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ABSTRACT
Covid-19 has caused a huge health crisis worldwide in the past

two years. Although an early detection of the virus through nucleic
acid screening can considerably reduce its spread, the efficiency of
this diagnostic process is limited by its complexity and costs. Hence,
an effective and inexpensive way to early detect Covid-19 is still
needed. Considering that the cough of an infected person contains
a large amount of information, we propose an algorithm for the
automatic recognition of Covid-19 from cough signals. Our approach
generates static log-Mel spectrograms with deltas and delta-deltas
from the cough signal and subsequently extracts feature maps through
a Convolutional Neural Network (CNN). Following the advances on
transformers in the realm of deep learning, our proposed architecture
exploits a novel adaptive position embedding structure which can
learn the position information of the features from the CNN output.
This make the transformer structure rapidly lock the attention feature
location by overlaying with the CNN output, which yields better
classification. The efficiency of the proposed architecture is shown by
the improvement, w. r. t. the baseline, of our experimental results on
the INTERPSEECH 2021 Computational Paralinguistics Challenge
CCS (Coughing Sub Challenge) database, which reached 72.6 %
UAR (Unweighted Average Recall).

Index Terms— SARS-CoV2 Detection, Computer Audition,
Convolutional Neural Network, Adaptive Position Embedding Trans-
former, log-Mel Spectrogram.

1. INTRODUCTION

The World Health Organization (WHO) declared Covid-19, caused by
the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV2),
a global pandemic on March 11, 2020. Causing tens of thousands of
lives since then, great efforts and sacrifices are still ongoing in order
to overcome the virus. Amongst these, developing methods to detect
and isolate the disease at early stages has been identified as one of
the most effective means to fight the pandemic [1]. Since the virus
mainly attacks the human respiratory system, cough and shortness
of breath are some of the most salient symptoms of Covid-19 [2].
Unlike other signals, such as X ray, which are only available through
professional instruments, coughing can be easily retrieved trough
widely available devices, e. g. , mobile-phones. Hence, developing
solutions to automatically identify Covid-19 disease from people’s
cough is a plausible solution that would considerably reduce the time
and costs of the detection process.

Even though attempts to automatically detect the presence of
Covid-19 infection from coughing have been developed, existing
methods still need to be improved. For instance, the mainstream
transformer position encoding structures broadly used in Natural Lan-
guage Processing (NLP) has no yet presented major breakthroughs
in speech technology. This relates, to some extent, to the fact that
the general transformer structure relies on features’ dimension to
adopt the attention mechanism algorithm, thus ignoring the position
information of the effective features. When working with log-Mel
spectrograms, i. e. , features maps extracted from audio signals which
contain information in both temporal and frequency domain, the fact
that transformers ignore the position information could result on the
extraction of less accurate features from the spectrograms [3, 4, 5].

Inspired by the work by Carion et al. [6], we exploit a novel con-
volution transformer structure with the adaptive position embedding
feature map of time and filter dimension. Firstly, in order to form
three channels spectrogram feature maps, we extract the log-Mel
spectrogram, which includes static, delta, and delta-deltas, from the
coughing samples. These are subsequently inserted into a Convolu-
tional Neural Network (CNN) to further capture information through
a skip connection framework. Finally, the feature maps are fed into
the structure of a transformer along to the adaptive position infor-
mation. Due to the time and frequency domain characteristics of
audio, the addition of adaptive positional embedding allows us to
find the relevant feature areas of the spectrogram, which enhances
the final classification result. The main novelty of our work is de-
signing an adaptive position embedding structure with a transformer
which integrates the log-Mel spectrogram’s feature maps into a stan-
dard architecture. To validate the effectiveness and robustness of
the proposed architecture, we present experimental results on the
INTERPSEECH 2021 Computational Paralinguistics Challenge CCS
(Coughing Sub Challenge) database [7].

The rest of the manuscript lays out as follows: in Section 2, the
state-of-the-art research on the topic is outlined; in Section 3, the
core aspects of the architecture are described; in Section 4 and 5, the
experimental setup and results are discussed; finally, in Section 6,
conclusions and future works are given.

2. RELATED WORK

For addressing the question of how to detect the presence of Covid-19
infection timely, a variety of datasets has been presented. Unlike
corpora collected through professional devices [8], coughing-based
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Fig. 1: The 3-channel log-Mel spectrograms are input on a 2-layer CNN with residual structure. The position information of feature maps is
learnt in terms of adaptive position embedding networks superimposed with the CNN output and connected with a Transformer(Tx)–Encoder(En)
framework followed by an AveragePooling2D layer. After 2 fully connected layers a softmax layer yields the results.

datasets gathered in realistic conditions [7, 9, 10] are a great resource
to promote the development of artificial systems for in-the-wild ap-
plications. To this end, Artificial Intelligence (AI) algorithms of-
fer a broad umbrella of audio-based potential solutions. Imran et
al. leverage a Deep Transfer Learning-based Multi Class classifier
(DTL-MC) to develop and test an AI-powered screening cough-based
method to identify patients affected by Covid-19, pertussis, and bron-
chitis [11]. Casanova et al. achieved promising results on cough
recognition by applying transfer learning on pre-trained networks
[12]. CNNs have also been commonly used for diagnosing Covid-
19, not only trough X-ray image recognition [13], but also through
the identification in audio signals [14, 15]. Because of the temporal
nature of the speech signal, Recurrent Neutral Networks (RNN) and
Long-Short Term Memory (LSTM), able to further capture temporal
information, were also successfully applied for the task at hand [16].
For instance, Yan et al. designed a novel Spatial Attentive ConvLSTM
Neural Network (SACRNN) structure that has the ability to further
extract the temporal and frequency domain feature information based
on log-Mel spectrograms [17]. Finally, with the development of NLP,
the structure of an attention mechanism represented by multi-head
attention achieved great success in various fields [18], being applied
in the context of cough recognition too [19].

3. ARCHITECTURE

As input features for the proposed architecture, we extract informa-
tion from 3-channel log-Mel spectrograms exploiting a convolutional
layer. Subsequently, an adaptive layer aimed to retrieve the position
from the feature maps is applied. Finally, to reconcile the features
with the positions while discovering the best features via the trans-
former structure, we employ 2 fully-connected layers. The flow chart
of the whole network structure is shown in Fig. 1. For reproducibil-
ity purposes, the source code to recreate the experimental results
presented in this article is made freely available.1

3.1. Log-Mel Spectrograms Generation

For each audio sample, we divide the raw signal into frames and
apply a window function. Subsequently, we perform Fast Fourier
Transform (FFT) on each frame. The whole process transforms the
time domain signal into a frequency domain signal. After applying
40 Mel filterbanks to the energy spectrum under the role of Eq. (1),
where the samples are set to a sample rate of 16 kHz and a Hamming
window of 25 ms with a shift of 10 ms, the log-Mel spectrograms are
obtained by

1https://github.com/EIHW/CCS SLPETX/

MelSpec(m) =

f(m+1)∑

k=f(m−1)

log(Hm(K) ∗ ∣∣X(k)2
∣∣), (1)

where |X (k)|2 denotes the energy of the k-th point in the energy
spectrum, Hm(k) describes the m-th Mel-filterbank, and m indicates
the number of filterbanks.

Due to the non-linear human perception of sound intensity, it is
reasonable to compute log-Mel spectrograms, as well as to collect
dynamic information on the change of MFCC over time. Hence, we
extract delta and delta-deltas based on the static spectrogram and
jointly form a 3-channel input feature M ∈ R

t,f,c [20, 21], where t
denotes time, f describes the number of filters, and c represents the
number of channels, which is set to three:

M (m)d =

∑N
n=1 n

(
M (m)t+n −M (m)t−n

)

2
∑N

n=1 n
2

, (2)

where d stands for the number of iterations of delta, which is set
to 1 and 2 for delta and delta-deltas, respectively. t symbolises the
position of the frame, n indicates the number of differences between
the current frame and the previous-next frames, and N is set to 2 in
general. Thus, the 3-channel log-Mel spectrograms are obtained.

3.2. CNN Model

After obtaining the log-Mel spectrogram group, we designed two
standard convolution layers with a residual structure as shown in
Figure 1. Due to the reduced size of the samples, we chose 5*5
convolutional kernels as suitable in the main structure of the CNN.
This enables also to increase the perceptual field by using fewer
layers, by this fully covering the feature maps and reducing the risk
of overfitting due to the overly redundant and high complex nature
of the model. Finally, a Maxpooling layer was also added in order to
reduce the size of the feature maps, so that the information could be
focused on the channel dimension after the convolution layers. It is a
remarkable fact that we adopt a convolutional kernel of 3x3 size which
may contain some valuable feature information for supplementing
the missing details from the subject structure. The whole structure is
designed to extract as much feature information as possible without
raising the complexity of the model. By this, we aim to reduce the
dimensionality and pave the way for a further feature extraction step
carried out by using the adaptive position embedding transformer.
The parameters of the whole structure are listed in Table 2.

3.3. Adaptive Position Embedding Transformer

Since the model complexity is impaired by the limited number of
samples, in order to ensure its convergence and further extract re-
maining information, an adaptive position embedding transformer
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Fig. 2: The detailed process of the whole adaptive position embedding structure uses an embedding layer to learn the position information of
the Time Dimension and the N Mel Dimension respectively, and then further enhances learning based on the convolutional layer after merging.

Table 1: Hyperparameters of the whole CNN model.

Layer In Ch Out Ch Kernel Size Stride Padding

Conv1 3 32 (5,5) (1,1) (2,2)

MaxP1 32 32 (2,2) (2,2) (0,0)

Conv2 32 64 (5,5) (1,1) (2,2)

MaxP2 64 64 (1,2) (1,2) (0,0)

Conv skip 32 64 (3,3) (1,1) (1,1)

MaxP skip 64 64 (2,4) (2,4) (0,0)

was designed (cf. Figure 2). By taking as starting point the feature
maps obtained from the CNN [Batch size, Output channels, Time,
N mels], the disadvantage of traditional position encoding is that
only the position encoding in the direction of time steps is consid-
ered, while Spectrogram is a 2-D feature map [22]. Therefore, we
encode the Time and N mels dimension according to their own num-
ber, respectively. For instance, if the number of the Time dimension
is 150, we gain 0, 1, 2, ..., 149, position information after encoding
it. The same procedure applies for N mels. Subsequently, we utilise
two embedding layers to map the Time and N mels dimensions to
be 2-dimensional vectors, separately, and the number of mapped
dimensions is set to half of the number of Output channels dimen-
sion. Besides, we also initialise the embedding layer weights to make
them conform to the Gaussian distribution so that the transformer
can find the valid feature information better and faster, instead of
just executing a simple flattening like ‘traditional’ location coding
method. Finally, after memorising the position content, we employ
an unsqueeze layer to reshape the obtained feature map into the same
size of the CNN output, by this making it possible to learn contents of
the two dimensions together. Subsequently, we retrieve the final posi-
tion information through a convolutional layer. Note that the purpose
of augmenting the CNN is to strengthen the learning of the position
again, so that the learnt information is more evenly distributed in the
Output channels which contain holistic feature information.

After passing the log-Mel spectrogram group through the adap-
tive position embedding layer, the feature map is turned into a 3D
tensor [Batch size, Time, Output channel*N mel] and then fed into
the transformer algorithm. Instead of an RNN, which cannot process
feature information in parallel to a certain extent, or a multi-stacked
multilayer CNN, which causes parameter redundancy and increases
the training cost, we employ the encoder part of the transformer for
the classification. Firstly, the self-attention computes three different
transformation matrices Wq , Wk, Wv with linear projections to ob-
tain queries(Q), keys(K), and values(V ) from the feature dimension,
which is made up of the multiplication of Output channel and N mel.
The attention output matrix is obtained using Q, K, V by

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (3)

Table 2: Hyperparameters of the transformer encoder structure with
adaptive position embedding as well as the transformer layer (N).

Adaptive Position Embedding

parameters Size Kernel

Pos T Emb (150,32) -

Pos M Emb (10,32) -

Pos Conv (64,64) (1,1)

Transformer (N = 1)

parameters values

Dim features 640

heads 8

Dim feed forward 512

Fully Connected Layers

Block In features Out features

FC1 640 64

FC2 64 2

where Q and K are scaled inner products in order to obtain attention
representation at multiple scales. dk is the dimension of Q and
K. Since the value of the inner product raises as the dimension
boosts, the normalisation effect is achieved by

√
dk. Besides, it

is crucial to exploit multi-dimensional feature characterisation at
different position. Therefore, a multi-head transformer is further
proposed which is composed of concatenating the attention output
matrix of all heads and multiplying it by an output weight matrix Wo

with dimension to attain the final output [23]:

MultiHead(Q,K, V ) = Concat(head1, ..., headn)W
o,

where headn = Attention(QWQ
n ,KWK

n , V WV
n ).

(4)

At the same time, we also exert other techniques from the trans-
former structure include adding an Add & Norm Layer, where Add
stands for residual connectivity (aimed to prevent network degra-
dation), and Norm for Layer Normalisation (used to normalise the
activation values of each layer). In addition, it is also essential to op-
erate the Feed Forward Network (FFN), which introduces the ReLU
activation function and then transforms the space of the attention
output. By this, the FFN only has the ability to further integrate its
own features at each time step, i. e. , it is independent of other time
steps, which can enhance the expressiveness of the model. The output
of the transformer encoder generates a one dimensional tensor by
means of a mean reshape layer and two fully connected layers, by
this generating the final binary classification results. The specific
parameters of the whole structure are shown in Table 2.

4. EXPERIMENTAL DESIGN

We utilise the Covid-19 Cough Sub-Challenge (CCS) database from
the INTERSPEECH 2021 Computational Paralinguistics ChallengE
(ComParE) [7], which provides audio samples and the corresponding
COVID-19 test labels. The corpus contains 929 cough recordings
from 397 participants with a total duration of 1.63 hours. Participants



Fig. 3: UAR(%) results based on the proportion of correctly predicted
segments to total segments in each sample.

produced one to three forced coughs, which were binary annotated
(either positive or negative). A 3-set partitioning of the samples is
given: training (286 samples), validation (231), and test (208). All the
experiments are conducted in the Pytorch deep learning framework,
and the model hyperparameters are set as follows: Batch size is
set to 8; cross entropy is chosen as loss function; the learning rate
is set to 1e-2; Stochastic Gradient Descent (SGD) is used as the
optimiser, where weight-decay and momentum are set to 1e-3 and
0.8, respectively. The model hyper-parameters are optimised on the
validations set. Due to the unbalanced distribution of the samples
across the two labels, we will interpret the experimental results in
terms of Unweighted Average Recall (UAR) as in the challenge. The
additional metrics accuracy, specificity, sensitivity, and confidence
intervals, will be also reported.

In order to accelerate the mini-batch training procedures, it is
necessary to unify the input data length; thus, each entire sample
is lifted according to the criterion of intercepting a fixed 300-frame
segment. For samples containing less than 300 frames, it is compul-
sory to carry out a zero padding operation. Differently, for samples
with more than 300 frames, we divide the number of frames by 300,
take the quotient of the total number of segments intercepted by the
sample, and then judge the remainder. If the remainder is greater than
or equal to 100 frames, a zero padding operation is added to the back,
otherwise, the remainder is discarded. This operation is applied on
both the validation and test sets. We set a majority voting function to
aggregate the predictions of segments within one sample for the test
set in order to better compare with other structures. Since our model
achieves around 100 % recognition rate on the negative Covid-19
labels in the test set, the voting function determines the final result
by judging the proportion of correct predictions. In Figure 3, the
line graph of the proportion is shown. We can see that when about
30 %–50 % of the segments in the test set are accurately predicted,
the test set sample is identified as positive, reaching the highest UAR
with adaptive position embedding (72.6 %).

5. RESULTS AND DISCUSSION

In this work, we aim to demonstrate the effectiveness and gener-
alisation of our designed adaptive position embedding transformer
architecture. To evaluate the experimental result, we comparatively
assess the outcomes of the proposed framework by keeping the CNN
structure parameters unchanged (cf. the lower part of Table 3). In
addition, we also indicate the results from previous works as baseline
for the discussion (cf. upper part of Table 3). We can observe that
with the classical combination of bidirectional LSTM (BiLSTM) +
traditional attention mechanism, the structure only obtains 66.8 %

Table 3: Overall results for the four evaluated methods. Unweighted
Average Recall (UAR), Accuracy (Acc.) , Specificity (SP), Sensitivity
(SE), and Confidence Intervals (CI) for UAR, are given ( %).

Methods UAR Acc. SP SE CI

End2You [7] 64.7 – – – –
Fusion [7] 73.9 – – – –
E. Casanova et al. [12] 75.9 – – – –
S. Illium et al. [19] 72.0 – – – –
T. Yan et al. [17] 73.2 83.65 89.94 56.41 ±15.10

ACRNN 66.8 86.86 97.63 35.90 ±15.67
C-Tx 68.6 87.50 98.82 38.46 ±14.71
C-TPETx 70.4 85.57 94.67 46.15 ±16.55
C-APETx 72.6 87.50 96.45 48.72 ±15.01

UAR (cf. ACRNN). Similarly, when considering the transformer
structure without adding position information, the UAR still remains
below 70.0 % (cf. 68.6 % for C-Tx). Our results also show that adding
position encoding to the traditional transformer clearly improves the
model’s performance, reaching 70.4 % UAR (cf. C-TPETx). How-
ever, the best outcomes are achieved by the proposed structure, i. e. ,
our designed adaptive position embedding transformer architecture,
which reaches a meaningful improvement w. r. t. the other models and
baselines: 72.6 % UAR, 96.45 % Specificity, and 48.72 % Sensitivity
(cf. C-APETx).

In comparison with the results by Casanova et al. which show a
higher UAR (75.9 %), it is important to mention that their approach,
unlike the herein presented one, is based on a large-scale transfer
learning model, whose complexity implies a longer training time and
higher computational effort [12]. Similarly, although the difference
between our results and the ones by Yan et al. is minimal (73.2 %
UAR) [17], they proposed a solution based on the fusion of two
models, which yields a more redundant and complex architecture.
The same applies for the baseline fusion framework from the CCS
Sub-Challenge (73.9 % UAR) that fuses multiple models [7]. Finally,
w. r. t. the results proposed by Illium et al. [19] and the End2You
baseline [7], our model is slightly superior in terms of both results
and structural parameters. By the above comparative analysis, we
can conclude that the structure of the proposed model shows to be
particularly effective for cough-based recognition of Covid-19.

6. CONCLUSION

We presented a novel adaptive position embedding transformer struc-
ture able to outperform the baseline for the INTERSPEECH 2021
ComParE coughing database. Unlike previous works, which rely on
complex and redundant models, our architecture minimises the dimen-
sion size of log-Mel spectrograms (without boosting the depth of the
model) by utilising a CNN with skip connections. This is particularly
useful since it enables to retain the most relevant feature information,
something especially important when working with small datasets, as
those for Covid-19 recognition. Furthermore, another advantage of
the presented framework is that it can also identify the most relevant
feature areas through an adaptive position embedding transformer.

One of the limitations of our approach is that the outcomes in
terms of sensitivity are not very satisfactory. This may be caused
on the one side by the very small size of the dataset, on the other
side by the imbalanced distribution of samples across the classes.
Hence, further research should be oriented towards the collection of
bigger and more balanced corpora for the presented task. In future
works, the algorithm’s generalisation ability should be tested on other
databases, by this further validating the presented outcomes.
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