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ABSTRACT

We explore the integration of audio enhancement into a speech-
based COVID-19 detection system in an attempt to make speech
captured in noisy environments from everyday life useful for the
detection of the virus. For this purpose, two multi-task learning
approaches are exploited to jointly optimise a front-end speech en-
hancement model and a subsequent COVID-19 detection model. In
comparison to several baseline methods, such as noisy data augmen-
tation, cold cascade of speech enhancement, and COVID-19 models,
our proposed solutions are able to recover a substantial percentage
of the performance reduction caused by real-world noises. Our best-
performing model, which is trained using the synthetic data of the
DiCOVA speech corpus and AudioSet environmental backgrounds,
can achieve an average AUC of 76.87 % on the test data covering
a wide range of noise intensities, which is over 10 % better than a
COVID-19 model trained with clean audio.

Index Terms— COVID-19 Detection, Multi-Task Learning,
Speech Enhancement, Iterative Optimisation

1. INTRODUCTION

The massive testing of the population has been one of the most ef-
fective strategies to control the spread of the Coronavirus Disease
(COVID-19). Nevertheless, the diagnostic tools employed for such
purpose —including Polymerase Chain Reaction (PCR) and antigen
tests— are expensive, time-consuming, and generate a large amount
of waste. To overcome this issue, digital health solutions powered
with Artificial Intelligence (Al) have the potential to offer remote,
large-scale, and cost-effective pre-screening tools.

The symptomatology of COVID-19 presents affectations in the
human respiratory system. Thus, it seems reasonable to argue that
respiratory sounds can contain salient information to detect the virus.
In this regard, previous works in the literature explored cough [1, 2],
breath [3, 4], and speech [5, 6] signals for the detection of COVID-19
patients. Hand-crafted [7], spectrogram-based [8], or self-supervised
learning-based [9] representations have been extracted from the
aforementioned respiratory sounds, and exploited with mono- and
multi-type [10, 11] approaches.

Voice-based remote pre-screening tools offer users the possibil-
ity to analyse a voice sample whenever and wherever they are. The
quality of these recordings, which might contain a wide range of
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background noises, poses a serious threat to the models performance.
Herein, we aim to investigate —to the best of the authors’ knowl-
edge for the first time— the performance impact of COVID-19 de-
tection models when analysing speech-based samples contaminated
with real-world noises, and provide our countermeasures based on
speech enhancement techniques.

The remaining of this paper is laid out as follows. Section 2
highlights some related works in the field, while Section 3 presents
the methodology followed. In Section 4, we analyse the results ob-
tained from the experiments conducted, and Section 5 concludes the

paper.

2. RELATED WORKS

Speech has been discovered as a promising bio-marker for the de-
tection of COVID-19 using machine learning methods [12]. The
research covers those using speech alone or as one of the primary
sources for the disease detection [13, 14]. The prominent challenge,
Diagnosis of COVID-19 using Acoustics (DiCOVA) [15], provides
a benchmark for comparing audio-based COVID-19 models. How-
ever, current speech-based COVID-19 models were typically devel-
oped on clean recordings without taking the models’ noise robust-
ness into consideration, thereby limiting their practical applications
[9, 16].

In general, Audio Enhancement (AE) can be used as the front-
end processing of a computer audio application to improve audio
quality in noisy circumstances. The task of Speech Enhancement
(SE) is typically framed as a supervised learning problem, and its
solutions can be broadly categorised as frequency- and time-domain
techniques [17, 18, 19]. The frequency-domain solutions either learn
a spectral mapping from the Time-Frequency (TF) representation of
the noisy audio to that of the clean audio, or they estimate a mask
that approximates the proposition of the clean component on each
TF-bin of the noisy spectrogram [20, 21]. The time-domain SE mod-
els, such as waveNet [22] and Wave-U-Net [23], can operate directly
on the raw audio waveform while naturally preserving the phase in-
formation in the signal during processing.

Inspired by the previous work [24] which investigated the de-
pendence of downstream models on upstream speech enhancement
model for reducing the processing artifacts, we choose a U-shaped
neural network for speech enhancement [18] that is able to recover
audio with high clarity to advance the robustness of a COVID-19
model presented in [11] to real-world noises.

3. METHODOLOGY

In this section, we first present our two multi-task learning
paradigms, followed by the definition of several baseline methods for
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Fig. 1: Diagrams showing the methodologies used. The red arrows indicate the back-propagation through the network modules with respect

to the losses L of the AE and the COVID-19 detection model.

comparison. Then, we detail the architecture of the neural networks
for speech enhancement and COVID-19 detection, respectively.

3.1. Training Paradigms

We explore two joint optimisation methodologies for training an au-
dio enhancement and COVID-19 detection models, i.e., multi-task
learning and iterative optimisation, both of which aim to strengthen
the mutual promotion between the front-end and the target models.

3.1.1. Conventional Multi-Task Learning

The first approach employs a Multi-Task Learning (MTL) frame-
work that combines the losses of the audio enhancement system and
the COVID-19 model. The overall loss is mathematically defined as

L= LAE + Lcovid~ (1)

This loss equally weights the losses from both models. Hence, min-
imising L simultaneously optimises both models.

The difference from a standard MTL problem lies in the align-
ment and the connection of the two models. Even though the two
models are treated as a single entity, the AE loss is derived from an
intermediate system layer. Consequently, minimising the AE loss
has no influence on the parameters of the COVID-19 model, but the
COVID-19 loss back-propagates through the AE model. Therefore,
although the AE and the COVID-19 losses function as mutual reg-
ularisation terms, they also introduce a bias towards the update of
the AE parameters. A similar effect has been observed in previous
research on supervised auto-encoders [25].

3.1.2. lterative Optimisation

Iterative optimisation trains the AE and the COVID-19 models in
an iterative manner. The primary motivation behind this method is
based on a joint view of the two models. First, the COVID-19 model
should always be adapted to the output of the AE model, which may
contain residual noise, introduced speech distortions, and artifacts,
among others. Second, the performance of the COVID-19 model

can be utilised to improve the training process of the AE model, al-
lowing the optimisation to focus on the samples that pose particular
challenges to the task of COVID-19 detection. By doing so, we tar-
get the optimum performance of the complete neural system, includ-
ing the front-end audio enhancement and the subsequent COVID-19
detection.

To implement the iterative optimisation, given a batch of sam-
ples ¢ = [z1,x2, ..., Zi, ..., TN ], we weigh the AE loss by the nor-
malised COVID-19-related loss, such as

N
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where

w; = Lcovid(ci7 él) (3)
indicates the importance weights which sum up to 1, and c;, ¢; rep-
resents true and predicted COVID-19 labels. These weights play the
role of sample-level importance to assist in training the AE model, so
that the contribution of the conflicting samples — for instance, those
corrupted by more intensive noise — is increased.

For training the COVID-19 model, it should process the data
coming from the AE system as opposed to the clean signal to prevent
the performance gap caused by a cold cascade of the AE and the
COVID-19 models.

As long as the AE model is optimised, a more robust COVID-19
model needs to be adapted to the enhanced audio, and a more robust
COVID-19 model may further assist the AE model’s optimisation
by updating the sample difficulties. Therefore, we alternate between
the training of the COVID-19 and the AE models; i.e., training the
COVID-19 model based on the AE output while freezing the param-
eters of the AE system, and training the AE system with the indica-
tions from the COVID-19 outcomes. The iterative execution of both
optimisation steps can gradually approach to an optimum solution.

3.2. Comparison Methods

To assess the efficacy of our proposed joint optimisation methods,
we compare them with the methods outlined below over different



levels of noise intensity.

* Baseline: COVID-19 model only trained on clean data.
Since these models are not optimised for noise robustness,
we anticipate a considerable performance decrease when
confronted with noisy data.

¢ Cold Cascade: The COVID-19 model exploits a front-end
AE component. However, the AE and the COVID-19 models
are independently optimised. To do this, the AE model is
trained to reach a satisfactory enhancement performance,
and then the COVID-19 model is trained with clean data and
stacked on top of the AE model.

¢ Cold Cascade + Data Augmentation (DA): The COVID-19
detection model is trained on synthesised noisy data. We in-
tentionally introduce noise into the clean audio recordings
with different SNR ratios. The AE model is trained to achieve
a satisfactory performance. Due to the models’ exposure to
noisy data and the incorporation of an AE component, this
method should exhibit promising noise robustness.

3.3. Network Architectures

This section describes the U-Net model for audio enhancement and
the Residual Network (ResNet) for COVID-19 detection. We also
detail the adjustments made to connect these two models.

3.3.1. Audio Enhancement U-Net

The audio enhancement U-Net [26] takes the time-frequency rep-
resentations of an audio signal as input. Only the spectrogram —
representing the magnitude of the spectrum — is used, while the de-
composed phase spectrum is left unaltered. The network has an
auto-encoder architecture with feed-forward layers that stack each
encoder layer with its mirrored decoder layer. The encoder anal-
yses the spectrogram of a noisy audio input, and decomposes the
audio of interest, for example speech, from the noise components
into separate feature maps. The decomposition ability increases with
the encoder depth. Then, the decoder recombines necessary feature
maps to reconstruct the enhanced audio. Similar to ResNet, skip-
connections can facilitate the retrieval of more complete information
from the noisy input for the reconstruction of the desired audio.

Given a clean sample x, a spectrogram Y is generated from the
contaminated audio y. The U-Net aims to estimate a ratio mask
Mask(+), which is used to filter the original noisy audio and produce
the enhanced spectrogram; i.e.,

X =Y - Mask(Y). 4)

Using the inverse STFT, the enhanced audio & can be recon-
structed with the phase information of the noisy input. The model
parameters are optimised by minimising the weighted SDR (wWSDR)
loss of the original and the estimated clean speech and noise [18];
ie,

LSE(CLCE) = aLSDR(m,i) + (1 — OC)LSDR(’N,, fl) (®)]
In Equation (5),
n=y—x and n=y-— I,

which represent the actual and the estimated noise signal. Next,
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where < z, & > indicates the inner product of the actual clean signal
and the enhanced output. Finally,
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is a hyper-parameter used to weight the importance of the audio of
interest and the noise during model optimisation.

3.3.2. ResNet-Based COVID-19 Detection

The architecture of the COVID-19 detection model is based on a
ResNet-18 model [11], using the pre-trained weights to initialise the
network. A dense layer shrinks the embedded representations learnt
into a more compact representation, reducing the dimensionality of
the output features to 16. The final classification is accomplished us-
ing two fully-connected layers with a dropout rate of 0.3. Following
the first layer, the output is transformed using a ReLU function, and
then fed into the second layer, which implements two output neu-
rons with Softmax to interpret the network outputs as the probability
score of the actual sample to correspond to a COVID-19 positive or
negative patient. The categorical cross-entropy loss is used to opti-
mise this model.

3.3.3. Systematic Combination

To enable the flexible cascade of the audio enhancement system and
a target audio model into a sequence, as well as to train the over-
all system in an end-to-end fashion, we make a minor but crucial
modification to the U-Net specifications for audio enhancement by
setting the max-pooling along the time-axis to 1, and leaving the
pooling along the frequency-axis unchanged. In this way, the au-
dio enhancement model is able to process audio signals of varying
durations. As a consequence, the AE system is now compatible of
cascading with the subsequent audio models. Intermediate features
are extracted from the enhanced waveform or the AE outcome.

4. EXPERIMENTS

First, we test the robustness of the COVID-19 model against several
levels of noise. To do this, we augment the DiCOVA [15] test set
with chosen environmental recordings from AudioSet [27]. We then
perform speech enhancement using a U-Net independently trained
on the created noisy data, with the hypothesis that the enhanced
speech would have a higher audio quality, hence enhancing the sta-
bility of the COVID-19 detection from speech. Furthermore, by
adding environmental noises to the training data of the DICOVA cor-
pus, we intend to improve the robustness of the COVID-19 model.
Finally, we evaluate the performance of our joint optimisation ap-
proaches in comparison to these baseline methods.

4.1. Data Description and Processing

The DiCOVA corpus comprises coughing, breathing, and speech
recordings collected remotely from individuals with and without
COVID-19 [15]. Only the samples containing speech recordings are
considered in our investigation. The corpus has its own data par-
titioning, with 172 confirmed positive individuals out of 965 in the
development set, and 71 positive patients out of 471 in the evaluation
set.



Table 1: Testing results, AUC (%), using the DiCOVA corpus and selected samples from the AudioSet corpus. DA stands for the method
using only data augmentation. MTL represents the proposed multi-task learning solution.

Methods Inf 25dB 20dB 15dB 10dB 5dB 0dB Average
Original 81.85 74.16 73.48 69.22 65.69 61.85 56.67 66.84
Cold Cascade - 70.93 70.70 68.01 65.72 64.99 58.08 66.57
Cold Cascade + DA - 78.42 76.33 73.65 70.02 68.48 66.74 72.27
MTL - 81.73 80.62 76.98 74.59 74.45 71.15 76.59
Iterative Optimisation - 81.35 81.01 76.49 74.48 74.73 73.12 76.87

The AudioSet corpus [27] contains more than two million
human-labelled 10-second environmental sound clips extracted from
YoutTube videos. After excluding all noise recordings labelled as
human sounds according to the provided AudioSet’s ontology, we
obtained 16 198 samples for the training set, 636 samples for the
development set, and 714 samples for the test set.

To synthesise the noisy samples for training and testing, we mix
each speech recording from DiCOVA with an AudioSet sample us-
ing an SNR ranging from 0, 5, 10, 15, 20, 25dB. During training, a
random SNR is chosen for synthesising each speech sample in order
to maximise the overall generalisation ability of the trained model.
At test time, the model performance is assessed in terms of all SNRs
considered. As input to the COVID-19 model, the logarithmic val-
ues of the spectrogram representation of the speech sample are com-
puted.

4.2. Experimental Settings

From our empirical experience, a batch size of 16 is optimal for
training a U-Net for audio enhancement. Thus, the batch size re-
mains constant throughout the experiments presented in this section.
The system is optimised using Adam with a learning rate of 0.001.
Weight decay is additionally applied to the training for an L2 regular-
isation effect. During training, as the model input, audio recordings
of varying lengths are padded to the length of the longest sample
within a batch.

4.3. Evaluation Metrics

As suggested by the DiCOVA challenge, we use the Area Under the
Curve (AUC) as our performance measure. AUC reveals a classi-
fier’s ability to differentiate between two classes, and it summarises
the Receiver Operator Characteristic (ROC) curve, which illustrates
the probability curve of TPR versus FPR at different threshold val-
ues. A higher AUC score indicates that a model is more effective
at discriminating between the two classes in which the data is dis-
tributed.

4.4. Results Analysis

According to [11], the implemented ResNet-18 can get an AUC of
81.85 % on the clean testing data of DiCOVA (cf. Table 1). This
model is, however, susceptible to noise disruption, with even a tiny
noise (SNR = 25dB), causing an AUC drop of more than 7 %. As
the noise rises, the detection performance gradually diminishes until
it reaches an AUC of 56.67 % at the SNR of 0dB.

Applying an independently trained SE model to the front-end of
the COVID-19 model cannot improve the average AUC result. In
particular, although the front-end enhancement has some favourable
effects in circumstances with low SNRs, such as 0 and 5dB, the au-
dio distortions introduced by the SE system can hinder the COVID-
19 diagnosis in the cases with high SNRs.

Using the augmented data, i. e., adding noise to the speech data
of the DICOVA training set, the noise robustness of the model can
be boosted, yielding an average AUC of 72.27 %, and improving the
results across all the SNR conditions. Particularly for the low SNR
cases, such as 0dB, the detection performance is improved by more
than 10 %.

Both of our two presented joint optimisation approaches, multi-
task learning and iterative optimisation, are able to further boost the
detection performance, yielding an average AUC of 76.59 % and
76.87 %, respectively. For high SNR cases, such as 20 and 25dB,
both approaches can reach a COVID-19 diagnostic success rate com-
parable to the performance of the original detection model on the
clean test set. The iterative optimisation method surpasses the con-
ventional MTL method in conditions with very low SNR like 0dB,
demonstrating its advantage in more noisy environments. Overall,
the two solutions jointly optimise the models for audio enhancement
and COVID-19 detection, resulting in an AUC performance gains of
over 4 %.

5. CONCLUSION

This work explored speech-based COVID-19 detection with a fo-
cus on the model’s tolerance to noise. To this end, we presented
two joint optimisation approaches. Experimental findings support
that a task-specific speech enhancement system can efficiently re-
cover the speech signal from noisy recordings to improve COVID-19
identification performance. The particular optimisation of the audio
enhancement model towards the COVID-19 task substantially boost
the detection performance, producing comparable results to the same
COVID-19 model when processing clean audio.

In addition to further research into more efficient neural net-
works for audio enhancement and COVID-19 detection, more at-
tention should be placed on studying the generalisability of our pre-
sented training schema to alternative model architectures. Besides,
future studies should incorporate other types of noise — such as voice
of unwanted speakers or reverberation — to enable a more robust
COVID-19 model for real-world applications. Moreover, our pro-
posed training schema should be deployed and investigated in other
computer audition applications, so as to optimise the front-end pro-
cessing towards the target application.
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