Constraint-based Whole-Body-Control of Mobile
Manipulators in Human-Centered Environments

Matthias Stueben, Alwin Hoffmann, Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Augsburg, Germany
{stueben, hoffmann, reif} @isse.de

Abstract—In this work, we describe a ROS-based method for
whole-body control (WBC) of mobile manipulators in the context
of safe human-robot interaction. Our method is based on cyclic
quadratic programming (QP) with a set of simultaneously active
tasks that define constraints. The importance of different tasks is
captured through priorities and weights. Robot behavior can be
changed at run-time by re-configuring the active tasks through
ROS interfaces. We evaluate the suitability of our method for
safe human-robot collaboration in a Gazebo simulation. We show
that our method lets the mobile manipulator perform evasive
motions while staying consistent with other tasks if possible. At
the same time, self-collisions and static obstacles are avoided. If a
given safety threshold is crossed, the robot comes to a safe stop.
Operation continues once the distance is high enough again.

Index Terms—Collision Avoidance, Real-time Robot Control,
Human-Robot Interaction, Whole-Body Control

I. INTRODUCTION

Mobile manipulators are an increasingly popular and
promising form of robot system, as they combine the capabil-
ities of mobile platforms and manipulators. Their potential to
move within the environment as well as manipulate it makes
them a suitable candidate for a wide range of applications,
including elderly care [1]-[3], as personal robot [4], and as
an assistant in hospitals [5] or in production [6]-[8]. These
applications have in common that the robot has to operate
in human-centered environments. Hence, the robot often has
to navigate in less structured environments and has to evade
humans in a safe and expected manner.

Traditional safety concepts such as strictly separated
workspaces are not applicable anymore. New approaches to
ensure safety are needed. In addition to preventing collisions,
robots should also allow for naturally appearing interactions
which need to follow the users’ expectations. Thus, simply
stopping the robot abruptly as soon as an obstacle comes close
is not practicable. The redundant kinematics typically used in
such applications allow more complex evasion maneuvers.

We developed a WBC framework for mobile manipulators
in ROS [9]. This framework allows for interaction tasks which
exploits the robot’s redundant kinematics. Tasks can be defined
to check for and to avoid collisions and, thus, to ensure a safe
operation. These tasks form an optimization problem which is
solved in every control cycle to obtain a fast and appropriate
reaction.

Hence, the contribution of this paper is a constraint-based
robot control framework in ROS which (1) enables WBC

for redundant mobile manipulators, which (2) allows for
specifying naturally appearing and fluent interaction tasks,
and which (3) is designed especially for safe human-robot-
interactions. The benefits of the framework were evaluated in
simulation with Gazebo.

The structure of this paper is as follows: Related work
is discussed in Section II. The concept of our robot control
framework and its available tasks are introduced in Section III,
the implementation is described in Section IV. An evaluation
with respect to safe human-robot-interaction is given in Sec-
tion V. Section VI concludes the paper and gives an outlook
to future work.

II. STATE OF THE ART AND RELATED WORK

Safe control strategies have been created for safe human-
robot collaboration, e.g. [10], [11]. However, these typically
consider a single, static control strategy for fixed-base robots.
In contrast, we consider mobile robots where the appropriate
safety strategy might change depending on context.

Control of redundant mobile manipulators has been an
active area of research over the past years. Many approaches
consider navigation and manipulation as separate problems, so
that only the arm or only the platform moves at any time, e.g.
[12], [13]. This however limits the possibilities to make use
of the robot’s redundancy.

Therefore, WBC methods have been developed, for mobile
manipulators and other types of redundant robots, which
control all degrees of freedom at the same time. Several works
plan and execute trajectories in this manner, typically based
on specialized inverse kinematics, but do not consider reactive
behavior [14]—-[16]. The factors influencing the choice of robot
position are also statically encoded in these works and can not
be easily changed at run-time to adapt the robot behavior.

A prominent work which controls redundant robots reac-
tively by considering a set of sub-tasks is the iTaSC frame-
work [17], [18], with a Jacobian pseudoinverse-based control
scheme. Other works have adopted methods inspired by this,
e.g. [19].

The Stack-of-Tasks [20] and eTaSL/eTC [21] use QP to
find control signals instead. Our method of calculating joint
velocities is based on these works. The novelty of the work
described here lies in the incorporation of dynamic obstacles
described by geometric primitives, the application to safe
human-robot interaction with mobile manipulators as well as
its integration into the ROS ecosystem.

III. CONCEPT

Before any robot motions can be calculated, the intended
behavior has to be formalized which can be complex in itself.
To simplify this, the control problem is broken down into
small, independent tasks. Here, the word fask is used to refer
to any requirement on the robot motion. This includes, for
example, moving the end-effector to a target position, but also
staying away from joint limits and avoiding obstacles.

Tasks often have conflicting requirements, which is why
priorities and weights are required to resolve them. Using
this information, a QP problem is formed and solved in every
control cycle to find a control signal that best fulfills the tasks.
In our case, the robot control signal consists of joint velocities
q € R™ with n being the number of controlled joints. Fig. 1
shows an overview of our control system which is described
in further detail below.

All information about the current state of the world is en-
capsulated in the robot model and the environment model. The
environment model contains a set of objects, each of which
consists of a name, a type identifier, its pose in Cartesian space,
and an optional collision geometry. The collision geometry is
described through geometric primitives such as boxes, spheres,
and cylinders. These objects can be created through various
methods of perception and scene analysis. Our interface is
independent of any specific perception method.

The robot model contains all relevant information about
the robot itself. It encapsulates static information about the
kinematic structure, as well as current state information, such
as the current joint angles q € R™.

The main component of the robot model is the kinematic
tree of the robot’s structure. Robot links can be given a
collision geometry in the form of geometric primitives. The
robot model provides the geometric Jacobian Jy(q) for any
point x on the robot structure. A further part of the robot model
are the limits for joint positions Qinin, Qmax € R™ and joint
velocities qmin, Amax € R™. The vector wy € R™ defines a
weight for each controlled robot joint. Motions of joints with
higher weights cause higher cost in the optimization. We use
wq = 1, effectively not using the weights. They could however
be used, for example, to introduce a preference of arm motions
over platform motions.

A. Tasks

The intended robot behavior is described using a set of
tasks T = {¢1,...,t.}. Each task ¢, defines the following
components:

e d; € NT dimension of the task.

e Ji(q) € R%EX™: the task Jacobian which defines the

influence of joint movements on the task.

« A controller calculating lower and upper bounds on the
task. We refer to the current output as b; € R% for the
lower bounds and B; € R% for the upper bounds.

e p; € NT priority level of the task.

e w; € R%: task weights, which define the relative impor-
tance of individual task components. A weight of zero
disables the task component.

Examples of tasks include moving the robot towards a target
joint position, moving a robot link to a Cartesian pose, or
avoiding obstacles. Individual task types are described in
further detail in section III-C. In the following subsection, we
describe how joint velocities are calculated from the defined
tasks.

B. Formulation of the Optimization Problem

In its most basic form, the QP problem for a set of s tasks

T = {t1,...,ts} can be formulated as follows:
min qrAg
4
s. t. b<Jg<B (1)

Qmin < 51 < élmax

where J = [J,7 ... 3,717 consists of the vertically stacked
task Jacobians of all tasks, A = diag(wg) is the diagonal
matrix of the axis weights, b = (by”,...,b,")T and B =
(B17,....B.")T are the stacked vectors of lower and upper
bounds of all tasks.

All tasks are considered equally with this formulation which
is not always desirable. The optimization fails in cases where
no solution fulfilling all tasks can be found. This is unaccept-
able for robot control. Thus, we extend the formulation to
allow for tasks to deviate from their bounds. This deviation
should only occur when necessary, and for some tasks it is
more acceptable to deviate from their bounds than for others.
For example, joint limits must usually not be violated under
any circumstance, while it can be more acceptable for the
Cartesian end-effector position to deviate from its target. Of
course, this always depends on the specific application. To
define which tasks need to observe their bounds more strictly
than others, we introduce priorities and weights to the QP
problem. The full formulation then is as follows:

min 'yTrry
~
s. L. b-x< Jg <B+x, @)
(‘lmin < él Sc.lmax

The optimization variable v = (47, x7)7 is extended
to include slack variables x = (x17....,xs’)? with
Xi € R% for each task which captures the deviation of
the task from its bounds. In this way, solutions which do
not fulfill all tasks completely become feasible. The ma-
trix 7 = diag((wq’,w?)T) is a diagonal matrix con-
taining the axis weights wq and the task weights w =
(errw T ... e ws)T Tt is used to specify how much each
axis motion and a deviation of a task from its bounds is
penalized. In some situations, such as tasks with variables of
different orders of magnitude, hand-tuning the weights may
be required to maintain the correct priorities.

We implement task priorities based on the observation that
giving a task lower priority is equivalent to taking the limit of
the task weight towards zero [18]. In practice, choosing a “’very
small” weight € is a sufficient approximation of this limit.

Fig. 1: Architectural overview of the control system.

This generalizes to multiple levels of priority by weighting a
task ¢; of priority p; with €. In our implementation, we use
€ = 1le5. Alternatively, exact solutions can be found by using
specialized solvers [22]. However, it has also been shown that
the approximation through weights can perform very well in
practice [23].

C. Implemented Task Types

The task types we have implemented are described here.
Additional types can be implemented by defining the task
Jacobian and the controllers of upper and lower bounds.

1) Cartesian Pose Task: This task moves a control point
c on the robot structure to a given Cartesian target pose t.
The task Jacobian Jj is the geometric Jacobian of the control
point. This task has d; = 6 dimensions, consisting of the 3
translational and 3 rotational degrees of freedom of Cartesian
space. Since this task is supposed to generate the Cartesian
twist which leads the control point to the target pose, and not
arange of permissible motions, upper and lower bounds of this
task are set to the same value. They are calculated according
to the control law

Xt — Xa
bi=B;i =K (Raaw;?)
where 0w is the rotation between target and actual orientation
expressed in axis-angle format, with 6 being the angle between
the two orientations and &g the unit vector defining the
rotation axis. R, denotes the rotation matrix of the control
point. x¢ and x, are the target and actual position vectors of
the control point. K is a gain parameter set by the user.

2) Joint Position Task: This task type moves the robot
axes towards a target position q. Since this task completely
operates in joint space, the task Jacobian is the Identity matrix
J;i = I,. As in the Cartesian Pose Task, upper and lower
bounds are identical. They are calculated according to the
proportional control law

b; = B; = K(q¢ — q)

where K is a user-provided gain parameter.

3) Joint Limit Avoidance: The purpose of this task type
is to ensure the robot axes do not move beyond their limits
given by Qmin and gmax. Therefore, joint movements will be
restricted if they approach those limits.

A plot of the bounds generated by this task can be seen
in Fig. 2. The task Jacobian is the identity matrix J; = I,.
The task dimension is equal to the number of controlled joints
di = n.

Fig. 2: Example plot of bounds calculated by the Joint Limit
Avoidance task with @ = 3, ¢naz = 1.5, min = —1.5,
(jmam =1, qmm =-1, D =0.2.

Upper and lower bounds are calculated for each joint j €
{1,...,n} by first calculating a scaling factor f; depending
the current joint position q;:

1

D— s —qs
eo‘(l_ (qmgx,J q,))

fi=1-

3

where D and « are parameters influencing the shape of the
curve. Bounds for the joint velocities are then calculated by
scaling the maximum joint velocity with this factor:

Bi,j = fjc'lmax,j bi,j = fj(imin,j 4

4) Obstacle Evasion: This task aims to actively increase the
distance from a robot control point to obstacles. This is based
on the calculation of a repulsive vector for the robot control
point ¢ from the set of obstacle points O from the environment
model. The repulsive vector generates a maximum velocity of
Umaz- Lhe vector reaches zero when a target distance d; is
kept to all obstacles. Our method of generating the repulsive
vector is based on the work of Flacco et al. [24].

The Jacobian for this task type is the geometric Jacobian
of the controlled robot link. For each obstacle point o € O, a
repulsive vector R is calculated for the robot control point c:

c—o
R(o,c) = v(o,c) oo
Umaz
1 + e((@lle—oll/d))—1)a))
The function v controls the magnitude of the vector. « is a
parameter influencing the slope of the curve. The generated
magnitude of the repulsive vector is illustrated in Fig. 3.

The total repulsive vector Ray is formed by taking the sum
Ry of all individual repulsive vectors as direction and scaling
it to the magnitude generated by the closest obstacle Omin:

(&)

v(o,c) =

Rt(0,c) = Z R(o,¢)

ocO
(6)
RT(Ov C)
Ra11(07 C) = U(Omirn C)—
Rt (O,)l
Finally, each component of the task bounds b; ;, B; ;,j €
{1,...,6} is calculated from Ray as follows:
—00, Ran,j <0
bi,j =
Ran,j, else
(7N
B, — +o0, Ran,j >0
’ Rall,j, else

5) Obstacle Avoidance: This task type creates bounds that
prevent the chosen robot link from moving too close to any
obstacle. The difference to the Obstacle Evasion Task is that
this type only prevents moving too close to obstacles, but does
not attempt to increase the distance.

The set of obstacles O is taken from the environment model.
The task Jacobian is the geometric Jacobian of the controlled
robot link. The geometries of both the controlled robot link
and the obstacles are represented as geometric primitives. For
each obstacle o € O we calculate the closest point on the
surface of the obstacle ¢, and on the surface of the robot link
c, using the Gilbert-Johnson-Keerthi algorithm [25].

To find which directions to put bounds on, we calculate the
distance gradient

— Viind(Co, cr)
Vd(co, cy) = <thd(covcr)

The linear part of the gradient is given by
¢ — Co
V 2 ld b T

G €)= e,

and the gradient for rotational motion is given by
(1 0 0)" x1)0 Vind(co, cx)
Vrotd(Co,er) = | (00 1 0)" xx) o Visud(eo,)
((0 0 1)T X 1') S vlind(coycr)

Fig. 3: Magnitude v of a repulsive vector R(o,c) for the
Obstacle Evasion task with o = 6, Ve = 1, d¢ = 0.5.

If the robot link rotates around its center X, the closest surface
point c, rotates with radius vector r = x, — c,. We then
calculate the tangential velocities caused by rotations around
the three principal axes, and use them to calculate the distance
gradient for rotational motions.

It must be noted that this gradient only models the distance
between the chosen points on the object surface c, and c,,
i.e. the closest points in the current configuration. This is not
necessarily equal to the total minimum distance between the
two collision geometries, as these points may no longer be
the closest points when the objects move. However, accurate
distance gradient computation between geometric bodies is a
much more complex problem and this approach performs well
in practice. Should problems arise due to this simplification,
specialized methods can be used, e.g. [26].

Next, the individual bounds for each obstacle o € O are cal-
culated. Each component of the 6-dimensional bounds vectors
b; (o) and B;(0) is calculated as follows, for j € {1,...,6}:

flo)=1— ——t

o dmin—ller—coll

b; ;j(0) = {_Oo’

dinin

V;d(co,cr) <0

—f(0)(Vjd(co,cr))t, else ®)
o) — 4% Vjd(co,cr) >0
Bifo) = {_f(o)(vjd((:07cr))_1, else

o is a parameter that allows the user to influence the shape
of the curve. Finally, the total bounds of this task for the entire
set of obstacles O are then chosen by taking the component-
wise strictest bounds of all obstacles:

bz},j = 1({1638(bi,j (O) Bi‘j = nglol Bi‘j (0) 9)

6) Self-Collision Avoidance: This task type prevents mo-
tions that would cause the robot to collide with itself. Each
instance of this task considers the distance between the colli-
sion geometries of two robot control points.

The task Jacobian expresses the motion of the control point
relative to the point to be avoided. Since the point to be
avoided is also part of the kinematic chain, J; = Jcp —JB is
used, where Jcp and Jp are the geometric Jacobians of the
controlled and the avoided robot control points, respectively.

The calculations of the upper and lower bounds uses the
same method as the Obstacle Avoidance Task. The only
difference is that Self-collision Avoidance Task only considers
one object to avoid, but the same method is still applicable.
If self-collisions between multiple robot links have to be
avoided, multiple task instances have to be created (which is
fully supported by our implementation).

7) Velocity Limiting: This task limits all robot motions if
an obstacle of a given type comes too close. This can be
used, for example, to stop the robot if a person is in the
immediate proximity of the robot and even evasive motions
can not be considered safe anymore. The task Jacobian is
the identity matrix. Bounds on axis motions are calculated
depending on the minimum obstacle distance d,,;, using the
following formulas:

1
f(dmm) = e—amax(dmin—D,0) N
bi = f(drrLirz)qmin
The parameter « defines the slope of the curve and D is the
distance at which the robot has to stop all movements.

Other task types which may prove useful include torque
and acceleration constraints. At the moment, we rely on
the low-level robot controller to track the desired reference
velocity appropriately. If acceleration or torque spikes become
a problem, these can be added as separate task types. For a
torque-task, the robot model would have to be extended to
contain joint torque data, then the constraints can easily be
expressed using the task bounds. Acceleration constraints can
be realized by creating bounds that keep the target velocity
within a given range of the current velocity.

1
(10)

IV. IMPLEMENTATION

Our approach is implemented in a combination of ROS1
and ROS2 components [9]. Our QP-based controller is imple-
mented as a ROS2 node, while the robot hardware controllers
currently necessitate the use of ROSI.

All interaction with our system is available through standard
ROS interfaces. Tasks can be activated and deactivated through
ROS services. Targets for tasks can be updated through ROS
topics, and each task can publish feedback information in the
same way. The robot description is read from URDF files.
Initial task configuration is described in YAML files.

Discrete behavior control can be implemented by updating
or switching the active tasks according to the feedback pro-
vided by the tasks or outside information. The ROS interfaces
make it easy to implement discrete behavior control. We use
Python scripts, but many behavior control frameworks, e.g.
state machines or behavior trees, can be integrated easily.

The QP described above is performed by the solver
qpOASES [27]. Specifically, we use the extended variant of
the online active set strategy for varying matrices [28]. We use
the Flexible Collision Library [29] for geometric calculations
and the Kinematics and Dynamics Library [30] for kinematic
calculations.

We implemented our approach on a mobile manipulator
consisting of a holonomic Neobotix MPO-700 [31] mobile
base equipped with a Schunk LWA 4P [32] arm. The robot
is depicted in Fig. 4. The holonomic base is modeled by
two virtual translational joints for xz and y position, and a
virtual rotational joint for the heading. Combined with the
6 joints of the arm, we have 9 controlled joints in total. For
efficiency reasons, evaluation was performed in a Gazebo [33]
simulation.

V. EVALUATION

To evaluate the approach, we have created a simulation
based on Gazebo. The robot responses to dynamic obstacles
and the required calculation time are described below. Table I
shows the tasks used for the evaluation and their priorities.
Task parameters were chosen empirically.

Fig. 4: The robot platform, using a Neobotix MPO-700 plat-
form and Schunk LWA arm. The arm is shown here with a
custom sensor casing unrelated to the described research.

A. Reactions to dynamic obstacles

The robot attempts to follow a "figure eight”-like shape with
its gripper in an environment constrained by static obstacles,
i.e. several pieces of furniture, shown in Fig. 5a. Two types of
human interference are simulated: a walking person (Fig. 5b);
and a hand, approximated as a sphere, moving above the table
surface (Fig. 5c¢).

The person walks with a random speed of up to 1.48
m/s, an average convenient indoor walking speed [34]. The
direction of approach and the turning point are also chosen
randomly. The person may also randomly choose to wait for
a random amount of time up to 3 seconds. We have divided
the evaluations with walking people into four categories: One
where a person approaches the robot from behind (i.e. the top
of the image in Fig. 5a) and then turns around, and three others
where a person walks by the robot from left to right or the
reverse with varying distances. The distances we have used
are 1.2 m, 2.2 m and 3 m from the center of the table.

The simulated hand moves above the table at a random
speed of up to 0.6 m/s, an average peak velocity for reaching
motions of a seated person [35]. Motion follows either a
straight or circular path. Minimum distance and direction are
chosen at random.

Thus we have evaluated five scenarios, four with a walk-
ing person and one with a moving hand. Each of the sce-
narios has been recorded over 5 minutes. Results are pre-
sented below. A video showing examples is available at
https://video.isse.de/mobile-manipulator.

1) Reaction to a Hand: Fig. 6 shows the reaction to a
straight motion. It can be seen how the robot attempts an
evasive motion at first, but stops once the distance falls below
the safety limit. Reaction to a circular motion of the hand is
shown in Fig. 7.

TABLE I: Active tasks during the evaluation.

Prio. | Tasks

Joint Limits, Obstacle Avoidance (Base, Elbow, Gripper),
Self Collision Avoidance (Gripper, Elbow)

Obstacle Evasion (Base, Gripper)

Cartesian Position (Gripper), Joint Position

N =

(a) Seen from above. (b) Person approaching.

(c) Simulated Hand, approximated as a
sphere.

Fig. 5: Screenshots of the simulated scenario.

Here, the robot performs an evasive motion and no safety
stop is needed since the distance does not fall below the safety
stop distance. Fig. 8 shows that the gripper velocities scale
down according to the Velocity Limiting Task, with a small
delay.

2) Reaction to a Walking Person: Fig. 9a shows a heat map
of the positions of gripper and platform during the evaluation
where a person passes with a distance of 3 m, which is
expected to have no influence on the robot. Accordingly, the
gripper follows the prescribed shape without any distortions.
The platform moves in almost the same pattern with only a
small variation due to the static obstacles.

Fig. 6: Gripper velocity in response to a hand approaching in
a straight line.

Fig. 7: Gripper velocity in response to a circular hand motion
in proximity of the gripper.

Results from a person walking by with a distance of 2.2 m
are shown in Fig. 9b. It can be seen that the platform tries to
evade the person and thus moves less predictably. However,
the gripper still follows its path with very little disturbance.

When the person moves even closer, as shown in Fig. 9c,
the platform stops completely on several occasions. This is
indicated by isolated bright spots in the heat map, meaning
that the platform stayed in the same position over a longer
period. The same isolated spots can be seen on the gripper
heat map, but it still stays close to the prescribed path.

When the person approaches from behind (Fig. 9d), the
platform heat map shows a similar pattern as before, but the
gripper shows a larger deviation from its path. This can be
explained by the fact that the robot has fewer possibilities to
perform evasive motions towards the table without disturbing
the gripper task, compared to the sideways motions required
in the previous scenarios.

Fig. 10 shows the recorded velocities of the platform in
relation to the distance from the person. Also shown is the scal-
ing factor of the corresponding velocity limiting task. Ideally,
velocities should become zero as soon as this factor becomes
zero. It can be seen that, while the velocities generally follow
the scaling factor and reach zero eventually, there is some
delay before the robot comes to a stop.

Fig. 8: Relation between gripper velocity and distance to a
hand.

(a) Person walking by at y =3 m. (b) Person walking by at y = 2.2 m.

(c) Person walking by at y = 1.2 m. (d) Person approaching from behind with
randomized distances.
Fig. 9: Heat maps of gripper and platform position with a
person approaching at various distances.

This can be explained by the various delays inherent to the
system, such as data transmission and hardware limitations.
The conflict between obstacle evasion (i.e. increasing veloc-
ity) and velocity limiting in the presence of obstacles also
contributes to this effect. Further experimentation, especially
on real hardware, is needed here.

B. Timing

We have recorded the required calculation time over 2500
iterations on a PC with an Intel i15-4570 CPU, with the same 10
active tasks as above, 4 static obstacles, and the simulated hand
described above. Fig. 11 shows the results. On average, solving
takes 18 ms, with a maximum of 44 ms. The calculation of
the bounds takes comparatively little time with only small
deviations, while the QP solving introduces some spikes in
irregular intervals. Their cause is unclear at present and will
be inspected further in the future.

Fig. 10: Relation between platform velocity and distance to a
person.

In real applications, the additional delay and inaccuracy
caused by perception systems have to be considered. We plan
to evaluate this in our future work.

VI. CONCLUSION AND FUTURE WORK

We presented a method for safe WBC of redundant mobile
manipulators in environments with static and dynamic obsta-
cles. The intended robot behavior is described by a set of
weighted and prioritized tasks. The control signal is found
through QP with constraints defined by the active tasks. The
configuration of tasks can be changed through ROS interfaces
to adapt the robot behavior to the current situation. We
describe the task types we have implemented and how to
define new task types, namely by defining their Jacobian and
bound controllers. In a simulation-based evaluation we have
shown the capability of our method to react safely to human
interference. The robot evades the human while utilizing its
redundancy to perform its other tasks as well as possible and
without coming into contact with static obstacles. If the human
moves closer than a specified safety distance, the robot stops
completely.

Fig. 11: Calculation times for finding the task bounds, solving
the QP problem, and the total over 2500 cycles.

For the future, one obvious next step is the transferal of
this approach to real hardware. This also enables further
experimentation regarding physical interaction with the en-
vironment and with people, for example pick-and-place and
object handover scenarios. We hope to develop the necessary
methods to specify such interactions expressively and con-
cisely. The different reactions required in different phases of
an interaction and to different objects have to be considered.
For example, physical contact with the object that is to be
picked up must be possible, but only with specific parts of the
robot and only during a picking attempt and not, for example,
during an evasive motion. Once the object has been picked up,
its geometry must also be considered for collision checking.
Interaction with humans poses many similar challenges with
a much higher level of complexity. We intend to work on the
use of the approach described here for scenarios of this type.
Besides that, we plan to make further use of the real-time
capabilities of ROS2.

REFERENCES

[1] R. Kittmann, T. Frohlich, J. Schifer, U. Reiser, F. WeiBhardt, and
A. Haug, “Let me introduce myself: I am Care-O-bot 4, a gentleman
robot,” Mensch und Computer 2015 — Proceedings, 2015.

[2] J. Miseikis, P. Caroni, P. Duchamp, A. Gasser, R. Marko, N. Miseikiene,
F. Zwilling, C. de Castelbajac, L. Eicher, M. Friih, and H. Friih,
“Lio — a personal robot assistant for human-robot interaction and care
applications,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp.
5339-5346, 2020.

[3] J. Pages, L. Marchionni, and F. Ferro, “Tiago: the modular robot that
adapts to different research needs,” in International workshop on robot
modularity, IROS, 2016.

[4] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru,

M. Wise, L. Mosenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the pr2,” in 201/ IEEE
Itnl. Conf. on Robotics and Automation. IEEE, 2011, pp. 5568-5575.

[5] E. Ackerman, “Moxi prototype from diligent robotics starts helping out
in hospitals,” JEEE Spectrum, 2018.

[6] M. Drust, T. Dietz, A. Pott, and A. Verl, “Production assistants: The
rob@work family,” in IEEE International Symposium on Robotics 2013,
2013, pp. 1-6.

[71 C.Wurll, T. Fritz, Y. Hermann, and D. Hollnaicher, “Production logistics

with mobile robots,” in ISR 2018; 50th International Symposium on
Robotics, 2018, pp. 1-6.

[8] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and
freight: Standard platforms for service robot applications,” in Workshop
on autonomous mobile service robots, 2016.

[9] “ROS 2, www.ros2.org, 2021, [Online; accessed 05-March-2021].
[10] M. Faroni, M. Beschi, and N. Pedrocchi, “An mpc framework for
online motion planning in human-robot collaborative tasks,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2019, pp. 1555-1558.

A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments: Met-
rics and control,” IEEE Transactions on Automation Science and Engi-
neering, vol. 13, no. 2, pp. 882-893, 2016.

A. Jain and C. Kemp, “EL-E: An assistive mobile manipulator that
autonomously fetches objects from flat surfaces,” Autonomous Robots,
vol. 28, pp. 45-64, 09 2010.

J. Carius, M. Wermelinger, B. Rajasekaran, K. Holtmann, and M. Hutter,
“Deployment of an autonomous mobile manipulator at mbzirc,” Journal
of Field Robotics, vol. 35, 10 2018.

R. Ancona, “Redundancy modelling and resolution for robotic mobile
manipulators: a general approach,” Advanced Robotics, vol. 31, no. 13,
pp- 706-715, 2017.

[L1]

[12]

[13]

[15]

[14]

[16]

[17]

(18]

[19]

[20]

[21]

[22)

[23]

[24]

[25]

[26]

[27]

[28]

T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase,
“Development of human support robot as the research platform of a
domestic mobile manipulator,” ROBOMECH Journal, vol. 6, 04 2019.
F. Chen, M. Selvaggio. and D. G. Caldwell, “Dexterous grasping by
manipulability selection for mobile manipulator with visual guidance,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1202—
1210, 2019.

J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
beliéen, K. Claes, and H. Bruyninckx, “Constraint-based task specifica-
tion and estimation for sensor-based robot systems in the presence of
geometric uncertainty,” The International Journal of Robotics Research,
vol. 26, no. 5, pp. 433-455, 2007.

W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending
iTaSC to support inequality constraints and non-instantaneous task spec-
ification,” in Proceedings of the 2009 IEEE International Conference on
Robotics and Automation, Kobe, Japan, 2009, pp. 964-971.

D. Mronga, T. Knobloch, J. de Gea Ferndndez, and F. Kirchner,
“A constraint-based approach for human-robot collision avoidance.”
Advanced Robotics, pp. 1-17, 2020.

N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in International Conference on
Advanced Robotics (ICAR), June 2009, p. 119.

E. Aertbelién and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs.”
IEEE, 2014, pp. 1540-1546.

A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006—
1028, 2014.

M. Faroni, M. Beschi, N. Pedrocchi, and A. Visioli, “Predictive inverse
kinematics for redundant manipulators with task scaling and kinematic
constraints,” I[EEE Transactions on Robotics, vol. 35, no. 1, pp. 278-285,
2019.

F. Flacco, T. Kroger, A. Luca, and O. Khatib, “Depth space approach
to human-robot collision avoidance,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 338-345, 05 2012.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193-203, 1988.

A. Escande, S. Miossec, M. Benallegue, and A. Kheddar, “A strictly con-
vex hull for computing proximity distances with continuous gradients,”
Robotics, IEEE Transactions on, vol. 30, pp. 666—678, 06 2014.

H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327-363, 2014.
H. J. Ferreau, P. Ortner, P. Langthaler, L. del Re, and M. Diehl,
“Predictive control of a real-world diesel engine using an extended
online active set strategy,” Annual Reviews in Control, vol. 31, no. 2,
pp. 293-301, 2007.

J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in 2012 IEEE International Conference
on Robotics and Automation, 2012, pp. 3859-3866.

R. Smits, “KDL: Kinematics and Dynamics Library,”
http://www.orocos.org/kdl, 2021, [Online; accessed 05-March-2021].
“Neobotix MPO-700," www.neobotix-robots.com, 2021, [Online; ac-
cessed 02-March-2021].

“Schunk LWA 4P)” www.schunk.com, 2021, [Online; accessed 02-
March-2021].

“Gazebo,” www.gazebosim.org, 2021, [Online; accessed 05-March-
2021].

C. Willén, “Walking speed indoors and outdoors in healthy persons and
in persons with late effects of polio,” Journal of Neurology Research,
01 2013.

T. Honda, M. Hirashima, and D. Nozaki, “Adaptation to visual feedback
delay influences visuomotor learning,” PloS one, vol. 7, p. €37900, 05
2012.

