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Abstract— Heart sound auscultation is an effective method
for early-stage diagnosis of heart disease. The application
of deep neural networks is gaining increasing attention in
automated heart sound classification. This paper proposes
deep Convolutional Neural Networks (CNNs) to classify
normal/abnormal heart sounds, which takes two-dimensional
Mel-scale features as input, including Mel frequency cepstral
coefficients (MFCCs) and the Log Mel spectrum. We employ
two weighted loss functions during the training to mitigate
the class imbalance issue. The model was developed on the
public PhysioNet/Computing in Cardiology Challenge (CinC)
2016 heart sound database. On the considered test set, the
proposed model with Log Mel spectrum as features achieves an
Unweighted Average Recall (UAR) of 89.6%, with sensitivity
and specificity being 89.5% and 89.7 % respectively.

Clinical relevance— This work proposes a CNN-based model
to enable automated heart sound classification, which can
provide auxiliary assistance for heart auscultation and has the
potential to screen for heart pathologies in clinical applications
at a relatively low cost.

I. INTRODUCTION

Cardiovascular diseases remain a leading threat to heart
health; thus, accurate heart sound auscultation is in great
demand to help diagnose heart diseases. However, due to
the lack of experienced clinicians and low patient-to-doctor
ratio, accurate heart sound diagnosis is hard to obtain [1].
Nowadays, the rapid developments in computer-aided heart
sound analysis provide a potential solution to this problem.
Various computational methods with signal processing and
machine learning techniques are gaining increasing attention
in automatic heart sound diagnosis [2] [3].

In the early works, heart sound classification mainly relied
on low-level human-designed features, typically including
durations, amplitudes, frequency components, and energy
measurements of the heart sound signal [4]. In recent years,
deep learning techniques have reported high performance in
heart sound classification [5] [6] [7]. Extracted features such
as signal energy distribution [5], frequency bands [6], and
wavelet features [7] can be input to neural networks, which
allows the learning of more complex representations from the
primitive features. Particularly, inspired by the remarkable
performance of Convolutional Neural Networks (CNNs) in
image classification tasks, the application of CNNs in heart
sound classification is most frequently discussed in recent
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studies [8] [9] [10] [11]. CNNs are usually combined with
two-dimensional time-frequency representations of the heart
sound signal, in which power spectrum, wavelet spectro-
gram, and Mel-scale features are widely used [8]. Potes
et al. combined CNNs and AdaBoost with time-frequency
features extracted from nine frequency bands for heart sound
classification. They achieved 86.0% UAR on the randomly
sampled test set, which was the first place in the PhysioNet
Challenge 2016 [9]. Tschannen et al. proposed a wavelet-
based CNN feature extractor to obtain wavelet features and
combined the features with an SVM classifier to classify
the heart sounds [12]. Nilanon et al. visualised the Power
Spectral Density (PSD) features as one channel images
and employed a CNN model to classify heart sounds [13].
Mel-scale features have shown high performance in heart
sound classification. Rubin et al. visualised the Mel fre-
quency cepstral coefficients (MFCCs) as heatmaps and input
the heatmap images to a 2D-CNN model for heart sound
classification [10]. Dong’s study on Heart Sound Shenzhen
database [14] showed that the Log Mel spectrogram achieved
better results than other low-level descriptors. Noman et al.
explored the utilisation of a 1D-CNN and a 2D-CNN with
MFCC features in heart sound classification [11].

Various studies have shown the predictive power of CNNs
for heart sound classification. However, only one feature set
is studied in most studies [8] [10], and more importantly,
the problem of class imbalance has been overlooked in most
studies [9] [13] [15]. In this paper, we propose two deep
CNNs for heart sound classification with two Mel scale
acoustic features considering the class imbalance problem.
Specifically, We extract MFCC and the Log Mel spectrum
from the heart sound signal as the input feature to the CNN
and compare the models’ performance associated with these
two features. Moreover, to alleviate the data imbalance issue
in the heart sound database, we apply two weighted loss
functions in the classification stage, which leads to a more
accurate model for detecting abnormal heart sounds.

II. METHODS
A. Feature Extraction

Mel-scale features are widely applied in speech signal
processing [16]. We extract MFCCs and the Log Mel spec-
trum as two-dimensional representations of the heart sound
signal. Besides, we found that adding additional features as
the first-order and second-order derivatives of the MFCCs
brings no performance improvement, probably because the
linear derivatives can be approximated by the linear layers in
the CNN, which is consistent with recent findings [15] [17].
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Fig. 1. Illustration of the VGG architecture

Fig. 2.

Illustration of the ResNet architecture

B. Convolutional Neural Network

The CNN is implemented to extract high-level spatial
features from the named two-dimensional MFCCs and Log
Mel spectrum. We propose two architectures that mimic the
building blocks of VGG [18] and a residual neural network
(ResNet) [19] to classify the heart sounds, and compare the
classification results of these two models.

The network modified from VGG contains the basic block
as a stack of 3 x 3 convolutional kernels, followed by a 2 x2
max-pooling layer to reduce the size of the feature map.
The convolutional layer is followed by a BatchNorm layer
and a ReLu activation function. Fully connected layers are
employed at the end to output the classification result.

The ResNet architecture has similar convolutional blocks
as the VGG, which contains a stack of 3 x 3 convolutional
kernels, followed by a 2 x 2 max-pooling layer. The residual
network also consists of residual connections of identity
mapping before the activation function to add expressiveness.
Similar to the VGG architecture, BatchNorm layers and
ReLu activation are used, and fully connected layers are
connected to perform classification. Figure 1 and figure 2
illustrate the architectures of the proposed models.

C. Loss Function

Cross entropy loss is commonly used in previous stud-
ies [10] [13] [15]. However, it ignores the class imbalance
problem, which is common in heart sound databases since
subjects with heart disease are relatively rare. In this paper,
we considered two weighted loss functions, balanced cross-
entropy loss and focal loss [20], as the algorithm-level
approach to address the imbalanced dataset problem.

The balanced cross-entropy loss assigns larger weights to
the minority class, which gives more penalty in computing

the loss if the model misclassifies the abnormal heart sounds.
However, it does not consider the hard or easily misclassified
samples. Particularly, signals that are corrupted by noise
are easily misclassified in this task. Focal loss handles this
problem by introducing a modulation term. Focal loss is
defined as follows:

FL(p;) = —a;(1—p:)"log(py), (D

where a; denotes the class weights and p, denotes the
predicted probability of the sample being in the ground truth
class. The class weights term a; handles the class imbalance
problem, similar to that in balanced cross-entropy loss. Addi-
tionally, the modulation term (1 — p,)? adds larger weights to
the sample if it is misclassified with high probability. In this
way, focal loss focuses more on hard-to-classified samples,
such as the noisy heart sound recordings in the database.

In this paper, the class weight is set as 0.2 for normal
heart sounds and 0.8 for abnormal ones according to the
distribution of the classes. And the modulation factor Y is
chosen to be 1 after the hyperparameter tuning.

III. EXPERIMENTAL RESULTS
A. Dataset

The heart sound database used in this paper was released
by the PhysioNet/Computing in Cardiology challenge in
2016 [21], which aimed to provide the largest heart sound
database for the development of algorithms. A total of 3240
heart sound recordings gathered from independent research
centres were categorised as normal and abnormal by expert
labelling. While 2575 heart sounds collected from healthy
subjects were labelled as normal, 665 heart sounds from sub-
jects with confirmed heart disease were labelled as abnormal.

B. Experimental Setup

1) Preprocessing: Since the heart sounds are collected
from non-standard environments, preprocessing is applied
to normalise the signal. We use a Butterworth filter (f1 =
25Hz, f2 = 400Hz) to suppress the noise while preserving
the morphology of clean signals. The original sampling rate
of the heart sound signal is 2kHz and is downsampled to
1kHz to reduce the computational cost. The signals are
normalised by dividing the maximum value to ensure the
amplitudes of the signals are limited to the scale of [—1,1].

2) Segmentation: The original heart sound recordings are
segmented into short intervals of cardiac cycles to increase
the number of heart sound samples and ensure that all heart
sounds are of the same length. We implement Springer’s
algorithm for heart sound segmentation, which utilises a
trained hidden semi-Markov model with logistic regression
to identify the states of heart sounds [22]. The heart sound
is segmented at the beginning of each cardiac cycle with
a length of 3 seconds. A total of 40640 segmented heart
sound samples were obtained after segmentation, consisting
of 31882 normal samples and 8758 abnormal ones. Each
heart sound segment is aligned at the beginning of the cardiac
cycle.
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TABLE I
SENSITIVITY (SE), SPECIFICITY (SP) AND UAR ON CROSS-VALIDATION

Loss function Feature Model  Se / Sp / UAR (%)
Log Mel VGG 81.2/90.1/85.7
Cross-Entrony Loss Log Mel  ResNet 77.0/93.0/85.0
. PYZOSS " MFCC VGG 73.5/96.1/84.8
MECC ResNet 77.6 /91.7 / 84.7
Log Mel VGG 88.7 /1 86.8 / 87.8
Balanced Log Mel  ResNet 88.0/ 86.6 / 87.3
Cross-Entropy Loss MFCC VGG 85.7/88.5/87.1
MFCC ResNet 88.7 /1 86.6 / 87.7
Log Mel VGG 88.0/91.0 / 89.5
Focal loss Log Mel  ResNet 88.0 / 89.3 / 88.7
MFCC VGG 91.0/87.6/89.3
MFCC ResNet 87.5/832/854

TABLE II

CLASSIFICATION RESULTS ON HIDDEN TEST SET

Model
VGG

Feature

Log Mel

Loss function Se / Sp / UAR (%)

89.5/89.7/89.6

Focal loss

3) Training setup: Since the official test set of the chal-
lenge is not published, for a fair comparison with the related
work [8] [11] [13] [15], we keep a 20 % test set by stratified
sampling for evaluating the model. The 80% training set is
then partitioned into a 5-fold cross-validation set to choose
the optimal model. The data splitting process is operated
on the level of original heart sound recordings rather than
segments to ensure that segments from the same recordings
cannot occur in both the training and test sets.

The extracted features, Log Mel spectrum and MFCCs, are
trained on two network architectures with three loss functions
for comparison. In the training stage, the batch size is set to
be 64, and a learning rate decay strategy is used to decay
the learning rate by 50% every 20 epoch. Early stopping is
used to prevent overfitting that ends training if the loss on
the validation set does not decrease after 50 epochs.

Since the heart sound recordings are segmented into short
frames before the training process, the classification result
is associated with segments rather than original recordings.
Therefore, we consider a score-level fusion with a majority
voting strategy on the segments that belong to the same heart
sound to determine the final predictions of the original heart
sound recording.

4) Evaluation Metrics: For evaluation of the predicted
result, the Unweighted Average Recall (UAR) is utilised in
this paper. UAR is defined as the average value of sensitivity
and specificity, which takes into account the recall of both
positive samples and negative samples; thus, it is more
reasonable with a highly imbalanced data distribution [23].

C. Results

The extracted features, Log Mel spectrum and MFCCs, are
trained on VGG and the ResNet model, respectively. Table I
shows the classification performances of the models on the
validation set with three loss functions.

Comparing the results, we notice that the classification
performance is comparable between the proposed VGG and
ResNet models. The model with Log Mel spectrum tends
to perform slightly better than that with MFCCs by less
than 1%. Moreover, it is noticeable that there is a high
trade-off between sensitivity and specificity with the plain
cross-entropy loss, which means the model performs much
worse in classifying abnormal heart sounds. By applying the
weighted loss function, the models achieve better classifica-
tion results and considerable improvements in performance
when classifying abnormal heart sounds. With balanced
cross-entropy loss, the proposed ResNet model achieves a
maximum improvement of 3% with the MFCCs features.
Furthermore, the models with focal loss outperform those
with balanced cross-entropy loss. With the focal loss, the
proposed VGG model outperforms the plain cross-entropy by
a maximum increase in UAR of 4.5 % with MFCCs feature.
The results on the cross-validation set show that the proposed
VGG model achieves the best performance using the Log
Mel spectrum features with the focal loss function. Next, we
evaluate the best model on the hidden considered test set.
As shown in table II, the model achieves a UAR of 89.6 %
with relatively balanced sensitivity (89.5%) and specificity
(89.7%).

In the PhysioNet/CinC Challenge, Potes et al. achieved
the UAR of 86%, which was accepted as the top model
[9]. There are models proposed after the challenge that used
the same dataset. Bozkurt et al. achieved 81.5% UAR [14]
and Zhang et al. achieved 90 % UAR [24] on 10-fold cross
validation, respectively. Maknickas’s model obtained 84.1 %
UAR [8] and Noman’s model achieved 88.2% UAR [13]
tested on a 20% held-out test set. Our proposed model
achieves the UAR of 89.6% on the 20% held-out test set,
which is comparable to current state-of-the-art models.

D. Discussion

We demonstrated that the deep CNN model is effective
in learning high-level representations from the acoustic fea-
tures for heart sound classification. Comparing the VGG
and ResNet architectures, the performances are relatively
similar. ResNet was proposed to solve the problem of de-
graded model performance in very deep neural networks and
has reported better performance than VGG in classification
tasks [19]; however, the performance of the VGG and the
ResNet models in this task was comparable. This appears
reasonable since the network used in this study did not
involve too deep an architecture, therefore, the advantage
of the residual network is not evident in this task.

For comparison between each feature, the Log Mel spec-
trum performs slightly better than MFCCs. The Log Mel
spectrum was extracted without the discrete cosine trans-
form (DCT), while MFCCs were obtained after DCT to
decorrelate the Mel filter bank coefficients. However, DCT
is unnecessary for application in a neural network-context
since it is not easily affected by correlated inputs. More-
over, since DCT is a linear transformation, applying DCT
will lose non-linearly related information which may carry
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important information about heart pathology. This is worth
noticing, since most related studies prefer MFCCs as the
feature [8] [10] [11] while fewer studies have explored the
use of the Log Mel spectrum. In this paper, results show
that the Log Mel spectrum leads to a better performance
than MFCCs, which is worth exploring in the future.

The comparison between the loss functions is of im-
portance. With plain cross-entropy loss, the model had a
high trade-off between sensitivity and specificity, showing
that the model performs much worse in detecting abnormal
heart sounds. This performance can be troublesome in heart
disease detection since false negatives could be dangerous
and need more attention. By applying balanced cross-entropy
loss and focal loss, the model achieved better overall perfor-
mance and improved performance in classifying abnormal
heart sounds. When comparing these two weighted loss
functions, focal loss outperforms the balanced cross-entropy
loss, probably because focal loss assigns larger weights to
the hard-to-classify samples (e. g., those affected by noise).

IV. CONCLUSIONS

We proposed VGG and ResNet CNN architectures that
take two-dimensional Mel-scale features as input for heart
sound classification. We compared the performance of Log
Mel spectrum and MFCCs features together with three
types of loss functions. Two weighted loss functions, bal-
anced cross-entropy loss and focal loss, were implemented
to address the problem of imbalanced data distribution.
Evaluations on the PhysioNet/CinC dataset have demon-
strated improvements in model performance with weighted
loss functions, among which focal loss leads to the best
classification results. Among all the experiments, the Log
Mel spectrum trained on the VGG network with focal loss
function presented the best performance by cross-validation,
which achieved 89.5% sensitivity, 89.7% specificity, and
overall UAR of 89.6% on the considered test set.

Future works could consider some up-sampling and down-
sampling methods to further address the data imbalance is-
sue, such as using Generative Adversarial Networks (GANs)
for data augmentation. Moreover, end-to-end architectures
such as Recurrent Neural Networks (RNNs) can be explored
in future works to extract the temporal dependencies from
the signal, bypassing the segmentation step.
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