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We study decoherence of a three-qubit array coupled to substrate phonons. Assuming
an initial three-qubit entangled state that would be decoherence-free for identical qubit
positions, allows us to focus on non-Markovian effects of the inevitable spatial qubit
separation. It turns out that the coherence is most affected when the qubits are regularly
spaced. Moreover, we find that up to a constant scaling factor, two-qubit entanglement
is not influenced by the presence of the third qubit, even though all qubits interact via
the phonon field.

                                                                     

1. Introduction

A major obstable on the way towards a working quantum computer is decoher-
ence: the interaction of the qubits with their environment reduces the indispens-
able quantum coherence of the quantum states. Several strategies are pursued to
beat decoherence. An active strategy is quantum error correction, which requires
a redundant encoding of a logical qubit by several physical qubits.1–3 Standard
error correction protocols presuppose that all physical qubits couple individually
to uncorrelated baths. A passive strategy is the use of decoherence-free subspaces
(DFS).4–7 There, one logical qubit is encoded by several physical qubits in such
a way that the logical qubit states do not couple to the environment. Ideal DFSs
occur when physical qubits couple via a collective coordinate to a common bath.

For solid-state qubits, the coupling to substrate phonons often is a relevant
source of decoherence, in particular for charge qubits in quantum dots.8 Whether
these qubits experience correlated or uncorrelated noise depends on their distance
in relation to the coherence length of the phonons, the sound velocity, the cutoff
frequency and also on the dimensionality of the substrate. In Ref. 9, this depen-
dence has been worked out by studying pure dephasing of a two-qubit state with
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an initial entanglement that is decoherence-free if both qubits couple to the envi-
ronment at the same position.10 If the qubits are spatially separated, however,
this behavior changes: the entanglement decays until the transit time of a sound
wave from one qubit to the other is reached. However, if the qubits are embedded
in a quasi-one-dimensional environment, the noise at the two positions eventually
becomes sufficiently correlated to bring decoherence to a standstill. In this way, a
decoherence-poor subspace can emerge. Similar results can be found for the deco-
herence of entangled states of a regularly spaced qubit array.11

This work is motivated by two questions: First, do imperfections in the regular
alignment of the qubits involve additional decoherence, or, put differently, how do
irregularities in the spatial extension of a qubit register influence the collective
decoherence properties? And second, is the entanglement of a qubit pair affected
by its indirect interaction with a third qubit via the environment?

2. Qubits Coupled to a Bosonic Field

As sketched in Fig. 1, we consider a linear arrangement of three qubits at positions
x1 = 0, x2 = a + δ, and x3 = 2a, i.e. the nearest-neighbor separations x12 = a + δ

and x23 = a−δ. To elaborate on the impact of spatially correlated noise we assume
the qubit array to be embedded in a channel-like structure, as may be realized in
carbon nanotubes or in linear ion traps. Thus, we treat the bosonic environment as
effectively one-dimensional. The total Hamiltonian modelling this situation reads
H = Hq + Hqb + Hb, where Hq =

∑ 3
ν=1 �Ωνσνz/2 describes three qubits with

energy splittings �Ων with σνz being a Pauli matrix for qubit ν = 1, 2, 3. Note
that there is no direct interaction between the qubits. The bosonic field described
by Hb =

∑
k �ωkb†kbk consists of modes k with energies �ωk and the respective

annihilation and creation operators bk and b†k. We assume a linear dispersion rela-
tion ωk = c|k| with sound velocity c. The transit time of a field distortion between
the qubits ν and ν′ is then tνν′ = xνν′/c with xνν′ = |xν − xν′ |. Qubit ν cou-
ples linearly via the operator Xν to the field, so that the coupling Hamiltonian
reads

Hqb = �

2∑
ν=1

Xνξν , (1)

Fig. 1. Sketch of three qubits (green boxes) in a linear arrangement at positions xν , ν = 1, 2, 3,
with the distances a + δ and a − δ. They interact via a coupling to the bosonic field (red line).
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with ξν = ξ(xν ) =
∑

k gkeikxν (bk +b†−k) the bosonic field operator at the respective
qubit position xν . We assume the microscopic coupling constants gk to be real-
valued, isotropic, and identical for all qubits, i.e. gkν = gk and g−k = gk. They
determine the spectral properties of the bath and show up in the spectral density
J(ω) =

∑
k g2

kδ(ω − ck). Here we consider an Ohmic spectral density12

J(ω) = α ωe−ω/ωc , (2)

where the dimensionless parameter α denotes the overall coupling strength and ωc

the cutoff frequency of the bath spectrum.
The dynamics for the total density operator R of the qubits plus the environment

is governed by the Liouville-von Neumann equation

i�
d

dt
R̃(t) =

[
H̃qb(t), R̃(t)

]
. (3)

The tilde denotes the interaction-picture representation with respect to H0 = Hq +
Hb, i.e. Ã(t) = U †

0 (t)AU0(t), with time-evolution operator U0(t) = exp{−iH0t/�}.
We assume that at time t = 0, the qubits can be prepared in a well-defined initial
state, uncorrelated with the thermal bath. This constitutes an initial condition of
the Feynman-Vernon type, where the total initial density matrix R̃(0) is a direct
product of a qubit and bath density operator, R̃(0) = ρ̃(0) ⊗ ρeq

b . The canonical
ensemble of the bosons at temperature T is denoted by ρeq

b = exp(−Hb/kBT )/Z,
with Z the partition function. We are interested in the reduced density matrix of
the qubits ρ̃(t) = trb R̃(t), where trb denotes the trace over the bath variables.

3. Dephasing and Entanglement Decay

In order to exemplify the impact of a spatial qubit separation on decoherence, we
consider as the initial state the three-qubit entangled W state

|W 〉 =
1√
3

( |100〉+ |010〉 + |001〉 )
, (4)

i.e. ρ̃(0) = |W 〉〈W |, with the computational basis {|n1n2n3〉} where σνz |n1n2n3〉 =
(−1)nν |n1n2n3〉 and nν = 0, 1. Our motivation to focus on the initial state (4) is
twofold: first, W states play an important role in several protocols for quantum
information processing,13–15 so that the entanglement dynamics after their prepa-
ration is relevant in itself. Second, the W state is special since it stays robust under
collective dephasing, i.e. for vanishing qubit separations (x1 = x2 = x3).10,11

Pure phase noise will also be assumed in the following, in which case the coupling
operators in Eq. (1) become Xν = σνz. As a consequence, the interaction-picture
qubit operators remain time-independent, X̃ν(t) = Xν . The exact time evolution
of the reduced density operator can then be obtained, e.g. by a direct solution of
the Liouville-von Neumann equation (3).11 Amazingly, the exact result can even
be obtained with an approximative time-local master equation approach already in
second order of the qubit-field coupling α.16 It turns out that the density matrix
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elements in the basis {|n1n2n3〉} at time t are proportional to their initial values.
Thus, all density matrix elements that are initially zero remain zero, so that for the
state |W 〉, the dissipative quantum dynamics is restricted to the states

|1〉 = |100〉, |2〉 = |010〉, |3〉 = |001〉, (5)

i.e. at most nine out of 64 density matrix elements are nonvanishing. Initially they
are all equal, i.e. ρjj′ (0) = 〈j|ρ(0)|j′〉 = 1/3, with j, j′ = 1, 2, 3. They evolve as

ρ̃jj′ (t) =
1
3

exp{−Λjj′(t) + i[φj(t) − φj′ (t)]}, (6)

where the real part Λjj′ (t) of the exponent accounts for the time-dependent
amplitude damping of the matrix element; indirect interactions among qubits
via the environment give rise to a time-dependent frequency shift and the con-
comitant phase φj(t) − φj′(t) with φj(t) ≡ ϕj(t) − ∆Ωjt. Here ∆Ωj is a static
frequency renormalization Ωj → Ωj + ∆Ωj for qubit j and ϕj(t) describes its
onset; cf. Ref. 17. Henceforth we work in the interaction picture with respect to
the renormalized energies. With the scaled temperature θ = kBT/�ωc and the
scaled times τ = ωct and τνν′ = ωctνν′ , the density matrix elements become
ρ̃jj′ (τ) = exp{−Λjj′(τ) + i[ϕj(τ) − ϕj′(τ)]}/311 with the phases

ϕj(τ) = −α

2

3∑
ν,ν′=1

(−1)δjν+δjν′
∑
±

arctan[τ ± τνν′ ], (7)

and the amplitude damping exp{−Λjj′(τ)} = f(τ, τjj′ )/f(τ, 0), where

f(τ, τ ′) =
|Γ(θ[1 − iτ ′])|16α

|Γ2(θ[1 + i(τ − τ ′)])Γ2(θ[1 + i(τ − τ ′)])(1 + τ2[1 − iτ ′]−2)|4α . (8)

As expected for pure dephasing, populations are preserved: ρ̃jj(t) = ρ̃jj(0). This
implies that neither the qubits nor the total system will reach thermal equilibrium.
Nevertheless decoherence does occur since relative phases between eigenstates will
be randomized so that off-diagonal density matrix elements decay.

Only in the absence of the environment (α = 0), the qubits remain in the W

state (4). As a measure for the deviation from this “ideal” output state ρ(0) =
|W 〉〈W |, we employ the fidelity F (t) = tr{ρ̃(t)ρ̃(0)},18 which in our case reads

Fδ(t) =
1
3

3∑
j,j′=1

ρ̃jj′ (t) =
1
3

+
2
9

∑
j<j′

e−Λjj′ (t) cos[ϕj(t) − ϕj′ (t)] . (9)

The index δ refers to the displacement of the middle qubit ν = 2. The time evolution
of the fidelity is shown in Figs. 2(a) and 2(b) for two different temperatures. Clearly,
the fidelity decay is slowed down whenever a transit time t = tjj′ is reached. At
time t = t13, when the field has also enabled communication between the two
outer qubits 1 and 3, decoherence even comes to a standstill! Note that other
initial states may lead to complete dephasing.17 The fidelity saturates to a finite
value Fδ(t > t13) = Fδ(∞) which is larger the lower the temperature. For a fixed
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(a) θ = 10−4 (b) θ = 10−3

Fig. 2. Time evolution of the fidelity (9) for the temperatures θ = kBT/�ωc = 10−4 (a) and
θ = 10−3 (b), the qubit-field coupling strength α = 0.001, and various displacements δ of the
middle qubit (see Fig. 1).

Fig. 3. Final fidelity Fδ(∞) as a function of the displacement δ of the middle qubit, scaled to
the value for equidistant qubit arrangement δ = 0 for various temperatures θ = kBT/�ωc and
coupling strength α = 0.001.

temperature, the stable fidelity increases if the middle qubit is displaced away from
the central position and is maximal for δ = ±a, i.e. if qubit 2 becomes co-located
with qubit 1 or 3. The fidelity gain as a function of the asymmetry δ/a is shown in
Fig. 3.

The explanation of this behavior of Fδ(∞) follows from Eq. (9). The individual
coherences ρ̃νν′ decay approximately exponentially and with the same decay rate,11

but stop decaying at different times |xν − xν′ |/c. Hence for the fidelity it pays off
to displace the middle qubit, thereby stopping the decay of ρ̃23 at an earlier time
(a − δ)/c at the expense of stopping the decay of ρ̃12 only at time (a + δ)/c.

For the extreme cases δ = 0 and δ = a, the fidelity decreases monotonously
with temperature, but for 0 < δ < a an optimal temperature exists for which the
fidelity gain is maximal. This behavior is related to the fact that for all temperatures
ρ̃12(t) = ρ̃23(t) when δ = 0, and ρ̃13(t) = ρ̃23(t) when δ = a. Only in the general
asymmetric configuration do all three coherences stop decaying at different times.

The initial W state is special in the sense that it exhibits bipartite entanglement
between any qubit pair. But does the middle qubit affect the entanglement decay
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of the outer ones in any way? The reduced density matrix of qubits 1 and 3 is

tr2ρ̃(t) =
1
3

(|00〉〈00|+ |01〉〈01|+ |10〉〈10|) + ρ̃13(t)|10〉〈01| + ρ̃31(t)|01〉〈10|. (10)

It depends on time only through the coherence ρ̃13(t) = ρ̃∗31(t) and thus, according
to Eq. (6), only on the transit time t13 = 2a/c between the outer qubits. The
entanglement of the outer qubits is therefore independent of the displacement δ of
the middle qubit! Indeed, for their concurrence,19 we find C[tr2 ρ̃(t)] = 2|ρ̃13(t)|.
The same dynamics is found for the two-qubit concurrence when only the outer two
qubits had been present, with the two-qubit W state (i.e. the robust Bell state) as
their initial state.9 Surprisingly, the only effect of the presence of the middle qubit
is a rescaling of the concurrence of the outer two by a factor 2/3.

4. Conclusion

We have studied the pure dephasing of three spatially separated qubits in an Ohmic
environment. Dephasing can be incomplete when starting in a W state, not only
for symmetrically spaced qubits. For fixed separation of the outer two qubits, the
final fidelity is even larger the more “clustered” the qubits are. Surprisingly, the
middle qubit does not affect the dynamics of the concurrence of the outer two.
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