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Abstract

This thesis explores deep learning based methods for health data, specifically on
novel enhancements to attention mechanisms in diverse tasks of image and signal
analysis. We demonstrate the effectiveness of our proposed attention mechanism
enhancements in performance improvement, model complexity reduction, outlier
detection as well as dealing with sparse and irregularly sampled time series data.

In the context of medical image segmentation, effective handling of outliers is vi-
tal to ensure translation of research into clinical practise. Standard metrics used for
reporting the performance of medical image segmentation algorithms report aggre-
gate metrics across all patients. Due to this reporting, models that report superior
performance could end up producing completely erroneous results, or even anatom-
ically impossible results in a few challenging cases (corner-cases), albeit without
being noticed. To counter this drawback, we propose a framework that helps to
identify and report corner cases. Further, we propose a novel balanced checkpoint-
ing scheme capable of finding a solution that has superior performance even on these
corner cases.

Deep neural networks with attention mechanism have shown promising results
in many computer vision and medical image processing applications. One way to
enhance attention is to build on the concept of deformability which was introduced
in the context of convolutions. We propose a new Deformable Attention Network
(DANet) that enables a more accurate contextual information computation in a
similarly efficient way. Our novel technique is based on learning the deformation
of the query, key and value attention feature maps in a continuous way. A deep
segmentation network with this attention mechanism is able to capture attention
from only the pertinent non-local locations.

Deformability indicates that the attention mechanism could be further regu-
larised. Hence we explore ways to regularise attention. We introduce a simple and
low-overhead approach of adding noise to the attention block which we discover to
be very effective when using an attention mechanism. Our proposed methodology of
introducing regularisation in the attention block by adding noise makes the network



more robust and resilient, especially in scenarios where there is limited training
data. We incorporate this regularisation mechanism in the criss-cross attention
block. This criss-cross attention block enhanced with regularisation is integrated in
the bottleneck layer of a U-Net for the task of medical image segmentation.

In the context of attention mechanism utilization in time-series data, we demon-
strate the efficacy of using sparsely and irregularly sampled data when used in
tandem with state-of-the-art existing attention based networks that are capable of
handling sparse data. With our proposed sub-sampling approach, we demonstrate
that time-series data could be further coarsely acquired. This could be of immense
help for various applications where data acquisition and labeling is a significant
challenge.

By utilizing attention mechanisms in non-linear blocks in the context of GRU,
we propose a novel Attention based GRU module. We demonstrate the effectiveness
of this module to improve performance in the context of speech emotion recognition.
Additionally, we also propose a novel metric for image quality assessment to compute
the quality of a given image without a reference pristine quality image. Many of the
image acquisition processes, especially in medical imaging, would immensely benefit
from such a metric which can indicate if the quality of an image is improving or
worsening based on adaptation of the acquisition parameters.
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INTRODUCTION






Introduction

1.1 Motivation

Health and well-being are indispensable aspects of our life. Moreover, they are
crucial for a fulfilling and productive life. Health encompasses physical, mental,
emotional and social aspects, to name a few. Physical health refers to the state of
our body. It includes factors such as nutrition, sleep, exercise and the absence of
illness or disease. Mental health is as important as physical health. It refers to our
psychological well-being. Anxiety and depression are among the major mental health
issues that need to be addressed. Emotional well-being encompasses our ability to
manage and express our emotions in a healthy way. It involves self-awareness, self-
regulation, and interpersonal relationships.

In today’s world, technology plays a significant and ever-growing role in health
and well-being. It is not only transforming the healthcare industry but also empow-
ering individuals to take control of their health. Some of the key ways in which tech-
nology influences is through health monitoring, health apps, telemedicine, robotics
and artificial intelligence, big data and analytics, public health surveillence and
health gamification.

The role of artificial intelligence in health and well-being is an area of active
research. Machine learning and deep learning based approaches have shown promis-
ing results in diagnosing diseases, analyzing medical images, and predicting patient
outcomes. They have also been shown to identify patterns and trends in healthcare
data, which can aid in decision-making and personalised treatment plans.

One of the areas that deep learning based approaches are revolutionalising is
medical images analysis, of which medical image segmentation is a key task. Another
type of clinical data that is predominantly used is electronic health record (EHR)
data. Deep learning is also assisting in the way EHR data can be analysed and
interpreted. In the context of emotional health, deep learning is also making its
impact in analysing emotions from different modalities like speech and audio signals.
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1.2 Research objectives

Despite the huge advancements in all these areas, there are several open challenges
that still exist. Towards addressing some of the challenges, we aim to address the
following research questions in this thesis:

1. Are there scenarios where deep learning based segmentation model could yield
erroneous segmentation results for some subjects. How do we spot these corner
cases? Once identified, how do we handle these corner cases?

2. Can deep learning based image segmentation frameworks be made more robust
and resilient even in scenarios with limited training data?

3. Do deep learning medical image segmentation models efficiently capture con-
textual information across pixels

4. During the process of medical image acquisition, can we determine whether
or not the quality of an image is improving based on the adaptation of the
acquisition parameters?

5. To what extent could time-series based health-care data be sparsely and effi-
ciently acquired without impacting performance?

6. Can deep learning based models be made to capture long range interactions
while analysing audio signals like speech emotion data, thereby improving their
performance?

1.3 Contributions

To address these research questions, the main contributions of this thesis are as
follows:

e A framework for detecting and handling corner-cases in deep learning based
medical image segmentation methods.

e A mechanism to regularise attention networks to increase model robustness.

e A methodology to deform attention to efficiently capture relevant long range
contextual information in medical images.

e A new multidimensional No-Reference Perceptual Similarity Metric (NR-
PSIM) to determine whether or not the image quality is improving when
acquisition parameters are adapted.



1.4. Thesis Structure

e An analysis of the effect of sparse data on the predictive performance of net-
works that can handle irregular time series data.

e A novel self-attention based VGG-like network (SA-VGG) to reduce complex-
ity of audio analysis models in terms of number of parameters and FLOPS.

e A novel attention based Gated Recurrent Unit (AR-GRU) module to improve
performance of audio signal analysis tasks like speech emotion recognition.

1.4 Thesis Structure

The following chapters of this thesis are organised as follows:

e Chapter 2 discusses fundamental deep learning architectures like Convolu-
tional Neural Networks (CNN), Recurrent Neural Networks (RNN), Encoder-
Decoder architecture, UNet and attention mechanisms. It also briefly covers
activation functions, regularisation techniques as well as metrics in the context
of medical image segmentation as well as image quality and similarity.

e Chapter 3 analyses state of the art approaches for medical image segmenta-
tion, speech emotion recognition and time series analysis that are related to
the research objectives of this thesis.

e Chapter 4 proposes a framework for identifying and reporting corner cases
in the context of medical image segmentation, for which the segmentation
results are erroneous or even anatomically impossible. It also proposes a novel
balanced model checkpointing scheme that enables finding a solution that
performs well even on these corner cases.

e Chapter 5 explores the effect of introducing regularisation in attention and
demonstrates its effectiveness in making a network more robust and resilient.

e Chapter 6 proposes a Deformable Attention Network by introducing defor-
mation of the query, key and value feature maps such that the attention mech-
anism is able to capture attention from the pertinent non-local locations.

e Chapter 7 describes a novel no-reference perceptual similarity metric that can
compute the quality of an image without a reference pristine quality image.
This metric would be of immense benefit in image acquisition processes, espe-
cially in medical imaging, to indicate if the quality of an image is improving
or not based on adaptation of the acquisition parameters.
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e Chapter 8 investigates the effect of inducing varying degrees of sparsity on the
predictive performance of state of the art networks like Multi-Time Attention
Networks (mTAN) (Shukla et al., 2021) that can handle sparse and irregular

time series data.

e Chapter 9 proposes a novel integration of stand-alone self-attention into a Vi-
sual Geometry Group (VGG)-like network to significantly reduce the number
of model parameters and FLOPS while retaining or improving performance
for the task of multi-label emotion and theme recognition in music.

e Chapter 10 proposes a novel attention based Gated Recurrent Unit (GRU)
module and demonstrates its efficacy for speech emotion recognition.

e Chapter 11 concludes the thesis with a summary, a discussion of the limita-
tions of the proposed methods and directions for future work.
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Background

The ability to build more complex functions by composing shallow neural networks
or developing networks with more than one hidden layer had been understood even
before the modern era of rapid advancements in deep learning. Even though the term
“deep learning” was first used by Dechter (1986), interest was limited due to practical
concerns such as the lack of ability to train such networks well. However, startling
improvements in image classification reported by Krizhevsky et al. (2012) resulted
in a resurge of research in deep learning. The confluence of four factors contributed
significantly to this tremendous progress, namely, larger training datasets, improved
processing power for training, the use of the ReLU activation function, and the
use of stochastic gradient descent. In this chapter, we provide a brief summary
of the widely-used deep learning architectures, activation functions, regularisation
methods as well as metrics that constitute the foundation for the deep learning based
solutions to our research problems.

2.1 Deep learning architectures

2.1.1 Convolutional Neural Networks

Images have three properties due to which fully connected networks turn out to be
not well suited for their processing.

1. High dimensionality: A typical image for a classification task comprises of
224 %224 RGB values. Hence, the training data required as well as the memory
and computation needs pose practical challenges.

2. Statistical relation between nearby pixels: Nearby pixels in images are statis-
tically related. Fully connected networks however, are unable to leverage this
since they treat the relationship between every input equally.



2. Background

Figure 2.1: 2D convolutional layer. Each output hj; computes a weighted sum of
the 3x3 nearest inputs, adds a bias, and passes the result through an activation
function. With zero padding, positions beyond the image’s edge are considered to
be zero. Ilustration adapted from (Prince, 2023)

3. Invariance to geometric transformations: An image is generally invariant to
geometric transformations. However, even minor geometric transformations
changes every input to the network. A fully connected model would therefore
have to learn the patterns of pixels at every position, making it extremely
inefficient.

The above reasons indicate that a specialised model architecture is required
for processing images. Convolutional neural network (CNN), a network that pre-
dominantly consists of convolutional layers, has been shown to be very effective at
handling this. Each local image region is processed separately by the convolutional
layers, using parameters shared across the whole image. They have been shown to
be well-suited to handle images since they use fewer parameters than fully connected
layers and can effectively leverage the spatial relationships between nearby pixels.
Furthermore, they do not have to re-learn the interpretation of the pixels at every
position. Figure 2.1 depicts a 2D convolution layer and how the output is computed.

2.1.1.1 VGG

Neural network architecture design has grown more abstract over the years. Re-
searchers have moved from thinking in terms of individual neurons to whole layers,
and then to blocks which comprises of repeating patterns of layers. The idea of
using blocks first emerged in VGG network (Simonyan et al., 2015) from the Visual

10
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VGG

FC (4096)
FC (4096)

VGG block [ 1

| 2 x 2 MaxPool, stride 2 |

t
| 3% 3 Conv, pad 1 | f

[ ]
[ ]
t b

| 3 x 3 Cony, pad 1 | I L] ]

Figure 2.2: Figure on the left depicts a VGG block. It comprises of a sequence
of convolutions followed by a max-pooling layer. Figure on right depicts a VGG
Network. It comprises of 2 parts, i). a convolutional part which connects several
VGG blocks in succession and ii). fully connected layers. Figure adapted from
(Zhang, Aston et al., 2023)

Geometry Group (VGG) at Oxford University. VGG is not just a specific manifes-
tation but rather represents a family of networks. Fig 2.2 depicts a VGG block and
a VGG network.

2.1.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are deep learning models that use recurrent con-
nections to capture the dynamics of sequences. This might seem counter-intuitive
at first since the feed-forward nature of neural networks is what makes the order of
computation unambiguous. However, it is ensured that no such ambiguity can arise
by defining the recurrent edges in a precise way. By applying the same underlying
parameters at each time step, RNNs are unrolled across time or sequence steps. To
propagate each layer’s activations to the subsequent layer at the same time step,
standard connections are applied synchronously. Information is passed across ad-
jacent time steps through the use of the recurrent connections that are dynamic.
In other words, RNNs are feed-forward neural networks where each layer’s conven-
tional and recurrent parameters are shared across time steps. This is depicted in
the unfolded view in Figure 2.3. On the left side of the figure, recurrent connections
are depicted via cyclic edges. On the right, the RNN is unfolded over time steps.
Here, recurrent edges span adjacent time steps, while conventional connections are
computed synchronously.

11
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Output Output 1 Output 2 Output ... Output T
, -7 ~ I T I T I
/ Hidden Hidden | | Hidden | _ | | Hidden
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\
Input Input 1 Input 2 Input ... Input 7

Figure 2.3: On the left, cyclic edges are used to depict recurrent connections. On
the right, the RNN is unfolded over time steps. Here, conventional connections are
computed synchronously whereas recurrent edges span adjacent time steps. Figure
taken from (Zhang, Aston et al., 2023)

2.1.2.1 LSTM

RNNs suffer from the problem of vanishing and exploding gradients and hence face
challenges while learning long-term dependencies (Bengio et al., 1994; Hochreiter,
Bengio, et al., 2001). Techniques like gradient clipping were able to address the
problem of exploding gradients. But handling vanishing gradients turned out to
be more challenging. Long short-term memory (LSTM) model by Hochreiter and
Schmidhuber (1997) were one of the first and most successful techniques for address-
ing vanishing gradients. Though LSTMs are similar to standard recurrent neural
networks, the main difference is that each ordinary recurrent node is replaced by
a memory cell. Each memory cell has an internal state which ensures that the
gradient can pass across many time steps without vanishing or exploding. Simple
recurrent neural networks have long-term memory in the form of weights. This
long-term memory encodes general knowledge about the data and changes gradu-
ally during training. Ephemeral activations that pass from each node to successive
nodes constitutes its short-term memory. Using the memory cell, the LSTM model
2.4 introduces an intermediate type of storage. A memory cell is built from sim-
pler nodes in a specific connectivity pattern. It is a composite unit with the novel
inclusion of multiplicative nodes.

Each memory cell has an internal state and a number of multiplicative gates.
The ”input gate” decides if a given input should impact the internal state. The
"forget gate” is responsible to decide if the internal state should be flushed to 0.
The "output gate” determines if the internal state of a given neuron should be
allowed to impact the cell’s output.

LSTMs support gating of the hidden state. This signifies that there are estab-
lished mechanisms which regulate when a hidden state should be updated and also

12
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Figure 2.4: LSTM model. Figure taken from (Zhang, Aston et al., 2023)

for when it should be reset. These mechanisms are learned. For instance, it learns
not to update the hidden state after the first observation, if the first token is of
great importance. Similarly, it learns to skip irrelevant temporary observations.
It also learns to reset the latent state whenever needed. This is one of the main
differentiation between vanilla RNNs and LSTMs.

Though LSTMs were intially published in 1997, victories in prediction competi-
tions in the mid-2000s led to their rise in prominence. They played a dominant role
in sequence learning until 2017 after which Transformers rose to prominence. It is
important to note that some of the key ideas of Transformers are inspired from the
architecture design innovations introduced by the LSTM.

2.1.2.2 GRU

With RNNs and specifically the LSTM architecture gaining popularity in the 2010s,
the research community began to focus on experimenting with simplified architec-
tures to speed up computation, though retaining the key idea of incorporating an
internal state and multiplicative gating mechanisms. A modified version of the
LSTM memory cell with comparable performance but yet faster to compute (Chung
et al., 2014) was achieved by the gated recurrent unit (GRU) (Cho et al., 2014) .

In GRU 2.5, the three gates of LSTMs are replaced by two, namely the reset
gate and the update gate. These gates are given sigmoid activations, similar to
LSTMs, to force their values to lie in the interval (0, 1). Short-term dependencies in
sequences are captured by reset gates while the long-term dependencies in sequences
are captured by the update gates.

In conclusion, gated RNNS like LSTMs and GRUs can better capture depen-
dencies for sequences with large time step distances as compared to simple RNNs.
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Figure 2.5: GRU model. Figure taken from (Zhang, Aston et al., 2023)

GRUs achieve similar performance as LSTMs but tend to be computationally lighter.
Basic RNNs are the extreme case of GRUs whenever the reset gate is switched on.
By turning on the update gate, they can also skip sub-sequences.

2.1.2.3 Bi-directional Recurrent Neural Networks

The aim of sequence learning tasks like language modeling is to predict the next
token given all previous tokens in a sequence. In this scenario, the uni-directional
chaining of a standard RNN seems appropriate since it is required to only condition
upon the leftward context. However, conditioning the prediction at every time step
on both the leftward and the rightward context is perfectly fine in many other
sequence learning tasks. Speech detection is one such task where assessing the part
of speech associated with a given word requires the context in both directions to
be taken into account. Another common task is to mask out random tokens in a
text document and then train a sequence model to predict the values of the missing
tokens. This is frequently used as a pre-training exercise before fine-tuning a model
on an actual task of interest.

Any uni-directional RNN can be transformed by a simple technique into a bi-
directional RNN (Schuster et al., 1997). The technique involves implementing two
uni-directional RNN layers chained together in opposite directions and acting on
the same input 2.6. For the first RNN layer, x; is the first input and x; is the last
input. However, for the second RNN layer, x¢ is the first input and x; is the last
input. The corresponding outputs of the two underlying uni-directional RNN layers
are concatenated to produce the output of this bi-directional RNN layer.

The data prior to and after the current time step is used simultaneously to
compute the hidden state for each time step in bi-directional RNNs. Sequence
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Figure 2.7: Encoder-Decoder architecture. Figure adapted from (Zhang, Aston et
al., 2023)

encoding and the estimation of observations given bi-directional context are some
tasks where bi-directional RNNs are most useful. However, the long gradient chains
makes training of bi-directional RNNs very costly.

2.1.3 Encoder-Decoder Architecture

One of the characteristics of sequence-to-sequence problems like machine translation
is that the inputs and outputs are of varying lengths that are unaligned. Designing
an encoder—decoder architecture 2.7 is one of the standard approaches to handle
this sort of data. The two major components of an encoder-decoder model are:

1. Encoder: The input for this is a variable-length sequence.
2. Decoder: It acts as a conditional language model. It predicts the next token

in the target sequence by using the encoded input and the previous context of
the target sequence.
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Figure 2.8: U-Net architecture. Figure taken from Ronneberger et al. (2015)

An encoder-decoder architecture is also used in the context of semantic image
segmentation. The goal of semantic image segmentation is to assign a label to each
pixel according to the object that it belongs to. In case a pixel does not correspond
to anything in the training database, then no label is assigned. This is achieved using
a series of convolution layers and max pooling operations for down-sampling, also
referred to as encoder. The output of the encoder is transformed into latent space
representation using a fully connected layer, that contains information about the
entire image. This latent state representation is then up-sampled and de-convolved
(transposed convolutions without up-sampling) by a series of max un-pooling layers
and de-convolution layers, also referred to as decoder. A heuristic method is used
to generate the final segmentation. This heuristic method greedily searches for
the class that is most represented and infers its region by taking into account the
probabilities and also by encouraging connectedness. The next most-represented
class is then added, where it dominates at the remaining unlabeled pixels. This
process is continued until it is no longer possible to add more due to insufficient
evidence.

2.1.4 UNet

In a semantic segmentation network that utilises encoder-decoder architecture, the
image is repeatedly down-sampled by the encoder until the receptive fields are large
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bination over values v;. The weights are computed using the query q and keys k;.
Figure taken from (Zhang, Aston et al., 2023)

and information is integrated from across the image. It is then up-sampled back
to the size of the original image by the decoder. A probability over possible object
classes at each pixel is the final output. One drawback of this architecture is that the
high-resolution details should be "remembered” by the low-resolution representation
in the middle of the network in order to make the final result accurate. However,
if residual connections can be used to transfer the representations from the encoder
to their partner in the decoder, this becomes unnecessary.

One such encoder-decoder architecture where the earlier representations are con-
catenated to the later ones is the U-Net architecture 2.8. Since U-Net is completely
convolutional, after training, it can be run on an image of any size. U-Nets have also
found many other uses in computer graphics and vision even though it was initially
intended for segmenting medical images.

2.1.5 Attention mechanisms

One of the important aspects of human perception is the attention mechanism. Our
ability to exploit partial glimpses and selectively focus on salient parts enables us to
capture visual structure better. Based on the same principle, attention mechanisms
in deep neural networks are one of the recent advances. Attention blocks help to
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capture long range interactions between the elements. Attention mechanism was
introduced as an enhancement for encoder—-decoder RNNs in order to selectively
focus on particular parts of the input sequence in sequence-to-sequence applications,
such as machine translations (Bahdanau et al., 2015).

Prior to this, the entire input was compressed by the encoder into a single fixed-
length vector and fed into the decoder in such sequence-to-sequence machine trans-
lation models (Sutskever et al., 2014). Attention mechanism, however, is based on
the intuition that, rather than compressing the input, it might be better for the
decoder to revisit the input sequence at every step. Further, it would be ideal if
the decoder could selectively focus on particular parts of the input sequence at par-
ticular decoding steps, rather than always seeing the same representation of the
input. The attention mechanism of Bahdanau et al. (2015) provided a simple means
through which, at each decoding step, the decoder could dynamically attend to dif-
ferent parts of the input. The high-level idea behind this is that, a representation
of length equal to the original input sequence would be produced by the encoder.
Then, at decoding time, a context vector consisting of a weighted sum of the rep-
resentations on the input at each time step would be sent as input to the decoder
(via some control mechanism). Intuitively, the extent to which each step’s context
"focuses” on each input token is determined by the weights. Making this process of
assigning the weights differentiable is extremely important to enable it to be learnt
along with all of the other neural network parameters. A differentiable means of
control through which a neural network can select (query) elements from a set (of
keys) to construct an associated weighted sum over representations is provided by
attention mechanism 2.9.

Attention mechanism successfully enhanced RNNs that already dominated ma-
chine translation applications. The original encoder—decoder sequence-to-sequence
architectures were out-performed by such attention based models. However, soon,
their usefulness beyond being an enhancement for encoder—decoder recurrent neu-
ral networks became evident. Moreover, their reputed usefulness for picking out
salient inputs emerged. Dispensing with recurrent connections altogether, Vaswani
et al. (2017) proposed the Transformer architecture for machine translation which
relied on cleverly arranged attention mechanisms to capture all relationships among
input and output tokens. Due to its remarkable performance, transformers began
showing up in majority of state-of-the-art natural language processing systems by
2018. Another significant trend around the same time was the dominant practice in
natural language processing of pre-training large-scale models on enormous generic
background corpora. Such models were pre-trained to optimise some self-supervised
pre-training objective and then were fine-tuned using the available downstream data.
When applied in the paradigm of such pre-training, the gap between transformers
and traditional architectures grew significantly wide. Thus the dominance of trans-
formers coincided with the dominance of such large-scale pre-trained models that
are also known as foundation models (Bommasani et al., 2021).
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Figure 2.10: Multi-head attention, where multiple heads are first concatenated and
then linearly transformed. Figure taken from (Zhang, Aston et al., 2023)

2.1.5.1 Multi-head attention

Combining knowledge from different behaviors of the same attention mechanism,
given the same set of queries, keys, and values would, in practice, be desirable
for the model. This enables capturing dependencies of various ranges within a
sequence. Such an attention mechanism jointly uses different representation sub-
spaces of queries, keys, and values. Transforming the queries, keys, and values with
h independently learned linear projections would enable going beyond performing
only a single attention pooling. The next step would be to parallely feed these
h projected queries, keys, and values into attention pooling. The final output is
produced by concatenating the h attention pooling outputs and transforming them
with another learned linear projection. This design where each of the h attention
pooling outputs is a head, is called multi-head attention(Vaswani et al., 2017). Fig.
2.10 depicts multi-head attention using fully connected layers to perform learnable
linear transformations.

2.1.5.2 Stand-alone self-attention

Improving the performance of the network has been the focus for most of the pro-
posed attention blocks like criss-cross attention (Huang, Zilong et al., 2019), CBAM
(Woo et al., 2018), or attention augmented convolution (Bello et al., 2019). However,
in most cases, they also result in increasing the number of trainable parameters and
FLOPS significantly. One of the attention mechanism that is demonstrated to sig-
nificantly reduce the number of trainable parameters and FLOPS is the stand-alone
self-attention (Ramachandran et al., 2019).
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When attention is applied to a single context instead of across multiple contexts
(i.e., the query, keys, and values are extracted from the same context), it is known
as self-attention. Rather than using attention as an augmentation on top of convolu-
tions, in stand-alone self-attention, spatial convolutions are replaced with a form of
self-attention. It uses local, spatial-relative attention using 2D relative position em-
beddings, instead of embeddings based on the absolute position, resulting in better
accuracies. The spatial relative attention is defined as:

yi= > softmaza(q)ke + a5raib—i)Vab, (2.1)
a,bENk(i,j)

where queries q;;, keys kqp, and values vg, are linear transformations of a pixel in
position 75 and the neighbourhood pixels, a — i is the row offset, b — j is the column
offset, and r,_;—; is the concatenated row and column offset embedding.

Self-attention is shown by Ramachandran et al. (2019) to be translation equiv-
ariant (similar to convolutions) through the use of relative position information.
Furthermore, the parameter count of attention is independent of the size of spatial
extent as opposed to convolution whose parameter count grows quadratically with
spatial extent. Also, the increase in computational cost of attention with spatial ex-
tent is slower as compared to convolution. For image classification tasks, the use of
stand-alone self-attention in later layers of a network have been shown to outperform
the baseline with far fewer FLOPS and parameters.

2.1.5.3 Spatial and channel attention

CNNs extract hierarchal information from images using convolutional filters. Infor-
mation from the spatial and channel information of an image are fused to achieve
this. Spatial features in each input channel are first identified by the different filters.
Later, the spatial features across all available output channels is added. Typically,
when creating the output feature maps, all the channels are equally weighted by the
network. Convolutional Block Attention Module (CBAM) (Woo et al., 2018) in-
fers attention maps along two separate dimensions, channel and spatial sequentially.
The input feature map is multiplied with these attention maps for adaptive feature
refinement. Meaningful features along those two principal dimensions: channel and
spatial axes are thereby emphasised. Each of the branches are hence able to learn
‘what” and ‘where’ to attend in the channel and spatial axes respectively. Learning
which information to emphasise or suppress makes the information flow within the
network efficient.

Given an intermediate feature map F € RE*H*W a5 input, a 1D channel atten-
tion map M, € RE*1*1 and a 2D spatial attention map Mg € RVHXW ig inferred
sequentially by CBAM as illustrated in Fig. 2.11. The overall attention process can
be summarised as follows:
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Figure 2.11: Computation process for channel and spatial attention map. Figure
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F' = M,(F)®F,

2.2
FII — MS(F/) ® FI ( )

where ® denotes element-wise multiplication. During multiplication, the spatial
attention values are broadcasted along the channel dimension, and vice versa. F” is
the final refined output.

2.2 Activation functions

Activation functions play the role of deciding whether a neuron should be activated
or not. This is done by calculating the weighted sum and then adding bias to it.
Input signals are transformed to the output through these differentiable operators.
Most of them also add nonlinearity.

2.2.1 Sigmoid function

Inputs whose values lie in the domain R are transformed to outputs that lie on the
interval (0, 1) by the sigmoid function. Since it squashes any input in the range (-inf,
inf) to some value in the range (0, 1), sigmoid is often called a squashing function.

1

1+ exp(—x) (2:3)

sigmoid(z) =
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Figure 2.12: Sigmoid activation function and its derivative

Sigmoid function is a smooth, differentiable approximation to a thresholding
unit. When the output has to be interpreted as probabilities for binary classification
problems, sigmoids are used as activation functions on the output units. Sigmoid can
be considered as a special case of the softmax. However, the simpler and more easily
trainable ReLLU has largely replaced the sigmoid for most use in hidden layers. One of
the main reasons for this is that its gradient vanishes for large positive and negative
arguments and therefore, sigmoid poses challenges for optimization (LeCun et al.,
1998). This could lead to plateaus that are not easy to escape from. Nonetheless, the
importance of sigmoids continue and there are network architectures that leverage
sigmoid units to control the flow of information across time.

Figure 2.12 shows the sigmoid activation function and its derivative. The graph
shows that the sigmoid function approaches a linear transformation when the input
is close to 0. Also, the derivative of the sigmoid function goes to a maximum of
0.25. The derivative approaches 0 as the input diverges from 0 in either direction.

2.2.2 Tanh function

The tanh (hyperbolic tangent) function also squashes its inputs, similar to the sig-
moid function. The input is transformed into elements on the interval between -1
and 1.

sigmoid(x) = % (2.4)

Figure 2.13 shows the tanh activation function and its derivative. The graph
shows that the tanh function approaches a linear transformation when the input is
close to 0. The shape of the tanh and sigmoid function are similar. However, about

the origin of the coordinate system, the tanh function exhibits point symmetry
(Kalman et al., 1992).
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Figure 2.14: ReLU activation function and its derivative

2.2.3 Rectified Linear Unit (ReLU

Rectified linear unit (ReLLU) (Nair et al., 2010) is one of the most commonly used
activation function due to the simplicity of its implementation as well as its good
performance on a variety of predictive tasks. Furthermore, ReLLU provides a very
simple nonlinear transformation. Given an element z, the function is defined as the
maximum of that element and 0

ReLU(zx) = max(z,0) (2.5)

Only positive elements are retained by the ReLLU function. All negative elements
are discarded by setting the corresponding activations to 0. ReLLU’s derivatives either
vanish or they just let the argument through and hence they are well behaved.
Therefore, the optimization is well behaved and hence the problem of vanishing
gradients is mitigated. Hence, ReLU is one of the most prominently used activation
function.

Figure 2.14 shows the ReLLU activation function and its derivative. The ReLLU
activation function is piecewise linear. The derivative of the ReLLU function is 0
when the input is negative and 1 when the input is positive.

The ReLLU function has many variants. One of them is the parametrized ReLU
(pReLU) function (He et al., 2015). This variant enables some information to get
through even when the argument is negative by adding a linear term to ReLU.
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pReLU(x) = max(0, z) + o min(0, x) (2.6)

2.2.4 Attention-based Rectified Linear Unit

One more variant of the ReLU that exploits an element-wise attention mechanism
is the Attention-based Rectified Linear Unit (AReLU) (Chen et al., 2020). It is
also a learnable activation function. Similar to the ReLLU activation function, the
AReLU amplifies positive elements and suppresses negative ones, but with learnt,
data-adaptive parameters. The attention module within AReLU learns element-
wise residues of the activated part of the input. Hence, the network training is more
resistant to gradient vanishing. The learnt attentive activation of AReLU results
in well-focused activations of relevant regions of the feature map. It facilitates fast
network training under small learning rates with only two extra learnable parameters
(o and () per layer.

AReLU (Chen et al., 2020) represented as (F(z;, «, 5)) is defined using a combi-
nation of an element-wise sign-based attention mechanism £(z;, a, #) and a standard
Rectified Linear Unit R(z;), as described in equation 2.7.

Flzi, o, 8) = R(x;) + L(x;, a, B)

) C(a)x; L, <0 (2.7)
N (I+o(B))zi i >=0,

where X = {z;} is the activation layer’s input, {«, 3} € R? are learnable param-
eters, C(-) clamps an input variable into [0.01, 0.99] to prevent « from becoming
zero, and o is the sigmoid activation.

2.3 Regularisation

Reducing the generalisation gap between training and test performance is an impor-
tant aspect of machine learning. Regularisation techniques are a family of methods
that aim to reduce this gap. Adding explicit terms to the loss function which favour
certain parameter choices is what strictly constitutes regularisation. However, in
machine learning, any strategy that improves generalisation is commonly referred
to as regularisation. The 4 mechanisms through which generalisation can be im-
proved are summarised in Figure 2.15.

Another way to group regularisation techniques is as follows:
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Figure 2.15: Four mechanisms for improving generalisation through regularisation
methods. 1. Methods that make the modeled function smoother. 2. Methods that
increase the effective amount of data. 3. Methods that combine multiple models
and hence mitigate against uncertainty in the fitting process. 4. Methods that
encourage the training process to converge to a wide minimum where small errors
in the estimated parameters are less important. Figure taken from Prince (2023)
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Figure 2.16: Early stopping. a) Simplified shallow network model with 14 linear
regions is initialised randomly (cyan curve) and trained with SGD using a batch
size of five and a learning rate of 0.05. b-d) As training proceeds, the function first
captures the coarse structure of the true function (black curve) before e-f) overfitting
to the noisy training data (orange points). Although the training loss continues to
decrease throughout this process, the learned models in panels (¢) and (d) are closest
to the true underlying function. They will generalise better on average to test data
than those in panels (e) or (f). Figure taken from Prince (2023)

2.3.1 Explicit regularisation

Explicit regularisation includes methods like probabilistic interpretation and L2 reg-
ularisation. In explicit regularisation, the training algorithm is encouraged to find
a good solution by adding extra terms to the loss function.

2.3.2 Implicit regularisation

Implicit regularisation includes gradient descent and stochastic gradient descent
since both of these exhibit an implicit yet intriguing behavior of giving preference
for some solutions over others and do not move neutrally to the minimum of the

loss function.
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2.3.3 Heuristics based methods
2.3.3.1 Early stopping

The process of stopping the training procedure before it has fully converged is re-
ferred to as early stopping. By ensuring that the model captures the coarse shape of
the underlying function but does not start to overfit to the noise 2.16, early stopping
can reduce overfitting. Early stopping has an effect similar to that of explicit L2
regularisation. Since the weights are initialised to small values, with early stopping,
they simply don’t have time to become large.

2.3.3.2 Ensembling

Building several models and averaging their predictions is another approach to re-
duce the generalisation gap between training and test data. An ensemble is a group
of such models. Test performance is reliably improved by this technique. However,
this is at the cost of training and storing multiple models and performing inference
multiple times.

Using different random initialisations is one of the ways to train different models.
This may help in regions of input space far from the training data. Different models
may produce different predictions and the fitted function is relatively unconstrained.
Therefore, the average of several models may generalise better than any single model.

Re-sampling the training data with replacement and generating several different
datasets that are then used to train different models is the other approach. This
approach is known as bagging or bootstrap aggregating. The model will interpolate
from nearby points if a data point is not present in one training set. The fitted
function will be more moderate in this region if that point was an outlier. This
approach thus has the effect of smoothing out the data. Training models with
different hyperparameters or training completely different families of models are
some of the other approaches.

2.3.3.3 Dropout

Dropout is a regularisation technique in which a subset (typically 50%) of hidden
units are randomly clamped to zero at each iteration of SGD 2.17. The dependence
of the network on any given hidden unit is thereby lessened. Furthermore, in order
to ensure that the change in the function due to the presence or absence of any
hidden unit is reduced, the weights are encouraged to have smaller magnitudes.

The positive benefit of this technique is that undesirable “kinks” in the function
that are far from the training data and don’t affect the loss can be eliminated.

At test time, the network is run as usual with all the hidden units active. How-
ever, a weight scaling inference rule is applied whereby the weights are multiplied by
one minus the dropout probability. This is done in order to compensate for the fact
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Figure 2.17: Dropout. a) Original network. b-d) A random subset of hidden units is
clamped to zero (gray nodes) at each training iteration. Training therefore happens
with a slightly different network each time, since the incoming and outgoing weights
from these units have no effect. Figure taken from Prince (2023)

that the network now has more hidden units than it was trained with at any given
iteration. Monte Carlo dropout is an alternate approach to inference. Here, as in
training, the network is run multiple times with different random subsets of units
clamped to zero and the results are combined. Since every random version of the
network is a different model, this approach closely relates to ensembling. However,
multiple networks need not be trained or stored in this case.

2.3.3.4 Applying noise

Applying noise to parts of the network during training makes the final model more
robust. The idea of applying noise arises from dropout which can be regarded as
the application of multiplicative Bernoulli noise to the network activations. The
following are some of the options on how noise could be applied to different parts of
the network:

e Adding noise to the input data: This has the effect of smoothing out the
learnt function 2.18. For regression problems, this is equivalent to penalising
the derivatives of the network’s output with respect to its input by adding
a regularising term. Adversarial training is an extreme variant. Here, small
perturbations of the input that cause large changes to the output are actively
searched by the optimization algorithm. These can be regarded as worst-case
additive noise vectors.
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Figure 2.18: Adding noise to inputs. At each step of SGD, random noise with
variance o2 is added to the batch data. a—c) Fitted model with different noise
levels (small dots represent ten samples). Adding more noise smooths out the fitted
function (cyan line). Figure taken from Prince (2023)

e Adding noise to the weights: Here, the network is encouraged to make sen-
sible predictions inspite of small perturbations in the weights. The training
thereby converges to the local minima in the middle of wide, flat regions, where
changing of the individual weights do not have much effect.

e Perturbing the labels: Here, methods like label smoothing are used to perturb
the labels. The cross-entropy between the predicted distribution and a distri-
bution where the true label has probability 1 — p is minimised by changing
the loss function, and the other classes have equal probability. Thereby, the
network is made more capable to generalise to various scenarios.

2.3.3.5 Transfer learning and multi-task learning

Transfer learning is mainly useful in scenarios where there is lack of sufficient data
for network training. In such scenarios, the network is pre-trained on a related task
for which sufficient training data is available. Then, the last layer of this network is
removed and one or more layers that produce a suitable output are added. Finally,
this new network is trained for the original task by either keeping the main model
fixed and training the new layers only, or by fine-tuning the entire model.

The intuition behind transfer learning is that the network will be able to transfer
the internal representation of the data that it built from the related task to the
original task. An alternate way to view this is that, the final network is more likely
to produce a good solution when most of its parameters are initialised in a sensible
part of the solution space.

Another technique that is related to transfer learning is multi-task learning.
Here, the network is trained to solve multiple related tasks concurrently. One ex-
ample for such multi-task learning is to simultaneously learn to segment the scene,
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estimate the pixel-wise depth, and predict a descriptive caption for a given input im-
age. Gaining some understanding of the input image is essential for all these tasks.
The intuition behind multi-task learning is that solving multiple related tasks si-
multaneously would aid the model to perform better on each of those individual
tasks.

2.3.3.6 Self supervised learning

Self-supervised learning methods enable creation of large amounts of “free” labeled
data that can be used for transfer learning. Generative and contrastive learning are
the 2 well-known families of self-supervised learning.

e Generative self-supervised learning: Here, a part of every data example is
masked. Predicting the missing part is the secondary task in this case.

e Contrastive self-supervised learning: Here, pairs of examples with commonal-
ities are compared to unrelated pairs.

2.3.3.7 Augmentation

Transfer learning leverages different dataset to improve performance while multi-
task learning aims to achieve this by leveraging additional labels. Augmenting or
expanding the dataset is yet another option that is often used to improve the network
performance. One of the data augmentation approaches that is commonly used is
the generation of additional training data by transforming the input data in such a
way that the label stays the same. The model is thereby taught to be in-different
to irrelevant data transformations.

2.4 Metrics

2.4.1 Medical image segmentation metrics

Taha et al. (2015) group medical image segmentation metrices into six categories
depending on the relations between the metrics, their nature and definition. These
6 categories are overlap based, volume based, pair-counting based, information the-
oretic based, probabilistic based, and spatial distance based.

2.4.1.1 Dice coefficient

The Dice coefficient (Dice, 1945) (DICE) is one of the often used metric in validating
medical volume segmentation. It is also known as Dice score or Dice Similarity
Coefficient. It is a similarity measure between two sets of data. It is therefore
also called as the overlap index. In the context of image segmentation, in order
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to evaluate the similarity between a predicted segmentation mask and the ground
truth segmentation mask, Dice score is used. The Dice score ranges from 0 to 1,
where 0 indicates no overlap and 1 indicates perfect overlap.

The Dice score is calculated as follows:

2[(X NY)|

DICE =
[ X|+ Y]

(2.8)

The Dice score is equal to twice the size of the intersection divided by the sum
of the sizes of the two sets. The Dice score therefore measures the proportion of
overlap between the two sets, normalised by the size of the sets.

Apart from the direct comparison between automatic and ground truth segmen-
tations, Dice score is also commonly used to measure repeatability or reproducibility.
Zou et al. (2004) used the Dice score as a statistical validation metric to evaluate
the performance of the reproducibility of manual segmentations.

2.4.1.2 Jaccard Index

The Jaccard index (JAC) (Jaccard, 1912) between two sets is defined as the inter-
section between them divided by their union, that is

e oy

YUY (2.9)

At the extrema 0, 1, JAC and DICE are equal. At all other values, JAC is always
larger than DICE. Furthermore the two metrics are related according to

DICE

JAC=5"DicE

(2.10)

JAC and DICE therefore measure the same aspects and hence result in the same
system ranking.

2.4.1.3 Hausdorff Distance

Hausdorff Distance (HD) is a spatial distance-based metric which is widely used in
the evaluation of image segmentation as a dissimilarity measure. It is recommended
when the overall accuracy, e.g the boundary delineation (contour), of the segmen-
tation is of importance (Fenster et al., 2005). Distance-based measures take the
spatial position of voxels into consideration. Since the distances are calculated in
voxel, the voxel size is not taken into account.

The Hausdorff Distance (HD) between 2 finite point sets (A, B is defined by

HD(A, B) = max(h(A, B), h(B, A)) (2.11)
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where h(A, B) is called the directed Hausdorff distance and given by

h(A, B) = maxmin ||a — b|| (2.12)
ac€A beEB

where ||a — b|| is some norm, e.g. Euclidean distance.

The HD is generally sensitive to outliers. Hence, it is not recommended to use the
HD directly, since noise and outliers are common in medical segmentations (Gerig
et al., 2001; Zhang, Dengsheng et al., 2004). The Average Distance, or the Average
Hausdorff Distance (AVD)- is known to be stable and less sensitive to outliers than
the HD. The AVD is the HD averaged over all points. It is defined by

AVD(A, B) = maz(d(A, B), d(B, A)) (2.13)

where d(A, B) is called the directed Average Hausdorff distance given by

1 .
d(A,B) = NZrbrggHa—bH (2.14)
a€A

2.4.2 Image quality and similarity metrics
2.4.2.1 Perception-based Image Quality Evaluator (PIQUE)

Perception-based Image Quality Evaluator (PIQUE) (Venkatanath et al., 2015) ex-
tracts local features from perceptually significant spatial regions to predict quality.
Block-level analysis is done to determine distortions in local blocks. A score is as-
signed to each distortion block based on distortion type. The block-level scores are
pooled in order to arrive at the overall image quality score.

2.4.2.2 Structural Similarity (SSIM) Index

Structural Similarity (SSIM) Index (Wang, Zhou, Bovik, et al., 2004) uses lumi-
nance, contrast, and structure to compute similarity measurements. The mean
intensity of the reference and the target image is compared to estimate the lumi-
nance. In order to estimate the contrast, the standard deviation of the two image
signals is compared. The normalised signals are transformed to have unit standard
deviation in order to compare the structure. SSIM is computed using the formula:

(2papty + C1)(204y + Co)
(12 +p2 + Cr)(o2 + 02+ Cy)

SSIM (z,y) = (2.15)

2.4.2.3 Learnt Perceptual Image Patch Similarity (LPIPS)

LPIPS (Zhang, R et al., 2018) computes deep feature spaces from pre-trained CNN
architectures like SqueezeNet, AlexNet, and VGG. Feature stacks are first extracted

32



2.4. Metrics

from L layers of a pre-trained CNN. The features are then normalised in the channel
dimension. The activations are scaled and the [, distance is computed between
these activations. The final score is computed by spatial averaging and channel-wise
summation. In summary, cosine distance is computed in the channel dimension.
This is then averaged across spatial dimensions. The distance between the reference
and distorted patches x, xg is computed using the formula:

1 N .
d(z,x0) =) o D 1w ® (Ghy = Gon) 13- (2.16)
l h,w
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3.1 Medical Image Segmentation

In the healthcare domain, one of the widely researched machine learning area is
medical image segmentation (Long et al., 2015; Lin et al., 2017; Yu, Changgian
et al., 2018; Zhou, Zongwei et al., 2018; Isensee et al., 2019; Rajamani, Kumar,
Gowda, et al., 2022; Rajamani, Kumar, Rani, et al., 2022). Some of the commonly
used modalities for medical image acquisition include X-ray, ultrasound, computed
tomography (CT), magnetic resonance imaging (MRI) and mammography. Medical
image segmentation involves segmenting of the organs, tissues or specific pathologies
in these medical images. It mainly involves the correct identification of a region of
interest (ROI) in medical images. Segmenting the different anatomical parts of the
heart from cardiac magnetic resonance (MR) image is one such example. Automatic
and accurate segmentation holds the potential of reducing the time to diagnose and
reduce the manual segmentation efforts by clinicians.

One of the important factor to enable any research to be utilized in real world
applications in clinical domain is the holistic measurement of performance of the
research methods or algorithms. The topic of identifying appropriate evaluation
protocols is therefore of great prominence in the research community, more so in the
deep learning research community.

In this context, the lack of reliability in medical image segmentation performance
assessments was explored by Miiller, Soto-Rey, et al. (2022). Renard et al. (2020)
and Parikh et al. (2019) noted that metrics typically used for reporting are often
overoptimistic of model performance. Furthermore, their potential weaknesses are
often not revealed. Therefore, translating research to clinical settings often is en-
countered by problems (El-Naqa et al., 2021; Parikh et al., 2019). Miiller, Soto-Rey,
et al. (2022) provided an overview of commonly-used evaluation scores, such as the
Dice similarity coefficient, Jaccard coefficient or Cohen’s Kappa and described which
metric is best suited for which usecases and scenarios. They also established a set
of guidelines for interpretation and a standardised evaluation. Miiller, Hartmann,
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et al. (2022) proposed a library named MISeval, for metric evaluation, to further
advance standardisation and reproducibility.

A set of boundary overlap metrics was explored by Yeghiazaryan et al. (2018).
Their aim was to capture the segmentation errors that occur in the context of utilis-
ing size-based, overlap-based, and boundary distance based segmentation metrices.
The existence of large differences between existing evaluation scores was highlighted
by them. High dependencies of the utilised metrics on the clinical use case was also
demonstrated by them. All of these underscore the fact that the applicability of the
methods to real-world data still faces challenges even when these methods achieve
high values of well-known metrics, such as the Dice score.

Several contemporary research demonstrate the prevelance of these issues across
the general medical image segmentation field (Hesamian et al., 2019; Jungo et al.,
2019; Fu et al., 2021; Reinke, Eisenmann, et al., 2021; Reinke, Tizabi, et al., 2021).
In this thesis, we focus on the specific facets of this problem appear for the task of
Cardiac MR Image segmentation. A comprehensive summary of the performance
of state of the art deep learning methods for Cardiac MR Image segmentation is
presented by Bernard et al. (2018). The challenges that are still prevalent in this
area are also highlighted by them. Some of the significant challenges that they
identify are:

e Segmenting the Right Ventricle (RV) and calculating the RV ejection fraction.

e Segmenting the Myocardium at the End Systole (ES) phase due to the diffi-
culty in precisely delineating the Left Ventricle (LV) and Right Ventricle (RV)
walls.

e Segmenting slices near the apex and base: Small structures in the apex and
difficulty in differentiating between multiple structures at the basal slices pose
significant challenges.

e Manual segmentation of the apex and basal slices by experts results in differing
outcomes (inter-observer variability).

e Deep learning based segmentation methods often generate anatomically im-
possible results in some of the slices.

These aspects highlight that cardiac MR segmentation is a field that is techni-
cally challenging. Therefore, it becomes more relevant to ensure that the boundary
conditions and limitations of each deep learning based solution for this is precisely
identified before they can be used in a clinical context.

One of the significant efforts towards this is the formation of a consortium of
multiple academia and industry researchers as well as practitioners to analyse the
flaws in machine learning algorithm validation. In their seminal research (Maier-
Hein, Reinke, et al., 2022), this consortium has identified various pitfalls in the
choice of validation metrics which they group into the following categories:
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e Inappropriate problem phrasing
e Poor selection of metrics
e Poor application of metrics

With their “Metrics Reloaded” framework, they discuss ways to address these chal-
lenges and propose a problem fingerprinting framework as well as a metrics selection
methodology.

In the context of large-scale international challenges that benchmark different
models, Maier-Hein, Eisenmann, et al. (2018) emphasise that the outcomes have to
be interpreted with care. The influence of choice of metrics as well as criteria for
aggregated ranking across metrics in deciding the winning method is highlighted by
them. One of the significant design choice that is shown by them to change the
winners based on the aggregation method chosen is the metric-based vs case-based
ranking scheme.

Evaluating disagreggated model performance is a research area being actively fo-
cused on even in areas other than medical image segmentation. Generally, the focus
here is on evaluating the fairness of models with respect to different groups (e.g.,
age and gender groups) or sub-populations. However, evaluating how models per-
form across different individuals is also being researched (Doddington et al., 1998;
Kathan et al., 2022). ‘Individual fairness’ is a related notion in which it is contested
that “similar individuals should receive equal treatment” (Sharifi-Malvajerdi et al.,
2019).

Corner cases in classification tasks was explored by Ouyang et al. (2021) in
their work. They propose a metric which targets the characteristics of corner cases
and this is calculated on the basis of modified ‘surprise’ adequacy. Additionally,
in order to achieve fairer classication performance for all subjects in a dataset,
they generated artificial corner cases and used them to improve a model. A ”Deep
Validation” framework was proposed by Wu et al. (2019) for classification tasks.
When the system is perceived to be working incorrectly, this framework aims to
identify the error-inducing inputs and flags them for human intervention. In the
context of medical image segmentation, the goal to strive for is that the model needs
to generalise well to different patients, irrespective of the anatomical or pathological
differences.

3.2 Speech emotion recognition
(Gunes et al., 2011) demonstrate that the emotional state of a speaker is revealed in
the paralinguistic information embedded in the human voice. Humans use emotions

to adjust the content of their message or the tone of their voice. Through this,
they aim to smooth the interaction and empathise with their interactant. Hence,
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this information plays a significant role in Human-Human Interaction. Similarly,
in order to boost the Human-Computer Interaction (HCI) experience and to better
mimic HHI, machines need to be able to leverage Speech Emotion Recognition (SER)
capabilities. This capability is also important is many use-cases other than HCI.

Tradititional methods for Speech Emotion Recognition (SER) tried to capture
the salient information from the human voice by extracting hand-crafted features
like pitch, energy etc. from acoustic signals (El Ayadi et al., 2011). Conventional
machine learning techniques, such as Hidden Markov Models (HMMs) or Support
Vector Machines (SVMs) (Schuller et al., 2003; Yi-Lin Lin et al., 2005) were used to
process these hand-crafted acoustic features. Either these hand-crafted acoustic fea-
tures or the raw audio itself have been used as input for deep learning techniques by
more recent approaches. These include Convolutional Neural Networks (CNNs) (Alif
Bin Abdul Qayyum et al., 2019), Recurrent Neural Networks (RNNs) (Mirsamadi et
al., 2017; Zhao, Ziping et al., 2019; Yu, Yeonguk et al., 2020), or the combinations
of CNNs and RNNs (Zhao, Jianfeng et al., 2019).

The temporal dynamics of sequential data are captured well by RNNs, such as
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), and Gated
Recurrent Units (GRU) (Cho et al., 2014). Their ablility to capture the temporal
dependencies of the acoustic features makes such techniques well-suited for SER
tasks. Recent research (Mirsamadi et al., 2017; Zhao, Ziping et al., 2019; Yu,
Yeonguk et al., 2020) has also demonstrated that attention mechanisms can be used
to assist RNNs to focus on the most emotionally salient information. (Ramet et al.,
2018; Yeh et al., 2019) also used contextual information to improve the performance
of SER systems. Through their Interaction-Aware Attention Network (IAAN), Yeh
et al. (2019) successfully leveraged contextual information. In a two-speaker dialog
scenario, IAAN detects the emotional state of one speaker’s utterance by using the
previous speaker turns and learning its attention scores.

3.3 Time series analysis

One of the major challenges in time series analysis is to be able to deal with sparse
and irregularly sampled time-series data. Rubanova et al. (2019) proposed a gen-
eralised recurrent neural network (RNN) with continuous-time hidden dynamics
defined by ordinary differential equations (ODEs) to overcome the challenge of non-
uniform time intervals. They showed that the RNN-based equivalents were outper-
formed by these ODE-based models on irregularly-sampled data. Furthermore, the
ability to handle arbitrary time intervals between observations and explicitly model
the likelihood of observation times using Poisson processes is handled naturally by
ODE-RNNs (Rubanova et al., 2019).

These models however face difficulties when the input data has long-term de-
pendencies. An algorithm which is based on the long short-term memory (LSTM)
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approach is therefore proposed by Lechner et al. (2020). This method separates
the memory from its time-continuous state and a continuous-time dynamical flow
is thereby encoded within the RNN. New inputs arriving at arbitrary time-lags can
be handled with this. At the same time, a constant error propagation through the
memory path is ensured. Lechner et al. (2020) call these RNN models ODE-LSTMs.
They also demonstrated that, on non-uniformly sampled data with long-term de-
pendencies, these models can outperform their advanced RNN-based counterparts

Considering irregular sampling from the perspective of missing data, Li, Steven
Cheng-Xian et al. (2020) propose an encoder-decoder framework to learn from
generic indexed sequences. Additionally, they also propose the following:

e Learning methods for this framework based on variational autoencoders and
generative adversarial networks

e Continuous convolutional layers that can be efficiently combined with existing
neural network architectures

Tan et al. (2020) propose a novel end-to-end dual-attention time-aware gated
recurrent unit (DATA-GRU) to handle irregular multivariate time series data. They
demonstrate that the DATA-GRU is especially able to address the following two
aspects:

1. Preservation of the informative varying intervals: This is achieved through the
introduction of a time-aware structure which can directly adjust the influence
of the previous status in coordination with the elapsed time.

2. Tackling missing values: This is accomplished through their proposed
dual-attention structure which jointly considers data-quality and medical-
knowledge.

Moreover, using a novel unreliability-aware attention mechanism, they handle the
diversity in the reliability of different data. A symptom-aware attention mechanism
that extracts medical reasons from original clinical records is proposed by Tan et al.
(2020). Multi-Time Attention Networks (mTAN) is proposed by Shukla et al. (2021)
where an attention mechanism is used to produce a fixed-length representation from
a time series containing a variable number of observations and an embedding of
continuous time values is learnt.
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Detecting and handling corner
cases in medical image
segmentation

This chapter discusses the research work ” Toward Detecting and Addressing Corner
Cases in Deep Learning Based Medical Image Segmentation” published in IEEE
Access (Rajamani, Srividya Tirunellai, Rajamani, Kumar, Venkateshvaran, et al.,
2023).

4.1 Motivation

There are several challenges in translating machine learning research into clinical
practice. In this research, we identify some of these challenges in the area of medical
image segmentation. Furthermore, we propose strategies to deal with these chal-
lenges systematically. Corner cases or cases where deep learning model yields wrong
segmentation is our main focus. The performance of medical image segmentation
algorithms is generally reported using standard metrics like the average Dice score
across all patients. We uncover an important aspect that reporting based on aggre-
gation across all patients has the drawback that corner cases go unnoticed. Models
with superior performance could potentially provide erroneous or even anatomically
impossible segmentation results on some challenging cases without being noticed
due to such reporting. Using the Automated Cardiac Diagnosis Challenge (ACDC)
challenge’s Magnetic Resonance (MR) cardiac image segmentation task, we demon-
strate how corner cases go unnoticed. Additionally, to address this challenge and to
help identify and report such corner cases, we propose a framework. Furthermore,
we propose a novel balanced checkpointing scheme. This scheme enables determin-
ing a solution that performs well even on the corner cases. On our identified corner
case in the ACDC segmentation challenge, by using our balanced checkpointing
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scheme, the Dice score on the corner case improves by 44.6 % for LV, 46.1 % for RV
and 38.1 % for the Myocardium. Our proposed framework is also generalisable and
can be applied in contexts other than MR cardiac segmentation. We demonstrate
this generalisability by using it for chest X-ray lung segmentation. Even for deep
learning tasks beyond medical image segmentation, this framework has significant
applicability.

4.2 Dataset and Baseline Network Architecture

In this section, we provide details about the dataset as well as the baseline network
architecture used in our experiments.

4.2.1 The ACDC segmentation dataset

Our experiments are conducted on the Automated Cardiac Diagnosis Challenge
(ACDC)’s segmentation dataset (Bernard et al., 2018). Evaluating the performance
of deep learning methods in segmenting the myocardium (MYO), left ventricle (LV)
and right ventricle (RV) and classifying the pathologies from cardiac MRI is the
objective of the challenge. 3D cine-Magnetic Resonance (MR) cardiac scans of 100
unique patients from the University Hospital of Dijon comprises the training dataset
of this challenge. These 100 patients comprise of 20 patients belonging to following
five classes each:

1. Normal case

2. Heart failure with Infarction
3. Dilated Cardiomyopathy

4. Hypertrophic Cardiomyopathy
5. Abnormal Right Ventricle

The End Systole (ES) and End Diastole (ED) frames, identified based on the
motion of the mitral valve from the long axis orientation by a single expert, is
provided for each patient. Thus, for these 100 patients, there are 200 volumes in
total. Also, the ground truth segmentation masks for the Left Ventricle (LV), Right
Ventricle (RV) and Myocardium (MYO) is made available. The challenge test set
constitutes another 50 patients, with 10 patients per class.
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Figure 4.1: Schematic of our proposed framework for detecting and addressing cor-
ner cases in deep learning based medical image segmentation. Figure taken from
(Rajamani, Srividya Tirunellai, Rajamani, Kumar, Venkateshvaran, et al., 2023)

4.2.2 SAUNet architecture

Sun et al. (2020) recently proposed a U-Net based network for medical image seg-
mentation named SAUNet — Shape Attentive U-Net for Interpretable Medical Image
Segmentation. On the ACDC Cardiac MR segmentation challenge dataset, SAUNet
not only achieves high average Dice scores but also provides good interpretability.
SAUNet comprises of a texture stream and a gated shape stream. The texture
stream has a U-Net like structure (Ronneberger et al., 2015). However, the en-
coder is replaced with dense blocks from DenseNet-121 (Huang, Gao et al., 2017).
Further, each decoder block is a dual attention block. Additionally, shape features
are learnt through a secondary stream which processes shape features of the image.
Furthermore, in the decoder, at every resolution of the U-Net, the interpretability
of features is enabled using spatial and channel-wise attention paths. In our ex-
periments, we utilise SAUNet as the baseline architecture. Also, we use the same
hyperparameters and training-validation split as used by Sun et al. (2020).
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4.3 Novel framework for detecting and handling
corner cases

Figure 4.1 depicts the schematic of our proposed methodology for identifying and
addressing corner-cases. The following sections explain this methodology.

4.3.1 Methodology for detecting and reporting of corner-
cases

currently, aggregate metrics is reported by Deep learning based medical image seg-
mentation methods. In order to determine potential outliers, we propose that the
characteristics of patient-wise metrics should be analysed.

Empirical-Cumulative-distribution-based Outlier Detection (ECOD) (Li, Zheng
et al., 2022) is one of the recent unsupervised approaches for outlier detection in
large, high-dimensional datasets. ECOD is a method for multivariate statistical
anomaly detection. It leverages the fact that outliers are often the “rare events”
that appear in the tails of a distribution (right-tail and left-tail). In this method,
an empirical cumulative distribution is first computed along each data dimension.
In the next step, this empirical distribution is utilised to estimate the left and
right tail probabilities (]?‘l(gft and ]?‘g;ht) Finally, by aggregating the estimated tail
probabilities across all dimensions, the outlier score is computed in a non-parametric
way (Li, Zheng et al., 2022).

Given input data X = {X;}!" | € R™? with n samples and d features where X Z-(j )
refers to the value of j-th feature of the i-th sample,

n

1

Fg)ft(z) =4 Z ]l{Xi(j) <z}forzeR (4.1)
i=1
(s 1 .
Ff-Ji)ght ~a Z E{Xi(J) >z} for zeR (4.2)
i—1

where 1{.} is the indicator function that is 1 when its argument is true and is 0
otherwise (Li, Zheng et al., 2022).

For cardiac image segmentation, we propose to analyse the Dice scores of LV,
RV and MYO jointly by representing them as a 3D vector. For every patient,
this 3D vector is computed. Then, the ECOD algorithm is used to determine the
corner cases by using these 3D vector values for all patients. Those outliers that
are detected with this approach are flagged so that they can be analysed in detail.
Additionally, for these cases, the segmentation outcomes should also be reported
so that clinicians can analyse and gain understanding as to why the model fails in
these cases.
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4.3.2 Strategy for getting further insights into the corner
cases

Generally, the training process is monitored by plotting the average Dice scores
across the training epochs. But, insights into the model performance on the corner-
cases cannot be obtained from this. We therefore propose that the Dice score curves
of the corner-cases should be analysed across the training epochs to gain insights.
We again utilise the ECOD algorithm (Li, Zheng et al., 2022) to detect if there are
any outliers across the training epochs. The analysis is done using the 3D (LV, RV,
MYO) Dice scores across the training epochs for the corner-cases. This is different
from the previous step where the analysis is done across patients.

4.3.3 Approach for identifying a balanced checkpoint

The usual approach used for model checkpointing during training is based on least-
loss or highest average-IoU (Intersection Over Union). However, in scenarios where
the Dice score varies significantly across different epochs for corner cases, this tra-
ditional checkpointing scheme could compromise the performance on corner-cases.
Such a model could also produce segmentation outcomes that are anatomically im-
possible in clinical practice. Therefore, in order to enable deep learning research
to be usable in clinical context, it is important to use a balanced checkpointing
approach.

For identifying a more balanced checkpoint, as a first step, we propose to exclude
all those epochs which are detected as outlier epochs for the corner-case in the
previous step. Out of the remaining epochs, we propose to use the final epoch as
the balanced checkpoint.

4.4 Experimental setup and results for medical
image segmentation

4.4.1 Corner case detection and reporting

In Table 4.1, we report the results on the ACDC segmentation challenge dataset. In
column 2, the average Dice scores obtained using our model trained with a SAUNet
network architecture (Sun et al., 2020) is reported. Furthermore, we utilise the
methodology proposed above to identify corner-cases. For this, we first compute
patient-wise Dice scores for LV, RV and MYO and provide these 3-dimensional
scores to the ECOD algorithm (Li, Zheng et al., 2022) to detect outliers. We use
the default contamination rate of 0.1 of ECOD algorithm from the PyOD toolbox
(Zhao, Yue et al., 2019). With this approach, we detect Patient057_ES as the only
outlier. We report the Dice-scores of this corner case patient in column 3 of the table.
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Organ | (a). Avg Dice (b). Dice score Dice score
score for corner case difference
Patient057_ES (a-b)
LV 0.912 0.351 0.561
RV 0.833 0.201 0.632
MYO 0.848 0.441 0.407

Table 4.1: Average Dice score and Dice scores for the corner-case identified for LV,

RV, and MYO on ACDC validation set

The difference between the average Dice scores and the Dice scores of Patient057_ES
is report in column 4 of the table. From the table, it is evident that the difference
between average Dice scores and that of the corner-case Patient057_ES is 56.1 % for
LV, 63.2% for RV and 40.7% for MYO.

The visual segmentation results for all the 8 slices at End Systole for the corner-
case Patient057_ES is presented in Figure 4.2. For the first 4 slices, we can see
that the predicted segmentation is not only completely incorrect but also anatomi-
cally impossible. The left ventricle region is identified as the myocardium and the
myocardium region is identified as the right ventricle in these 4 slices.

4.4.2 Insights into the corner cases

By utilising our strategy for getting further insights into the corner-cases, for the
Patient057 which is identified as corner-case, we analyse its Dice scores across the
training epochs. Using the 3D (LV, RV, MYO) Dice scores across the training epochs
with the ECOD algorithm (Li, Zheng et al., 2022), we observe that this patient has
outliers across the training epochs, unlike the other patients. Therefore, we flag
Patient057 for careful analysis by clinicians and researchers.

In Figure 4.3, the plot of the Dice scores for the entire validation set as well as
for Patient057 is presented. The average Dice score plot for the entire validation set
is depicted in the top row. The individualised Dice score plot for the corner-case,
Patient057_ES is depicted in the bottom row. The plots for LV, RV, MYO and a
consolidated view for all these 3 anatomies is depicted in the 4 columns, respectively.
The plot contains Dice scores for those epochs where the model was checkpointed.
Least average-loss is the criteria that we use to create these checkpoints.

All the curves in the first row pf this figure seem to indicate that the model is
training effectively. Model performance and metrics are normally reported in this
manner. However, a different scenario is evident from the bottom row where for
the corner-case, Patient057_ES, we observe that the Dice scores varies considerably
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across the training epochs for LV, RV and MYO. The Dice score between the 24th
and 25th checkpoint for instance has a very large variation. Such abnormal variations
could indicate erroneous model training or model performance, but these get masked
when only average Dice scores are considered.

4.4.3 Balanced checkpoint determination

By using our proposed balanced checkpoint determination approach, the outlier
epochs determined by ECOD algorithm are excluded and of the remaining ones, we
choose the final epoch. As observed in row 2 of Figure 4.3, the balanced checkpoint
identified with this approach is the 32nd (penultimate) checkpoint.

Table 4.2 reports the results of using this identified balanced checkpoint. As
noted in column (a) of the table, the average Dice scores for the entire validation
dataset based on least-loss checkpoint are 0.912 for LV, 0.833 for RV, and 0.848 for
the Myocardium. This seems like a reasonably well performing solution at face value.
However, this same checkpoint results in extremely low Dice scores for Patient057 of
0.352 for LV, 0.201 for RV, and 0.441 for the Myocardium as observed in column (c)
of the table. Thus, the performance on the corner case is considerably compromised
by following such a classical approach of saving the model based on least-loss. At our
proposed checkpoint, the corner case Patient057 has significantly higher Dice scores
as observed in column (d) of the table. At the proposed checkpoint, Patient057 has
a Dice score of 0.798 for LV, 0.662 for RV, and 0.822 for the Myocardium which is
an improvement of 44.6 % for LV, 46.1 % for RV, and 38.1 % for the Myocardium as
compared to the previously identified checkpoint. Moreover, as observed in column
(b), at this new identified checkpoint, the average Dice scores on the entire validation
set also increases by about 1 to 2% for each of LV, RV, and MYO.

4.5 Benchmarking with various segmentation
metrices

The average Dice score has been used as the evaluation metric in our analysis thus
far since it is a well-established as well as commonly used metric for evaluating
segmentation models. Dice score is defined as twice the area of overlap between the
predicted segmentation and the actual labels, divided by the sum of the areas of the
predicted segmentation and the ground truth labels, leading to a range between 0
(worst) and 1 (best)(Bertels et al., 2019).

We now analyse if the failure to detect the low performance in corner cases is
because of averaging across all patients or is a characteristic of Dice score. For this
analysis, we evaluate other metrics for benchmarking segmentation results.

A metric that is closely related to the Dice score is the Jaccard Coefficient. It is
also known as the intersection over union and is often used to determine the perfor-
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4. Detecting and handling corner cases in medical image segmentation

Figure 4.2: The rows contain, from top to bottom, slices 1 to 8 of End Systole
frames for Patient057 from ACDC dataset. The columns from left to right are: (a).
Original image, (b). Ground truth, (c). Predicted segmentation with the least-loss
checkpoint, and (d). Predicted segmentation with the proposed balanced checkpoint,
respectively. The colour coding used is blue for LV, green for MYO, and red for RV.
Figure taken from (Rajamani, Srividya Tirunellai, Rajamani, Kumar, Venkatesh-
varan, et al., 2023)
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4.5. Benchmarking with various segmentation metrices

(A) Results for entire validation set

Organ | (a). Dice Scores | (b). Dice Scores | Percentage gain
based on based on (b - a)
Least-loss proposed
checkpoint balanced
(checkpoint 33) checkpoint
(checkpoint 32)
LV 0.912 0.925 1.3
RV 0.833 0.856 2.3
MYO 0.848 0.863 1.5
(B) Results for Patient057
Organ | (c). Dice Scores | (d). Dice Scores | Percentage gain
based on based on (d-c)
Least-loss proposed
checkpoint balanced
(checkpoint 33) checkpoint
(checkpoint 32)
LV 0.352 0.798 44.6
RV 0.201 0.662 46.1
MYO 0.441 0.822 38.1

Table 4.2: Effect of choosing a balanced checkpoint.
Table (A). Average Dice scores for entire validation set with least-loss checkpoint

and proposed balanced checkpoint.

Table (B): Dice scores for the corner case,

Patient057. Proposed balanced checkpoint significantly improves performance on
corner-case (d-c). Furthermore, average Dice scores also improves (b-a)

53




4. Detecting and handling corner cases in medical image segmentation
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Figure 4.3: Plot of Dice scores at the least-loss based checkpoints over the training
epochs. The 4 columns, from left to right, contain Dice scores for (a). LV, (b).
RV, (¢). MYO, and (d). consolidated-view, respectively. The top row contains the
plots of average Dice score for the validation set. The bottom row contains the
plots for the corner-case, Patient057_ES (the Dice score at least-loss based check-
point is marked in red and at the proposed balanced checkpoint marked in green,
respectively). Figure taken from (Rajamani, Srividya Tirunellai, Rajamani, Kumar,
Venkateshvaran, et al., 2023)

Organ (a). Avg (b). Jaccard Jaccard
Jaccard Coefficient Coefficient
Coefficient for corner case difference
Patient057_ES (a-b)
LV 0.849 0.213 0.636
RV 0.731 0.112 0.619
MYO 0.745 0.283 0.462

Table 4.3: Average Jaccard Coefficient and Jaccard Coefficient for the corner-case
identified for LV, RV, and MYO on ACDC validation set
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4.6. Generalizability of the proposed framework

Organ | (a). Avg bAHD (b). bAHD bAHD difference
for corner case (b-a)
Patient057_ES

LV 0.152 1.938 1.786

RV 0.851 24177 23.326

MYO 0.218 1.689 1.471

Table 4.4: Average bAHD and bAHD for the corner-case identified for LV, RV, and
MYO on ACDC validation set

mance of image segmentation algorithms (Long et al., 2015). Similar to average Dice
score, it also calculates the ratio of the overlapping regions. However, the Jaccard
Coefficient is more sensitive to false positives in contrast to the average Dice score
which focuses on balancing precision and recall.

Aydin et al. (2021)’s balanced Average Hausdorff Distance (bAHD) is another
recent yet popular metric. It is derived from the Hausdorff distance, which calculates
the closeness of each point in a segmentation set to the nearest point in the ground
truth label set and vice-versa. The balanced Average Hausdorff Distance (bAHD),
however, averages these distances. This therefore results in a more robust way to
account for outlier points in segmentation tasks. Lower bAHD scores indicate higher
segmentation quality.

The average Dice score and Dice scores for the corner-cases are presented in
Table 4.1. Similarly, the results evaluated using the Jaccard Coefficient and the
balanced Average Hausdorff Distance (hAHD) are presented in Table 4.3 and 4.4,
respectively. EvaluateSegmentation tool (Taha et al., 2015) is used to compute these
metrics. Patient057_ES is detected as a corner-case when the ECOD algorithm is
run on the patient-wise metrices. These results validate that, even with other well
established and state-of-the-art metrices, averaging across patients is indeed the
major reason for failure to detect the corner cases.

4.6 Generalizability of the proposed framework

The generalisability of our proposed framework is validated in this section by using
the chest X-ray lung segmentation task. The NIH chest X-ray dataset (Wang,
Xiaosong et al., 2017) contains both posterior-anterior and anterior-posterior views.
Tang et al. (2019) used 100 abnormal chest X-ray images from this dataset with
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4. Detecting and handling corner cases in medical image segmentation

Figure 4.4: Scatter plot of patient-wise Dice scores for the NIH validation set. The
outlier Dice score detected with ECOD (which corresponds to patient NIH_0072)
is highlighted in red. Figure taken from (Rajamani, Srividya Tirunellai, Rajamani,
Kumar, Venkateshvaran, et al., 2023)

Figure 4.5: Lung segmentation results for couple of images from the NIH dataset.
The first row contains results for patient NIH_0090 which is an exemplar patient.
The second row contains results for the identified outlier patient NIH_0072. The
columns from left to right are (a). Original image, (b). Ground truth and (c). Pre-
dicted segmentation. Figure taken from (Rajamani, Srividya Tirunellai, Rajamani,
Kumar, Venkateshvaran, et al., 2023)
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various severity of lung diseases and manually annotated the lung masks'. We
conduct our experiments on this abnormal chest X-ray dataset.

To conduct our experiments, we utilise a U-Net structure from Oktay et al.
(2018) and Schlemper et al. (2019) as our baseline architecture. It contains four
blocks in the downsampling path and similarly four blocks in the upsampling path.
In every block, there is batch normalization, 2D convolution and ReLU, repeated
twice. The last block is a 1 x 1 2D convolution block. Max-pooling is used after
every block in the down-sampling path so as to reduce the spatial dimension of
the feature map by 2 each time. In the up-sampling path, the opposite is done
where, using ConvTranspose2d, the spatial dimension of the concatenated feature
maps is doubled. The feature channels in the down-sampling path is increased as
as (1 —64—128 — 256 — 512) and then decreased similarly in the up-sampling path.
The number of label classes for semantic segmentation would determine the number
of feature channels in the last layer of the U-Net.

The U-Net’s output from the last down-sampling block (which is the reduced
dimension of the feature maps H) is given as input to the criss-cross attention
module (CCA) (Huang, Zilong et al., 2019). The attention maps need to be small in
order to keep its time and space complexity under control. Therefore, the attention
module is inserted at the bottleneck of the U-Net. The contextual information in
the criss-cross path of each pixel is gathered by criss-cross attention module leading
to feature maps H'. After 2 iterations of criss-cross attention, the resulting feature
maps are passed through the U-Net’s up-sampling path.

Using this model on the validation set of 40 patients of the NIH dataset, an aver-
age Dice score of 0.955. Figure 4.4 visualises the scatter plot of the patient-wise Dice
scores. By using the ECOD algorithm with the default contamination factor of 0.1,
patient NIH_ 0072 is detected as an outlier. Hence, it is flagged for detailed analysis
(marked in red in the scatter plot). In figure 4.5, the visual segmentation result
for an exemplar patient, NIH 0090 and for the detected outlier patient NIH 0072,
is presented. It is evident from these visual results that the outlier detected by our
framework does have sub-optimal segmentation outcomes.

With this, we demonstrate the generalisability of our proposed framework for
detecting corner cases across other modalities, anatomies and network architectures.

4.7 Discussion

This section details the clinical insights gained from the corner case that our pro-
posed approach identified on the ACDC cardiac image segmentation dataset. Fur-
thermore, other potential solutions for addressing corner-cases are also outlined.
Potential other alternatives for optimal checkpoint determination are also elabo-
rated.

!Data: https://nihcc.app.box.com/s/r8kf5xcthjvvvi6r7llan99e1nj4080m
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4. Detecting and handling corner cases in medical image segmentation

Organ | (a). Dice Scores | (b). Dice Scores Percentage
based on highest based on difference
average-IloU least-loss (b-a)
checkpoint checkpoint
LV 0.899 0.912 1.3
RV 0.848 0.833 -1.5
MYO 0.844 0.848 0.4

Table 4.5: Checkpoint based on least-loss vs highest average-IoU on validation set

4.7.1 Clinical insights into identified corner-case

”To understand the observed aberration in the predicted segmentation of Patient057,
we obtained clinical insights from an experienced cardiac imaging specialist. Careful
inspection of the short axis images from the apex to the base of the LV in addi-
tion to the corresponding long axis images revealed prominent anterolateral and
posteromedial papillary muscles that are generally underrepresented in the dataset.
Further, the segmentation prediction based on least-loss checkpoint inaccurately
identified this region of pronounced musculature as myocardium. Current interna-
tional recommendations advise that papillary muscles are included in the LV cavity,
as seen in the ground truth analysis where experts carefully cut through this region
during cavity delineation. A plausible explanation for this aberration is the under-
representation of such variants in the current dataset. This hypothesis, however,
requires further investigation in larger databases” (Rajamani, Srividya Tirunellai,
Rajamani, Kumar, Venkateshvaran, et al., 2023).

4.7.2 Checkpoint determination using Least-loss vs highest
average-IoU

The standard approach to model checkpointing during training is based on least-
loss or highest average-loU. Table 4.5 presents the Dice scores computed based on
both of these approaches on the validation set. Using either of these checkpointing
approaches yields comparable performance as observed in the 2nd and 3rd column
of this table. We utilise the least-loss based checkpoint in this current work.

4.7.3 Other potential approaches for corner-case handling

Subjects/patients could potentially be identified as being corner-cases due to several
factors. This could either be due to the characteristics of the data or due to flaws in
annotation, or model /network’s deficiencies, based on our current insights. However,
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4.7. Discussion

an active collaboration between researchers and clinical experts is required for the
precise reasons to be identified and for potential mitigation approaches to be derived.

Similarly, there could be various approaches to address such corner-cases. If,
for instance, a corner case is due to under-representation of the unique data in the
training dataset, it could be addressed through the following ways:

e Using a data approach: We address this in our proposed approach by handling
the corner-case separately. However, adding more real or synthetic data with
similar characteristics to the dataset could be another approach for addressing
this. Excluding such corner cases from the training and validation data and
including a disclaimer that the solution cannot be utilised in such outlier sce-
narios could also potentially be an approach that could be considered. This
would provide clinicians with a better understanding of the capabilities and
potential pitfalls of the model and complement standardised model report-
ing (Mitchell et al., 2019).

e Through the model: During the model training, further attributes of the data
could be provided as context. In the ACDC challenge dataset, for instance,
there are 5 different classes and this class information could be utilised as
additional input during the model training.

e Through ground-truth refining: A separate class can be used to mark those
regions that confuse the model. The papillary muscles, when prominently
visible, could, for instance, be labelled as a separate class.

e Through anomaly classification as a step prior to segmentation: Corner and
regular cases could be separated using a standalone classifier before segmenta-
tion. However, since the number of corner-cases could be very few, this could
be challenging to realise.

4.7.4 Other potential approaches for optimal checkpoint de-
termination

In order to determine a balanced checkpoint such that corner-cases also obtain

reasonable results, in our proposed balanced checkpointing approach, we suggest to

exclude the outlier epochs and choose the final epoch out of the remaining epochs.

However, rather than the global optimum, this approach could result in a local-
optimum. In order to find the global optima, several factors play a role such as

e the number of corner-cases.

e the behaviour of the solution over the various training epochs on the corner-
cases.
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4. Detecting and handling corner cases in medical image segmentation

e the behaviour of the solution over the various training epochs on the non-corner
cases .

This is therefore a complex multi-factor optimisation problem and is an area of
active research (Bertels et al., 2019; Eelbode et al., 2020; Renard et al., 2020).

4.8 Conclusion and future work

In this research work, we have revealed a fundamental but thus far overlooked aspect
of deep-learning based segmentation models. Average metrics indicate the model
performance on the majority of the cases. However, such approaches tend to overlook
the method’s performance on the corner-cases. Identifying these corner-cases and
handling them is crucial when deploying such solutions in a clinical setup.

We have proposed strategies that enable systematic addressing of these chal-
lenges. Firstly, our framework helps to easily identify any corner-cases. Secondly,
we have detailed the approaches to get deeper insights into the specific corner cases.
Finally, we have outlined an approach to get a balanced model which not only sig-
nificantly improves the performance on the identified corner-case but also improves
the overall average Dice scores.

Utilising our proposed framework for biomedical image analysis tasks other than
medical image segmentation, such as medical image classification and object detec-
tion is a interesting area to explore. Another potential research area is to determine
the balanced checkpoint based on global optima automatically.
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Attention regularisation

This chapter discusses the research work ” A novel and simple approach to regularise
attention frameworks and its efficacy in segmentation” published in Proceedings of
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC) (Rajamani, Srividya Tirunellai, Rajamani, Kumar, and Schuller,
2023)

5.1 Motivation

Attention mechanism is one of the recent research advancement that has demon-
strated significant potential in deep learning networks for medical image processing
related tasks. Attention mechanism effectively captures long range interactions.
Furthermore, in order to make the computation of attention blocks efficient, recent
research work like criss-cross attention have been proposed. We propose a simple
yet effective enhancement to attention mechanism that involves regularisation of the
attention block. A low-overhead way to perform this attention block regularisation
that improves the network robustness and resilience is by addition of noise. We
incorporate this regularisation in the criss-cross attention block which is integrated
in the bottleneck layer of a U-Net. This enhances the performance in medical image
segmentation, more so when there is limited training data.

5.2 Novel attention regularisation framework

Our approach involves the simple but novel way to increase a network’s robustness
through the introduction of regularisation in attention module. In our current work
involving semantic image segmentation, we utilise this concept within the criss-cross
attention module (Huang, Zilong et al., 2019). We introduce regularisation within
this criss-cross attention module. Figure 5.1 depicts a block diagram of our proposed
Recurrent Criss-Cross Attention (RCCA) module with regularisation. After each

61



5. Attention regularisation

pass of the recurrent criss-cross attention, regularisation is performed, as shown
in the block diagram. Through empirical experiments, we discover this manner of
interleaving regularisation and criss-cross attention as the most promising approach.

This regularised recurrent criss cross module is integrated within the U-Net ar-
chitecture (Schlemper et al., 2019) to evalute its effectiveness for medical image
segmentation task. In order to capture non-local contextual information in a robust
way, this is included in the U-Net’s bottleneck layer.

We now discuss the details of

e The criss-cross attention module (Huang, Zilong et al., 2019)
e The baseline U-Net + CCA architecture used in our experiments

e Our proposed regularised attention module

5.2.1 Criss-Cross Attention Module

Huang, Zilong et al. (2019) proposed the criss-cross attention module (CCA) which
aggregates contextual information in horizontal and vertical directions for each pixel.
Feature maps H of reduced dimension are computed from the input image by using
convolutional neural network (CNN). The CCA module consists of 3 convolutional
layers applied on H € ROV with 1 x 1 as kernel size.

The contextual information is aggregated by

H, = ) Au®iu+H, (5.1)

i€|®y|

with H/, being a feature vector in the module’s output feature maps H' € RE*HxW

at position u and A; ,, being a scalar value at channel 7 and position u in the attention
map A. The set @, is a collection of feature vectors in the feature map V obtained
for feature adaption by applying another convolutional layer with 1 x 1 filters on

H.

5.2.2 Baseline Network Architecture: U-Net + Criss-Cross
Attention Module

To conduct our experiments, we utilise a U-Net structure from Oktay et al. (2018)
and Schlemper et al. (2019) as our baseline architecture. It contains four blocks
in the downsampling path and similarly four blocks in the upsampling path. In
every block, there is batch normalization, 2D convolution and ReLLU, repeated twice.
Max-pooling is used after every block in the down-sampling path so as to reduce
the spatial dimension of the feature map by 2 each time. In the up-sampling path,
the opposite is done where, using ConvTranspose2d, the spatial dimension of the
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concatenated feature maps is doubled. The feature channels in the down-sampling
path is increased as (1 — 64 — 128 — 256 — 512) and then decreased similarly in the
up-sampling path. The number of label classes for semantic segmentation would
determine the number of feature channels in the last layer of the U-Net.

The local representation feature maps H is used as the reduced dimension input
to the criss-cross module. This is basically the output of last block of the U-Net
in the downsampling path. Since these feature maps are of reduced dimension, the
attention module is inserted in the bottleneck. This also ensures that the attention
maps are smaller, and have lesser complexity in terms of time and space. Huang,
Zilong et al. (2019)’s CCNet attention module computed feature maps H' by utilising
contextual information in the criss-cross path of each pixel. When using recurrent
criss cross attention, R = 2 loops through the attention module is done to obtain
the contextual features H”. This is then concatenated with the feature maps X and
merged with a convolution layer. The U-Net’s upsampling path uses this resulting
feature maps as its input.

5.2.3 Our proposed regularised attention sampling

Non-local information on a feature map of height H and width W is computed
by the criss-cross attention module. We compute a noise mask which has similar
dimension as that of the attention feature map. The noise is randomly sampled
from a Gaussian distribution. A grid search methodology was used to empirically
determine the mean and variance values for the Gaussian noise that would result
in the best outcomes. As seen in Figure 5.1, such a noise mask is added to the
attention feature map after each criss-cross attention module.

5.3 Experimental setup and results for medical
image segmentation

Method Mean Dice Score | % gain
U-Net + RCCA 0.931 -
U-Net + our proposed regularised RCCA 0.955 2.5

Table 5.1: Mean dice score values averaged over 5 runs
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Figure 5.1: The block diagram of our proposed Recurrent Criss-Cross Attention
(RCCA) module with regularisation is enclosed in dotted blue line. This proposed
module is utilised in the bottleneck layer of the U-Net (enclosed in solid green
line) for our experiments on medical image segmentation task. Figure taken from
(Rajamani, Srividya Tirunellai, Rajamani, Kumar, and Schuller, 2023)

5.3.1 Dataset

Our experiments are conducted on the NIH chest X-ray dataset (Wang, Xiaosong
et al., 2017). This dataset contains posterior-anterior as well as anterior-posterior
views. From this dataset, Tang et al. (2019) utilised in their work 100 abnormal
chest X-ray images with various severity of lung diseases for which the lung masks
were manually annotated!. We utilise these 100 abnormal chest X-ray images, each
of size (512 x 512) in our experiments.

5.3.2 Experiments and Result

Our experiments were done using 60 images for training and the rest for validation
and testing and training was done for 60 epochs. This choice for using only 60 % for
training was to evaluate the scenario of training segmentation networks with limited
training data. In Table 5.1, the mean dice score obtained by averaging over 5 runs are
reported. Mean dice score results obtained when using U-Net + vanilla Recurrent
Criss-Cross Attention (RCCA) is reported in the first row. In the second row, the
mean dice score obtained when using U-Net with our proposed regularised RCCA
is reported. The mean and variance for the Gaussian-noise based regularisation is
empirically determined in our experiments. Our proposed approach results in an
improvement of about 2.5 % over the baseline U-NET + vanilla RCCA with a mean
dice score of 0.955.

Figure 5.2 demonstrates that our proposed regularised attention block estimates
the lung masks much closer to the ground truth.

!Data: https://nihce.app.box.com/s/r8kf5xcthjvvvi6r7llan99e1nj4080m
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Figure 5.2: Visual comparison of lung segmentation results. In each of the 5 rows,
results for different test images are shown. The 4 columns contain, from left to right,
(a). the input image, (b). the ground-truth segmentation mask, (c). the segmen-
tation mask predicted with U-Net + the vanilla RCCA, and (d). the segmentation
mask predicted with U-Net + the regularised RCCA, respectively. Figure taken
from (Rajamani, Srividya Tirunellai, Rajamani, Kumar, and Schuller, 2023)
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5.4 Conclusion

We proposed a novel regularisation of the attention mechanism using additive Gaus-
sian noise. Incorporating this in the chosen U-Net + RCCA framework improves
the segmentation of lung lobes. Through our experiments, we demonstrate that seg-
mentation network become robust and also generate better segmentation results as
compared to the baseline when regularisation is added in a CCNet. Our regularised
attention enables the network to segment the objects of interest with an improved
dice score.

One of the areas of future work is to utilise this regularised attention mechanism
in attention-based classification tasks. Furthermore, other approaches to attention
regularisation as well as changes to noise distribution is an interesting area for futher
exploration.
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Deformable attention

This chapter discusses the research work ”Deformable Attention (DANet) for Se-
mantic Image Segmentation” published in Proceedings of Annual International Con-
ference of the IEEE Engineering in Medicine & Biology Society (EMBC) (Rajamani,
Kumar, Gowda, et al., 2022)

6.1 Motivation

One of the widely researched topic in deep learning is medical image segmenta-
tion. Deep learning methods using attention mechanism have been demonstrated
to improve the performance of semantic segmentation tasks. Criss-cross-attention
module (Huang, Zilong et al., 2019) is one such recent attention based methods that
captures global self-attention and is memory and time efficient as well. However,
the accuracy of semantic segmentation networks could be further improved if atten-
tion is captured from only the relevant non-local locations. Our novel Deformable
Attention Network (DANet) computes contextual information in a more accurate
yet efficient way. In DANet, the query, key and value attention feature maps are
deformed and the deformation is learnt in a continous manner. Using such a de-
formable attention mechanism, a deep segmentation model can capture attention
from important non-local locations. As demonstrated by our experiments, by recur-
sively applying deformable attention blocks within a U-Net, the network is able to
perform better owing to its ability to capture dynamic and precise attention context.

6.2 Novel Deformable Attention Network
(DANet)

Self attention mechanisms have shown great success in recent times. Furthermore,
with their sparse deformable convolutions, Heinrich et al. (2019) demonstrated that
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Figure 6.1: A block diagram of the proposed deformable criss-cross attention module.
In our deformable attention, we have deformed the query, key and value attention
feature maps. Differentiable bi-linear interpolation is used for deformation. Figure
taken from (Rajamani, Kumar, Gowda, et al., 2022)

attention computing blocks viz. query, key and value feature maps do not have to be
regularly structured. Motivated by these research and improvising over criss-cross
attention (Huang, Zilong et al., 2019), we explore spatially-adaptive query, key and
value feature maps. We propose a novel Deformable Attention Network (DANet) for
medical image segmentation which deforms the query, key and value feature maps in
a continuous space. Figure 6.1 contains a block diagram of our proposed deformable
criss-cross attention module. We demonstrate that using this deformable criss-cross
attention module within our custom baseline U-Net architecture improves the seg-
mentation performance. Our proposed deformable criss-cross attention module can
be easily utilized within any state-of-art segmentation network.

We perform experiments by utilising our proposed deformable criss-cross atten-
tion module within a custom U-Net consisting of three blocks each in the down-
sampling and up-sampling path. In every block, batch normalization followed by
2D convolution and ReLLU was done twice. In the down-sampling path, the spatial
dimension of the feature maps is reduced by 2 after every block using max-pooling.
The reverse is done in the up-sampling path where the spatial dimension of the con-
catenated feature maps is doubled using ConvTranspose2d. The feature channels
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in the down-sampling path is increased from 1 to 512 and then decreased similarly
in the up-sampling path. The number of feature channels in the last layer of the
U-Net is set to match the number of label classes for semantic segmentation.

The U-Net’s output from the last down-sampling block (which is the reduced
dimension of the feature maps H) is given as input to the criss-cross attention
module (CCA) (Huang, Zilong et al., 2019). The attention maps need to be small in
order to keep its time and space complexity under control. Therefore, the attention
module is inserted at the bottleneck of the U-Net. The contextual information in
the criss-cross path of each pixel is gathered by the attention module in the original
CCNet (Huang, Zilong et al., 2019). In our proposed deformable attention network,
first, a learnable deformation is used to deform the query, key and value feature
maps. Then, using these deformed attention feature maps, a regular criss-cross
attention is performed. The U-Net’s up-sampling path takes these resulting feature
maps as input.

6.3 Experimental setup and results for medical
image segmentation

We evaluate the performance of our proposed DANet on Chest CT images for
COVID-19 lesion segmentation. In cross-sectional images of CT scans, the usual
signs indicating primitive stages of COVID-19 is ground glass opacities (GGO).
Clinicians are able to effectively treat COVID-19 if these regions can be detected in
cross-sectional images of CT scans. However, automating this detection is important
since detecting is manually is highly time consuming as well as error-prone. Figure
6.2 shows few slices to provide a visual example of how ground-glass opacity lesions
and consolidation lesions can be distinguished in the images.

We conduct our experiments using 2 public COVID-19 CT segmentation
datasets. The first one consists of 100 axial CT images from different COVID-19
patients (MedicalSegmentation.com, n.d.). This data collection is from the Italian
Society of Medical and Interventional Radiology. The second dataset comprises of
axial volumetric CTs of 9 patients from Radiopaedia. This dataset comprises of
whole volumes having both positive (373 positive) and negative slices (455 negative
slices).

On this combined dataset consisting of 471 two-dimensional axial lung CT images
and their segmentations for ground glass opacities (GGO) and consolidation lesions,
we conduct our experiments with 3-fold cross validation. Data from three different
patients plus one third of images from the 100 slice CT stack taken from more than
40 different patients is contained in each fold. The CT images are cropped and
rescaled to 256 x 256 size. Random affine deformations are used to augment the
data during training.
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Figure 6.2: The first row contains a sample slice from one of the dataset and its cor-
responding ground-glass opacity lesion (GGO) marking. The second row contains
another sample slice and its corresponding GGO and consolidation lesion marking.
Dataset from website (MedicalSegmentation.com, n.d.). Figure taken from (Raja-
mani, Kumar, Gowda, et al., 2022)

Training is performed for 500 epochs. Adam optimizer and an initial learning
rate of 0.002 is used. Furthermore, a cyclic learning rate with an upper boundary
of 0.005 is used. Class-weighted cross-entropy loss is used to address the problem of
training from imbalanced data .

We compared our model with two cutting-edge models, namely U-Net and criss-
cross attention (Huang, Zilong et al., 2019) for the infection region experiments and
multi-class labeling. The number of trainable parameters for the U-Net is 611K. For
the U-Net enhanced with criss-cross attention, the parameter count is 847K. Our
proposed variant using deformable CCNet has slightly more parameters of 849K.
The dice score of ground-glass opacities and consolidation as well as the number of
parameters is presented in Table 6.1.

Our proposed DANet method achieves the best competitive Dice score of 0.66
for GGO lesion and 0.55 for consolidation lesion averaged across all the patients. It
outperforms the baseline U-Net model’s Dice score by 4.4% on multi-label segmen-
tation.
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6.3. Experimental setup and results for medical image segmentation

Figure 6.3: Visual comparison of multi-class lung segmentation results. The red
labels indicate GGO and green labels indicate consolidation. Figure taken from
(Rajamani, Kumar, Gowda, et al., 2022)

Table 6.1: Quantitative results (Dice score) of Ground-Glass opacities and consoli-
dation. The results are averaged across multiple folds and multiple runs. The best
results are shown in Blue font.

Model GGO | Consol. | Avg | %Gain | #Params
UNet 0.63 0.52 0.58 - 611.7 K
UNET+CCA | 0.65 0.52 0.59 2.5 847.3K
DANet 0.66 0.55 0.60 4.4 849.7TK
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6.4 Conclusion

We have proposed a novel enhancement to the criss-cross attention module using
deformable attention maps (DANet). When incorporated into the U-Net framework,
our proposed novel DANet considerably improves COVID-19 CT lesion segmenta-
tion.

In this work, the query, key as well as value feature maps have been used to
learn the deformation of the attention maps. An ablation study to analyse these
deformations independently and understand how much they contribute individually
to the performance improvement would be an interesting future work to pursue to
gain further insights.
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Novel metric for image quality
assessment

This chapter discusses the research work ”Novel No-Reference Multi-Dimensional
Perceptual Similarity Metric” published in Proceedings of Annual International Con-
ference of the IEEE Engineering in Medicine & Biology Society (EMBC) (Rajamani,
Srividya Tirunellai, Rajamani, Kumar, Rani, et al., 2022)

7.1 Motivation

In healthcare applications, one of the important aspects is the acquisition of high
quality images. The process of acquisition of medical data using Computed To-
mography (CT), Magnetic Resonance (MR), Ultrasound has seen great strides in
automation. Integration of automated image quality measures into the acquisition
workflow yields significant benefits. However, in the image acquisition workflow, it
is difficult to determine if changes to the acquisition parameters are aiding in the
improvement of image quality or not. For instance, in medical image acquisition us-
ing MR, there are several hundred acquisition parameters that could be potentially
fine-tuned to get the ideal or best quality image and hence the task of automatic
measurement of image quality is challenging.

Some of the commonly used approaches for image quality assessment are Struc-
tural Similarity (SSIM) index (Wang, Zhou, Bovik, et al., 2004), Multiscale Struc-
tural Similarity (MSSIM) index (Wang, Z., Simoncelli, et al., 2003), Functional Sim-
ilarity FSIM index (Zhang, L. et al., 2011), or HDR-VDP (Mantiuk et al., 2011).
Perceptual metric based on deep learning based approach (Zhang, R et al., 2018)
have also been recently proposed. However, in the context of live acquisition of
images where the quality would be continuously changing, these approaches are
insufficient to determine the quality of images. For instance, in MR image acqui-
sition, in order to to achieve optimal image quality, several acquisition parameters
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like image width, depth, image contrast and artifact suppression needs to be opti-
mised. Therefore, the need is to determine if the quality of the image is improving
or not when each of these settings are modified in a automatic and quantitative
manner. However, in such live acquisition scenarios, there is no reference pristine
image quality image that is available.

Having a continuous measure of quality when the acquisition parameters are
modified on each of the axis like noise, blur, contrast would be extremely useful for
the medical imaging community. The design and deployment of artificial intelligence
based algorithms could also leverage such a measure towards the aim of automating
the acquisition process. But it is challenging to arrive at a multi-dimensional quality
metric which is continuous and also representative.

We propose a novel multi-dimensional no-reference perceptual similarity metric.
By combining no-reference image quality metric (PIQUE) and perceptual similarity,
this metric can compute the quality of a given image without a reference pristine
quality image. The axis of noise, blur and contrast are the dimensions of quality
that we have currently taken into consideration. The correlation of our proposed
metric with quality of an image in a multi-dimensional sense is demonstrated by our
experiments.

7.2 Novel No-Reference Perceptual Similarity
Metric

Our proposed method is based on a combination of full-reference image quality as-
sessment (FR-IQA) and no-reference image quality assessment (NR-IQA). During
the acquisition or pre-processing process, the quality of a given image at that in-
stance is determined through the no-reference image quality assessment. When a
particular acquisition parameter is modified, if there is an improvement in the no-
reference image quality metric, then this is considered to indicate that the original
image was degraded due to that particular aspect, in the first place. A distortion
correction technique is applied when a degradation in a particular dimension/axis
is discovered to obtain a best-possible pristine image. For the full reference image
quality assessment, this pristine image is used as the good quality reference.

The no-reference perception-based image quality evaluator (PIQUE) is used as
our NR-IQA in this work. Learnt Perceptual Image Patch Similarity (LPIPS)
(Zhang, R et al., 2018) is used for perceptual similarity. However, our proposed
concept could also be used with any other NR-IQA or FR-IQA. Furthermore, it can
be easily extended to diverse types of distortions other than noise, blur, or contrast
as introduced in TID2013 (Ponomarenko et al., 2015) or the BAPPS dataset (Zhang,
R et al., 2018).
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Figure 7.1: Schematic for computation of proposed novel NR-PSIM score. Figure
taken from (Rajamani, Srividya Tirunellai, Rajamani, Kumar, Rani, et al., 2022)

Figure 7.1 contains the schema of our proposed NR-PSIM. First, a no-reference
image quality metric is computed for a given input image. Based on a pre-defined
threshold @)y, if the score indicates poor image quality the image is restored through
techniques like de-noising, de-blurring, contrast enhancement, etc. The threshold
itself is empirically determined based on the problem domain. Next, we check if
this results in an improvement compared to the original image’s baseline score, by
computing the NR-IQA of the restored image. The restored image is used as the
pristine image quality for our NR-PSIM computation, if the score indicates that the
restored image’s quality has improved. By using the restored image as reference and
the baseline image as the distorted image, our proposed NR-PSIM is computed as
full-reference image quality metric (FR-IQA). In this work, we use PIQUE as the
NR-IQA and LPIPS as the FR-IQA. For each of the potential degradation scenarios
like noise, blur, contrast, the metric of the restored image is computed and then
aggregated to arrive at the final multi-dimensional NR-PSIM score.
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Figure 7.2: Graph of the LPIPS scores (pristine, distorted) vs our proposed NR-~
PISM scores. Figure taken from (Rajamani, Srividya Tirunellai, Rajamani, Kumar,
Rani, et al., 2022)

7.3 Experimental setup and results on generic
and medical images

7.3.1 Datasets

e Tampere Image Database 2013 (TID2013) The Tampere Image Database
2013 (TID2013) is a reference database for full-reference image visual quality
assessment metrics evaluation. It has 25 input images with 24 distortions
types, each sampled at 5 levels, resulting in 3000 distortions in all. It has 500k
judgments on these 3000 distortions. In this work, for our experiments, we
utilise all the 5 levels of distortions for 3 distortion types, namely, additive
Gaussian noise, Gaussian blur and contrast change for one of the reference
image, i21.bmp.

e MR dataset MR Brain images' is also used for conducting our experiments.
We perform similar experiments on this dataset by inducing different levels
of distortion using Gaussian noise and Gaussian blur. This is mainly because
there are no reference datasets similar to TTD2013 that is available for medical
images to benchmark image quality.

7.3.2 Results and discussion

We conduct experiments with additive Gaussian noise, Gaussian blur as well as con-
trast change. To recover Gaussian noise, we use median filter. Blind de-convolution
is used to recover Gaussian blur. Flat-field correction method is used to recover con-
trast. Table 7.1 presents our proposed NR-PSIM scores in the context of additive
Gaussian noise. For the given input image, distortion level 1 having a NR-PSIM

Thttps:/ /www.kaggle.com /sartajbhuvaji/brain-tumor-classification-mri
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NR-PSIM score: 0.557 NR-PSIM score: 0.560 NR-PSIM score: 0.574

Figure 7.3: High-quality, medium-quality and low-quality MR-Brain images dis-
torted with Gaussian noise and the corresponding NR-PSIM scores. Figure taken
from (Rajamani, Srividya Tirunellai, Rajamani, Kumar, Rani, et al., 2022)

Table 7.1: PIQUE and NR-PSIM score for TID2013 image: 5 levels of distortion
with additive Gaussian noise; de-noising done with median filter

Distortion PIQUE score: PIQUE score: Proposed
level distorted image | de-noised image | NR-PSIM score
1 33.5712 25.2716 0.238
2 40.7428 21.8926 0.259
3 48.3527 16.2969 0.299
4 55.6393 12.9928 0.346
5 61.1238 10.0932 0.432

score of 0.238 and level 5 having a score of 0.432 demonstrating the good correlation
between the computed NR-PSIM scores and the level of distortion in the image.

Results of our Gaussian blur experiments is presented in Table 7.2. Results of our
contrast correction is detailed in Table 7.3. As can be seen from the PIQUE scores
of the distorted images, the 5 levels of distortion in contrast are not in progressive
levels of distortion. Our NR-PSIM scores also reflect the same. Using the pristine
image as reference, we also compute LPIPS score to demonstrate the similarity in
trend of our NR-PSIM scores. The joint plot of LPIPS and NR-PSIM scores for
each of noise, blur and contrast depicted in Figure 7.2 demonstrates this.

The results of our Gaussian blur experiments on MR brain image are presented in
table 7.4. The correlation between the distortion (blur) levels in the input image and
the NR-PSIM scores can be observed here as well. Figure 7.3 depicts the computed
NR-PSIM scores for high-quality, medium-quality and low-quality MR brain image
distorted with Gaussian noise.
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Table 7.2: PIQUE and NR-PSIM score for TID2013 image: 5 levels of distortion
with Gaussian blur; de-blurring done with blind de-convolution

Distortion PIQUE score: PIQUE score: Proposed
level distorted image | de-blurred image | NR-PSIM score
1 24.4965 21.4093 0.040
2 35.0990 26.9279 0.028
3 55.1862 51.5675 0.009
4 83.6344 83.1691 0.002
5 92.2498 83.8991 0.002

Table 7.3: PIQUE and NR-PSIM score for TID2013 image: 5 levels of distortion
with contrast change; contrast correction done with flat-field correction

Distortion PIQUE score: PIQUE score: Proposed
level distorted image | contrast-corrected | NR-PSIM score
image
1 19.8784 19.1912 0.644
2 21.0720 20.9462 0.683
3 20.4942 20.3195 0.626
4 27.1940 25.8898 0.714
5 19.3961 19.3659 0.605

7.4 Conclusion

In this work, we propose a novel no-reference multi-dimensional similarity metric,
NR-PSIM. The effectiveness of our NR-PSIM scores against FR-IQA (LPIPS) is
demonstrated. Though currently demonstrated in a limited context, our results
are very promising. Diverse types of distortions as well as combinations of several
distortions could be further experiments to explore.

Currently there are no reference datasets for benchmarking image quality in the
context of medical imaging. It would be immensely beneficial to create a large-
scale reference dataset like TID2013 or BAPPS in the context of medical imaging
to advance image quality related research, especially to improve automated image
acquisition.
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Table 7.4: PIQUE and NR-PSIM score for MR brain image: 5 levels of distortion
with Gaussian blur; de-blurring done with blind de-convolution

Distortion PIQUE score: PIQUE score: Proposed
level distorted image | de-blurred image | NR-PSIM score
1 78.7308 33.1687 0.079
2 80.9443 39.5337 0.129
3 84.6468 42.0443 0.166
4 90.0815 54.1547 0.226
5 91.3957 67.8806 0.248
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Sparse data and attention
networks

This chapter discusses the research work ”Novel Insights of Induced Sparsity on
Multi-Time Attention Networks” published in Proceedings of Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (Ra-
jamani, Srividya Tirunellai, Rajamani, Kumar, Kathan, et al., 2022)

8.1 Motivation

Dealing with sparse irregularly sampled time-series data is an area of active research.
Current deep learning approaches that deal with such data have not explored the
extent to which the input data can be sparse. Our work is based on physiological
time series data in electronic health records that by the its very nature is sparse and
irregularly sampled.

Multi-Time Attention Networks (mTAN) is a recent attention work proposed by
Shukla et al. (2021) that is capable of handling sparse irregularly sampled time-series
data. We induce varying degrees of sparsity and study its effect on the predictive per-
formance of Multi-Time Attention Networks (mTAN). This is done by sub-sampling
the time-series before it is input to the mTAN network. The sub-sampling is done
by using a range of 10 to 90 % while performing our empirical experiments.

The 2 datasets that we use for our experiments are the Human Activity dataset
and Physionet 2012 mortality prediction dataset. On the Human Activity dataset,
with our proposed time-point sub-sampling coupled with mTAN, even with 80 %
lesser time-points for training, the performance is still improved by 2%. On the
Physionet dataset, even with 30 % lesser time-points, our approach achieves compa-
rable performance as the baseline. Thus, when used in tandem with state-of-the-art
networks capable of handling sparse data like mTAN, we demonstrate that time-
series data could be further coarsely acquired. various applications where data
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acquisition and labeling is a significant challenge would significantly benefit from
these insights.

8.2 Methodology

In this section, the recently proposed mTAN network (Shukla et al., 2021) and our
proposed methodology are presented. Sub-sampling a sparse and irregularly sampled
time-series before it is provided as input to the mTAN module is our proposed
technique. In order to obtain maximum performance from the subsequent deep
learning inference stages, the input must be sub-sampled to the right extent. We
study and discover this through our empirical experiments.

8.2.1 Multi-Time Attention Network

Shukla et al. (2021) recently proposed a Multi-Time Attention Module (mTAN)
which is capable of transforming sparse and irregularly sampled time series into
a fixed dimensional space. It produces a fixed dimensional representation at the
query time points by taking irregularly sampled time points and corresponding val-
ues as keys and values. Multiple continuous-time embeddings and attention-based
interpolation are used to realise this.

A query time point ¢ and a set of keys and values in the form of a D-dimensional
multivariate sparse and irregularly sampled time series s is provided as input to the
multi-time attention embedding module mT' AN (¢, s). By leveraging a continuous-
time attention mechanism applied to the H time embeddings, it returns a J-
dimensional embedding at time ¢. This is formulated as follows:

H D
mTAN(t,S)[]] = ZZZi’hd(t,S) . Uhdj7 (81)
h=1 d=1
where univariate continous-time functions is represented by 2,4 and the learnable
weights are represented by Ujg;. Further details can be found in Shukla et al. (2021).
Since this module defines a continuous function, in neural network architec-
tures that expect fixed dimensional vectors as input, that this module cannot be
directly used. Shukla et al. (2021) therefore propose the discretised mTAN mod-
ule (mTAND) to addresses this aspect. In any deep neural network layer that has
convolution and recurrent layers, the discretised mTAN module (mTAND) can be
used to input sparse and irregularly sampled multivariate time series data. Our pro-
posed technique of sub-sampling is incorporated into a temporal encoder-decoder
architecture that leverages the mTAND module.

82



8.2. Methodology

[ b ]—o[ Class ]
B

lzilr,s) g ;(z2]r28) g a(zk Twos)

latent state

- —

—

variational
distribution

-—
-

Linear ]

[
Bi-directional RNN ]
r=lm, ..., il encoder mTAND /

reference points I I ttt ]
Sub-sampling ]

A IS

encoder RNN

-
«®

Irregularly sampled
time series

x(t)  x(t)

Figure 8.1: Our proposed inference network with time-series sub-sampling of in-
put passed to the mTAND-Enc network. Figure taken from (Rajamani, Srividya
Tirunellai, Rajamani, Kumar, Kathan, et al., 2022)

8.2.2 Novel insights into attention networks and data spar-
sity

For the task of time-series interpolation and classification, Shukla et al. (2021)
utilised their mTAND module within a temporal encoder (mTAND-Enc) to effec-
tively represent sparse and irregular sampled time series. What has not yet been
explored is the effect of the inherent redundancy in the input data. the predictive
performance of mMTAND-Enc network when the input is having varying degrees of
data sparsity is what we explore in this work. As depicted in Figure 8.1, we perform
this analysis by introducing a pre-processing step of sub-sampling the time-series
training data in order to induce sparsity. Random locations are chosen from among
those time-points that have measurements for this sub-sampling. The data dimen-
sions provided to the network needs to be retained. Hence, the remaining time-points
are retained but set to 0 instead of being excluded. Varying levels of such induced
sparsity ranging from 10 to 90 percent is used in our empirical experiments.
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8.3 Experimental setup and results on sparse

time-series data

The results of the classification experiments on two real-world data sets, Human
Activity and the Physionet Challenge 2012 datasets, by using our proposed approach
is presented in this section.

8.3.1 Datasets

e Human Activity dataset

5 activity sequences each from 5 individuals is contained in this dataset ®.
While they performed various activities like walking, sitting, lying, standing,
etc, the 3D positions of the waist, chest and ankles were collected. The same
data preprocessing steps as mentioned by Rubanova et al. (2019) is followed in
our experiments. 6554 sequences with 12 channels and 50 time points is used
to construct the dataset. We use seven activity types “falling”, “lying”, “on all
fours”, “sitting”, “sitting on the ground”,“standing up” and “walking”. This
is done by combining classes out of the 11 original classes that correspond to
very similar activities and hence hard to distinguish. Each time point in the
sequence needs to be classified into one of these seven classes.

Physionet Challenge 2012 dataset

Multivariate time series data extracted from intensive care unit (ICU) records
is contained in this dataset (Silva et al., 2012). Sparse and irregularly spaced
measurements from the first 48 hours after admission to ICU is contained in
each record. To pre-process the data, we follow the same procedure as that
of Rubanova et al. (2019). There are 2880 possible measurement times per
time series by rounding the observation times to the nearest minute. In order
to predict the in-hospital mortality, we use the 4000 labelled instances of this
dataset for classification experiments. The dataset is randomly divided into
a training set containing 80 % of the time series and a test set containing the
remaining 20 % of instances. 20% of the training set is used for validation.
Using different random seeds to initialise the model, each experiment is re-
peated five times and the mean and standard deviation over these 5 runs is
reported.

thttps://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+

Activity
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Table 8.1: Classification Performance on Human Activity dataset and % Reduction
in time-points for training.

Model % Reduction Accuracy
mTAND-Enc (Shukla et al., 2021) - | 0.907 = 0.002
10 % time-point sampled data 90 0.915 4+ 0.004
20 % time-point sampled data 80 | 0.927 + 0.002
30 % time-point sampled data 70 0.926 + 0.003
40 % time-point sampled data 60 | 0.924 £ 0.002
50 % time-point sampled data 50 0.922 + 0.003
60 % time-point sampled data 40 0.9214 0.001
70 % time-point sampled data 30 0.918 + 0.004
80 % time-point sampled data 20 0.914 + 0.006
90 % time-point sampled data 10 0.908 £ 0.006

8.3.2 Results and discussion

The classification performance on the Human Activity dataset is summarised in
Table 8.1. The classification performance on the Physionet Challenge 2012 dataset
is presented in Table 8.2. In each table, the results of the baseline mTAND-Enc
network is reported in the first row. The results of our proposed approach of sub-
sampling the time-series before feeding it to the mTAND-Enc network is presented
in the remaining rows using various sub-sampling rates ranging from 10 to 90 %.
For the Human Activity dataset, we report the classification accuracy in accordance
with previous works. Due to the inherent class imbalance in the dataset, for the
Physionet dataset, we report the Receiver Operating Curve (ROC) — Area Under
Curve (AUC).

The best performance for the Human Activity dataset is observed with 80 %
lesser time-points, where the accuracy is boosted by 2 %. Performance comparable
to the baseline is obtained with 30 % lesser time-points for the Physionet dataset
using our proposed sub-sampling approach.

Every data point is vital in healthcare outcome prediction. Our novel discov-
ery is that even in such mission critical applications, one could obtain comparable
performance even with 30 % lesser time-points in the data. This opens up the possi-
bility to acquire data in a more efficient and sparse manner which could potentially
be a game changer for future work in this space. To get the best performance from
time-series based deep learning models, already acquired data could also be aptly
sub-sampled.
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Table 8.2: Classification Performance on Physionet dataset and % Reduction in
time-points for training.

] Model % Reduction AUC
| mTAND-Enc (Shukla et al., 2021) - | 0.854 £ 0.001
10 % time-point sampled data 90 0.823 + 0.005
20 % time-point sampled data 80 | 0.843 + 0.006
30 % time-point sampled data 70 | 0.845 &+ 0.002
40 % time-point sampled data 60 0.841 £ 0.007
50 % time-point sampled data 50 0.848 + 0.006
60 % time-point sampled data 40 0.847 + 0.004
70 % time-point sampled data 30 | 0.854 + 0.001
80 % time-point sampled data 20 0.852 4+ 0.003
90 % time-point sampled data 10 | 0.854 + 0.001

8.4 Conclusion

The effectiveness of inducing sparsity in time-series data is demonstrated for the
task of classification on two different datasets when used in combination with the
recent mMTAN network. Time-series data can therefore by coarsely acquired. In
scenarios where data acquisition and labelling is a major challenge, this would be of
great benefit. As demonstrated in our experimental results on the Human Activity
and Physionet datasets, our approach could be utilised to further sub-sample a
sparse and irregular time-series data before interpolating and classifying using an
mTAND-like module in scenarios where the data is already acquired.

The level of sub-sampling for each classification task is currently determined
empirically. One of the directions for future research is to explore more sophisticated
sub-sampling techniques such as wavelet-based schemes. Learning the sparsity level
in a dynamic and task specific way is yet another interesting area to explore (Huijben
et al., 2019; Van Gorp et al., 2021).
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9

Model complexity reduction using
attention

This chapter discusses the research work ” Towards an Efficient Deep Learning Model
for Emotion and Theme Recognition in Music” published in Proceedings of the
Annual IEEE International Workshop on Multimedia Signal Processing (MMSP)
(Rajamani, Srividya Tirunellai, Rajamani, Kumar, and Schuller, 2021).

9.1 Motivation

Developing deep learning models that are efficient and can be deployed to resource
constrained hardware is an area of active research. Towards the aim of reducing
the number of floating point operations per second (FLOPS) and model parameters
through optimum network configurations, we propose a novel integration of stand-
alone self-attention into a Visual Geometry Group (VGG)-like network. Detecting
emotion and theme in music is one of the important aspects in music information
retrieval and recommendation systems and deep learning based techniques have
demonstrated great potential in this regard. We demonstrate the effectiveness of our
proposed self-attention based VGG-like network (SA-VGG) for multi-label emotion
and theme recognition in music.

9.2 Baseline architecture

Bogdanov, Porter, et al. (2020) demonstrated that a VGG-like architecture is well-
suited for the task of music tagging. This network had five 2D convolutional layers
with a kernel size of 3 x 3. Each convolution layer was followed by max-pooling
layer. A fully connected layer was used as the final layer. A log-amplitude mel-
spectrogram is used as to this network. In every convolutional layer except the
output layer, Exponential Linear Unit (ELU) is used as the activation function. In
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Mood/theme
prediction

Music Track Mel-spectrogram SA-VGG network

Figure 9.1: Overview of our approach for Emotion and Theme Recognition in Music.
Figure taken from (Rajamani, Srividya Tirunellai, Rajamani, Kumar, and Schuller,
2021)

the output layer, sigmoid activation is used to squeeze the output within [0, 1].
After every convolution and before activation, batch normalisation is added. The
loss function used is binary cross entropy function. We utilize this proven VGG-like
architecture as the baseline architecture. We contribute towards optimising this
network by reducing the number of trainable parameters and FLOPS through a
novel integration of stand-alone self-attention network elements.

9.3 Novel self-attention based VGG-like network
(SA-VGG)

Figure 9.1 provides an schematic of our approach for emotion and theme recognition
task in music. Figure 9.2 describes our novel SA-VGG network. In order to achieve
maximum reduction in number of FLOPS and model parameters but still retaining
the network performance, we optimally integrate a series of convolution layers and
self-attention layers. At the end, dense connections are used. Prior research has
recommended that the input should be sufficiently down-sampled before applying
self-attention since the input size and the amount of memory required to hold the
activations are proportional. However, though the input would be down-sampled
the most at the final layers, applying self-attention here would miss out on modeling
the long-range dependencies sufficiently. In order to obtain the optimum trade-
off between performance and resource efficiency, we extensively experiment with
various configurations for integration. We demonstrate that our SA-VGG that uses
self-attention in the middle layers yields the most optimal integration. Not only
does this configuration result in best gains in terms of model optimisation but also
improves the performance. Our experiments results performed on the 5-layer VGG-
like baseline network are described in Section 9.4.
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Figure 9.2: Our proposed novel self-attention based VGG-like Network (SA-VGG)
for automatic tagging. Figure taken from (Rajamani, Srividya Tirunellai, Rajamani,
Kumar, and Schuller, 2021)

9.4 Experimental setup and results on music
emotion recognition

9.4.1 Data

We conduct our experiments on the autotagging-moodtheme subset of the MTG-
Jamendo dataset (Bogdanov, Won, et al., 2019). This dataset is used in the Emo-
tions and Themes in Music Task of MediaEval challenge (Bogdanov, Porter, et
al., 2020). Audio data from Jamendo!, an open community of independent artists
and music lovers, and made available under Creative Commons licenses is used
as the basis to build the MTG-Jamendo dataset. The audio quality level is en-
sured to be consistent with commercial music streaming services. Basic technical
quality assessment is also ensured. The dataset contains curated music which is
is closer to commercial music collections with over 55000 high quality full-length
audio tracks. It is labeled with 195 tags from the categories of genre, instrument,
and mood/theme. With a median track duration of 224 seconds, the audio tracks
are encoded as 320 kbps MP3. In our experiments, we use the split-0 subset. This
comprises of 18486 audio tracks with mood and theme annotations.

Mood annotations are used as a proxy in this dataset to understand the emo-
tions conveyed by the music. The appropriate context for listening to the music or
the concept or meaning that is sought to be conveyed by the artist with the mu-

thttps:/ /jamendo.com
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sic is described through themes. The task is one of multi-label classification where
each track is labeled with atleast one or more of the 56 distinct mood/themes tags.
A train-validation-test split of 60-20-20 % is considered. Mel-spectrogram repre-
sentation of each audio track is used as input. This transformation is done using
the ESSENTTA library with 12 kHz sampling rate, 256 FFT bins, 256 samples
hop-size and 96 mel-bands(Bogdanov, Wack, et al., 2013). 1400 time bins of the
Mel-spectrogram of each track is considered as input. For tracks shorter than 1400
time bins, looping/repetition is done to ensure that the track length used as input
to the model is of the same size.

9.4.2 Experimental setup and results

We empirically determine the best location for the optimal usage of self attention in
the baseline architecture comprising of 5 convolution layer VGG-like network. Our
experiments included evaluating the use of self-attention in different layers of this
network, comprising of:

e Self-attention in individual layers
e Self-attention in multiple layers with different combinations
e Self-attention in all layers

We focus our experiments on combinations involving the layers other than the
first layer since using self-attention in the first layer requires significant amount of
memory to hold the activations but only results in minor reduction in number of
parameters or FLOPS.

A mixed optimisation approach introduced by (Won et al., 2019) is used to
ensure generalisation. For the first 25 epochs, ADAM with a learning rate of 1le — 4
is used. For the next 3 epochs, stochastic gradient descent (SGD) with a learning
rate of 1le — 3 is used. After that, SGD with a learning rate of le — 4 is used. The
model that is saved with the best Area Under the Receiver Operating Characteristic
curve (ROC-AUC) is loaded at every switch point. Training is done for a maximum
of 100 epochs. We use early stopping if the validation ROC-AUC does not increase
for over 35 epochs. In all our experiments, the best model was learnt within 30
epochs. We report ROC-AUC as well as PR-AUC. This is because, when the data
is unbalanced as in our case, ROC-AUC can result in over-optimistic scores (Davis
et al., 2006). The average PR-AUC is low since sparse tags report extremely poor
PR-AUC.

The results of our experiments is summarised in Table 9.1. A minor reduction in
number of parameters (.06 %) and number of FLOPS (3 %) but also a slight drop in
performance is observed when using self-attention in Layer 1 alone. An improvement

in the ROC-AUC and PR-AUC with 22 % fewer parameters and 11 % fewer FLOPS
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‘ Model ‘ # Parameters % Reduction ‘ Giga FLOPS % Reduction ‘ ROC-AUC ‘ PR-AUC
VGG-like baseline (Bogdanov, Porter, et al., 2020) | 448122 - 3.32 - 725 | 107 |
Self-attention in Layer 1 447 866 .06 3.22 3 724 .103
Self-attention in Layer 2 399 226 11 1.74 48 723 105
Self-attention in Layer 3 350074 22 2.94 11 .730 118
Self-attention in Layer 4 350074 22 3.28 1 724 110
Self-attention in Layer 5 399098 11 3.32 0 716 101
Self-attention in Layers 2 and 3 301178 33 1.36 59 731 113
Self-attention in Layers 3 and 4 252026 44 2.9 13 725 114
Self-attention in Layers 4 and 5 301050 33 3.28 1 17 .098
Self-attention in Layers 2 and 4 301178 33 1.7 49 731 114
Self-attention in Layers 3 and 5 301050 33 2.94 11 725 .108
Self-attention in Layers 2, 3 and 4
(Proposed SA-VGG network) 203130 55 1.32 60 726 .110

‘ Self-attention in Layers 3, 4 and 5 203002 55 2.9 13 714 .099

[ Self-attention in Layers 1, 2, 3,4 and 5 \ 153850 66 | 12 64 694 | 079]

Table 9.1: Results on the MediaEval Emotions and themes in Music dataset (subset
of the MTG-Jamendo dataset)

is observed when using self-attention in Layer 3 alone. An improvement in the
ROC-AUC and PR-AUC with 33% fewer parameters and 59% fewer FLOPS is
observed when using self-attention in Layers 2 and 3. A drop in ROC-AUC by
4% and PR-AUC by 26 % is observed when self-attention in used in all layers even
though this is the most efficient in terms of number of trainable parameters (fewer
by 66 %) and number of FLOPS (fewer by 64 %). Our proposed SA-VGG network
uses self-attention in Layers 2, 3 and 4. This results in improvement of PR-AUC
and ROC-AUC with 55 % fewer parameters and 60 % fewer FLOPS.

The results demonstrate that though replacing every convolution layer with self-
attention layer in a VGG-like network is the most efficient in terms of number of
parameters and FLOPS, it is not optimal due to the significant drop in performance.
Also, no significant reduction in number of parameters or FLOPS is observed when
using self-attention in the first layer or in the last layer.

9.5 Conclusion

We proposed a novel self-attention based SA-VGG network. Further, its effectiveness
for multi-label emotion and theme recognition in music is demonstrated. Especially
when executing the model inference on mobile device or other resource constrained
computing hardware, the computational efficiency of this network becomes particu-
larly relevant. It can also be applied to other music information retrieval tasks like
genre classification or rhythm classification, since the proposed architecture is not
task specific.

One of the directions for future work is the dynamic determination whether each
layer of any network should use convolution or self-attention to achieve optimum
balance between model complexity and performance.
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9. Model complexity reduction using attention

Currently, one single headed self attention is used in the proposed SA-VGG
network. A future area to explore is analysing the effect of using multiple attention
heads to learn multiple distinct representations of the input. Furthermore, the
effectiveness of other attention-based techniques like Convolutional Block Attention
Modules (CBAMs) (Woo et al., 2018) and attention augmented convolution (Bello
et al., 2019) for this task is to be evaluated.
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10
Attention-based Gated Recurrent
Unit

This chapter discusses the research work ” A Novel Attention-Based Gated Recurrent
Unit and its Efficacy in Speech Emotion Recognition” published in Proceedings
of Annual International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (Rajamani, Srividya Tirunellai, Rajamani, Kumar, Mallol-Ragolta, et
al., 2021).

10.1 Motivation

The basic long short-term memory (LSTM) or Gated Recurrent Unit (GRU) units
have predominantly remained unchanged despite significant advancements in deep
learning. By rightly adapting and enhancing the various elements of these units, it is
possible to advance the state of the art. One such key element is activation functions.
The use of diverse activation functions within GRU and bi-directional GRU (BiGRU)
cells in the context of speech emotion recognition (SER) is explored. We also propose
a novel Attention ReLU GRU (AR-GRU). Here, an attention-based Rectified Linear
Unit (AReLU) activation(Chen et al., 2020) is used within GRU and BiGRU cells.
Using the recently proposed network for SER namely Interaction-Aware Attention
Network (IAAN) (Yeh et al., 2019), we demonstrate the effectiveness of AR-GRU
on one exemplary application.

10.2 Novel Attention based Gated Recurrent
Unit (AR-GRU)
The classical activation function used in conventional GRUs is Hyperbolic Tangent

(tanh). Using the tanh activation function has inherent advantages but it is suscep-
tible to the vanishing gradient problem.
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Figure 10.1: Our novel AR-GRU architecture: The classical tanh activation in a
GRU is replaced by an Attention-based Rectified Linear Unit. Figure taken from
(Rajamani, Srividya Tirunellai, Rajamani, Kumar, Mallol-Ragolta, et al., 2021)

Attention mechanism is one of the recent techniques in deep learning that has
demonstrated significant improvements. One such realisation of a learnable atten-
tion mechanism in activation functions is Attention-based ReLU (Chen et al., 2020).
We propose an Attention ReLU activation based GRU unit described in Figure 10.1.

When attention-based ReLLU is integrated within GRUs, it helps to capture long
range interactions among the features. In speech recognition and more so in speech
emotion recognision, capturing long range interactions plays an important role. This
is mainly because of the supra-segmental nature of the phenomenon. Therefore, the
performance of SER systems is improved through the use of AReLU-GRU which
helps to capture these dependencies. Furthermore, the problem of vanishing gradient
is also addressed.

10.3 Experimental setup and results on speech
emotion recognition

10.3.1 Dataset Description

Using the IEMOCAP dataset (Busso et al., 2008), we conduct experiments to ex-
amine the effectiveness of the different activation functions in GRU and BiGRU
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in the context of Speech emotion recognition (SER). In the field of SER research,
IEMOCAP dataset is a benchmark dataset that is widely used. This dataset con-
tains conversations of 10 speakers. It comprises of five sessions where each session
involves two speakers engaging in different conversational scenarios during their di-
alogue. A four emotion class classification, i.e., anger, happiness, sadness, and
neutral, is performed using 5531 utterances, where happiness and excitement are
considered together as happiness, in order to compare with previous baseline per-
formances. These four emotion classes have the following distribution in the 5531
utterances: anger: 19.9 %, happiness: 29.5 %, neutral: 30.8 %, and sadness: 19.5%.

10.3.2 Experimental Setup

The baseline model on which our empirical experiments of using different activa-
tion functions within GRU and BiGRU is done is the interaction-aware attention
network (IAAN) (Yeh et al., 2019). IAAN models the emotion of the current utter-
ance by utilising the contextual information and affective influences from previous
utterances. The current utterance of the speaker is handled through a BIGRU. The
preceding utterances of the speaker and the interlocutor is handled through two
GRUs. The openSMILE toolkit (Eyben et al., 2010) with the Emobase 2010 Config
is used to extract the acoustic low-level descriptors (LLDs) as well as features such
as Mel-Frequency Cepstral Coefficients (MFCCs), pitch, and their statistics in each
short frame of an utterance.

We experiment using non-learnable and learnable activation functions within
the GRU and BiGRU cells of the TAAN. Using both unweighted accuracy (UA) and
weighted accuracy (WA), we evaluate the performance. Our experiments were done
using 5-fold leave-one-session-out (LOSO) cross validation and early stopping based
on the performance on validation set in every 100 training epochs.

10.3.3 Experimental Results

The performance of our proposed method is compared with the following previous
baseline networks:

BiLSTM+ATT (Mirsamadi et al., 2017): A BiLSTM network that uses an
attention-based pooling layer on frame-level features.

MDNN (Zhou, Suping et al., 2018): A multi-path deep neural network compris-
ing of several local classifiers and a global classifier.

TAAN(Yeh et al., 2019): A GRU based network which incorporates the influence
of contextual information between interlocutors within a transactional frame using
interaction-aware attention.

As detailed in the Methodolody section, discovering the ideal integration of di-
verse activation functions within the GRU cell such that its performance is enhanced
is the main novelty of our work.
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AReLU parameters

Model alpha beta | X UA % WA
BiLSTM +ATT Mirsamadi et al. (2017) - - 58.8 63.5
MDNN Zhou, Suping et al. (2018) - - 627 61.8
TAAN Yeh et al. (2019) - - 66.3 64.7
R-GRU based network (I) Experiment 1 - -| 67.7 6538
AR-GRU based network (I) | Experiment 2 0.9 20| 357 387
AR-GRU based network (II) | Experiment 3 0 20| 663  64.7
AR-GRU based network (III) | Experiment 4 0.01 -4.0| 669 654
AR-GRU based network (IV) | Experiment 5 0.01 20| 679  66.6
AR-GRU based network (V) | Experiment 6 : Proposed method | 0.01 1.0| 68.3 66.9

Table 10.1: The performance of the proposed models in comparison to state-of-
the-art (upper part) and different network variants (lower part) on the IEMOCAP
corpus for 4-way SER. UAR chance level resembles 25 %.

Table 10.1 presents the results on the baseline state-of-the-art networks and from
all our diverse experiments for comparison. The results of our novel integration of
ReLU activation units within the GRU cells (R-GRU) is first presented. Then we
present the results of using AReLLU as a learnable activation within GRU, detailing
five different variants of integrating AReLU within GRU (AR-GRU).

Detailed description of the experiments and results are presented in (Rajamani,
Srividya Tirunellai, Rajamani, Kumar, Mallol-Ragolta, et al., 2021).

10.4 Conclusion

Our novel AR-GRU based network with an alpha of 0.01 and beta of 1 improves
the performance of GRU for the considered task of speech emotion recognition.
This proposed approach is also generalisable to other applications, such as other
speech-related tasks or Natural Language Processing (NLP) tasks.

One of the directions for future research is to experiment with other activation
functions within GRU. Several non-learnable activations like EELU (Kim et al.,
2020), Mish (Misra, 2020), and learnable activations such as Comb (Manessi et
al., 2018) and PAU (Molina et al., 2020) have been recently proposed in the area of
activation function. An interesting area to explore is to conduct a comparative study
on the usage of such learnable and non-learnable activations within GRU. Based on
our experimental findings that a small contribution of the negative values aids in
getting improved results, the usage of non-learnable activation functions like Leaky
ReLU as well as other learnable activations that handle negative values similar to
AReLU could also be evaluated to analyse the impact on accuracy.
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11

Concluding Remarks

11.1 Summary

This thesis explores deep learning methods for health data. The use of deep learning
in healthcare and well-being is discussed, highlighting its impact on disease diagnosis,
medical image analysis, and emotion analysis. It contributes several enhancements
to attention mechanisms in image and signal analysis tasks. It proposes a novel
integration of self-attention into a VGG-like network, a gated recurrent unit (GRU)
module with attention for speech emotion recognition, and methodologies for image
quality assessment and sparse time-series data acquisition. The thesis also addresses
challenges in medical image segmentation such as handling of corner cases where the
model outcome could be significantly erroneous for few subjects. Further, it aims
to improve the performance, robustness, and efficiency of deep learning models in
health data analysis.

Deep learning based medical image segmentation is one of the key areas for
which explore avenues for improving its performance as well as other factors that
are important for its utilisation in clinical practice. One of our key contribution is
the identification of corner-cases in deep-learning based medical image segmentation
methods. Additionally, a framework to address them is proposed. Potential reasons
for the segmentation model to under-perform on corner cases are discussed by also
taking into account clinical insights gained on few of these cases. Furthermore,
two different approaches for checkpoint determination based on least-loss as well
as highest IoU during model training are compared. Potential other approaches
for handling corner-cases, such as adding more data with similar characteristics or
refining the ground truth are also discussed.

Towards improving the robustness of segmentation methods, a novel regulari-
sation technique using additive Gaussian noise in the attention mechanism of the
U-Net + RCCA framework for lung lobe segmentation is introduced. This regular-
isation is shown to not only improve the robustness but also improve performance
of segmentation models. This is the first time such a regularisation technique has
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been proposed in the criss Cross attention network (CCNet) for medical image seg-
mentation.

For improving the accuracy of semantic segmentation in medical images, we pro-
pose Deformable Attention Network (DANet). By integrating the DANet into the
U-Net architecture, the model captures attention from relevant non-local locations,
resulting in enhanced segmentation performance compared to the criss-cross atten-
tion mechanism. The DANet achieves this by learning the deformation of the query,
key, and value attention feature maps in a continuous space. This allows the network
to dynamically and precisely determine the locations from which to obtain non-local
attention, leading to better segmentation results.

For determining image quality, a multi-dimensional no-reference perceptual sim-
ilarity metric is proposed, which can be particularly useful in medical imaging where
a good quality reference image may not always be available. The proposed metric
combines no-reference image quality metric (PIQUE) and perceptual similarity and
explores the dimensions of quality in the axis of noise, blur, and contrast. The ex-
periments show that the proposed metric correlates very well with the quality of an
image in a multi-dimensional sense. The unique challenge in quality determination
in image acquisition workflows is also highlighted, where it is difficult to ascertain if
a certain acquisition parameter is aiding in improving or worsening the final image
quality. The proposed metric can help determine if a particular acquisition process
or image pre-processing step is positively or negatively impacting the quality of the
image.

In the context of time-series data, we demonstrate the effectiveness of inducing
sparsity in time-series data for the task of classification when used in tandem with
the recent multi-time attention (mTAN) network that is capable of learning from
sparse and irregular data. The proposed approach of coarsely acquiring time-series
data could be of immense help for various applications where data acquisition and
labeling is a significant challenge.

Further, we explore using diverse activation functions within GRU and bi-
directional GRU cells and propose a novel Attention ReLU GRU (AR-GRU) that
employs attention-based Rectified Linear Unit activation. The effectiveness of AR-
GRU on speech emotion recognition using the Interaction-Aware Attention Network
is demonstrated.

11.2 Future work

One of the future directions for research is to leverage our proposed corner case
detection framework for medical image analysis tasks other than medical image seg-
mentation. Instance segmentation is one such task that is closely linked to semantic
segmentation and impact of corner cases on instance segmentation tasks is still to be
explored. Instance segmentation mainly relies on being able to segregate objects of
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the same kind as separate instances. Corner-cases or outliers that are not detected
or handled could significantly impair the performance of instance segmentation al-
gorithms.

Another closely related downstream application of semantic segmentation is ob-
ject tracking. Object tracking relies on the effectiveness of semantic segmentation
at every given frame. Presence of corner-cases even in single frame could impact
the tracking process. Multiple outliers across different frames could only exacerbate
the scenario. Yet another important downstream task of semantic segmentation is
content-based image retrieval. This is generally used to retrieve similar patients
from the existing repository for comparative analysis by radiologists. Presence of
corner-cases could lead to erroneous content-based retrieved images which may fur-
ther impact the diagnostic outcomes. Hence further research is required to analyse
the impact of corner-cases in these applications. Another future area to explore
is the automatic determination of a balanced and optimal checkpoint for medical
image segmentation models based on global optima.

The concept of attention regularisation could also be leveraged in attention-based
classification tasks. Additionally, different noise distributions for regularisation of
attention could be explored. Several new enhancements for attention are being
proposed by researchers in recent times. One of the recent works has been to ex-
plore linear complexity for the attention blocks. These linear complexity attention
blocks could be further regularised using our proposed approach. In the context of
deformable attention, further exploration into the contribution of individual defor-
mations of the query, key, and value feature maps towards performance improvement
is an interesting area to analyse. Conducting an ablation study in this regard could
provide additional insights into the effectiveness of each deformation.

For time-series data, more sophisticated sub-sampling techniques such as
wavelet-based schemes could be explored. Furthermore, the sparsity level for ir-
regular time series data could be learnt in a dynamic and task-specific way. Yet
another exciting area to pursue is to compare the performance of the proposed at-
tention based GRU (AR-GRU) with other types of recurrent neural networks, such
as LSTM as well as exploring the interpretability of the proposed model and investi-
gating how it can be used to gain insights into the underlying mechanisms of speech
emotion recognition.
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Acronyms

ACDC......... Automated Cardiac Diagnosis Challenge
ADAM......... Adaptive Moment estimation
AReLLlU......... Attention based Rectified Linear Unit
AR-GRU....... Attention ReLU Gated Recurrent Unit
AUC........... Area under ROC curve

AVD ........... Average Hausdorff Distance
bAHD.......... Balanced Average Hausdorff Distance
BAPPS ........ Berkeley-Adobe Perceptual Patch Similarity
BiGRU......... Bidirectional Gated Recurrent Unit
BiLSTM ....... Bidirectional Long Short-term Memory
CBAM......... Convolutional Block Attention Module
CCA........... Criss Cross Attention

CNN........... Convolutional Neural Network
CT............. Computed Tomography

COVID-19..... Coronavirus Disease of 2019
DANet......... Deformable Attention Network
DICE.......... Dice coefficient

ECOD ......... Empirical-Cumulative-distribution- based Outlier Detection
ED............. End Diastole

EELU.......... Elastic Exponential Linear Units
EHR........... Electronic Health Record
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Acronyms

ELU ........... Exponential Linear Unit

ES............. End Systole

FC............. Fully Connected

FET ........... Fast Fourier Transform

FLOPS......... Floating-point operations per second
FR-IQA........ Full-Reference Image Quality Assessment
FSIM .......... Feature Similarity

GGO........... Ground Glass Opacity

GRU........... Gated Recurrent Unit

GT............. Ground Truth

HD............. Hausdorff Distance

HDR-VDP..... High Dynamic Range Visible Difference Predictor
IAAN.......... Interaction Aware Attention Network
IEMOCAP..... Interactive Emotional Dyadic Motion Capture
ICU............ Intensive Care Unit

oU............ Intersection Over Union

IQA............ Image Quality Assessment
JAC............ Jaccard Index

kHz ............ kiloHertz

LLD ........... Low Level Descriptors

LOSO.......... Leave One Speaker Out

LPIPS ......... Learnt Perceptual Image Patch Similarity
LSTM.......... Long Short-Term Memory

LV. .. ... Left Ventricle

MDNN......... Multi-path Deep Neural Network
MFCC......... Mel-Frequency Cepstral Coefficients
MP3........... MPEG-1 Audio Layer 3

MR............ Magnetic Resonance

MSSIM......... Mean Structural Similarity

mTAN ......... Multi-Time Attention Network
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Acronyms

MYO .......... Myocardium

NIH............ National Institutes of Health

NLP ........... Natural Language Processing
NR-IQA........ No-Reference Image Quality Assessment
NR-PSIM .. .... No-Reference Perceptual Similarity

PAU ........... Padé Activation Units

PIQUE......... Perception-based Image Quality Evaluator
PR-AUC....... Area Under the Precision Recall (PR) Curve
RCCA ......... Recurrent Criss Cross Attention

ReLU .......... Rectified Linear Unit

RGB........... Red Green Blue

RNN........... Recurrent Neural Network

ROC........... Receiver Operating Curve

ROC-AUC..... Area Under the Receiver Operating Characteristic Curve
RT-PCR ....... Reverse Transcription-Polymerase Chain Reaction Test
RvV............. Right Ventricle

SAUNet........ Shape Attentive U-Net

SA-VGG....... Self-Attention based VGG

SER............ Speech Emotion Recognition
SELU.......... Scaled Exponential Linear Unit

SGD ........... Stochastic Gradient Descent
SSIM........... Structural Similarity

tanh ........... Hyperbolic Tangent

TID............ Tampere Image Database

UA............. Unweighted Average

VGG........... Visual Geometry Group

VLSL........... Very Large Scale Integration
WU............ Weighted Average
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List of Symbols

................. Frequency

................. Real number set
................. Intersection

Y Sum of all samples

................. Standard deviation
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