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Abstract. The recombination operator plays an important role in many
evolutionary algorithms. However, in Cartesian Genetic Programming
(CGP), which is part of the aforementioned category, the usefulness of
crossover is contested. In this work, we investigate whether CGP’s posi-
tional bias actually influences the usefulness of the crossover operator
negatively. This bias describes a skewed distribution of CGP’s active and
inactive nodes, which might lead to destructive behaviours of standard
recombination operators. We try to answer our hypothesis by employ-
ing one standard CGP implementation and one without the effects of
positional bias. Both versions are combined with one of four standard
crossover operators, or with no crossover operator. Additionally, two dif-
ferent selection methods are used to configure a CGP variant. We then
analyse their performance and convergence behaviour on eight bench-
marks taken from the Boolean and symbolic regression domain. By using
Bayesian inference, we are able to rank them, and we found that posi-
tional bias does not influence CGP with crossover. Furthermore, we
argue that the current research on CGP with standard crossover oper-
ators is incomplete, and CGP with recombination might not negatively
impact its evolutionary search process. On the contrary, using CGP with
crossover improves its performance.

Keywords: Cartesian Genetic Programming · CGP · Crossover ·
Recombination · Positional Bias

1 Introduction

Cartesian Genetic Programming (CGP) is a form of Genetic Programming (GP),
based on directed, acyclic and feed–forward graphs whose nodes are arranged in
a two-dimensional grid. CGP mainly relies on mutation and selection operators
for its evolutionary search process.

For GP, numerous different crossover algorithms exist [17] but its overall
utility is doubted [26,32]. Similarly, since its inception in 1999 by Miller [21], the
use of a crossover operator in CGP is an active research topic. To this day, its
advantage is questioned as an effective crossover operator relies on extensions to
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the CGP formula and highly depends on the specific use case [10]. Furthermore,
it is still unclear as to why crossover raises issues in the context of CGP [4,11,
21,22].

Our hypothesis is to assume that the positional bias influences CGP with a
recombination algorithm, an effect which potentially limits CGP to fully explore
its search space [8]. It describes a problem in which nodes contributing to an
output have a non-uniform distribution in the graph. This in turn might lead
to problems for standard recombination operators like the point-, multi-n-, or
uniform-crossover. These operators do not consider semantic structures, like such
non-uniform distributions of nodes. To counteract positional bias, Cui et al. [5]
introduced an operator to fully eliminate it. We will take advantage of this
operator to test our hypothesis. If positional bias plays a role in CGP’s issues
with crossover, using a recombination algorithm with this extension might boost
its performance or lead to interesting results. By empirically analysing its per-
formance and behaviour, a better understanding of this overall issue could be
gained.

We provide a quick overview of the core principles of CGP, reintroduce
the concept of positional bias and how to mitigate it in the following Sect. 2.
Afterwards, Sect. 3 gives an overview of related work. We will then explain our
hypothesis and state our research questions in Sect. 4. Subsequently, we discuss
our experimental setup in Sect. 5, and the results and its discussion is given in
Sect. 6. At last, Sect. 7 summarizes our findings and discusses future research
directions.

2 Cartesian Genetic Programming

In this section, we reintroduce the supervised learning algorithm called Carte-
sian Genetic Programming (CGP) [21]. An additional emphasis will be made on
CGP’s positional bias and one method on how to reduce it.

2.1 Representation

Standard CGP is represented by a directed, acyclic and feed-forward graph. It
contains partially connected nodes, which are arranged in a grid. This allows
for an arbitrary amount of program inputs and any desired amount of outputs.
Originally, CGP used a c × r grid with c ∈ N+ and r ∈ N+. With today’s
standards, a CGP model consists of only one row for most applications [20].

The set of nodes in a graph defined by CGP can be divided into input-
, output- and computational nodes. Input nodes receive the program input
directly, and relay these values to computational and/or output nodes. Simi-
larly, output nodes define the program’s final output by redirecting the output
of an input- or computational node. They are represented by a single connection
gene. Computational nodes are represented by one function- and m connection
genes, with m ∈ N+ being the maximum arity of one function in the whole
function set. The function gene encodes the computational function of a node. It
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gets its input from previous nodes via its connection genes. They define a path
between a previous and the current node.

Computational nodes can also be categorized into active and inactive nodes.
The former are part of a path to one or multiple output nodes—hence they
contribute to the program’s final output. Inactive nodes are not part of a path
to output nodes and do not contribute to an output. Still, by allowing such
inactive nodes to persist throughout the training process, it improves CGP’s
evolutionary search through neutral genetic drift [18,29].

An illustrative example of a graph defined by CGP can be seen in Fig. 1.
It depicts the genotype with two input-, three computational- and one output
node. Active nodes are drawn with a solid line, while inactive nodes are marked
by dashed lines. It contains two input-, three computational-, and one output
node. In this example, both inputs are subtracted. Afterwards, this intermediate
result is being added to itself and redirected as the program output. The node
n2 is not part of a path to an output node, and is therefore inactive.

Fig. 1. Example graph defined by a CGP genotype. The dashed node and connections
are inactive due to not contributing to the output.

Given this description of CGP’s representation, when we mention a graph
with N ∈ N+ nodes, this graph will have only one row, N computational nodes,
and additional input and output nodes corresponding to the given learning task.
Furthermore, to improve readability and clarity, a graph defined by this repre-
sentation will be called Standard for the remainder of this work.

2.2 Positional Bias

CGP enforces a feed-forward grid. Goldman and Punch [8] found that this leads
to positional bias. This issue describes a non-uniform distribution of nodes being
active throughout the whole graph. Computational nodes near input nodes have
a higher chance of being active compared to the ones near the output nodes.
This negatively impacts CGP’s evolutionary search process, as it increases the
difficulty to solve certain tasks and decreases its performance [9,23].

The reason behind positional bias is CGP’s grid-structure combined with
feed-forward connections. Nodes near input nodes have more nodes to their
right. This means, more nodes can mutate a connection to them—which in turn
increases the probability of them becoming active. Nodes near output nodes,
however, have less nodes to their right. Hence, their chance to be part of a path
to an output node decreases, too.
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Fig. 2. Distribution of active nodes over a graph defined by CGP.

Figure 2 shows a visualization of positional bias for a better understanding. It
depicts a plot of the distribution of active nodes, averaged over 75 independent
runs on the 3-bit multiply Boolean benchmark. On the x-axis, the position of a
computational node in its graph is given. The y-axis indicates its probability of
being active. A clear example of positional bias can be seen here. About the first
quarter of computational nodes have a (very) high probability of being active,
and the remaining node’s probabilities are minimal.

One solution to solve positional bias is to use the levels back parameter from
the original CGP [19], which restricts the connectivity of a node. However, its
usage is not recommended as it negatively impacts CGP’s performance [20]. This
is why we will also refrain from using it.

To fully mitigate positional bias, Cui et al. [5] introduced the Equidistant-
Reorder (E-Reorder) operator, which was inspired by the original Reorder oper-
ator from Goldman and Punch [8]. It works by generating a new genome G ′,
which is initialized by inheriting all input and output nodes from the original
genome G because these do not change their positions. In addition, G ′ reserves
enough space for computational nodes to fit all computational nodes of G . After-
wards, all active nodes from G are placed in the same sequence and equidistantly
apart into G ′. All inactive nodes from G are then placed in the same sequence
into the next genome location of G ′ where no active node was placed. Finally,
G is replaced by G ′. Because G ′ and G have the same ordering of active nodes,
the genotype of G ′ changes but the phenotype stays the same. As a result, Cui
et al. were able to fully eliminate positional bias, which lead to an increase in
CGP’s performance. For a more in-depth algorithmic explanation, we refer to
their work [6].

To improve readability, we will refer to a CGP version with the E-Reorder
operator as E-Reorder.

3 Related Work

In the context of CGP, the effects and behaviours of crossover operators have
been investigated by various previous authors. Regarding the influence of posi-
tional bias on CGP’s crossover operator, to the best of our knowledge, the work
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of Cui et al. [6] is the only one who investigated it. In this work, we expand their
perspective and analyses.

Still, various other previous works laid out the foundation to our investiga-
tion. The earliest work regarding CGP and crossover was done by Miller [21].
While his original work did not argue against using crossover, he later claimed
that the one-point crossover showed a disruptive behaviour [20].

Cai et al. [2] argued that CGP is not positional independent. This means,
CGP’s components and their workings depend on their position in the graph.
Problems may arise now with crossover, as they do not consider such depen-
dencies. Hence, useful structures are destroyed. To counteract this problem, the
authors introduced a new crossover operator which also considers such depen-
dencies. However, our work differs from theirs as they did not consider the dis-
tribution of active nodes or positional bias in their work.

Kalkreuth et al. [13] also argued that simply swapping genes randomly does
not improve CGP. In their work, they introduced a subgraph-crossover operator
which only recombines active nodes. A comprehensive study was done [11] and
they showed a beneficial behaviour in two problem domains. However, contrary
to this work, they also did not consider positional bias.

Similarly to the just described work, Husa and Kalkreuth [10,11] introduced
the block-crossover, which swap blocks of consecutive active nodes. It is based
upon the subgraph crossover [13] and embedded CGP [15].

Normally, CGP’s representation is integer based, similarly to standard
genetic programming. Clegg et al. [4] changed it to a floating-point based repre-
sentation. This allowed them to introduce specialized crossover operators. Wilson
et al. [33] based their work upon this aspect and further analysed a floating-point
based representation of CGP.

One use case of CGP is that image processing as filter pipelines can be
evolved with it. Slaný et al. [25] used the original grid-structure of CGP for this
task. They also included single-point and multi-point crossover without modify-
ing CGP in their studies. By observing the fitness landscape of their solutions,
the authors concluded that the single-point crossover improved the evolutionary
search.

Another domain specific approach was done by Torabi et al. [28]. They used
CGP in the context of neural architecture search and adapted a specialized
crossover mechanism to design convolutional neural networks.

A more recent method, developed from Kalkreuth [12], describes an operator
which recombines only active nodes.

4 Positional Bias and Crossover

We originally assumed that positional bias might influence CGP’s issues, as
discovered in previous studies (cf. Sect. 3), with recombination operators. Our
rationale is that active nodes accumulate near input nodes, while inactive nodes
concentrate near output nodes. As such, because active nodes contribute to the
program’s output, their clustering near input nodes can be viewed as important
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node–structures. However, traditional crossover operators like the n−point or
uniform crossover do not consider such clusters. It is possible that, by applying
crossover, important semantic structures might get destroyed. Other methods
from Husa and Kalkreuth [10], Cai et al. [2] or Kalkreuth et al. [11–13] do however
consider such structures. This may be one explanation for their performance gain.

To summarize: By applying traditional crossover operators with Standard,
important structures of active nodes near the input nodes might get destroyed.
Such clusterings are due to positional bias. With E-Reorder, positional bias
can be fully circumvented. As a result, by applying the E-Reorder operator before
crossover, these stated negative effects might be weakened, too.

Thus, in this work we will focus on answering two research questions:

Q1: Has positional bias an effect on CGP with a crossover operator?
Q2: Is there a difference in behaviour when different CGP variants with and

without crossover are analysed?

5 Experimental Design

In order to gauge the effects of positional bias on CGP with crossover, we con-
ducted an empirical study. We give a brief introduction into Bayesian inference to
evaluate and rank different CGP configurations. They are used to compare mul-
tiple CGP configurations, which we use for our statistical analysis. Afterwards,
we describe CGP’s configuration and the benchmarks used1.

5.1 Bayesian Data Analysis

To answer our research questions, a fair comparison of algorithms and a qualita-
tively sound evaluation must be ensured. For this task each CGP variant must
be ranked to find the best solution. For Boolean benchmarks we only examine
the number of training iterations until a solution is found (I2S ). Thus, for these
types of benchmarks, algorithms are ranked according to their I2S . Consider-
ing symbolic regression benchmarks, the final goal is to minimize their fitness
value—which is why they are ranked according to their final test fitness value.
For both benchmark types these numbers cannot be negative. Hence, other com-
mon distributions such as Student’s t distributions can not be expected to model
the data well [16]. This is why we performed a Bayesian data analysis for the
posterior distributions of our results2. The model to compare the algorithms is
based on the Plackett-Luce model described by Calvo et al. [3]. It allows the
computation of a set of ranked options by estimating the probabilities of each
of the options to be the one with the highest rank.

Additionally, for the I2S of Boolean benchmarks, we report the 95 % highest
posterior density intervals (HPDI) of the distribution of μconfig, where μconfig is
1 The source code can be found at: https://github.com/CuiHen/CGP_with_Cross

over_Strategies.
2 We utilized the Python library cmpbayes [24] for all statistical models.

https://github.com/CuiHen/CGP_with_Crossover_Strategies
https://github.com/CuiHen/CGP_with_Crossover_Strategies
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a random variable corresponding to the respective performance measurement. At
that, the distribution of μconfig is estimated by the gamma distribution–based
model for comparing non-negative data from cmpbayes [24]. Please note, a 95 %
HPDI interval [l, u] can be read as p(l ≤ μconfig ≤ u) = 95%. This means,
the probability of the algorithms results lying between the bounds l ∈ N+ and
u ∈ N+ is 95%.

Furthermore, prior sensitivity analyses were conducted prior to ensure the
robustness of all models. As they always display similar results, robust and mean-
ingful models are implicated. Finally, please note that cmpbayes uses Markov
Chain Monte-Carlo sampling to obtain its distributions. Therefore, the usual
checks to ensure convergence and well-behavedness (trace plots, posterior pre-
dictive checks, R̂ values, effective sample size) were performed. For more infor-
mation regarding the models, we refer to Kruschke [16] and Pätzel [24].

5.2 CGP Variants and Their Configuration

To answer our hypothesis, a broad set of configurations must be evaluated
and compared. For basic baselines, we use the following two configurations:
No crossover, Standard with a (1 + 4) Evolutionary Strategy (ES); and no
crossover, E-Reorder with a (1+ 4)-ES. Both variants are commonly found in
literatures—that means, CGP uses an elitist (μ + λ)-ES with μ = 1 and λ = 4,
and no crossover [20,29].

These baselines are then compared with the combinations of different compo-
nents. We employ two different CGP variants: Standard and E-Reorder. For
the selection method, a standard tournament selection with elitists or (μ + λ)-ES
is used. Considering the crossover operators, we tested four operators: 1-point,
2-point, 3-point, and uniform crossover. A crossover rate of 0.9 was used for
all configurations. Furthermore, the option of no recombination must also be
evaluated. Including our baselines, this leads to 22 different algorithmic combi-
nations. To further clarify the combination of non-baseline modules, we list the
components in Table 1.

Table 1. Different components from which a CGP configuration is created. We tested
the combination of all categories and two baselines.

Crossover Operator CGP Variant Selection Strategy

1-point crossover (μ + λ)-ES Standard

2-point crossover Tournament
selection
with elitists

E-Reorder

3-point crossover
Uniform crossover
No crossover
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To mutate the genotypes, we use Single [9]. This operator works by mutating
random genes until a gene corresponding to an active node is mutated. This
enforces a measurable change in the phenotype—compared to the standard point
mutation which may only mutate inactive nodes, which makes it impossible
to gauge the quality of the genotypical change [7,8]. Furthermore, it has the
benefit that it does not need a mutation probability and achieves similar results
compared to a standard point mutation.

For the baselines, their number of computational nodes N must be optimized.
Considering other CGP configurations, we additionally optimized μ and λ when
the (μ + λ)-ES is used. For tournament selection, we included the tournament
size, population size, and the number of elitists into the hyperparameter opti-
mization process. For each parameter, we investigated the following possibilities:
N ∈ {50, 100, 150, · · · , 2000}, μ ∈ {2, 4, 6, 8, 10}, λ ∈ {10, 12, 14, · · · , 50},
tournament size ∈ {2, 4, 6, 8}, population size ∈ {10, 12, 14, · · · , 50}, number
of elitists ∈ {2, 4, 6, 8, 10}.

To find the best hyperparameters, we used a Tree-structured Parzen Estima-
tor3. All configurations were tested 20 times with independent repetitions and
completely random seeds. For our final results, each CGP version used the best
set of hyperparameters found for a given benchmark and were run again for 50
times with independent repetitions and different random seeds.

5.3 Benchmarks

To evaluate our hypothesis, Boolean and symbolic regression benchmarks were
tested. We used four Boolean benchmarks problems: 3-bit Parity, 16–4-bit
Encode, 4–16-bit Decode and 3-bit Multiply. In the following, we will call these
Parity, Encode, Decode and Multiply, respectively. Parity is regarded as too easy
by the Genetic Programming community [31]. However, it was commonly used
as a benchmark in literature [14,21]. This is why we also included it in our eval-
uations for ease of comparison. Encode and Decode are problems with different
input and output sizes (16 inputs and 4 outputs, and vice versa). At last, Multi-
ply is a comparatively hard problem and recommended by White et al. [31]. For
these benchmark problems we used their standard Boolean function set: AND,
OR, NAND and NOR. As their fitness function, we employed a standard one,
too. It is defined by the ratio of correctly mapped inputs.

The goal for Boolean benchmarks is to achieve a solution which is able to
correctly map all inputs. Thus, each benchmark runs on an unlimited budget
and we report the number of training iterations until a solution is found ( I2S).

In terms of symbolic regression benchmarks we again adhered to the recom-
mendations from the GP community [31] and previous works [11]. Four different
benchmarks were used: Keijzer-6, Koza-3, Nguyen-7 and Pagie-1. Their defini-
tions are shown in Table 2.

The function set consists of eight mathematical functions: addition, subtrac-
tion, multiplication, protected division, sine, cosine, natural logarithm and the

3 For the hyperparameter search, we utilized the Python library Optuna [1].
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Table 2. Symbolic regression benchmarks used. U [a, b, c] means that c uniform random
samples are drawn from a to b, inclusive. E[a, b, c] defines a grid of points from a to b,
with c being the spacing.

Name Variables Equation Training Set Testing Set

Keijzer-6 1
∑x

i
1
i

E[1, 50, 1] E[1, 120, 1]

Koza-3 1 x6 − 2 · x4 + x2 U [−1, 1, 20] None
Nguyen-7 1 ln (x + 1) + ln

(
x2 + 1

)
U [0, 2, 20] None

Pagie-1 2 1
1−x−4 + 1

1−y−4 E[−5, 5, 0.4] None

exponential function. As for the fitness function, the mean absolute error over
the whole benchmark with n entries was used:

In this setting, an algorithm is classified as converged when the fitness value
becomes less than 0.01. Furthermore, each CGP variant is given 5 · 105 training
iterations per run. Again, we only limit their budged based on training iterations.
In this way, all configurations have a chance of convergence—which might not
be the case when we limit their budged depending on their population size.

6 Evaluation

With our experimental setup explained, we now focus on answering our research
questions. On that account, we report the top three parametrizations regarding
the performance. We do not list all combinations of modules per benchmark,
as there are a total of 22 different configurations. Combined with eight different
benchmarks, presenting all results would take up too much space. For a complete
list of all results, we refer to zenodo: https://doi.org/10.5281/zenodo.10830014.
Furthermore, in the complete list we report the mean fitness, standard deviation
of the fitness, number of active nodes, total number of nodes, population size,
number of elitists, tournament size, success rate, HPDI and the probability of
one solution being the best.

6.1 Performance of Different Module Combinations

We report selected results on Boolean and symbolic regression benchmarks in
Table 3 and Table 4. Again, we refer to https://doi.org/10.5281/zenodo.10830014
for a complete view of our results.

Discussion: Boolean Benchmarks. For the Boolean benchmarks, tourna-
ment selection does not perform well in this setting. It leads to the worst results
on all benchmarks except for Parity. On Multiply, all configurations with this
selection method even reaches a success rate of zero.

Regarding our original research question Q1, the positional bias does prob-
ably not affect CGP in the context of Boolean benchmarks. On the contrary,

https://doi.org/10.5281/zenodo.10830014
https://doi.org/10.5281/zenodo.10830014
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Table 3. Selected results on Boolean benchmarks. We report the mean fitness
(mean(I2S)), HPDI, number of active nodes (# active), total number of nodes
(# nodes), and the probability of one solution being the best (pbest). Entries are sorted
according to pbest.

CGP variant mean(I2S) HPDI # active # nodes pbest

Parity
1-p. cr., Standard, (4 + 50) 137 (98, 189) 48 650 0.07
2-p. cr., E-Reorder, (8 + 38) 690 (416, 1146) 431 800 0.07
uni. cr., Standard, (2 + 48) 136 (101, 182) 36 450 0.06
· · · · · · · · · · · · · · · · · ·
Encode
2-p. cr., Standard, (2 + 44) 2,192 (1878, 2541) 63 150 0.13
1-p. cr., Standard, (2 + 50) 2,564 (2146, 3044) 87 400 0.12
no cr., Standard, (2 + 50) 2,288 (1919, 2718) 77 300 0.11
· · · · · · · · · · · · · · · · · ·
Decode
2-p. cr., Standard, (8 + 50) 3,229 (2871, 3643) 126 250 0.21
3-p. cr., Standard, (8 + 46) 3,415 (2997, 3884) 162 450 0.15
no cr., E-Reorder, (8 + 50) 3,414 (2946, 3960) 208 250 0.15
· · · · · · · · · · · · · · · · · ·
Multiply
1-p. cr., Standard, (2 + 44) 35,519 (29547, 42588) 96 350 0.15
no cr., E-Reorder, (2 + 50) 53,593 (41036, 69020) 247 300 0.13
uni. cr., Standard, (2 + 48) 42,120 (34939, 50555) 95 350 0.13
· · · · · · · · · · · · · · · · · ·

in most cases Standard with recombination seems to outperform E-Reorder
with no crossover both in terms of mean fitness and pbest; while E-Reorder
outperforms Standard when both variants do not use crossover. For Multiply,
Standard with an (μ+λ)-ES finds solutions with less active nodes compared to
E-Reorder with (μ+λ)-ES, which indicates a more compact solution with less
redundant computations. This is contrasted by the general trend that the Stan-
dard baseline normally has more active nodes compared to the E-Reorder
baseline. Regarding the other benchmarks, such a behaviour cannot be observed.
There is only a slight tendency towards Standard with crossover having less
active nodes than E-Reorder.

Interestingly, a 1-point or 2-point crossover leads to the best results in most
cases. We believe that, in this setting, Standard with a 1- or 2-point crossover
should drastically change its geno- and phenotype. In addition, Boolean bench-
marks display a deceptive fitness landscape [30]. In this context, this means that
a multitude of different solutions lead to the same fitness value. Hence, due to
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Table 4. Selected results on symbolic regression benchmarks. We report the mean
I2S (mean(I2S)), mean fitness (mean(fit)), number of active nodes (# active), total
number of nodes (# nodes), the success rate (s-rate), and the probability of one con-
figuration being the best in terms of test fitness (pbest). Entries are sorted according
to pbest.

CGP variant mean(I2S) mean(fit) # active # nodes s-rate pbest

Keijzer-6
uni. cr., E-Reorder, (10 + 40) 2 0.000 9 50 1.00 0.14
2-p. cr., E-Reorder, (10 + 48) 1 0.000 8 50 1.00 0.10
3-p. cr., E-Reorder, (8 + 32) 2 0.000 9 50 1.00 0.09
· · · · · · · · · · · · · · · · · · · · ·
Koza-3
3-p. cr., E-Reorder, tour. 1059 0.003 19 50 1.00 0.12
uni. cr., E-Reorder, tour. 323 0.006 21 50 1.00 0.08
uni. cr., E-Reorder, (10 + 30) 5893 0.006 16 50 1.00 0.08
· · · · · · · · · · · · · · · · · · · · ·
Nguyen-7
1-p. cr., E-Reorder, tour. 14063 0.009 31 50 1.00 0.08
1-p. cr., Standard, tour. 24621 0.010 14 50 1.00 0.07
uni. cr., Standard, tour. 28423 0.009 16 150 1.00 0.07
· · · · · · · · · · · · · · · · · · · · ·
Pagie-1
1-p. cr., Standard, tour. 482817 0.033 32 100 0.08 0.08
uni. cr., Standard, (6 + 46) 459114 0.034 97 850 0.12 0.08
no cr., Standard, (8 + 50) 451652 0.036 91 450 0.16 0.08
· · · · · · · · · · · · · · · · · · · · ·

great changes in the genotype introduced by recombinations, more regions in the
fitness landscape might be explored. This, in turn, might improve its evolution-
ary search process—and lead to less I2S .

Discussion: Symbolic Regression Benchmarks. Compared to Boolean
benchmarks, a tournament selection does not completely impair its performance.
Still, a CGP configuration with crossover leads to the best results in all cases
again.

Additionally, for the first three out of four benchmarks, E-Reorder with
crossover probably leads to the best results in terms of mean I2S and mean fit-
ness value. The greatest difference in I2S can be seen with Nguyen-7. The lowest
I2S is achieved with 2-point crossover, E-Reorder and tournament selection.
This configuration achieves a mean I2S of 2,078 with a mean test fitness value
of 0.011—compared to its counterpart: 2-point crossover, Standard and tour-
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nament selection, which needs 19,000 iterations and achieves a mean fitness of
0.010.

According to the test fitness value and I2S , Pagie-1 is the hardest symbolic
regression benchmark for CGP. When only its mean test fitness is considered,
Standard with or without recombination always outperforms E-Reorder.
Furthermore, 1-point crossover with Standard and tournament selection has
the highest pbest. This notion contradicts our hypothesis. However, when the
success rate combined with its mean I2S is considered, a 2-point crossover E-
Reorder variant comes on top with a success rate of 0.16.

All in all, E-Reorder with crossover should lead to better results for sym-
bolic regression benchmarks. However, to answer Q1 in the context of symbolic
regression benchmarks, the positional bias does probably not affect CGP with
crossover.

6.2 Convergence Behaviour
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Fig. 3. Convergence plots for each regression benchmark. For better visualization, the
x- and y-axis have a logarithmic scale and we cut them off after they reach a mean
fitness of less than 0.01. The shaded area indicates their respective standard deviation.

To better understand the effects of crossover on CGP, we depict convergence
plots for symbolic regression. We also try to classify their convergence behaviour
according to Stegherr et al. [27]. Please note that we do not include convergence
plots for Boolean benchmarks. Because of their deceptive fitness landscape [30],
they all show the exact same convergence behaviour by design: Fast to Slow.
Hence, no additional value can be gained by including them.
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Considering the plots for symbolic regression benchmarks, including the
behaviour of all 22 configurations will make it impossible to analyse. This is why
we will only include the behaviour of four CGP configurations: No Crossover,
Standard, (1+4)-ES; No Crossover, E-Reorder, (1+4)-ES; The best Stan-
dard and E-Reorder configuration with crossover. For these plots, we aver-
aged the convergence of 50 runs. Furthermore, to easier see the differences, the
x- and y-axis have a logarithmic scale. In addition, we included their respective
standard deviation (shaded area).

As can be seen in Fig. 3, they all depict a similar convergence behaviour—
which can be classified into Fast to Slow. Within the first few iterations, a rela-
tively low fitness value is achieved. Afterwards, the rate of improvement decreases
for all CGP variants, and a lot of training iterations are needed for small improve-
ments. Nevertheless, when only convergence plots are examined, all algorithms
behave very similar. Thus, it can be concluded that the behaviour of CGP does
not change when a crossover method is included.

6.3 General Discussion

An unusual observation in our work is the general lack of performance issues
for Standard with crossover. Contrary to some previous works, we could not
replicate the negative impact of recombination on CGP. We believe that this
might be due to several reasons.

One of the earliest works on CGP with crossover was done by Miller [21].
His work differs greatly from ours, as he used a c × r grid, with c > 1 and
r > 1. Compared to our work, we used r = 1 which is also the recommended
number of rows nowadays [20]. Furthermore, he only considered tournament
selection, which, in our setting, lead to the worst results in most cases for Boolean
benchmarks independent of using crossover or not.

Clegg et al. [4] also argued against the use of standard crossover techniques.
They analysed CGP’s convergence behaviour, tested on a single symbolic regres-
sion problem. Four crossover operators were compared against a standard CGP
implementation, and they found that these recombination operators increased
the I2S . However, according to their description, they did not optimize CGP’s
hyperparameters or tested different selection operators. Additionally, their state-
ment that crossover negatively impairs CGP is only based on one fairly simple
problem, which can also be criticised.

To the best of our knowledge, Husa and Kalkreuth [10] were the first to
present a comparative study on crossover for CGP. In their setting, they found
that CGP with crossover can outperform the (1+λ)-ES without crossover for an
arbitrary configuration. When the hyperparameters for each configuration are
optimized, though, the (1 + λ)-ES without crossover always outperforms CGP
with crossover. Nonetheless, they only tested Boolean benchmarks and combined
recombination operators with tournament selection. In our work, this selection
operator impaired CGP’s performance on Boolean benchmarks which is why we
have to treat their conclusion with reservation.
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Considering our results, we believe that the use of a recombination operator
does not always impair CGP’s performance. On the contrary, with the right con-
figuration and parametrization, CGP might even profit from it. As we presented
in Sect. 6.1, Standard with crossover is almost always able to achieve better
results compared to their baseline. Even when their convergence behaviour is
visually analysed in Sect. 6.2, we do not see a negative effect caused by crossover.

To finally give a definite answer to our research questions:

Q1 & A1: Has positional bias an effect on CGP with a crossover operator
employed? No, positional bias does not affect CGP with a recombination
algorithm in our setting.

Q2 & A2: Is there a difference in behaviour when different CGP variants with
and without crossover are analysed? No, there is no difference in convergence
behaviour in our setting.

7 Conclusion

In this work, we investigated the effect of the positional bias on CGP with a
crossover operator employed. On that account, we compared two different CGP
versions, one with and one without positional bias. A standard CGP variant
(Standard) was used, which suffers from the negative effects of positional bias.
To fully mitigate this problem, we employed a CGP variant with the Equidistant-
Reorder operator (E-Reorder). These variants were then evaluated with two
different selection strategies, four different recombination algorithms, or with no
crossover operator employed—leading to a comparison of 22 unique algorithmic
configurations of CGP. To gauge the effects of positional bias on crossover, four
Boolean and four symbolic regression benchmarks were used. We optimized the
hyperparameters for each combination of benchmark and CGP version, ranked
and discussed the optimized configurations.

In our testing, we found that positional bias has no effect on CGP with
crossover. On the contrary, by adding a recombination algorithm, the perfor-
mance of Standard could be improved in all cases. While previous works sug-
gested that recombination does not or negatively impact CGP, we believe that
this decision was made too early. Using a tournament selection, for example, lead
to the worst results on Boolean benchmarks independent of using crossover or
not. However, most authors used CGP with tournament selection and crossover
on Boolean benchmarks without considering other selection operators in the
past. This might lead to an overall worse performance—and to draw a conclu-
sion that CGP does not profit from crossover.

As for future works, other selection and crossover operators should be paired
with CGP. Furthermore, more benchmark categories should be tested before giv-
ing a final answer to the question: Does crossover impact CGP negatively? In
addition, positional bias does probably not influence CGP with crossover nega-
tively, according to our results. However, more configurations can be tested. We
used an Equidistant-Reorder method, which fully eliminates positional bias. Nev-
ertheless, more extensions should be tested, like the standard Reorder method [8].
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It would also be possible to use the extension called DAG [8], which allows arbi-
trary node connections as long as no cycles form. This graph can be reordered
into a feed-forward graph without changing the sequence of any operations. In
this way, the positional bias is mitigated and crossover operators can be applied
and tested, too.
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