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Abstract— Cardiovascular diseases (CVDs) are the number
one cause of death worldwide. In recent years, intelligent
auxiliary diagnosis of CVDs based on computer audition has
become a popular research field, and intelligent diagnosis
technology is increasingly mature. Neural networks used to
monitor CVDs are becoming more complex, requiring more
computing power and memory, and are difficult to deploy in
wearable devices. This paper proposes a lightweight model for
classifying heart sounds based on knowledge distillation, which
can be deployed in wearable devices to monitor the heart
sounds of wearers. The network model is designed based on
Convolutional Neural Networks (CNNs). Model performance
is evaluated by extracting Mel Frequency Cepstral Coefficients
(MFCCs) features from the PhysioNet/CinC Challenge 2016
dataset. The experimental results show that knowledge
distillation can improve a lightweight network’s accuracy, and
our model performs well on the test set. Especially, when the
knowledge distillation temperature is 7 and the weight α is 0.1,
the accuracy is 88.5 %, the recall is 83.8 %, and the specificity
is 93.6 %.

Clinical relevance— A lightweight model of heart sound
classification based on knowledge distillation can be deployed on
various hardware devices for timely monitoring and feedback
of the physical condition of patients with CVDs for timely
provision of medical advice. When the model is deployed on
the medical instruments of the hospital, the condition of severe
and hospitalised patients can be timely fed back and clinical
treatment advice can be provided to the clinicians.

I. INTRODUCTION
The annual death caused by cardiovascular diseases

(CVDs) accounts for 45 % of all deaths in Europe [1]. Many

This work was partially supported by the Ministry of Science and
Technology of the People’s Republic of China with the STI2030-Major
Projects (No. 2021ZD0201900), the National Natural Science Foundation of
China (No. 62227807 and 62272044), the Teli Young Fellow Program from
the Beijing Institute of Technology, China, the BIT Research and Innovation
Promoting Project (Grant No. 2022YCXZ012), China, and the Grants-in-Aid
for Scientific Research (No. 20H00569) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan. (Zikai Song and
Lixian Zhu contributed equally to this work. Corresponding authors: K.
Qian, and B. Hu.)

1,2Kun Qian, Bin Hu, Zikai Song, Lixian Zhu, Yiyan Wang, Mengkai
Sun are with Key Laboratory of Brain Health Intelligent Evaluation and In-
tervention, Ministry of Education (Beijing Institute of Technology), Beijing
100081, China, and also with the School of Medical Technology, Beijing
Institute of Technology, Beijing 100081, China. {songzk, zhulx17,
yiyanwang, smk, qian, bh}@bit.edu.cn

3Yoshiharu Yamamoto is with the Educational Physiology
Laboratory, Graduate School of Education, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
yamamoto@p.u-tokyo.ac.jp

4,5Björn W. Schuller is with GLAM – the Group on Language, Audio, &
Music, Imperial College London, 180 Queen’s Gate, Huxley Bldg., London
SW7 2AZ, UK, and also with the Chair of Embedded Intelligence for Health
Care and Wellbeing, University of Augsburg, Eichleitnerstr. 30, Augsburg
86159, Germany. schuller@ieee.org

of the sounds produced by the human body directly reflect
information about our physiological and pathological status.
In the case of CVDs, the initial diagnosis can be made by
auscultation of heart sounds. However, the frequency and
intensity of heart sounds are close to the lower limit of
human hearing, and it takes a long period of professional
training and clinical experience for clinicians to master
auscultation skills [2]. Moreover, audio data and related
computer audition (CA) technologies are non-invasive and
ubiquitous [3]. Therefore, over the past decade, a growing
number of researchers have focused on the use of computer-
assisted heart sound analysis to assist physicians and patients
in the diagnosis of CVDs.

Nowadays, there are many deep learning algorithms avail-
able for the classification of heartbeats. More prominently,
Ren and Qian et al. proposed an attention-based deep repre-
sentation learning method for heart sound classification [4].
Humayun et al. designed a Convolutional Neural Network
(CNN) model that uses time-convolution (tCONV) units to
simulate a finite impulse response filter to identify heart
sound [5]. Ren et al. used a pre-trained CNN from large-
scale image data for the classification of Phonocardiogram
(PCG) signals by learning deep PCG representations [6].
Deng et al. applied improved Mel-scale Frequency Cepstral
Coefficients (MFCCs) features combined with a Recurrent
Neural Network (RNN) [7]. Due to the variety of CVDs
and the complex acoustic environment of the heart [7],
the models used for heart sound recognition are becoming
increasingly large for accuracy improvement, which makes it
difficult to deploy the models to wearable devices with low
arithmetic power and small memory. To address this issue,
we use a Knowledge distillation (KD) approach to generate
a lightweight heart sound classification model.

Knowledge distillation aims to transfer knowledge from
one large neural network (the teacher network) to another
smaller neural network (the student network), which could
compress the neural network model. In recent years, knowl-
edge distillation has been widely used in different fields of
artificial intelligence, including computer vision, natural lan-
guage processing, speech recognition, and data privacy [8].
Three distillation schemes have been proposed, which are
divided into three types according to whether the teacher
model is updated during training, namely: offline distilla-
tion [9], online distillation [10], and self-distillation [11].
Offline distillation is mainly divided into two stages. First,
the teacher model is trained on the training set separately, and
then, the teacher model is used to extract logits to guide the



TABLE I
DETAILS OF THE DATASET.

Subset Abnormal Normal Total
Training-a 292 117 409
Training-b 104 386 490
Training-c 24 7 31
Training-d 28 27 55
Training-e 183 1 958 2 141
Training-f 34 80 114

Total 665 2 575 3 240

training of the student model. Offline distillation basically
does not pay attention to the setting and updating of the
teacher model in the first step, but focuses on improving
the knowledge transfer part. However, in online distillation,
the teacher model and student model are updated at the same
time, and the whole knowledge distillation framework is end-
to-end trainable [8]. Self-distillation uses the same network
for both the teacher and student models; it could be seen as a
special case of online distillation. Offline distillation is a one-
way knowledge transfer that can be conducted using a large
model that has been trained and performs well. The teacher
network does not need to be updated with parameters [6], so
here, we decided for offline distillation.

In this paper, we propose a lightweight heart sound
classification model based on knowledge distillation. The
main contribution of our work can be summarised as: (i)
We use offline KD transfer knowledge from the teacher
model to the student model; (ii) We evaluate its performance
and robustness and compare the different models in terms
of accuracy, Floating Point Operations (FLOPs), parameter
count, and F1 score.

II. MATERIALS AND METHODS

A. Dataset

The dataset used in this study is the Physionet/Cinc Chal-
lenge 2016 [12] data. Table I shows the details of this dataset.
The dataset has six subsets recorded by six study groups in
clinical and non-clinical settings using different devices, with
recording times ranging from seconds to minutes [13]. The
dataset contains 3 240 heart sounds from 84 426 heartbeats;
among them, 2 575 data are from the normal case and 665
are from the abnormal one.

B. Preprocessing

Heart sound data are affected by sampling rate, noise,
and other factors, which can make the accuracy of heart
sound classification decrease, so it is exceedingly signifi-
cant to preprocess the heart sound data. In this study, by
standardising and preprocessing heart sounds, we remove
noise such as lung sounds and breathing sounds, and external
ambient noise. Heart sound preprocessing is divided into
two steps. Firstly, we resample the signal with sampling rate
fixed to 2 000Hz, and noise is removed using a third-order
Butterworth bandpass filter with cutoff frequencies of 20 and
400 Hz [14]. Second, we applied the approach proposed by
Schmidt et al. [15] to eliminate spikes.

C. Segmentation

To expand the dataset, we use Springer’s improved algo-
rithm of the Hidden Semi-Markov Model (HSMM) [16] for
heart sound signal segmentation. We set the length of the
heart sound signal segmentation as 2.5 seconds, which is the
longest heartbeat cycle length in the dataset [17]. For the
data with a heartbeat cycle less than 2.5 seconds, we pad
with zeros. By this, we minimise the impact of non-uniform
heartbeat cycles on the classification results.

D. Feature Extraction

For speech-recognition, the most commonly used speech
feature is MFCCs. This feature has superior performance
in acoustics [18]. In this experiment, we use MFCCs-13
features as input to construct the proposed model. MFCCs-
13 is MFCCs with 13 coefficients after Discrete Cosine
Transform (DCT) compression.

E. Lightweight Model

1) Knowledge Distillation: To compress the model size,
knowledge distillation is employed. First, the ‘teacher’ net-
work uses the training set for individual training, and then,
in the environment of ‘temperature’ T, the knowledge of the
teacher network is distilled into the student network.

In this section, the high-temperature distillation scheme is
described in detail. The teacher network can produce class
probabilities by using a softmax function, which are later
used to calculate loss when training the ‘student’ network.
However, in many cases, the probability of the correct
category in this result is a very high value, while others
are very close to zero, so that it could not provide a great
deal of information for the student network. To solve this
issue, Hinton et al. [9] introduced the concept of the “softmax
temperature”. As (1) shows:

qi =
exp( ziT )∑
j exp(

zj
T )

(1)

where qi means the probability of class i, zi denotes the logits
of the model used, and T means distillation temperature.
When T is set to 1, we get a normal softmax function. When
we use a higher value for T, the probability distribution is
softer than that generated by the softmax function.

As shown in Fig 1, soft labels are the probability distri-
butions obtained by using the softmax function with tem-
perature T for the predictions of the teacher model. Soft
predictions represent the softmax distributions predicted by
the student model with the same temperature T. Distillation
loss (Lsoft) indicates the cross entropy between the soft
labels and soft predictions. Hard predictions denote the class
probabilities predicted by the student model at the temper-
ature of 1. Hard labels mean the value of the actual labels.
Student loss (Lhard) indicates the cross entropy between
hard labels and hard predictions. The objective function
(L(x,W )) of knowledge distillation is determined by the
distillation loss and the student loss together. As (2) shows:

L(x,W ) = αLhard + βLsoft (2)
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Fig. 1. Method for calculating the objective function of the knowledge
distillation.
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Fig. 2. Network structure of (a) the teacher network; (b) the student
network.

By using a weighted average of two loss functions, i. e.,
β = 1− α, we obtain the final objective function.

2) Convolutional neural network: In this section, the
teacher network and the student network are introduced.
The teacher-student network architecture is shown in Fig 2.
Both our teacher and student networks use a CNN. The
teacher model consists of four convolutional layers and one
linear layer. Each convolutional layer is followed by a ReLU
function and a pooling layer. The student network is similar
in structure to the teacher network, except that it consists of
two convolutional layers and two linear layers. We use the
student network to build our lightweight model.

III. EXPERIMENTAL RESULTS

A. Setup

We adopt Pytorch (version-1.7.1) to build our experimental
environment, with i7-8750H CPU and GTX1050TI GPU. By
segmenting the dataset, we obtain 37 631 data points. We
divide the dataset into a training set and a test set by 10:1,
each set containing samples of “a-f” subset labels.

In the experiment, we first train the teacher model and the
student model separately, and record the training results. In
[9], the authors set T ranging from 1 to 20, but it observe
better results when T is between 2.5 and 4 and the value
of α is low. Therefore, we set a series of temperature T
values ranging from 1 to 9 and weight α from 0.1 to 0.7 for

the experiments, and compare the results with the student
model and the previous models. The evaluation indexes are
recall, precision, accuracy, F1 score, and specificity, which
are defined as follows:

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Accurary =
TP + TN

TP + TN + FP + FN
(5)

F1 score =
2× Precision×Recall

Precision+Recall
(6)

Specificity =
TN

TN + FP
(7)

TP represents positive samples predicted by the model
to be the positive class, TN represents negative samples
predicted by the model to be the negative class, FP represents
negative samples predicted by the model to be the positive
class, FN represents positive samples predicted by the model
to be the negative class.

B. Results

Table II shows classification performance of the teacher
model, student model and KD model obtained under different
hyperparameters. In the table, the teacher model is obtained
by training the teacher network alone, and the same holds
for the student model. The KD model represents the model
obtained by knowledge distillation, T represents the distil-
lation temperature, and α represents the weight of Lhard.
The experimental results show that the performance of the
KD model is the best (except for specificity) when choosing
T = 7, α = 0.1 with accuracy, recall, precision and F1 score
of 88.5 % (p < .001 by one-tailed z-test), 83.8 %, 85.4 %,
84.5 %, respectively.

Table III shows the performance comparison between the
previous models and the proposed KD model. The FLOPs of
the KD model (T = 7, α = 0.1) is 66.7 M and the parameter
count is 43.3 K, being remarkably low values. The accuracy
of 88.5 % is better than the previous models and the student
model.

IV. DISCUSSION

As can be seen from Table II, The recall, precision,
F1 score, accuracy, and specificity of the student model
obtained from the student network trained separately are
79.4 %, 83.1 %, 81.0 %, 86.3 %, and 93.5 %, respectively.
The performance of the KD model is often better than that
of the student model. When T = 7 and α = 0.1, all indexes
are higher than those of the student model. The accuracy of
the KD model (T = 7, α = 0.1) is lower than that of the
teacher model, but this appears acceptable as the KD model
requires considerably less computing power and parameters,
which is a valid trade-off in terms of required performance
and model complexity.

As Table III shows, we reproduce the classical lightweight
models, MobileNetV3-Small and MobileNetV3-Large [19],



TABLE II
PERFORMANCE OF DIFFERENT CLASSIFIERS ON THE TEST SETS. [%]

Teacher
model

Student
model

KD model
T = 1
α = 0.3

KD model
T = 3
α = 0.3

KD model
T = 5
α = 0.3

KD model
T = 7
α = 0.1

KD model
T = 7
α = 0.3

KD model
T = 7
α = 0.5

KD model
T = 7
α = 0.7

KD model
T = 9
α = 0.3

Accuracy 90.5 86.3 87.4 87.2 87.0 88.5 87.6 86.4 85.5 87.0

Recall 86.6 79.4 82.6 80.5 81.2 83.8 83.4 81.2 78.5 81.7

Precision 87.9 83.1 83.9 84.5 83.0 85.4 83.9 82.5 81.9 83.4

F1 score 87.2 81.0 83.4 82.2 82.0 84.5 83.6 81.8 80.0 82.5

Specificity 94.3 93.5 94.2 94.2 92.5 93.6 92.1 91.8 90.8 93.5

TABLE III
COMPARISON BETWEEN PREVIOUS WORKS AND THE MODEL INVOLVED

IN THE EXPERIMENT.

Model FLOPs Params Acc [%] F1 [%]

MobileNetV3-Small 18.3 M 1.0 M 86.9 82.2

MobileNetV3-Large 71.0 M 2.6 M 88.5 84.7

CNN+FocalLoss [20] - 4.3 K 85.5 -

CardioXNet [21] - 0.7 M 86.6 88.0

Teacher Model 1 009.8 M 254.6 K 90.5 87.2

Student Model 66.7 M 43.3 K 86.3 81.0
KD model

(T = 7, α = 0.1)
66.7 M 43.3 K 88.5 84.5

for comparison with our model. The FLOPs and parameter
count of the KD model (T = 7, α = 0.1) are 4.3 M and
2.56 M less than those of MobileNetV3-Large, respectively.
The parameter count of KD model is 99.7 K and 656.7 K
less than that of MobileNetV3-Small and model in [21],
respectively. However, the parameter count of KD model
is 39.0 K higher than that of the model in [20]. For the
classification results of heart sounds, the accuracy and F1
score of our model are 1.6 % and 2.3 % higher than those of
MobileNetV3-Small. Nevertheless, these metrics are about
equal to MobileNetV3-Large’s. We cannot directly compare
the accuracy and F1 score of the model in [20] and [21]
with those of our KD model, due to the factor that the data
preprocessing and partitioning share different strategies.

V. CONCLUSION
We proposed and implemented a lightweight model based

on knowledge distillation for heart sound classification. This
model performed well compared to both the student model
and the previous models. The computing power and number
of parameters required for the model were small. This model
reached a trade-off between the performance and the model
complexity, which made it suitable for deployment on mobile
terminals.
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