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Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individ-
ual air pollution exposure in population studies. Few comparisons have however beenmade of the performance
of these methods.
Objectives:Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences
between LUR and DM estimates for NO2, PM10 and PM2.5.
Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised
monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared
LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for
PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20–40 ESCAPE
monitoring sites in each area.

Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual
average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19–0.89), 0.39 (0.23–0.66) and 0.29 (0.22–0.81)
for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. Themedian Pearson R correlation
coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09–0.86) for NO2; 0.58
(0.36–0.88) for PM10 and 0.58 (0.39–0.66) for PM2.5.
Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for
PM10 and PM2.5, with large variability across areas. DMpredicted amoderate to large proportion of themeasured
variation for NO2 but less for PM10 and PM2.5.
© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A large number of epidemiological studies have shown a clear asso-
ciation between long-term ambient air pollution exposure and adverse
health effects (WHO, 2013). Several of these studies estimated individ-
ual air pollution exposures from stationary monitoring data, e.g. by
using the nearest air pollution monitor to represent the pollution in en-
tire cities (Dockery et al., 1993) to more complex approaches including
spatial interpolation and kriging (Brauer et al., 2008; Künzli et al., 2005).
Such methods provide estimates of large-scale spatial differences in air
pollution concentrations, but are less effective in assessing intra-urban
variation particularly when the number of monitoring sites is small. Re-
cent studies have focused on intra-urban variation of air pollution, using
indicators or proxies such as distance to the nearest road as well as
pollutant levels estimated by land use regression (LUR), dispersion
modelling (DM) including Chemical transport models (CTM) and
hybrid models (HEI, 2010).

The LUR method, first developed by Briggs et al. (1997), uses least
squares regression to combine monitored data with Geographic Infor-
mation System (GIS)-based predictor data reflecting pollutant sources,
to build a prediction model applicable to non-measured locations, e.g.
residential addresses of cohort members. LUR modelling has been in-
creasingly used in epidemiological studies because it is relatively
cheap and can be easily implemented on the basis of purpose-
designed monitoring campaigns or routinely measured concentrations
and appropriate geographic predictors of air pollution sources (Hoek
et al., 2008).

DMs are based on detailed knowledge of the physical, chemical, and
fluid dynamical processes in the atmosphere. DMs use information on
emissions, source characteristics, chemical and physical properties of
the pollutants, topography, and meteorology to model the transport
and transformation of gaseous or particulate pollutants through the at-
mosphere to predict, e.g., ground level concentrations (Holmes and
Morawska, 2006; Kukkonen et al., 2012). Gaussian based DMs were
originally developed as air quality management tools but have also
been used in environmental epidemiology to model long-term expo-
sures (Bellander et al., 2001; Wu et al., 2011). Chemical Transport
Models have also been used to model short- and long-term exposure
periods (Hennig et al., 2014). Few studies to date have conducted com-
parisons between LUR and DMs for their performance in estimating ex-
posures (Beelen et al., 2010; Cyrys et al., 2005; Dijkema et al., 2011;
Gulliver et al., 2011; Marshall et al., 2008; Sellier et al., 2014). These
studies included different models, spatial resolution, pollutants and
study areas, factors likely to have contributed to inconsistent findings
within individual studies. As both LUR and DM are applied in epidemi-
ology, there is a need formore comparison studies of thesemethods, ad-
dressing their respective advantages and strengths depending on the
specific air pollution and health-related questions which are sought to
be answered.

We compare LUR and DM to assess spatial variation of annual aver-
age ambient air pollution estimates at residential addresses within the
framework of the European Study of Cohorts for Air Pollution Effects
(ESCAPE), not taking into account population activity patterns or indoor
air pollution. The ESCAPE study developed LUR models to estimate ex-
posure at the residential addresses of cohort participants based on uni-
form monitoring campaigns and uniform modelling approaches in 36
study areas (Beelen et al., 2013; Cyrys et al., 2012; de Hoogh et al.,
2013; Eeftens et al., 2012a,b). To several of these study areas we apply
DM or use existing DM output, allowing for an in depth comparison to
better understand the differences and/or agreements between LUR
and DM estimates for use in epidemiological studies with long-term ex-
posures.We include a range of exposure environments and populations
across Europe, and focus, in particular, on the differences in estimated
exposure at the individual participant level which is most relevant for
interpretation of epidemiological studies.

2. Materials and methods

Weestimated annual average outdoor air pollution concentrations for
NO2 in 13, PM10 in 7 and PM2.5 in 4 of the 36 European cities/areas includ-
ed in the ESCAPE study using both LUR and DM (Umeå region, Sweden;
Stockholm County, Sweden (PM10); Helsinki—Vantaa region, Finland
(PM2.5); Bradford, UK; London, UK (PM10); Netherlands (PM10 &
PM2.5); Ruhr Area (PM10 & PM2.5), Germany; Basel, Switzerland; Geneva,
Switzerland; Lugano, Switzerland (PM10); Rome, Italy (PM2.5); Barcelona,
Spain (PM10); Athens, Greece (PM10)). The selection of study areas was
based on the availability of existing dispersion models. A general discus-
sion of these two modelling approaches is reported elsewhere (Hoek
et al., 2008; Özkaynak et al., 2013).

We conducted several comparisons, depending on the comparability
of the model outputs. The main comparison between the methods was
made at the residential address of cohorts participants (referred to as
LUR-DM). We also compared the DM estimates withmeasured concen-
trations at the ESCAPE monitoring sites. This was an independent vali-
dation, as monitoring data from the ESCAPE sites were not used as
input data in the DM models. Recent studies have documented that
the model R2 and the leave-one out cross-validation R2 overestimate
the predictive ability of LUR models at independent sites (Basagaña
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et al., 2012; M. Wang et al., 2013). Therefore we cannot directly com-
pare the explained variance of the LUR models with the explained var-
iance of the dispersion models. Furthermore, we did not have a
sufficiently large set of independent monitoring data available within
the study areas to serve as an independent test set for both LUR andDM.

2.1. Description of cohorts

We used address locations of cohort participants as the basis for the
LUR-DM comparison by study area. Themajority of cohorts in this anal-
ysis were also used in the ESCAPE health studies: EPIC in Umeå (SE),
SDPP, 60 years cohort, SALT and SNAC in Stockholm (SE), FINRISK in
Helsinki (FI), Born in Bradford (UK), EPIC-Oxford in London (UK),
PIAMA in the Netherlands, Heinz Nixdorf Recall (HNR) study in the
Ruhr area (DE), SAPALDIA in Basel, Geneva and Lugano (CH) and
SIDRIA in Rome (IT). For Barcelona (ES), we chose the larger population
of the ARIBA cohort (n = 8,402), rather than the ECRHS cohort (n =
297) used in ESCAPE. Due to confidentiality, address locations of the
EPIC cohort in Athens (GR) were not available; instead we used 1500
randomly selected addresses across the study area to act as a cohort sur-
rogate. Most of the study areas were large cities and the surrounding
suburban or rural communities; however, some of the cohorts covered
larger regions, such as PIAMA in the Netherlands. In total, we used
112,971 address locations over 13 cohorts.

2.2. Land use regression modelling

The ESCAPE study involved harmonised monitoring campaigns for
NO2 in 36 study areas and PM10/PM2.5 in 20 study areas, as described
in Cyrys et al. (2012) and Eeftens et al. (2012a). In brief, in each study
area ameasurement campaignwas carried out during three 2-week pe-
riods within one year. The complete monitoring period across all study
areas was between 2008 and 2011. Ogawa badges were used for moni-
toring of NO2 and Harvard Impactors were used for monitoring of PM.
Care was taken to select site locations to incorporate relevant intra-
urban spatial variation in traffic and land use characteristics. Adjusted
annual mean concentrations for each site were then estimated with
the aid of measurement data from an all-year running reference site in
an urban background location in each study area.

Based on these measurements, LUR models were developed in each
study area following a standardised approach (Beelen et al., 2013;
Eeftens et al., 2012b). Geographical Information Systems (GIS) predictor
variables were collected for all study areas centrally (EU-wide datasets
including CORINE land cover, EuroStreets road network, altitude and
population density) and locally (traffic data and, where available,
more detailed land cover data). Circular buffers with radii of 25, 50,
100, 300, 500, and 1000 m were used to calculate traffic and road vari-
ables for each monitoring location. For land use and population, buffers
of 100, 300, 500, 1000, and 5000 m were calculated. LUR models were
developed combining the adjusted annual means and the GIS predictor
data in each study area following a stringent set of rules. Linear regres-
sion was performed in a stepwise logical standardised approach, de-
tailed by Eeftens et al. (2012b). Predictors giving the highest adjusted
R2 were subsequently added to the model if they conformed to the di-
rection of effect defined a priori and addedmore than 1% to the adjusted
R2. Final models were checked for p-value (removed when p-value
N0.10), co-linearity (variables with Variance Inflation Factor (VIF) N3
were removed and model rerun) and influential observations (models
with Cook's D N1 were further examined). The final models were eval-
uated by leave-one-out cross validation (LOOCV).

Model structure,modelR2 and LOOCV R2 of the LURmodels in the in-
cluded 13 study areas are shown in Table A.1. LURmodel predictions at
the cohort address were based on predictor values restricted to the
range of observed values at themonitoring sites, in order to prevent ex-
trapolation beyond the range for which the model was developed.
2.3. Dispersion modelling

DM was applied in the 13 study areas by third parties using input
data including traffic flow, road geometry, other non-traffic pollution
sources (e.g. industrial and agricultural sources),meteorological param-
eters and concentrations measured at regional and urban background
sites. In ten of the 13 study areas a Gaussian plume DM was used:
Airviro in Stockholm and Umeå Region; CAR-FMI in Helsinki; ADMS-
Urban in Bradford, London and Barcelona; CAR and Pluim Snelweg
(motorway) in the Netherlands; Pollumap DM 2010 in Basel, Geneva,
and Lugano. Two areas used Eulerian or chemical transport models:
EURAD-CTM in Ruhr area; Flexible Air quality Regional Model (FARM)
in Rome and one used a Computational Fluid Dynamic (CFD) model;
MEMO/MARS-aero in Athens. Information about the DM by study area
is shown in Table 1. Models differed in the sources included (all models
including traffic sources but some additionally including industry and
agricultural sources), the scale of assessment and the representation
of regional background (most used routinemonitoring data). The effec-
tive spatial scale of the receptor-oriented methods depends on several
factors, e.g. the precision of the spatial description of sources and topog-
raphy, and could not be estimated. DM estimates were extracted to the
addresses of the cohorts involved.

2.4. Statistical analyses

Exposure estimates from LUR andDMwere compared at the address
level. We calculated Pearson (R) and Spearman (Rho) correlation
coefficients and show scatterplots of the relationship. The LUR and DM
exposure estimateswere also categorised into quintiles as epidemiolog-
ical studies often use categorical analyses to relax the assumption of a
linear association. Kappa coefficients were calculated to assess the
level of agreement beyond chance. Bland–Altman plots were produced
to further investigate the agreement between the two methods, specif-
ically to test whether the difference between LUR and DM depends on
the absolute concentrations. In addition, the correlation between the
DM estimates and monitored concentrations at the ESCAPE monitoring
sites was calculated (R and Rho) and visualised in scatterplots (DM-
MON).

Statistical analysis was carried out in STATA version 11.0 (StataCorp
LP, College Station, Texas, USA).

3. Results

3.1. Comparison of LUR and DM at address level

Distributions of LUR and DMpredictions at the cohort addresses, the
correlation and Kappa coefficients are shown in Table 2. Fig. 1 shows
scatterplots of LUR and DM predictions.

3.1.1. NO2

LUR and DM estimates of NO2 levels for cohort members were avail-
able for the 13 study areas at a total of 112,971 residential addresses.
The correlation (Pearson R) between LUR and DM estimates of NO2

levels at cohort addresses varied from 0.19 (Athens) to 0.89 (The
Netherlands; Fig. 1, Table 2). The Spearman rank correlation (R) ranged
from 0.21 to 0.90. The median Pearson and Spearman correlation coef-
ficients were 0.75 and 0.77 respectively, indicating overall good agree-
ment. The agreement by quintiles ranged from 24% to 62%. Kappa
statistics ranged from 0.005 to 0.52 (Table 2).

The overall median of estimated NO2 concentrations was slightly
higher for LUR (21.4 μg/m3) than for DM predictions (17.3 μg/m3).
The difference between LUR and DM median estimates was up to
11.9 μg/m3 (Rome; Table 2). In the areaswith the largest differences be-
tween LUR and DM estimates, the DM/CTM modelled an average con-
centration over an area of 0.25–1 km2, in contrast to LUR which
modelled concentrations at individual address (receptor) points. The



Table 1
Details of atmospheric dispersion models used to predict air pollution concentrations in each study area.

Study area Name of
dispersion
model

Type Pollutants Geographical
resolution
output

Year
output

Regional
background

Sources Street
canyon

Reference(s)

Umeå region,
SE

Airviro Gauss
dispersion model

Gaussian plume NO2 50 × 50 m 2010 Monitoringa T, P, Rb No SMHI (1993)

Stockholm
County, SE

Airviro Gauss
dispersion model

Gaussian plume NO2, PM10 25 × 25 m
in urban,
500 × 500 m
in rural area

2009 Monitoringa T Yes SMHI (1993)

Helsinki-Vantaa
region. FI

CAR-FMI
(Contaminants
in the Air from a
Road – Finnish
Meteorological
Institute)

Gaussian plume NO2, PM2.5 At unique
receptor points

2010 Monitoringa T No Kukkonen et al. (2001),
Karppinen et al. (2000)

Bradford, UK ADMS-Urban Gaussian plume NO2 At unique
receptor points

2009 Monitoringa T, A No Carruthers et al. (2000)

London,
Oxford, UK

ADMS-Urban Gaussian plume NO2, PM10 10 × 10 m 2011 Monitoringa T, A Yes Carruthers et al. (2000)

Netherlands GCN (Generic
Concentrations in the
Netherlands), for the
regional/urban
background, Pluim
Snelweg for the
motorways and
provincial roads,
CAR model for the
urban roads

Gaussian plume NO2, PM10,
PM2.5

25 × 25 m 2009 Modelc T, P, A Yes,
included
in CAR

Velders et al. (2013)
Wesseling and
Visser (2003)
Wesseling and
Sauter (2007)

Ruhr Area, DE EURopean Air Pollution
Dispersion (EURAD)
model system

Dispersion and
chemical transport
model

NO2, PM10 1 × 1 km 2006-
2008

Monitoring T, P, R,
A

No Memmesheimer et al.
(2004)

Basel, Geneva
and Lugano,
CH

Pollumap dispersion
model 2010

Gaussian plume NO2 (All), PM10

(Lugano only)
100 × 100 m 2010 T, A No SAEFL (2003)

Gariazzo et al. (2007)

Rome, IT Flexible Air quality
Regional Model
(FARM)

Eulerian chemical
transport model

NO2, PM2.5 1 × 1 km 2007 T, A No Gariazzo et al. (2007)
Finardi et al. (2009)

Barcelona, ES ADMS-Urban Gaussian plume NO2, PM10 5 × 5 m for
NO2,
100 × 100 m
for PM10

2008 Monitoringa T, P, R,
A

Yes Carruthers et al. (2000)

Athens, GR MEMO/MARS-aero Eulerian chemical
transport model

NO2, PM10 500 × 500 m 2008 Model No Moussiopoulos et al.
(2012)

a Monitoring data from regional background station.
b T = traffic; P = point sources; R = residential heating; A = area source for all non-traffic sources.
c Combination of monitoring and modelling at 1 × 1 km scale.
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relative difference between the median NO2 LUR and DM predictions
was however not large in these areas (b~30%).

The estimated ranges of NO2 concentrations differed for the two
methods, with some study areas showing a distinctly narrower range
for LUR estimates compared to DM estimates (Bradford and the
Netherlands) and other study areas showing a larger range for LUR esti-
mates than for DM estimates (Ruhr Area, Athens, Lugano, Barcelona,
and London).
3.1.2. PM10

PM10 concentrations were modelled with LUR and DM for 69,591
residential addresses in 7 study areas. The correlation between LUR
and DM was generally lower and the differences in levels larger than
for NO2 (Table 2, Fig. 1). A large difference of 20 μg/m3, for instance,
was found between median PM10 concentrations for LUR and DM in
Athens, whereas the differences in the Netherlands and Lugano were
small (0.3 and 1.2 μg/m3 respectively). The median Pearson and Spear-
man correlation coefficients between LUR and DM estimates were 0.39
and 0.49 respectively. Lugano, the Netherlands and London showed the
highest correlations (Pearson) between the 2 methods (R = 0.66, 0.56
and 0.52 respectively). In several of the LUR predictions the impact of
truncation to the highest value of predictor variables at the monitoring
sites is visible, e.g. in the Netherlands (Fig. 1). In Stockholm, the disper-
sion model had a lower bound, defined by the measured regional back-
ground used as input in the model. The percentage of agreement by
quintiles ranged from 25 to 55%.
3.1.3. PM2.5

Estimated PM2.5 concentrations were modelled in four study areas
(Helsinki—Vantaa region, the Netherlands, the Ruhr Area, and Rome)
for a total of 28,159 residential addresses. In the Netherlands there
was a high correlation (Pearson R = 0.81), with similar median PM2.5

concentrations for both methods, but with a larger range for DM esti-
mates (14.5 μg/m3) compared to LUR estimates (6.2 μg/m3). The other
three study areas showed low correlations between the LUR and DM
estimates.

The Bland–Altman plots (Fig. A.1) were inspected to assess the
agreement over the concentration range between the two methods.
The majority of points were located within +/− 2 times the standard
deviation; however, there were quite different patterns for the different
study areas and pollutants. Fig. A.1 shows that bias rarely is zero (only
Basel (NO2), Netherland (NO2, PM10, and PM2.5), Lugano (PM10) and
Helsinki, and Rome (PM2.5) have an absolute mean difference of less
than 1 μg/m3). Secondly the upper- and lower-limits of the 95% range



Table 2
Descriptive and comparison statistics of LUR and dispersion estimates (μg/m3) at cohort address for NO2, PM10 and PM2.5.

LUR predictions (μg/m3) DM predictions (μg/m3) Comparison of LUR with DM

Continuous: DM = Constant + Slope × LUR Quintiles

Study area Na Median P05 P95 P95–P05 Median P05 P95 P95–P05 Spearman's
Rho

Pearson
R

Constant Slope RMSE Agreement
(%)b

Kappa

NO2

Umeå region, SEc 4575 6.8 4.1 16.4 12.2 12.5 5.6 20.6 15.0 0.782 0.792 5.17 0.93 2.63 48.3 0.352
Stockholm County, SEc 39409 9.6 6.4 20.9 14.5 6.5 3.3 18.1 14.9 0.791 0.856 −1.98 0.93 2.46 48.9 0.361
Helsinki—Vantaa region, FIc 5871 16.0 9.0 25.5 16.5 9.0 7.0 17.0 10.0 0.762 0.745 2.01 0.52 2.34 43.7 0.297
Bradford, UKc 20919 24.0 18.9 29.0 10.1 18.3 14.0 26.5 12.5 0.820 0.667 −1.62 0.86 3.06 49.2 0.365
London, UKc 7089 33.3 21.7 45.5 23.8 32.0 21.1 42.6 21.4 0.836 0.798 8.55 0.70 4.05 55.2 0.441
Netherlandsc 7295 22.7 12.7 33.9 21.2 24.0 11.4 38.2 26.8 0.901 0.891 −2.37 1.13 3.70 61.8 0.523
Ruhr Area, DEd 4809 29.6 23.4 38.6 15.2 37.5 30.8 44.1 13.3 0.428 0.389 28.45 0.30 3.51 31.0 0.138
Basel, SUc 1118 29.0 18.3 34.3 16.0 30.5 21.4 34.4 13.1 0.771 0.768 11.11 0.65 2.71 48.9 0.362
Geneva, SUc 737 26.4 16.2 38.7 22.6 31.7 24.4 36.0 11.7 0.708 0.657 21.73 0.36 2.84 41.4 0.267
Lugano, SUc 1090 26.6 11.8 39.2 27.3 30.9 22.9 34.8 12.0 0.773 0.819 20.43 0.37 1.97 50.2 0.377
Rome, ITd 10157 38.1 25.5 56.1 30.5 50.0 31.5 59.4 27.8 0.406 0.386 33.35 0.36 7.65 29.4 0.120
Barcelona, ESc 8402 57.1 38.5 85.1 46.6 54.0 39.7 78.4 38.7 0.687 0.688 21.41 0.59 8.84 43.3 0.292
Athens, GRd 1500 36.0 23.4 59.5 36.0 47.0 36.5 56.4 19.8 0.207 0.188 42.86 0.10 6.35 23.9 0.005
All 112971 21.4 17.3

PM10

Stockholm County, SEc 39409 15.1 6.2 20.4 14.2 10.0 7.8 16.6 8.8 0.378 0.367 6.83 0.29 2.82 31.2 0.140
London, UKc 7089 16.9 14.9 20.9 6.1 21.7 20.7 23.0 2.4 0.554 0.517 17.94 0.22 0.65 55.2 0.441
Netherlandsc 7295 24.6 23.8 27.1 3.3 24.9 20.4 27.2 6.7 0.625 0.556 −4.88 1.16 1.91 42.0 0.275
Ruhr Area, DEd 4809 27.5 25.3 31.6 6.3 18.0 15.1 22.5 7.4 0.328 0.346 5.97 0.43 2.18 24.8 0.060
Lugano, SUc 1087 23.3 18.0 27.4 9.4 24.5 20.4 25.9 5.5 0.575 0.659 13.87 0.43 1.25 39.8 0.248
Barcelona, ESc 8402 39.0 37.0 47.5 10.6 37.4 35.7 44.2 8.5 0.495 0.393 24.14 0.35 2.62 33.1 0.163
Athens, GRd 1500 47.0 24.7 64.1 39.4 27.0 23.4 30.3 7.0 0.272 0.233 24.70 0.046 2.36 26.5 0.080
All 69591 16.6 15.1

PM2.5

Helsinki—Vantaa region, FIc 5871 8.0 5.6 9.1 3.5 8.5 8.2 9.3 1.1 0.215 0.252 7.85 0.093 0.37 25.8 0.073
Netherlandsc 7295 16.5 15.4 17.3 1.9 16.8 13.1 18.6 5.6 0.879 0.812 −20.40 2.23 0.41 50.4 0.380
Ruhr Area, DEd 4809 18.3 16.9 20.4 3.5 14.7 13.1 16.7 3.6 0.391 0.327 8.21 0.35 1.12 28.0 0.100
Rome, ITd 10544 18.9 17.3 23.3 6.0 20.1 16.5 21.6 5.0 0.252 0.223 16.03 0.19 1.53 26.5 0.081
All 28159 17.4 16.8

a Number of residential addresses in the participating cohorts.
b Percentage of residential addresses falling in the same quintile.
c Spatial resolution of DM estimates ≤100 × 100 m.
d Spatial resolution of DM estimates ≥500 × 500 m.
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differ widely between the study areas. Fig. A1 also shows which of the
twomethods tends to provide higher or lower concentration estimates.
For example NO2 estimates in Bradford aremostly higherwith LUR (95%
range = −12.7 to 0.7 μg/m3) while the opposite is true in Umeå (95%
range = −0.6 to 9.8 μg/m3). For the coarse-scale models and the
three Swiss models, the DM model predictions were lower than the
LUR predictions for the highest concentrations, mostly traffic locations.
3.2. Comparison DM with ESCAPE monitoring results

Correlations between dispersion modelled annual average concen-
trations and adjusted annual average concentrations based onmeasure-
ments at the ESCAPEmonitoring sites are shown in Table 3 (scatterplots
in Fig. 2, Table A.2). Pearson R's correlation coefficients ranged from0.09
(Athens) to 0.86 (Umeå) for NO2, with a median of 0.74. Dispersion
models that aimed to predict at specific receptor points or predict
with a very small resolution of b100 × 100 m predicted NO2 concentra-
tions better than the coarser Eulerain/CFDmodels. The median correla-
tion for PM10 (0.58, ranging from 0.36 (Barcelona) to 0.88 (London))
was lower than for NO2, which again was mainly driven by the differ-
ence in scale. Among the four study areas with a DM for PM2.5, the
two models that estimated at unique receptor points or on a small spa-
tial scale (Helsinki—Vantaa region, Netherlands) predicted measured
concentrationswith correlations of 0.66 and 0.54 (Pearson), respective-
ly. Correlations for the larger scale models were 0.39 (the Ruhr Area) to
0.61 (Rome). For most of the study areas Spearman correlations were
moderate to high (ranges: NO2 0.15 to 0.88; PM10 0.47 to 0.70 and
PM2.5 0.49 to 0.70). For the majority of the study areas DM thus tend
to predict a fairly large proportion (R N 0.6) of the variation across the
measurement sites. Scatter plots of the DM-MON comparison are
shown in Fig. 2. The regression lines for NO2 generally follow the 1:1
line, whereas regression lines for PM10 and PM2.5 show departures
from the 1:1 line. Relatively large differences in NO2 concentrations
were found only in Umeå (DM N measured) and Helsinki—Vantaa re-
gion (DM b measured), though in both areas the correlationwas higher
than 0.6. PM10 concentrations were higher than the model predictions
in Athens, though the correlation was reasonable. Fig. 3 illustrates that
the agreement between LUR and DM at the cohort addresses increases
with increasing correlation between the DM and measured concentra-
tions at the monitoring sites. The agreement between LUR and DM did
not depend on the LOOCV of the LUR model.
4. Discussion

To our knowledge, this is the first study to compare LUR and DM for
assigning air pollution exposures to a large number of residential ad-
dresses in different geographical areas. In general, a distinction between
two types of DM can be made: one estimates receptor-specific concen-
trations (Gaussian) and the other estimates average concentrations for
an area (Eulerian/CFD). This has potential implications on the compara-
bility of air pollution estimates at the address level and for the down-
stream epidemiology.
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Table 3
Descriptive and comparison statistics of DM estimates and measurements (μg/m3) at ESCAPE monitoring sites for NO2, PM10 and PM2.5.

Monitored concentrations
at ESCAPE sites (μg/m3)

DM predictions at ESCAPE
sites (μg/m3)

Comparison of DM predictions with measured concentrations at
ESCAPE sites

Study area Na Median Min Max Median Min Max Spearman's Rho Pearson R Constant Slope RMSE

NO2

Umeå region, SEb 20 9.3 5.3 35.8 15.5 7.4 31.0 0.878 0.858 -5.36 1.02 3.88
Stockholm County, SEb 39 14.8 2.1 33.0 13.0 2.9 25.3 0.775 0.755 4.41 0.84 4.94
Helsinki—Vantaa region, FIb 25 19.7 12.2 28.5 10.6 6.6 26.7 0.753 0.658 12.64 0.63 3.78
Bradford, UKb 40 25.2 16.7 36.7 19.8 13.0 38.0 0.806 0.743 11.99 0.62 3.59
London, UKb 27 39.7 29.2 102.7 37.7 23.0 79.9 0.681 0.849 -10.83 1.39 9.06
Netherlandsb 68 28.0 12.8 57.1 27.7 11.1 47.1 0.897 0.852 1.05 0.99 5.45
Ruhr Area, DEc 29 31.2 22.2 58.4 39.2 28.5 50.2 0.459 0.391 5.47 0.72 8.98
Basel, SUb 40 31.4 16.1 47.8 31.8 21.4 35.2 0.492 0.598 -14.10 1.46 5.98
Geneva, SUb 41 30.1 16.1 51.3 31.2 20.4 40.9 0.642 0.540 -5.90 1.17 7.66
Lugano, SUb 42 27.1 12.2 59.2 31.7 23.4 39.3 0.749 0.764 -33.72 2.00 5.37
Rome, ITc 40 41.7 13.6 72.6 50.0 26.6 62.1 0.568 0.614 -8.76 1.08 10.96
Barcelona, ESb 40 54.7 13.8 109.0 51.2 28.5 78.5 0.805 0.754 -4.61 1.15 13.40
Athens, GRc 40 35.9 13.3 71.0 40.4 34.4 52.2 0.154 0.089 27.86 0.20 12.04

PM10

Stockholm County, SEb 19 18.5 5.7 35.6 15.2 7.5 19.3 0.472 0.580 11.33 1.09 5.65
London, UKb 13 18.4 16.1 31.2 22.3 21.5 30.7 0.484 0.877 -13.47 1.46 2.03
Netherlandsb 34 26.2 21.9 33.0 25.7 20.8 30.5 0.671 0.696 3.74 0.88 2.18
Ruhr Area, DEc 15 27.4 22.5 33.3 18.2 15.3 32.3 0.521 0.392 22.95 0.25 2.90
Lugano, SUb 18 23.9 18.5 32.5 24.1 20.1 25.3 0.552 0.668 -8.77 1.38 2.67
Barcelona, ESb 20 38.6 17.8 48.5 36.7 34.5 51.3 0.699 0.356 10.71 0.71 6.82
Athens, GRc 20 42.9 27.3 58.0 24.5 22.8 30.3 0.522 0.397 9.42 1.32 6.81

PM2.5

Helsinki—Vantaa region, FIb 13 8.9 7.9 10.4 8.8 8.2 10.1 0.703 0.657 1.39 0.86 0.64
Netherlandsb 34 17.4 12.7 21.0 17.5 13.4 21.0 0.485 0.540 8.4 0.52 1.54
Ruhr Area, DEc 15 18.5 15.5 21.1 14.9 13.0 25.1 0.492 0.387 15.8 0.17 1.48
Rome, ITc 18 18.5 14.2 27.0 20.5 16.6 21.9 0.598 0.612 −11.0 1.53 2.74

a Number of ESCAPE monitoring sites.
b Spatial resolution of DM estimates ≤100 × 100 m.
c Spatial resolution of DM estimates ≥500 × 500 m.
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Overall, agreement betweenDMand LURwasquite strong for NO2 in
7 out of 13 study areas, (Pearson R N 0.70). Lower agreement was found
for PM10 and PM2.5. Agreement between LUR and DM at the address
level was higher for areas where the DM correlated more strongly
with the measurements.
4.1. Prediction of measured concentrations at monitoring sites

Gaussian DMs generally predicted the spatial variation of NO2 at
monitoring sites well, reflecting the small-scale variation of this pollut-
ant. On the other hand Eulerian/CFD DMs that modelled average NO2

concentrations on a coarser spatial scale reflected larger scale variations
of urban background within cities. Most models also predicted the con-
centration levels well (within about 30%), partly due to the incorpora-
tion of measured regional background concentrations. Prediction of
PM was less effective, similar to LUR models (Beelen et al., 2013;
Eeftens et al., 2012b).

Aswe did not have independent data available for a sufficiently large
number of locations in our cities, we cannot make a solid comparison
between the twomodels' predictive ability for the study areas. The cor-
relations between DM and measured concentrations were however
lower than for the LUR models (median LOOCV R2 was 0.80 (0.55),
0.77 (0.34) and 0.61 (0.33) for LUR (DM) NO2, PM10 and PM2.5 respec-
tively (Table A.2)). This does not necessarily imply better performance
at unmeasured locations. The model R2 only represents the predictive
ability at the monitoring sites and recent studies have documented
that the LOOCV R2 used in LUR studies only partly compensates for the
over-fitting. Hold-out validation R2 has been shown to be potentially
20–40% lower than the model R2, with larger differences observed for
LUR models based on a smaller number of sites (Basagaña et al., 2012;
M. Wang et al., 2013).
The RMSE of the comparison between DM and measurements
(Table 3) was larger than the RMSE of the comparison between DM
and LUR (Table 2). Although based on different locations, this might in-
dicate that both models may have similar errors in explaining
measurements.

Several previous studies have compared LUR and DM at monitoring
sites. Beelen et al. (2010) found moderate agreement (R = 0.55) be-
tween LUR and DM estimates for annual average NO2 concentrations
at a 100 × 100 m grid in the Rijnmond area of the Netherlands with
the URBIS performing better than the LUR model (R = 0.77 vs 0.47) at
18 independent sites. This is likely because the LUR model was devel-
oped for the whole of the Netherlands and lacking specific local infor-
mation for the Rijnmond area. A study in Amsterdam (NL) by Dijkema
et al. (2011) compared NO2 concentrations estimated by 2 LUR models
(regional and city specific) against the Dutch CAR dispersion model. All
models explained between 50 and 60% of the variance, although CAR
overestimated at background and underestimated at traffic monitoring
sites. In Vancouver, Canada, Marshall et al. (2008) compared LUR and a
4 × 4 km chemical transport DM (CMAQ) to estimate NO, NO2, CO and
ozone. They found that LUR was better in predicting the small spatial
variations at the neighbourhood scale, whereas DM tended to be bet-
ter in predicting the urban scale variations. Cyrys et al. (2005) also
compared LUR and dispersion modelling for NO2 and PM2.5 in
Munich, Germany, at 40 monitoring sites and at 1669 addresses.
The model estimates correlated well at the 40 monitoring sites and
addresses (R N 0.79). Gulliver et al. (2011) compared LUR and DM
at 52 routine monitoring stations in London (UK) using a grouped
jack-knife approach Results showed that LUR (R2 = 0.47)
outperformed DM (R2 = 0.28). Most recently Sellier et al. (2014)
compared LUR and DM estimates for NO2 at cohort addresses in
Nancy and Poitiers (France) finding a good correlation between the
two methods (R = 0.87).
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Fig. 3. Scatterplots of Pearson R's between the LUR–DM and DM–ESCAPE comparisons for both NO2 and PM10.
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4.2. Predictions of address level exposure

Despite the different modelling approaches of LUR and DM, the
agreement in predicting NO2 concentrations at cohort addresses
was relatively good in most study areas. This is probably due to the
importance of traffic affecting small-scale spatial variation of NO2

in the predominantly urban areas. DMs have been developed exten-
sively for modelling NO2 traffic sources, and LURmodels are most ef-
fective for modelling traffic because of the availability of predictor
variables such as traffic intensity and distance to major roads. In a
recent paper of PM composition, LUR models predicted traffic-
related components (Black carbon, Cu, Fe) much better than ele-
ments for which non-traffic sources were dominant e.g. Ni, V and S
(de Hoogh et al, 2013).

Compared to NO2, the lower agreement between DM and LUR pre-
dictions for PM10 is likely due to a combination of random error related
to the smaller spatial variation of PM10, the lower predictive power of
both models to predict concentrations and the smaller number of mon-
itoring sites available to develop LUR models (20 PM versus 40 NO2 in
most areas). In general, the spatial variation of the measured PM and
the predictions by both models was smaller than for NO2, consistent
with observations of a high regional background contribution to fine
particle concentrations and a smaller influence of local sources
(Eeftens et al., 2012b). In several areas, for bothmodels, the spatial var-
iation of PM was relatively small compared to the prediction errors as
reflected by the root mean squared error.

Someof the differences in agreement between the twomodels at the
cohort addresses were caused by the different model types. The
Eulerian/CFDmodels used in the Ruhr, Rome and Athens areas correlat-
ed less strongly with LUR estimates than the Gaussian models for both
NO2 and PM10. This is probably in part caused by the coarser resolution
used by the Eulerian/CFD models compared to the Gaussian models
which therefore better predicting receptor-specific concentrations as
modelled in LUR. In epidemiological studies using the Ruhr Area
model, the coarser resolution dispersion model was therefore supple-
mentedwith distance to major roads to account for the small-scale var-
iation (Hoffmannet al., 2009). Fig. 3 illustrates that the agreement at the
cohort addresses depended on how well the DM predicted the mea-
surements at the ESCAPE monitoring sites. In addition to scale of the
model, the complexity and size of the urban environment likely affect
how well DM and LUR can predict spatial patterns. DMs for Mediterra-
nean cities have some additional challenges such as describing local
flows in coastal areas with complex terrain, as well as accounting for
the intricacies of boundary layer development. In the case of Athens,
emissions have exhibited large variability (inter-annual as well as spa-
tial) over the last couple of years due to the effects of the economic cri-
sis. Therefore, the amount of emission uncertainty involved in the
Athens calculations has conceivably played a key role in the DM calcula-
tions. Interestingly, the LOOCV for the LUR models was also relatively
low in Athens.

DM and LUR models generally explained a lower fraction of mea-
sured spatial variation of PM10 compared to NO2 (Table 3 and
Tables A.1 and A.2). The continental and regional scale chemical trans-
port models commonly underestimated both the measured PM2.5 and
PM10 concentrations at the ESCAPE monitoring sites, which were de-
signed to capture specifically the variation in traffic-related pollutants
and therefore oversampled high traffic sites. Other reasons might in-
clude missing or under-estimated source categories (such as wild-land
fires, desert dust, biogenic sources, non-exhaust emissions from traffic,
shipping, fugitive dust, and sea salt), and by missing or inadequately
treated processes in themodels (such as the formation of secondary or-
ganic aerosols). Because of the urban character of the study areas, all the
Gaussian models usedmeasured concentration values at regional back-
ground stations; the above mentioned PM modelling deficit for chemi-
cal transport models does not therefore influence the predicted results
in those cases. However, some dispersion models clearly under-
predicted PM10 concentrations at the ESCAPE monitoring sites, in case
of Stockholm, Ruhr Area and Athens, as can be seen based on the results
presented in Fig. 2. For those models predicting average concentrations
on a larger scale (i.e. Ruhr Area, Athens) this is a logical consequence of
the fact that these models are not designed to predict concentrations at
traffic sites. Consistently, the Ruhr Area Eulerian DM model predicted
NO2, PM10 and PM2.5 better (R = 0.53, 0.69, 0.68 respectively) when
the traffic sites were excluded.

As previously mentioned, LUR models are less effective for sources
other than traffic (de Hoogh et al., 2013). The simple dispersion as-
sumptions in LURmodels apply better to traffic emissions than industri-
al point emissions, emitted at potentially hundreds of metres above
ground. In Bradford, our NO2 LUR model under-predicted at a number
of residential addresses which were located in one residential area
with a high activity of chemical processes. While this emission source
was included in the ADMS-Urban model emission inventory, the LUR
model for Bradford did not include an industry variable, because no
ESCAPE monitoring sites were located near industrial sources.

A discussion about the Bland–Altman plots and Kappa-coefficients
can be found in the Appendix (p. 4).



391K. de Hoogh et al. / Environment International 73 (2014) 382–392
4.3. Implications for epidemiological studies

The overall high correlation between LUR and (fine scale) DM for
NO2 suggests that similar effects may be obtained if both approaches
are applied in epidemiological studies to assess associationswith health.
However, if predicted concentration ranges differ, the size of the effect
estimates may be different. The lower correlation for PM suggests that
health effect estimates could be more different when applied in epide-
miological studies. It remains important, however, to test directly in ep-
idemiological studies differences in effect estimates related to exposure
models. A recent study from Sellier et al. (2014) which applied four dif-
ferent exposure methods, including LUR and DM, to a cohort in Nancy
and Poitiers (France), showed some differences in estimated health ef-
fect despite moderate to high correlations between NO2 exposure esti-
mates at the cohort level

The ESCAPE study was specifically designed to investigate health ef-
fects of long term air pollution exposure, using standardised LUR as the
method of choice. Both LUR and DM are equally equipped to predict
long term exposures, but an advantage of DM is that it can more easily
deal with different time periods (e.g. hours, days, weeks, years and de-
cades, also in retrospect) by using diagnostic or real-time emission
and meteorological data. LUR models estimating daily concentrations
have been developed and applied (Gryparis et al., 2014) but their eval-
uation and use are still limited. LURmodel application is further restrict-
ed to the time period and geographical area of the monitoring
campaign, although some recent studies suggest that LUR models in
some circumstances can be transferred both back in time as well as geo-
graphically (Gulliver et al., 2013; R. Wang et al., 2013). An advantage of
LUR models, however is that exposure estimates can be generated for
absorbance, UFP, elemental composition (de Hoogh et al., 2013;
Eeftens et al., 2012b) for which few dispersion models are available.

DMs can also be used for evaluating the contributions originating
from various sources or source categories at selected locations. A specif-
ic strength of DM is its use for retrospective evaluations as well as for
scenarios for the future. DM, however is also inherently source specific
and as such requires several accurate input datasets like emission inven-
tories, and ideally, pre-processed representative meteorological data, a
thorough discussion of which has been presented by Kukkonen et al.
(2012). Although the initial development of a LUR model takes some
time, the subsequent application to residential addresses is fairly light
in terms of computing power and time. DM on the other hand needs a
lot more expertise to run and is relatively heavier in data demand and
running time.

5. Conclusions

Dispersion model estimates for outdoor NO2 with high spatial reso-
lution showed, in most countries, high correlation with measured
values andwith the corresponding land-use regression estimates for co-
hort addresses. This implies that bothmethodsmay be useful for epide-
miological studies of small-scale variations of outdoor combustion-
related air pollution, typically from road traffic. The agreement for PM
levels was considerably lower than for NO2, probably reflecting smaller
spatial variation, less precise source characterization and/or lack of re-
lated land use descriptors. The agreement between LUR and dispersion
models with lower spatial resolution was reduced. These Eulerian/CFD
DMs provide average concentrations in a small area, thus modelling a
different aspect of person-specific exposure. The influence of data re-
quirements and whether the methods tend to give different results in
epidemiological studies need to be further explored.
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