
Cube Bot — A Smart Factory Showcase for the
Real-Time Container Architecture

1st Joseph Hirsch∗
joseph.hirsch@outlook.de
2nd Marius Lichtblau∗

marius@lichtblau.io
3rd Marian Lingsch Rosenfeld∗

M.Rosenfeld@campus.lmu.de
University Augsburg
Augsburg, Germany

4th Kilian Telschig
Siemens Technology
Munich, Germany

kilian.telschig@siemens.com

5th Alexander Knapp
University Augsburg
Augsburg, Germany

knapp@informatik.uni-augsburg.de

∗Authors contributed equally to this work

Abstract—Dynamic reconfiguration is one of the key challenges
in adaptive systems. As many tasks of adaptive systems are
carried out by software and flexible machines, adaptation can
be mainly defined by reconfiguration. The Real-Time Container
Architecture provides a novel framework for these updates
by running distributed embedded software in containers and
enabling real-time reconfiguration of these software components
following a reconfiguration plan. Yet, it limits I/O access of the
containerized software components to GPIO, besides UDP-based
communication. We extend the platform with new I/O methods
and evaluated the extension with the smart factory showcase
system Cube Bot. The extensions enable access to a camera and
a robot from within the containers in compliance to the platform
concepts. Within the application containers, different languages,
state-of-the-art AI technology and the serial interface of the robot
can be used. This will show the usefulness of the Real-Time
Container Architecture in an even broader industrial context
and its capability for extension to other use cases.

Index Terms—Dynamic reconfiguration, adaptive systems,
RTCA, framework, real-time, I/O, container

I. INTRODUCTION

With the ongoing digitalization in industry, a key selling
point for machines is their software and the ability to perform
updates. Especially in production, which is experiencing a shift
to smaller lot sizes due to a larger degree of customization
[1], updates are crucial and need to succeed even between
two products. Since downtime of a production line has to be
avoided due to large costs, these updates inherit hard real-time
constraints from the applications running industrial machines.
With the increasing number of updates, the development and
testing of the applications cannot be done on the real system
and a containerized architecture is a natural fit for those
scenarios. Telschig et al. in [2] propose a Real-Time Con-
tainer Architecture (RTCA) to address these requirements for
industrial systems, allowing distributed applications with hard
real-time constraints to run in a containerized architecture. The
RTCA also supports reconfiguration without shutting down the
distributed control system, e.g. updates of the containers [3].
However, as only GPIO was supported within the containers,
the RTCA could not be used and evaluated with industrial
equipment that uses more complex I/O technologies.

In this work we evaluate the applicability of the RTCA
with a smart factory showcase called Cube Bot. The system
consists of a two-node setup where one node is performing
object classification, e.g. at a conveyor belt, and the other
node controls a robot, which is sorting items based on the
detection result. We extended the RTCA to support serial
and visual I/O and developed application components for
the efficient object classification and the robot control. Both
components use different programming languages and their
own libraries and therefore use the benefits the containerized
architecture provides. For the nodes, we use two SIMATIC
IOT2040 controllers, which are Siemens IoT devices with
a single-core CPU clocking at 400MHz and 1GB of main
memory. One of the nodes is connected to a basic USB
webcam and the other node is connected to a Lynxmotion
robotic arm via RS-232. Both nodes are interconnected on a
wired network. We classify two different objects: A red and
a green cube. The approach is applicable to other kinds of
products, though, since it uses an individually trained image
classifier. The conveyor belt is left out for simplicity. Figure 1
shows the experimental setup. In order to test the real-time
software update functionality, we also implemented a third
software component that is deployed on the detection node and
uses user input from a button in order to determine the class of
the object. We then update the node to use the object detection
component, instead, where the update has to succeed in real-
time. The remainder of this work is structured as follows:
We first review related work on reconfigurable distributed
embedded applications. Next, the RTCA is briefly introduced
and the two I/O extensions are described. After that we cover
some details about the implementations of the two software
components. We conclude this paper with a discussion about
our and future work.

II. RELATED WORK

Dynamic software reconfiguration has multiple applications
in industrial settings. This is especially important for systems
composed of distributed IoT devices, since such architectures

312



Fig. 1. Showcase setup

might be used in a smart factory setting to control the systems,
while it is configured at a higher abstraction level [4].

Multiple approaches for dynamic reconfiguration of dis-
tributed systems exist, an overview is provided by Hammer [5].
One of the first was proposed by Kramer and Magee [6]
in 1990, which, however, assumes that the system being
reconfigured is completely inactive temporarily. Multiple im-
provements, based on this work have been proposed, most
notably [7]. In general, proposals to achieve dynamic con-
figuration consider different abstraction levels and scenarios,
for example [8] approaches the problem from an architecture
perspective, while [9] considers the programming languages
used and their execution environment.

We aim at dynamic reconfiguration of distributed IoT sys-
tems with real-time constraints and state transfer between the
old and new components. This case requires non-blocking
reconfiguration, since the system must remain reactive at all
times. Sha et al. [10] considered this problem in 1996 for
the first time and proposed a reconfiguration based on atomic
switchovers. More recent approaches include [4], who showed
that the automation standard for distributed control systems
IEC 61499 [11] enables dynamic reconfiguration, and [12],
who used a similar approach to enable dynamic configuration
for HTL [13]. These approaches do not consider distributed
dependencies between the different nodes. This is considered
in an event-based approach by Prenzel and Steinhorst [14] and
by the time-triggered RTCA framework [2], which we extend

Fig. 2. Distributed control systems in the RTCA: Application parts are
dynamically mapped to the computing infrastructure (figure based on [2]).

and use to study the Cube Bot industrial application use case.

III. RTCA OVERVIEW

The RTCA is a runtime platform concept for distributed
embedded applications with hard end-to-end real-time require-
ments. It enables component-based software development to
the extent that the set of components can be changed during
full operation, which enables dynamic evolution of running
distributed embedded applications. Figure 2 shows how dis-
tributed embedded applications are running on a networked set
of computing nodes via three kinds of mappings. A component
mapping leads to execution of a component’s cyclic task within
its lxc container on a specific node. Connector mappings along
the communication chain orchestrate the cyclic, UDP-based
inter-component communication. I/O mappings enable access
by components to equipment installed at the local node. These
mappings are dynamically managed by a real-time container
agent (agent) on each node. Besides dynamic orchestration,
the primary aim of the agent is to enforce the Logical Exe-
cution Time (LET) paradigm [15], so that all task executions,
message transmissions, and I/O handling are logically done in
isochronous periods across nodes and network connections in
the system. The LET paradigm leads to deterministic end-
to-end real-time behavior while temporally decoupling the
software components. It avoids scheduling-dependent behavior
and does not require configuration of priorities and time
slices. This is also the basis for deterministically reconfiguring
distributed embedded applications without downtime, espe-
cially in case of breaking changes which require temporally
coordinated reconfigurations across nodes. Figure 3 shows
an overview of the runtime architecture on one node. All
software components run their tasks within a dedicated and
isolated lxc container. Without active engagement by the agent,
no information should be exchanged with the outside of the
container. For network messages, this is ensured by a special
barrier queueing discipline installed at the virtual network
interfaces. For GPIO-based inputs and outputs, a fake sysfs
is provided within the containers. The agent has a cyclic
task which runs at highest priority while all local tasks and

313



Fig. 3. RTCA runtime architecture: an agent dynamically orchestrates the
containers and manages the timing of their interactions with each other and
with the equipment based on the mappings. The mappings can be changed
during full operation using reconfiguration plans, part of which are executed
by a background worker component of the agent (figure based on [16]).

messages are waiting for the next cycle. In each cycle the
agent checks the health of all tasks. Then it processes the
mapped outputs of the containers. In case of GPIOs the agent
copies contents between the faked and the real sysfs. For UDP
messages the agent sends command messages to the barrier.
After output processing, the agent processes the mapped inputs
accordingly. Finally, the agent triggers the tasks of mapped
components and waits for the next cycle. Consequently, the
components are computing outputs from the inputs during the
remaining cycle without further interaction with the outside of
their containers. If a reconfiguration plan is provided, the agent
additionally performs applicable reconfiguration steps in three
hooks either before output processing, between output and in-
put processing, and after input processing. The reconfiguration
steps are either for container lifecycle management, inter-node
coordination, or actual time-critical modification of the the
running distributed embedded application. The modification
steps can change the mappings (add/remove a component,
a communication mapping, an I/O mapping) and perform
state transfer operations (based on file processing and packet
capturing). Coordination steps ensure that modification steps
with distributed breaking changes are executed synchronously,
i.e., in pre-determined cycle offsets relative to an agreed
synchronization point. This leads to temporal determinism
of the reconfiguration, so that it can be done consistently
without or with reduced and predictable downtime. The same
mechanism is also used to consistently start a distributed
embedded application. For more details on the RTCA we refer
to the previous publications [2], [3], [16].

IV. RTCA EXTENSIONS

We extended the RTCA so that additional I/O types are
supported. Previously, only GPIO inputs and outputs could
be used by application components within containers. We
added support for USB camera input and bidirectional serial
communication as follows. The main issue is to enable this
in compliance with the platform concepts described before,
especially the LET paradigm, i.e., logically freezing I/O during
the cycle.

Fig. 4. Serial I/O: One of the pseudo terminals is mounted inside the container
at the same location as the device on the host. The agent controls the other
pseudo terminal and the real device in the cycle turnover.

A. Serial I/O

Communication via serial protocols is especially important
in industrial settings as it is widely used to communicate with
different kinds of hardware. RS-232 is an example of a stan-
dard, that is used by a variety of devices, such as the robotic
arm used in our demo application. Serial I/O differs from the
existing RTCA extension as it has to provide bidirectional
communication via a single mapped port. The extension should
provide all input and handle all output at cycle turnover. One
additional challenge is, that many devices provide software
libraries that expect the devices to be mounted on a certain
serial port by the UNIX operating system. To be able to use
these libraries the serial RTCA extension needs to mount the
host port in the correct place in the container.

We use pseudo terminals (pty) [17] to fulfill these require-
ments. This Linux feature provides a pair of connected virtual
terminals, to enable two processes to communicate. In our
solution, one terminal is mounted inside the container and can
be accessed by the application. Another terminal outside of
container is used by the agent. At cycle turnover the agent
reads the new data from his pseudo terminal and writes it to the
host terminal. Afterwards it reads from the host terminal and
writes to the pseudo terminal to make the new data available
to the application. This ensures that the agent stays in control
over when the data passes the boundaries of the container.
Figure 4 shows how this works on an example node. The
physical device is mounted at /ttyUSB0 of the host file system.
When the agent should add the serial I/O according to its
reconfiguration plan, it creates the pair of pseudo terminals,
/pty/1 and /pty/2. The container end is mounted at /ttyUSB0
within the root file system of the lxc container in which the
software component is running. This ensures that the software
component does not need to know that it communicates with
a pty instead of the real device, so libraries continue to work.
It is the responsibility of the application to ensure that there
is no active transmission at the end of the cycle.

314



Fig. 5. Camera Input: The background process periodically stores frames on
a RAM disk that is mounted in the container. On cycle turnover the agent
generates a link to the current frame for the software component.

B. Visual I/O

To enable the input from a camera into a container appli-
cation we extended the RTCA for this I/O method as well. A
problem with the camera input is the long time that it takes to
store one frame in memory. On the SIMATIC IOT2040 it takes
about 10–20ms. Most of this time is spent on waiting for the
camera while the CPU is on idle. However, this time is often
still not feasible for an execution between two cycles, since
this period should be as short as possible. On the other hand,
the design of the RTCA requires the software component to
have all of its input available at the beginning of the cycle,
which includes a full frame when considering video input.
But different to the GPIO and the pseudo terminal I/O even
a copy operation takes too long and can not be performed on
cycle turnover. We decided to add a background process to
the RTCA, which has a quota limit of a very small fraction
of the available time during a period (e.g. 3%). This process
periodically requests a new frame from the camera, waits for
it to be in memory and then stores this frame to a RAM disk
which is mounted to the container as well. A file rotation
mechanism is used to store the last couple of frames. The
number of files has to be selected in a way that an overwriting
of a frame in the same cycle is excluded, e.g. for a cycle
frequency of 2Hz and a camera frame rate of 30 fps, the
number of frames to keep must be 15 at the very least. At
the beginning of a cycle, the agent creates a link to the
current frame for the software component, which results in
very little overhead between two cycles. See Figure 5 for a
visual representation of this process.

V. OBJECT CLASSIFICATION COMPONENT

In the Cube Bot system, a containerized software compo-
nent for object classification is running on the node that is
connected with the camera. In each cycle it analyzes the last
full frame captured by the camera to detect red or green cubes.
This frame is made available as a JPEG-encoded image file
that was stored on the RAM disk as described in Section IV-B.
To access the file, the software component uses the link that
the agent updates in each cycle turnover.

input shape layer output shape
(60, 80, 3) conv. (16, 5, 2) (28, 38, 16)
(28, 38, 16) max pooling (14, 19, 16)
(14, 19, 16) conv. (16, 5, 1) (10, 15, 16)
(10, 15, 16) max pooling (5, 7, 16)
(5, 7, 16) flatten (560)
(560) fully connected (128)
(128) fully connected (3)

Fig. 6. Layers of the neural network used in the object classification
component. For convolutional layers (conv.(a, b, c)), a is the number of filters,
b is the kernel size and c is the stride.

For the classification of items on the conveyor belt we
trained a convolutional neural network for image classification.
The input shape of the images is set to 80x60 pixels in RGB
color layers. The layer architecture of the network is described
in Figure 6. The training data for our simple use cases con-
sisted of 900 labeled images, 300 in each of the classes red,
green and no cube. We trained the model with the Tensorflow
Python library using Jupyter notebooks. In order to address
overfitting, we used a combination of input randomization
(random flip and random rotation for the training images),
batch normalization between the two convolutional layers as
well as a dropout layer between the convolutional layers and
the fully connected layers. We achieved a test accuracy of
100% for 12 random images of each class.

Due to the very limited hardware resources on the device
and the real-time requirements of the use case, we decided
to quantize the model to 8-bit integer arithmetic after the
training. This results in a significant speedup in inference
time especially on devices without FPU or GPU such as the
SIMATIC IOT2040. The inference was executed using the
Tensorflow for microcontrollers library for C++ which is a
fast and lightweight option to use Tensorflow models. All these
measures applied we ended up with an inference time of below
300ms for a single frame which is considered practicable for
our use case.

VI. ROBOT COMPONENT

In order to move the cubes into their required posi-
tion, we used a Lynxmotion 4DOF robotic arm, which can
be controlled through the RS-232 protocol. To control the
robotic arm, we developed a robot component based on the
Lynxmotion LSS Library1 for Python. Depending on input
from the other software component, the containerized robot
component sends commands to the robot to achieve the follow-
ing movement pattern, starting from an established position:

• Open gripper, move arm down, close gripper in order to
pick up the cube, move arm up

• Turn left or right depending on the instruction received
from the camera or button component

• Move arm down, open gripper, move arm up, return arm
to initial position

1https://github.com/Lynxmotion/LSS Library Python

315



The RTCA framework with the serial I/O extension pre-
sented in section IV allowed for a seamless communication
with the robotic arm by the containerized robot controller com-
ponent. This was achieved by using the Serial I/O extension
in order to have a /ttyUSB0 device inside the container with
which the robot component could communicate. The agent
then took the I/O in the cycle turnover from the paired pseudo
terminal and read/wrote them into the corresponding device.
The RTCA framework provides dynamic reconfiguration, but
allows I/O operations only before/after each cycle. In order
to meet this requirement the robot component used the state
pattern [18], which contained the states Init, UDP, Wait,
Move. This allowed the robot component to wait until the
robotic arm was at the expected position before sending the
next command or receive the information from the camera
or button components via UDP. Since the information was
received via UDP continuously from the camera or button
component, no reconfiguration was needed for this component
in the showcase setup. In order to speed up the development
process, a robot simulation was used. It used pseudo terminals
for I/O, one of which was connected to USB0, where the robot
is expected to be according to the RTCA configuration. The
RTCA framework did not require any reconfiguration in order
for this to work, i.e., it could not differentiate whether it was
talking to the simulation or the robot.

VII. DISCUSSION AND FUTURE WORK

We demonstrated the feasibility of applying the RTCA
to a smart factory use case by implementing Cube Bot as
an example taken from an industrial context. The Cube Bot
system can be seen as a simple version of an adaptable
intelligent pick and place unit that sorts workpieces for fur-
ther processing (e.g. reject workpieces). Thus, this use case
demostrates applicability of RTCA to a wide range of systems.
We extended the existing RTCA architecture by two new
communication methods, the serial I/O as well as camera
input, which enable even more applications by providing a
common communication interface with physical devices and
allowing for real-time camera input as a basis for machine
learning algorithms. These features were implemented using
Linux native facilities without violating the deterministic real-
time requirements, which are fundamental for the RTCA. Our
showcase demonstrates that the architecture is flexible and fast
enough to support the two new categories of applications we
implemented for our showcase. The machine learning model is
able to process the webcam image and make a decision based
on the color of the cubes. The result is used by the robot
component to instruct the robotic arm to correctly sort the
cubes. Thus, the RTCA concepts can be applied to anticipated
smart factory technologies, including webcam input, machine
learning, and serial robot I/O. In particular, this makes the
RTCA applicable to cyber-physical systems that act in a more
open decision space based on software-defined equipment. In
the future we want to implement more sophisticated machine
learning models to test the limits of the hardware and software
architecture. It is also possible to extend the serial interface

to communicate via more protocols beyond RS-232 to allow
for the integration of more industrial hardware. For better ob-
servability of the internal system behavior both on application
and platform level – especially of the reconfiguration progress
– we are working on integrated monitoring features. We also
want to improve on the dependability of the inter-component
communication and enable usage of industrial communication
standards and technologies in compliance with the RTCA
concepts. Further extensions like these will make the RTCA
even more suitable for industrial smart factory systems.

REFERENCES

[1] Y. Koren, The global manufacturing revolution: product-process-
business integration and reconfigurable systems. John Wiley & Sons,
2010.

[2] K. Telschig, A. Schönberger, and A. Knapp, “A real-time container archi-
tecture for dependable distributed embedded applications,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE). IEEE, 2018, pp. 1367–1374.

[3] K. Telschig and A. Knapp, “Synchronous reconfiguration of distributed
embedded applications during operation,” in 2019 IEEE International
Conference on Software Architecture (ICSA). IEEE, 2019, pp. 121–
130.

[4] A. Zoitl, W. Lepuschitz, M. Merdan, and M. Vallée, “A real-time
reconfiguration infrastructure for distributed embedded control systems,”
in 2010 IEEE 15th Conference on Emerging Technologies & Factory
Automation (ETFA 2010). IEEE, 2010, pp. 1–8.

[5] M. Hammer, “How to touch a running system: Reconfiguration of
stateful components,” Ph.D. dissertation, München, Univ., Diss., 2009,
2009.

[6] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic
change management,” IEEE Transactions on software engineering,
vol. 16, no. 11, pp. 1293–1306, 1990.

[7] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tranquility:
A low disruptive alternative to quiescence for ensuring safe dynamic
updates,” IEEE Transactions on Software Engineering, vol. 33, no. 12,
pp. 856–868, 2007.

[8] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime
software evolution,” in Proceedings of the 20th international conference
on Software engineering. IEEE, 1998, pp. 177–186.

[9] J. Kramer and J. Magee, “Dynamic configuration for distributed sys-
tems,” IEEE Transactions on Software Engineering, no. 4, pp. 424–436,
1985.

[10] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time
systems,” in 1996 IEEE Aerospace Applications Conference. Proceed-
ings, vol. 1. IEEE, 1996, pp. 335–346.

[11] IEC 61499-1:2012. Function blocks - Part 1: Architecture, International
Electrotechnical Commission Std., 2012.

[12] C. M. Kirsch, L. Lopes, E. R. Marques, and A. Sokolova, “Runtime
Programming through Model-Preserving, Scalable Runtime Patches,”
in International Workshop on Formal Aspects of Component Software.
Springer, 2010, pp. 290–294.

[13] T. A. Henzinger, C. M. Kirsch, E. R. Marques, and A. Sokolova,
“Distributed, modular HTL,” in 2009 30th IEEE Real-Time Systems
Symposium. IEEE, 2009, pp. 171–180.

[14] L. Prenzel and S. Steinhorst, “Automated dependency resolution for
dynamic reconfiguration of iec 61499,” in 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2021, pp. 1–8.

[15] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”
in Advances in Real-Time Systems. Springer, 2012, pp. 103–120.

[16] K. Telschig and A. Knapp, “Time-critical state transfer during operation
of distributed embedded applications,” in 2019 IEEE 17th International
Conference on Industrial Informatics (INDIN), vol. 1. IEEE, 2019, pp.
516–523.

[17] pty - pseudoterminal interfaces. [Online]. Available: https://man7.org/
linux/man-pages/man7/pty.7.html

[18] E. Gamma, R. Helm, R. Johnson, R. E. Johnson, J. Vlissides et al.,
Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

316


