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Abstract—The cardiovascular diseases (CVDs) cause tremen-
dous deaths yearly. The Mel-spectrogram is widely used as a tool
to analyse the heart sound, which facilitate a cheap and efficient
diagnosis of CVDs. Nevertheless, the amplitude and frequency
responses of the Mel filter banks remain constant, limiting its
function to frequency selection. We propose an adaptive Mel-
spectrogram end-to-end neural network (AMNet) for a better
characterisation and classification of heart sound in the work.
The core of the adaptive Mel-spectrograms (AMel) lies in an
adaptive Mel filter banks whose frequency characteristics remain
the same as the original Mel-spectrogram (OMel) and amplitude
is learnt by the backropagation algorithm. The AMNet learns the
raw audio representation directly and outputs the classification
results. It reaches 43.5 % Unweighted Average Recall (UAR) and
surpasses the model with the OMel and the baseline by 6 % UAR.
It is demonstrated that the AMel characterises the heart sound
more effectively.

Index Terms—Adaptive Mel-spectrogram, Computer Audition,
Heart Sounds, End-to-End, mHealth

I. INTRODUCTION

Cardiovascular diseases (CVDs) are considered the number
one killer of human life. According to the World Health
Organisation (WHO), 17.9 million people died due to CVDs
in 2019, accounting for 32 % of all deaths worldwide [1]. At
present, magnetic resonance images and electronic computed
tomography are the main methods for early diagnosis of
cardiovascular disease. Yet, this is cumbersome, not portable,
and costly for the patients. Heart sounds auscultation has
been increasingly used by experts due to its advantages of
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rapidity, low cost and high efficiency. However, the diagnosis
is not so reliable. On the one hand, the effective auscultation
through heart sounds depends on the knowledge level and rich
experience of experts as well as professional and sophisticated
equipment [2], [3]. On the other hand, the characteristics of
heart sound with low intensity and dominant frequency close
to the lower limit of human hearing make accurate diagnosis
more challenging for experts [4]–[6]. In addition, in order to
avoid the effects of environment noise, doctors need a quiet
space in which to conduct their auscultation sessions [7], [8].
And they also need to have the ability to filter the sounds from
other organs around the heart of the patients, such as lung and
breath sound.

The rapidly developing computer audition (CA) [9] technol-
ogy is becoming a popular topic of digital medicine research
in the search for new digital phenotypes [10]. Heart sounds,
as an inexpensive, easy-to-collect, universal and noninvasive
audio signal, have been demonstrated to be effective in the
classification of cardiac abnormalities. Most previous work
have been implemented in two stages, i. e., feature extraction
and classification [11], [12]. In recent years, it has become
increasingly popular to use lightweight end-to-end networks to
learn the features of audio, which perform well [13], [14]. The
end-to-end network is considered to be heuristic and capable
of learning the characteristics of a sample autonomously [15],
[16], just as the human ear acquires audio information. The
Experiments about human auditory perception have shown that
the human cochlea is equivalent to filter banks. According to
this mechanism, the Mel filter banks (usually triangular filters)
are used to simulate the perception of different frequencies
of audio by the human ear [17]. The amplitude spectrum
of the audio signal is filtered by a set of Mel filters to
obtain the Mel-spectrogram of each frequency band which
is mathematically the dot product of the amplitude spectrum
and the frequency response of the Mel filter banks. Since the
amplitude-frequency response of the Mel filter banks is con-
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stant, it simply simulates the non-linear nature of frequencies
in the human ear’s hearing and does not have the ability to
learn the amplitude spectrum from audio. To this end, we
aim to construct an end-to-end model with an adaptive Mel-
spectrogram (AMel) which is capable of learning heart sounds.
It is able to keep the frequency characteristics of the Mel
filter banks while adjusting the amplitude characteristics to
the adaptive network to provide better discrimination over the
heart sounds events. Two contributions are as follows.

• We design the AMel whose Mel filter amplitude is
adaptively adjusted.

• We implement the AMel in an end-to-end network to
simulate the human ear to learn heart sounds better.

The remainder of this paper is organised as follows: First,
some related works are listed in Sec. II. Then, the database
and method are presented in Sec. III. Subsequently, the results
and discussion about our work are given in Sec. IV. Finally,
we draw a conclusion for our work in Sec. V.

II. RELATED WORKS

There have been several innovative and high-performance
approaches for the task of heart sound classification using
Mel-spetrogram. Haq et al. [18] used the Mel-spectrogram as
the feature map and achieved a more competitive result on a
imbalanced dataset. Bae et al. [19] fine-turned the Inception
V3 to extract the features from Mel-spectrogram and used
an artificial neural network to distinguish systolic murmur
from normal heart sounds. Yildirim et al. [20] developed
hybrid model based on the Mel-spectrogram and achieved
the accuracy of 99.63 % on their dataset. It can be seen
that Mel-spectrogram could make an encouraging performance
on the heart sound classification tasks. However, these Mel-
spectrograms are generated by the invariant Mel filter banks.
A growing body of researches have reported some works
about building pre-filter learning modules into systems [21]–
[23]. The method presented in the [21], [22] attempted to
approximate or replace Mel filters. In contrast to the essence
of these works, our model are improved base on a standard
Mel filter bank entirely because of its superiority.

III. DATABASE AND METHOD

A. HSS Database

The database we use is the heart sounds Shenzhen Corpus
(HSS) which was released in the INTERSPEECH 2018 Com-
ParE challenge Heart Beats Sub-challenge [24]. The HSS was
established and described by the Shenzhen University General
Hospital [25]. All the heart sound audio recordings were sam-
pled to 4 000 Hz and included 170 subjects (female: 55, male:
115) with various health conditions. Considering the subject-
independence, three datasets, i. e., a training set, development
(dev) set, and test set were split by the organisers. Further,
three classes, i. e., normal, mild, and mod(erate) / sev(ere) were
involved in the HSS, which were annotated by experienced
cardiologists through the use of the gold standard. The detail
of the data distribution information can be found in Table I.

TABLE I
DATA DISTRIBUTION OF THE HSS DATABASE.

Class Train Dev Test
∑

Normal 84 32 28 144
Mild 276 98 91 465
Mod./Sev. 142 50 44 236∑

502 180 163 845

B. Method

The overall architecture of our proposed adaptive Mel-
spectrogram end-to-end neural network (AMNet) is shown
in Fig. 1. We present an end-to-end model, in which audio
is directly feature-extracted and learnt, then classified. It is
worth noting that we construct an adaptive Mel-spectrogram
layer (AM layer) as the first layer in the network which is
generated by adaptive Mel filter banks (AMFBs).

1) AMNet: In the AMNet architecture, raw heart sounds
are fed into the network. Mel-spectrograms are learnt and
Convolutional Neural Networks are used to discriminate fea-
tures. There are six layers in the network, i. e., the AM
layer, four convolutional layers, and the last dense layer. We
configure 3 × 3 filters for the four convolutional layers. In
order to speed up the convergence and prevent overfitting, each
convolutional layer is followed by a batch normalisation layer.
Subsequent to the last three convolutional layers activated by
“ReLu”, the feature maps are dimensionally reduced using
a maxpooling layer with pool size of 2 × 2. During the
training, the categorical crossentropy between the CNN output
and the true class is minimised using stochastic gradient
descent with the Adam optimiser. The AM layer is also learnt
by the backpropagation algorithm. Finally, the dense layer
with softmax activation function integrates the features and
calculates the probability of the heart sound for each of the
three classes.

2) Adaptive Mel-spectrogram layer: The core of the pro-
posed AM layer is a set of Mel filter banks with trainable
amplitude. It is well known that Mel filters are designed to
simulate the hearing of the human ear which focuses only
on certain specific frequency domain and not on the entire
spectral envelope [26]. To this end, we keep the frequency
selection characteristics of the individual Mel filters the same
as the original ones and only optimise their amplitudes, which
maintains the significance of the Mel filter banks originally
used to simulate human hearing in CA.

The short time Fourier transformation (STFT) [27] is often
used for processing non-stationary signals. The signal of a
heart sound in the time domain is transformed by the STFT,
and then we calculate the amplitude spectrum, defined as X .

Next, we design the AMFBs. At first, we obtain a transposed
Mel filter banks which contains m filters. Each Mel filter is
adjusted in amplitude at the original fixed frequency to suit
the CNN model. The amplitude of each Mel filter passband is
initialised by the original Mel filter banks accordingly and is
defined as a trainable variable that can be adjusted separately
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Fig. 1. The proposed AMNet architecture.

by the backpropagation algorithm. The AMFBs is shown
in (1).

AMFBs =


A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
...

...
...

0 0 0 . . . Am

 , (1)

where Ai(i = 1 . . .m) are the trainable amplitude variables
in the passband of each Mel filter, respectively. In this way,
the amplitude of the passband portion of a single filter is
adjusted without changing its frequency selection function. In
the experiments, it is optimised in our end-to-end network.

After that, we apply the AMFBs on the amplitude spec-
trum X to realise the Mel-spectrogram AMel which is defined
as the dot product of X and AMFBs shown in (2).

AMel = X ·AMFBs. (2)

At last, the AMel is transformed to decibel values as the
output of the first layer in the network. The AM layer is set
as the first layer of the end-to-end network. As the network is
back-propagated each time, each filter is adjusted to learn the
amplitude spectrum information to obtain a more optimised
Mel-spectrogram.

IV. RESULTS AND DISCUSSION

In this section, we implement our method and discuss the
results achieved by our experiments.

A. Experiment Setup

The networks are trained using “Adam” with a learning
rate of 0.01 and batch size of 128. Each convolutional layer
is maintained with the same size of the feature map, kernel-
initialised by “he normal”, and kernel-regularised by “l1” with
a weight decay of 0.0005. In addition, we adopt a window
length of 25 ms and hop length of 10 ms for audio framing.
The number of the fast Fourier transformation points is 1 024
and the number of Mel filters is 26.

B. Results
In this section, we will show the results of the model

with the original Mel-spectrogram (OMel) and the AMel. At
first, Fig. 2 shows the original Mel filter banks (OMFBs)
and the AMFBs, respectively. We can see that the passband
characteristics of the corresponding individual filters of the two
sets remain the same. It is worth noting that the amplitude
of each of the latter filters is completely adjusted by the
backpropagation algorithm. It is a set of adaptive and trainable
Mel filter banks.
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(b) AMFBs.

Fig. 2. The two different Mel filter banks. Their frequency selection
characteristics are the same, and the amplitude of the latter is trained by
the backpropagation algorithm for AMel in the network.

Further, we apply the two different filter banks to the ampli-
tude spectrum to obtain two Mel-spectrograms for subsequent
network learning. The output of the first Mel-spectrogram
layer and the four two-dimensional convolutional layers gen-
erated by the best models of the first mild recording in the
test set are shown in Fig. 3. It can be observed that the two
Mel-spectrograms are visually distinctly different in Fig. 3 (a)
and Fig. 3 (f).
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Fig. 3. The output of the first Mel-spectrogram layer and the four two-
dimensional convolutional layers generated by the best models of the first
mild heart sound recording in the test set. OMi (a-e) is the output of the i-th
layer of the model with OMel. AMi (f-j) is the output of the i-th layer of the
model with AMel. (i = 1 . . . 5).

After fitting the network, the confusion matrices for the best
model obtained on the test set for the two Mel-spectrogram
are shown in Fig. 4. It should be noted that the parameters of
the best model are fitted on the dev set and then applied to
the test set. For this imbalanced dataset, it can be seen that
the model with the OMel lacks the ability to fit the healthy
class of the heart sounds. The model with the ability to train
the Mel-spectrogram learns a better representation of the heart
sounds and thus has a better ability to fit the three classes of
heart sounds than the former. Although our network sacrifices
in terms of better recognition of the Mod./Sev., the overall
performance has increased.

In order to evaluate our results fairly, we choose the Un-
weighted Average Recall (UAR) [28] as the primary evaluation
metrics and the accuracy as secondary. UAR - the official
measure of the ComParE heart sound Challenge, is the average
of the Recall for all classes, which is a more comprehensive
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Fig. 4. The two normalised confusion matrixs achieved by the best models.
OMCM: The confusion matrix generated by the OMel. AMCM: The confusion
matrix generated by the AMel.

TABLE II
CLASSIFICATION RESULTS OF THE PROPOSED AND BASELINE MODELS.

OM-MODEL: THE PROPOSED END-TO-END NETWORK WITH THE OMEL.
AM-MODEL: THE PROPOSED END-TO-END NETWORK WITH THE AMEL.

UAR: UNWEIGHTED AVERAGE RECALL. CHANCE LEVEL: 33.3 %.

Model UAR [%] ACC [%]

Baseline 37.7 \
OM-model 37.5 48.1
AM-model 43.5 58.3

evaluation index, especially for the imbalanced database we
use. The UAR is defined as

UAR =

∑Nc

i=1 Recalli
Nc

, (3)

where Nc is the number of classes.
In Table II, we give a result list to compare the best

baseline [24] and our models which includes two models
with the OMel and the AMel on the test set, respectively.
It should be noted that these models are end-to-end structures.
From the table, our models perform as well or even better
than the baseline. In particular, the proposed model with
the AMel shows excellent advantages in characterising heart
sound features. It beats the baseline and achieves a relative
improvement in the UAR of approximate 6.0 % compared to
the other two models. In addition to this, the accuracy obtained
by the AMel is 9.8 % higher than the OMel.

C. Discussion

All the blue Mel-spectrograms bands in Fig. 3 (f) are
converted to negative Mel coefficient values and have the same
value by the action of the Mel filters with negative amplitude
(see Fig. 2 (b)), because the amplitude of the Mel filter banks
is optimized by the backpropagation gradient algorithm in the
end-to-end network. These same Mel coefficients are consid-
ered to be redundant. With the deepening of the convolutional
network, the selected frequency bands are still distinct and
the individual Mel coefficients are still quite different in the
network with the AMel (see Fig. 3 (g-j)). However, the indi-
vidual coefficients are finally convolved into a layer of almost
the same colour in the original Mel-spectrogram network (see
Fig. 3 (b-e)). This is the direct reason of the difference in the
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classification performance of the two models. Therefore, the
amplitude spectra of some frequencies are completely filtered
due to the action of the AMFBs, while only the essential
frequency band targeting the global goal is retained. In general,
the proposed Mel filter banks are similar to the brain-inspired
hearing mechanism, which can directly learn the amplitude
spectrum characteristics of heart sound adaptively. The first
layer of the network generates the AMel with a better time-
frequency representations for classification of heart sound,
which can also contribute to a more interpretable model.
Our drawback is that the UAR achieved by the proposed
model is limited. With this proposed adaptive Mel-spectrogram
approach, combining a more robust and large model to tune
the Mel filter banks could be considered in the future.

V. CONCLUSION

In this work, we presented the AMel which was used in our
end-to-end networks. The end-to-end network autonomously
and directly learnt the representation of raw heart sounds for
classification. To maintain the frequency selection character-
istics of Mel filters, we set the amplitudes of the passbands
as trainable parameters to obtain the AMel. The paremeters
of AMel were learnt and adjusted in the network by the
backpropagation algorithm for the purpose of adaptive net-
working. Experimental results demonstrated that the AMFBs
were able to filter out amplitude spectrum at unimportant
frequencies and adjusted the effect of individual amplitudes
on the classification target. The AMel achieved the UAR of
43.5 % and outperformed the original one by 6 % in UAR.
Finally, the AMel approach could be extended beyond heart
sound classification, allowing it to effectively adapt to a
diverse range of classification tasks and acquire task-specific
knowledge. Future efforts could consider further learning of
parameters of established expert features from data rather than
entirely attempting to learn the representation.
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