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Abstract—In this work, we focus on the automatic detection
of COVID-19 patients from the analysis of cough, breath, and
speech samples. Our goal is to investigate the suitability of
Self-Supervised Learning (SSL) representations extracted using
Wav2Vec 2.0 for the task at hand. For this, in addition to
the SSL representations, the models trained exploit the Low-
Level Descriptors (LLD) of the eGeMAPS feature set, and
Mel-spectrogram coefficients. The extracted representations are
analysed using Convolutional Neural Networks (CNN) reinforced
with contextual attention. Our experiments are performed using
the data released as part of the Second Diagnosing COVID-19
using Acoustics (DiCOVA) Challenge, and we use the Area Under
the Curve (AUC) as the evaluation metric. When using the CNNs
without contextual attention, the multi-type model exploiting the
SSL. Wav2Vec 2.0 representations from the cough, breath, and
speech sounds scores the highest AUC, 80.37 %. When reinforcing
the embedded representations learnt with contextual attention,
the AUC obtained using this same model slightly decreases to
80.01 %. The best performance on the test set is obtained with a
multi-type model fusing the embedded representations extracted
from the LLDs of the cough, breath, and speech samples and
reinforced using contextual attention, scoring an AUC of 81.27 %.

Index Terms—COVID-19 Detection, Respiratory Diagnosis,
Paralinguistics, Self-Supervised Representations, Healthcare

I. INTRODUCTION

Digital health technologies based on Artificial Intelligence (Al)
can be used to develop large-scale, cost-effective solutions for
massive population screenings that ultimately contribute to the
early detection of diseases. In the current Coronavirus Disease
2019 (COVID-19) pandemic context, such solutions could be
used as a pre-screening tool to reduce the number of medical
tests performed, which are expensive, time-consuming, and
generate a large amount of waste. Previous works have ex-
plored the use of Al-based solutions in a wide range of health-
related problems, including the recognition of mental illnesses,
such as depression [1], [2] or Post-Traumatic Stress Disorder
(PTSD) [3]. Motivated by the pandemic, recent works have
focused on the detection of COVID-19 from the analysis of
different modalities, including respiratory sounds [4]-[6].
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The COVID-19 research has not yet determined the most
suitable features to extract from the respiratory sounds. In-
spired by the promising performances of Self-Supervised
Learning (SSL) representations [7], [8], we aim to investigate
—to the best of the authors’ knowledge, for the first time— the
extraction of SSL representations from coughs, breaths, and
speech for the automatic detection of COVID-19 patients. To
enrich the comparison of feature representations, we include
the Low-Level Descriptors (LLD) of the eGeMAPS feature
set [9], and Mel-spectrogram coefficients in our analysis.

We use the dataset released as part of the Second Diag-
nosing COVID-19 using Acoustics (DiCOVA) Challenge [10],
[11] to assess the performance of mono-type and multi-type
models exploiting the aforementioned feature representations.
The networks implemented to extract the salient information
from the extracted feature representations are composed of two
main blocks: the first block extracts embedded representations
from the input features, while the second block is responsible
for the actual classification. Furthermore, we explore the use
of contextual attention [1], [12] with the goal of learning to
highlight the embedded representations obtained at the output
of the first block that contribute the most to the task.

The rest of this paper is laid out as follows: Section II
describes the dataset analysed, while Section III details the
methodology followed. Section IV compiles and analyses the
results obtained, and Section V concludes the paper.

II. DATASET

The dataset released as part of the Second DiCOVA Chal-
lenge [10], [11] contains cough, breath, and speech samples
—which are sound types produced by the human respiratory
system— from COVID-19 positive and negative (healthy) pa-
tients. The sampling rate of the respiratory sounds provided by
the Challenge organisers is 44.1 kHz. However, a preliminary
exploration of the dataset revealed that some samples do not
contain frequency information in the upper frequencies of
the spectrogram. This observation suggests that some audio
samples were originally recorded at a different, lower sampling
rate, and upsampled before distributing the data. This is a
plausible hypothesis given the nature of the dataset, which
was recorded in-the-wild, via crowdsourcing, and using the
patients’ own devices. The available samples are distributed in



TABLE I
DATA AVAILABLE IN THE SECOND DICOVA CHALLENGE DATASET
TIME-WISE PER SOUND TYPE AND DATA PARTITION. THE TEMPORAL
INFORMATION IS PROVIDED IN THE FORMAT (HH:)MM:SS.

(HH:)MM:SS  Validation Test >

Cough 1:41:01 37:58 2:18:59
Breath 4:37:37  2:07:46 6:45:23
Speech 3:56:22  1:44:39 5:41:01
> 10:15:00  4:30:23  14:45:23

two partitions, and the Challenge organisers require assessing
the performance of the models on the training partition using
a pre-defined 5-fold cross-validation approach.

Each patient recorded a cough, a breath, and a speech
sample. The total duration of the dataset is 14h 45min
23sec (cf.Table I). The dataset contains information from
a total of 1436 patients (cf. Table II): 965 belonging to the
training partition, and 471, to the test partition. The training
data is imbalanced both in terms of sex (242 females and
723 males) and COVID-19 status (172 positives and 793
negatives). Similarly, the test data is also imbalanced in terms
of sex (119 females and 352 males), whilst the COVID-19
status distribution is blind to the Challenge participants.

III. METHODOLOGY

This section presents the methodology. Section III-A details
the pre-processing applied to the audio samples, Section III-B
describes the networks implemented, Section III-C indicates
the post-processing applied to the model inferences, and
Section III-D summarises the network training parameters.

A. Data Preparation

This section introduces the data conditioning applied to the
respiratory sounds. Section III-A1 details the pre-processing
applied to the cough, breath, and speech samples, while
Section III-A2 describes the different feature representations
extracted from the respiratory sounds.

1) Respiratory Sounds Pre-Processing: The dataset ex-
plored was collected in-the-wild, using the patients’ own
recording devices (cf. Section II). To overcome this disparity,
the respiratory sounds are first converted to 16 kHz and mono-
channel. After listening to a subset of the recordings, we
detected that: i) the coughs, the breaths, or the speech might
start and finish a few seconds after and before the actual start
and end of the recordings, respectively, and ii) some recordings
are empty and do not contain respiratory sounds.

The former can be attributed to the self-recording procedure
implemented to collect the data, as patients might have needed
a preparation phase of a few seconds to start and stop the
recording before starting and finishing coughing, breathing,
or speaking. To exclude the information unintentionally col-
lected during the preparation phase, we implement a Root-
Mean-Square (RMS) energy-based Sound Activity Detector
(SAD). The RMS features are computed using a frame length
of 1024 samples (64 ms) and a hop length of 512 samples
(32ms). The resulting RMS signal is normalised, and we

TABLE II
STATISTICS OF THE SECOND DICOVA CHALLENGE DATASET IN TERMS
OF THE PATIENTS’ SEX AND THEIR COVID-19 STATUS. THE LATTER IS
BLIND TO THE CHALLENGE PARTICIPANTS ON THE TEST SET.

Validation
# Test >
Positive ~ Negative >
Females 53 189 242 119 361
Males 119 604 723 352 1075
> 172 793 965 471 1436

experimentally define a threshold of 0.1 to differentiate the
content-rich frames from the silent ones. The timestamps of
the first and last frames whose RMS-based energy is above the
threshold are used to segment the original respiratory sound.

The empty recordings have a short duration —usually, below
2 sec— and mainly contain background noise. To automatically
identify these samples and exclude them from the training
process, we check the mean RMS-based energy of the acoustic
signals whose duration is shorter than 2 sec. Considering the
nature of the energy signal computed from a prototypical
speech sample, which contains voiced and unvoiced frames,
we empirically define a threshold of 0.5 to differentiate when
a respiratory sound contains relevant information from back-
ground noise. If the mean RMS-based energy is above the
threshold, we consider the corresponding sample as empty.
The cough, breath, and speech samples of a patient are consid-
ered valid for training if and only if none of them is interpreted
as empty by the described procedure. Following this approach,
3 patients from the validation partition are excluded from the
training material for providing empty respiratory sounds.

Next, we homogenise the duration of the cough, breath,
and speech samples from each individual patient to ease the
fusion of the different sound types. For this, we determine
the longest respiratory sound recorded by each patient and
extend via repetition the shorter ones. Despite this intra-
patient homogenisation, the duration of the respiratory sounds
is patient-dependent. As sequences of the same length are
commonly used to train neural networks, we decide to model
the acoustic information in windows of 5 sec. In case the length
of the respiratory sounds recorded by a patient, even after the
aforementioned homogenisation, are shorter than 5 sec, these
are all extended via repetition, so at least one window of
information can be computed from each respiratory sound.

2) Features Extraction: In this work, we aim to compare
the model performances when exploiting the 25-dimensional
LLDs of the eGeMAPS feature set [9] extracted using OPENS-
MILE [13], 128-dimensional Mel-spectrogram coefficients,
and the 768-dimensional SSL features extracted with the pre-
trained Wav2Vec 2.0 base model [14]. Each feature represen-
tation has a different resolution in the time domain: the LLDs
are extracted at 100 Hz, the Mel-spectrogram coefficients at
125 Hz, and the Wav2Vec 2.0 representations at 50 Hz. Finally,
we window the extracted representations separately without
overlap, so each segment contains the features corresponding
to S sec of the pre-processed respiratory sounds.



TABLE III
AUC MEASUREMENTS (%) OBTAINED FROM THE MONO- AND MULTI-TYPE MODELS TRAINED EXPLOITING THE LLDS OF THE EGEMAPS FEATURE SET,
THE MEL-SPECTROGRAM COEFFICIENTS, AND THE SSLL WAV2VEC 2.0 REPRESENTATIONS EXTRACTED FROM C(OUGHS), B(REATHS), AND S(PEECH).

Sound types Set LLDs of Mel-Spec.  Wav2Vec Sound types Set LLDs of Mel-Spec.  Wav2Vec
P eGeMAPS  Coeff. 2.0 yp eGeMAPS  Coeff. 2.0

o Val. 70.43 72.12 56.21 o Val. 71.03 71.44 57.89
Test 71.30 69.15 58.22 Test 66.03 65.07 58.05

5 Val. 72.16 76.18 67.79 B Val. 72.22 75.42 69.48
Test 62.22 74.26 65.02 Test 78.89 78.43 69.95

s Val. 72.13 72.04 71.86 s Val. 71.60 72.03 71.15
Test 74.01 57.43 76.73 Test 77.29 67.99 76.03

Val. 72.17 74.14 67.16 Val. 73.12 74.00 67.76

CoB Test 79.07 7425 65.43 CoB Test 78.71 74.17 69.59
Val. 71.67 72.05 66.92 Val. 71.59 73.57 68.65

ces Test 69.08 71.87 74.88 ces Test 77.48 71.75 75.88
Val, 74.56 74.06 7227 Val. 73.28 74.99 7431

Bos Test 77.19 76.48 73.18 BoSs Test 80.40 80.46 79.98
Val. 72.84 7477 69.44 Val. 73.58 74,54 70.60

CoBOS Test 79.05 76.30 80.37 CoBOS Test 81.27 79.28 80.01

(a) Models using CNNs to learn the embedded
representations from the features.

B. Models Description

The networks implemented in this work are composed of 2
main blocks: the first block extracts embedded representations
from the extracted feature representations (cf. Section III-A),
while the second block performs the actual classification.
The classification block implements two Fully Connected
(FC) layers with 32 and 2 output neurons, respectively, both
preceded by dropout layers with probability 0.3. While the
outputs of the first FC layer are transformed using a Rectified
Linear Unit (ReLU) activation function, the second FC layers
uses Softmax as the activation function, so the network outputs
can be interpreted as probability scores.

The embeddings extraction block implements specific Con-
volutional Neural Networks (CNN) to extract embedded repre-
sentations from the cough, breath, and speech representations
separately. The mono-type models have a single embeddings
extraction block, while the multi-type models fusing the
cough, breath, and speech samples contain 3 specific embed-
dings extraction blocks. Each embeddings block implements
2 1-dimensional CNN layers with 64, and 128 output filters,
respectively, using a kernel size of 3, and a stride of 1.
Following each convolutional layer, we use batch normalisa-
tion and transform the outputs using a ReLU function. A 1-
dimensional max-pooling layer, and a 1-dimensional adaptive
average pooling layer are included at the end of the first,
and second convolutional blocks, respectively. The multi-type
models fuse the embedded representations learnt at the output
of the embeddings extraction blocks via concatenation. The
dimensionality of the input features to the classification block
depends on the number of sound types to be fused together.

Additionally, we aim to reinforce the embedded repre-
sentations learnt with contextual attention [1], [12], so we
can analyse how this mechanism impacts the performance of
the different feature representations. The contextual attention
mechanisms should help highlight the salient information
in the embedded representations learnt, and, therefore, we

(b) Models using CNNs reinforced with contextual attention to
learn the embedded representations from the features.

implement a specific contextual attention mechanism to each
embeddings extraction block. The attention-based represen-
tation obtained is then fed into the classification block of
the network when training mono-type models, or fused via
concatenation when training multi-type models.

C. Inferences Post-Processing

Because of the windowing procedure described in Sec-
tion III-A, several instances of feature representations may
be extracted from the same patient, and, consequently, several
probability scores may be inferred (one from each window). In
these cases, we collect all the model inferences corresponding
to the same patient and define the mean of the individual
probabilities as the final probability inferred by the model.

D. Networks Training

The available data is imbalanced (cf. Section II), which nega-
tively impacts the learning capabilities of the models. To over-
come this issue, we implement a weighted random sampler to
select the training samples to use in each batch of the training
routine, so they are balanced in terms of their COVID-19
status. All models are trained under the exact same conditions
for a fair comparison. We define the Categorical Cross-Entropy
as the loss to minimise, using Adam as the optimiser with
a fixed learning rate of 1073, As model performances are
assessed in terms of the Area Under the Curve (AUC), we
define Lauyc = 1 — AUC as the validation loss to monitor
during the training process. Network parameters are updated
in batches of 64 samples, and trained during a maximum of
100 epochs. We implement an early-stopping mechanism to
stop training when the validation loss does not improve for
15 consecutive epochs. We follow a 5-fold cross-validation
approach to evaluate the models. As each fold is trained during
a specific number of epochs, when modelling all training
material and to prevent overfitting, the training epochs are
determined by computing the mean of the training epochs
processed in each fold, rounded up to the next integer.



IV. EXPERIMENTAL RESULTS

The results from the mono- and the multi-type models without
and with contextual attention are summarised in Table III.
Comparing the performance of the mono-type models
(cf. Table IIl.a), we observe that the highest AUC scores on
the test set when using cough, breath, and speech samples are
obtained when exploiting the LLDs of eGeMAPS, the Mel-
spectrogram coefficients, and the SSL. Wav2Vec 2.0 represen-
tations, respectively, with an AUC of 71.30 %, 74.26 %, and
76.73 %. The underperformance of the SSL. Wav2Vec 2.0 rep-
resentations on the cough and breath samples can be attributed
to the nature of the representations, as Wav2Vec 2.0 is pre-
trained on a speech dataset. When the networks do not use
contextual attention at the output of the embeddings extraction
block, the highest AUC on the test set is achieved by the multi-
type model fusing the SSL. Wav2Vec 2.0 representations of the
cough, breath, and speech samples, with an AUC of 80.37 %.
Comparing the performance of the mono-type models when
reinforcing the outputs of the embeddings extraction block
with contextual attention (cf. Table III.b), we observe that the
highest AUC scores on the test set when using cough, breath,
and speech samples are obtained with the LLDs of eGeMAPS,
with an AUC of 66.03 %, 78.89 %, and 77.29 %. The results
obtained with the multi-type models suggest that when cough
samples are involved in the fusion, the most suitable feature
representations to extract are the LLDs of eGeMAPS. To fuse
the breath and speech samples, the most suitable features
to exploit are the Mel-spectrogram coefficients. When the
networks do use contextual attention at the output of the
embeddings extraction block, the highest AUC on the test
set is achieved by the multi-type model fusing the LLDs
of eGeMAPS extracted from the cough, breath, and speech
samples, with an AUC of 81.27 %. In this scenario, the best
multi-type model exploiting SSL Wav2Vec 2.0 representations
scores the third position, behind the LLDs of eGeMAPS,
and the Mel-spectrogram coefficients. This result seems to
cast doubt on the use of contextual attention on top of a
transformer-based network —as Wav2Vec 2.0 essentially is—,
which implementation is based on self-attention mechanisms.

V. CONCLUSIONS

This work compared the performance of mono- and multi-
type COVID-19 detection models exploiting the LLDs of the
eGeMAPS feature set, the Mel-spectrogram coefficients, and
the SSL Wav2Vec 2.0 representations extracted from respi-
ratory sounds. When contextual attention mechanisms were
not used, the fusion of the SSL. Wav2Vec 2.0 representations
extracted from the cough, breath, and speech samples scored
the highest AUC, 80.37 %. Nevertheless, the best performance
on the test set was obtained with the model using contextual
attention, and fusing the LLDs of the eGeMAPs feature set
extracted from the coughs, breaths, and speech, 81.27 %.

To train the multi-type models, the same representations
were extracted from the fused sound types. However, the re-
sults obtained from the mono-type models without contextual
attention indicated that the most suitable feature representation

depended on the sound type to be exploited. A follow-up
study could investigate the use of different representations
to characterise the sound types to be fused. Further research
includes the exploration of few-shot learning to account for
the scarcity of COVID-19 positive patients in the dataset.
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