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Abstract—Mobile instant messaging (MIM) via applications
such as WhatsApp transformed human communication by en-
abling the exchange of various different message types, such
as text, image, video, or voice, globally at every time of day.
Network providers are confronted with a substantial user base
and network load which is especially high in group chats where
each message needs to be distributed to each member. Since end-
to-end encryption restricts insights into user traffic, it becomes
essential for network operators to obtain knowledge about the
communication and the resulting load on the network through
MIM by other means, which makes it necessary to model the
network traffic of MIM. In this work, we therefore present
a theoretical approach to source traffic modeling for MIM.
Therefore, we identify the building blocks of a source traffic
model (STM) for MIM and determine missing pieces. We fill the
gaps through studies on MIM communication networks, user
proximity, media compression and payload size, as well as media
file size distribution. Combining existing literature and our work,
we present a theoretical modular STM approach which can be
used for developing STMs for MIM. With this, we provide a
comprehensive description of MIM in the network researching
context and enable consideration MIM in future network design.

Index Terms—mobile instant messaging, traffic modeling, mes-
sage generation, contact network, traffic measurement

I. INTRODUCTION

The ubiquitous nature of the Internet illustrates the dynamic
interaction between technology and human behavior. It trans-
forms our daily life while user adoption also drives technolog-
ical advancements. One application area that clearly reflects
this change is Mobile Instant Messaging (MIM), including
apps like WhatsApp, Signal, Telegram, WeChat, and Facebook
Messenger. These apps popularize direct conversations, but
also group conversations, diverging from traditional one-to-one
communication like e-mail or SMS, or one-to-many methods
including social media. Consequently, a fundamental change in
communication patterns is visible and a general investigation
of the impact on the current network and generated load is
essential. From the perspective of a network provider, the
comprehensive challenge is tackling the huge number of users.
According to [1], currently more than every third person
worldwide uses MIM, and the usage numbers increase by
about 100 million per year. For that reason, only a minor
increase of the average individual traffic generated by MIM
apps has a significant impact on the global load detected in

networks. Furthermore, MIM apps do not only support text
messages but also various media types, such as images or
video, and asynchronous communication via group chats that
additionally stresses networks. This asynchronous communi-
cation realized as a delay-tolerant publish-subscribe model
multiplies network traffic to each recipient which burdens the
network, particularly when large media files are shared.
However, network operators face challenges to understand
mechanisms in group-based communication in detail and the
resulting traffic generation processes rooted in MIM applica-
tions. Network measurement studies to identify all commu-
nication specifics have many limitations because of thorough
end-to-end encryption. Consequently, extensive data to iden-
tify the general impact of MIM on current and future com-
munication networks are not available and in-depth models to
predict the way MIM application traffic impacts future network
load effectively are currently not existent. To this end, the de-
velopment of a comprehensive source traffic model (STM) for
MIM apps is essential to, among others, model and predict up-
and downlink traffic of individual MIM application users, the
impact of MIM server traffic on a general wide area network
infrastructure, or peak hour traffic on current and future mobile
networks. While the communication within a chat has been
researched and modeled within literature, missing information
on the communication network and generated network traffic
of typical media sizes, development of STMs is not possible.
Our goal is to provide a theoretical approach for generating
STMs for MIM apps that describes user messaging behavior
and the impact on the network as realistically as possible so
that research on future networks can accurately take MIM
into account. For this reason, we research the literature and
identify existing and missing pieces towards a STM. For
each missing aspect, we collect data to fill the gaps in the
literature. Therefore, we investigate user contact networks,
spatial proximity between members of group chats, the impact
of media size compression on the amount of network data in
different MIM apps, as well as characteristic media file sizes.
Merging existing work and newly collected data, we are able
to present a theoretical, modular approach for STM generation.
Consequently, the contribution of this work is two-fold.
First, after identifying the gaps in the literature on MIM, which
include the communication network and generated network
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traffic, we bridge those gaps. We detail on the communication
network and the contact structure of individual MIM users, the
number of chats and their sizes, as well as on the proximity to
other users. These valuable insights facilitate comprehensive
modeling of communication structure with MIM apps and
can also assist in the development of improved message and
media distribution solutions for chat groups. Additionally,
via in-depth measurement study of message transmissions
including image, video, voice, and text content, details about
compression effects and the resulting and finally transmitted
amount of data are revealed. Secondly, we propose a theo-
retical and modular approach to STMs, with the insights of
our and previous studies, that can be used to create STMs as
input for simulations covering MIM. With this, we provide
a comprehensive description of MIM that is valuable for
networking research.

In the remainder, Sec. II presents background and related
works. We investigate the MIM contact network in Sec. III,
estimate user proximity in Sec. IV, describe our traffic mea-
surements in Sec. V, and investigate transmitted file sizes in
Sec. VI. Based on these insights, we present theoretical STM
development in Sec. VII and conclude in Sec. VIIIL.

II. BACKGROUND AND RELATED WORK

To obtain a comprehensive STM for MIM applications, it is
important to understand their usage and the traffic generation
process. For better understanding and simplified description,
we summarize required components in three areas, shown
in Figure 1. For each component the figure shows already
existing research from the literature in black and content that
is not yet available in the literature in blue. Consequently, the
goal of our investigation in this work is to fill the gaps and
finally, develop a theoretical approach to STM generation.

First of all, it is important to examine the structure of
the communication network of users within MIM apps. For
example, it is important to determine the average number of
individual and group chats per user. Furthermore, the total
number of communication partners per user is also relevant
for a STM. Second, the communication within (group-) chats
has to be modeled. Factors such as the number of participants
in each group and the frequency of message transmissions
(inter-arrival time - IAT) as well as its media type need to be
clarified here. Finally, the network traffic caused by MIM apps
has to be modeled. Questions regarding the use of compression
techniques for different media types, the network load caused
by certain message types and the quantification of message
overhead must be addressed. In general, the more detailed each
aspect of MIM communication is modeled, the more accurate
the STM can be.

A. Modeling the Communication Network

Although MIM is an important research topic, to the best of
our knowledge there is only limited research on the communi-
cation networks within MIM apps. In [2], the authors present
a model designed to characterize the social communication
network in MIM apps. To evaluate the effectiveness of the

proposed model, simulation experiments are conducted and
the results are compared to an authentic real-world graph from
Telegram. However, the model focuses on the use of so-called
communication channels, and is thus, not generally applicable
for generating a comprehensive MIM communications net-
work with individual chats and groups. To fill this gap, in
Sec. III, we conduct a user study to gain deep insights in the
communication network of MIM users.

Furthermore, it is interesting for network operators to know
the geographic distance between people communicating with
each other via MIM apps. This information helps to apply
strategies to reduce the network load, such as Device-to-
Device (D2D) communication or edge caching. In [3], for
example, a simulated evaluation of potential traffic savings in
MIM apps is conducted. The simulation uses edge caching and
D2D communication strategies to transmit messages locally
and reduce the load on the mobile network. Their results
show that the ratio of locally transmitted messages depends
heavily on the proximity of members within a group. However,
to the best of our knowledge, the spatial proximity of MIM
communication partners at the time of message transmission
has never been investigated. This knowledge gap motivates
our study in Sec. IV, in which we examine the dynamics of
proximity between the communication partners.

B. Modeling the Communication within a Chat

Looking into the communication of individual groups and
chats reveals a substantial body of related work. In [4],
a survey has been conducted and private chat histories of
243 users are examined to generate initial statistics on chat
groups. This allows a characterization of groups and the
development of a simple communication model. Building on
this, [5] conduct a further analysis of the same data set,
refining the model to understand the active participation of
users in group chats and the resulting network traffic. The
study in [6] involves the collection and analysis of a data set
comprising 178 public WhatsApp group chats. This data set
includes approximately 45,000 users and 454,000 messages.
The evaluation covers metrics such as the number of messages
per group and per user, user locations, message content, and
language. For the most active groups, the study also examines
the number of messages per day. The most detailed MIM
communication modelso far is from [7], [8], where authors
present an extensive data set [9] comprising 5,956 private
WhatsApp chat histories and over 76 million messages from
more than 117,000 individuals. They describe and model the
characteristics of chat groups and users, discuss the intricacies
of communication within these groups, and offer fundamental
insights into private MIM communication. We can use their
models for our theoretical approach to STMs without further
studies in this area.

C. Modeling the Generated Network Traffic

The communication in MIM apps is diverse, allowing the
exchange of different media types such as text, voice, images,
or videos. To manage the increasing network load caused by
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Fig. 1: Components of a STM (black text: available in the literature, blue text: missing in the literature).

the transmission and multiplication of media files in group
chats, most MIM apps employ compression techniques. These
techniques are crucial to reduce the media file sizes before
transmission, thereby limiting both data traffic and network
resource consumption. Unfortunately, for most MIM apps, the
compression standard is not publicly available.

In the past, researchers already investigated the traffic
generated by MIM. In [10], the authors manage to analyze the
semantics of encrypted network traffic generated in WhatsApp.
Through this analysis, they successfully detect specific app
functions such as call termination, missed/rejected calls, and
blocked calls. In a different approach, a blind traffic detection
technique is proposed [11], capable of differentiating unique
WhatsApp calls from encrypted traffic. Furthermore, wiretap
data has already been employed to explore methods for deter-
mining whether someone is sending or receiving WhatsApp
messages at a given time [12]. The authors of [13] use both
active and passive measurement techniques to characterize
MIM app traffic over the course of a week on the University of
Calgary campus network. The study shows that a considerable
volume of traffic, on average 650 GB per day, is generated by
MIM apps. In [14], [15], an encrypted MIM traffic generation
tool is developed with which traffic characteristics of MIM
applications are analyzed. Therefore, the authors employ a
data-driven approach that utilizes machine learning classifica-
tion models to analyze and discern encrypted traffic from six
distinct MIM apps. Their findings demonstrate the feasibility
of distinguishing the behavior of various MIM apps.

Nevertheless, a simple model which describes traffic gener-
ated by sending text, image, video, or audio messages as well
as corresponding overhead is missing. Therefore, we present
our findings of a thorough measurement campaign regarding
the impact of file compression and payload sizes for different
media types in WhatsApp, Signal, and Telegram in Sec. V.
Furthermore, although the frequency of media transmissions
via MIM apps is described in the literature, the media size
distributions of the content are unknown. Consequently, we
conduct our study in Sec. VI to close this gap.

III. INVESTIGATION OF A MIM CONTACT NETWORK

To fill the gap about the comprehension of communication
structures and the underlying social network within MIM, we
conduct a user study to obtain information about the number of
chats and contacts of a user, and how many chats users share

with each contact. This information is essential to accurately
model the number of chats for a single user and the degree of
message replication for a STM.

A. User Study for a Contact Network via Browser Extension

For this, we designed and developed a Google Chrome
browser extension as a data collection tool for the web
client of the MIM app WhatsApp. Upon logging into
web.whatsapp.com via a QR code from a smartphone,
users can enter an e-mail address into a text field and run
our extension. The extension then scrolls through the list
of all chats from a user. For each chat, the date of the
last message and the contacts within direct chats or group
chats are extracted. Prior to any data transmission to the
server, an anonymization process takes place, to ensure the
confidentiality of both chat and contact names. Despite the
anonymization, contacts of a user can still be identified across
the user’s chats via the inserted aliases, thereby enabling the
generation of a social network based on the user’s contacts.
We define this social network as a weighted graph denoted
by G = (V,E) where v € V represents a person and
E C {{z,y}|z,y € V and  # y and chat(z,y)} describes
the set of edges where two persons x and y are connected if
they share a chat. Furthermore, we set the weight w(e) of an
edge between two persons to the number of shared chats, since
it is possible to have a direct chat and multiple group chats
which include the same person. We collected data with our
extension from students on a university campus in February
2023. Consequently, the demographics of our participants is
strongly biased towards young and well-educated people. In
return for participation, our test group received statistics about
their contact network. After validation against double entries
in our data set, we obtain 48 networks for further usage.

B. Modeling MIM Contact Structures

From the contact data obtained via our browser extension,
we model contact structures in the following. Results show an
average of 144.13 chats for a single person of which 40.41 %
are group chats. The share of direct chats is 30 % less than
in the data set from [7]. As such, we assume that [7], due to
their manual submission of chats, suffered from a participation
bias, whereby disproportionately many group chats have been
submitted to their analysis system. However, the group size
distribution for chats with more than two members is similar
and validated by our data.
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Fig. 2: Number of shared chats with contacts.

Next to the size of chats, the number of contacts of a user
is essential. While one participant has only seven contacts, the
maximum number of contacts in our data is 2,962. On average,
a person is connected to 489.6 other users. The median is at
316 contacts and the 90 % percentile is at 1,060. We are able
to model the cumulative distribution function (CDF) for the
number of contacts of a single person via an exponential fit
F(z) =1—e700021% with an R? score of 0.97.

For a deeper understanding of shared chats with each
contact, we construct the social graph for each participant and
examine the weight of each outgoing edge, which corresponds
to the number of shared chats. Figure 2 shows the CDF of the
weight of edges connected to a participant and the exponential
fit which achieves an R? of 0.99. The minimum edge weight
is one and occurs for 70.46 % of all contact relationships.
Thus, the prevalent relation between two MIM users is via
only a single chat. One reason for this result could be that
users are often added to a group chat for, e.g., a social event.
There, they are unfamiliar with many chat members, and
consequently, have no other shared chats. For 91.74 % of all
contact relationships, the weight is three or less, showing that
in most cases, two persons share very few chats. However,
the tail of the distribution is long and the maximum value in
our data set is a person that shares 198 chats with another
person. Overall, we see many users with a moderate number
of connections and some users that are highly interconnected
with others which is typical for a social network.

IV. ESTIMATING MIM USER PROXIMITY

Since social networks and their communication span glob-
ally, an important element to model MIM communication is
the consideration of the proximity of chat partners to, for
example, estimate how much traffic can be handled locally.
Thus, user proximity is tackled by our study in the following.

A. User Study Questionnaire on WhatsApp User Proximity

In all of our user studies presented in this work, partici-
pants were also invited to fill an online questionnaire about
their proximity to their WhatsApp contacts when sending or
receiving messages. Furthermore, if participants did not want
to share their data within one of our studies, they were given
the option to only participate in our questionnaire. In total, we
received 152 filled forms. Since users may be spread across a

variety of distances when sharing messages, the impact on the
network is different. For example, communication across the
globe requires routing between multiple autonomous systems
and their network providers, while communication within the
same building involves fewer network hops. Furthermore,
the results of our questionnaire are important for analysis
of proximity-leveraging technologies such as caching and
D2D communication, contributing valuable insights that can
enhance future works, but also existing contributions in this
domain [3]. Thus, participants were asked to reflect on their
most recent group message and estimate the proximity to
fellow group members during that interaction. Response op-
tions range from within the same room to within the same
building, city, or country. This allows to get an estimate on
user proximity since, unfortunately, more precise methods are
highly privacy invasive and have poor practical feasibility.

B. Proximity Questionnaire Evaluation

Figure 3 shows the CDF of the reported chat member
proximity with respect to the share of participants at the
time of the last message within their latest group chat. The
x-axis displays the share of members within the proximity
based on the reported group size. The different proximities
describe whether a person was in the same room, building,
city, or country. Note that the proximities are displayed as
inclusive. That means that a person which is reported to be in
the same room is automatically also in the same building, city,
and country. For example, the CDF in red starts at an x-axis
value of 0% and at an y-value of 3 %, showing that in 3 %
of the groups 0 % of the other members were within the same
country. This means for those groups all other members were
in a different country. Then, the CDF increases and in 10 %
of the groups only 66 % of the group members are within
the same country. On the far right, it is visible that after
33.6 %, i.e., for the remaining 66.3% of groups, all members
are situated in the same country at the time of the most recent
message. Similarly, for 34.2% of the reported groups, all
members are located within at least the same city, as denoted
by the green line. Additionally, the orange line, representing
the category “same building”, indicates that 41.8 % of the time,
at least one other member is in the same building or in closer
proximity to the participant. Furthermore, 29.6 % of the time
at least one other group member is in the same room with the
participant at that moment, as shown in blue. At the median,
no other person is in the same building or closer, but 75 % of
all members are located in the same city.

Although users are frequently geographically distant from
each other and use MIM communication to stay connected,
there is evidence that a considerable amount of messaging
traffic could be handled locally without the usual server-client
structure. Commonly, all traffic is transmitted to a central
server and is distributed among all group members afterwards.
In contrast, by using local forms of communication, such as
D2D, content delivery networks (CDNs), or other forms of
caching, e.g., at the local router or base station, the backbone
network load could be reduced during message distribution.
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Fig. 3: Reported user proximity at time of last message.

V. NETWORK TRAFFIC MEASUREMENTS

To develop a comprehensive STM, knowledge about only
user connections is insufficient. It is also crucial to obtain an
accurate comprehension of the traffic volume generated by a
particular media file, requiring examination of both compres-
sion ratios and the total payload transmitted to the server. We
define the network payload of a message in this work as the
sum of bytes within the payload field of all network packets
that belong to a single MIM application message and ignore
header fields. The following section presents measurements
and evaluation thereof for different media types, focusing on
file compression and payload size.

A. Measurement Methodology

Our measurements focus on modeling data volumes for
three widely-used MIM applications, namely WhatsApp, Sig-
nal, and Telegram, along with the most prevalent message
types, including text, images, videos, and audio. Our measure-
ments are conducted on a Google Pixel 3a running Android
version 12 SP2A.220505.008. Our testbed further consists of
a PC with a Linux operating system and a second Android
device that is only used to receive the messages. This allows
us to access the messages on the receiver side. The PC is con-
nected to the Internet via Ethernet on a 1 Gbit/s connection
and provides a WiFi connection to the phone. As such, we
monitor and capture traffic between the sending phone and
the MIM servers. We utilized the latest application versions at
the time of measurement in March 2023: WhatsApp 2.23.6.9,
Signal 6.10.9, and Telegram 9.4.9.

For each media type, the data used for transmission is
described in the following. For our measurement study, we
employ data sets from literature which have been used in
compression and in, what could be called its reversal task, i.e.,
supersampling anti-aliasing, and are thus, suited to explore the
compression algorithms of the different MIM apps. A data set
featuring diverse 4K resolution images encompassing nature,
people, animals, and faces, with file sizes ranging from 1.3 MB
to 21 MB is provided by [16]. Additionally, we measure 30
high-quality images from a DSLR camera [17], along with
native photos, i.e., smartphone camera images and screenshots,
generated on our test device. From [18], we select 30 videos
of 5s duration in 4K resolution at 60 frames per second (FPS),
since they provide a script to generate lower resolutions, i.e.,

360p, 520p, 720p, 1080p, and 1440p, as well as lower frame
rates. In this work, 30 and 60 FPS are investigated. Text
messages of varying lengths and content are generated using
text generators from [19] and [20]. Finally, as voice messages
must be generated during the measurement for each MIM
application, the automated testbed initiates the playback of a
podcast via PC speakers before recording the voice message.
We are able to filter the traffic via reverse DNS lookup
to only include packets between the MIM servers and our
test device. However, due to end-to-end encryption, the mea-
surements can include traffic, which is not directly related to
message sending, e.g., key exchanges, online status updates,
or typing notifications. We consider this as a minor impact
for our measurements, since media files largely outweigh any
other kind of application traffic and minimize the number of
those effects by sending the media files from the file explorer
via the share context to minimize application interaction. Note
that we are also able to inspect the downloaded media since
we receive all messages on the other smartphone in our lab.

B. Media Network Load Analysis

In the following, we present our measurement results for im-
age and video compression, followed by results for image and
video overhead. Afterwards, we provide an analysis of voice
messages and conclude with an analysis of text messages.

Image Compression Analysis: First, we look at
resolution-specific differences during image compression us-
ing Signal before we discuss the general image compression
behavior of the different MIM apps. Therefore, Figure 4a
shows the compression results for images transmitted with
Signal. The original file size is shown on the x-axis, whereas
the y-axis depicts the compressed file size. Distinct colors
represent varying resolutions prior to compression. The dotted
blue line on the left shows screenshots captured at our smart-
phone and transmitted without any compression. All other
images receive some form of compression which yields an
output file size below 1MB. While the relationship seems
linear for the majority of the cluster on the left side, outliers
in our data set with large file sizes are compressed more,
shown by the orange dots on the right. This behavior can be
explained by a compression mechanism we identified in the
Signal source code [21], which iteratively downscales images
until the resulting file size is below a certain threshold. Images
below the file size threshold of 1.5MiB do not receive a
noticeable compression, shown by the top left data points in
blue. While Signal keeps the original file format, WhatsApp
and Telegram convert images to the JPEG format. Further-
more, after compression, the 1080x2220 screenshots have
a fixed resolution of 996 x 2080, 4k images are compressed
from 3840x2160 to 2048 x 1152, the DSLR images from
3648 x 2432 to 2048 x 1365, and the photos from the internal
camera from 2048 x 1536 to 1280x 960 pixels. In Figure 4b,
the compression of images using different MIM applications
is depicted. The result for Signal (SI) is shown in blue, for
Telegram (TE) in orange, and for WhatsApp (WA) in green.
For the compression results, we formulate a linear fit in the
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Fig. 4: Image and video compression using MIM applications (SI: Signal, TE: Telegram, WA: Whatsapp).

form of f(x) = x-c with x as the original file size and c as the
compression rate for each MIM app, shown by the light lines
in the figure. For Signal, we obtain ¢ = 0.0956, for Telegram
¢ = 0.0391, and for WhatsApp ¢ = 0.0582. While a linear
trend is evident for typical file sizes, the outliers in our test
data set featuring larger file sizes indicate the existence of file
size limits enforced by MIM apps, leading to more pronounced
compression for these files. This behavior is already noted
for Signal [21]. Generally, the compression of most images
remains below 1.5 MB, independent of their original file size.

Video Compression Analysis: Figure 4c shows the com-
pression of 5s video files for different MIM applications.
Note: no results could be obtained for 60 FPS 4K videos for
WhatsApp and Telegram, due to lack of support. The dashed
black line in the Figure has a slope of one. We see many
data points along that line because often videos do not receive
any compression, even beyond an original file size of 20 MB,
the limit on the y-axis is only used for better visibility of
the other results since our maximum non-compressed file size
is 27.52MB. In WhatsApp, most of the 1080p videos are
not compressed. While we could not find definitive policies
without any source code, it seems that there is a file size
threshold for each resolution. If this threshold is exceeded,
the videos are compressed to a target bit rate which is the
same across all video formats. For WhatsApp and videos
of length 5s, this results in a file size of 1.3 MB, depicted
by the green dotted line, or a bit rate of 2.08 Mbit/s. This
result is in line with previous findings from the literature [7].
For Signal, a similar behavior is observed. However, only
38,6 % of the videos are compressed because Signal does not
compress 60 FPS videos. The target file size obtained from the
figure is 1.55 MB or a bit rate of 2.48 Mbit/s. The threshold
for Telegram is lower at 0.5MB or a bit rate of 0.8 Mbit/s.
Furthermore, Telegram does compress all video resolutions
with the exception of 360p.

Image and Video Overhead Analysis: While the com-
pression and the actual size of the media file have the most
significant impact on the resulting payload, it is crucial to
examine the compressed file size and compare it to the pay-
load. The reason is that each message is transmitted with addi-
tional metadata overhead. Such overhead can include, among

others, information about the message receivers, timestamps,
and potentially other application-specific message overhead
information, which we cannot access due to encryption. Thus,
the measured payload is always larger than the observed media
file size on our receiving test device. Figure 5a depicts the
payload on the y-axis in relation to the compressed file size
on the x-axis for the different MIM apps. It can be seen that
for Signal and WhatsApp, the data points are slightly above
the dashed black line which has a slope of one. We obtain
an average overhead of 34.11kB for Signal and 1.84 kB for
WhatsApp. In addition, the figure shows a different behavior
of Telegram. There, significantly more data than the actual
file size is sent to the network. The average overhead is
238.20kB. A potential reason for the overhead could be that
multiple representations at, for example, different resolutions
are sent to and stored at the server. For video payloads,
the same behavior applies, however, we obtain considerably
larger overheads. An average overhead of 131.73 kB for videos
transmitted with Signal is obtained. This is more than the
6.56 kB for WhatsApp, but both achieve a constant small
overhead in comparison to the file size. On the other hand,
the measurements for Telegram achieve an average overhead
of 630.88 kB which is significantly more than the compressed
file size for some data points.

Voice Message Analysis: Next, we analyze voice mes-
sages in more detail in Figure 5b. The figure shows the payload
and file size for audio messages based on the message length in
seconds. The measured payloads are depicted with the marker
x, while the file sizes are depicted with +. Both are shown
on the y-axis, whereas the message length is depicted on the
x-axis. Additionally, a linear regression is performed on the
payloads for each MIM app and depicted by the dashed lines.
For Signal and WhatsApp, the data points for file sizes and
payloads overlap and their symbols combine to stars because
of only small differences. The average overhead is 35.47 kB
for Signal, 6.11 kB for WhatsApp, and 2.53 M B for Telegram.
Again, the overhead during voice message transmission via
Telegram is notably higher in contrast to the other apps.
However, in comparison to the image compression investigated
in Figure 5a, we observe a predominantly linear increase.
With linear regression, we obtain equations composed of two
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Fig. 5: Payload of images, voice, and text messages (SI: Signal, TE: Telegram, WA: Whatsapp).

summands where the message length s is multiplied by the
slope, i.e the bit rate, and the intercept represents the estimated
message overhead. Consequently, we obtain

fsr(s) = s-35.68kbit/s + 12.46 kB, (R? = 0.9989) (1)
fwa(s) = s-19.36 kbit/s + 3.03kB, (R? = 0.9999) (2)
fre(s) = s-192kbit/s + 2011 kB, (R* = 0.9647).  (3)

Text Message Analysis: Finally, we investigate the be-
havior when text messages are transmitted with MIM apps.
Figure 5c shows the payload of the text messages with respect
to the text length, i.e., the number of characters. The black
line shows the raw text size if we assume ASCII or UTF-8
encoding for our basic latin characters which typically receive
1B per character. Again, we perform a linear regression to fit
our data. For WhatsApp, the resulting payload is the smallest
and increases linearly with the text length. The equation
f(e) = ¢-1.33kB 4 0.74kB describes this relationship for
a text with ¢ characters with a R? of 0.9879. For Signal, we
derive similarly f(c) = c-1.33kB + 0.74kB (R? = 0.9741).
However, a step-wise payload increase can be seen in the
figure. Thus, cipher blocks of fixed lengths are potentially
used in the encryption scheme of Signal. In contrast, it is chal-
lenging to derive the payload size from the text length using
Telegram, as it is manipulated during the transmission process.
The resulting average payload size, however, is 4.47 kB.

With these models, the resulting payload can be estimated
for a given media or message that shall be transmitted using
a MIM app. Despite acknowledging the dynamic nature of
MIM app development and their resulting network loads over
time, our described methodology is a general approach, easily
applicable to measure generated traffic in the present or future,
with these applications or others.

VI. MEDIA FILE SIZE INVESTIGATION

After modeling compression rates and message overheads
for the different file sizes, the question about the total trans-
mitted payload using MIM apps in reality remains. Therefore,
we conduct a second user study to investigate the file size
distributions of media received when WhatsApp is used. This
investigation is essential for realistic message size modeling.

A. User Study for WhatsApp Media Sizes

In our WhatsApp media size study on a university cam-
pus in June 2023, 51 individuals voluntarily connected their
smartphones to a notebook. A concise script has then been
employed to extract the file sizes of image, video, and voice
files directly from the respective WhatsApp media folder on
their Android devices. Thus, we can obtain the file sizes of
any received media previously compressed and sent over the
network. Participants were informed about the privacy policy
that ensures capturing of only anonymized meta-data.

B. Media File Size Modeling

While we did not obtain data on text lengths, this infor-
mation can be derived from the message length distribution
from [7]. For media files, we obtain the actual file sizes which
have been sent or received by users for 17,432 videos, 375,820
images, and 168,952 voice messages from our user study
in Sec. VI-A. The file sizes (in MB) follow an exponential
distribution with A = 0.159 for videos (R?> = 0.992),
A = 4.686 for images (R? = 0.895), and A = 11.278 for
voice messages (R? = 0.998). Those models are an alternative
approach to derive the message payload, when combined with
our results for the message overhead from Figure 5.

VII. THEORETICAL MODULAR STM DEVELOPMENT

Given the general contact structure of MIM users and their
messaging behavior, theoretical STMs can be developed by
using the results of our conducted studies with the following
limitations and assumptions. The description of our modular
approach requires independent relationships across messages
or users during the modeling process. In reality, message
content, social factors, and other events which influence users
are factors, but cannot be accounted for in our evaluated and
modeled data. Nonetheless, we present an approach to generate
and populate MIM chat groups and their messages for 24 h
according to our analysis and available data in the following.
While our description is rather sophisticated, we believe this
level of detail is necessary since the total network load is
heavily influenced by the message replication process to all
receivers. Moreover, this allows us to model traffic patterns
for individual users, for example in access networks. The
traffic generation process consists of three steps, shown in

235



[

Chat Generation and
Chat Assignment

Contact Network Generation

Draw number of contacts for
each person .
Draw number of common .

K chats with each contact
1

Draw chat sizes
Find maximum flow to assign
persons to chats

— o
o . {c} .
: [Content] [ Ci ] [Overhead ]\
S X 1125 ompression |4
2. [Content A
jazal i L ! > Message and

Message Generation Network Load

| X
|
DA<
M
Derive compressed media size
Message overhead
Replication to receivers

Thinning out for proximity

scope m

Draw message |ATs
Draw sender

Draw media types
Draw raw media size

2

N——

Fig. 6: Steps of the theoretical approach to STMs.

Figure 6: (1) the contact network generation consisting of
the generation of the raw contact network of a person and
their chats, (2) message generation, and (3) message and
network load. With our presented study results, each module is
sufficiently modeled. An advantage of our modular approach
is that each module can be exchanged for a simpler or even
more sophisticated module. For example, instead of choosing
a media type for a message from the ratio of media types, the
likelihood of consecutive message types, e.g., a media message
following a text message [7], could be used. Furthermore,
this could be extended to the likelihood of each message type
following any other message type. Alternatively, modules can
be exchanged by original data for a more data-driven approach.
For example, our second module could be exchanged for
specific message histories from the data set in [9]. Use cases
for such STMs lie in the applicability for network resource
planning and simulations to, for example, investigate potential
benefits of edge caching or D2D communication.

A. Contact Network Generation and Chat Assignment

For the contact graph generation, we model a bipartite
graph. On the left, we generate persons which need to be
assigned to chats on the right. Given a fixed population size,
we generate a person as a node in our contact graph and assign
the number of contacts as edges for that contact from the
distribution presented in Sec. III. Furthermore, we assign the
number of shared chats with each contact as the edge weight
according to the exponential fit in Figure 2. On the other hand,
we generate groups with their group sizes according to the
data available in [7]. The number of incoming edges represent
the group size. Without loss of generality, we generate groups
until the number of total incoming edges matches the product
of the number of outgoing edges of all persons and their
weights. Then, the task is to add persons to the groups while
fulfilling the weight constraints for each person as best as
possible, since a perfect solution might not be possible. Thus,
we use a simplification which allows us to convert our task to a
maximum flow problem. Therefore, we explode the weighted
edges. This means that an edge with weight of three would be
replaced by three edges with a weight of one. Unless persons
need to be modeled with their social group, e.g., if they are
simulated as a moving group together in a scenario where
social group mobility plays a role, it is not important whether
a person shares, for example, three chats with the same person

TABLE I: Parameters of hyperexp. distribution to model IATs.

range; 0s-100s 101s-1h 1lh-24h >24h
pi 0.7473 0.2019 0.0465  0.0043
i 0.0480 0.0013 4.7541-107° n.d.
Si -0.0886 0.1292  —9.7290 - 10—2 n.d.
r? 0.9920 0.9766 0.9730 n.d.

or three different persons. Thus, we can arbitrarily connect
outgoing edges of the persons, which represent what we call
a single contact equivalent, to incoming edges of the groups.
The maximum flow problem is defined as follows.

Let N = (V, E) be a network with vertices V' and edges
FE. Additionally, there are s,t € FE as the source and sink
of our network N, respectively. Furthermore, there are the
two subsets G, P C V and GN P = &, where P represents
the persons and G the groups. Each person p € P,P C V
is connected to the source s via an edge (s,p). Its capacity
Cs,p 1s the sum of single contact equivalent for that person.
Each group g € G,G C V is connected to the sink ¢ via an
edge (g, t). Its capacity is s4-(sy— 1), where s, represents the
group size of g. From each person to each group exists a single
edge, representing the possibility of the person belonging to
that group. The capacity of the edge is (s, — 1), since this is
the amount of single contact equivalent that would be used for
the person if it would join this group. For example, joining a
group of size five means that there will be four other members
for each of which one single contact equivalent is used. Since
the membership in a group is a binary relationship, as one
is either a member or not, the flow z, , over an edge (p, g)
needs an additional constraint, ie., z,, € {0,cp 4}, to be
either zero or the edge capacity. Other than that, only basic
flow conservation constraints are necessary which are found in
any max-flow problem literature, e.g., in Edmonds’ and Karp’s
work [22] on their algorithm for max-flow problems. The
matching is performed by maximizing max Zj:(s’j)eE Tsj
where z represents the flow between the vertices.

B. Message Generation

Message generation is executed on chat level. From [7] we
obtain a mean IAT for a given chat size. Optionally, the IAT
can be adapted for the hour of the day, since, e.g., during the
night less messages are sent. However [7] report that the gen-
eral IAT follows a beta prime function without a well-defined
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mean. To generate IATs with respect to the mean IAT from
the chat size, we fit their data from [9] in multiple intervals
for the exponential function f(z) = X - e~(5T2%)_ obtaining a
hyperexponential distribution f(z) = Z:;:l pi - A - e (sitAi)
in the IAT range up to 24h and oo for messages above that
range. The ranges, parameters, and R? values for the fit are
presented in Table I. It is important to emphasize that during
the IAT generation, values that are not within the determined
range r; must be omitted. Now, the message can be linked
to a specific chat member, e.g., according to a participation
distribution [7], since not all members are equally active within
a chat, but usually few members generate most messages.

C. Message and Network Load

Then, the final task is to get the message size. A message
type has to be drawn from an overall media type distribution.
A more sophisticated model may even consider the previous
message type. Both options are reported in [7]. The media
size can be generated from original file sizes at the sender
by using our compression models from the previous section
or from the WhatsApp media file size distributions presented
earlier. Afterwards, the modeled overhead and payload for the
different MIM apps must be accounted for. Finally, to achieve
the total network load, the replication due to the number of
chat members has to be considered. If the perspective is global,
the replication factor is the number of chat members subtracted
by one, i.e., the sender. If the scope is within a given proximity,
the achieved user data presented in Figure 3 can be used to
exclude receivers that are not within the network’s scope.

VIII. CONCLUSION

The ability for global communication at any time of day
via Mobile Instant Messaging (MIM) has changed the way
people communicate. Sharing text and media messages which
are multiplied and sent to each recipient strains the underlying
network. However, due to end-to-end encryption, valuable
insights for network operators are hard to obtain. To address
this issue, we identified the building blocks of a source traffic
model (STM) for MIM and scouted existing research to iden-
tify missing pieces. We fill the gaps through user studies and
measurements that we present in this paper. More precisely, we
investigated contact networks to identify the number of chats
of a person and the relationship to contacts across multiple
chats. Further we obtained an estimate of the spatial proximity
of users during messaging. Using network measurements to
investigate media compression and message payload, we could
identify differences among the used MIM apps and the type
of message that leads to different characteristics in generated
network traffic. Further, we reported on media file size dis-
tributions in MIM. Finally, building on these contributions
and existing literature, we presented a theoretical, modular
approach to STM generation which can be used for traffic
modeling with MIM. With this, we provide a comprehensive
description of MIM in the network researching context.

In future work, enabled through our modular approach to
STM, we plan to investigate new ways of efficiently managing

the network load generated by MIM apps, for example through
edge caching or D2D communication.
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