
Vol.:(0123456789)

SN Computer Science (2025) 6:754
https://doi.org/10.1007/s42979-025-04296-4

SN Computer Science

ORIGINAL RESEARCH

Analysing the Influence of Reorder Strategies for Cartesian Genetic
Programming

Henning Cui1 · Andreas Margraf2 · Jörg Hähner1

Received: 10 December 2024 / Accepted: 10 August 2025
© The Author(s) 2025

Abstract
Cartesian Genetic Programming (CGP) suffers from a specific limitation: Positional bias, a phenomenon in which mostly
genes at the start of the genome contribute to a program output, while genes at the end rarely do. This can lead to an overall
worse performance of CGP. One solution to overcome positional bias is to introduce reordering methods, which shuffle the
current genotype without changing its corresponding phenotype. There are currently two different reorder operators that
extend the classic CGP formula and improve its fitness value. In this work, we discuss possible shortcomings of these two
existing operators. Afterwards, we introduce three novel operators which reorder the genotype of a graph defined by CGP.
We show empirically on four Boolean and four symbolic regression benchmarks that the number of iterations until a solu-
tion is found and/or the fitness value improves by using CGP with a reorder method. However, there is no consistently best
performing reorder operator. Furthermore, their behaviour is analysed by investigating their convergence plots and we show
that all behave the same in terms of convergence type.

Keywords  Cartesian genetic programming · CGP · Mutation operator · Reorder · Genetic programming · Evolutionary
algorithm

Introduction

Cartesian Genetic Programming (CGP) is a form of Genetic
Programming (GP) and a nature inspired search heuristic.
The standard CGP version is represented by a directed, acy-
clic and feed-forward graph—instead of a tree structured
representation, as is the case in GP. CGP was introduced by
Miller [1] to evolve digital circuits, which is still an active
research field as of today [2, 3]. Furthermore, its concept is
used in a diverse field of problem domains like classification

or regression [4]. Another more prominent application for
CGP is on the subject of neural architecture search [5, 6].

While CGP has some advantages over GP—for example
the absence of bloat [1]—it has its own specific problems.
One issue is positional bias [7], which describes a limitation
of CGP to fully explore its search space. A possible solution
to this problem is called Reorder, an operator which shuffles
CGP’s genome ordering without changing its phenotype [7,
8]. However, Cui et al. [9] showed that the original reor-
der method does not fully mitigate positional bias but only
lessens it. They changed the original operator so that nodes
that should be reordered are spaced equidistantly apart. This
fully eliminated positional bias and lead to an improvement
in fitness. However, upon further inspection, enforcing an
equidistant spacing brings the possibility that other biases
and problems arise. Hence, in this work we will discuss pos-
sible issues as well as evaluate and introduce other novel
reordering methods. We show empirically that CGP always
profits from some reorder method, as it will lead to a better
fitness value and/or decrease the number of iterations until a
solution is found. Furthermore, by presenting and analysing
convergence plots, we show that the behaviour of CGP will
not change by introducing some form of reordering.

 *	 Henning Cui
	 henning.cui@uni-a.de

	 Andreas Margraf
	 andreas.margraf@igcv.fraunhofer.de

	 Jörg Hähner
	 joerg.haehner@uni-a.de

1	 Organic Computing Group, Institute for Computer Science,
University of Augsburg, Am Technologiezentrum 8,
86159 Augsburg, Bavaria, Germany

2	 Fraunhofer IGCV, Am Technologiezentrum 2,
86159 Augsburg, Bavaria, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-025-04296-4&domain=pdf

	 SN Computer Science (2025) 6:754 754   Page 2 of 17

SN Computer Science

In this work, we further expand on the Equidistant Reorder
method, which spaces specific nodes equidistantly apart. We
extend our previous work on this topic originally presented at
ECTA/IJCCI 2023 [9]. Based on the previous work, we intro-
duce new reordering methods and provide a broader empiri-
cal analysis by extending our set of benchmarks to include
symbolic regression. Furthermore, the behaviour of all CGP
algorithms used is inspected via convergence plots.

We provide a quick overview of the core principles of CGP
in Sect. 2. Afterwards, Sect. 3 gives an overview of related
work. We then reintroduce existing reorder operators and pre-
sent our novel operators in Sect. 4. In the following Sect. 5,
their performance and behaviour is evaluated. At last, our find-
ings and discussions for future research directions are sum-
marized in Sect. 6.

Cartesian genetic programming

This section reintroduces the supervised learning algorithm
called Cartesian Genetic Programming. An additional focus
point will be positional bias which impacts the search behav-
iour of CGP negatively.

Representation

CGP is represented by a directed, acyclic and feed-forward
graph. It contains nodes, which are arranged in a c × r grid,
with c ∈ ℕ+ and r ∈ ℕ+ defining the number of columns and
rows in the grid respectively [1]. Using nodes, it is possible to
feed-forward an arbitrary amount of program inputs via par-
tially connected nodes to calculate any desired amount of out-
puts. However, with today’s standard, a CGP model consists
of only one row for most applications [4]. That means, r = 1.

The set of nodes in a graph defined by CGP can be divided
into input-, output- and computational nodes. Input nodes
directly receive the program input and relay these values to
computational and/or output nodes. Differently, computational
nodes are represented by three genes: one function gene and m
connection genes, with m ∈ ℕ+ being the maximum arity of
one function in the whole function set. Such connection genes
define a path between a previous and the current node, and a
function genes addresses the encoded computational function
of a node. If a function needs less than m inputs, all excess
input genes are ignored. Contrary, output nodes define the pro-
grams final output and are represented by a single connection

gene in the genotype. They redirect the output of an input- or
computational node for that reason.

Another important distinction for this work is the catego-
rization of computation nodes into two groups: active and
inactive nodes. The former are nodes which contribute to the
program’s final output because they are part of a path to one
or multiple output nodes. The latter are not part of a path to
the output nodes, hence they do not contribute to an output.
However, by allowing such inactive nodes to persist through-
out the training process, it may improve CGP’s evolutionary
search through neutral genetic drift [10, 11].

Given this description of CGP’s representation, when we
mention a graph with N ∈ ℕ+ nodes, this graph will have
only one row, N computational nodes, as well as additional
input and output nodes corresponding to the given learn-
ing task. Furthermore, to improve readability and clarity, a
graph defined by this standard representation will be called
Standard.

In Fig. 1, an illustrative example of a graph with c = 6 ,
r = 1 and N = 3 defined by a CGP genotype is depicted.
Active nodes are drawn with a solid line, while inactive nodes
are marked by dashed lines. The first two nodes ( n0 and n1 ) are
input nodes and correspond to two different program inputs.
The following nodes ( n2–n4 ) are computational nodes, and one
output node ( n5 ) defines the program’s output. In this example,
both inputs are subtracted. Afterwards, this intermediate result
is being added to itself and redirected as the program output.
The node n2 does not contains a path to an output node and
is inactive.

Positional bias

Enforcing a feed-forward grid leads to one major negative
impact of CGP’s evolutionary search: Positional bias, which
was found by Goldman and Punch [7]. Their findings show
that the probability of a computational node being active is
not uniformly distributed throughout the whole graph. Instead,
computational nodes closer to the input nodes have a higher
chance of being active compared to computational nodes near
the output nodes. With this negative impact, positional bias
makes it difficult to solve certain tasks and could increase the
number of iterations until a solution is found [7, 12].

This bias can be visualized for a better understanding, as
is shown in Fig. 2. The graph shows the distribution of active
nodes, averaged over 75 independent runs on the 3-bit mul-
tiply Boolean benchmark. On the x-axis, the position of a

Fig. 1   Example graph defined
by a CGP genotype. The dashed
node and connections are inac-
tive due to not contributing to
the output

SN Computer Science (2025) 6:754 	 Page 3 of 17  754

SN Computer Science

computational node in its graph is given. The y-axis indicates
its probability of being active. Here, the effects of positional
bias can be seen. About the first fifth of computational nodes
have a (very) high probability of being active. However, the
probability of being active for the remaining nodes are mini-
mal. As a consequence, their mutations and usefulness cannot
be evaluated regularly.

Related work

In our work, we focus on improving the Reorder operator
from Goldman and Punch [7]. The motivation behind their
work was mitigating the aforementioned positional bias [7,
8]. To the best of our knowledge, only Cui et al. [9] extended
the concept of Reorder. In their work, the authors reordered
active nodes by placing them equidistantly apart. This lead
to an improved fitness value.

Additionally, various other articles layed out the founda-
tion for this work. The most important ones for this work
introduced novel operators for CGP and/or focused on vari-
ous other limitations in CGP’s ability to explore the search
space.

Instead of reordering active nodes, Kalkreuth [13]
swapped genes in the phenotype. For that reason, two new
operators were introduced which were able to find solutions
in less iterations.

Walker and Miller [14] also explicitly changed CGP’s
geno- and phenotype. With their extension, nodes or sub-
graphs in the genotype can be dynamically created, evolved,
reused and removed. They were able to improve CGP’s
fitness value, with the addition of less training iterations
needed.

It is also possible to extend the function pool of CGP, as
was done by Harding et al. [15]. They included functions
which directly change CGP’s phenotype. This allowed them
to solve problems with extremely large numbers of inputs.

The representation of a graph defined by CGP can be
converted into an integer representation. Wilson et al. [16],

however, introduced a floating point representation. This
allowed them to use specialized operators to change the
genotype. In this way, they were able to add or remove
whole subgraphs.

Another method to mitigate positional bias is to allow
arbitrary connections as long as no cycles form [7, 8]. Fur-
thermore, regarding the mitigation of positional bias, their
approach is also the current state of the art. However, Cui
et al. [17] found that this may lead to other problems and,
consequently, the search space is not explored optimally.
To solve this problem, they introduced weights to guide
the mutation of connections, which can reduce positional
bias for Standard.

A different route is to decrease the size of the search
space, as was done by Suganuma et al. [6]. They used a
highly specific function set for neural architecture search
for that goal. With another method, Torabi et al. [5] used
a specific crossover operator to decrease the size of the
search space which uses specific domain knowledge.

Reorder strategies

As previously mentioned in Sect. 2.2, enforcing a feed-
forward grid leads to positional bias. To mitigate these
negative effects, Goldman and Punch [7] introduced two
new extensions to CGP. In this work, we build upon one
of those two: Reorder, an extension which shuffles the
genotype without changing the phenotype. For that reason,
the original Reorder strategy [7] is reintroduced for better
understanding. We also introduce several novel reorder
strategies, which may completely remove positional bias
or deliberately introduce other skewed distributions of
active nodes.

Please note that all operators change CGP’s genotype.
However, by respecting the sequence of operations of
active nodes, the phenotype—and thereby the program’s
output—stays the same.

Fig. 2   Distribution of active
nodes over a graph defined by
CGP. Example generated over
75 independent runs on the 3-bit
multiply Boolean benchmark

	 SN Computer Science (2025) 6:754 754   Page 4 of 17

SN Computer Science

Original reorder

The original reorder operator is able to mitigate positional
bias [7, 8]. However, we argue that it still suffers from a
lessened positional bias.

Reorder strategy

The original Reorder operator begins by preparing a depend-
ency set D := {(a, b) ∣ a is input or computational node,

b is computational node} . It contains information about
each computational node and the nodes from which it gets
its input from. Furthermore, a new genome G′ must be
initialized, containing all input and output nodes from the
original genome. As input and output nodes should not be
assigned a new position, they will not be modified in the
shuffled genotype.

Now, in order to be able to proceed with the shuffling
of nodes, the concept of satisfying the dependencies of
a node must be introduced. Let m be the arity, b be a
computational node, and ai for i = 1,⋯ ,m be an arbi-
trary node from which b gets its input from, that means
(ai, b) ∈ D . This indicates a directed edge connecting ai
to b via the connection gene of b for i = 1,⋯ ,m . Further-
more, let Ab∶=

{
a1,⋯ , am

}
 be the set of all nodes from

which b gets its input from. Given this information, b is
satisfied when all nodes in A are mapped into the new
genome G′.

With the introduction of satisfied nodes, the set
of addable nodes Q can be created. This set is ini-
tialized by adding all computational nodes whose
dependencies are already satisfied in G′ , that means:
Q∶=

{
b ∣ b is computational node in G,Ab ⊆ G�

}
.

Given both sets D and Q, a genotype can be reordered
by repeating the following steps:

1.	 Select and remove a random node n ∈ Q.
2.	 Map n sequentially into the next free location in G′.
3.	 For each node pair (n, b) ∈ D with node b depending on

n, do the following: If all dependencies of b are satisfied
in G′ , add b to Q.

4.	 If all computational nodes have been assigned a new
position in G′ , stop. Otherwise, go to Step 1.

To better illustrate this operator, its workings are also
depicted in Algorithm 1. Please note: When all compu-
tational nodes have been shuffled into G′ , Q must be an
empty set, too. Furthermore, to improve readability in the
next sections, the original reorder operator will be called
Original-Reorder.

Algorithm 1   Original Reorder

Reorder’s limitation

In an earlier work, Cui et al. [9] showed empirically that
Original-Reorder does not fully eliminate positional bias
but only lessens it. This is due to the constraint of node
satisfiability.

A node can only be assigned into the new genome G′ when
all its dependencies are satisfied. At first, the addable set Q con-
tains only nodes depending on input nodes—as these are the
only nodes with satisfied dependencies. However, positional
bias states that active nodes are likely to concentrate near input
nodes. Again, these active nodes have little or no computational
nodes prior to them. Hence, they have a higher probability of
depending on input nodes compared to other nodes. As a con-
sequence, computational nodes near input nodes have a higher
probability of being added into the addable set early, as their
dependencies are likely to satisfy early. From this, it follows that
nodes near input nodes are also more likely to be inserted into
G
′ early. This leads to a lessened but not completely mitigated

positional bias.
The lessened bias can be exemplarily visualized, as is

seen in Fig. 3. It shows the active node distribution of Stand-
ard compared to Original-Reorder. Each distribution shows
the averaged result of 75 independent and aggregated solu-
tions for the 3-bit multiply Boolean benchmark. Again, the
x-axis defines the position of a node in its graph, with the
y-axis indicating its probability of being active. The distribu-
tion for Original-Reorder does not decrease as heavily as
for Standard. Furthermore, the lowest probability for a node
being active is around 40% instead of almost zero. How-
ever, there is still a visible decline of the nodes probability
of becoming active. While positional bias is lessened for
Original-Reorder, it is not fully mitigated.

Equidistant reorder

To fully avoid positional bias, Cui et al.[9] introduced
Equidistant-Reorder. Instead of depending on an add-
able set, active nodes are placed equidistantly apart in the

SN Computer Science (2025) 6:754 	 Page 5 of 17  754

SN Computer Science

grid first. By enforcing an equidistant spacing, positional
bias is completely eliminated. This tends to decrease the
amount of computational nodes needed to train a CGP
graph while also improving its fitness value.

To perform the Equidistant-Reorder operator on a
genome, two different sets of nodes must be created.
Firstly, all active computational nodes are defined in the
set A. The second set Ã contains all inactive computational
nodes. They are defined as:

with |A|∶=n and N = # computational nodes.
Let s ∈ ℕ+ be the starting index and e ∈ ℕ+ be the last

possible index of computational nodes in the genome.
Given s and e, the new positions for active nodes can be
given by set L, which is also described in Algorithm 2.
Here, L is defined as equidistantly spaced numbers over
the interval [s, e], with L∶=

�
⌊s + i ⋅

e−s

n
⌋ ∣ i = 1,⋯ , n

�
 .

Given this formula, if n = 1 , then L = {e} . If there exists
only one active node, it will be placed at the end of the
genome just before the output nodes. As a result, the active
node is able to mutate its connection to an arbitrary com-
putational node without any restrictions.

Opposing to L , L̃ is the set of genome loca-
tions for inactive nodes, which is def ined as
L̃∶={s, s + 1,⋯ , e} ⧵ L∶={l̃1,⋯ , l̃N−n} w i t h
l̃1 < l̃2 < ⋯ < l̃N−n.

Afterwards, a new genome G′ is initialized contain-
ing all input and output nodes from the original genome.

A∶={ai ∣ ai is active computational node, a1 < a2 < ⋯ < an}

Ã∶={ãj ∣ ãj is inactive computational node, ã1 < ã2 < ⋯ < ãN−n}

Again, input and output nodes will not be assigned new
positions. All active computational nodes are placed into
their new positions in G′ . This is done by assigning ai ∈ A
the position li ∈ L , for i = 1,⋯ , n . The same approach
is used for inactive nodes ãj ∈ Ã , as they are placed in
l̃j ∈ L̃ for j = 1,⋯ ,N − n . As the order of computational
nodes are not modified, the reordering does not change the
semantic and no re-evaluation is required.

After inserting nodes, their connection genes must
be corrected by changing their connection from the old
genome’s location to the new one. However, some inac-
tive nodes may now hold a connection to a node in front of
them. This can happen if they are connected to an active
node, which gets a new position in front of it. As a result,
the graph is not feed-forward anymore, violating the rep-
resentation of CGP. In this case, a new connection to a
previous node must be mutated to ensure the graph being
feed-forward again.

The full pseudocode for a better understanding of this
operator is depicted in Algorithm 3. Furthermore, to
improve readability, the Equidistant Reorder operator is
called EquiDist-Reorder in the following sections.

Algorithm 2   Lin-Space

Fig. 3   Distribution of active
nodes for Standard compared
to Original-Reorder 

	 SN Computer Science (2025) 6:754 754   Page 6 of 17

SN Computer Science

Algorithm 3   Equidistant Reorder

Uniformly distributed reorder

In the original work, EquiDist-Reorder is able to outperform
Original-Reorder and Standard in most cases [9]. However,
by strictly enforcing an equidistant spacing, we believe that
some useful structures might be destroyed. As the order of
operation for inactive nodes are not conserved, they might
have to mutate their connection to ensure a cycle-free graph.
This, in turn, might dissolve meaningful structures.

Such effects of EquiDist-Reorder can be examined using
a thought experiment, shown in Fig. 4. The optimal order-
ing for this program would be obtained by mutating one
connection, from B → Result to D → Result . However, by
reordering nodes, such structures get destroyed. With node
A in front of node C, it is not possible to obtain the optimal
solution by changing only one connection. While the optimal
solution is still possible to achieve, it is much harder after
the reorder operator. The reason is that structures must be
reinvented, which involves more changes in the genotype.

Motivated by this thought experiment, we introduce an
operator similar to EquiDist-Reorder but without enforc-
ing an equidistant spacing: Uniformly Distributed Reorder
(Uniform-Reorder). Here, same algorithm described in
Sect. 4.2 applies to Uniform-Reorder. The only difference
lies in obtaining the new positions for active nodes, given
by the set L. Instead of using Algorithm 2, we now sample
from a continuous uniform distribution over the range [s, e],
with s being the starting index and e being the last index of
computational nodes in the grid. This means, L ∼ U[s,e].

Negative positional bias based reorder

Another novel operator, which reorders and shuffles the
genotype, will be called Negative Positional Bias based
Reorder (NegBias-Reorder). The idea of NegBias-Reor-
der is to move all active nodes to the end of the genotype
just before output nodes. Let n be the number of active
nodes and e be the last possible index for computational
nodes in a genome with n, e ∈ ℕ+ . Then, all active nodes
are moved in their respective ordering to the positions
{e − n + 1, e − n + 2,⋯ , e} . Concerning the inactive nodes,
they are moved before all active nodes. Again, as is also the
case for EquiDist-Reorder, all illegal connections must be

Fig. 4   Thought experiment illustrating limitations in EquiDist-Reor-
der. By reordering the nodes, the optimal solution is harder to obtain.
Before reordering nodes, the node Result must mutate its connection

from node B to D. After reordering, more changes must be made to
obtain the optimal solution

SN Computer Science (2025) 6:754 	 Page 7 of 17  754

SN Computer Science

mutated anew. For NegBias-Reorder, Algorithm 3 can be
used to describe its approach. The algorithm itself does not
change with the sole exception of obtaining L, which is the
set of new positions for active nodes. Instead of using Algo-
rithm 2, we define L∶={e − n + 1, e − n + 2,⋯ , e}.

By using this operator, we believe that it will have two
different effects on the genotype. At first, active nodes now
have a very high chance of mutating a connection to inac-
tive nodes. Positive effects can be argued with CGP’s neutral
genetic drift, which describes the positive influence of inac-
tive nodes. This should allow drastic changes in the pheno-
type during the following training iterations, which can play
an important role in escaping local optima [11, 18, 19]. The
other effect on the genotype is the mutation of new connec-
tions, which some inactive nodes must perform. For exam-
ple, given the optimally found hyperparameters for Standard
on the 3-bit multiply Boolean benchmark averaged over 20
independent and randomly seeded runs, a mean of 863 out of
1,000 nodes were inactive. For these inactive nodes, a mean
of 409 nodes had at least one connection to an active node.
Because these inactive nodes are connected to an active node,
this indicates that about half of all inactive nodes mutate due
to NegBias-Reorder, which introduces further changes to the
genotype. Nonetheless, deliberately mutating inactive nodes
may improve CGP’s performance for Standard, as was found
by Turner and Miller [11] or Cui et al. [20]. Furthermore,
according to Kaufmann and Kalkreuth [21], mutating a con-
nection gene is the most meaningful change in the genotype of
a CGP graph without extensions—as is the case for Standard.
They show that changing connection genes can improve the
fitness at most. To summarize, by introducing drastic changes
in the genotype, it might help to efficiently explore the search
space, and the escape of local optima.

We believe that Boolean benchmarks might benefit the most
from NegBias-Reorder. According to Vasicek [22], the fitness
landscape of such benchmarks are deceptive. In this context,
this means that a multitude of different solutions lead to the
same fitness value. Hence, by enforcing a drastic change in

the phenotype due to NegBias-Reorder, more regions in the
fitness landscape might be explored compared to Standard.

However, reordering active nodes toward output nodes
after each iteration might hinder the evolutionary search
process—as the genotype is drastically changing. This is
why we also introduce a hyperparameter preorder ∈ [0, 1] ,
which describes the probability of NegBias-Reorder being
executed. By varying the frequency of reorder operations, an
equilibrium might be found between exploiting the current
search space area and exploring new regions.

Left‑skewed distribution reorder

Similarly to EquiDist-Reorder, enforcing a strict placement
of nodes might greatly increase the difficulty to use exist-
ing genotypical structures. This is why we also include a
probability based approach to NegBias-Reorder called Left-
Skewed Distribution Reorder (LeftSkew-Reorder).

For this operator, active nodes are reordered according to
a left-skewed beta distribution with � = 6 and � = 1 . Again,
Algorithm 3 can be reused to better visualize this opera-
tor. The majority of the algorithm does not change with the
exception of the set of new active node positions L. It is sam-
pled by the aforementioned beta distribution L ∼ Beta(6, 1) .
To better visualize this specific distribution, its probability
density function is also shown in Fig. 5. Again, similarly
to NegBias-Reorder, the LeftSkew-Reorder operator also
includes a hyperparameter preorder ∈ [0, 1] to describe the
probability of a reorder occurring.

Time complexity

The original authors of Original-Reorder show a time com-
plexity of O(a ⋅ N) , where a ∈ ℕ+ is the arity of the nodes
and N ∈ ℕ+ is the number of computational nodes of the
considered CGP graph [8]. In their previous paper, Cui
et al. [9] showed that EquiDist-Reorder also needs O(a ⋅ N)
time, which is the same as the original counterpart.

Fig. 5   Probability density func-
tion of the beta distribution with
� = 6 and � = 1

	 SN Computer Science (2025) 6:754 754   Page 8 of 17

SN Computer Science

To obtain the time complexity for Uniform-Reorder, Neg-
Bias-Reorder and LeftSkew-Reorder, their similarities and
differences must be compared first. The reason is that they only
differ in obtaining the set of new positions for active nodes.

Getting the set of all active and inactive computational
nodes takes O(a ⋅ N) time by following the connections from
output nodes first backwards to input nodes. For L̃ , a time of
O(N) is needed to calculate the difference of two sets. The
placing of active and inactive nodes into a new genome takes
only O(N) time, as this only requires iterating through the sets
of active and inactive nodes and their respective new positions
once. For the procedure of updating the connections of every
inactive computational node, each one must be visited to
potentially update its c connection genes. This takes O(c ⋅ N)
time. Please note, a∶=c , as the highest arity a is also the num-
ber of connection genes c, leading to a runtime of O(a ⋅ N).

To obtain the time complexity for L, two cases must be
distinguished. For NegBias-Reorder, a set of numbers in a
given range is generated. This can be done in O(N) . Con-
sidering Uniform-Reorder and LeftSkew-Reorder, pseudo-
random numbers must be generated from a predefined distri-
bution. Here, initializing the distribution might be complex
but is only done once before the start of the training process.
Simply sampling N values from such distributions, however,
can thus be achieved in amortized O(N).

Hence, Uniform-Reorder, NegBias-Reorder and Left-
Skew-Reorder need O(a ⋅ N) time, which is the same as
Original-Reorder and EquiDist-Reorder.

Evaluation of different reorder strategies

To measure the effectiveness of our proposed methods, we
conducted an empirical study. We describe our experimental
design and attempt to answer the following questions:

Q1:	� Which CGP variant needs, considering the learning
task, less training iterations and/or has the better fit-
ness value:

	 �1.	� Standard

2.	� Original-Reorder

3.	� EquiDist-Reorder

4.	� Uniform-Reorder

5.	� NegBias-Reorder

6.	� LeftSkew-Reorder

Q2:	� Do these variants behave differently regarding their
convergence behaviour?

Experimental design

In this section, we describe CGP’s configuration and the
used benchmarks. Afterwards, a brief introduction into
Bayesian comparison of models to evaluate and rank dif-
ferent CGP configurations is given. These models are used
to compare multiple CGP configurations, which we use for
our statistical analysis.

Evolutionary algorithms and configuration

As is standard for most CGP configurations, an elitist (� + �)
evolutionary strategy (ES) with � = 1 and � = 4 is used [4,
11]. Furthermore, CGP usually does not rely on crossover, as
it generally does not improve CGP’s performance [26]. This
is why we also do not use one. Considering our mutation
operator, we use Single [27]. It has the benefit that it does
not need a mutation probability and achieves similar results
compared to a standard point mutation. This operator works
by mutating random nodes until an active node was mutated,
which enforces a measurable change in the phenotype.

One major hyperparameter which must be opti-
mized for all CGP versions and benchmarks is its num-
ber of computational nodes N. Therefore, we investi-
gated N ∈ {50, 100, 150,⋯ , 2000} and each N was
tested 20 times with independent repetitions and dif-
ferent random seeds. If a probability for reorder preorder
is needed, grid search was used. In addition to N, a
preorder ∈ {0.0, 0.1, 0.2,⋯ , 1.0} was examined. To find
the best hyperparameter setting, we used the Plackett-Luce
model described by Calvo et al. [25].

Bayesian data analysis

To ensure a fair comparison of extensions and a qualitatively
sound evaluation, multiple configurations were investigated
for each CGP version. Thus, each hyperparameter config-
uration has to be ranked to find the best solution. In our
experiments, for all Boolean benchmarks we only examine
the number of training iterations until a solution is found.
The fitness value is considered regarding symbolic regres-
sion benchmarks. These numbers cannot be negative. Hence,
other common distributions such as Student’s t distributions
can not be expected to model the data well [23]. This is why
we performed a Bayesian data analysis—we utilized the
Python library cmpbayes [24] for all statistical models—
for the posterior distributions of our results. The model to
compare the algorithms is based on the Plackett-Luce model
described by Calvo et al. [25]. It allows the computation of a

SN Computer Science (2025) 6:754 	 Page 9 of 17  754

SN Computer Science

set of ranked options by estimating the probabilities of each
of the options to be the one with the highest rank.

Additionally, for each CGP version and their respective
best hyperparameter set found, we report the 95 % high-
est posterior density intervals (HPDI) of the distribution
of �config , where �config is a random variable corresponding
to the respective performance measurement. At that, the
distribution of �config is estimated by the gamma distribu-
tion–based model for comparing non-negative data from
cmpbayes [24]. Please note, a 95 % HPDI interval [l, u]
can be read as p(l ≤ �config ≤ u) = 95% . This means,
the probability of the algorithms results lying between the
bounds l and u has a probability of 95 %.

Furthermore, prior sensitivity analyses were conducted
prior to ensure the robustness of all models. As they always
display similar results, robust and meaningful models are
implicated. Finally, please note that cmpbayes uses Markov
Chain Monte-Carlo sampling to obtain its distributions.
Therefore, the usual checks to ensure convergence and
well-behavedness (trace plots, posterior predictive checks,
R̂ values, effective sample size) were performed. For more
information regarding the models, we refer to Kruschke and
Pätzel [23, 24].

Benchmarks

To evaluate the methods, benchmarks from two different
problem domains are used: Boolean and symbolic regres-
sion benchmarks.

Boolean Benchmarks
We used four Boolean benchmarks problems: 3-bit Par-

ity, 16-4-bit Encode, 4-16-bit Decode and 3-bit Multiply.
In the following, we will call these Parity, Encode, Decode
and Multiply, respectively. Parity is regarded as too easy by
the Genetic Programming community [28]. Nevertheless,
it is commonly used as a benchmark in the literature [19,
21, 29]. Hence, we also included it in our evaluations for
ease of comparison. Encode and Decode are problems with
different input and output sizes (16 inputs and 4 outputs,
and vice versa). At last, Multiply is a comparatively hard
problem [30], and recommended by White et al. [28]. In
addition, all four benchmarks were used to evaluate Origi-
nal-Reorder [7, 8] and EquiDist-Reorder [9], which is also
why we utilized them for better comparison.

As we employed four Boolean benchmark problems,
we also trained all CGP configurations with the stand-
ard function set for these problems. They contain the
Boolean operators AND, OR, NAND and NOR. These
benchmarks also lead to a standard fitness function, which
is defined by the ratio of correctly mapped inputs. Let
f ∶ {0, 1}m → {0, 1}n be a correct Boolean mapping for
m ∈ ℕ+ inputs and n ∈ ℕ+ outputs. Then, the fitness of

an individual g ∶ {0, 1}m → {0, 1}n , which relates to the
learning task f, is defined as follows:

The goal for Boolean benchmarks is to achieve a solution
which is able to correctly map all inputs. Thus, each bench-
mark runs on an unlimited budget and we report the number
of training iterations until a solution is found (I2S). As four
children are generated and evaluated in each iteration, the
spent budget would be four times the I2S.

Symbolic Regression Benchmarks
In terms of symbolic regression benchmarks, we

adhered to the recommendations from the GP commu-
nity [28] and previous works [31]. Again, four different
benchmarks were used: Nguyen-7, Koza-3, Pagie-1 and
Keijzer-6. Their functions are shown in Table 1.

The function set consists of eight mathematical func-
tions: addition, subtraction, multiplication, protected divi-
sion, sine, cosine, natural logarithm and the exponential
function. As for the fitness function, the mean absolute
error over the whole benchmark with n entries was used:

with yi ∈ ℝ being the prediction of a model and xi ∈ ℝ
being the corresponding true value, for i = 1,⋯ , n.

In this setting, an algorithm is classified as converged
when the fitness value becomes less than 0.01. Further-
more, each CGP variant is given 5 ⋅ 105 training iterations
per run. As we employ a (1 + 4)-ES, each of the four chil-
dren have to be evaluated during a single training itera-
tion. This results in an upper limit for the budget of 2 ⋅ 106
fitness evaluations for symbolic regression benchmarks.

Performance on Boolean benchmarks

We report for each CGP variant its best configuration with
respect to our hyperparameter search. To generate our

(1)
|{x ∈ {0, 1}m ∣ f (x) = g(x)}|

|{0, 1}m|

(2)
1

n

n∑

i=1

|yi − xi|

Table 1   Symbolic regression benchmarks used. U[a, b, c] means that
c uniform random samples are drawn from a to b, inclusive

Name Variables Equation Training set Test set

Nguyen-7 1 ln (x + 1)+

ln
(
x
2 + 1

) U[0, 2, 20] None

Koza-3 1 x
6 − 2 ⋅ x4 + x

2 U[−1, 1, 20] None

Pagie-1 2 1

1−x−4
+

1

1−y−4
E[−5, 5, 0.4] None

Keijzer-6 1 ∑x

i

1

i

E[1, 50, 1] E[1, 120, 1]

	 SN Computer Science (2025) 6:754 754   Page 10 of 17

SN Computer Science

results, each configuration was run 75 times with independ-
ent repetitions and different random seeds. Furthermore, we
state the mean number of I2S, its HPDI, number of (active)
nodes, and preorder if applicable. Additionally, we report the
probability of one solution being the best out of the six,
in accordance to the Bayesian model defined in Sect. 5.1.2.
The summaries of our results on Boolean benchmarks can
be seen in Table 2.

For all benchmarks, at least one reorder variant is always
better than a standard CGP version. However, there is no
reorder operator which behaves best for all benchmarks.
Original-Reorder—which is the current state of the art—
is better than Standard in most scenarios but not ranked
as the best performing one except Parity. For this bench-
mark, Original-Reorder is preferred and the other shuffling
methods do not lead to better results. However, these results
should be taken with reservations as the different I2S are
close and it is deemed as too easy.

Considering the other benchmarks, NegBias-Reorder
or LeftSkew-Reorder might be preferable in this setting.
LeftSkew-Reorder is at the second place for Encode and
the best option for Decode, while NegBias-Reorder seems
to be the best variant for Multiply. Their effectiveness might
be explained due to their high amount of genetic drift and
phenotypical changes, which they introduce each time.
Combined with the deceptive fitness landscape mentioned
in Sect. 4.4, this might be a reason why such reorder opera-
tors might be favourable. In addition, a high preorder value is
preferred for almost all instances, which supports the claim
of high exploration being favourable.

Another interesting insight is that EquiDist-Reorder and
Uniform-Reorder do not perform similarly, and the same
observation can be seen for NegBias-Reorder and Left-
Skew-Reorder. As their shuffling methods are very similar,
we would expect a similar fitness as well. However, this is
not the case for these four operators. Nevertheless, some
trends can be seen. For both harder benchmarks—Decode

Table 2   Results on Boolean
benchmarks for each CGP
variant and its corresponding
best configuration found

Here, Active is the mean number of active nodes; Nodes is the number of computational nodes used; and
p(best) is the probability of the solution having the best test fitness value. Algorithms are sorted from best
to worst in descending order according to p(best)

Variant Mean(I2S) HPDI Active Nodes preorder p(best)

Parity
Original-Reorder 343 [281, 419] 46.5 600 – 0.22
Standard 406 [329, 503] 30.5 200 – 0.18
Uniform-Reorder 423 [349, 515] 44.9 550 – 0.18
LeftSkew-Reorder 402 [324, 498] 42.3 500 1.0 0.15
EquiDist-Reorder 464 [377, 566] 37.2 400 – 0.14
NegBias-Reorder 545 [427, 693] 45.9 700 0.5 0.13
Encode
Uniform-Reorder 6,178 [5,380, 7,086] 78.8 350 – 0.20
LeftSkew-Reorder 6,466 [5,646, 7,385] 69.3 250 0.4 0.18
NegBias-Reorder 6,413 [5,696, 7,198] 66.0 200 0.8 0.17
Standard 6,544 [5,627, 7,569] 82.4 400 – 0.16
Original-Reorder 6,695 [5,722, 7,827] 94.9 500 – 0.16
EquiDist-Reorder 7,699 [6,591, 9,005] 71.3 250 – 0.13
Decode
LeftSkew-Reorder 15,275 [13,859, 16,905] 166.8 550 0.8 0.21
Standard 15,432 [13,913, 17,100] 161.3 500 – 0.20
EquiDist-Reorder 16,177 [14,274, 18,319] 162.9 500 – 0.19
Uniform-Reorder 16,878 [15,221, 18,711] 173.8 600 – 0.16
Original-Reorder 17,069 [15,139, 19,210] 152.4 450 – 0.14
NegBias-Reorder 18,470 [16,844, 20,229] 129.8 300 0.6 0.11
Multiply
NegBias-Reorder 87,246 [72,937, 103,316] 125.2 750 0.9 0.21
EquiDist-Reorder 88,291 [77,922, 99,814] 91.1 350 – 0.19
LeftSkew-Reorder 94,940 [82,322, 109,039] 105.2 550 0.5 0.18
Uniform-Reorder 100,378 [84,129, 119,600] 90.4 350 – 0.18
Original-Reorder 103,685 [89,632, 119,653] 101.2 500 – 0.16
Standard 145,299 [121,919, 172,348] 117.2 750 – 0.08

SN Computer Science (2025) 6:754 	 Page 11 of 17  754

SN Computer Science

and Multiply—EquiDist-Reorder seems to be preferable
over Uniform-Reorder, while the opposite can be said about
Parity and Encode: Here, Uniform-Reorder leads to better
results than EquiDist-Reorder.

One major caveat of NegBias-Reorder and LeftSkew-
Reorder, however, is their need for an additional hyperpa-
rameter preorder . This value differs for each CGP variant and
benchmark, which is why no universal recommendation for
preorder can be given. As a result, this hyperparameter should
be optimized for each problem statement, which leads to
additional complexity and resources needed. This leads to a
trade-off, as CGP’s performance increases slightly but with
a higher complexity for its hyperparameter search.

Performance on symbolic regression benchmarks

Considering the results on the symbolic regression bench-
marks, they are shown in Table 3. Similar to Boolean bench-
marks, each configuration was run 75 times with independ-
ent repetitions and different random seeds. Again, we list

the CGP variant and their corresponding mean I2S, mean
number of active and computational nodes, the probability
of reorder (if applicable), success rate, train- and test fitness
values, and the probability of the configuration being the
best. For the success rate, we report the fraction of solutions
that achieved a training fitness value of less than 0.01. The
probability of one solution being the best is calculated via
the Bayesian model defined in Sect. 5.1.2. The models and
their corresponding probabilities were calculated on each
configuration’s test fitness values. In addition, the Keijzer-6
benchmark has very low fitness and HPDI values, indicat-
ing that it is very easy for CGP to solve it quickly. Thus, the
results obtained from this benchmark should be met with
scepticism.

Similarly to the Boolean benchmark results, there is no
CGP variant that is always the best one. However, apply-
ing a reorder method is always preferable over Standard,
as almost all configurations need less I2S while having a
higher success rate. In addition, while Original-Reorder is
preferred over Standard in most cases, other reorder meth-
ods still outrank it.

Table 3   Results on symbolic regression benchmarks for each CGP variant and its corresponding best configuration found

Here, Active is the mean number of active nodes; Nodes is the number of computational nodes used; SR is the success rate; and p(best) is the
probability of the solution having the best test fitness value. Both f(train) and f(test) depict the respective mean fitness values. Algorithms are
sorted from best to worst in descending order according to p(best)

Benchmark Variant Mean(I2S) HPDI Active Nodes preorder SR f(train) f(test) p(best)

Keijzer-6 EquiDist-Reorder 23 [16, 32] 11.6 50 – 1.0 0.001 0.001 0.28
Original-Reorder 25 [18, 35] 12.2 50 – 0.96 0.002 0.028 0.24
LeftSkew-Reorder 28 [20, 38] 11.9 50 1.0 1.0 0.001 0.001 0.17
NegBias-Reorder 37 [26, 54] 14.8 100 0.4 1.0 0.002 0.001 0.15
Uniform-Reorder 41 [32, 53] 24.4 300 – 0.96 0.004 0.002 0.10
Standard 480 [312, 733] 13.3 150 – 0.92 0.005 0.025 0.06

Koza-3 LeftSkew-Reorder 20,339 [11,916, 34,454] 24.8 150 0.7 1.0 0.006 0.031 0.22
EquiDist-Reorder 11,243 [6,888, 18,108] 20.8 100 – 1.0 0.006 0.045 0.19
NegBias-Reorder 9,370 [5,813, 15,051] 49.0 700 0.2 1.0 0.007 0.037 0.17
Original-Reorder 14,302 [8,676, 23,174] 30.1 250 – 1.0 0.007 0.023 0.16
Standard 18,430 [11,651, 28,939] 28.1 650 – 0.98 0.009 0.018 0.14
Uniform-Reorder 18,544 [11,183, 30,263] 41.6 600 – 0.98 0.008 0.028 0.12

Nguyen-7 NegBias-Reorder 49,447 [32,829, 73,519] 33.4 250 0.4 0.98 0.009 0.023 0.19
Uniform-Reorder 55,563 [36,527, 83,843] 40.6 550 – 0.94 0.009 0.829 0.18
EquiDist-Reorder 54,855 [35,814, 82,851] 48.4 650 – 0.96 0.009 0.906 0.17
LeftSkew-Reorder 59,022 [39,292, 87,894] 47.6 750 0.6 0.96 0.009 0.033 0.16
Standard 126,498 [85,566, 182,333] 33.5 700 – 0.88 0.011 0.078 0.10
Original-Reorder 73,330 [47,996, 109,793] 34.3 300 – 0.92 0.01 0.034 0.02

Pagie-1 EquiDist-Reorder 352,345 [271,198, 442,921] 63.1 350 – 0.43 0.034 0.034 0.22
Original-Reorder 380,985 [299,196, 471,922] 63.4 350 – 0.29 0.036 0.036 0.19
NegBias-Reorder 385,752 [297,161, 485,266] 63.9 450 1.0 0.27 0.047 0.047 0.19
LeftSkew-Reorder 405,887 [329,290, 493,721] 56.3 300 0.8 0.24 0.049 0.049 0.15
Standard 491,071 [459,092, 500,000] 52.7 700 – 0.02 0.046 0.046 0.15
Uniform-Reorder 430,564 [357,388, 500,000] 47.1 150 – 0.20 0.065 0.065 0.10

	 SN Computer Science (2025) 6:754 754   Page 12 of 17

SN Computer Science

Considering the different shuffling methods, EquiDist-
Reorder is the only one always under the top three CGP
variants. In contrast to that, Uniform-Reorder—which has a
similar reorder methods compared to EquiDist-Reorder—is
performing worse in three cases. Similarly, NegBias-Reor-
der and LeftSkew-Reorder show different fitness and HPDI
values, a behaviour that can also be observed for Boolean

benchmarks. Another similarity to Boolean benchmarks is
the choice of preorder , as the optimally found values differ
again for each benchmark and configuration. As a result,
no general value for preorder can be proposed. This, again,
implies a trade-off between better performance but an addi-
tional hyperparameter to optimize.

Fig. 6   Convergence plots for each regression benchmark. For better visualization, the x- and y-axis have a logarithmic scale

Fig. 7   Convergence plots for each Boolean benchmark. For better visualization, the x- and y-axis have a logarithmic scale

SN Computer Science (2025) 6:754 	 Page 13 of 17  754

SN Computer Science

What is also interesting to see for the Koza-3 benchmark
is the ranking of algorithms and their I2S. All top three vari-
ants have a success rate of one, which means that a solu-
tion was always found. However, the best solution needs, on
average, about double the training iterations than EquiDist-
Reorder and NegBias-Reorder.

Convergence behaviour

To better understand the workings of our extensions, we
depict convergence plots for both symbolic regression

and Boolean benchmarks, as can be seen in Figs. 6 and 7
respectively. For these plots, we averaged the convergence
of 75 runs. Furthermore, to easier see the differences, the
x- and y-axis have a logarithmic scale. For unscaled plots,
we refer to Fig. 8 in “Appendix”. In addition, their respec-
tive standard deviation is included in Fig. 9.

When the plots for symbolic regression benchmarks are
examined, they all show very similar behaviour. According
to the categorization of Stegherr et al. [32], their conver-
gence behaviour can all be grouped into the category Fast
to Slow. Within the first few iterations, a relatively low

Fig. 8   Convergence plots for each symbolic regression and Boolean benchmark. Scales have not been altered

	 SN Computer Science (2025) 6:754 754   Page 14 of 17

SN Computer Science

fitness value is achieved. Afterwards, the rate of improve-
ment decreases for all CGP variants, and a lot of training
iterations are needed for small improvements. Interest-
ingly, EquiDist-Reorder and Uniform-Reorder, as well
as NegBias-Reorder and LeftSkew-Reorder, respec-
tively, did not show similar performances as can be seen
in Sects. 5.2 and 5.3. Nevertheless, when only convergence

plots are examined, these reorder operators behave very
similar. Thus, it can be concluded that the behaviour of
CGP does not change when a shuffling method is included.

CGP’s behaviour in accordance to Boolean benchmarks
are all identical, as is depicted in Fig. 7. Again, their
behaviour can be categorized into Fast to Slow [32]. As all
CGP variants behave the same, no behavioural change can

Fig. 9   Convergence plots for each symbolic regression and Boolean benchmark. The shaded area indicates their respective standard deviation.
The x- and y-axis are scaled to make the standard deviation visible

SN Computer Science (2025) 6:754 	 Page 15 of 17  754

SN Computer Science

be concluded again when a reorder method is included or
not. However, please note that Boolean benchmarks show
a deceptive fitness landscape [22]. As a multitude of differ-
ent solutions lead to the same fitness value, examining the
convergence plot might not lead to reasonable findings or
might even be deceptive. This is why a conclusion based
on Boolean benchmarks should be met with scepticism.

Conclusion

In this work, we extended reorder methods used by Cartesian
Genetic Programming (CGP). We expanded upon the origi-
nal reorder method (Original-Reorder) from Goldman and
Punch [7], as well as another reorder version called Equidis-
tant Reorder (EquiDist-Reorder) from Cui et al. [9]. Three
novel operators were introduced which shuffle CGP’s geno-
type and assigns active nodes new positions in the genotype.
Just as the two existing operators, the ordering of active
nodes is preserved for all extensions, which means that the
phenotype does not change. One of our new operators is
called Uniformly Distributed Reorder (Uniform-Reorder)
and builds upon EquiDist-Reorder. Instead of placing active
nodes equidistantly apart—which is done by EquiDist-Reor-
der—their new positions are sampled from a continuous
uniform distribution. The second novel extension is called
Negative Positional Bias based Reorder (NegBias-Reorder).
It moves all active nodes to the end of the genotype, just
before output nodes. The last operator, called Left-Skewed
Distribution Reorder (LeftSkew-Reorder), is inspired by
NegBias-Reorder. Instead of using fixed placements, the
positioning of active nodes is determined by a left-skewed
beta distribution.

To measure the effectiveness of the new operators, we
conducted an empirical study. A total of six algorithms
were compared: the standard CGP formula (Standard),
Original-Reorder, EquiDist-Reorder, Uniform-Reorder,
NegBias-Reorder and LeftSkew-Reorder. We tested
them on four Boolean- and four symbolic regression
benchmarks, and optimized the hyperparameters for each
setting. To find the best hyperparameters and to rank the
effectiveness of algorithms, Bayesian data analysis for the
posterior distributions of results was performed.

Our statistical analysis shows that, in all cases, CGP
including a reorder operator is able to surpass Standard
regarding its number of training iterations until a solu-
tion is found (I2S) and/or fitness value. However, there
is no reorder algorithm that is always able to deliver the
best results for all benchmarks and the choice of the right
shuffling algorithm highly depends on the benchmark. Fur-
thermore, while NegBias-Reorder or LeftSkew-Reorder
may be the best choice for some benchmarks, they depend

on an additional hyperparameter. Thus, the complexity to
find the best hyperparameters increases which leads to a
trade-off between better performance but higher compu-
tational overhead beforehand. Regarding symbolic regres-
sion benchmarks, some reorder methods might lead to a
better test fitness value but also increase the I2S. This,
again, might lead to a trade-off in some specific cases.
Considering harder problems, EquiDist-Reorder always
outperforms Uniform-Reorder. This indicates that enforc-
ing an equidistant spacing should not limit CGP.

Algorithmically, EquiDist-Reorder and Uniform-Reor-
der, as well as NegBias-Reorder and LeftSkew-Reorder,
are close. EquiDist-Reorder enforces an equidistant spac-
ing, while Uniform-Reorder samples from a continuous
uniform distribution. NegBias-Reorder moves all active
nodes near output nodes, while LeftSkew-Reorder sam-
ples from a beta distribution to approximate NegBias-
Reorder. However, their respective fitness values greatly
differ sometimes.

Additionally, we investigated their respective conver-
gence behaviour. Interestingly, all CGP versions show a Fast
to Slow convergence plot [32]. However, the behaviour for
Boolean benchmarks must be met with reservation because
of their deceptive fitness landscape [22].

On another note: Reorder methods lead to an improved
convergence time. This may be especially convenient for
CGP’s practical applications. Neural architecture search, for
example, is a prominent use case of CGP [5, 6]. By decreas-
ing the training time while increasing the performance val-
ues, computational time and resources can be saved which
is especially desirable in such computational demanding
applications.

For future works, their behaviour can be further ana-
lysed. While the convergence plots of EquiDist-Reorder
and Uniform-Reorder—as well as NegBias-Reorder and
LeftSkew-Reorder—depict the same behaviour, their fit-
ness value might differ greatly. As they are algorithmically
close, the reason for their gap in performance is still an open
question. Answering this question might even reveal other
hidden biases or properties of CGP.

Other types of reordering methods can also be explored.
For example, one could exploit the dependencies of nodes.
Let t be a node that is going to be reordered; node tprev be
the nearest node from which t gets an input from. Further-
more, let tafter be the nearest node which uses the output of t.
Then, t could be reordered to an arbitrary / random location
between tprev and tafter . The reordering method should start
from the rightmost nodes and work towards the leftmost
nodes. In this way, another unique algorithm can be devel-
oped which fully retains the dependencies of both active and
inactive nodes.

	 SN Computer Science (2025) 6:754 754   Page 16 of 17

SN Computer Science

Appendix: Convergence plots
without altered axis

For further information and visual inspection, convergence
plots without changes to the y- and x-axis are provided in
Fig. 8. As is already mentioned in Sect. 5.4, their conver-
gence behaviour can be classified as Fast to Slow [32]. This
categorization is easier to see when the axis are not scaled.

Furthermore, Fig. 9 include their respective standard
deviation. We included them as separate plots to increase
visibility. Please note that the x- and y-axis are logarithmi-
cally scaled again. Otherwise, the standard deviation would
not be visible. For both benchmarks, the standard devia-
tion is relatively low. In the context of symbolic regression
benchmarks, the CGP variants have a higher standard devia-
tion at the beginning and at the end of its training. Boolean
benchmarks only show a higher standard deviation during
the beginning of the training, and little to no deviation dur-
ing the rest.

Acknowledgements  The authors would like to thank the German Fed-
eral Ministry of Education and Research (BMBF) for supporting the
project SaMoA within VIP+ (grant number 03VP09291).

Author Contributions  Henning Cui developed the operators, designed
and performed experiments, analysed the data and wrote the manu-
script. Andreas Margraf contributed to the conceptualization of the new
operators. Jörg Hähner supervised the project and also contributed to
the conceptualization of the new operators. All authors discussed the
results and commented on the manuscript at all stages.

Funding  Open Access funding enabled and organized by Projekt
DEAL. Partial financial support for this work was received from the
German Federal Ministry of Education and Research (BMBF) via the
project SaMoA within VIP+ (Grant Number 03VP09291).

Data Availability  Not applicable.

Code availability  The source code including benchmarks used to pro-
duce the experimental data is available at: https://​github.​com/​CuiHen/​
Reord​er_​Strat​egies_​for_​CGP.

Declarations 

Conflict of interest  Not applicable.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Miller JF. An empirical study of the efficiency of learning Boolean
functions using a cartesian genetic programming approach,
GECCO’99. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.; 1999. pp. 1135–42.

	 2.	 Froehlich S, Drechsler R. Unlocking approximation for in-mem-
ory computing with cartesian genetic programming and computer
algebra for arithmetic circuits. IT Inf Technol. 2022;64:99–107.

	 3.	 Manazir A, Raza K. PCGP: a parallel implementation of cartesian
genetic programming for combinatorial circuit design and time-
series prediction; 2022. pp. 1–4.

	 4.	 Miller JF. Cartesian genetic programming. Berlin: Springer; 2011.
	 5.	 Torabi A, Sharifi A, Teshnehlab M. Using cartesian genetic pro-

gramming approach with new crossover technique to design con-
volutional neural networks; 2022.

	 6.	 Suganuma M, Kobayashi M, Shirakawa S, Nagao T. Evolution of
deep convolutional neural networks using cartesian genetic pro-
gramming. Evol Comput. 2020;28:141–63.

	 7.	 Goldman BW, Punch WF. Length bias and search limitations in
cartesian genetic programming, GECCO ’13. New York, NY,
USA: Association for Computing Machinery; 2013. pp. 933–40.

	 8.	 Goldman BW, Punch WF. Analysis of cartesian genetic program-
ming? Evolutionary mechanisms. IEEE Trans Evol Comput.
2015;19:359–73.

	 9.	 Cui H, Margraf A, Hähner J. Equidistant reorder operator for car-
tesian genetic programming. INSTICC (SciTePress); 2023. pp.
64–74.

	10.	 Miller J, Smith S. Redundancy and computational efficiency
in cartesian genetic programming. IEEE Trans Evol Comput.
2006;10:167–74.

	11.	 Turner AJ, Miller JF. Neutral genetic drift: an investigation
using cartesian genetic programming. Genet Prog Evol Mach.
2015;16:531–58.

	12.	 Payne AJ, Stepney S. Representation and structural biases in CGP;
2009. pp. 1064–71.

	13.	 Kalkreuth R. Phenotypic duplication and inversion in cartesian
genetic programming applied to Boolean function learning,
GECCO ’22. New York, NY, USA: Association for Computing
Machinery; 2022. pp. 566–569.

	14.	 Walker JA, Miller JF. Evolution and acquisition of modules in
cartesian genetic programming. Berlin: Springer; 2004. p. 187–97.

	15.	 Harding SL, Miller JF, Banzhaf W. Self-Modifying cartesian
genetic programming. Berlin: Springer; 2011. p. 101–24.

	16.	 Wilson DG, Miller JF, Cussat-Blanc S, Luga H. Positional carte-
sian genetic programming; 2018. arXiv:​1810.​04119.

	17.	 Cui H, Pätzel D, Margraf A, Hähner J. Weighted mutation of con-
nections to mitigate search space limitations in cartesian genetic
programming, FOGA ’23. New York, NY, USA: Association for
Computing Machinery; 2023. pp. 50–60.

	18.	 Vassilev VK, Miller JF. The advantages of landscape neutrality in
digital circuit evolution. Berlin: Springer; 2000. p. 252–63.

	19.	 Yu T, Miller J. Neutrality and the evolvability of Boolean function
landscape. Berlin: Springer; 2001. p. 204–17.

	20.	 Cui H, Margraf A, Hähner J, Mernik M, Eftimov T, Črepinšek M.
Refining mutation variants in cartesian genetic programming. In:

https://github.com/CuiHen/Reorder_Strategies_for_CGP
https://github.com/CuiHen/Reorder_Strategies_for_CGP
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1810.04119

SN Computer Science (2025) 6:754 	 Page 17 of 17  754

SN Computer Science

Mernik M, Eftimov T, Črepinšek M, editors. Bioinspired optimi-
zation methods and their applications. Cham: Springer; 2022. p.
185–200.

	21.	 Kaufmann P, Kalkreuth R. On the parameterization of cartesian
genetic programming; 2020. pp. 1–8.

	22.	 Vasicek Z. Bridging the gap between evolvable hardware and
industry using cartesian genetic programming. Cham: Springer;
2018. p. 39–55.

	23.	 Kruschke JK. Bayesian estimation supersedes the t test. J Exp
Psychol Gen. 2013;142:573.

	24.	 Pätzel D. cmpbayes; 2023. https://​github.​com/​dpaet​zel/​cmpba​yes,
commit = 4de0abc37ee28b35267db173d32bb96ca9e69236.

	25.	 Calvo B, Ceberio J, Lozano JA. Bayesian inference for algo-
rithm ranking analysis, GECCO ’18. New York, NY, USA:
Association for Computing Machinery; 2018. pp. 324–5.

	26.	 Husa J, Kalkreuth R, Castelli M, Sekanina L, Zhang M, Cag-
noni S, García-Sánchez P. A comparative study on crossover
in cartesian genetic programming. In: Castelli M, Sekanina L,
Zhang M, Cagnoni S, García-Sánchez P, editors. Genetic pro-
gramming. Cham: Springer; 2018. p. 203–19.

	27.	 Goldman BW, Punch WF. Reducing wasted evaluations in car-
tesian genetic programming. Berlin: Springer; 2013. p. 61–72.

	28.	 White D, et al. Better GP benchmarks: community survey results
and proposals. Genet Prog Evol Mach. 2013;14:3–29.

	29.	 Kaufmann P, Kalkreuth R. An empirical study on the parametri-
zation of cartesian genetic programming, GECCO ’17. New
York, NY, USA: Association for Computing Machinery; 2017. p.
231–32.

	30.	 Walker JA, Miller JF. The automatic acquisition, evolution and
reuse of modules in cartesian genetic programming. IEEE Trans
Evol Comput. 2008;12:397–417.

	31.	 Kalkreuth R. A comprehensive study on subgraph crossover in
cartesian genetic programming. INSTICC (SciTePress); 2020. p.
59–70.

	32.	 Stegherr H, Heider M, Hähner J. Assisting convergence behaviour
characterisation with unsupervised clustering, INSTICC (SciTe-
Press); 2023. p. 108–18.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/dpaetzel/cmpbayes

	Analysing the Influence of Reorder Strategies for Cartesian Genetic Programming
	Abstract
	Introduction
	Cartesian genetic programming
	Representation
	Positional bias

	Related work
	Reorder strategies
	Original reorder
	Reorder strategy
	Reorder’s limitation

	Equidistant reorder
	Uniformly distributed reorder
	Negative positional bias based reorder
	Left-skewed distribution reorder
	Time complexity

	Evaluation of different reorder strategies
	Experimental design
	Evolutionary algorithms and configuration
	Bayesian data analysis
	Benchmarks

	Performance on Boolean benchmarks
	Performance on symbolic regression benchmarks
	Convergence behaviour

	Conclusion
	Appendix: Convergence plots without altered axis
	Acknowledgements
	References

