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Abstract— Since the emergence of the COVID-19 pandemic,
various methods to detect the illness from cough and speech
audio data have been proposed. While many of them deliver
promising results, they lack transparency in the form of expla-
nations which is crucial for establishing trust in the classifiers.
We propose CoughLIME which extends LIME to explanations
for audio data, specifically tailored towards cough data. We
show that CoughLIME is capable of generating faithful sonified
explanations for COVID-19 detection. To quantify the perfor-
mance of the explanations generated for the CIdeR model, we
adopt pixel flipping to audio and introduce a novel metric
to assess the performance of the XAI classifier. CoughLIME
achieves a ∆AUC of 19.48 % generating explanations for
CIdeR’s predictions.

I. INTRODUCTION

The worldwide coronavirus disease 2019 (COVID-19)
pandemic has immensely impacted many sectors, among
them the global economy and the mental health of the popu-
lation [1]. To this date, 497,960,492 cases of COVID-19 and
6,181,850 deaths have been reported1. Arguably, frequent
testing of major parts or, ideally, the entire population is an
efficient way to tackle the pandemic [2]. However, clinical
tests come with various challenges and open questions,
among them implementing a regular testing strategy for
large parts of the population [3]. Pathological changes in
the lungs and vocal systems attributed to COVID-19 suggest
that the disease could be detected solely from the voice of a
patient [4]. This raises the question whether COVID-19 could
be detected from speech or cough data employing Machine
Learning (ML). An application that takes an audio sample
as input and outputs the probability of a current COVID-19
infection could run on any smartphone and be combined with
traditional tests to form an efficient testing strategy.

Some proposed applications detecting COVID-19 from
speech or cough data deliver good results [5]; however, in
order for them to be widely accepted, trust in the systems
is crucial. To establish trust, users must understand how
the model determines its predictions. Explainable artificial
intelligence (XAI) aims at providing explanations for the out-
put of an AI application that are understandable to humans.
While many promising applications for detecting COVID-19
from audio data have been proposed, none of them focus
on providing explanations for their models’ decisions. We
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argue that in order for a COVID-19 detection application to
be deployed, trust, hence explaining its predictions, is cru-
cial. Additionally, methods to explain COVID-19 prediction
models can help medical experts and users understand and
accept the models’ decisions. Intuitively, explanations for
predictions on audio data should be provided in the form of
audio. However, existing XAI techniques almost exclusively
focus on visual and textual explanations. In this work, we
introduce CoughLIME to obtain sonified explanations for
the predictions of ML applications. It extends Ribeiro et
al.’s approach providing Local Interpretable Model-agnostic
Explanations (LIME) [6] for use with audio data, specifically
tailored towards cough data. To demonstrate its functionality,
we apply CoughLIME to explain the predictions of the
CIdeR model [7].

II. RELATED WORK

Various approaches to detect active COVID-19 infections
from breath, speech, or cough samples have been proposed.
They rely on end-to-end learning and automatic feature
engineering [8], [7], [9] or hand-crafted features such as Mel-
Frequency Cepstral Coefficients (MFCCs) and their deltas or
Mel-spectrograms with dedicated classifiers [10].

While many of these studies lead to high accuracies, they
have various deficiencies. Given the novelty of COVID-
19, only little training data with inconsistent ground truth
annotations are available [5]. High performing COVID-19
detection models from audio data often perform poorly
across data sets [11]. Furthermore, the vast majority of the ar-
chitectures do not provide explanations for their predictions.
However, given the detection being a healthcare application,
explanations are crucial to establish trust in the model [12].

XAI methods proposed up to this date can be classified
into four categories: interpretable local surrogates, occlu-
sion analysis, integrated gradients/smoothGrad, and layer-
wise relevance propagation [13]. An example for an in-
terpretable local surrogate is LIME [6] which generates
local explanations for a specific sample and is compatible
with any model. Explanations are generated by perturbing
the input and training a surrogate model which assigns
weights to each input component. LIME’s authors originally
implemented the technique for image and text data [6].
Extensions of LIME for audio data that have been proposed
in the literature focus on music analysis [14], [15]. While
SoundLIME is generally applicable to audio data, it does not
focus on providing listenable explanations [14]. AudioLIME
does provide listenable explanations, but separates the audio
data into different sources [15]. While this is applicable
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Fig. 1. Example loudness decomposition of a cough audio file with
threshold 75 dB.

to instrumental music, it does not generalise to all audio
data as, e. g., cough data only has one source. This work
focuses on introducing CoughLIME to prove the feasibility
of explaining the predictions of COVID-19 detection models
in the form of listenable, hence true to audio, explanations.

III. COUGHLIME
CoughLIME extends the basic LIME functionality de-

veloped by Ribeiro et al. [6]. It generates explanations by
determining and highlighting the parts of the input data
responsible for a model’s decision. Calculating the weights
wi ∈ R, it determines both the components that tend the
model towards a positive prediction as well as the ones that
account for a negative prediction.

A. Audio decomposition

A crucial part of generating explanations with Cough-
LIME is decomposing the input audio into components
which can be interpreted by humans. We additionally em-
phasise that, in order to produce listenable explanations, it
must be possible to reconstruct an audio file from these
components. To create the interpretable components, we ex-
periment with different approaches for spectral and temporal
masking. Employing these rather simple decompositions is
motivated by the fact that they have led to excellent results
for audio data augmentation [16]. To compare the obtained
results with a more complex approach, we further implement
a decomposition based on Non-negative Matrix Factoriza-
tion (NMF). For space reasons, we only further illustrate
the loudness decomposition and the NMF decomposition.
Results for CoughLIME with the temporal, spectral and
loudness-spectral decomposition as well as the code for
all experiments is publicly available2. The proposed novel
loudness decomposition aims at extracting individual cough
sounds. For this purpose, we compute the power p in dB of
the cough sounds. We round p to the nearest 10 to avoid an
excess of components and calculate local minima.

z =x prounded(x) (1)

2https://github.com/glam-imperial/CoughLIME

(a) (b)

Fig. 2. Example NMF decomposition of a cough audio file into 6
components consisting of spectral profiles (a) and temporal activations (b).

To avoid creating components that do not entail an entire
cough, we introduce a threshold γ as a hyperparameter and
only generate a new component if pz(i) < γ. Component
i is then created by taking the subset of the audio array
between indices zi−1 and zi along the temporal axis. Figure 1
illustrates this approach. We point out that the number of
generated components n varies depending on the audio file
and on γ.

NMF decomposes a matrix V ∈ Rnxm
≤0 into two matrices

W ∈ Rnxk
≤0 and H ∈ Rkxm

≤0 such that V = WH. As audio
signals are not typically non-negative, a cough signal is first
transformed to its spectrogram using the discrete Fourier
transform. Taking the magnitude of the spectrogram then re-
sults in a non-negative matrix which can be decomposed into
k components using NMF. The hyperparameter k is set by the
user. We ensure the decomposed signal can be transformed
back to audio to generate listenable explanations by retaining
the phase information when calculating the spectrogram’s
magnitude. The described decomposition is implemented us-
ing the Python packages librosa and sklearn.decomposition.
Figure 2 shows an example for the NMF decomposition of
a cough audio file into six components.

B. Explanation generation

Once the input cough audio is decomposed into inter-
pretable components, explanations are generated according
to the procedure from [6]. The decomposed input is given
by a binary vector x′ ∈ {0, 1}d′

indicating the presence
or absence of the individual components. Hence, to obtain
the representation of the original audio data, all entries in
x’ would be set to 1. To generate the training data for the
sparse linear surrogate model, the input audio is perturbed
by randomly setting entries in x′ to 0 resulting in n training
samples z′ ∈ {0, 1}d′

. The loss function of the linear
surrogate model is given by

L(f, g, πx) =
∑

z,z′∈Z
πx(z)(f(z)− g(z′))2 (2)

with f the black-box model and g the surrogate model [6].
πx(z) is a proximity measure which takes the distance of
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Fig. 3. Example explanations for COVID-19 positive (a), (b) and COVID-
19 negative (c), (d) coughs generated with the loudness decomposition.
Components highlighted in red (green) account for a COVID-19 negative
(positive) prediction.

the perturbed training samples z to the original data instance
x into account. As proposed in [6], we use an exponential
kernel with cosine distance measure. The overall generated
explanation is given by a dictionary associating the weights
wi ∈ R of the different components with the component
indices, sorted in descending order according to the absolute
value of the weights. An explanation is always generated
for a certain class label. Negative weights correspond to
components that tend the model towards predicting that the
component does not belong to the class whereas positive
weights are associated with components that tend the model
towards predicting that the sample is part of the class.
Sonified explanations are obtained by factoring the k most
important components together in the original representation.
Listenable explanations were the main focus of this work,
however, complementing them with visualised explanations
can arguably be beneficial. It is therefore also possible
to obtain a visualised explanation highlighting the most
important components of the input representation and their
respective weights wi ∈ R. Hereby, focus was set on a
modular implementation: CoughLIME which extends the
LIME base class can be used with different decompositions
to explain the predictions of any model taking audio as input
data. We emphasise that the compatibility of the CoughLIME
with any COVID-19 detection algorithm from audio data
enables the comparison of different classifiers.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

To assess CoughLIME’s ability to faithfully explain
COVID-19 prediction models, we generate explanations for
the CIdeR model [7] trained on the publicly available data
set from the DiCOVA challenge [17]. The data set consists of
1040 samples which can be split for a 5-fold cross-validation

Fig. 4. Pixel flipping for audio for the loudness decomposition with γ =
75dB shows CoughLIME is able to correctly identify the most important
components. Results are averaged over 2 runs.

with instance-per-fold lists provided by the challenge. CIdeR
is a deep ResNet model specifically developed for COVID-
19 detection from audio data. It achieved an Area under
the Curve (AUC) of 79.9% on the blind test set. We point
out that CoughLIME is a model-agnostic approach – it is
hence of minor importance which COVID-19 classification
model we explain for the purpose of this demonstration. As
explained above, we focus on sonified explanations as they
are the most intuitive way to explain the behaviour of a model
acting on audio data. Listenable examples can be found in
our repository3.

To quantify the faithfulness of the generated explanations,
we adopt pixel flipping to audio. This evaluation method was
originally proposed for image data and argues that if an XAI
method correctly highlights the important parts of the input
representation, ‘flipping’ these components to 0 should lead
to a rapid decrease in performance [18]. To this end, we
generate explanations using CoughLIME with the loudness
decomposition for all 218 files contained in fold 1 of the
DiCOVA data set. We then calculate the percentage of the
predictions having flipped the most significant components
to 0 that lead to the same class prediction as the entire file.
We compare this percentage to the percentage of same class
predictions having flipped the same number of randomly cho-
sen components. As the loudness decomposition generates a
variable number of components, we flip a percentage of all
generated components n to establish a basis of comparison.
The results and the standard deviation over two runs are
reported in Figure 4. All results were generated with a
threshold γ = 75dB. For all k and all decompositions
tested, the predictions on the components found important
by CoughLIME lead to superior results than the predictions
on random components.

To establish a base of comparison for the pixel flipping
results, we introduce a new metric: the Delta-Area Under

3https://github.com/glam-imperial/CoughLIME
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TABLE I
COMPARISON OF THE ∆AUC ACHIEVED WITH DIFFERENT

DECOMPOSITIONS.

Decomp-
osition

Temporal Spectral Loudness Loudness-
Spectral

NMF

∆AUC 13.26% 9.38% 19.48% 5.68% 4.13%

the Curve (∆AUC)

∆AUC =

∫ cn
c1

y2(x) dx−
∫ cn
c1

y1(x) dx∫ cn
c1

1 dx
(3)

with c being the percentages of components flipped, y1 the
curve generated by flipping the most relevant components
first and y2 the curve generated by flipping random compo-
nents. The ∆AUC is given by the percentage of the entire
graph area which is covered by the area between the curves
generated for the most relevant and the random components.
The higher the ∆AUC, the better the explanations. Table I
compares the ∆AUC obtained for the proposed decomposi-
tions.

We argue that it can be beneficial to complement listen-
able explanations with visual or textual ones to obtain a
better overall understanding of the system. Therefore, we
implement methods to highlight the components found most
important by the classification model together with their
relative weights (Figure 3).

V. CONCLUSION

In this work, we proposed CoughLIME – a model-agnostic
approach to generate sonified local explanations for COVID-
19 detection models from audio data. CoughLIME decom-
poses the input into different interpretable components and
fits a surrogate model to them to learn the importance of
each component towards the model’s prediction. We focus on
obtaining sonified – hence true to audio – explanations and
combine them with visual highlights of the most important
components. Our results show that CoughLIME is capable
of generating faithful explanations for the predictions of the
CIdeR model by identifying the most important components
of the input cough sample. This was also quantitatively
verified by the newly suggested ∆AUC measure and pixel
flipping for audio.

VI. FUTURE WORK

In the future, one should extend CoughLIME in vari-
ous directions. Conducting an extensive qualitative usability
evaluation both with medical and non-expert human users
will provide valuable insights into the usefulness of the
generated explanations in practice. Furthermore, one needs to
experiment with different decompositions, possibly based on
deep architectures. One further needs to investigate whether
these lead to better quantitative and qualitative evaluation
results than the decompositions proposed in this work. Addi-
tionally, extending CoughLIME to global explanations could
provide more general insights into why models predict a

cough as COVID-19 positive. Lastly, one has to compare
the performance and results of CoughLIME with different
COVID-19 detection models, among others to assess whether
CoughLIME could be a remedy to the issue that some models
do not generalise well to other data sets.
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