermione triggers either an exploration
inducing intervention, or a reflection inducing one, on the basis
of the weakest log feature returned by the profile comparison
module (lines 27–28, see also Section 2.3.4). To avoid having a same
intervention (content wise) being triggered multiple times, which
could annoy the students, interventions are chosen on the basis of a
weighting system. At the beginning of the session, all interventions
are assigned a weight of 0 and a flag Si denoting whether they have
been triggered is set to FALSE (line 4). Whenever an intervention
is triggered, Si is set to TRUE (lines 19, 32) and that intervention is
not chosen until all the other interventions associated with the same
behaviour have been used too.

Once all interventions associated with the same behaviour have
been used (which, however, is quite rare in a 30 min activity), all the
flags Si are reset to FALSE.Once the behaviour to induce is identified,
among all interventions with Si = 0 that are associated with that
behaviour, the system picks the one with the highest weight wi. The
weight of an intervention is updated every time that intervention is
triggered as shown in Equations 5, 6 as:

1:  a = Exploration inducing interventions

2:  b = Reflection inducing interventions

3:  c = Communication inducing interventions

4:  ∀i, wi = 0, Si = 0

5:  EWMA PE Score = EWMA of PE Score over a

sliding window of 2 min

6:  if EWMA PE Score ≥ τPE then

7:   Do nothing

8:  else if EWMA PE Score < τPE then

9:   if t ≤ 10 minutes OR cpt ≠ any g ∈ [EE,CT] then

10:    if ∀i ∈ c, Si = 1 then

11:     Sort i based on wi in descending order

12:     Set Si = 0 for ∀i ∈ c

13:    else if ∀i ∈ c, Si ≠ 1 then

14:     Pass

15:    end if

16:    Pick the first intervention i of type c

such that Si = 0

17:    Hermione executes i

18:    Wait for 2 min

19:    Update wi, PE
gain

i
, sui

20:    Set Si = 1

21:   else if t > 10 minutes AND cpt = any g ∈ [EE,CT]

then

22:    if ∀i ∈ a OR b, Si = 1 then

23:     Sort i ∈ a OR b based on wi in

descending order

24:     Set Si = 0 for ∀i ∈ a or b

25:    else if ∀i ∈ a AND b, Si ≠ 1 then

26:     Pass

27:    end if

28:    Identify the weakest log action based

feature of the matched profile

29:    Pick the first corresponding intervention i

of type a or b such that Si = 0

30:    Hermione executes i

31:    Wait for 2 min

32:    Update wi, PE
gain

i
, sui

33:    Set Si = 1

34:   end if

35:  end if

Algorithm 2. Intervention Selection Scheme for Hermione.

wt
i = w

t−1
i + PE

gain
i (5)

where

PEgaini = PE
after
i − PE

before
i (6)

where t denotes time, w0
i is the default weight of 0 for

intervention i, PEafteri and PEbeforei are the values of the PE score
calculated as an exponentially weighted moving average in the
2 min window after and before an intervention, respectively. The
choice of an exponentially weighted moving average in this
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technique instead of a simple average is to give more weight to
the recent quantity and quality of the communication between the
team members.

3 Results

We first compare the two robot versions in terms of learning
gain, productive engagement, and competence (H1-H3) and then
we evaluate the two relationships introduced in Section 1: with H4
and H5 we evaluate the relationship between robot interventions
(RI) and productive engagement (RI to PE), while H6 evaluates the
relationship between the PE score and learning gains (PE to LG).
For our analysis, we use two types of tests: Unpaired Sample t-test
whenever the samples are continuous and satisfy the assumptions for
a parametric test, andWilcoxon rank-sum test whenever at least one
sample out of two does not satisfy the assumptions for a parametric
test and/or is an ordinal variable.

3.1 Comparison between Harry and
Hermione (H1-H3)

To evaluate hypotheses H1-H3, we run a Wilcoxon rank-sum
test between the two conditions for the aforementioned evaluation
metrics for learning gain, and perceived competence; and an
unpaired sample t-test for PE score. As shown in Figure 7C, there
is no significant difference between students interacting with Harry
and those interacting with Hermione in terms of learning gain.
Hence, H1(a) is not supported.

Furthermore, contrary to our expectations, the Productive
Engagement score is significantly higher (p-value: 0.02, H: 2.30) for
the teams that interacted withHarry than those who interacted with
Hermione. Thus hypothesis H2 is rejected.

Lastly, Hermione’s suggestions were preferred over those from
Harry. The suggestion usefulness score is higher for Hermione
than for Harry, with marginal significance (p-value: 0.06, H:
−1.86). Similarly, Hermione was rated higher than Harry in the
questionnaire on both the right suggestions and right timing
items, albeit non-significantly. Hence, hypothesis H3 is partially
supported.

3.1.1 High and low learning groups between
conditions

In order to investigate H1(b) and better understand the afore-
reported outcomes we first verify whether the differences in the
Productive Engagement score and the suggestion usefulness score
come fromadifference in the number of high and low learning teams
in the two conditions.

To this end, we calculate the average learning gain (T_LG_
joint_abs) of the entire data set (0.559, normalized between 0 and
1) and use a mean split to split the teams in each condition into two
groups: one group comprising of teams with high learning gains and
the other group comprising of low learning gains. To validate this
mean split, we observe via Wilcoxon rank-sum test that indeed the
learning gains of the low learning teams are significantly different
from the ones of the high learning teams, in both conditions (for
Harry, p-value: 6.33e−05, H: −4.00; for Hermione, p-value: 1.46e−05,

H:−4.33). Interestingly, 18 of the 26 teams that interactedwithHarry
ended up with higher learning gains, while only 13 of the 26 teams
that interacted with Hermione ended up with higher learning gains.
Thus, H1(b) is rejected.

Furthermore, we compare the two groups between the two
conditions on the evaluation metrics introduced in Section 2.2.2
using Wilcoxon rank-sum tests mainly and unpaired sample t-
test for the PE Score. As Figure 7A shows, there is no difference
in terms of any metric between the two groups that have low
learning gains, i.e., low learning teams behave similarly irrespective
of the robot they interact with. Conversely, significant differences
are found when comparing the two groups that have higher
learning gains, as shown in Figure 7B, which explain the differences
in the Productive Engagement score and suggestion usefulness
score found in Section 3.1. The teams with higher learning gains
in the Harry condition display a significantly higher PE score
(p-value: 0.003, H: 3.17) and rate the robot significantly lower
on the usefulness of the suggestions (p-value: 0.05, H: −1.94)
as compared to the teams with higher learning gains in the
Hermione condition.

3.2 Correlations between the robot
interventions, PE score and learning gain
(H4-H6)

To answer the hypothesisH4, exploring the relationship between
robot interventions and the PE score, we are first interested in
identifying the types of robot interventions that were received by
the students in each condition. More specifically, we focus on the
high learning teams who interacted with Harry and Hermione, as
it is only between these groups that differences surface in terms of
PE score and suggestion_usefulness score. Indeed, a Wilcoxon rank-
sum test reveals that the high learning teams interacting withHarry
received significantly more exploration inducing interventions (p-
value: 0.05, H: 1.90) as well as reflection inducing interventions (p-
value: 0.002, H: 3.06) compared with the Hermione group while
the high learning teams that interacted with Hermione received
significantly more communication inducing interventions (p-value:
2.20e−05, H: −4.24). To verify whether it is indeed the differences
in the types of interventions received that causes the observed
differences in the PE score between the two groups, we perform
a linear regression analysis with the type of interventions as the
independent variable and the PE score as the dependent variable,
for all teams in each of the two groups. We do so by using ordinary
least squares (OLS) methods with the statsmodels library (Seabold
and Perktold, 2010). As shown in Figure 8A, in the case of the high
learning teams interacting with Harry, none of the intervention
types (exploration inducing, reflection inducing, communication
inducing) is a statistically significant predictor of the PE score (β:
−0.42, p-value: 0.317; β: 0.36, p-value: 0.37; β: 0.03, p-value: 0.93,
respectively). Conversely, for the high learning teamswho interacted
with Hermione (see Figure 8B), both the intervention types of
reflection inducing and communication inducing are statistically
significant predictors of the PE score (β: −0.46, p-value: 0.02; β: 0.42,
p-value: 0.02, respectively). Unexpectedly, however, they affect the
PE score in opposite ways. An increase of one in communication
inducing intervention type seems to be associated with an average
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FIGURE 7
Analysis of hypotheses H1-H3. (A) Comparison between the low learning teams interacting with Harry and those interacting with Hermione, on the
evaluation metrics presented in Section 2.2.2. None of the metrics differ with statistical significance. (B) Comparison between the high learning teams
interacting with Harry and those interacting with Hermione, on the evaluation metrics presented in Section 2.2.2. The asterisks on the graph denote
significant differences on the statistical test (PE score, p-value: 0.003) (suggestion_usefulness score, p-value: 0.05). (C) Comparison between the
groups interacting with Harry and those interacting with Hermione, on the evaluation metrics presented in Section 2.2.2. The asterisks on the graph
denote significant differences on the statistical test (PE score, p-value: 0.02). For all three sub-graphs, the value on the y-axis indicates where the
variables on x-axis for each of the two conditions lie along the range of 0–1.

increase of 0.42 in the PE score, while an increase of one in the
reflection inducing intervention type seems to be associated with an
average decrease of 0.46 in the PE score. This finding suggests that
interventions, and especially reflection inducing ones, require further
refinements and testing, to ensure that they all yield a positive effect
on the PE score. To conclude, H4 is partially supported as some of

the interventions have an effect on the PE score, although only in the
case of Hermione and the effect is at times detrimental.

To assess H5, we evaluate the effectiveness of the interventions,
i.e., if the corresponding learner behaviour increases in the
2 minutes after the intervention is suggested as compared to the
2 minutes that preceded the intervention. If that is the case, the
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FIGURE 8
Linear regression between the three intervention types and the PE score for the high learning teams in both conditions. (A) For high learning teams
interacting with Harry, none of the intervention types is a statistically significant predictor of the PE score. (B) For high learning teams interacting with
Hermione, communication inducing and reflection inducing interventions are statistically significant predictors of the PE score with p-values of 0.02
and 0.02, respectively.

intervention is considered effective. We can thus compute the
percentage of interventions that were effective, for each of the three
types of interventions. For both robots Harry and Hermione, while
the communication inducing (53% and 48%, respectively) and the
exploration inducing (42% and 33%, respectively) interventions are
effective in a medium range, very few (6% and 10%, respectively)
of the reflection inducing interventions seem to have been effective.
Hence, H5 is only partially supported.

Lastly, hypothesis H6 investigates the relationship between the
Productive Engagement score and the learning gain T_LG_joint_abs.
To this end, we again perform a linear regression analysis with the
PE score as the independent variable and the learning gain as the
dependent variable. The results are shown in Figure 9. In the case
of teams interacting with Harry, the PE score significantly predicts
the learning gain (β: 0.39, p-value: 0.01) with the fitted regression
model as 0.38 + (0.39∗ PE score), while this is not the case for teams
interacting with Hermione (β: 0.09, p-value: 0.625). Hence, H6 is
only supported for Harry.

3.3 Summary

Tying our main findings altogether, both robots induce similar
learning outcomes (H1a) and similar level of effective interventions
(H5), but teams interacting withHarry display a significantly higher
PE Score than those interacting with Hermione (H2). For Harry, a
robot that leverages much less information than Hermione, there
exists a relationship between the PE Score and the learning gain (H6)
and a high number of teams (more than in the case ofHermione) end
upwith higher learning gains (H1b). However, the PE Score does not
seem to be correlated with the interventions of the robot (H4) and

the robot’s suggestions are perceived as less useful by the learners
(H3). On the contrary, for Hermione, there exists a relationship
between some of the robot’s interventions and the PE Score (H4) and
the robot’s suggestions are perceived as more useful by the learners
(H3). However, there is no correlation between the PE Score and
learning gain (H6).

4 Discussion

To interpret our results, we go back to the two sides
of the equation that links robot interventions to students’
productive engagement and students’ productive engagement to
students’ learning.

In the case ofHarry, teams received significantly more reflection
inducing and exploration inducing interventions which, although
found to induce the desired behaviour 6% and 42% of the times,
were not found to impact the PE score in any way. For this,
we hypothesize that the timing of interventions, not taken into
consideration by Harry, could be extremely crucial to define this
relationship. In turn, the PE score was found to be positively
correlated with the students’ learning gain. Conversely, in the case of
Hermione, teams receive significantly more communication inducing
interventions which elicit the desired behaviours 48% of the times
and were found to positively affect the PE score. This suggests that
a more conscious action selection strategy, i.e., that of Hermione,
can indeed significantly influence the variable of interest Productive
Engagement, showing the potential of such a skilled ignorant peer
robot. However, the PE score of students interacting with Hermione
was not found to be correlated with their learning gain. We provide
two hypotheses for this: 1) the linear correlation between the PE
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FIGURE 9
Linear regression between the PE scores and the learning gains of the teams in both conditions. For teams interacting with Harry (left), the PE score
significantly predicts the learning gain with a β of 0.39 and a p-value of 0.01. Whereas for teams interacting with Hermione (right), we do not find a
significant result.

score and the learning gain holds valid only above a given threshold.
Indeed, for teams interacting with Hermione, the PE score is not
only significantly lower than the one of those interacting withHarry,
but generally lying around low values, with a mean value of 0.33
which is very close to the threshold value τPE = 0.32 set to trigger
interventions (see Section 2.3.3); 2) the linear correlation between
the PE score and the learning gain is an insufficient approximation
of the real relationship between the two constructs and, specifically,
may no longer hold true in case of interventions actively impacting
the PE score (in the case of Hermione).

The analysis of the reflection inducing interventions is
particularly interesting. While teams that interacted with Harry
received significantly more interventions of this type than those
who interacted with Hermione, the former seemed unaffected
by the interventions, while the latter saw a decrease in their PE
score. Considering that, in the case of Hermione, the positive effect
of communication inducing interventions on the PE score was
counteracted by the negative effect of the reflection inducing ones,
this clash might be part of the reasons why no conclusions can be
drawn on the link between the PE score and learning gain in the
case of Hermione, in addition to the hypotheses mentioned above.
The detrimental effect that reflection inducing interventions had on
the PE score in Hermione and their general limited effectiveness
in inducing the desired behaviours (6% and 10% for Harry
and Hermione, respectively) suggest that future studies should
particularly refine the content of the reflection inducing interventions
to successfully induce the desired behaviours.

To summarize, our results with a skilled ignorant peer social
educational robot demonstrate both theoretical and practical
implications that we highlight below.

4.1 A perspective shift when modelling
subjective constructs

Ourmodelling of engagement represents a shift towards aligning
it with the ultimate goal of student learning, which is the cornerstone

of the design of any social educational robot. The practical but naive
assumption of a linear relationship between engagement (however
measured!) and learning, as our study shows, is incomplete at best.
A key goal of this work was to better characterize this relationship
and better evaluate it, while concurrently assessing the relationship
a robot’s interventions have with such engagement.

We contend that this paradigm shift can be regarded as a
fundamental design principle with profound implications for HRI.
It offers guidance for modeling and validating subjective constructs
such as engagement, rapport, synchrony, collaboration, etc., in
educational human-robot interaction settings, emphasizing that
these constructs are not endpoints in themselves but rather integral
means to achieve the ultimate educational goal.

4.2 Timing matters

One major challenge for social robots in real-world HRI is
to initiate communication or provide feedback when it is least
disruptive to the interaction at hand. In the specific case of
educational social robots, the overarching aspiration is to build a
robot that intervenes in a timely manner such that its interventions
are least disruptive to the learning process, and most likely to be
well received by the students both objectively (as observed in their
subsequent behaviour) and subjectively (as rated based on their
personal experience). Consequently, our investigation of the effect
of robot interventions and their timing on the students’ engagement
state, intrinsically tied to learning, and on their perception is a timely
contribution. We argue for the inclusion of validation checks in HRI
studies where robot behaviours are driven by students’ behaviours
(here, embedded in Productive Engagement) to gauge the extent to
which the robot interventions manipulate the variables of interest,
thereby verifying the reliability of the robot design. For example,
in our work, the variable of interest Productive Engagement was
not manipulated at all by Harry but it was manipulated in the
case of Hermione. Future work can focus on how to leverage this
relationship to eventually lead to higher learning.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2024.1385780
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nasir et al. 10.3389/frobt.2024.1385780

4.3 Outlook

While the paper demonstrates the potential of using a social
educational robot as a skilled ignorant peer in an educational
environment, some limitations need to be highlighted and addressed
in future work. As a part of idle behaviours, the robot would
randomly sometimes scratch it’s head or look confused which could
influence the children’s problem solving behaviour when the team
is closer to a solution. While we did not directly observe such a
situation, this nonetheless is a possibility; hence more careful design
and choice of idle robot behaviours should be considered. Then,
since all data used in this work were collected at international
schools in Switzerland, they refer to a very specific pool of students,
coming from a certain economic and social background; hence, any
generalization requires further studies. Furthermore, the training
data is not balanced in terms of the two classes of gainers and
non-gainers.

Similarly, there is a need to apply the framework of Productive
Engagement, i.e., the design methodology for an autonomous skilled
ignorant peer social educational robot equipped with the concept of
Productive Engagement, in contexts other than the JUSThink activity.
This would allow us to better understand how the framework
generalizes to other tasks and learning activities. For instance, our
task relies on a shared visual workspace which has an influence on
the possible problem solving strategies and interactions. Other tasks
might not have the same characteristics. Therefore, in the future, we
would like for this framework to be adopted and evaluated in other
HRI learning activities as well as other learning contexts.
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