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Chapter 1
Introduction

A fundamentel problem in mathematical elasticity is to study the limiting behavior h — 0
of elastic energies
E'"y)= | W(Vy) da (1.1)
Qp

of a deformation
Yy Qh — RB,

which depend on a small parameter A > 0.

Prototypical examples are plates and rods. In the case of plates we have €, =
S % (—%, %) for a bounded 2-dimensional domain S as for rods we have Q; = (0, L) x hS,
where L > 0 is the length of the rod and S is the 2-dimensional cross section. For plates
the height is assumed to be very small compared to the area of the mid-surface, in contrast
for rods the area of the cross section should be small compared to the length.

When trying to predict the behavior of a material, of which one parameter is very small
compared to the others, under a given load, we expect that the resulting deformations can

be essentially described by a lower dimensional model:
e Deformations of thin plates should be understood by deformations of its midplane.
e Rods should be described by a 1D-model.

It is desirable to get a mathematical rigorous derivation of these effective models. Of course
we cannot expect that an effective model is completely accurate. Still we do expect some
advantages compared to the real world model:

e One trivial reason for the use of effective models is the impossibility to capture the
whole complexity of reality.

e From a mathematical point of view it might be easier to show existence and uniqueness
of solutions tho the corresponding differential equations.

e From a numerical point of view less complexity in the model should reduce complexity
of calculations.

On an abstract level we can view at the problem as follows: Let (P),)n~0 be a family of
problemes (where P; is the real problem for a small number h > 0) and Fy be an effective
problem. We give two possible ways (there are of course others) to connect Py with the
problems F,.
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(i) Assume that there is a (sufficiently regular) solution to the approximating problem
Py and show that there is a solution of problem P, for small A > 0. Usually this
is done with help of the implicit function theorem. We mention [Mon03| for von-
Kérmén-plates. A similar ansatz is used in [BS16] not for dimension reduction, but
for a discrete-to-continuum problem.

(ii) Assume that the problems (P}),~o have solutions and show that the corresponding
solutions converge to a solution of the limiting problem Fy. This is usually done by
['-convergence, a type of convergence of functionals that, under certain additional
conditions, ensures convergence of minimizers to a minimizer of the limiting functional.
Good references for I'-convergence are for example [Mas93] and [Bra02].

In many cases the first ansatz provides estimates of the error between the solutions of
P, and F, in a suitable norm. This is not the case for the second since I'-convergence
does not imply any convergence rate. In this thesis we will not follow the first approach.
We give an overview of the ['-convergence results with the functionals . In order to
get interesting results the task is to compute the I'-limit of the rescaled functionals i—; as
h — 0. Different values of § lead to different limiting theories. For plates among others
we have:

(i) The case 5 = 1 has been treated in [DR95] and leads to membrane theory, which
corresponds to a stretching of the midplane. This theory can be applied for example
for stretching a thin piece of rubber.

(ii) For 8 = 3 the I'-limit leads to Kirchhoff-theory, which is a bending theory where the
midplane remains unstrained. This has been derived in [FJM02]. A key ingredient
in this work is the famous geometric rigidity result: There is a constant C' = C(U)
only dependent on the domain U such that for all v € W2(U) there is a rotation
R € SO(n) such that [|[Vv = R| ;2 < CHdistQ(Vv,SO(n))”Lz(U). An example
where Kirchhoff-plate-theory applies is the bending of sheets of paper.

(i) The case 8 =5 leads to von-Kdrman theory derived in [FJMO6]. It is used for very
small deformations, where the in-plane displacement is much smaller compared to
the out-of-plane displacement. The latter one should be comparable to the height of
the plate.

In all of these examples I'-convergence is used for dimension reduction. A nice intro-
duction into lower dimensional theories is given in [Mill7]. Dimension reduction however
is not the only application of I'-convergence in the field of mathematical elasticity theory.
We want to mention the derivation of linearized elasticity from finite elasticity of Dal Maso,
Negri and Percivale in [MNP02]. I'-convergence is also an important tool when it comes to
pass from discrete to continuum models. For a general overview of discrete to continuum
approaches not limited to I'-convergence we refer to [BBL07|. In [AC04] nonlinear elasticity
functionals are derived from pair interaction models. This work has been extended to a
wider class of interaction potentials in [BS13]. Another interesting discrete-to-continuum
result is [Sch09], which can be seen as a discrete-to-continuum analogue to [MNP02].

The investigation of discrete interaction models has further advantages compared to
purely continuum models. The latter might not fit for extremely thin structures, i.e. of
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films consisting only of a few layers of atoms. The discrete models we look at for thin
films have two different scales, the interatomic distance € and the thickness parameter
h. In very thin (we will write ultrathin) films the two parameters are roughly the same
order of magnitude, i.e. £ &~ h. In thicker (we will write thin) structures it holds that
e < h. Depending on the regime limiting models might be different. This can be seen
in the work of [Sch06] where Kirchhoff plate theory is derived from an atomistic model.
Additional surface terms, which can be neglected in the thin case, occur in the ultrathin
model. This work included a discrete rigidity result which is an analogue to the one
in [FJMO2]. Different models for thin or ultrathin films can also be seen in [BS22] where
von-Kéarman plate theory was derived from an atomistic model. Such models for ultrathin
structures could not be derived from purely continuum theory so far.

Let us mention that results for ultrathin films are not only available for plates, see for
example [SZ23|, where the authors derived a bending-torsion theory for thin and ultrathin
rods.

From the view of a mathematician it is a natural question if we can tell something about
stationary points that are not minimizers of the respective functionals. I'-convergence
only tells us something about the behavior of almost minimizing sequences. For integral
functionals T, : X — R, h > 0, defined on a function space X we do not get any
information about stationary points xj, which are not absolute minimizers. For example
xp, could be a local minimizer of T} or a saddle point. But such points are also solutions
of the corresponding Euler-Lagrange-equations of 7T}, and therefore it is clearly interesting
to look at them as well. We mention [MPO0§], [MMRO06] and [MMO§| as examples.

Another reason why one might want to look beyond absolute minimizers is because
['-convergence does not really fit for time-dependent problems, although there are recent
works in that direction, c.f. [Mie23|. Understanding the convergence of equilibria for a
static problem can help to prove a similar result for a corresponding time-dependent
problem. In [AMMO9] the results for von-Karman-plates ( [MPO8|) have been extended to
the time-dependent setting.

The goal of this thesis is to prove similar results as in [MPO08] and [AMMO09| starting
from a discrete interaction model. In the static case we assume that we have atomic
solutions that satisfy a force-balance of a particle system and show that these solutions
converge to solutions of the von Karman equations. In the dynamic case we consider
solutions of the equations given by Newton’s second law of motion and show that they
converge to a solution of the time-dependent von Kéarman equations. Especially in the
time dependent settings with ultrathin films there are not many results yet to the authors
best knowledge.

Working with discrete objects leads to many difficulties which are not present in the
continuum setting. One question is how to relate continuum deformations (which appear
in the limiting model) with displacements of atoms in a crystal lattice. One usually applies
the Cauchy-Born hypothesis. Roughly speaking it says that each atom in a lattice follows
the same affine deformation given at the boundary of the lattice. More precisely we can
formulate it as follows: If the boundary atoms x of crystal lattice A is subject to an affine
deformation y(x) = Az, then the overall minimizer of the interaction energy of A is given
by y. For validity of the Cauchy-Born hypothesis we refer to [F'T02] [CDKMO06|. Also we
want to mention [Eri0§] for a more detailed analysis.



Chapter 1. Introduction ix

Another question one faces when dealing with discrete objects is the choice of an
appropriate interaction potential. Of course it is desirable that the analysis applies to
widely used potentials in physics such as Lennard-Jones-potentials. In our case we had to
choose more basic interaction potentials due to problems with growth conditions. Also the
range of atomic interaction has to be considered. A longer interaction-range results in a
more complex model, especially in the ultrathin setting.

Finally passing from discrete objects to continuum objects means to pass from sums to
integral expressions. Hence it is necessary to choose suitable interpolations for the discrete
mappings. We discuss two different interpolation schemes and show that they are more or
less equivalent.



Chapter 2
The atomistic model

In this chapter we introduce the basic domains we are working with. We introduce discrete
deformations and their gradients. Further we present the two interpolations schemes used
in this thesis to pass from atomistic to continuum objects.

Then we define the energy of a discrete deformation as well as some quadratic forms
which appear in the limiting model. Finally we prove some basic properties of the previously
defined objects. For notation used in this chapter and the following thesis we refer to

Appendix [B]

2.1. Domain and atomistic deformations

Let S C R? be an open, bounded and connected Lipschitz domain. Let ¢,, h,, such that
€ny hy — 0, where ¢,, corresponds to the interatomic distance and h,, to the height. By
v, € N we denote the number of layers in the x3-direction, i.e. we have

hn = (vp — 1)e,.
Let Q, =S x (0,h,) and A,, = Q, N e, Z%. Let 2',--- , 2% be the corners of the unit cube
centered at 0 and let

(/-1 1 1 -1 -1 1 1 -1
Z:(zl,---,zg):§ -1 -1 1 1 -1 -11 1
-1 -1 -1 -1 1 1 1 1

Figure 2.1: The unit cube Z.
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En

213 contained in

By A}, we denote the set of midpoints of lattice cells x + [,
R? x [0, hy] for which at least one corner lies in A, i.e.

A — (U (0t e {2 ,f})) A (B2 x (0,h))

IEAn

The grid A/, is also called the dual grid of A,,.

Figure 2.2: The red points correspond to A, the blue points are the midpoints of the cells. The green
points are points to where deformations are extended.

For x € A, we set
En En\°
U =o+(-5.3)

We set S, = {zr € S: dist(z,05) > v2¢,} and call Q,(x), z € A/, an inner cell if

Qn(x) N (S, x R) # (. In this case we write z € A/,°. The corners of these cells are called
interior atom positions A2 = A/ °+¢,{z',--- ,2%}. We call Q,(x) a (lateral) boundary cell
if
redN =N \N".
Further we set B
A, =N + e, {2t 28}
An atomistic deformation w is a mapping

w: A, — R3.

Later we will extend deformations to mappings w: A, — R3. In the following atomistic
deformations are also denoted by discrete deformations or lattice deformations.

2.1.1. The discrete gradient

For an (extended) atomistic deformation we define the associated discrete gradient

Vuw(z) = (Qw(z), -, 0sw(z)) € RP®, 2z € AL, (2.1)
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where
diw(x) ! + enz 153 + en2’) (2.2)
iW\T) = — m n? w T nz .
8 =t

In the following we will abbreviate

oo

8

1

— E w( x+z—:nz]
Jj=1

The discrete gradient can be viewed as a linear operator

V:{p: A, —>]R3} —{¢: A} —>R3X8},

() @], = = (sl +e0) = § Sote +02) ).

n

If we consider the respective inner products on (2(A,; R?) and [2(A]; R3*8),

(f, De@.z = > (@)

z€A,

(F, G)IZ(A;I;RSXS) = Z F(w): G’(w),

weA!,

it admits an adjoint V*: {¢ : A/, — R3®} — {¢: A,, — R3} given by the identity

> Fw): (Vo) (w)= > (V'F) (2) - p(x), (2.3)

weA! €A,

where p : A, — R® and F : A/, — R3*8, )
In some situations the discrete gradient Vy is difficult to handle because it lacks to

have a product rule. Whenever needed this problem is circumvented by considering instead
Dy—<D1y7 aD)Wlth

Duy(z) = i [y (& + en(a’)) — y (8)] .

This is defined for z € A/, with

= (o 2] = 2] = 2])
xr = En | — 9 En | — ) En | — )
En En En
such that Q,(z) =2 + (0,e,)* and A = (a,--- ,a®) defined by
1
A=7+ 5(1, L) ®(1,1,1,1,1,1,1,1).
The a’ are the corners of the unit cube centered at (2, 3 2) The following easy calculation
shows the claimed product rule: For deformations y and w we have
1

Di(y(@)w(@)) = — [y (¢ +end’) w (& + 2na’) — y(@)u(2)]
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- i [y (2 4 ena’) w (2 4 ena’) —y (&) w (2 + ,a) |
4-5i [y (2)w (& 4 e,a") — y(&)w(E)]

n

— Dy(a)w (& + £aa’) + y(#) Ditw(#).

The relation between those discrete gradients is given by

d(w) = Day(@) = 5 3 Dy(d) (2.4)
and B B B
Diy() = 9y(z) — dy(z). (2.5)

These equalities follow immediately from & = x + g,2!, 2¥ = a* + 2! and y(z + £,2%) =
y(& + ea).

2.1.2. Extension

Later when we deal with interpolations of atomistic deformations w : A, — R? it is
necessary to define w on the corners of each cell @, (x) with = € Al,. However there
are cells @, (z) with corners not contained in A,. Thus we use an extension procedure
from [Sch09] to obtain a deformation w’ : A,, — R3. For details of this procedure we refer
to Section 3.1 in [Sch09]. We want to mention the following lemma which can also be
found in [BS22]. It states that rigidity and displacements of the boundary cells can be
controlled by inner cells.

Lemma 2.1.1. There are constants c¢,C > 0 such that for any w : A, — R® and
R* € SO(3)
Z V' (z) — R*Z|2 <c Z V' (z) — R"‘Z!2
z€IN, zEN,®
as well as
Y dist*(Va'(z),S0(3)2) < C ) dist*(Vu'(z), SO(3)2).

€N/, zEAL°

2.1.3. Rescaling

It is convenient to work on a fixed domain. We achieve this by rescaling the reference
domains Q,, to Q = H;'Q,, = S x (0,1) with

0
H, = 0
h

OO =
O = O
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Let A, = H-'A, and, for the extended maps, A, = H'A,. A deformation w : A,, — R3
can be identified with a deformation y : A, — R? via y(z) = w(H,x). The rescaled
discrete gradients are given by

5yy(x)_y<x'+gn(i) PO )_ézy(ﬁen ),xg—l—;—Zzé) (2.6)

J=1

Dry(r) = - {y <$ e, ( h(“lzlg )) - y(i’)} . (2.7)

2.1.4. Interpolation

and

To pass from discrete to continuum objects we need to interpolate in a suitable way. We
shortly discuss the two interpolation schemes given in [BS22|. Let w : A,, — R? be a
lattice deformation. Let

o

o= (U aw
x€N]°

(o}

o= | U@

zeN!,
In order to extend w to @, (z) we set
D Ly DI A
w( gjzlwx—i—en 2') forx €
Let vy, --- ,vg the center points of the six faces Fi,--- , Fg of [—%, %]3 We define

1 .
W(T + e,vg) = 1 Z w(r 4 ,27),
J

where z; is a corner of the face with center v*. Then we interpolate linearly on each of the
24 simplexes
co (x, T+ e 0" x4 e,2t T+ enz])

with [z — 27| = 1, |27 = oF| = |27 — | = \% This defines a piecewise affine mapping
w € W2(Qout: R3) which satisfies

i(x) = ]{2 e e (2.8)

and

W(x +e,2") :][+ . w(¢) d¢ (2.9)
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for every face = + ¢, F" of Q(x).
For the second interpolation define

&y €
Vn - [__na_n] )
(U (x—l— 5 >
IEEAn
&y €
Vout — |:__n _n]
: U (:v+ E ) :
IEAn
v (H o e_n]g)
o ) 272 ’
x€A,: ' €Sy
and let
_ En En\3 +
w(§) =w(x) forevery £ € x+ <—3, 3> , €N,

Here we obtain a piecewise constant function @ € L?(V,°"*; R?). Both interpolations have
their own advantages. The first interpolation allows for an application of the results
in [FJMO06| while for the second one the discrete gradient can be extended to an almost
everywhere defined piecewise constant function on Q°". This works as follows: For
€€ Qu(z), x € A, we have

En en>3

E+enz' € (z+en?') + (—5, )

We set

0w(€) == w(€ + e,2") —

which results in

Viw(€) = Vw(xr) whenever £ € Q,(z),r € A
Further we have

O (§) = Dyw(&) —

ool —

> Dyw() (2.10)

3 = _ —
whenever ¢ € z + (—2,2)" by d;w(§) = dyw(z) and (2.4).
While the linear interpolation results in a quite regular function the piecewise constant
interpolation is tailor-made to pass from sums to integral terms. The rescaled versions of

the interpolated functions are defined as

J(z) = w(H,z) on Q" = H, 'Q™,
y(r) = w(H,x) on f/,f“t = H Vo,
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For the sake of completeness we also introduce Q™ = H-'Q™ and V,, = H;'V,. Next we
make precise what it means that a sequence of discrete deformations converges to a limiting
deformation. To do this we need to choose a suitable function space for these limiting
deformations. It turns out that for thin films L?(2;R3) is natural, while for ultrathin films

L? (S X <—; ﬂ)) is a good choice. We extend a function y € L*(Q2;R3) by 0

2(v—1)7 2(v—-1)
outside of 2.
Definition 2.1.2. Let y € L*(;R3) if v, — oo ory € L? <S X (—ﬁ,%)) .
Then y is called a limiting deformation if there exists a sequence of mappings y, : A, — R3

such that
" : Y

z€An

2

— 0.
n—oo

yn - 9 y(x + 5) df
]{ )" )

272 " 2hp ' 2hn

This definition is independent of the particular extension that is chosen for y. Since
some of the arguments below are slightly easier if y is extended by 0 we stick with this
extension. The goal of this section is to show that limiting deformations do not depend on
the interpolation scheme. More precisely for thin films:

Proposition 2.1.3. Let v, — oo. Let y, be a sequence of lattice deformations and
y € L*(;R3). Then the following are equivalent:

2

i) %ng\n Z/n(@‘f(_% ) (— g m) y(z +§) d§ 7H—O>OO>

2hp, ' 2hy,

i) ¥, — vy in L*(Q;R3),
ii) U — y in L2(Q;R3).
For ultrathin films there is a similar result:

Proposition 2.1.4. Let v, =v € N. Let y € L*(Q) such that y is continuous in x3 and

affine in x3 on the intervals (i:ll, Vil) yi=1,...,v—1, and define y*(x) = y( ,VAI)
2i—1  2i+1 —0
2(v—1)7 2(v—1) -

whenever x3 € ( .,v — 1. Then the following are equivalent:

2
— 0,
n—00

3 3

W oy in 22 (8 (a5t o))

ii) P — y in L*(Q).

yn(x)_f(,%’%nfx( en en)y*(x+5) dg§

" 2hp '2hn

We defer the proofs of these propositions to the end of this section since we need a few
preliminaries.

Proposition 2.1.5. (i) There are constants ¢,C > 0 such that for every x € /N\;I

<, 2 e S <, 2
c/@n(x)‘ﬁj(fﬂ d¢ h_nZ:: (2" +en(2?) 25+ R, 5nz3)| §C’/~n(z) }@(5)! dg.
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(i) There are constants c¢,C > 0 such that for every x € /1;1
‘2

¢|Vyw(@)] S]é . V(6] de < C|Vau(z)

Proof. (i) We consider without loss of generality @ = [0, 1]> and the finite dimensional
space of functions defined on the corners of @)

X = {y:{0,1}® - R3}.

The norms

lelf = lw()?, ||w||§=/Q|ﬂ7(§)|2 dg

z€{0,1}3
are equivalent. Hence there are ¢, C' > 0 such that

of Je@fds Y w@Po [ jaoF d
[071}3 m€{071}3 [071}3
The general statement follows from a scaling and translation argument.
(ii) This is Lemma 3.2 in [BS22].
[
Lemma 2.1.6. Lety : V,, — R? be a mapping which is constant on every x+ (—%", %")2 X
( o fn ), z € A,. Then

" 2hn? 2hn

19l 2y < 19l r2q) -
Proof. Without loss of generality we assume h,, = 1. Sinde €2 is a bounded Lipschitz domain

by compactness there are open sets Uy, --- ,U,,, U = U;nzl Uj,and 71, -+ ,7m : RZ = R
Lipschitz mappings with Lipschitz constants L; such that, after possible rotation,

e 00)C U,
o UyNQ={(2,23) € Uj: x5 < (')}
Let x € A, such that (m + {—%", %”} 3) NQ° # (). Without loss of generality we can assume

that (x + [—5—" 5—"]3) C U. We claim that there is an a > 0 independent of = € A,, such

27 2
that , ,
En €n €n En
_-n ¢l <« _n )
‘(x+[ 2,2]>HQ _a(:c—l—[ 2,2]>ﬂ§2’
Indeed, let L > max{L4, -, L,,} and consider the cone
/ En €13 / /
C = (y,yg)Ex—l—[—?,?] c(ys —x3) < =Ly —2'| p -

Then C C € and there is a = (L) such that |C| = 3. Hence we obtain
En En 3 C
’<x+[—7,7]>m9 1
(2 [-55]) 0| ~ 140

The rest is an easy estimate. L]

3
€n_
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Summing over the inner points of the grid or the dual grid, respectively, we immediately
obtain the following corollary.

Corollary 2.1.7. There are constants Cy,Cy, C3, Cy > 0 such that
(i) . _

9[22y < Cllgnllz2(0)-
(i1) .

19/l z2vim) < Call9llL2()-

(iii)

S w

> @)

JSEJ\n

>y

Z‘GAH

91| 2(vimy < Cs

e

(iv)

S w

1) 2 < Ca

e

Proof. This follows immediately from Proposition [2.1.5) and Lemma by summing
over the inner points of the grid or the dual grid, respectively. L]

For (¢/,23) € €,2° x 57 and f € L*(R?) define

for € € vt (—%,%)" x (55 ). Tois Py € LIA(RY) and Pof — f in L*(R?) for

every f € L*(R3) if v, — oo . Moreover it holds that
1Pnf Nl 2msy < 111 L2 gs) -

Also consider the same operator acting only on the in-plane variables, i.e. for f € L*(R?)
and 7’ € €,Z2 let

2
Pl f(&) :][ f(w) dw whenever ¢ € 2’ + (—8—n, 5—")
x/Jr(feTn,ETn)Q 2 2

We also need to control the behavior close to the boundary. For this we need to use

the properties of the extension procedure given in [Sch09], [BS22]. For a boundary cell

x € OA;, we denote by F(x) the midpoints of the neighboring cells of @,(z), where a map

y : Ay — R? is already defined. By B(z) denote the corners of the neighboring cells of
Qn(z), where y is already defined. In particular, c.f. Lemma 3.1 in [Sch09], we have

= 2 = 2

Vy(e) = 2" <C Y |Vyw) - Z|

weF(z)

(2.11)
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Lemma 2.1.8. (i) Let x € ON,, such that y(z' + (2", x5 + ) € An \ A,. Then

ly(2' + (=), x3+—zg <O Y )P+ cek

neB(x)
.. ~ 12 ~ 2
(i1) 3 aeors, Jou () }yn\ de < C [, ]3(6)]" de + Ce3.
(iii) er/\n\/\n an d& < fQ ‘y’ d§ + 05
Proof. (i) Without loss of generality let h, = 1. Let = + €27 € A,,. Then, using (2.11])
we obtain
i (2
‘w r+ez
§C’|w(w+5n | +C’|wx—|—5nz9 ’ +C”wa:—|—5zj 2

§C’52|Vy —Z| +Ce2 |z + |w(z + .2’

<Ce? Z Vy(w) Z| +C2|ZP + |w(z + e,2
weF(x)

2

)]
)
)|
)

<C Z ly(w)|* + Ce2

weB(x)

(ii) Note that the number of elements in B(x) and F(x) is finite and bounded indepen-
dently of n. Then, using Proposition m part (i) and the fact that the number of
boundary cells is proportional to h,e,?, the claim follows from (i) summing over all
boundary cells.

(iii) This is proven similarly as (ii).
O

Corollary 2.1.9. For a sequence of atomistic deformations y, : A,, — R® Lemma
shows, given that the extension procedure of [Sch09] is applied, that the following conditions
are equivalent.

(i) §n is bounded in L*(Q),
(i) y,, is bounded in X,
(“Z) SUPpeN 3, hn ZxGA |yn( )l < 0.
where X = L*(Q) if v, — o0 and X = L*(S x (— 2=1)) if v, =v € N.

(1/ 1)’ 2(v—1)
Lemma 2.1.10. Let v,, — oo and let y € L*(Q) (extended by 0 outside of Q).
i) There is a C' > 0 such that

1Payllz2) < Cllll 2 -

i) Py — y in L2(Q).
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Let v, =v € N and let y € L*(Q) (extended by 0 outside of Q) which is continuous in x3
and affine on the intervals (i_l L), 1=1,...,v—1.

v—1’v—1

iii) There is a C' > 0 such that

||Pny*HL2(Q) <C HyHL?(Q)

—_~—

i) Poy* — y in L3(Q).

Proof. (i) Applying P, to a function y € L*(2) defines a mapping P,y : /~\n~—> R3. By
Jensen’s inequality there is a C' > 0 such that for every £ € Q,(x), = € A/,

2

—

8
Py(€)| <CY Py (2 +2ul2) w5 + by enzs) |

J=1

Since y is extended by 0 outside of €2 we obtain

J df<2/m

3
€n 2 2
h_ E | Poy(x ? < CHpnyHL2(R3) < CH?JHB(Q)

Py(€ dS

(ii) Firstlet y € C(2). In particular y is uniformly continuous and therefore both, P,y

and ﬁ;j/y, converge uniformly to y. Let y € L*(Q2) and € > 0. Choose y. € C°(Q)
such that [|y — yel[;2(q) < €. From (i) we get

1Poy = yllz2(@)
< ||y — EEEHLE(Q) + | Paye — Yellrz@) + 19 — Yl 120
< Clly = yell 2 + | Py. — Yell2(0)
<e+ ||15;§e — Yellz2(0
The last term tends to 0 since y. is smooth.

(iii) Literally as in (i) we get

N

| Pyl < Clly" 2 (55 (- 201 ) -

2(1/ 1)’2(v—1)
Since we assume that y is continuous in x3 and piecewise affine on the intervals
(Z:ll, Vil) there is a C' > 0 (due to norm equivalence) such that for every 2’ € S
Thus we even have

i 2
/
o(v )

1P ) < C syt et ) S C Mol sy

v—1

1
SC/ \y(:v’,xg)\z dxs.
0

1=
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—_~—

(iv) It is sufficient to show that Py — y in L2 (S x (=, -%5)). First we assume that

v—1’v-1
the mappings 2’ — y (x’, Vil), i = 0,...,v— 1, are uniformly continuous with
compact support in S and denote by w; their respective moduli of continuity. Let

T < A;z with z3 = 2?11:11) for some i € {1,...,v —1}. Let ¢',...,¢* be the corners of
the bottom layer of Q,(z) and ¢°, ..., ¢® be the corners of the top layer of Q,(x).
Define ®,, : {¢",...,¢*} = R® by

fx'*(*%ﬁf"f y(¢',,77) d€'s 1<i<A4,

J[x/_i_(_@ En>2 y(§/7 l,il) dfla 5 S Z S 8

eEn’en

(I)n<qi) =

Then, for a suitable constant C' > 0,

v—1'v—-1
< > [ Rr-uPd
vehp, 7 On(@)
m3:2(;:1)
<C /i um,_¢ﬁdg+c > /‘ 1B, — yl? de
z€A), zeAl,
e3=50 1y 3=30,-1)
=: (1) + (11).

For term (I) we use that for every j € {1,...,8} there is an [ €{1,...,8} such
that ¢/ = (2 + e(2'), 23 + h,, e, 2L). Also note that @ —1}. Thus for every

jedl,...,8}
Py (@) - 2] < €+ e ) (€ ) ae
ac’+<—

< wis1(n) + wilen).

1/1’

By Proposition [2.1.5( we obtain

2

En
Py —®, (m’+an( b, x3+h l)

acEA’
21 1
T3=30—1)

S C (wi_l(sn) + wi(en)) . (212)

For term (/1) on the one hand we use that :I3 and y are affine in the x3 direction
on (&=L i) Y} and € € Q,(x), we have

v—1’v—1 v— 1’1/ 1

©,(¢,4) = Pyy(¢',j). Thus we get
- i1 i1
n(em) -0 (0)

2

dg

(n<c Y

EA’

nx)

r3= 2(1/ 1)
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;i \f
o 0 [ () (e
xSW
C , ., i1 Ci—1\|"

2

I ¢’ —»0  (2.13)

v—1

P;Ly<§/7]/i]_>_y(§/7yi]_>

as n — oo. Combining (2.12)) and (2.13]) for every layer shows ﬁl\gj* — yin L*(Q) if
y is uniformly continuous. For an arbitrary y one can argue like in (ii) with usage of

(iii).
O

Now we have all the ingredients to prove Proposition [2.1.3| and Proposition [2.1.4]

Proof of Proposition[2.1.5 Assume that

S e f e MO

™ zeA,
and consider the mappings

2

— 0

n—oo

A, — R3 x> yn(z) — Poy(z).

Extending this map suitably to A, shows that 7, — ?y is bounded in L*(2). By
Corollary we have

2 €
<C-—+
LQ(Q) - n Z

2

— 0.

n—oo

HXV}L“ (3777, - ny)

Yn() — - - )y<x +&) d€

Z)

By Lemma |A.1.8 we get ||y,, — ny||L2 — 0 and, due to = P,y — y in L*(Q), it
follows that g, — y in L*(Q).

Now suppose that 3, — y in L?(Q2). Then

" zei, 2hp ?2hn

- Z 19, — ‘|L2(m+( zp ) (- g, ))

.’L‘EATL
< Cl7 = Puyllia) — 0.

For the last estimate we have used that both, y, and P,y are constant on each = +

2 . .
( =, %") X <—2£T"n, 22—2), x € A\, i.e. we can estimate by Lemma [2.1.6

“gn ”y||L2<(JJ+< %v%)zx(_;}lnn’;hnn))OQC)
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S (0% ||§n - Pny||L2<(z+(f%l,%l)2><( En En ))ﬂQ) ’

" 2hn '2hn
Further, by Corollary

||XQi{‘ (gn - Pny)||L2(Q) <C H?j” o "y||L2(Q) 1H_o>o 0.

As Xqw — 1 boundedely in measure and both, 7, and /P:Zy are bounded in L?(Q) (c.f.

Corollary [2.1.9), we get ||g, — /EHLQ(Q) — 0 by Lemma |A.1.8 By Lemma [2.1.10| we
obtain ¢, — y in L*(Q).
Now suppose that g, — v in L?(Q). Then

3
€n )
" rehn
- 2
= |9, — PnyHL?(Vn)
= 2
< |9, — PnyHL?(Q) (2.14)
by Lemma [2.1.6] To see that the last term tends to 0 we again use Corollary 2.1.7] Then

—_—

Ixvin G = Pay) 72y < lin = Payll 2y = 0

by Lemma 2.1.10} Since by Corollary ¥, is bounded in L*(Q) we see that g, — P,y — 0
in L?(Q). From ([2.14)) it follows that

3
e

€A,
L]
The proof of Proposition is very similar, thus we do not give full details.

Proof of Proposition|2.1.4 First assume that

€n . 2

h—Z‘yn(ﬂf)— ) y (x4 €) dg| T:oo-

" zek, (—53) *(-a o

Since y* is constant in the x3 variable on the intervals <2?2:11), 2?3111)), 1=0,...,v—1,

this is equivalent to

2 v—1 . .
I/E—nl Z Z‘yn<x’,yi1) _]{_E 2y*(I,+€/’yil) d£/‘2_>0' (2.15)

— - En m)
z'eSNepZ2 =0 272

We note that for every i € {0,...,v — 1}

s, ) = P e )
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2

<e Y

' €SNenZ2

yn (2, ﬁ) —][(_6;7?) y (' + ¢, —) ¢’

by (2.15). Since g, is bounded in L*(S x (=57 e 1 5 2%5 i )) by Corollary [2.1.9) this yields
Y, — y*in L2(S X ( 2(1/1 3 2(Z i )) by Lemma |A.1.8]

On the contrary if y,, — y* in L2 (S X (— (y1_1)’ Z%Z—j))) we extend y by 0 outside of 2
to estimate like in the case v,, — oo

=y

2

e ][( y'(a 4 €) de

_&n M)2X< En  _En

:ceA 2 2 " 2hp ' 2hn
< ||gn — Py ”L2<S><( 1)72(5 %))) — 0
as n — oQ.
If
e3 . 2
_nz Yn(r) — ) y (x4 &) d§ TH—O>OO
" z€A, (_57”’67”) X( 2€hnn QEhnn)

then also ||XQin<§ — Py*)|l12(0) — 0 and therefore, due to the L*(£2)-bound of 7 also

|Jn — Py HLz — 0. By Lemma [2.1.10| this yiels 7, — y in L*(Q). For the remaining
implication we have

—~—

e 2-1 )y < CllGn — Pay*|lr2) — 0,

2(1/ 1)’2(v—1)

[ xvn (G, — Poyy®)

again by Lemma [2.1.10] L]

2.2. The energy and the quadratic forms
2.2.1. The atomistic energy

For any matrix F € R3® we define by F) = (Fy,---,F) € R¥* and F? =

(Fs5,--+,Fg) € R¥* the matrices consisting of the first four respectively the last four
columns of F.
Let w(z) = = (w(r +enzh), - w(z +,2%)) € RS We assume that the atomic

interaction energy for a deformation can be written as

Fatom( ZW(&: w(x >

e,

For x € A/, close to the boundary of S it can happen that 2’/ + £,(2")’ is not in S for
some i € {1,...,8}. To make E,m well-defined W (z,-) should not depend on z + &, 2"
if 2/ +¢e,(2") ¢ S. If however this is not the case we assume that W is given by a
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homogeneous cell energy W : R3*® — [0, 00) together with homogeneous surface term
Wit : R3** — [0, 00). More precisely,

~

Ween (w) if
Wean () + Wit (20 if
Ween (1_)U> + Wsurf(a(l)) if
| Wean (@) + X2, Weare(@”) it

X3 € (%,hn —

Up > 3, Tz =
VnZ?), €r3 =

Vn:27 €T3 =

b,

[

w|:

)

w|§’

En
2

)

En
27

(2.16)

Figure 2.3: On the white cells there is only cell energy contribution. On the shaded cells additional surface
terms need to be taken in account.

We assume that the cell energy W, satisfies the following properties:

chll(RA> = chll(A>
chll(A + (Ca T C)) - WCGH(A)

for all R € SO(3),
for all ¢ € R3,
chll(Z) - 07

Ween is C? in a neighborhood of Z.

Moreover we assume that there is a ¢y > 0 such that

Wt (A) > ¢o dist?(4, SO(3)2)

whenever Zle A.,; = 0. Similarly the surface energy should satisfy

Wsurf(RA> - Wsurf(A)
Wsurf(A + (Ca R C)) = Wsurf(A>

for all R € SO(3),
for all ¢ € R,

Wsurf<Z(1)) - Wsurf(Z(2)) = 07
W is C? in a neighborhood of ARS

Properties (2.17) and (2.22)) are called frame indifference, this even implies W (RZ) =

Ween(RZ) = Wauet(RZ®) = 0 for every R € SO(3). Further we assume that W (z,-) is C*?
in a neighborhood of Z for every = € A,,. Together with (2.20) and (2.25)) this allows for
a Taylor expansion around Z or Z(M, respectively. Last we assume that W (z,-) is also

invariant under rotations and translations for every z € /X;l Then we can replace w by

Vw to write

Eatom<y) = Z W(l’, vny

e,

(2)),
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where y is the rescaled version of w.
We need to make one last technical assumption. The derivatives of W and Wyt
should satisfy a linear growth condition

|IDWeen(A)| < C(1+ |A])  for every A € R**S (2.26)
| DWiut(A)| < C(1+ |A])  for every A € R¥*4, (2.27)

Further we assume that there is a constant C' > 0 independent of # € R? such that
|DpW (z, A)| < C(1+ |A]). (2.28)

In addition to the atomic interaction energy we consider an energy contribution from body
forces f, : A, — R? depending only on the in-plane-variables and satisfying

Y f@)=0, Y fu@)®a' =0, (2.29)
xEAn xEAn

i.e. there is no first moment and no net force. Further we assume that the interpolations
satisfy hi3f, — f in L2(S), where f,(¢) = fu(x) for every € € z 4+ (=%, %)*. The body
force part of the energy is given by

Evoay(y) = Y fala') - y(2).
xEAn
The overall energy per unit volume is given by

B = 32|

e/

{L’EATL

W, Va(o) + 3 ol olo)| (2.30)
For R € SO(3) we define a corresponding energy with a 'rotated’ force term
el _
B = 2| 3 W 9o + 0 R uto)| (2.31)
" tzel, z€A,

We close this section by a simple consequence of frame indifference.

Lemma 2.2.1. Let W : R™* — R be a differentiable function which in addition is
frame-indifferent. Then for every R € SO(n) and every F € Rk

DW(RF) = RDW (F).
Proof. Let R € SO(n) and F, H € R"**. Then

DW(F): H = £|tZOW(F +tH)
=~ WW(RF + tRH)

= DW(RF): RH

= R"DW(RF): H

and therefore DW(RF): H = RDW (F): H. O
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2.2.2. The quadratic forms and their linearizations

For A € R3*® let
chH(A) - D2chll(Z>[A> A]

with its linearization

1
LA = §DQC611(A).
We associate a relaxed quadratic form on R3*® given by

22111(14) = ?61]% Qeen(A+ (bR e3)7).

Since Q. is positive definite on (R* ® e3) Z for every A € R3*® there is a unique b(A) € R?
such that
el (A) = Qeant (A + ((A) @ €3) Z) .

This b(A) is characterized by
0= Dchll (A -+ (b(A) X 63) Z) . (C® 63) Z =0

for every ¢ € R3, i.e. DQenn (A+ (b(A)®e3)Z) L (R¥>®e3)Z. Moreover, the map

A+ b(A) is linear.
A
Q2(A) = Qrey <( 0 8 > Z>

For A € R?*? let
1
LoA = §DQ2(A).

and its linearization

Analogously let
qurf(A) - DZWsurf(Z(l))[Aa A]

for A € R3*4,

2.3. Some properties

We will give proofs of the following lemmas only for the cell energy. The proofs for the
surface part are literally the same.

Lemma 2.3.1. There is a neighborhood U of SO(3)Z or SO(3)ZWY respectively and a
C > 0 such that for every A € U it holds that

Ween (A) < Cdist? (4, S0(3)2)

and

Wawt (4) < Cdist® (4, 50(3)2W) .
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Proof. Let R € SO(3)Z such that |A — R| = dist(A, SO(3)Z). By Taylor expansion we
get

1
Ween(A) = §D2WCGH(R)[A — R,A—R]+0(|A - R[]
< C'|A— R’ = Cdist*(A, SO(3)Z).

]
Lemma 2.3.2. For A € R it holds that
D*Ween (Z2)[AZ,AZ]) = 0
as well as
D*Wut (20) [AZW, AZWV] = 0.
Proof. For every A € R**® we have
dist(AZ,50(3)Z) = inf |AZ — RZ|
ReSO(3)
< C inf |A— R|=Cdist(A,SO(3)).
ReSO(3)
If A is skew-symmetric then dist?(Id + tA, SO(3)) < Ct'. Together with
t2
W(Z +tAZ) = §D2WCGH(Z)[AZ, AZ] + o(t?)
and Lemma [2.3.1| we get the inequality
£ 2
ED chH(Z)[AZ, AZ] + O(t )
=W(Z+tAZ) =W ((Id+tA)Z)
< Cdist*((Id +tA)Z,50(3)7)
< Cdist?*(Id + tA, SO(3)) < Ct*.
Letting ¢t — 0 yields the claim. L]
2X2 rel A 0
Corollary 2.3.3. Let A € R, . Then Qi 0 0 Z ) =Qy(A) =0.
Proof.
re A0 A0
zam-an((20)7) <au((28)7) =
]

There are two further corollaries:

Corollary 2.3.4. For A € R¥® it holds that DQei(AZ) = 0 and DQguwi(AZM) = 0.

skew
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Proof. Due to Qeen(B) > 0 for every B € R3*® every AZ € R¥**3 7 is a local minimizer of

skew
chll- ]
Corollary 2.3.5. For every A € R3*® and every B € RY?
chll(A + BZ) = chll(A)7 (232)
qurf(A + BZ(l)) = qurf(A)- (233)

In particular we have Q™ (A) = minyers Qcen(A + sym(b ® e3)Z).



Chapter 3
The stationary case

3.1. Introduction

The goal of this chapter is to prove a similar result as Theorem 1.1 in [MPO08| which
extends the I'-convergence result of [FJMO06|. Of course we seek for a convergence result
of discrete equilibrium points. We begin by briefly reviewing the work of [BS22].

3.1.1. A review of the I'-convergence result

Braun and Schmidt derived the von-Karman theory from the nonlinear three-dimensional
atomistic model introduced in the chapter before. In contrary to the continuum results of
Friesecke, James and Miiller the problem here is twofold: Both, the interatomic distance
e, and the height of the plate h, tend to 0 as n — co. They studied two different regimes.
For thin films, i.e. the number of layers v, = };—: + 1 — oo (or equivalently e 0), they
obtained the von-Karman functional as a I'-limit. In short the result is as follows, details
are given below:

hi'En = By, (3.1)
where the von-Karmén functional E,x : H'(S;R?) x H%(S) x SO(3) — R is given by

1 1
Eux(u,v, R*) = / §Q2 (5 (Vu' + V'u" + Vv @ V’v))
s

—f-ng (V?0) + f(2') - v(2')Rres da’. (3.2)
If the ratio 7> is constant we have
h'E, 5 EY) (3.3)
with
Ewn i) = [ (D5 0) 2+ 550 60)
s T
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+ 1f(x’) -v(z')Rez dx'. (3.4)
v

Here 1

Gi(2') = 5 (Vu' + V'u" + Vv @ V'),

Go(z') = —V"?0(2)

and ol

Gs(z') = ( Qéx) 8 ) Z_ + Opv(x")M,
where

1
M = 563 ® (+1,-1,+1,-1,+1,-1,+1,-1)

and Z_ = (-2, Z0)).
Let us make a few remarks at this point:

(i) The map u corresponds to the in-plane displacement whereas the map v corresponds
to the out-of-plane displacement.

(ii) The parameter R € SO(3) can be understood as a normalization parameter of the
force. It an be chosen as R = Id if suitable boundary conditions are prescribed.

(iii) For v, = v € N we see additional surface contributions. This can be expected if we

look at the discrete interaction energy given in (2.30]) together with (2.16]).

(iv) The surface terms are of order L. Hence the two model commute formally in the sense
that sending ¥ — oo in the finite layer model we end up with the usual von-Karman
functional.

3.1.2. Definition of equilibrium points

Formally calculating the respective variations in u and v of the limiting functionals leads
to the following notion of a weak solution.

Definition 3.1.1 (Definition of distributional solution). Let v, — co. We say (u,v) €
H'(S;R?) x H*(S) is a distributional solution of the Euler-Lagrange-equations of E if
the following equations are satisfied:

(1) For every ¢ € C(S) it holds that
1 / 1, \T / / / /
O:/£2(§<Vu+(Vu) +VU®VU)) : Voo Ve
S

+%£2 <(V')2“> (V) 6+ f(a) - dla') Roey da. (3.5)
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(ii) For every W € C°(S;R?) it holds that
1 / 1oNT / / / /
o:/@(a(vw(vm +VU®VU>):V\I/(Z$. (3.6)
S

Let v, =v € N. We say (u, v) € H'(S;R?) x H%(S) is a distributional solution of the

FEuler-Lagrange-equations of EY

(i) For every ¢ € C°(S) it holds that

0—/ DQE‘?JH((O 8)Z+2V_1 ) (v/”®v¢ O)de’

12
~fam=mpen((§ )2+ me) (7 o)z
+S4w1nDiﬁ<(%18>Z+ﬂ7fﬁG> QoM

12
5221/—1 Ezh((G(f 8)Z)Z(V0¢8>de/
(5 g (57 )
fatene (9 5) 204 g2 o e
Lt (5 1) (5 D

+/S - 1f(x') - (' )R*e3 dx'.
(3.7)

e Uf the following equations are satisfied:

(i) For every W € C°(S;R?) it holds that

rel 0 1 (VU0 ,
o= [soas (G 0) 2+ gompen): (N 0 )z

1 Gy 0 Oav(2") V& 0
D AD MWD - ASN
+/sv—1 QM(( 0 0) +2(V—1) 0 0 e
(3.8)

Definition 3.1.2 (Definition of discrete stationary point). A mapping y : A, > R3isa
stationary point of E, if for every ¢ : A, — R3 it holds that

h—” Z DpW (2, Vay(z)) : Vap(z) + Z fal@) ()] - (3.9)

zeh!, z€A,

In [MPO§| only stationary points were considered that satisfy clamped boundary
conditions. As shown in [LMO09], Lemma 13, in this case the rigidity result in [F'JMO0G]
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holds for R,, = Id and ¢,, = 0, i.e. no rotation or translation is needed. However for discrete
deformations treating boundary conditions is a bit cumbersome yet we still need to apply
the rigidity results. For a stationary point y, the corresponding point ¢, = Ry, — ¢,
that satisfies the rigidity estimates in general is not a stationary point of E, anymore.
This is the reason why we introduced the functional with the rotated force term.

Lemma 3.1.3. Let y be a stationary point of E,. Let R € SO(3), c € R3. Then the
deformation § = RTy + c is a stationary point of EX.

Proof. Let ¢ be an admissible test function. Then

% t:oEf@ +ip) = 5_7; {Z DpW (2, Vaj(2)) : Vap(z) + Z )- R fo(z ]
wely, zeA
:é{ZRTDFW(xvvn?J( ) : +Z (Ry(z (x) }
" ze]\;l zeA,
— 5 {Z DeW (2, V(o)) : ValRo@) + 3 (Re(x) - fn(x')} W
xEA;L z€A,

We have used the invariance of W under rotations and translations as well as the fact that
Ry is also an admissible test function. L]

3.2. The main theorem

Now we are able to state the main theorem of this section.

Theorem 3.2.1. Let W satzsfy - - ) and Wt satisfy (2.22) - - as well

as ) and - Let f,, : A, — R depend only on the in-plane-variables z' and satisfy
1} as well as h;3f, — f in L?(S).

Let y,, be a sequence of stationary points of E,, with
E.(yn) < Chj,.

Let R € SO(3),c, € R? such that the normalized interpolated maps G, = (R:) g, — ¢,

n

satisfy the estimates and compactness results of Theorem |3.2.5. Then 4, = (R:)Tyn — ¢y
1s a sequence of stationary points of Efn Up to a subsequence it holds that

1
un(2') = h;Q/ (7 (2, x3) — 2') das — u in WH(S), (3.10)
0
1
on(@') = h=! / (G), s — v in W2(S), v € W2(S), (3.11)
0
R® = R* in SO(3). (3.12)

The limiting pair (u,v) is a solution to (3.5) and (3.6)) in the case v, — oo or of (3.7))
and (3.8]) in the case v, = v € N, respectively.
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3.2.1. Some preliminary results

In this section we recall some important results which we will make use of. This includes

the famous rigidity result of Friesecke, James and Miiller as well as some results of Braun

and Schmidt which ensure the application of these continuum results in our situation.
We start with the very basic rigidity result:

Theorem 3.2.2 ( [FJMO02], Theorem 3.1). Let U be a bounded Lipschitz domain in R",
n > 2. There exists a constant C(U) with the following property: For each v € W2(U;R™)
there is an associated rotation R € SO(n) such that

IV = Rl 2y < U) ||dist*>(Vv, SO(n

M ey

Theorem can be used to obtain approximations by rotations in thin domains €2, =
S x (=4, 5) As usual we rescale to a fixed domain Q@ = S x (—1,1) with the notation
Vi, = (V h=10s).

Theorem 3.2.3 ( [FJMO06], Theorem 6). Suppose that S C R? is a Lipschitz domain and
Q=5x(-11). Let y € WH(Q;R?) and

E = / dist*(V,y, SO(3)) da.
0

Then there exist maps R : S — SO(3) and R : S — R>3, with |R| < C, R € W2(S;R3*3)
such that

IViy = Rl72) < CE, (3.13)
|R— R||L2 < CE, (3.14)
C
IV Rl < 15, (3.15)
C
IR = Rlfjis) < 5B (3.16)
Moreover, there exists a constant rotation Q € SO(3) such that
— 112 C
9= Qe < 28 3.17)
and C
=112
HR o QHLP hQE (3.18)

Proposition 3.2.4 ( |BS22|, Proposition 1). Consider a sequence y,, with
Eo(yn) < Chy.
Then
0< / dist* (Vfin, SO(3)) dx < Chi,
Q

where , € Wh2(Q) is the piecewise affine interpolation of y,.
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This proposition shows that the discrete energy bound implies the same energy bound for
the piecewise affine interpolations. In particular we are able to use the continuum rigidity
results of Friesecke, James and Miiller as summarized in [BS22, Theorem 4.2]:

Theorem 3.2.5. [BS22, Theorem 4.2] Let §, € WY(Q) with [, dist® (V,g,, SO(3)) da <
Chy,. Then there are maps R, € H'(S;R*®) such that R, (') € SO(3) for every x' € S,
R, : S — R¥3 with |R,| < C, R € SO(3), ¢, € R? as well as a u € WH2(S;R?) and a
v € W22(S) such that y, = R "9, — c, satisfies

IVt — Rn”%?(ﬁ) < Ohi, ( )

1Ry = Rullias) < Chy, (3.20)

IVR|Z25) < ChZ, (3.21)

/Q(vnyn)w — (Vi) dx =0. (3.23)

And, up to extracting subsequences,
L / . : 1,2/ Q. 2
72 Y, — ' drs =:1u, = u in W *(S;R?), (3.24)

n J0

1 1
o / (Yn)s das =:v, —v in WH(9), (3.25)
n J0

-1
Rnh d =A, 2 A=e30Vv—-Vv®es in LIQR>) Vg< oo (3.26)
R, —1d .
2sym( 12 ) — A% in LP(S;R¥®) Vp < oo, (3.27)
RV iy — Id

3 — G in L*(Q,R*?), (3.28)

where the upper left 2 x 2 submatriz G" of G is given by

G"(z) = G1(2') + (xg - %) Gao(2'),

with
1
sym Gy = 5 (Vu+Vul + Voo V), Gy=—(V)v

Remark 3.2.6. The maps in Theorem |3.2.5 are not uniquely determined. For example
they can be chosen in the class C°°(S;R3*3) maps by smoothening and afterwards projecting
to SO(3). Alternatively they can also be chosen to be piecewise constant on two-dimensional
cubes with side-length h,, as done in the proof of Theorem 4.1 in [FIM02].

Proposition 3.2.7 ( [BS22], Proposition 2). In the setting of Theorem[3.2.5, applied to

gjn and with v, = R:ngn — ¢, we have

1 / / ~ ~ .
o () =) =it = 4 in W R, (3.29)

n
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h—ln () = B0 — & in W2(Q), (3.30)

where
() = u(e) — (:cg _ %) Vio(a!), (3.31)
8(z) = v(@') + (:Ug - -> . (3.32)

Proposition 3.2.8 ( [BS22], Proposition 3). Let y, be a sequence with E,(y,) < Ch,
and let R € SO(3) and ¢, € R? such that §, = Ry, — c, satisfies the estimates of
Theorem [3.2.5. Assume that R: — R* and v, — v in W2(S). Then

En R*e dx’, if v, — 00,
h_Ebody<yn) — fS ’ N . _
n fs ) Rres d’', ifv, =veN.
3.2.2. The discrete strain
Let 9, = R*"y,, — ¢,, where R’ and c, are as in Theorem . As in the continuum case

also in the atomistic case it is crucial to understand the hmltlng behavior of the discrete
strains B B
Gn =h*(RIV,.9, — 2). (3.33)

Due to its importance we give the respective theorem. In the case v, = v € N a
projection P is defined by

- .
/ o / .
Pf(az:,xg)—][k_1 f(a',t) dt 1fy_1_ S

v—1

resulting in piecewise constant maps in the xs-direction on the intervals [%, ﬁ) Then
we have

Proposition 3.2.9 ( [BS22], Proposition 4). Let (y,)n satisfy E,(y,) < Chl with

2 (RTVnyn —Id) = G in L*(Q,R¥?).

Then

GZ, if vy — 00,
PGZ + 5 Gg, if v, =v eN,

Gy(a') = ( Ga(a’) 0 ) 7+ 0o,
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1
M = 563 ® (+1,—1,+1,—-1,4+1,—1,+1,-1),

The upper left 2 x 2 matriz of G is of the form

G"(x) = Gy(2) + (wg - 1) Ga(2')

with
1
sym Gy = 3 (V'u+ Vu" + V@ V'), Go(z) = — (V).

Next we give some calculations that will be useful later.

Remark 3.2.10. (i) Fort € [

P(z’d—%) (t):][;l (s—%) ds:%.

(i) S0 (o] 1 P (id—13)(s) ds =0

(iii) [T P (z’d —3) (s) ds = = [iea P (id — ) (s) ds.

Using these equalities we see that for ' € S

=1 (PGY 0 L 1 (1) (s
/0 ( 0 0 Z +2(V_1>G3 (z") dxs
1
(PG)" 0N 0, 1 @,
+/”f( 0 0 Z +2(1/—1)G3 (2') dxs

v—

1 2G1(z") 0 (1) O1pv(2') (1)
= 7 M .34
u—1K 0 0) LT (3:34)
and
1/11 (PG " 0 (1) 1 N,
/0 ( o 0 )% toppCs @) du
1
(PG)" 0 ) 1 ),
— A
/”jf( 0 +2(V_1)G (2') dxs
o 1 Ga(z') 0 (1)
- —— ( S P (3.35)

By definition of G,, we can decompose the discrete gradient into

Voo = Ro (Z + 12G)
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Remark 3.2.11. If we choose test functions that vanish close to the lateral boundary
of S we can rewrite (3.9). Noting that the discrete gradients of the piecewise constant

. . . . 2 <
interpolated functions are piecewise constant on each x4+ (—%", %”) X (=55 ), ® €Ay,
n n

we obtain from (3.9) along with consideration of the rotated force term and Lemmam
0— / DWear (Vo) : Vo do
Q

T oW (©a3) V) ¢ (922) da
SJO
1

s W (%25)7) 5 (98) doy s
S Jyn=2

vp—1

+/ R;Tfnwﬁdx

Vi

- / R, DWean (Z + 12Gy) = Vo da
Q
+ / / " Ry DWot (20 + 126D+ (9,8) Y day do’
S JO

1
" / / R DWot (22 + 12G) + (V23)® day do’
S vp—2

vp—1

+/ RTF -G da. (3.36)

n

Regarding the linear growth conditions on DW,e and DWg,,¢ this suggests to define the
mappings
J" = h2DWea(Z + h2G,),
JE = b2 DWW (ZY + R2GV),
JE = b2 DWaus(Z® + h2G9).
Note that J@m = h-2DW,ue(Z0 +h2GP) by (2.23). Tt is easy to see that Jm, JOm) | j@n)

are bounded in L?(2, R3*8) or L?(Q2, R3**) respectively. By Proposition their weak
L?-limits are given by

_ _ 1 _

J = ﬁ(G) = DZWCGH(Z)(G) = §Dchll (G) R (337)
JU = D*We(ZM)(GW) = %DQSurf (GY), (3.38)
J® i DWW (Z0)(GP) = %DQM (G®). (3.39)

Lemma 3.2.12. There is an M € L*(2;R3*8) such that

B2 DeW (- Z + 1260 () = M
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in L*(Q,R3*®). If v, — oo, then for almost every x € Q

M(z) = %Dle(G(w))-

If v, =v €N, then for almost every ' € S

J(z)+ (JW(2),0), ifv>3, z3€ (0,4),
o) — J(x), ifv>3, z3 € (45, 22),
M(z) = J(z) + (0, JP(2)), if v > 3, xge(()ff),
J(z) + (JD(2), JD(2)), ifv=2

Proof. By the estimate there exists M € L*(Q, R3*®) such that (up to a subsequence)
h2DeW (-, Z + h2G,(-)) = M in L*(Q,R3*®). Tt remains to identify this limit. Fix an
arbitrary compact subset S’ C S. For n large enough for every ' € S’ the energy can be
written as a sum of homogeneous cell and surface energies as in . In particular the
convergences (3.37)-(3.39) remain true on the domain Q' = S’ x (0,1). Now for 2/ € &'
and n € N large enough we can write

h2DpW (z, Z+h2 Go(2))
b (DWean (Z + hGu()) + (DWor (ZzW +h2GY),0))  (3.40)
+X{13€( 1 Vn—2) h DWell (Z-‘r-h G (ZE)) (341)

X (rye(zz2 1)y (PWeen (Z + G )) (0, DWos (2 + n2G))) .

- X{x3€(

(3.42)

If v, — oo by Corollary the terms (3.40)) and (3.42)) converge weakly to 0. For (3.41
note that X{:c e( vu=2)} — 1 boundedely in measure and by Lemma |A.1.4]and (3.37

vn—1"vp—1

the term (§ converges weakly to D*W 1 (Z)[G]. Hence we have

h2DeW (-, Z + h2G,(+) = D*Wea(2)|G] = J

in L*(QY,R3*®). In contrast for v, = v € N

J() + (JV(),0) if v, >3, z3 € (0,-1)
5 5 ~ R J() if v, > 3, x3€(y Z_l)
I DEW G 24 Gl =3 50 1 (0,009 £ > 3, a5 € (0,250)
J()+ (JD),JD0) iy, =2

in L(£Y,R3*®). Since this convergence holds true for every compact subset S’ C S it is
also true on €. ]

3.2.3. Consequences of the discrete equilibrium equations

Throughout this section we assume that y, is a sequence of low energy discrete stationary
points, i.e. ¥, satisfies (3.9), with the bound E,(y,) < Ch}. In the previous chapter we
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have seen that this energy bound implies that J”, J&™ and J*™ have weak limits in
their respective spaces. Together with the equilibrium condition we are able to show that
these limits are in some sense orthogonal to the space (R® ® e3)Z. This will turn out to
be crucial to pass from the equilibrium equations to the limiting equations.

Lemma 3.2.13. Let v, — oo. Then for everyi € {1,2,3} and almost every x € Q it
holds that

Proof. Let ¢ be compactely supported in S x [0, 1]. Since ¥, is a stationary point of El
we have by (3.36)) and Remark [3.2.11] after multiplication by A, !

0= / R (hVof) de
Q
T (1,n) . = =\(1) /
T / / RoJ s (1, V,5)" dos da
S JO

1
+ / / Ry J®: (h,9,3)? dus do’
S Jin=2

vp—1

T / 5 (R BT () de

Vn
1
— —/J: (05|10 -) dx.
Q

n—o0

This convergence follows from
e R, — Id boundedely in measure,
o J,— Jin L*(Q),
o 1, (V.p),; — —a?’T‘p uniformly in Q whenever 1 < j <4,
o 1,(V.p).,; — 8—329 uniformly in € whenever 5 < j < 8.

The last two convergences follow directly from a Taylor expansion of . The force term
vanishes since h;'f, — 0 in L2(S). The integrals with the surface terms involved vanish
as well, since h, R, J®™: V, @ converges weakly in L'(€2). By equi-integrability we find
that the surface terms tend to zero. Choosing ¢(z) = ([;° ¢(2/,t) dt) e;, i € {1,2,3},
with ¢ € C(Q) yields

almost everywhere. ]

The case v, = v € N needs to be treated a bit differently since in the lowest and the
uppermost layer the surface part cannot be neglected. This leads to different orthogonality
conditions to (R* ® e3)Z depending on the layers.
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Lemma 3.2.14. Let v, = v > 3. To first consider the bulk part let m € {1,---
Then for every i € {1,2,3} and almost every x' € S it holds that

(o 2)-Sale ).

For the lowest and uppermost layer it holds that

respectively

4
il

>

=1

=1

If v, =v =2 for every i € {1,2,3} and almost every ¥’ € S it holds that

b i) )

S )

Proof. Let ¢, -+ ,p,—1 € C°(S,R?). For s € [lel

%) let

p(a',s) = mop-1(2") = (v = 1)sdp-1(2)
(v = 1)sgm(a) — (m — 1)dn ().

This choice of ¢ is an admissible test function and satisfies for every m € {1, --

.90<7V1) (bml()
o o', ;%) = dm('),

e ¢ interpolates linearly between two layers.

Further we have

Bu(e o) el o) £ (e 2)

32
,v—3}.
,v—1}
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L E e ) —e (@), 1<i<d
nooo | L (p (2, ) — g (¢, 25L)), 5 < <8,
_ ) Gna(@) = dn(), 1<i<4,

VL (G (@) = s (2')), 5<i<8.

We first treat the lowest layer. Let x € C°(S,R?) and set ¢y = x and ¢; = 0 for
every [ # 0. Define ¢ as above. From the equilibrium equation with this ¢ we get after

multiplication with h, !
e
0:// R,J": (hn?n@) dxs da’
s Jo
= _
R, (hnvn@“)) dzs do’

+ / SR HT, do

n

THOO// D Wen(Z (G( 2(y1_1)>>: (VT_1>(X>"'a_X,"')dJZ3dI,
u. DWS“rf(Z()>(G()( S 1))) ) ) da o
iovein(e(ig
(e

(
>) (r e —xoe) da’
/SQD Went(ZW)

: dx’
This implies for almost every z’ € §

2 () ()| -2 ()

1=1
x and ¢; = 0 else. Together with the equality derived for the first layer

Now let py =
we have

1
0= / / - Roh, 2DWeen(Z + h2Gh): hy V@ das da’

1
Rnh,;?DWwf(Z“) +R2GWY: b,V ® day da’

" Roh: 2DWeen(Z + h2GP): h,V,p das da’

+ / B (R f, de

Yoz (G (x 2@1_1))) e ) i

n—o0 52
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+/S%D2Wsurf(z(1>) <G(1) (3;', 2(V1_ 1))) s (=X =X X —X) da’
+/S%D2WCQH(Z) <G (xﬁ)) ey da

As shown for the lowest layer the first two terms sum up to 0 and therefore

S(gs) 2 (fm )

Inductively this follows for every inner layer. Adding the terms for the lowest and the
uppermost layer leads to the first equality stated in the lemma for v = 3. The case v = 2
is done by an analogous argument. ]

Lemma 3.2.15. Let A € R3*® and b(A) € R3 such that
T (A) = Qeenn (A + (b(A) @ e3) Z) .

Then
DQy (A) = DQeen (A + (b(A) ® e3) Z) .

Proof. For A, B € R**® it holds that

e (A + B) = Qen(A) + Quen(B) + DQiy(A): B (3.43)
and
cen(A+ B)
=Qeen (A+ B+ (b(A+B)®e3)Z)
= Qeen (A + (0(A) ® €3)Z) + Qeen (B + (0(B) ® €3)2)
+DQcen (A + (b(A) ®e3)Z) : (B + (b(B) ® e3)7)
= Qen(A) + QE(B) + DQeat (A + (b(A) ® €3)Z) : B. (3.44)
Combining (3.43)) and (3.44]) yields the claim. ]

Lemma 3.2.16. Let F € R3*3 and A € R3*8, If
DchH (FZ + A) 1 (RS 0% 63) Z

then
F" 0
DQ™, (( 0 0 ) 7 + A) = DQcen (FZ + A) .

Fiz + F3
) + Fand let ¢ = | Fy3+ F35 |. Then we have sym F' =
2F353

F" 0

Proof. Let F = ( 0 0

sym (¢ ® e3) and, since DQcen vanishes on RS Z,

Dchll (FZ + A)
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F" 0 ,
:Dchll(< 0 O)Z+A+FZ>

F//
= DQcen <( 0 8 >Z+A—|—sym(c®63)Z>

)
:DchH(( >Z+A+ C®63)Z)
"0

/!
ThusDchu(< 0 O>Z+A+ c® es) Z)J_ R5®632and0—b((]; 8>Z+A).
Hence by Lemma (3.2.15]it holds that
I
o () 0 )z+4)

:DQCeh(( FO/’ O>Z_|_A+(c®63)Z)

= DQoui (FZ + A).

With the definition Qo(A) = Q< <( 61 8 > Z> we often will use Lemma [3.2.16|in the
following way:

Corollary 3.2.17. Let F € R3*3 such that L(FZ) L (R®*®e3)Z. Then for every
B € R?*2 it holds that

Ly (F"): B=L(FZ): (g 8)2

Proof. Let B € R**2, Then

DQ, (F"): B
dt) Q2 (F" +tB)
d|  a({F" 0 B 0
= o Ce“(( 0 0>Z+t< 0 o))Z

re F" 0 (B O
- (5 0)2) (¢ 0)2

:DQCGH(FZ) <§ 8)2

The last equality follows from Lemma |3.2.16|

Lemma 3.2.18. Let A € R3*® such that

4
Z Dchll ) l + Dqurf A(l) Z Dchll (345)
=1
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or

4
Z Dchll l - Z Dchll l + Z DQSurf ) (346>
=1

Then
DchH(A) 1 (R3 X 63) Z.

Proof. Assume that (3.45)) holds true, the statement for (3.46)) is shown similarly. Let
Q : R¥*® — R be a quadratic form defined by

Q(H) = Qeen(H) + Quunt(HW).

Since Qe is positive definite on (R?* ® e3) Z and Qqu¢ > 0 this is also the case for Q. By
assumption we have

[Dchll(A)(l) + Dqurf(A(l))7 DQC€11<A)(2)] i (Rg ® 63) Z.

For ¢ € R? we have
(c®es) ZW = —(c,c,c,c) € R,

ie. t = Quui(AY +t(c®e3) ZW) is constant. This implies

d

0= a‘tzo

(chn(A +it(c®es)Z) + qurf(A(l) +te® eg)Z(l)))

= 2o Qea(A+ te @ e3)2)
= Dchll(A) . (C ® 63) Z

Symmetric properties of J"

One of the main ingredients of the proof of the main theorem in [MPO§| was the estimate

< Ch?

T
HE(h) — (B™) ’ gy <

for the scaled stresses E(") = h—BDW(Id + h2G™). Adapting the proof of this estimate
leads to

Lemma 3.2.19. The scaled stresses J", J0™ J2™) satisfy

) 77T — 7 (JME < Cn2,
L1(Q;R3%3)

H g 7T _ ) jamT < OR2,
(Q Rsxs)

|emze” - 70 g@n <Cn.
LI(Q R3><3)
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Proof. We only show the first inequality. The others can be shown exactly the same way.
Let F € R®*® and H € R3*3 . By frame indifference we have

skew *
chll(exp(tH)F) = chll<F)
for every t € R. Thus

d

0= %‘tzo

chu(exp(tH)F) = DWCGH(F) - HF
and therefore
DWean(F)FT: H = 0.
Since this holds for every skew symmetric H € R3*3 we deduce that DW_(F)F7T is
symmetric. With F' = Z + h2G,, we get
0 = DWeen(Z + R2G o) (Z + h2G,)"
—(Z + h2G) DWe(Z + R2G,)T
= 22T+ hhJ (G)'
—haZ (T = by G ()"

Hence
Y A ACOU RS

TG = G ()"

Integrating and applying the Cauchy Schwarz inequality to the latter term yields the claim.

L]
Remark 3.2.20. In particular the previous lemma implies fori,j € {1,2,3}
8 )
Z [ T = ("), 2 < CR?, (3.47)
=1 B LY(Q)
4 ]
Z [Ji(ll’n)zé' - Jg(zl’n)zzl' < Chg, (3.48)
=1 . L1(Q)
4 -
L/ ARE AR < CR2. (3.49)
=1 B L1(Q)

3.2.4. Outline of the proof

Due to the length of the proof of Theorem [3.2.1] we give a short overview here without
caring about any details. We prove the cases v, — oo and v, = v € N simultaneously and
distinguish where needed.

The first part is denoted to derive the equations and . This is quite straight-
forward: Choosing test functions of the form ¢(z) = (V(z’),0) we will be able to directly
pass to the limit n — oo to obtain the equations.
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The difficult part is the derivation of and . Thus we split it into three parts.
Fix a test function ¢ € C°(S).

In Part 1 we test the discrete equation with p(z) = (0,0, ¢(z')). If v,, — 0o we will
show that

/h;h}”: V. dx
Q
T _
+// ! hotgdm) . (Vngzza)(l) dxs da’
S J0

1
+ / / i Je (V,8)7 day da’
S v

1
— — [ Ly (5 (Vu+Vu" + Vo V’v)) : (Voo V') da
s

— / f(&") - ¢R* ez d’. (3.50)
s

Similarly for v, = v € N we will show that

/ WV Vg da
Q

_ 1
+ / / "0 (V,0)"Y des do!
// h I (V,6) dey do

v—2

v—1

_ rel Sym Gl 0 . V/'U®v¢ 0 ’
- SDQCdl(( 0 0>Z+2(V—1)G)'< 0 0 )% dr

sym G; 0 (1) 012V D
— A —M :
fmpam (75 ) 20+ 5

( V'v % V'o 8 ) VAONY Iv

—/ Y f(a') - pR¥es dx'.
sV — 1
(3.51)

In Part 2 we set p(z) = v (]?)(:1:)

(xg — —) We will pass to the alternative discrete

gradient to apply the product rule to this test function. With this approach we will show

for v,, — oo
Z/ RJ”lz?,(V%(x))dx
V*l n v/ i‘/ ,
/0 ht (RnJ L )_l-zg( q:)( )) dzs dx

4

>

=1 v
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1 1A
/ ht (RnJ(Q’”)).l . ( v (%(x) ) dxs da’

Y L ((v )2 v) (V)2 () da. (3.52)

n—o00 12

For v, = v € N this will lead to

8 / oy}
Z/thJ”l zg(v%(x)>d:c

Q

(RnJ™) «zé(v%(x)) ds da’

l

4 (PN

Z// (R J2m) z§+4<v¢z)($)) dzs da’
=1

v—1

v(v—2) o Gy 0 ( V? 0 /
730_/524@—1)19“3“(( 0 O)Z)'( 0 O)de

1 ro sym Gp 0 1 nY . [ V% 0 /
(M 5) 2 ape): (70 o) %

1 Gy 0 [ V?6 0 /
Jamre (T 0) &) (5 §) 20 e

(3.53)

Part 3 is about to determine convergence of
/hnlJ": Vap dx
Q

S g (W,8)Y day do!

/ / h g (V,8) dey da
v—2

v—1

8

—Z/Qh Y(R,J"M), - zg(vlf)( ) > dy da’

=1

—Z// RJln)l.zg(V'%@’)> iy o
_Z// bt (R )zt < V/%@/) ) das dr’, (3.54)

v—1

where p(z) = (0,0,¢(2')). In case v, — oo this converges to 0. As a consequence the

limiting terms of (3.50)) and (3.52) agree and (3.5) follows. In case v, = v € N we show
that

1 sym G; 0 1
54 — D™ 7 : M dx'
e (GRS
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v sym G100\ ) Jv gy W g
—I—/S 2( )2Dqurf (( 0 0 ) Z + )M : 812¢M dx’.

v—1

Together with the limiting terms of (3.51]) and (3.53) we get (3.7)).

3.2.5. Proof of the main theorem

After giving this short overview we focus on all of the mathematical details. We will follow
exactly the structure given in the outline.

Proof of Theorem[3.2.1 Choose R € SO(3), R, € C*(S;R**3) and ¢, according to
Theorem [3.2.5| In particular we have

R,(z') € SO(3), (3.55)

IVuin — Bull 2y < Chi, (3.56)
IV' Rl 20y < Cha, (3.57)

1R, = Id]| .20y < Ch. (3.58)

By Lemma the maps ), are stationary points of Efn The convergences (3.10) and
(3.11]) follow from Theorem |3.2.5|

The equations (3.6) and (3.8])
Let U € C(9;R?) and let p(x) = (¥(z'),0). Then ¢ is an admissible test function with

!/ / 0
Vp(z) = Vi) 0
00 0

for every x € . By Remark [3.2.11] testing the equilibrium equation with ¢ yields
0= / R,J": V,¢(x) dx
Q
T _
+ / / R,JOM: (V,8)" duy do’
s Jo
1
+ / / Ry J®: (V,8)? das d’
S Jin=2

+ / h2f, (2)R:G da. (3.59)

Since ¢ is independent of the 3 variable the interpolated discrete gradient V,, converges
uniformly to VoZ and R,J" — J in L*(Q;R3>*®), c.f. (3.37). Passing to the limit in
(3.59) we notice that the force term vanishes. If v, — oo this is also the case for the

surface terms. Hence from (3.59), Lemma [3.2.13] Corollary |3.2.17, Proposition and
Corollary we obtain

Oz/J:Vngdx
Q
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:/E(GZ): VoZ dx

0

= / Lo (sym G") : V'Wdx'
s

= / Lo(sym Gy): V'U da/,
s

and (3.6) follows. If v, = v € N in (3.59) only the force term vanishes and we obtain

0—/DWCeu _):(v‘%(x) 8)Zd:c

P _ V'U(x') 0
2 (1) a (. . 1) !
+/S/O D*Wawt (Z )(G <x,2(y_1))). ( 0 O)Z drs dx

1 _ 2v — 3 V'U(z) 0
2 (1) (2) ! . (1) /
—|—/S V_2D Wsurf(Z ) (G (m’Q(V—1>>) : ( 0 0 )Z d.?fg dz’.

v—1

In Lemma and Lemma [3.2.18 we have shown that the assumptions of Lemma [3.2.16
are satisfied. Hence from the equality above, Proposition |3.2.9] Lemma (3.2.15] and

Corollary it follows that
(PG)" 0 1 Vo 0
rel .

e 1 (PG)" 0\ 1 w). V'V 0) /
+/S/0 2Dqurf(< 0 0>Z +2(V_1)G3 : 0 0 Z\%Y dxs dx

1 (PG)" 0 1 vV o0
Z 1) 2] . 1) /
+/S/V§2Dqurf<( ¢ O)Z +2(V_1)G3>.< : O)Z duy de'

(3.60)

For the surface terms by (3.34)) we have

T ——p
// ;Dqurf (( (P(C]?)” 8 ) 70 4 2(1/1_ 1>G§2)) dy da’
_ /S ﬁDQS‘Hf <( 25“3 G 8 > Z0 4 Val_?”le) d'.  (3.61)
Combining (3.60)) and (3.61]) we obtain (3.8):
e e
+/S ——DQuut (( SYHS G 8 ) 70 4 2((312_“1>M<1>) : ( V(/)‘I’ 8 ) 70 dy'
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The equations (3.5) and ({3.7))

As the derivation of these equations is a bit more complicated, we split it into three parts.

Part 1
Let ¢ € C°(S) and ¢(z) = (0,0, ¢(z')). Then

) 0 0 0
Vag— | 0 0 0]z
o Do 0

uniformly in Q. Testing the equilibrium equation with ¢ and multiplying with h,? yields
0= / ho'R,Jn: Vap dx
Q
vl amn). (v =11 ’
+ h, R,J"": (Vngo) dxs dx
sJo
1
+ / / by R T (V,0)? day do!
S Jin=2
—i—/~ h;3fn($’) - R @ dx.

By Theorem the sequence
R, —Id

ho,
converges strongly to A in L(Q2) for any ¢ < co with

A, =

0 0 —alv
A= 0 0 —62’0
81’0 0221 0

Via the relation R,, = h, A, + Id we deduce
0= / ht (hyA, + Id) Jy: V@ do
Q
1
+ / / T (A + 1) TV (V,6)Y day do
sJo

1
+ / / It (hnAn + 1d) T (V,8)® das do’
S Jin=2

s [ WA Rl

n

Hence

/ hlJ": VG da
Q
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1

+ / / g0 (9,8) " das do!
S J0

= —/ARJ”: Va@ dx (3.62)
Q
= an). (& =1 /
— A, J5 (Vngo) dzs dx (3.63)
S J0
1
- / A, (V,8)? dwy da (3.64)
S Jin=2
- / h3f, - Rides dx. (3.65)
o

At this point we need to distinguish between v, = v € N and v,, — oo. We first look at
the latter case. Here the terms (3.63)) and (3.64) converge to 0 by equi-integrability and
therefore

/hnljnz Vo5 di
Q
1
el 1) . (e =\ /
+ b, ~J (Vngp) dxs dx
sJo
1
+ / / b T (9,0)? dag da
§Jm=2

— — | AJ:VoZ dx — / f(z")pR es dx'.
s

n—oo o)

Due to the cyclic invariance of the trace we have
AJ:NoZ =Tr(AJZ"V ") = Tr(JZ"V " A)

— JATVGZ = J: (V“%V¢ 8)2,

therefore, by (3.37]), Proposition Lemma [3.2.13| and Corollary [3.2.17
/ AJ:VpZ dx
Q
= / AJZT: Vo da
Q

:/E(GZ): <V'“(§V'¢ g)de
Q

:/Lg (sym Gy) : Vo @ V'¢ da'.
s

Thus (3.50) follows.
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Now we focus on the case v, = v € N. We cannot neglect the surface terms and obtain

/hnljn: Vo du
Q
+ / / g0 (V,8)" ds do!
S Jo
1
+ / / e (V,0)? deg da
S Jn=2

0 0 0
— — [ AJ: 0 0 0 |Zdx
e Ja O o O
0 0 0
A0 0 0 0 | 20 dey do!
oo 0o 0
1 0 0O 0
— / AT 0 0 0 |2Y deyds
s/ e Osp 0

—/ Y f(z") - R*pes dx’.
s

v—1

as n — 0o0. By Proposition [3.2.9] Lemma [3.2.18, Lemma [3.2.16] Corollary [2.3.3| and (3.34))
we see that this term is equal to

rel SymGl 0 1 . V/U®v/¢ 0 ’
/ DQCQ“(( 0)Z+2(u—1)G3)'( 0 o)Zd"“"

B SymGl 0 (1) 812?] ay . V’U@V/(ﬁ 0 (1) !
/Sy_posurf« ; O)Z FapopM?): JVC )2 da

—/ v f(&") - R*¢pes da’,
S

v—1

and (3.51)) follows.

Part 2
Let n € C°(S;R?) and

- () (o)

Later we will choose n = V'¢ with ¢ from part 1. But to keep notation clearer we remain
temporarily with 7. Again testing the equilibrium equation with ¢ we get

0= / R,J": V.5 da
Q

_1
+ / / "R, (V,8)Y day do!
S Jo
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1
+ / / Ry J®: (V,8)? das d’
S Jin=2
+ / h2f, R:@ dr. (3.66)
Vn

With the product rule of the alternative discrete gradient we have

= Dr ol R €n 1 - 3
Di'p() = ( l%( ) ) <x3+h—naé—§> + htdl ( 77(0 ) )

Exemplarily we look at one summand of the bulk part in (3.66)), the surface terms work
the same way:

= /Q (R, J™) ;- ( Df?)(x/) ) (ws + —a3 — —) (3.67)
+/Q(R,1J”).l-h;1ag( 0 ) dz. (3.68)

From (3.66]) together with drp = Dy — 1 Zk Do and 24 =d} — & Zk L ab we obtain

+Z// (R, g .z§<”(§/)> dzs da’
+Z//” (RoJ®™), z§+4<”(§/)> dzs da’

v—1

_ _;Ug (R ™)., - < Dl"%@') ) (323+ ;—Zag - %) dx

1 DG\ (. en g 1
-3 /Q(RnJ")_,-( k%(“”) ) (x3+h—a'§—§) da:}

k=1
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- / h2f, R:G dx. (3.69)

n

If v, — oo the force term and the surface terms vanish. Hence, by (3.37)), Lemma [3.2.16
and Corollary |3.2.17

- Z [ (=) (T =) )

8 /
_ (V) N (o g
B6Y) — 2_: U Jy ( 0 Byt ———ay— = | da

Note that, for x5 € [m_l, %),

v—1
1 1:{2;';;_”;)1, le{1,2,3,4},

v—17 2 |2l e {56,7,8)
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form e {1,--- ;v — 1}. Then for [ € {1,2,3,4}

v () (. 1 1\ 1~/ V() \ /(. 1 1
I

- ( v () ) ol éZ ( v (o) ) L

and for [ € {5,6,7,8}

, 8 /
Vi (a) Y (4 Lo 1)y 1 Vi (a*) N (4 LIS
( 0 Bt a5 ) mg 2 0 BT T

Thus, after multiplication with —1, the limiting terms in (3.70)) are equal to

lil/smé/: " ( V/n()(Zl)/ ) <22(T__1y)) dzs da’

v—1
4 v—1 % V/ ( n/ 1
— J - " Z) ) — dxg da’
zzl/smzzl/:‘f | < 0 20 =1
8 v—1 % V/ 1 / 1
(V) Yy L /
+Z/52/n I < 0 )2(1/—1) s d
=5 m=1"Y 71
4 v 1

1 8 v—1 VT1 ak)/ /
_lzlng/SmZ:l[nl Jl< )V_ldl’gdq;

v—1
8 4 v—1 m

S~ O~

E\/ 1
a)) dzs dz’
v—1
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-1

By Lemma |3.2.14] all the terms containing the factor VL sum up to 0. Therefore the
remaining part of the limiting terms of (3.70) is given by

8 v—1 m /
v—1 ) V’n (Zl) 2m — UV Vi
;/;mz:l/f_‘f J-l ( 0 —Q(V— 1) dQ}g dx

- V(V_ 2) rel G2 0 . v/T/ 0 /

_/524@—1)2D cell (( 0 0)%) o o)%%

1 rel sym G; 0 1 (V'm0 p

~[aren (M0 o) e gme): ()

; Gy 0 oy . Vin 0 (1) .1
+/S4(V_1)DQSM<( : O)Z g )Y . (373)

The last equality can be seen as follows: First we look at the sum of the two terms of (3.73|)
which contain the factor ;——. Because of part (ii) of Remark [3.2.10, Lemma [3.2.18]

Lemma [3.2.15] and Lemma we have

4 v—1 m /
_ (V) L /
;/sz:lﬁ Ju ( )2(V_1)dx3dw

v—

8 v—1 /
T (Vi (RY 1 /
+;/szzl/m_ Ji ( )2@—1) dus dx

v—1

-

-

3

m

v—1
1 v—1 . vl’r} O /
:—2@_1)/52_1/@{].( 0 O)Zdacgdm

1

L [ [T (PG 0 ! |
_2(1/—1)/57;::1/V11 §DQC‘°‘H(< 0 O)Z+2(V—1)G3)‘

Vi 0 /
( 0 O)Zd:vgdac

1 . sym G; 0 1 V'n 0 ,
= | ——DQ': L4+ —7- ; /A .
/54(V—1)D ool (( 0 0 > +2(V—1)G3> < 0 0 o
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To calculate the first term of (3.73)) we note that

1 &= @Cm—v)? vy —2)
v—1 mz::l 2(v —1))2  12(r —1)2
and o
(2m—v)=0
Thus .

:[quilyzl(;(T:f)Q zzh(( )z):(vo’ng)m,
:/szziv—l zzh(< )Z):(vofng)m,.

(1) ( )( 1) dzs dx’
2
5 / (V) (5) e
1= /5=
1 Gy 0\ ). (V' 0\ ;.
_4(u—1)/SDQS‘“f((0 O)Z 0o o )% 4

Summarized, letting n = V'¢ we obtain (3.53)).

Finally, by (3.35)

Part 3

It remains to determine the limit of (3.54). First we simplify the latter three terms of
(3.54). A single summand can be written as

!/ oy}
Q

da. (3.74)
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Then we consider all terms of that contain A,, and get for v,, — oo
S [ 4 ( T4 )
= /o
4 1 .
SIS
)

8
/¢
gtV
f—— lgl/QJ.l 25 A ( 0 dx =0

due to (3.26) and Lemma [3.2.13| whereas for v, =v € N

8

Z/AnJ?zé( Vip(E) ) dz
Q 0
=1
4 1
] n A ,
+Z/s/o AnJ.(l1 )zé( O( )) dxs dx
=1
~ [ V'o(#)
2,n /
—|—Z/ﬁn2 AnJ‘(Z ) -zé+4 ( 0 ) dxs dx
=1 S vn—1
8
iar ( V'e
T:OZ/QJ.l-ng ( o ) de
=1
4 uil v/¢
S ()
= /s Jo

0
- L V'
+Z/S/V2‘]'(l)'zé+4AT( 5 ):O
l:1 v—1

due to Lemma [3.2.14, Thus, instead of (3.54)), it is sufficient to look at the limit of
/h;lJ": V@ dz
Q
= _
+ / / IO (V,9)Y dag da
5Jo

1
—I—// hfllJ@’"): (vné)@) dxs da’
=

8 ! !
—Z/hnlﬁ-zg<v¢@) ) das do’
5 0
=1
1

4 - PV
—Z// B (SO ( V%(x) ) dzs da’
=1 /570

dzs dz’

50
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4 1 Y,
-3 / / h g gl ( v (%(x) ) dxs da'. (3.75)
=1 /S

In the following we denote by Z the center of a cell = + (—%”, %)2 X (—;T”n, 2%), where

S A; Written as a sum and a subsequent Taylor expansion of the discrete derivative we
get

B.79) =
° 0o (2')
lzl/ﬂh;u_? {i <¢ (:E’+en () > - %leqa <fg/+gn () )) o5 — ( aﬁ)o(i,,) )] g
B[ [ (o) Ao e ) o
Oo(i')
— 2 ( Oa (7)) )] dxs dx
0
B L (a2 e )
010 (2')
2 ( Drp(2") )] das dx’
0
=3 [ (T () oo [ ()]
: 019(1')
_% ; 62nv/2¢(f’) [(z]) () ] - O(si))eg — 24 ( 02¢0(:@') )] dx
+Z [ (o) () + 597 [ ()]
; Ovo(i')
_% ; %vw(i’) [(zﬂ')', (+) } - 0(5,%)) €3 — 24 ( agqao(@') } das dx
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Note that

V/2¢(.T/) [(Zi)/7 (ZZ)/} — {

N

(811?]<£L',) — 2812@(1") -+ 8221)(.’13',)) , = {2, 4, 6, 8},

hence we get

V20() [, ()] - 5 30960 [, ()] = 30u0(@) (1.

Rearranging the above terms leads to

B75) =
8

1
J(ll n) . 5812¢<i'/)(—1)l+1€3 d.ﬁEg d.ﬁE,

+Z//n 2 2(v, — 1) 10 T ‘912¢< )(=1)"es das da
" Z/ Bt [Jon (i) + Ja0hd ()2 — Jioho(i)2h — Jowo(i')2] da

4 ﬁ
+3° h; “”am)( Nk I 0a(F) 2
=1 S JO

02 — S 0u0(#)4] ey d’

4 1
+3° nt | o)A + I 00 (3 4
=1 7S/t

— T ()25 — TP 9,6(7) 2 l+4] dzsy dr’ + O(ey).

(8117](1'/) + 281211(1'/) + 8222}(1‘/)) , 1€ {1, 3, 5, 7},

52

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

We determine the convergence of ((3.76) + (3.77) + (3.78)) and ((3.79)) + (3.80) + (3.81)))

separately. In case v, — oo the term ((3.76) + (3.77) + (3.78)) clearly vanishes. If
Vn = v € N however by Proposition 3.2.9, Lemma [3.2.16,Corollary :2.3.3 and ([3.34]) we see

that

B.76) + @B.77) + B.79)

1 rel SymGl 0 1 . !

1 Sym Gl 0 1 8121)
— DQuu z1) L 127 A1) . MY gy
[P (5 5 ) 20 g ) ot as
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It remains to show that ((3.79) + (3.80) + (3.81])) vanishes as n — oo. First remember

that we denoted by z the left lowest point of a cell T + (—%”, %") X < ;fj , 2h ) Thus

For instance we look only at (3.79) as the surface parts work just the same way again. A
Taylor expansion yields

0ip(#) = ip(#) + V'Oip(F) - (& — &) + O(|#' — &)
- a0@) - 900 (| ) +0 ().

Hence for i € {1, 2} we have

8

Z/ bt (Jadho(#')2) = Ji0wg(#)z) do

Q
8

—Z / ha' (J50i0(2)2; — J30id(7)23) da (3.82)

Q

—Z/ TiV' 0,6(F') - ( ' >z§ dr + Oy 'e2). (3.83)

In both, thin and ultrathin films, (3.82)) tends to zero due to

ESJ |t (002l = Tio(@)) do
< [

Z 312 123

=1
For the last estimate we have used Lemma [3.2.19, If v, — oo term ([3.83]) tends to 0 too.
If v, = v € N however

10:6l

< Chy,.

— Z/ leV'aﬂp( - < i )zé da.

Note that

hence

BT + E0) + B3) —
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2 L 1 . 1
I r L e N . )
;;/s/o 2<V_1)le(x,2(y_1)>v&gb(:v) (1)Z3dx3dx
2 4 1 1 . 1
v—1 (ON 'n ~ l /
+;;/s/o 2w —1) (”2@_1))%”(‘”) (1)Z3dx3dx
2 8 1 1 5 5 1
< J; /—_ 9. AW l ,
2 4 1
1 , 2v—3 , ) 1 /
+Zz/s/v2 2(v — 1)Ji(12) (“" ’ m) V'9i(2') - ( ) > 2 duy da
i=1 1=1 =

2 8 w2 m ) Com_1 / / , |
+ZZZ/S/M% mjil($,2(y_1)>v icb(m)-(l)zédmgda:

The terms sum up to 0 because of Lemma [3.2.14] In total we deduce that for v, — oo
(13.54) converges to 0 and for v, =v € N

1 sym G 0 1
5) — [ —— D Z+ Gy : 06 M da’
65 2 [P (0 ) 2+ ) oot a

1 sym G 0 012V
—————DQquu ZW 4 =MW ) 9peMWY da.
L@ (T 0) A gy s duon® o

Together with (3.51]) and (3.53)) we obtain (3.7)). ]
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3.3. Fully clamped boundary conditions

So far our work only covers distributional solutions which means we kind of ignore boundary
conditions. This is unsatisfactory since in mathematical elasticity we usually treat boundary
value problems. It would be desirable to obtain clamped boundary conditions in the two
dimensional limiting equations as it was done in the continuum case done by [MPOS§|
or [MS09]. In fact our proof does apply to fully clamped boundary conditions with only a
few modifications:

e We need to change the space for the definition of the weak solution, c.f. Defini-
tion [3.1.1} The right space for a weak solution (u,v) is Hj(S;R?) x HZ(S).

e We do not need to change the space of test functions used in Definition [3.1.1, By
density it is sufficient to obtain the equations for every smooth test functions with
compact support.

e We need to make sure that the displacements of piecewise affine interpolations of
the three dimensional, stationary points vanish on 0S. This is achieved by requiring
Yn(z) = (o', 25 — %") if 2" is close to the boundary. Then clearly u, 95 = 0 as well as
Unjos = 0. Arguing as in [MPOS8] shows that the pair (u,v) lies in the right space.

e We do not need to normalize the sequence g, i.e. we can choose R = Id and ¢, =0,
as shown in [LMO09]. Consequently there is no need to consider a rotated force term
either.

3.4. An example

A basic mass-spring models with nearest and next-to-nearest interactions is given by

a jw(z) — w(’)] ’

Eatom(w) - Z Z ( - —1

| z,z’/G‘An n

B jw(z) — w(z)| ’

L — V2

4x LN

x,x (S n
|z—x’|:\/§an

= Z W (z, 1_)1)(:10)),

xeEN],
if

chn(a) = 1&—6 Z (|”LUZ — ’LU]-| — 1)2

1<i,j<s
|zi—2z3|=1

+§ Z <|wl —w;| — \/5)2

1<4,5<8

|zi—27|=v2
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and

a
Wawrt(wr, wa, w3, wy) = 3 Z (lwi — w;| = 1)?

1<i,j<4
|zi—2z7|=1

+§ Z (\wl —w;| — \/5)2

1<4,5<8

|zi—27|=v2

It is desirable to cover such basic models as this is the case in the ['-convergence result of
Braun and Schmidt, yet we need to make little adaptions. In our model we assume that
DgrW (z,-) exists everywhere, which in the example above is clearly not the case. Hence
we look at models given by

4 En
z,2/ €Ap
|lz—a!|=¢en
8 p (w(z) — w(a)) i
L NG,
T2 - v2)
z,x’' €Ay,
\a:f:r’|:\/§€n

where ¢ € C*(R) with

(i) ¢(0) =0,
(i) ¢(x) > 0 for every x # 0,
(i) ||¢'[|, < C for some C > 0.

3.5. Summary

We close this section by putting our result into context. Theorem [3.2.1| extends the I'-
convergence result of Braun and Schmidt. However we need to make additional, physically
problematic assumptions on the growth conditions on the derivative. These growth
condition limit our analysis to very basic interaction models. In particular we cannot
penalize strong compression. The same problem occurred in [MP0§|. As a remedy Mora
and Scardia proved in [MS09| a similar result under the growth condition

|IDW(F)F'| < C(1+W(F))

for every I’ with det F' > 0. It would be interesting if such a result is also possible in the
discrete setting.

Further, as already mentioned, it would be desirable to treat clamped boundary
conditions instead of fully clamped boundary conditions. At first glance this task seems to
be rather harmless. Unfortunately it turned out to be way harder than expected and to
the day of submission we could not find a solution to it yet.



Chapter 4
The time dependent case

4.1. Introduction
4.1.1. A quick review on the continuous case

In 2009 Abels, Mora and Mueller were able to extend the results of [MPO0S8| to a dynamic
model. Let f € L*((0,00), L?(S)) and set f(r,x) = h®f(7,2')es. Consider a solution w
of the dynamic equation of nonlinear elasticity

02w — div, DW (Vw) = f" in [0, 7] x Q.

with €, =5 x (—%, %) As usual the domain is rescaled ) = S x (—%,

we rescale in time. The rescaled mappings

%) and in addition

t
y"(t,z) = w" (ﬁ’ x, hxg)
solve the equation
h202y" — div, DW (Vy") = higes in (0,T},) x Q2 (4.1)

with 7), = h7, and g(t,2') == f (£,2'). For F € H'(Q;R?) the scaled divergence divy, is
defined as
: 1 .
div, F -e; = Z @-Fij + Eagﬂg, 1€ {1,2,3}
7=1,2
In [AMMO9] it was shown that, given certain energy estimates and initial conditions, the
averaged in-plane and out-of-plane displacements

ul(t,2) = h> /é ((yh)/ (t,x) — x') drs,

NI= o=

" (t, 1)) = h;l/ yh(t,x) drs

N

of weak solutions of the dynamic equation of nonlinear elasticity converge in a suitable

sense to maps (u,v). Note that the integration is here over the interval (—3, 3) since the
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domain is Q@ = S x (— é, 2) The limiting displacement (u,v) is a weak solution to the

dynamic von-Karman plate equation

{8211 + Ldiv [divLy (V?0)] = div [£y (symV'u + Vv @ Vo) V'v] =g,

4.2
div [LQ (symV’u—i— 1V’U®V’ )] =0 (4.2)

in [0,7] x S with zero boundary conditions, i.e. ups = 0, vjps = 0, V'vj9g = 0. For details
on the assumptions, boundary conditions and energy bounds we refer to the article. The
goal is to prove a similar result in the discrete setting.

4.1.2. The model and boundary considerations

We are working with the same model as in the stationary case. We refer to Chapter [2| for
details. For reasons of simplicity we are modeling fully clamped plates. This means that
we are looking only at deformations which satisfy the clamped boundary conditions on the
whole lateral boundary of S in contrast to the clamped plates, where boundary conditions
only were given on a subset I' of S with positive surface measure (c.f. [MP08]). The goal

is to obtain
= (nii-n ) 9

whenever ' € 95, where ¢ is the piecewise affine, rescaled interpolation of an ex-
tended atomistic deformation w : A, —>7R3. Remember that we deﬁﬁned S, = {x €
S dist(x,0S) > v2e,}. Let OA, = {zx € A,,: 2’ ¢ S,,} and int(A,) := A, \ OA,,.

Let

NN

/

A, = {w:/_\n—HR?’: w(z) = ( $3x I ) for allxeaAn}. (4.4)
2

By applying the piecewise affine interpolation scheme it is not hard to see that gj(a:) =

w(H,x), H, = diag{1,1, h,} satisfies the boundary conditions whenever w € A,,.

The forces considered in this section will be a little less general compared to the
stationary case. They will be of the form g, (t,z") = h2g(z')es for some function g specified
in more detail in the next section.

We make one last remark on the spaces we will use in the following. By I we denote
the interval [0, T] for T € (0,00). If T'= 0o we set Iy = [0,00). In the following we will
work with the spaces L (Ir; X), p € [1,00], for different Banach spaces X. In particular
if T < oo the space L} (Ir; X) agrees with the space L?(I7; X).

2. Weak solutions

First we give the notion of a weak solution to the limiting equations, which are the
time-dependent von Karman equations. We have to distinguish between v, — oo and
v, = v € N. To make sense of the upcoming definitions we assume that the force term

is sufficiently regular to have suitable integrability as well as point evaluation. This is
certainly the case for g € L2 (0, T; Wh>°(S)).

loc
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Definition 4.2.1. Let v, — oo. We say a pair (u,v) is a weak solution to (4.2)) if
u € Lloc<[T; Hl(S? RQ)) CAS Lloc<IT; H2<S)) Wl%)cOO(IT; L2(S>> and fO’f’ every T € IT the
following two equations are satisfied:

T T
/ /8tv8t<b dx' dt — / /£2 (sym V'u+ %V’v ® V'v) Voo Ve dd dt
0o Js 0o Js

Tl
1 ! ! /
—/0 /Sﬁcz(v%):v% da’ dt
T/
+/ /g¢ de’ dt =0 (4.5)
0 S

for every ¢ € L*(0,T'; H2(S)) N H(0,T"; L*(S)), and
T 1
/ /Eg (sym V'u+ §V’v ® V'v) : VU da’ dt =0 (4.6)
o Js

for every ¥ € L*(0,T'; Hy (S; R?)).

Definition 4.2.2. Let v, =v € N. We say a pair (u,v) is a weak solution to the dynamic
von-Kdrmdn equations if u € LS (Ir; HY(S;R?)), v € LS (Ip; H*(S)) N WL (Ir; L*(S))
and for every T" € Iy the following two equations are satisfied:

u—1/ /&v@tqbda: di

/T// ) 225((0 8>Z+2V_1 > (V/”®v/¢ O)de’dt
e (GES =) (V'Q‘”)Z-df’d’f
L (5 1)) e

o SQZH paz (G 0)2): (T o)z a

[ e (G 8) 2 e g

/ /
(V“(ﬁvgb 8)2(1) do’ dt

Gi 0O O12v
— > DQuur W L 27 @) M d
/0 /52(1/ 1)? quf(( 0 O) +2(1/—1) 120 da dt
T/
Gy 0\, ). [ V% 0\ _a ,.
+ 0 S4 Dqurf(( 0 O)Z . 0 0 Z dx dt

T/
+yi1/0 /Sg(tzv’)cb(t,x’) da' dt =0 (4.7)
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for every ¢ € L*(0,T'; H2(S)) N H(0,T"; L*(S)) and
T/
rel 0 1 (VU0 p
Tl
Gl 0 8121] V/\If 0
D zW 4 —— MW ). / 4,
y—1/0 /S QS““(( 0 0) DT o o) ded (48)

for every W € L*(0,T"; H}(S;R?)).

+

We also need the notion of a time dependent atomistic weak solution. Motivated by
equation (4.1)) we give the following definition:

Definition 4.2.3. Let T' € (0,00]. We say that y,: It % A, — R3 is a time-dependent
atomistic weak solution of (4.1)) if for every x € A, the time derivatives Oy, (t, ), 2y, (t, )
exist and lie in L2 (I7) and for every T' € (0,T)

loc

T/
0= hi/ Z Oryn(t, ) - Opp(t, x) dt
0

xEAn

T/
_/ Z DFW :1: s Voln(t, x)) : Vap(t, z) dt
0

A/
/ Z h2g(t, 2" )ps(t, ) dt (4.9)

xGA
for every ¢: Iy X A, — R® satisfying
o o(-,z) € H(I7) for every x € A, and
e o(t,z) =0 whenever x € IA,,.

We determine the Euler-Lagrange equation satisfied by a sufficiently regular solution
according to Definition m Fix x € A,, and denote by

N(z) = {77 el n=a+e,((z), h12) forsomeie {1, ,8}}

the neighboring midpoints of cells of z, as long as they belong to /N\;L. Let ¢ be an admissible
test function such that ¢(t, z) = 0 for every z # z and for every ¢. Then by (4.9)

2 v £
0= hn h_atyn(tv l’) : at‘p(tvx) dt
0

n

T’ 52 B N
_/ - Z DpW (n,Vnyn(t,n)) : Vap(t,n) dt
0 " neN(x)

T/
+/ "h3g(t ') ps(t, x) dt.
0 hn
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In terms of the adjoint operator V* of V,, (for the definition c.f. (2.3)) we get

T/
/ [—h207yn(t,2) — Vi (DEW (-, Vuyn(t, ) (@) + hig(t,2')es] - p(t, ) dt = 0.
0
Thus y,, fulfills the high-dimensional system of ordinary differential equations
h207yn(t,x) = =Vi (DEW (-, Vaya(t, ) (z) + A2 g(t, 2')es

where = € A,,. These is precisely Newton’s second law for motion. With suitable regularity
assumptions on g and given initial conditions for y,, and 0,y, the Picard Lindeloef theorem
guarantees existence and uniqueness for a time interval (0,7,) with 7,, > 0.

Remark 4.2.4. For convenience we would like to compute V7 (DFW(~, ?ny())) (x). We
assume for simplicity h,, =1, the general case follows by rescaling. Remember that for
H: N, — R¥® and every ¢ : A, — R? the identity

> ViH(x =) Hw (w).
z€A, weA!

must hold. Let v € A,, and ©(2) = 0 for every z € A, with z # x. Then

Y DeW(w, Vay(w)): Vap(w)

weA],
=D D05 W (0, V(@) ()
weN! i,
1 _ R
- 5_ Z Z aFjiW(w7 Vny(w)) <90j(w + €nZZ> - g Z goj(w + 5nzl))
" =1

weh!, i

Ly s o <>>(%<n+anzi>—é;mnmz@)

En 1,7 neN(z)

1 P i
= E E Or W(x — ,2", Vyy(o — £,2") ) ()
n ie{1,---8}: j=1
T—enzt€N],

__Z Z aFﬂ

8
Vg 2 ¢il+ e
En 3,J neN(x) =1

3
- gi > > [%,W(q: — .2, Voy(z — e,2")

n ie{1,--8}: j=1
T—enzt€N],

Oolr—t

1 _
5 L o (2= 2054 Tl — 222) 30
lef1,-
z— snzleA’

= gi Z {(%W(a: — 2", Voy(o — e,2"))

ie{1,---8}:
T—enzt€N],
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1 _
5 Y oW Vayle —202h) | - (o)

le{1,---8}:
x—enzteN],

Therefore we see that
Vi (DeW (-, Vay(+)) (x)
_ 1 Z [8FW(x — .2, Voy(o — £,2%))

n
i€{1,--8}:
r—enztEN,

X W Ve — 5] o)

lef{1,---8}:
r—enzleN],

corresponds to a discrete divergence. Of special interest are the following cases. If x is an
interior atom, the result is

Vo (DEW (-, Vay(1))) (2)

8
1 1 _
= — Z |:8F cell(vny(x - 6\n - g Z aF.ichll(vny(x - 5nzl)):| :

i=1 =1

If x is an atom in the uppermost layer, i.e. x3 = h,, and x’ is away from the lateral

boundary 0S5,

8
E— Z (8FW(x — 2", Voylo — e,2")) — Z Op,W(x — e, 2, Vay(z — e, 2! >

€
™ =5

1 < .
= 5_ Z |:8F chll(vny(flf — 5nzl)) + aF,(Z-_4) Wsurf ((Vny x€r — gnz

1< _ )
8 Z O Ween(Vay (@ — £02')) + O,y Wit <(Vny(x — snzl))(2)>] .

If x is an atom in the lowest layer, i.e. x3 =0, and x’ is away from the lateral boundary
08,
Vv, (DEW (-, Vay(+)) (z)
=

= Z (8F (7 — e,2", Voy(o — ,2")) — = Z Or,W(x — ez, Vay(o — enzl))>

€
noi=1

— 8_ Z |:8F cell(anJ(Qf — Epk )) + aF Wsurf (?ny('x _ Enzi)(l))

i=1

—_

4
- Z 3E¢chn(vny(x - SnZl)) + 8F.¢Wsurf (vny(gj — gnzl)(l))} )

=1

oo
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4.3. Some preliminary results

The following proposition is a collection of the (for us) most relevant results of [F.JMO06]
and |LMO09] applied to mappings with time-dependence.

Proposition 4.3.1. Let y, € L*(0,T; H'(Q2)) be a sequence with

Oryn € L*(0,T; L* (4 RY)),
@tyn - Lz(O, T, Hil(Q, RS)),

such that for every T' € Ir

esssup/ 0y (t, 2)|* dz < C(T")h2, (4.10)
te[0,7"] JQ
esssup/ dist*(V,yn(t, 7), SO(3)) dz < C(T')hL. (4.11)
tefo,7] Ja
and ,
Yn(t,x) = ( hn(xz,; 1 ) for every ' € 98S. (4.12)

Then there is an approzimating sequence R, C LSS.(Ip; HY(S;R3*3)) such that R,(t,2) €

loc

SO(3) for almost every (t,2') € (0,T) x S and

esssup ||vnyn(t> ) - Rn(tv )HLQ(Q) < C(T/>h$w (413)
te[0,77]
esssup [V R0, )l ags) < C(T' (114)
t€[0,77]
esssup || Ry (t, ) — 1d|| g5y < C(T")hn (4.15)
te[0,77]

for every T" € Ir. Moreover, the averaged scaled in- and out-of-plane displacements
1
up(t, ') == hT_LQ/ (yn(t,2)) — 2" dus, (4.16)
0

1
vp(t, ') = hnl/ (yn(t, z))s drs3 (4.17)
0
satisfy, up to a subsequence, the following convergence properties:

u, = u in LS (Ip; HY(S; R?)), (4.18)
v, = v an L3S (Ip; L2(9)), (4.19)
Ovn = 0w in L2 (Ir; LA(S)). (4.20)

The maps v and v satisfy the boundary conditions

/
Ulps = 0, Vips = 0, \Y Vjips = 0.
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For the proof of the following proposition we refer to the step 2 in the proof of Theorem
2.1, [AMMO9)].

Proposition 4.3.2. In the setting of Proposition[4.5.1] let
A, =h (R, — Id).
Then
A, 2 A=e3@V'v—Vv®es in LY (Ip; H'(S;R>?)) (4.21)

loc
The map h.2sym(R,, — Id) is bounded in LS. (Ir; LP(S; R3**3)) for every p < oo. Moreover

Aneq is strongly compact in L1 (Ip; LP(S;R3)) for a = 1,2 and any 1 < p,q < oo.

loc

We also have a time-dependent version of Proposition [3.2.7}

Proposition 4.3.3. Let y, satisfy the assumptions of Proposition[].3.1 and define

On(t, @) = Nyt (yalt,@))s -
Then
Uy =4 in L3 (Ip; HY(Q;R?)), (4.22)
Op =0 in LSS (Ip; HY(R)), (4.23)
where

Moreover it even holds that

Op — 0 an LSS (Ir; L2(2)). (4.26)

Proof. By Korn’s inequality (Proposition [A.1.1)) we have for u € W2(2; R?) the inequality
u u
16 ) =52 clumoaan < lvm ¥ (6 Ylnamos
for S = [, skew V “) drand c = J. “) dz. Hence
Q 0 e\ o ’

H@n(t)HWLZ’(Q;R?) <C (Hsym V/ﬁn(t)”m(a;ww) + Hai’rﬁn(t)’lL?(Q;R?)

/Q skew V'iiy (1) da /Q in(t) dx)

+
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for almost every t. By (4.13) and Proposition we recognize that sym V'a, is
bounded in Lg% (Ir; L*(€2; R**?)). The sequence | [, @, (t) dz| is bounded in L%, (I7) due

loc loc

to (.18). Note that 95 (a,); = hy,' (Vayn — Id),5 for i = 1,2 and the boundedness in

7

Lz, (Ir; L*(2; R?)) follows from (4.13) and (#15)). To bound | [, skew V'@, (t) dz| we use
that

ess sup /skew V', (t) dx| = esssup /skew V'u,(t) do'| < C(T)

tel0,77] Q te[0,77] S

by (#.18)). This yields boundedness of @, in L (I7; H'(Q;R?)). It remains to identify the

loc
limit. Since

1
/ Gy, drs = u in L (Ip; H'(S;R?))
0
and, for i =1, 2,

O3 (n); = byt (Voyn — Id) ;3 = =0 in LS

i loc

(Ir; L*(Q))

by (4.13]) and Propositionm Therefore the limit is identified by (4.24]) and subsequences
were not needed.

Next we show that @, is bounded in L2 (I7; L*(Q)): From (4.13) and ([#.15) we get
the bound

esssup ||V, (t)|| j2iq) < C(T). (4.27)

te[0,77]

Since v,, — v in L{°

2 (0,T; L*(S)) and f, 0, do = ﬁ Jvn dz’ we deduce by Poincaré’s
inequality

0 (t) —ﬁﬁn(t)\\Lz(QﬁH]é On(®)]] 2

< O (IVenOll 2y + I0a(®)l12))
< C(T)

00 ()]l 20y <

by ([4.27) and (4.19). Thus there is a © € L2 (I7; H'(Q2)) such that (up to a subsequence)
O = 0 in LS (I7; HY(Q)). To identify ¥ note that by (4.19)

loc
1
/ U, drs — v
0

831A}n — 1
both in L2 (Ir; L*(S)). Hence the limit © is given by (4.25)).

Finally the convergence (4.26)) follows from Lemma [A.2.5] since, due to (4.10)), the
mappings 90, are bounded in L{° (Ir; L*(Q)). O

loc

and by (@13) and (@E15)

The next lemma can be seen as a weaker analogue to Proposition [2.1.3| and Proposi-
tion for weak-*-convergence. Note that we additionally assume that both interpola-
tions of the sequence converge. Thus we only have to identify the limit.
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Lemma 4.3.4. Let y, : [0,7T] x A, — R? be a sequence of discrete deformations.

(i) Let v, — oo and assume that g, — y and §, — z both in L>(0,T; L*()). Then
y==z.

(ii) Let v, = v € N and assume that g, — y in L=(0,T;L*(Q)) and j, — z in
L (O,T; L? (S X <—ﬁ, %))) Then z = y*, where y*(2', z3) = y(a/, Vfl)

for vy € (B, 25 ) i =0, v = 1.

Proof. (i) By Lemma it is sufficient to consider test functions of the form p(t, z) =
n(t)xo(z) - e; with n € C°(0,T) and a cube Q = [[_,[a;, b;) CC Q. Let

Q= LJ Qn(z)\ Q

Qn(z)NQF#D

and

i=1

2
Qn = (H[ai — 3ep, b + 36n)> X |:CI,3 — 3;—”, b, + 32—”) \ Q.

Clearly |Qy], |@Qn| — 0 as n — co. For the interpolation § of a mapping y : A,, — R?
by @8) it holds that f,  § d¢ = j(z) = L35y (:c'+e( WY g+ —zg) for
z € A/, Thus for a constant C' > 0 we can estimate
e~ [ 5
Q Q

§ dé — gdé— | gd
> y dg Qnyi/ny

EA’ n(z)
Qn(z)NQ#D
=y ~
_ | j de - g&—/@%
= Jauw Qn Q
Qn(z)NQ#D
g3 1S
I X s2ov (v am s pd) - [ [ Gas
n (EEA/ "

<|[ ga+c|[ 7a
T o T
Unp dx dt—/ /zg& dx dt‘
Q 0 Jo

Applying this estimate yields
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T 3 T
/ n(t)/gjn'eidxdt—/ /zgodxdt
0 Q o Jo
T T
/ n(t)/g]n-eid:pdt—/ /chdmdt
0 Q o Jo
T ~
/ n(t)/ Up - €; dx dt
0 n
T
n(t)/ U, - € dr dt
0 Qn
T T
Y, dx dt—/ /ch dx dt
Q 0o Jo
T ~
/ n(t)/ Un - €; dx dt
0 n
T
/ n(t)/ yjn-eidxdt‘—ﬂ)
0 n

as n — oo. Hence ¢, — z in L®(0,T; L*()) and z = y must hold.

<

+

+C

+

+C

(ii) With the isomorphism L2 (S X <—ﬁ, %)) =~ @) L(S) for piecewise con-

stant functions in x5 on the intervals (2=t 2L} j =0,...,v — 1, we can show
2(v—1)7 2(v—1) )° AR J

similarly as in (i) that §,(-, =25) = 2 in L(0,T; L*(S)) for i = 0,...,v — 1. Define
P': L2(R?) — L2(R?) by

En En\2

P/ AR ,d, h ’ ’ _Sn En
S (&) ]£/+(€;752n)2f(y) Y Wenever§6x+< 5 2)

with 2’ € ,Z2. By LemmalA.2.6/also P, (-, =) = z;in L>(0, T; L*(S)). Moreover

for almost every 2/ € S the map 5 — P’ g, (2, 23) is affine on the intervals ( , =+ 1),
i=1,...,v—1 by Lemmald.3.5 Forie€ {1,...,v—1} let p(t,z) —n(t)x( ) with
n € C>(0,T) and x € C(S x (&1, -L)). Then
T ~
/ / _ ‘ ;Lg]ngo dz dt

v—1'v
/ /5 z " <
>< i—1

1/11/1

1) (o 20)) (o)

{zi_l + (= 1) (2 — 21) (x3 _ f/: 11” ot 7).

v—

(v—1) <P’ Un <t ',
=0 L

Thus z; = y(,

—L) for every i € {0,...,v — 1}.
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Lemma 4.3.5. Let Q = [0,1]* and y : {0,1}3 — R with its piecewise affine interpolation
g. Let Q' =10,1]>. Then the map x3 — fQ, g(2', x3) da’ is affine on the interval (0,1).

Proof. Denote by zq, ...,z the corners of the bottom layer and by zs, ..., 2g the corners
of the top layer of Q). Let y; = y(z;). First we assume that y; = yo = y3 = y4 and
Ys = Y6 = Y7 = ys. Then the map y: {0,1}> — R is affine and consequently the
interpolation ¢ is affine on (). For an arbitrary mapping y we note that permuting the
corners on the lower part of the cube as well as the upper part of the cube does not change
the value of the integral fQ, g(x', x3) da’, as we only permute the simplices used in the

interpolation. Let §° be the interpolation after rotating the base face and the top face of
the cube i times per 90 degrees, see Figure . For x5 € [0, 1] this leads to

Figure 4.1: One rotation of the cube. The value of the integral of the interpolation does not change.

4
1 .
/ g(2', x3) da’ = 1 Z/ §'(2', x3) da’ = / §(a', x3) da', (4.28)
/ i1 ’ Q'
with s(z) = 1 3°0 yi(2) for z € {1, ..., 2}. Now
o) = {1 2ymy(z), i€ {1,2:3.4),
125-su(). i€{5,6,7.8}

and, due to the previous case, the map x5 fQ, 5(2’, z3) dx’ is affine. But then, by (4.28]),
the map z3 — fQ, g(a', x3) dx’ is affine too. ]

Corollary 4.3.6. Let y, : It X A, — R? be a sequence of discrete deformations such that
the interpolations 1, satisfy the assumptions of Proposition . Let

On(t, ) = h g, (t, ). (4.29)
If v, — o0
U, — 0 in L (I7; L*(Q)). (4.30)
Ifv,=veN
_ 1 2v—1
O — 0 in Lo ( Ip; L? - : 4.31
U, = 0% in ZOC(T, (S x ( 2(1/—1)’2@—1)))) (4.31)

Proof. This is an immediate consequence of (4.26) together with Proposition or
Proposition L]
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4.4. The discrete, time-dependent strain

Wee need to find convergence of the discrete strain
Gy =0, (RLV.G, — Z) .
As we will do later in the main theorem we assume that

esssup B, (y,(t)) < C(T")h;  for all T" € (0, T],
te[0,77]

by Proposition [3.2.4] this implies

ess sup/ dist? (V,3(2), SO(3)) dx < C(T")h.
te[0,7'] JQ
Thus we can use the results of [AMMO9| proven in Step 4 of their Theorem 2.1: The
sequence )
Gy = hy,? (REV 3 — 1d)
converges weakly-* to some G in L (Ir; L?(Q, R3*3)). The upper 2 X 2 matrix G” of G is
affine in x3, i.e.

G () = Gyt 7)) + (x3 - %) Golt, )

with sym Gy = 1 (V'u+ V'u” 4+ Vv ® V'v) and G, = —V"v. The mappings u and v are
the ones from Proposition 4.3.1]
We again use the projections P, to piecewise constant functions defined by

Puf(z) = ]{2 SO ek,

on Q,(z) and P defined by

k

v—

Pf(z) = k_llf(:v’,t) at i o=

if v, =v € Nand P = Id if v, — co. We remind that for every f € L*(Q2) we have
P.f — Pf in L2(9).

1 k
<zs < —— k 1,...,v—-1
1_3:3_1/_17 6{7 yV }

Proposition 4.4.1. Let (y,), be a sequence of discrete deformations such that for every
T e (0,7)
esssup B, (y,(t)) < C(T")h} (4.32)
te[0,77]
and the interpolations v, satisfy the assumptions of Proposition . Let

2 (RTV i, — I1d) = G in L= (Ip; L2(9, RP)),

loc

Then

]

n =G in LS (Ip; LA(Q,R*®)),
where
G GZ if v, — 00,
| PGZ+ -1-G3 ifv,=veN.

2(v—1)
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Since the proof is essentially the same as in [BS22] we will omit detailed calculations
and focus instead on why all of the convergences remain true in the time-dependent
setting within the respective function spaces. We start with the boundedness of G,, in
LIOC(IT7 LQ(Q RSXB))

Lemma 4.4.2. In the setting of Proposition the sequence G, is bounded in
L3 (Ir; L2 (Q; R3*®)).

Proof. At this point let us remind that by the energy bound (4.32)) it follows from [Theorem
6, [FJMOG|] that there is an approximating sequence R,, C Lloc([TS H'(S;R3*3)) such that
R, (t,z") € SO(3) for almost every (t,2') € (0,T) x S and

€sssup anﬁn(ta ) - Rn(t7 ) HL2(Q) < C(T/)hzw (433>
tel0,17]
esssup | V' B (L, )|l 25y < C(17)n (4.34)
te[0,17]
esssup || Ry (t,-) — Id|| g1 (5) < C(T") s (4.35)
t€[0,17]

for every 7" € (0,7). Note that (c.f. Remark |3.2.6) the maps R,(¢,) can be chosen
piecewise constant on two-dimensional cubes Qf length h,,. A§ €n < h, in particular they
can be chosen piecewise constant on cubes Qn(z) for x € A/, This is crucial to pass

from V,7, to V y and apply the results for the approximating sequence. By part (ii) of
Proposition [2.1.5( and (4.33]) we have for x € A’

/ Gt )| de = b / 19,7, (1€) — Ra(t,€)2|* de
3

= h,fh" Vb () = Ru(t, ') 2|

<ot / V(€)= Ru(t,6)[ de

< o).

Summing over all cubes yields the claim. ]

Proof of Proposition[4.4.1. Compactness follows from Lemma | ie. thereisa G €
L2 (Ir; L2(Q, R3*®)) such that, up to a subsequence, G,, = G in L1oc(]T§ L*(Q,R3*®)). Tt
remains to identify this limit. As R,, — Id boundedely in measure on (0,7") x €2 for every

T" € (0,T) we have by Lemma
R,.Gn = h2(Vuy, — RZ) > G

o0
in Lys,

(Ip; L*(©; R3*®)) as well as
h;2(vn§n - Rn) -G

in L (Ir; L*(Q; R3*3)). We distinguish between the affine parts and the non-affine parts.

A b € R¥is called affine if it is in the linear span of the vectors 0°, - -+ | b3 with 0° = (1,--- | 1)
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and b = ZTe; for i € {1,2,3}. All vectors orthogonal to the affine vectors are called
non-affine. They are characterized by 2?21 b; = 0 and Zb = 0. We start with the affine
parts. For every n € N we have R,G,b° = 0 and therefore Gt° = 0. By Lemma (for
the calculations see [BS22|, Proposition 4) for i = 1,2 it holds that

~ 2
Pu[RuG]b =l [0 — Ruei]
2 2PGe; = PGZU,
whereas for ¢ = 3
= 2
Pn[RnGn]b3 h2 [h 183yn Rneg]

X 2PGes = PGZV?.

Summarized for every affine vector b we have Gb = PG Zb.
For a non-affine vector b we write b = (b(l)T,b(z)T> with b € R*. Further we
consider the two-dimensional difference operator

4
V¥ f(z) = gi (f(x’ +en(2Y), 23) — %Zf(x' +5n(zj)',x3)> :
1=1,2,3,4

By (V24)* we denote its adjoint determined by the relation

D2 Vi) Hiw) = 32 @) (Vi) H() @)

wen!,
for every H : A/, — R¥*. Then (for the calculations see [BS22], (44) and (45))

R.G,(t,2)b = h,>V,y,(t, )b

= h> (V2d (t,x+ ﬁeg) \AT (. %63)) b (4.36)
Fh 22 x — 2%"63) (b + b)) | (4.37)

We treat (| and (4.37) separately and start with (4.37)). Let ¢(¢t,z) = n(t)¥(z) with
n € C°°(0 T’) and \I/ € C'OO(Q R?). Then, with Z2 = ((z'), (22), (z%)', (z*)) € R¥4,

(V2 (t, x) = —V'o(t, ) 2%

uniformly and therefore for i € {1,2}, by Proposition 4.3.3] Lemma and due to
7246V + p?) = 0,

T _
the?/ / V2(g, —id)(t,z — 6—63) (b(l) + @) o(t, x) dv dt
0o Jao 2h,
T ~ o
= h;%?/ /(@n —id)(t,z — ;Tneg) (Vid) ot x)(b(l) + b(2)) dr dt
0 Q n
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Tl
— — / / a;(t, 5)V'p(t, ) 2% (b + b)) dz dt =0, (4.38)
Q

v—1

T/
/ / Va'in (’f - —zh ) (b +0?) plt, ) do dt
1 T (Ua)s t,x B 2217163) S2d ) *
ol U (53"t

where 7 = 7z if v, — oo and 7 = (x’, [v=D)zs) ) For i = 3 we have

+V! ot x)sz) (b + ) dz dt. (4.39)
Now
51 ((vgd) o(t,z) + V' ot g;)z%)
E (év%(t, 2 [ ()] - 5 32 V() [, (zj>'}) (4.40)

uniformly. By Proposition together with Proposition if v, — oo from (4.39)) we
get

T/
/ / vy (t xr — ﬁeg) (b(l) + b(2)) o(t,x) dx dt — 0. (4.41)
For v, = v € N instead by Proposition and Proposition it follows from (4.39)

and (4.40) that
T -
e / / V'y, (t - —63) (B + b)) o(t,2) do dt
0o Ja 2h

T/
— 1 / / (EV/%) [(Zi)’, (ZZ)’}) (b(l) + b(Z)) o(t, ) dx dt. (4.42)
v=1Jo Jal2 i=1,2,3,4

For (4.36]) let ¢ as above. Then, after repeating the calculation done in [BS22| for fixed ¢
and integrating afterwards,

T/
/ / (v Atz + e) - vidyn<t7w—%e3>) b - ot @) do dt

T/
— ;_" Pn/ln(t,x)eg ) (vid)* go(t,x)b@) dr dt
n JO0

with A, V"y" 4 Since A, = A= e ®V’U —V'v®es in L2 (Ir; L*(Q; R¥*3)) by (4.13)
and (| - we have P,A, > PA by Lemma and thus

T/
/ / (V2dyn t,x+ ﬁ@g) VG (t, o — %63)) b@ . p(t,x) do dt — 0 (4.43)
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if v, — oo and

T/
24 En oy _ o2z _fn @ .
/ / (V Un(t,x + 2h es) — Viiy,(t, o 63)) b - p(t,x) dx dt

n
Tl

PAe3 V'o(t, ) 22 dz dt

T 2 2d7,(2)
= 1/ / ( Vit @) Z b ) ~o(t,x) dt de.  (4.44)
I/_

This finishes the investigations of the relevant convergences. Summarized for every non-
affine b € R® in case v,, — oo we get Gb = 0 by (4. 38|) (]4 41)) and (4.43). If v, = v € N by
([(@.38), (4.42) and (4.44) we obtain Gb = (PGZ + 5 Gg)b for every non-affine b € R®
after repeating the calculations of [BS22| for ﬁxed t and integrating in time afterwards
Thus for every b € R?¥ it holds that Gb = GZ if v, — 00 and Gb = (PGZ + 5 Gg)b for

every b € RS. L]
Once again we define

J(t, ) = h,2DWean(Z + h2G,(t, 7)), (4.45)

JE (¢t x) = b2 DWaet(ZW + R2ZGI(t, 7)), (4.46)

JE(t 1) = h 2 DWaee(ZW + R2ZGP (2, 7). (4.47)

It is an immediate consequence from the growth conditions on DW.e; and DWg,,¢ that all
of these mappings are bounded in L2 (I7; L*(Q; R3*®)). By Proposition we have
the convergences

Jt 5T = D*Wea(2)[G] - in LS, (In; LP( R¥)), (4.48)
JOW 5T = DWoaue(Z)[GY]in LS (Ir; L RP)), (4.49)
JEM 5T = D*Woau(ZM)[GP) in L (Ir; LA R¥)). (4.50)

Remark 4.4.3. It is useful to write the weak form of the equations of motion m
terms of J*, JE™ and J@™ . Let p(t, x) = n(t)¢(x) such that ¢ € C=(Q) is compactly
supported in S x [0,1] and n € C*(0,T"). After point evaluation on the grid points x € A,
and subsequent interpolation with Lemma we get from for large enough n

T/
0 n
T B
—/ /RnJ”: Vo du dt
0 Q
T N 1
- / / R, JO: (V)Y da dt
0 J9x(0,;5)

T/
- / / R, I (V,p)? d dt
0 Sx(unl 1)

T/
+h, / / 355 (4.51)
0 n
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Corollary 4.4.4. There is an M € LSS, (Ir; L*(2; R3*8)) such that

h2DeW (-, Z + h2G,(-)) = M in L3S

loc

(Ir; L2(0; R¥S)),

If v, — oo it holds that M = J whereas for v, =v € N

J(t,z) + (JO(t, z),0) ifv>3, z3€ (0,4),
M(t,z) = J(t,x) . if v >3, xge(%i 5%%),
J(t,z) + (0, JP(t, z)) ifv>3, z5¢€ (0,3),
J(t,z)+ (JO(t, z), JO(t,2)) if v =2.
Proof. This is proven identically as in the stationary case. L]

4.4.1. Consequences of the equations of motion

Throughout this section we assume that y, is a sequence of discrete deformations satisfying
(4.9) as well as the energy bounds

esssup B, (ya (1)) < C(T")hy, (4.52)
te[0,77]
3
ess sup En Z Oy (t, 2)|* < C(T")h? (4.53)
t€[0,77] hn veh

for every T" € (0, 7).

Proposition 4.4.5. Let v, — oo. For almost every (t,z) € Iy x § it holds that

> tx) =) Jult,x).

Proof. Let T" € Iy and ¢(t,z) = n(t)¥(z) with n € C>(0,7') and ¥ € C>®(Q;R?)
compactely supported in S x [0, 1]. Then

hn@néﬁ (_83_907“_ 783_90,...) (4.54)

uniformly and therefore also in L'(0,7"; L?(2;R3)). Then, by (4.53), (4.54) and Corol-

lary
T/
SX 2up—1 )

2(l/n 1)’ Z(Vn—l)

T/
—/ /h;QDFW(x,?nQn): h,Va@ drx dt
0o Ja

TI
+h2 / / 30, dx dt
0 n
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Tl
-5 / 83@7"'783807"') dx dt.
n—>oo

By Lemma we obtain for every xy € L'(0,T"; L*(2))

T/
O:/ /J: (=X, ,x--) dz dt.
o Ja

Proposition 4.4.6. Letv, =v >3. Letm € {1,--- ,v—3}. Then for everyi € {1,2,3}
and almost every (t,x') € Iy x S it holds that

(oo ) S 2255

For the lowest and uppermost layer it holds that

[

g {Jﬂ (t,:c’, ﬁ) +JM (t,x’, ﬁ)] = gJu (t,af’, ﬁ)

as well as

o ) o ) £ (0 27

=1

Let v, = v = 2. Then for every i € {1,2,3} and almost every (t,x’) € Iy x S it holds that

30 <—> )

S (S RS o (P

Proof. Let v > 3. Let ¢, --- ,¢,-1 be functions of the form

Gi(t, x) = ni(t)xi(x")

with 7, € C(0,7") and x; € C(S;R?). For s € [2=L, ) m =1,...,v — 1, we
interpolate linearly between the layers, i.e. we set

o(t, 2, s) = mom_1(t, ') — (v — 1)s¢m_1(t, 2)
+(v — 1)son(t,z") — (m — 1) (t, 2').

Then
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- {Tl (G (t2) = bt 2) (4.55)

<i<
VL (Gt 7)) — G (t,2")) 5 <i <

uniformly. First we look at the lowest layer. Let n € C°(0,T"), x € C°(S;R?) and

oo(t,x") =n(t)x(z'). For I # 0 let ¢; = 0. Then, by (4.53), (4.55) and Lemma [A.2.4]

T/
SX 2(,/ g 22(5 })

TI
— / / R, J": (haV,@) dx dt
0 Sx(0,727)
" (1,n) = =\(1)
— R, JW™: (h,V,@) " da dt
0 Sx(0,17)

Tl
i 55 du dt
[ s
V—l o / 1 |
n—)oo / /S>< ( ’M)'(¢07"'7¢07_¢0,"',—¢0) dr dt
v—1 T’ ]
- 1 R T
2 /0 /sx(o,yl_l)J (t’x’z(y_l)) . (90, G0, G0, P0) dx dt.

Therefore, for almost every t € (0,7")

é (J_l (tﬁ) + W (t 2(V1_ 1))) - gll (tﬁ)

in L2(S;R3*%). Analogously setting ¢ (t,2') =

—1 [T
0= 3 (7
2 S><OV1

V—l T / |
/ /Sx ( N 2( 1)) : (_¢17_¢17_¢17_¢1) dx dt
v—1 (T , 3 ‘
i 2 /0 /SX(Vll,fl)J(t’x’Z(u— 1)) D(G1y e b1, =0, —¢n) da dt.

The first two terms sum up to zero as seen before which directly gives for almost every

€ (0,7
3 (vy) =5 ()

in L?(S;R3*®). Proceeding like that yields the claimed identities. The case v = 2 can be
treated analogously. ]

t)x(2') and ¢; = 0 else yields

n(
) ¢17 _¢17¢1a e 7¢1) dz dt
1

Also in the time dependent setting we have the following symmetry properties.
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Lemma 4.4.7. The scaled stresses J", J&™ and J3™ satisfy

esssup /(127 — Z(I"(0)7)| s amsns) < CTAE, (4.56)
te[0,77] ’
esssup || JO™ () Zz0T — ZW(gam (T ) < C(TR2, 457
ssoup 471 T sy < I (457)
esssup || J@ (1) 27 — z@(gem T ) < C(T")R2. 4.58
sssup |rem ) (T, sy < CTOM (4.58)

Proof. For the bulk part the proof of Lemma [3.2.19| shows that for fixed ¢ the left-hand-
side is bounded by (|[.J"(, )| 12 (q.raxs) + |Gt ~)}|L2(Q‘R3X8))hi. Integrating in ¢ yields the
claim. For the surface terms we proceed analogously. L]

4.5. The main result in the time dependent case

Theorem 4.5.1. Let wﬁlo), wg) : A, = R3 be two sequences of lattice deformations satis-

fying

13 3 B
S Y @ + 2 Y Wi V(@) < O (450)

z€A, zeA!,

as well as the boundary and compatibility conditions

:U/

) (1) = A
wy ) (x) = ( B (05— 1) ) on O\,
w(x) =0 on dA,.

n

Let T € (0,00] and g € L*(Ip; Wh(S)) N C(Ir, L=(S)). Let (y,) be a sequence of
solutions to the system of ordinary differential equations

h20%y,(t,x) = =V (DEW (-, Vaya(t, ) (z) + h3g(t, 2')es in (0,T,) x int(A,),

yn(t, z) = (a:’, hp(x3 — %)) on (0,T,) x oA,
Yn(0,2) = w (x) in A,
By (0, ) = h'wiM (z) in Ay,

(ODE)

where T, is the maximal time of existence. Then T,, =T for all n € N.
Let

1
up(t, ') = h;Q/ (5;(2‘},{[‘/,.%3) — m') dxs,
0

1
vp(t,2') = hnl/ (ﬁn(t,x’,xg))3 dxs.
0
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There exist u € L (Ir; HY(S;R?)) and v € L (Ip; H2(S)) N W20, T; L2(S)) such that,

loc loc loc
up to a SUbSBQUGTLCE,

U, = in L2 (Ip; H(S;R?)), (4.60)
v, = v an L3S (Ir; L*(9)), (4.61)

loc

O, — O in L3S (Ir; L*(9)). (4.62)
The maps v and v satisfy the boundary conditions
ujps =0, vjgs =0, V'ujgs = 0. (4.63)
Moreover the mappings

teso(t): Ip — H*(S),
te Ow(t): Ir — L*(9)

are weakly continuous. The pair (u,v) satisfies the equations (4.5)), (4.6)) if v, — oo, the
equations (4.7), (4.8) if v, = v € N and the initial conditions

(0, 2") = w (), (4.64)
A (0,2") = wiP () (4.65)

for almost every x' € S, where

1ot :
h_/ (U)go)<',$3))3 dxs —>w§0) in L*(S),
n Jo

1 [
w(l)(.7m3))3 dzs — wél)

4.5.1. Outline of the proof

In Step 1 we will derive an energy bound which will be used in Step 2 to show that the
solutions to exist up to time T'. Step 3 and Step 4 deal with the decomposition of
the discrete gradient and the convergence of the displacements. In Step 5 we will show that
the equations and hold true. Step 7is to show the weak continuity statements as
well as that v satisfies the stated initial conditions. Step 6, the derivation of equations
and ([1.7), is the most complex part. Thus we split it in 3 parts. Let ¢(¢,2") = p(t)x(z')
with g € C°(0,7") and x € C°(S). In Part 1 let o(t,z) = (0,0, ¢(t,2’)). The goal of

this part is to show
T B
/ /h,le”: V@ dx dt
o Jo

T/
+ / / g0 (V,e)Y de dt
0 J9x(0,515)
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Tl
/ / h ' g (V,6) de di
S>< Yn—

1/—1

/8tvat<b dl’ dt

n—)oo

d 1
_ / / Lo (sym Viu+ 5V e V’v) V'@ V' da! dt
0 S

T/
+ / / 9o da’ dt. (4.66)
0 S
T B
/ /hnlJ": V@ dx dt
0 Q

T/

+ / / 0 (9,6)Y de dt
0 JSx(0,727)
T B 9

+ / / e (V,0) 7 de d
0 Sx(%,l)

— / /@U@tgb dl’ dt
n—oco V — 1
T/
- Lo el sym Gy 0 1 ([ VveVe 0 .
[ Lz (0 0) s gpen) - (70T g )z a
Tl
0 SV—l 0 0

for v, — oo and

2(v—1)
(V'”%W O>Z do’ dt
1/—1/ /ggbdx dt.

(4.67)

for v, =v € N. 3
In Part 2 we will show that for v, — co (where # is such that Q,,(z) = 2+ (— %, %) x

__E&n En )
2hy 7 2hy,

8

Y P Vo(t, i
Z/O /thlRJ).,-zg< ¢(()x))dxdt

=1

+Z/T /SX R J(ln)) Zé ( V’(Z)(Otai")) dr dt

T’ ~
S e e (T e
SX I/n—2 O
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T/
— / 1—12,62 (V?v) : V?0(t, 2') da’ dt. (4.68)
S

n—oo
8 T’
| /h; -

(70
+Z/T,/SX (R, J0) .zé(vlgb(g’il))dxdt

(70

( Z

and for v, =v eN

T/
+Z/ / R JZTL)) _Zé+4
S>< ”"_2
Gy 0
rel 2 .
n—>oo / /24 y—l Cen(( 0 O>Z>'
T 1 sym G; 0 1 V72 0
. D rel 1 7 . 7 /
| L wn(( 07 0) @) (0 o)z erw

T’ 2
0 w). ( Vi 0 1) 7.0
/ / I/—l Dqurf(< 0 0>Z ) : ( 0 0 7\ dx' dt.

(4.69)
In Part 3 we determine the convergence of
T -
/ / hotJ": V@ dv dt
Q
T - .
+ / / 0 (V,0)Y de dt
0 S><
T - )
+ / /S g (V,0)? de d
0 >< ""_2
~ [ V()
—Z/ hit (R,J™), - ( )dxdt
= Jo Ja
" v'o(t, )
/ / 2 (RS ~zg< 0 >dxdt
S><
" Vo[t i)
—Z/ / R,J®™M) . ~zg+4( 0 ) dz dt. (4.70)
S><

For v,, — oo we will prove that ( - — 0 which yields (4.5). For v, = v € N we have

T 1 sym G; 0 1
[@-70) — DO ! Z Gs ) : 0190 M da' dt
‘ %/0 /34@—1) (( 0 0) T2 —) ) Lo dr

r 1 sym G; 0 O12v
——— DQuur Z(l) LM(U : M gy dt
+/o /52@—1)2 Q“”(( 0 0) ) Orap M de
(4.71)
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which implies (4.7)).

4.5.2. Proof of the main theorem

We will follow the structure given in the outline. At this point we remark that solutions

Y, of (ODEJ) in particular satisfy (4.9)).

Proof of Theorem[{.5.1 Step 1: An energy bound. From the bound on the initial data we
will show the inequalities

esssup— Z W (2, Vayn(t,z)) < C(T)hs, (4.72)
te[0,77] n verr,
esssup— Z Oy (t, 2))* < C(T")h? (4.73)

t€[0,77] n e
for every T" € (0,T). We may assume for a moment that 7,, < T’. Now we show the energy
bound which will eventually yield that T, > 7" must hold for every n € N. Multiplying
(ODE) with 0y, (t,z) and summing over all x € A,, we deduce

d [ n _
€A, zeA!, €A,
Thus we get

z€A, a:EA’

— h_i > 100, 2)]7 + D W(z, Vayn(0, 7))
2

:):G[\n mef\n
t
+/ 3 Z g(s,2") (Opyn(s, ), ds (4.74)
0 SEGJ\n
for every 0 <t < T,,. From (4.59)) and (4.74)) we deduce using Young’s inequality in the
form |ab| < h“—; + %

h2

aceAn $EA/

P "2 hy ["e >
SChn—i_? h_ Z ]g(s,x)] dS—F? h_ Z ‘&f?/n(sam)l ds
0 ™" vehn 0 " ks

A h4 t 2 h2 t53 9
:C’hn—l——"/ g(s,x da:ds—i——”/—" Oyn(s,x)|” ds
2 ) ), e X oude.0)
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< Ch} + —/ Z |04y (5, ) |* ds. (4.75)

xeA

Thus 5
19
S ot ) < O+ / S 10n(s, o) ds
" zehn " zehn

and applying Gronwall’s inequality yields

S Ot @) < OB+ Ch2 exp(T,) < Ch2(1 + exp(T')) = C(T')h2.
" me]\n
Integration leads to
T .
/ N Ot )P dt < O(T")R2.
$€A

Together with - this immediately implies the mequahtles 4.72)) and (4.73)) up to time
T,. Since Oy, (t,z) =0 fir = € OA,, we get by Corollary [2 7| the same energy bound for
the piecewise affine interpolations, i.e. it holds that

esssup/ }@yn ? d < C(T,)h2. (4.76)

t€[0,Tn

Step 2: Fuxistence time of the solutions.
Evidently (4.73)) rules out a finite time blow-up for dy,, i.e. for every n € N there is a
constant C'(n) such that

esssup [|9yyn (L, )||l°°(An) < C(n). (4.77)

te[0,77]
It follows from (4.72)) and the lower bound of W that

esssup || V()| < C(n),
te(0,1h)

and equivalently (with a different constant)

esssup || Dpyn(t, )| < C(n). (4.78)
te[0,Thn]
Now fix an arbitrary xq € a]\n. For x € /NXn we can find [ elements x1,--- ,z; € /~Xn, where

[ is independent of x, such that
e T =,
® Tog =Ty,

e ;%1 € Qp(w) for some w € /~\;L.
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Together with (4.78)) the third property implies

|yn(t7 xi-‘rl) - yn(ta x1)| S C€n~
The (fully) clamped boundary conditions then imply |y, (¢, x)| < C(n) and therefore

esssup ||y, (¢, ) ;e (5,,) < C'(n). (4.79)
te[0,Tn]

Together with (4.77)) this implies 7;, = T

Step 3: Decomposition of deformation gradient.
By (4.72)) and the choice of the force term we have for every 7" € (0,7)

ess sup Ba(yn(t)) < C(T')hL.

te[0,77]

By Proposition this induces

ess sup/ dist?(V 0 (t, ), SO(3)) dz < C(T')hL.
Q

t€[0,77]

Together with (4.76) by Proposition we find an approximating sequence R, C

L2 (0,T; H'(S;R3*3)) such that R, (t,2') € SO(3) for almost every (t,z') € (0,T) x S
and
€SS Sup anyn ) - Rn(t7 )HLQ(Q) < O(T’)hi, (48())
t€[0,77]
esssup || V' Ry (t, )| 25y < C(T")ha, (4.81)
te[0,17]
esssup || R, (t, ) — Id|| g1 sy < C(T")hn, (4.82)
te[0,77]

for every 1" € Ir. Here we have used that the deformations y, satisfy the fully clamped
boundary conditions (otherwise we would need an additional rotation and a translation).

The estimates (4.80)), (4.81)) and (4.82) have been shown in [AMMAO09].

Step 4: Convergence of the displacements and boundary conditions
The convergence of the displacements u,, and v,, as well as the boundary conditions

([4.63) are contained in Proposition [4.3.1]
Step 5: Deriwation of equations (4.6) and (4.8)). Let W(t,2") = n(t)x(«’) with n €
C>(0,T") and x € C>*(S;R?). With (¢, z) = (U(t,2'),0) we have by (4.9)

T/
/ / 6tgjn(t,x) -Opp(t, x) dx dt
SX 2v—1

1
2(v—1)’2(v—1) 1)

T/
—/ /DFW (2, Vain(t, ) : V,up(t,z) do di.
o Jo
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Note that the force term does not appear here because of ¢35 = 0. After multiplication
with h,? and decomposition of the discrete gradient we get

T/
0= / / 0y, (t,z) - Opp(t, x) da dt
S><

2vup—1
2(Vn 1)’ 2(vn— 1))

T/
— / / hy >R, DpW (z,Z + h2G,) : Va@ da di

Tl
/ / O, (t7) - DB(t x) da dt (4.83)
2up —1
SX T3 n—1)2(vn— 1))
T B
—/ / J": Vo dr dt (4.84)
0 Q
T/
= / / T (v,8)Y de dt (4.85)
0 Jx(0,515)
T/
= / / T (V,8)? dr dt (4.86)
0 Jx(r=11)

The term (4.83) vanishes as n — oo because of (| . For term ([4.84) note that J» = J
in L2 (Ir; L*(Q; R**®)) and V,,¢ — Vo7 in Lloc(IT§ L?(Q;R3*¥)), hence we get

loc
T/
—/ /J:V@dedt.
0 Q

If v, — oo the terms (4.85) and (4.86) vanish as n — oo: Exemplarily for (4.85) we
estimate

T/

JO) (¢ 1) (vné(t,x))(l) dx dt

T/
< C/ / ’J(l’")(t,:p)| dx dt
0 J8x(0,515)

T . 1
< C/O HJ(L )(t)||L2(Q;R3><4) S x (O,m>’ dt

1
SCTIHJ(lnHLoooT/LQ R3><4) |S’< _1) —>0

’fL n—oo

S><(0

Term (4.86)) can be treated analogously. If v, =v € N
T/
(&85) — — / / JW: vezW dg dt,
0 Sx(O,ﬁ)
T/
[@86) — — / / J®:Vez® dx dt.
0 Sx(Z—:f,
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In total for v, — oo we obtain by Proposition [£.4.1] Proposition [£.4.5 Lemma [3.2.16] and

Corollary (3.2.17],
T 1
0= / /Eg (sym V'u + §V/U ® V’v) V' dx’ dt.
0o Js
By part (i) of Lemma this holds for every W € L?(0,T"; H}(S; R?)) and we have

(4.6).
For v, = v € N by Proposition [£.4.1], Proposition [£.4.6] Lemma [3.2.18, Lemma [3.2.16

and ((3.34))
T/
_ rel Sym Gl 0 ; . V,\If 0 ’

T /
sym G; 0 ) O12v (1) Vo 0 1 .7
D sur Z —M . Z dx’ dt
+/0 /SV—l “ f(( 0 0) MUY 0 0 v

for every W € L?(0,T"; H}(S)), which is (4.8).

Step 6: Derivation of equations (4.5)) and (4.7).
Part 1: Let ¢(t,2") = p(t)x(2') with p € C(0,7"), x € C°(S), and define (¢, z) =

(0,0,¢(t,2")). Then
T/
SX 2vp—1

2(l/n 1)’ 2(1/n—1)

T -
/ /R J": V@ dr dt
v (1,m) = =\ (1)
— R,J\V™: (Vncp) dx dt
0 J8x(0,515)
v (2,m) = =\(2)
— RnJ ™ (Vngp) dx dt
S>< ””_2

T/
/ / hn§Bs d dt.
S>< 2up—1 )

2<l/n 1)’2(vp—1)

Letting A, R” 4 and multiplying with k' leads to

T/
SX 2vp—1

2(un 1)’ 2(un—1)
T/
/ /A J": V,p dx dt
T’ B )
- / / A, 0 (9,0)Y de dt
0 Jox(0.75)
TI
- / / A,000 . (9,5)? de di
0 Jsx(f=t)

1
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Tl
—/ /hnljnz V.5 du dt
0 Q

T/
_/ / hy—Llj(l,n): (?né)(l) dr dt

0 Jsx(0,-15)

T/
= / / g (V,0)? de d
0 Jex(m=21)

1
T/

Go da’ dt,
S

thus

Tl
/ /hnlJ”: Vo do di
0 Q
T B 1
+ / / 0 (9,6)Y de dt
0 Jsx(0,5)
T B 9
+ / / h;lj(Q’”): (V.)® de dt
S>< ""‘2

T/
SX 2(un g 22(52:1)
T -
/ /A J": V@ dx dt (4.88)
T I
— / / A0 (9,0)Y de dt (4.89)
0 JSx(0,1)
T/
= / / A, JC: (9,8) P da dt (4.90)
0 Sx(ig—j,l)

T/

~ 4.91
Av— (4.91)

We determine the convergence of these terms separately. First look at (4.91)): For almost
every t € (0,7") the estimate

lg(t,2") —g(t, &) < C(H) [ =& Va', ' es

holds true, where C(t) denotes the Lipschitz constant of g(t). Further there is a constant
C' > 0 such that C(t) < C'[|g(¢)|lyy1.00(5)- Thus we can estimate

_ T
§gz_5 dx’ dt — / /ggb dz' dt
! _ T
/ / 9)6 da’ di| +

T/

dx dt
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Tl

Tl
< Cen [ loOlwanis) di+Cen [ ol
and get

I [egdda’ dt if v, — oo,

1.91) — ,
‘ Moo{ﬁfonSgd)dx'dt if v, =veN

For the terms we note that (?Mp(t,x))ij = 0 whenever ¢ € {1,2} and
(Vaelt, x)) = 8"gb(t x) for j =1,...,8 and therefore

8
A, J": Vao(t, o) :Z (AnJ™)q 01 o(t, )
=1

(Z(An)?)kﬂ;z) aro(t,a’)

k=1

~ ~
Il oo I o
= [

( (An)i%k‘];;l) 5ln¢(taxl)
k

=1

8
+ > (An)ss IRt a),

=1

4 2
k=

(An)33 J?Ellm) 5ln¢(t7 I‘/)

+ [
E

as well as

1 /2
A, JEM (vnsﬁ(t,x Z (Z 31«](12’”)> Ofa0(t, ')

k=1

4
+ Z(An)33jé127n)5zl+4¢(tu Il) .
=1

By Proposition we have that A,e; — Ae; for A = e3 ® V'v — V'v ® e3 strongly in
Ll (I7; LP(S,R%)) for i = 1,2 and any 1 < p,q < oo as well as

sym A, — 0 strongly in L (I7; L"(S, R**%))

for all 7 < oco. In particular this implies that (A, )s3 — 0 strongly in LS (Ir; L7(S)) and

T/
4.88) — — /AJ: VeZ dx dt
Q

n—oo
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// <V¢®V/“8)dedt.

The terms (4.89)) and (4.90)) vanish in case v, — oo by equi-integrability. In case v, = v € N
we argue as for (4.88) and obtain

T/

—/ / Vng dx dt,
0 Sx(o,ﬁ)
T/

—/ / VapZ dx dt.
0 (Z:?l)

For term ([4.87) we note that ¥, — @ in L1OC(IT§ L*(2)) by Corollary if v, — oo,

where 0(t,z) = v(t,2’) + (z3—3). If v, = v € N the convergence 17n — 0" in
L. <[T; L? (S X (—ﬁ, Q%Zj)) ;R2>> holds true with v*(¢, 2, x3) = 0(t,

ever rs €

) when-

2i-1 241\ 5 _
51 201 ) ¢ = L

Moreover 9,0, is bounded in L2 (Ir; L*(Q)) or in L2, (IT; L? (S X (—ﬁ, %) ) ),

v —1

respectively, and therefore 0,0, 20,0 or 940, — 9,0* in the respective space.
Together with 9, — 9y¢ in L2.(0,T; L*(S)) we deduce that

loc

fOTI [ Owdig da’ dt if v,, — oo,

4.87) — /
' ) {ﬁ fOT fS ooy d’ dt  if v, — oo

as n — oo. Combining the convergences of (4.87), (4.88)), (4.89)), (4.90) and (4.91) we
obtain for v, — oo by Proposition @, Proposition 4.4.5, Lemma [3.2.16| and
Corollary [3.2.17]

For v, = v € N we get by Proposition m, Proposition , Lemma
Lemma and .

Part 2: Let o(t,2) = ( ”(t(’f,) ) (x5 — ) with n(t,2/) = ( gﬁgi;; ) Then

T/
0= / / atgn 0, da dt (4.92)
S><

2vp—1
2(un—1) 2(un—1)

T/
/ /R J": V@ dr dt (4.93)
T _ (1)
— / / R,JOM: (V,8)" do’ dt (4.94)
0 JSx(0,527)

T/
- / / R, JC™: (V,p)? da’ dt. (4.95)
0 Jex(¥2=31)

The term (4.92) tends to 0 by the energy inequality (4.73)). The treatment of (4.93)) -
(4.95]) is done as in the stationary case: Remember that & is the left-lower corner of a cell,
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l.e.
En En 2 En En oA 2 —1
e+ (-5 5) (_2hn’2hn> = (0= (0

2’92
T’ B
/ / R, J": V,& dz dt
0 Q

8 ad 8 T’
_ 1 _
-y / / (Ro"), - Dip(t,3) d dt — = / / (RpJ"), - Dlo(t,2) di di
=1 /0 /@ 8imi/o Ja

with B / ) /
o Dr(t. & e . t &
Drott.) = (0T (0 22— ) el (07

Together with the same decomposition of terms (4.94) and (4.95) we obtain

8 T N
Z/ /(RnJ”),l-hglzé ( 7’“(’)‘6) > de dt
=170 JQ
4 T’ ~/
+Z/ / R g n vl ( n(t, ¥) > dx dt
=1 70 Jsx(0.5) 0

vp—1

for z € A’. For example we look at term (#.93):

4

v (2.n) n(t, &’)
+) / / R,J;™ -h;lzg+4( ; > da dt
Sx(—ZZ_QI 0

Tl
0 Sx(

1 2up—1
2(vn—1) ' 2(vn—1)

1 T nn A1 . 1
_§Z/ /QRn i ( Dknét,x) ) (563+Z—a’§ - 5) da dt] (4.97)
4 T - . X
o> / / R e, %) Byt tal— ) dodt
= 0 SX(O,Vni ) 0 hn 2
1 T NHn ] . 1
-3 Z/ /S 1 )RnJ.(ll’n) . ( Dkﬁét,ai) ) (:%3 + Z—aé — 5) dz dt] (4.98)
= x (0,5 N
4 e _ y 1
- Z / / R"J'(ﬁm (PR 2) T3+ g—naéH —— | dx dt
— 0 Jox(=31) 0 h,, 5
1 T Dn (t j}l) c 1
— = (2m) i k;n 9 ~ En 1
82/ /SX - R, J; ( 0 ) (xg—l— hnag 2) dr dt| . (4.99)

We need to determine convergence of (4.96) + (4.97) + (4.98) + (4.99). Independent of
the number of layers term (4.96|) vanishes by (4.73). In case v, — oo the terms (4.98]) and
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(4.99) clearly vanish by equi-integrability and dominated convergence. We have

() Gt ) e () (7))

uniformly on (0,7") x Q and therefore, together with the convergence of (4.92)) and
R,J™ = Jin LS (0, T; L2(Q; R3*®)) it follows that

loc

[E96) + E97) + @E99) + (@) —

_i/OT//Q (;1;3 - %) Ji- ( V%(tb“"/)(zl)' > dx dt
L (0 e

_ _/OT//Q (xg _ %) Lo (G"): V26(t,2) du dt

_ /OT//S/1 (xg _ 3)252((;2); V2¢(t, ') dws do’ dt

0 2

Tl
/ / 3 (=V"™v) : V?¢(t,2') do’ dt. (4.100)

Again we have used Proposition [4.4.1] Proposition Lemma|3.2.16/and Corollary|3.2.17}
In case v, =v € N

[E96) + @97) + [E99) + E99) —
T’ /
V'’ al R 1 1
/0 QJ,Z.< 770( >><x3—|—y_1aé—§) do di
1 T V' (a*)’ X Iy 1
—gz::/o /QJ.Z-( 0 By + ———af — 5 | du dt
4 T / AN
By / / J_<l1>.(V77(a)><933+ L ag_l) e dt
— 0 $x(0,:17) ' 0 v—1 2
1

(M vw=2) ([ G O (V26 0 ,
- [ammere ((F 0)2) (T0 g )z
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T 1 sym G; 0 1 V72 0
— DQ ' Z+-—Gy ) Z_ d'
I faampea (0 0) 2 rapmn) (50° §) 2o

T 2
0 wmY. [ V¢ 0 1) 7.0
(G D)) (%) s a

(4.101)

where for the last equality we again need to repeat all the calculations done in the
stationary case for a fixed t using Proposition | Proposition [4.4.6] Lemma [3.2.18

Lemma and (3.35)). For details of the calculatlons we refer to Part 2 in the
proof of Theorem 3 2.1]

Part 3: Finally we need to determine the limit of

T/
/ /hnlJ": Vap dx dt
Q
g -1 71n). (v =1
+ oS (Vngo) dz dt
0 S><
v -1 72n). (v =\2
+ oS (Vngo) dz dt
0 S>< ”” 2
8 T ’ 4
Z/ /h Y(R,J"M), - zg(v¢(() )) dz dt
0o Ja

=1
RJln)l-z3(v/¢( A/)) dz dt

—Z/T'/SX ;
S

where @(t,z) = (0,0, ¢(t,2")). We need to simplify these terms. First goal is to get rid of
the R,, in the latter three terms of the sum. We consider exemplarily a single term and

write it as
T / Y,
/ ho' (RpJ™), - 24 ( V‘bg’x) ) d dt
(

(R, I _Z§+4(v¢(g,x)) dz dt (4.102)

We want to show that the terms containing A,, tend to 0 for n — co. Doing the same
decomposition with the surface terms we obtain by collecting the terms which include A,

8 T / Y,
Z/o /fz(AnJ”).l-zé)(v{b(g’x) ) dx dt
=1
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4 T / Y,
+Z/ / (An‘](l’n)).l . Zé ( V(b(gax) ) dr dt
— /0 $x(0,5-15)

vp—1

4 T’ / Y,
+Z/ / (A, J®m) - 24t ( V‘bg’x) ) dx dt (4.103)
= Jo Jsx(zm=21)

vn—

Since A,e; — Ae; for i = 1,2 in L (Ir; LP(S)) for all 1 < p, ¢ < oo by Proposition m
in case v, — 00

8 T’ / /
[@.103) — Ej/ /J.l-ngT<V¢<t’x)> dr dt =0
n—oo —1 0 0 O

since J L (R®®e3)Z. If v, =veN
SN V'é(t, 7))
E103) — > / / Jy- AT ’ ) dx dt
n—o00 = 0 Q 0
4 /
2 / ' / 0 gar (VO ) de dt
= Jo Jsx(ot) 0

4 ! ’ ’
+Z/T/ J§2>-zg+4AT(V¢(t’x)) dv dt =0
o sk 0

v—1

by Proposition m Therefore, instead of (4.102)), it is sufficient to consider the limiting
behavior of
T -
/ /h;lJ”: Vo dx dt
0o Ja

T/
/ / bty (vngﬁ)(l) dz dt
0 Jsu(o.m)

T/
/ / e (V,8)7 de d
0 Jex(m=21)

vp—1’

8

T’ / Y,
—Z/ /h;lJy-zg(v¢g’x))dmdt
=1 0 Q

— /0 w(o,ﬁ) 0
—~ [T 142 s [ V't 2)
—Z/O /S( ) [N A ( 0 ) dz dt (4.104)
=1 vn—1°

Using Lemma this is done almost literally as in the stationary case. Hence for the
calculations we refer to Part 3 in the proof of Theorem m For v, — oo we get (4.104))

— 0. Combining this with (4.66]) and (4.68]) we see that equation (4.5) holds for every ¢
of the form ¢(t, 2") = n(t)x(z") with n € C((0,1")), x € C(9).
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For v, =v € N we get

T/
1 1 sym G; 0 1 ,
104) — ——_DQT G| 0o M da! dt
[@.104) /0194(v—1)Dchll(( 0 0)Z+2(V_1)G3) D129 M dax

. 1 sym G; 0 0120
_— (1) 12V, A0
+/O /52(V _ 1)2Dqurf (< 0 0 ) + —2(1/ _ 1) 812q§ dI dt.

Together with (4.66) and (4.100) it follows that equation (4.7]) holds because of (4.67))
and (4.101)). Finally, by Lemma both equations (4.5) and (4.7]) hold true for every
o € L2(0,T; HA(S)) N H3(0, T L*(3)).

Step 7: Weak continuity and the initial conditions.
From inequality (4.59) it follows that, up to a subsequence,

R R .
h_/ (@), day = wi i L2(S)
n J0O

for some wél) € L*(S). Note that, since w? € A,, by ( [LMO09], Lemma 13) and (4.59)
—/ dx3—>w§) in H*(S)

for some wl € H(S). Since v,,v € WL(0,T"; L*(S)) = C(]0,T']; L*(S)) we get for
almost every =/ € S

n—oo

1
wéo)( ") = lim h;l/o (ﬁ)no)(av’,:zg))g dxs

1
= lim h;l/ (ﬁn(o,x',mg))3 dxs
0

n—oo
=v(0,2)

which is (4.64). In order to derive the initial condition (4.65]) consider the continuous
in-plane-projection operator P’ : L*(R?) — L?*(R?) defined by

P’ no_ ; . gn N
nf(é) ][x/+(62n En)gf( ) y w enever§ GLL‘ ‘I’( 2 2)

2

and 2’ € €,Z%. If f € L*(R?) is constant on each 2’ + (-2, 7”) by Lemma |A.2.7| for
every o € L*(S) it holds that

/ fP.odx = | fodd. (4.105)
R2 R2
Let ¢ € C°((0,7") x S) and consider the test functions

P1 (t7 l’) = (07 07 qb(tv (L’/)),
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Let
2up—1
n / R /
v (t,.fE) = h’n (yn)3(t7$ 7$3) d$3
~ 3D
and _
2up—1 —Y— — — —
n , 2(vn—1) 1\,
¢"(t,x") = 1 3= 5 U, (t,x) dzs.
_2(U7L_1)

Writing the difference of the weak form of the equations of motions for y, with ¢; and ¢,
in terms of P! we get by (4.105) and R,, = Id + h, A,

T’ T 2
/ / D"y dx’ dt — / / > 0iqs00a¢ da’ dt
0o Js 0 JSo—
T T’ 2
_ / / ", P da’ dt — / / > 0qs0Ph0at da' dt
0o Js 0 JS

T/
— / / ApJ": VPl d dt
0 Q

T/

[ 4,000 (T, Ple) ) da dt
0 J8x(0,515)
T’ N 9

+ / / A I (V,Plo)? da di
0 Jex(a=ta)

v r
-— / /LE]P;LQS dx' dt
VUp — 1 0 S
! B
—l—/ /h;l(]": V. Pl oy dx di
o Ja

A Lo

1

T/
+ / / ht I (V,Plo)? da dt

0 Sx(ZZ—:f,l)

T/
—/ / R,J": vnR’lgpQ dz dt
0o JO

r _ 1)
- / / R, (vnpm) dz di
0 JSx(0,15)

vp—1

T _ (2)
= / / R, J@ (vnpm) dz dt (4.106)
0 Sx(ZZ—:f,l)

' IO (W, Ple) Y de dt
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The goal is to obtain an estimate

Tl

T’ 2
"0y dx’ dt — / / > 0z00a¢ da' di| < C @l 2o rrpagsy - (4-107)
S 0 JSo—

First we look at the terms of (4.106)) which contain the mappings A,. We have

T/
/A J": NV, Pl do dt

T/
/ /\A J" | VuPrpy| d dt

Tl
SC/O |!V’¢<t,-)|rLoo(S)/Q|AnJ"\ da dt

T/
<c / 1608 sy 1411y

S ¢ ||Aan||L2(O,T’;L1(Q)) ||¢||L2(0,T/;Hg(s))
<C ||¢HL2(07T’;H61(S)) (4.108)
and a similar estimate holds for the surface-terms which involve A,,. Clearly

T/

GP.¢ d' dt
S

<C ||¢HL2(07T'5H61(S)) . (4.109)

It remains to bound

T/
htJ": ¥V, Pl dx dt

T/
+/ / htgdm (vnP;Lgol)(l) dz dt

0 5x(o,un{1)

T/
—I—/ / htgZm . (vanl)(” dx dt
0 JSx(m=31)
T/
/ /RJ" VPl o, do dt
T _ =\
- / / R, J0™) (vnp,g<p2> dz dt
0 Jsx(0,:15)

T _ =\ (2
- / / R, J@m. (vnpggog) dz dt
0 Sx(%,l)

Here we have to be careful because of the factor h'. We get control of these terms with
the help of Lemma [4.4.7, To apply this lemma we need to do some estimates on the

(4.110)
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derivatives of the test functions. For z € A’ and £ € x + (—7" %")2 X (—25};, T ) there

are 1;(y) € ' + (—%“,%”) ,7=1,...,8, such that

A\
= o(t,y) dy — ][
En ( w’+€n(zi)/+(*“€7", Z

[t +eny S o+ 0 dy>

7=1

0p Pug(t,&') = OF Pro(t,a’)
, 04, y) dy)

w\g

[
@)+ (=)

) <€"V’¢<tvw’>-<zi>'+][ >2%D2¢<t,m<y>>[ () + a2 + 4]

%Z%D%(t,m(y))[&n(ﬂ) +y,en(2) +yl d )

= V' z’

(z")
+Vo(t, ') (2)) =V ( )(z’) (4.111)

]{ 2 2)? %D%(t, ni(Y)[en(2") + 1y, en(2") + y]—

S LD )Y o) 4] dy> w11

j=1

It is not hard to see that there is a constant C' = C(7”) such that

|((EITI)| + |(EI12)] < C || D?o(t) (4.113)

I is)

Further, using the discrete product rule, there is an 7;(y) € 2’ + (—7" %") such that

- hnlaéf -y V'o(t,y) dy
x/“l‘sn + _67’”,67”

) )’
+ (553 - 1) i]{ . Vot +en(a') +y) — V'o(t, i’ +y) dy
L lasVio(t, &)
shlaf (Volty) - VH(E) dy  (4114)
&' +en(at) +(—57",67”)

wlg
wf¢
~—

+(8-3) S PO Sl il 4115

wf§
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Again, there is a C'= C(T") such that
|((E1T4)| + |(E115)| < C||[D*(2)

HLOO(S)' (4.116)

Now we have all the ingredients to bound (4.110]): For the first three terms we use estimate
(4.113]). With help of the calculation for the estimate (4.116]) we write

T/
/ /RnJ" VPgOdedt

TI

8

1 r
—Z/ /R JU - DIPlo, dr dt

OO

8

Z/ /J" <V¢)z3dxdt

=~ (7 Ve \
+Z/O /QAnJ,’;-< 0 >23 dr dt + w(t),
=1

where w(t) collects the remaining terms and can be bounded by |w(t)| < C [[D*¢()| oo (s)-
The same can be done for the surface terms. Combined with (#.113) and (4.116)) we finally
obtain using Lemma [4.4.7 and the embedding H2(S) < C,(55)

T/
h,, Z / / Zj?zz;akqa Z "m0 dr dt
/ 2
+hyt Z / ' / Z IS 2 O — Z J 0.0 da di
S>< -

k:l

hy Z/T /S ZJ:,E?” Ao — ZJ“ 406 du dt

2
k::l

Tl

2
+c/ 102602 )
< Clell 20,0138 -
Together with (4.108)) and (4.109)) this yields (4.107)) and we get the boundedness of the
sequence 92" + > - 020,q" in L*(0,T'; H=*(S)). The partial derivatives Jnq", o = 1,2,

are understood as distributional derivatives here. Since for the distributional derivative
9°f of an L*(S)-function f we always have the estimate 10af |l zr-1(5y < I fll12(s) from

(4.73) it follows that

:0,q — 0 in L>°(0,T"; H'(S)).
By Lemma and Corollary it holds that

PYTIEN OV if v, — o0,
t .
Y Owu ifv,=veN
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in L°°(0,7"; L*(S)) and therefore also in L>(0,7"; H~1(S5)), hence we get

2 .
. OV if v, = o0
o + 0:0aqn — ’
! Zt e {ﬁ@tv ifv,=veN

in L°°(0,7"; H~'(S)). Since the embedding
L0, T H'(S)) N H' (0, T H(S)) — C([0,T"]; H(S))

is compact (c.f. [Sim86]) we deduce

" <8ﬂ) +Zat aqa : > — 8w(0,-)

strongly in H~4(S). The prefactor ”7,—;1 is to avoid case distinction. Let ¢ € C'2°(S), then

[l @otw) a
S
— lim 2~ 1/h ( (2))3¢(Z‘/) dx’

n—0o0

(') de’

n—oo

v, —1
:nh_{ﬂlo ” /S<8tv Z@t g (0, 2! >¢( ") da
hm/zataqa()x )o(x) da

= / v (0, 2" (2
S
and follows.

Finally we show the weak continuity of t — dyv : Iy — L*(S). Let (t,), C Ir and t € I
such that ¢, — t. Since dv € L (I; L*(S)) the sequence (9;v(t,,))nen is bounded in L*(S)
and therefore converges weakly to some f € L?(S). But since dyv € C([0,T"]; H(S)) we
have dyv(t,) — dw(t) in H*(S). Hence f = dyw(t) and weak continuity follows.

Similarly we can show weak continuity of the map t — v(¢) : Ir — H?*(S). For every
T' € Ir we have v € Wh=(0,T"; L*(S)) — C([0,T']; L*(S)) and v € L>(0,T"; H*(S)).
Thus the sequence (v(t,)), is bounded in H?(S), i.e. v(t,) — f for some f € HZ(S).
Further v(t,) — v(t) in L?(S), hence v = f. O

4.6. Summary

Starting with solutions from Newtons equations of motion for particle systems we have
shown that the averaged in- and out-of-plane displacements converge, up to a subsequence,
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to a weak solution of the dynamical von Karman equations for both, thin and ultrathin films.
Our result covers basic interaction potentials for nearest and next-to-nearest interactions
of atoms given in section Note that our analysis includes an existence result for weak
solutions of the time-dependent von Karmén equations. Yet again it would be desirable to
get similar results without the growth condition of the derivative.



Appendix A
Analytical lemmas

A.1. Analytical time-independent results

Proposition A.1.1 (Korn’s inequality, [Cial0], [GSN86]). Let Q C R™ be a bounded Lip-
schitz domain and

E,(Q) ={ue LP(R")} : sym Vu € LP(Q; R™™).
Then for u € E,() it holds that

Jullysmony < Co [ 1aF + sym Vup” da,
Q

min{ |lu — Ax — bHWlp Q") - AR hecR” } < C'|sym VUH’&(Q;RW”) )

skew?

If ' C OQ has positive surface measure then for every u € E,(Q2) with u|r =0
HVUHLP(Q;]R“X") < [lsym VUHLP(Q;R"X”)‘

Proposition A.1.2 ( [MPO08], Proposition 2.3). Let E C R" be a bounded, measurable
set, 1 <p<oo. Let f:R" — R" be a function which is differentiable at 0 and satisfies
for every a € R™ the inequality

[f(a)] < Clal.

Let 2° — z in LP(E;R"™). Then
1 9y T
5f(5z ) — Df(0)z in LP(E).

Definition A.1.3 (Convergence (boundedely) in measure). Let (€2, A, 1) be a measure
space and fr, f : X — R be measurable functions. We say f, converges in measure to f if
for every € > 0 it holds that

i({w € Q: | fule) = f(2)] > €}) — 0.

n—oo

We say f, converges to f boundedly in measure if f, converges to f in measure and in
addition it holds that f,, f € L=(Q) and sup,ey || full poo () < -

Lemma A.1.4. Let (2, A, 1) be a o-finite measure space and let p € [1,00). Let f,, [ :
Q — R be measurable functions such that f, — f boundedely in measure. Let g, — g in
LP(QY). Then fng, — fg in LP(Q).
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Proof. First consider p = 1. Let ¢ € L*>®(Q2) and € > 0. Then

/angnaﬁ du—/ﬂfng du‘
/angn¢ du—/gfgné du‘+ /Qfgm du—/ﬂfmb du‘ (A1)

The second term vanishes for n — oo since f¢ € L*>°(Q2), so we remain with the first term.

Let € > 0. Then
Q Q

S " " d + n n d

<

<C || dp+ Cesup [|gnll g
{Ifn—Fl>e} neN

— Ce.

n—o0

The convergence || (Ufnefl>e) |gn| di — 0 is due to the equiintegrability of the sequence g,,.
The case p > 1 works almost the same choosing test functions ¢ € C(2). [

Theorem A.1.5 (Egorov’s theorem, [EG15]). Let u be a measure on R"™ and suppose
fr : R® = R™ are p-measurable. Assume also A C R™ is p-measurable, with u(A) < oo,
and

fe = f p-a.e on A.

Then for each € > 0 there exists a p-measurable set B C A such that
(i) w(A\ B) <e and
(ii) fr — f uniformly on B.

Corollary A.1.6. Let @ C R™ with \"(Q) < o0, g € L;,.(Q) and f, : R* — R™
measurable functions such that

(1) subgen [[fill Loy < 00 for p € (1,00) and
(ii) fr — g a.e. in Q.
Then fr, — g in LP(Q).

Proof. Let f € LP(2) such that, up to a subsequence, f; — f. Then the subsequence
(fx)r is equiintegrable. Let € > 0 and § > 0 such that

/|g| dx+sup/|fk| dr <€
A koJa

whenever \"(A) < 0. Let ¢ € C(Q2). By Egorov’s theorem there is a set As such that
fr — g uniformly on As and \"(Q2\ As) < 0. Togehter with the weak convergence of fy

we obtain
/ (f = g)w’
Q
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/QfSO_/kaSO /wa—/ﬂgw’
/QfSO_/kaSO /Aéfkso—/AégsO‘Jr/Q\Aéfkso—/Q\Aggw’
/Qfso—/gfkso N kaO_/Aé 9¢| + el Lo (/nw 9] +81]1p/Q\A5 |fk!)
/Qfso—/ﬂfw /A& fkso—/Aégso'HlsoHLoo(gﬁ

< (Ce.
for k large enough. Since the limit does not depend on the chosen subsequence the
convergence holds for the entire sequence. L]

< +

< +

< +

< +

Remark A.1.7. The proof of Corollary[A.1.4] relies on the fact that from boundedness
of (fi)r in LP(Q) we find a weakly convergent subsequence. If p=1 Corollary[A.1.6| also
holds true if we additionally require equiintegrability of the sequence (fi)-

Lemma A.1.8. Let p > 1. Let g, — 1 converge boundedely in measure on Q and (f,) be
a bounded sequence in LP(SY) such that gnf, — f in LP(Q). Then f, — f in LP(Q2).

Proof. Let € > 0 Then

s = vy <C [ 1= guhil dzsC [ luf = 47 da

=0/ 1= gl |l do+C G dx+/ gnf — JI7 da
{1—gn|<e} Q

< Og?

{I1—gn|>e}

for n large enough due to equi-integrability of the sequence (f,,). L]

A.2. Analytical time-dependent results

We start by collecting well-known density results for Bochner or Bochner-Sobolev spaces:

Lemma A.2.1. Let X be a Banach-space and D C X be a dense subset. Let 1 < p < o0
and I C R be an open interval.

(i) The set

M = {Zmdi:neN, ni € C2(I), diGD} C LA X)

i=1

is dense in LP(I; X).
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(ii) The embedding
C = {Z nid;:m €N, n; € C(I), d; € D} — WHP(I, X)
=1

1s dense.

(iii) The embedding
F = {an‘dii neN, neCx(), d; € D} — W()Lp(]?X)
i=1

1s dense.

We do not give the full proof here but remark, that for (i) one uses the density of
simple functions. (ii) and (iii) rely on the embedding W?(I; X) < C(I; X).

Lemma A.2.2. Let X be a separable, reflexive Banach space. Let (x,,), C L*(0,T; X")
such that z,, = x in L>®(0,T;X") and z,(t) — y(t) in X' for almost every t € (0,T).
Then x =y in L>(0,T; X").

Proof. Let ¢ € L'(0,T; X). Then

(Y, ©) 11 (0.1:%) :/o (y(t), p(t))x dt

n—00

_ /0 lim (p(£), 2n (D)) x dt
= lim | (o), z,(t))x dt

n—oo 0
= <357 90>L1(0,T;X)-

The penultimate step follows from dominated convergence, since x, is bounded in

Lige(0,T; X') and [(p(1), 2n(8)) x| < llzn (O] o (@)]]- u

The next proposition is a version of Proposition 2.3 in [MP0§| which is adapted for the
time dependent case.

Proposition A.2.3. Let E C R" be a bounded, measurable set, 1 < p < oo. Let
f:R* = R" be a function which is differentiable at 0 and satisfies for every a € R"™ the
mequality

f(a)| < Clal.
Let 2° = z in L*® (0,T; LP(E;R")). Then

%f(éz(‘;))  DF(0)z in L® (0, T; LP(B; R")).
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Proof. We can assume that Df(0) = 0, otherwise consider the function g(z) = f(z) —
Df(0)x. Let

Combining Taylor’s Theorem, f(0) = 0 and the assumption Df(0) = 0 we get
w(d) =0

as 0 — 0. Let |
A5 = {x ek ‘z(‘s)(t,x)‘ > 7}

By the boundedness of the sequence 2(® in L>(0,T; LP(E)) it holds that |A;s| — 0 for

0 — 0. Let g such that %—I— % =1and g € L'(0,T; LY(E;R")). Then

52(5) dz dt‘

T
S/ / \9\1|f(5z(5))\ dx dt+/ / yg]_’f((sz(é)” de dt.
0 JE\Ays 0 0 JAs 0

We need to show that both terms tend to zero. Using f(0) = 0 leads to

o
/ / 9l < \f (62| da dt = / / il '2(5) ‘| 129 du dt
E\A,; sn{ 20 } |02(9)]
g/ / w(d) ]g]‘z(‘s)‘ dx dt
0 JE\A, sn{ %0}

< W) 19l 020 12 | o0y

5
< w(9) ||9||L1(0,T;Lq(E)) s%p ”Z HLOO(O,T;LP(E))

< Cw(d) — 0.

Since |A;s] = 0 and |f(a)| < C'|a| we conclude for the second term

T 1
I RECRIREY
0 Ags
r 1
§C’/ / lg| —5‘2(5)’ dx dt
0 At,5 5

T
< CHZ(J)HLW(O,T;LP(E))/O HgHLq(At,é) dt

— 0

as 0 — 0, due to dominated convergence with dominating function ¢ = |[g(t)[| o). U

Lemma A.2.4. Let f, — [ boundedely in measure on (0,T) x Q and g, — g in
L>(0,T; LP(Q)) for p > 1. Then fng, — fg in L=(0,T; LP(Q)).
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Proof. Let q=p' = ]%. By Lemma [A.2.1] functions of the form )"\ n;d;, n; € C°(0,T),
d; € C(Q) are dense in L'(0,7; L(f2)). Let ¢ be such a function. Then

/OT/angncb dx dt—/gfngﬁ dx dt
/OT/angm dx dt—/OT/Qfgnd) dx dt (A.2)
/OT/Qfgn<bdivdt—/0T/Qfg¢dxdt (A.3)

It is ¢f € LY(0,T; LY(Q)) since f € L>=((0,T) x Q) and ¢ € C=((0,T) x Q). Therefore
vanishes for n — oo. For the second term let € > 0. We have g,, — ¢ in L?((0,7) x Q)
as L>(0,T; LP(Q2)) — LP(0,T; L*(Q2)) = L*((0,T) x ). In particular the sequence (g,)n
is equi-integrable. Therefore

<

+

mmsﬁl (fo = ) g6 d(t, 2)

| fn—FfI>€}

+ n - n dt7
‘Aanﬁf 1) 9ud d(t, )

<c [l dt.o)+ Cospllgnlmramien
{Ifn—f1>e} neN
< (Ce
for n large enough. [

Lemma A.2.5 (Aubin-Lions-lemma, [Sim86|). Let XY, Z be Banach spaces such that
X CY C Z. The embedding X — Y 1is compact and the embedding Y — Z is continuous.
For1<p,q<oo let

W ={ue LP(0,T;X): Oue LY0,T;2)}.
(i) If p < 0o the embedding W — LP(0,T;Y") is compact.
(i1) If p= o0 and g > 1 the embedding W — C([0,T],Y) is compact.

Lemma A.2.6. Let H be a Hilbert space and P, C L(H) orthogonal projections such
that P,x — Pz for all x € H. Further let x,, = x in L=(0,T; H). Then P,x, = Pz in
L>(0,T; H).

Proof. Let ¢ € L'(0,T; H). Then
T T
/ (Poxp, ©) dt:/ (X, Pop) dt
0 0

T T
:/ <men§0_P90> dt+/ <me90>dt
0 0
T

— (Px,p) dt.

n—oo 0

Here we have used dominated convergence to see that the first term vanishes. L]
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Lemma A.2.7. Let H be a Hilbert space and U C H be a closed subspace with its

respective orthogonal projection Py : H — U. For every x € U and every y € H it holds
that (z, Pyy) = (z,y).

Proof.
<ZL’, PUy> = <Pux7y> = <$,y>



Appendix B
Notation

Throughout the thesis we try to stick to standard notation used in mathematical anal-
ysis. Yet, as in every field of mathematics, there is also some special notation used in
mathematical elasticity theory for thin objects.

e For z € R? we write x = (2/, z3) with 2’ = (21, 2) € R%

e If A e R"™™ we write A, for the [-th column and A,. for the k-th row.

e sym F' is the symmetric part of a matrix, i.e. sym F = %(F + FT).

e skew F'is the skew-symmetric part of a matrix, i.e. skew F' = %(F — FT).
e F" is the upper 2 x 2 submatrix of F' € R3*3,

e For matrices A, B € R™*" the inner product is given by A: B = Tr (ATB).

e The deformation gradient of a function y : R* — R3 at 2 € R3 is denoted by
Vy(z) € R¥? with (Vy(z))i; = Ou:(2).

e By V'y(z) we denote the matrix containing the in-plane-derivatives 0;y(x) and

Doy ().

e V% is the Hessian matrix of v : R* — R.

(a ®b);; = a;b; for a,b € R".

|U| is the measure of a measurable set U C R™.
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