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We use the framework of upwind summation-by-parts (SBP) operators developed by Mattsson 
(2017, doi :10 .1016 /j .jcp .2017 .01 .042) and study different flux vector splittings in this context. 
To do so, we introduce discontinuous-Galerkin-like interface terms for multi-block upwind SBP 
methods applied to nonlinear conservation laws. We investigate the behavior of the upwind SBP 
methods for flux vector splittings of varying complexity on Cartesian as well as unstructured 
curvilinear multi-block meshes. Moreover, we analyze the local linear/energy stability of these 
methods following Gassner, Svärd, and Hindenlang (2022, doi :10 .1007 /s10915 -021 -01720 -8). 
Finally, we investigate the robustness of upwind SBP methods for challenging examples of shock-
free flows of the compressible Euler equations such as a Kelvin-Helmholtz instability and the 
inviscid Taylor-Green vortex.

1. Introduction

Stability and robustness are crucial properties of numerical methods for conservation laws to obtain reliable simulations, in 
particular for under-resolved flows. At the same time, high-order methods can be very efficient and fit well to modern hardware. 
However, it is non-trivial to ensure robustness of high-order methods without destroying their high-order accuracy.

Over the last decade, entropy-based methods have emerged as a popular choice to construct robust high-order methods in a 
wide range of applications. Built from the seminal work of Tadmor [1,2], high-order extensions have been developed in [3,4]. These 
flux differencing schemes work well for under-resolved flows, e.g., [5–9]. However, some doubts have been raised recently within 
the high-order community by Gassner et al. [10]. In their article, the authors demonstrated critical failures of high-order entropy-
dissipative methods for a conceptually simple setup of the 1D compressible Euler equations; with constant velocity and pressure, 
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these equations reduce to simple linear advection of the density. Central schemes without any entropy properties perform well in this 
case but crash for demanding simulations of under-resolved flows such as the inviscid Taylor-Green vortex. In contrast, entropy-stable 
flux differencing methods work well for the Taylor-Green vortex but fail for the apparently simple advection example.

Failures due to positivity issues can be fixed by adding invariant domain preserving techniques, e.g., [11–14]. However, it is 
desirable to combine such shock-capturing and invariant domain preserving approaches with a good baseline scheme such that the 
amount of additional dissipation can be kept low [15]. Thus, we are interested in high-order baseline schemes that come already 
with some built-in dissipation everywhere, not only at element interfaces as typical in discontinuous Galerkin (DG) methods. At the 
same time, we would like to avoid having additional parameters in the schemes that need to be tuned manually.

Many high-order methods with some provable stability properties can be obtained in the general framework of summation-by-
parts (SBP) operators. SBP operators were originally developed for finite difference methods [16,17]. They are the basis of entropy-
stable flux differencing methods by mimicking integration by parts discretely. Many common numerical methods can be formulated 
using SBP operators, e.g., finite volume methods [18,19], continuous Galerkin methods [20–23], DG methods [24–26], and flux 
reconstruction methods [27,28]. Further information and background material on SBP operators is collected in the review articles 
[29,30].

Classical SBP operators can be used to design numerical schemes that are provably stable. Typically, SBP methods are based on 
central-type discretizations in the interior and weak imposition of boundary data using simultaneous approximation terms (SATs) 
[31,32] that introduce some dissipation. In a multi-block finite difference or DG setting, such SATs are also used to couple the 
blocks/elements weakly and introduce additional dissipation — but only at interfaces, not in the interior of the block/elements. To 
obtain additional dissipation everywhere, artificial dissipation operators can be used [33]. These operators can be combined with a 
user-chosen amount of dissipation and it may be non-trivial to choose an appropriate amount of dissipation.

Combining classical SBP operators and artificial dissipation can be interpreted as upwinding [34,35]. Mattsson [36] introduced 
a general definition of upwind SBP operators and constructed a range of schemes with good numerical properties, resulting in a 
parameter-free combination of central-type SBP operators and artificial dissipation. These upwind SBP operators have been used 
successfully for a range of applications such as the shallow water equations [37], atmospheric flows [38], and scalar conservation 
laws [39]. They have also been extended to staggered grids in [40]. Their relations to DG methods have been discussed in [41,42].

To apply upwind SBP operators to nonlinear conservation laws, a flux vector splitting is required [36]. Across the literature [34–39]
the numerical testing is predominantly done with Lax-Friedrichs type splittings. For many numerical schemes, such Lax-Friedrichs 
type splittings are not ideal. As stated by Stiernström et al. [39, Remark 4.2], many other flux vector splittings are available but have 
not been studied in detail with upwind SBP operators so far. One of the goals of this article is to fill this gap and investigate the 
impact of different flux vector splittings on robustness for challenging examples on Cartesian and curvilinear meshes.

To do so, we first review upwind SBP operators [36] and classical flux vector splittings [43, Chapter 8] in Section 2. These flux 
vector splitting methods have been widely developed and used in the last century [44–49] but were abandoned in favor of other 
techniques due to their significant amount of numerical dissipation [50]. We will see that the combination of flux vector splitting 
techniques with high-order difference operators does not lead to an excessive amount of artificial dissipation.

Next, we formulate high-order upwind SBP methods for nonlinear problems in Section 3 based on the seminal works of Mattsson 
and collaborators [34–39]. To enable an investigation across a range of different flux vector splittings in multi-block finite difference 
methods, we need to introduce appropriate SATs. To do so, we start with a classical upwind SBP formulation and introduce interface 
terms as in DG methods — using numerical fluxes resulting from the flux vector splitting. We then discuss the relation of this 
formulation to the construction of global upwind SBP operators as done in [41].

In the final part of Section 3, we consider the upwind SBP methods on unstructured curvilinear multi-block meshes. The for-
mulation in generalized coordinates reveals a subtle interplay between the finite difference operator and the particular flux vector 
splitting. Moreover, we demonstrate that these subtleties are not an issue for Lax-Friedrichs type splittings; however, they are present 
for more sophisticated splitting techniques.

Afterwards, we follow Gassner, Svärd, and Hindenlang [10] and analyze the local linear/energy stability properties of upwind 
SBP methods in Section 4. In particular, we prove local linear/energy stability for Burgers’ equation in the setting where Gassner 
et al. [10] observed stability issues for entropy-stable methods based on classical SBP operators.

In Section 5, we investigate the behavior of upwind SBP methods with different flux vector splittings numerically. We begin with 
1D convergence tests, verify the local linear/energy stability results, and then proceed to 2D and 3D simulations of under-resolved 
flows on Cartesian meshes. In particular, we consider shock-free setups for the compressible Euler equations and study the robustness 
for two challenging setups: a Kelvin-Helmholtz instability and the inviscid Taylor-Green vortex. We further study the convergence and 
free-stream preservation properties on unstructured curvilinear meshes with different flux vector splittings. Finally, we summarize 
our findings and provide an outlook on further research in Section 6.

2. Review of upwind SBP operators and flux vector splitting

Consider a hyperbolic conservation law

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥𝑓
(
𝑢(𝑡, 𝑥)

)
= 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (𝑥min, 𝑥max), (2.1)

with conserved variable 𝑢 and flux 𝑓 in one space dimension, equipped with appropriate initial and boundary conditions. For now, 
2

we concentrate on the 1D setting to describe the overall methodologies. Extension of the method to multiple space dimensions is 
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done using a tensor product structure. We delay a detailed discussion of the continuous and discrete formulations in generalized 
curvilinear coordinates to Section 3.4.

In this section, we review classical flux vector splitting techniques, the basic idea of upwind SBP methods, and collect some useful 
properties of upwind SBP operators for reference. All these concepts and results are well-known in the literature, but we collect them 
here to make the article self-contained.

2.1. Flux vector splitting

The classical flux vector splitting approach [43, Chapter 8] to create (semi-)discretizations of the conservation law (2.1) begins 
with an appropriate splitting of the flux 𝑓 such that

𝑓 (𝑢) = 𝑓−(𝑢) + 𝑓+(𝑢), (2.2)

where the eigenvalues 𝜆±𝑖 of the Jacobians 𝐽± = 𝜕𝑢𝑓± satisfy

∀𝑖∶ 𝜆−𝑖 ≤ 0, 𝜆+𝑖 ≥ 0. (2.3)

There is a great deal of freedom in the construction of a flux vector splitting (2.2) to create an upwind scheme. The design of 𝑓−(𝑢)
and 𝑓+(𝑢) typically relies on the mathematically sound characteristic theory for hyperbolic partial differential equations. Depending 
on how one treats the different characteristics, for instance separating the convective and pressure components of the compressible 
Euler equations, leads to a wide variety of flux vector splittings, e.g., [45–47,51,52]. Because the flux vector splitting separates the 
upwind directions with which solution information propagates, the resulting scheme does not require the (approximate) solution of 
a Riemann problem. This makes flux vector splitting based algorithms particularly attractive due to their simplicity and ability to 
approximate shock waves. To demonstrate this simplicity, consider a classical first-order finite volume method of the form

𝜕𝑡𝑢𝑢𝑢𝑖 +
1
Δ𝑥

(
𝑓 num(𝑢𝑢𝑢𝑖,𝑢𝑢𝑢𝑖+1) − 𝑓 num(𝑢𝑢𝑢𝑖−1,𝑢𝑢𝑢𝑖)

)
= 0 (2.4)

with numerical flux 𝑓 num. In the flux vector splitting approach, the numerical flux is chosen as

𝑓 num(𝑢𝑙, 𝑢𝑟) = 𝑓+(𝑢𝑙) + 𝑓−(𝑢𝑟). (2.5)

Thus, the chosen splitting determines the scheme completely.

Example 2.1. The global Lax-Friedrichs splitting requires a global upper bound 𝜆 on the possible wave speeds and uses

𝑓±(𝑢) = 1
2
(
𝑓 (𝑢) ± 𝜆𝑢

)
. (2.6)

This results in the numerical flux

𝑓 num(𝑢𝑙, 𝑢𝑟) = 𝑓+(𝑢𝑙) + 𝑓−(𝑢𝑟) =
1
2
(
𝑓 (𝑢𝑙) + 𝑓 (𝑢𝑟)

)
− 𝜆

2
(𝑢𝑟 − 𝑢𝑙). (2.7)

This splitting has predominantly been used in previous works on upwind SBP operators, e.g., [36,37,39]. ⊲

Next, we present some examples for the 1D compressible Euler equations

𝜕𝑡

⎛⎜⎜⎝
𝜚
𝜚𝑣
𝜚𝑒

⎞⎟⎟⎠+ 𝜕𝑥
⎛⎜⎜⎝

𝜚𝑣
𝜚𝑣2 + 𝑝
(𝜚𝑒+ 𝑝)𝑣

⎞⎟⎟⎠ = 0 (2.8)

of an ideal gas with density 𝜚, velocity 𝑣, total energy density 𝜚𝑒, and pressure

𝑝 = (𝛾 − 1)
(
𝜚𝑒− 1

2
𝜚𝑣2

)
, (2.9)

where the ratio of specific heats is usually chosen as 𝛾 = 1.4. To the best of our knowledge, the splittings described in the following 
examples have not been combined with upwind SBP operators in the existing literature [34–39] or only in less detail.

Example 2.2. To describe the Steger-Warming splitting [44], we use the standard notation

𝜆±𝑖 =
𝜆𝑖 ± |𝜆𝑖|

2
(2.10)

for the positive/negative part of an eigenvalue 𝜆𝑖 . The wave speeds of the 1D Euler equations are

𝜆1 = 𝑣− 𝑎, 𝜆2 = 𝑣, 𝜆3 = 𝑣+ 𝑎, (2.11)√

3

where the speed of sound is 𝑎 = 𝛾𝑝∕𝜚. Then, the flux splitting of Steger and Warming is given by
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𝑓± = 𝜚

2𝛾

⎛⎜⎜⎜⎝
𝜆±1 + 2(𝛾 − 1)𝜆±2 + 𝜆±3

(𝑣− 𝑎)𝜆±1 + 2(𝛾 − 1)𝑣𝜆±2 + (𝑣− 𝑎)𝜆±3
(𝐻 − 𝑣𝑎)𝜆±1 + (𝛾 − 1)𝑣2𝜆±2 + (𝐻 + 𝑣𝑎)𝜆±3

⎞⎟⎟⎟⎠ , (2.12)

where 𝐻 = (𝜚𝑒 + 𝑝)∕𝜚 = 𝑣2∕2 + 𝑎2∕(𝛾 − 1) is the enthalpy, see also [43, Section 8.4.2]. ⊲

Example 2.3. Next, we describe the van Leer-Hänel splitting [45–47] based on a splitting of van Leer with a modification of the 
energy flux proposed by Hänel et al. and the “p4” splitting of the pressure proposed by Liou and Steffen. First, we introduce the 
signed Mach number 𝑀 = 𝑣∕𝑎 and the pressure splitting

𝑝± = 1 ± 𝛾𝑀
2

𝑝. (2.13)

The fluxes are given by

𝑓± = ±𝜚𝑎(𝑀 ± 1)2

4

⎛⎜⎜⎝
1
𝑣
𝐻

⎞⎟⎟⎠+
⎛⎜⎜⎝
0
𝑝±

0

⎞⎟⎟⎠ , (2.14)

where 𝐻 = (𝜚𝑒 + 𝑝)∕𝜚 = 𝑣2∕2 + 𝑎2∕(𝛾 − 1) is again the enthalpy. ⊲

2.2. Upwind SBP operators

In this article, we focus on a collocation setting as in classical finite difference methods. Thus, we consider a grid 𝑥𝑥𝑥 = (𝑥𝑥𝑥𝑖)𝑁𝑖=1 with 
nodes 𝑥𝑥𝑥𝑖 and use pointwise approximations such as 𝑢𝑢𝑢𝑖 = 𝑢(𝑥𝑥𝑥𝑖) and 111 = (1, … , 1)𝑇 . We also assume that the grid includes the boundary 
nodes of the domain, i.e.,

𝑥𝑥𝑥1 = 𝑥min, 𝑥𝑥𝑥𝑁 = 𝑥max. (2.15)

Then, classical SBP operators are constructed to mimic integration-by-parts, cf. [29,30].

Definition 2.4. An SBP operator on the domain [𝑥min, 𝑥max] consists of a grid 𝑥𝑥𝑥, a symmetric and positive definite mass/norm matrix 
𝑀 satisfying 111𝑇𝑀111 = 𝑥max − 𝑥min, and a consistent derivative operator 𝐷 such that

𝑀𝐷 +𝐷𝑇𝑀 = 𝑡𝑡𝑡𝑅𝑡𝑡𝑡𝑇𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡𝑇𝐿, (2.16)

where 𝑡𝑡𝑡𝑇𝑅 = (0, … , 0, 1) and 𝑡𝑡𝑡𝐿 = (1, 0, … , 0)𝑇 . It is called diagonal-norm operator if 𝑀 is diagonal. ⊲

We often identify an SBP operator with the derivative operator 𝐷 and assume that the remaining parts are clear from the context. 
Since the boundary nodes are included, (2.16) guarantees that the discrete operators mimic integration-by-parts as

𝑢𝑢𝑢𝑇𝑀𝐷𝑣𝑣𝑣+ 𝑢𝑢𝑢𝑇𝐷𝑇𝑀𝑣𝑣𝑣
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 𝑢𝑢𝑢𝑇 𝑡𝑡𝑡𝑅𝑡𝑡𝑡
𝑇
𝑅𝑣𝑣𝑣− 𝑢𝑢𝑢

𝑇 𝑡𝑡𝑡𝐿𝑡𝑡𝑡
𝑇
𝐿𝑣𝑣𝑣,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≈ ≈

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑥max

∫
𝑥min

𝑢 (𝜕𝑥𝑣) +

𝑥max

∫
𝑥min

(𝜕𝑥𝑢)𝑣 =
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑢(𝑥max)𝑣(𝑥max) − 𝑢(𝑥min)𝑣(𝑥min) .

(2.17)

Upwind SBP operators were introduced by Mattsson [36]. The basic idea is to introduce two derivative operators 𝐷± that mimic 
integration-by-parts together and are compatible in the sense that their difference is negative semidefinite, which allows to introduce 
artificial dissipation.

Definition 2.5. An upwind SBP operator on the domain [𝑥min, 𝑥max] consists of a grid 𝑥𝑥𝑥, a symmetric and positive definite mass/norm 
matrix 𝑀 satisfying 111𝑇𝑀111 = 𝑥max − 𝑥min, and two consistent derivative operators 𝐷± such that

𝑀𝐷+ +𝐷𝑇−𝑀 = 𝑡𝑡𝑡𝑅𝑡𝑡𝑡𝑇𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡𝑇𝐿, 𝑀(𝐷+ −𝐷−) is negative semidefinite, (2.18)

where again 𝑡𝑡𝑡𝑇𝑅 = (0, … , 0, 1) and 𝑡𝑡𝑡𝐿 = (1, 0, … , 0)𝑇 . It is called diagonal-norm operator if 𝑀 is diagonal. ⊲

For convenience, we also identify an upwind SBP operator simply with the derivative matrices 𝐷±. In matrix form, the upwind 
SBP operators derived by Mattsson [36] are constructed such that 𝐷+ is biased toward the upper-triangular part, i.e., it has more 
4

non-zero entries above the diagonal. Similarly, 𝐷− is biased toward the lower-triangular part.
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Example 2.6. The second-order accurate upwind operators of [36] are given by

𝐷+ = 1
Δ𝑥

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 5 −2
−1∕5 −1 8∕5 −2∕5

−3∕2 2 −1∕2
⋱ ⋱ ⋱

3∕2 2 −1∕2
−1 1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.19)

𝐷− = 1
Δ𝑥

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 1
1∕2 −2 3∕2

1∕2 −2 3∕2
⋱ ⋱ ⋱

1∕2 −2 3∕2
2∕5 −8∕5 1 1∕5

2 −5 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.20)

and 𝑀 =Δ𝑥 diag(1∕4, 5∕4, 1, … , 1, 5∕4, 1∕4). ⊲

Upwind SBP operators are constructed to create provably stable semidiscretizations of linear transport problems as already de-
scribed in [36]. For completeness and as an example, consider the linear advection equation

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥𝑢(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (𝑥min, 𝑥max),

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ [𝑥min, 𝑥max],

𝑢(𝑡, 𝑥min) = 𝑔𝐿(𝑡), 𝑡 ∈ [0, 𝑇 ].

(2.21)

Since the transport happens from left to right, we choose the left-biased upwind operator 𝐷− such that solution information from the 
correct characteristic direction is used and obtain a stable semidiscretization

𝜕𝑡𝑢𝑢𝑢+𝐷−𝑢𝑢𝑢 =𝑀−1𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢). (2.22)

This semidiscretization is globally conservative, since

𝜕𝑡(111𝑇𝑀𝑢𝑢𝑢) = 111𝑇𝑀𝜕𝑡𝑢𝑢𝑢 = −111𝑇𝑀𝐷−𝑢𝑢𝑢+111𝑇 𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)

= 111𝑇𝐷𝑇+𝑀𝑢𝑢𝑢−111𝑇 (𝑡𝑡𝑡𝑅𝑡𝑡𝑡𝑇𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡𝑇𝐿)𝑢𝑢𝑢+111𝑇 𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢) = 𝑔𝐿 − 𝑡𝑡𝑡
𝑇
𝑅𝑢𝑢𝑢,

(2.23)

where we have used the upwind SBP property (2.18) and consistency of the derivative operator. Furthermore, the semidiscretization 
(2.22) is energy-stable since

𝜕𝑡‖𝑢𝑢𝑢‖2𝑀 = 2𝑢𝑢𝑢𝑇𝑀𝜕𝑡𝑢𝑢𝑢 = −2𝑢𝑢𝑢𝑇𝑀𝐷−𝑢𝑢𝑢+ 2𝑢𝑢𝑢𝑇 𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)

= −𝑢𝑢𝑢𝑇𝑀𝐷−𝑢𝑢𝑢+ 𝑢𝑢𝑢𝑇𝐷𝑇+𝑀𝑢𝑢𝑢− 𝑢𝑢𝑢
𝑇 (𝑡𝑡𝑡𝑅𝑡𝑡𝑡𝑇𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡𝑇𝐿)𝑢𝑢𝑢+ 2𝑢𝑢𝑢𝑇 𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)

≤ 2(𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)𝑔𝐿 − (𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)
2 − (𝑡𝑡𝑡𝑇𝑅𝑢𝑢𝑢)

2 = 𝑔2𝐿 − (𝑡𝑡𝑡𝑇𝑅𝑢𝑢𝑢)
2 − (𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢)

2,

(2.24)

mimicking the estimate

𝜕𝑡‖𝑢(𝑡)‖2𝐿2 = 𝑔𝐿(𝑡)2 − 𝑢(𝑡, 𝑥max)2 (2.25)

up to additional artificial dissipation due to the upwind operators and the weak imposition of boundary data.

2.3. Some useful properties of upwind SBP operators

As described in [36], upwind SBP operators can be interpreted as classical SBP operators plus artificial dissipation in the context 
of the linear advection equation. Indeed,

𝐷+ = 1
2
(𝐷− +𝐷+) +

1
2
(𝐷+ −𝐷−),

𝐷− = 1
2
(𝐷− +𝐷+) −

1
2
(𝐷+ −𝐷−).

(2.26)

The average of the upwind operators is a classical SBP operator since [36]
5

𝑀(𝐷− +𝐷+) + (𝐷− +𝐷+)𝑇𝑀 = (𝑀𝐷+ +𝐷𝑇−𝑀) + (𝑀𝐷− +𝐷𝑇+𝑀) = 2(𝑡𝑡𝑡𝑅𝑡𝑡𝑡𝑇𝑅 − 𝑡𝑡𝑡𝐿𝑡𝑡𝑡𝑇𝐿). (2.27)
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The difference of the upwind SBP operators introduces artificial dissipation for the linear advection equation when multiplied by the 
mass matrix 𝑀 by construction. Thus, the upwind SBP discretization (2.22) can be written as [36]

𝜕𝑡𝑢𝑢𝑢+
𝐷− +𝐷+

2
𝑢𝑢𝑢

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
central

−
𝐷+ −𝐷−

2
𝑢𝑢𝑢

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
dissipation

=𝑀−1𝑡𝑡𝑡𝐿(𝑔𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑢𝑢𝑢). (2.28)

This is the form of a central SBP discretization plus artificial dissipation for linear advection. For general nonlinear problems, we 
can still use the negative semidefiniteness of the difference of the operators to introduce artificial dissipation, but we need proper 
upwinding as discussed in Section 3.

2.4. Upwind SBP operators in periodic domains

In periodic domains, we require boundary terms to vanish, resulting in the following definitions [41].

Definition 2.7. A periodic SBP operator on the domain [𝑥min, 𝑥max] consists of a grid 𝑥𝑥𝑥, a symmetric and positive definite mass/norm 
matrix 𝑀 satisfying 111𝑇𝑀111 = 𝑥max − 𝑥min, and a consistent derivative operator 𝐷 such that

𝑀𝐷 +𝐷𝑇𝑀 = 0. (2.29)

It is called diagonal-norm operator if 𝑀 is diagonal. ⊲

Definition 2.8. A periodic upwind SBP operator on the domain [𝑥min, 𝑥max] consists of a grid 𝑥𝑥𝑥, a symmetric and positive definite 
mass/norm matrix 𝑀 satisfying 111𝑇𝑀111 = 𝑥max − 𝑥min, and two consistent derivative operators 𝐷± such that

𝑀𝐷+ +𝐷𝑇−𝑀 = 0, 𝑀(𝐷+ −𝐷−) is negative semidefinite. (2.30)

It is called diagonal-norm operator if 𝑀 is diagonal. ⊲

An upwind SBP discretization of the linear advection equation

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥𝑢(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (𝑥min, 𝑥max),

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ [𝑥min, 𝑥max],
(2.31)

with periodic boundary conditions is

𝜕𝑡𝑢𝑢𝑢+𝐷−𝑢𝑢𝑢 =000. (2.32)

Following the same steps as in the case of a bounded domain, we see that it is conservative, i.e.,

𝜕𝑡(111𝑇𝑀𝑢𝑢𝑢) = 0, (2.33)

and energy-stable, i.e.,

𝜕𝑡‖𝑢𝑢𝑢‖2𝑀 ≤ 0. (2.34)

Example 2.9. The interior stencils of the second-order accurate upwind operators of [36] shown in Example 2.6 yield periodic upwind 
operators. Specifically, we have

𝐷+ = 1
Δ𝑥

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3∕2 2 −1∕2
−3∕2 2 −1∕2

−3∕2 2 −1∕2
⋱ ⋱ ⋱

3∕2 2 −1∕2
−1∕2 −3∕2 2
2 −1∕2 −3∕2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.35)

𝐷− = 1
Δ𝑥

⎛⎜⎜⎜⎜⎜⎜⎜⎜

3∕2 1∕2 −2
−2 3∕2 1∕2
1∕2 −2 3∕2

1∕2 −2 3∕2
⋱ ⋱ ⋱

1∕2 −2 3∕2
1∕2 −2 3∕2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
, (2.36)
6

⎜⎝ 1∕2 −2 3∕2⎟⎠
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and 𝑀 =Δ𝑥 diag(1, … , 1). ⊲

3. Formulation of upwind SBP methods for nonlinear problems

Following earlier work on upwind SBP operators [36], we first apply the flux vector splitting (2.2) and rewrite the hyperbolic 
conservation law in one space dimension (2.1) as

𝜕𝑡𝑢+ 𝜕𝑥𝑓−(𝑢) + 𝜕𝑥𝑓+(𝑢) = 0. (3.1)

Next, we discretize the conservation law in space by using upwind SBP operators as

𝜕𝑡𝑢𝑢𝑢+𝐷+𝑓
−𝑓−𝑓− +𝐷−𝑓

+𝑓+𝑓+ = 000. (3.2)

These formulations are well-known in the literature, e.g., [34–37,39]. To couple multiple blocks of upwind SBP operators, we in-
troduce interface terms as in discontinuous Galerkin methods in the following. On each element, we will use the semidiscretzation 
(3.2) as a baseline and add additional terms to couple the elements weakly at the interfaces. Such a construction has been used for 
central-type SBP operators in several works, e.g., [24].

After describing and contextualizing the method in one space dimension, we describe and analyze the method in two-dimensional 
curvilinear coordinates in Section 3.4.

Remark 3.1. The indices ± of the upwind operators and the fluxes do not match. This is due to historical reasons since we want to 
keep backwards compatibility with both the notation of flux vector splitting methods [43, Chapter 8] and upwind SBP operators as 
introduced in [36]. ⊲

3.1. Local upwind SBP formulation with SATs and numerical fluxes

On each element, we consider a discretization of the form

𝜕𝑡𝑢𝑢𝑢+𝐷+𝑓
−𝑓−𝑓− +𝐷−𝑓

+𝑓+𝑓+ =SATSATSAT (3.3)

with a simultaneous approximation term SATSATSAT. To motivate the construction of the SAT, we consider the upwind SBP discretization 
(3.3) with the global Lax-Friedrichs flux vector splitting, resulting in

𝜕𝑡𝑢𝑢𝑢+
1
2
𝐷+(𝑓𝑓𝑓 + 𝜆𝑢𝑢𝑢) + 1

2
𝐷−(𝑓𝑓𝑓 − 𝜆𝑢𝑢𝑢) = SATSATSAT. (3.4)

We can formulate this in the central SBP plus dissipation form as

𝜕𝑡𝑢𝑢𝑢+
1
2
(𝐷− +𝐷+)𝑓𝑓𝑓 + 𝜆

2
(𝐷+ −𝐷−)𝑢𝑢𝑢 =SATSATSAT. (3.5)

The second term is the central SBP discretization and the third term is the artificial dissipation term built into the upwind operators. 
Thus, we select the standard SAT for a central SBP discretization, i.e.,

SATSATSAT = −𝑀−1𝑡𝑡𝑡𝑅(𝑓 num𝑅 − 𝑡𝑡𝑡𝑇𝑅𝑓𝑓𝑓 ) +𝑀
−1𝑡𝑡𝑡𝐿(𝑓 num𝐿 − 𝑡𝑡𝑡𝑇𝐿𝑓𝑓𝑓 ), (3.6)

where 𝑓 num
𝐿∕𝑅 is the numerical flux at the left/right interface of the element. To clarify this notation, we use an upper index to denote 

the element. Thus, 𝑢𝑢𝑢𝑘 is the numerical solution in element 𝑘. Then, the SAT in element 𝑘 becomes

SATSATSAT𝑘 = −𝑀−1𝑡𝑡𝑡𝑅

(
𝑓 num(𝑢𝑢𝑢𝑘𝑅,𝑢𝑢𝑢

𝑘+1
𝐿 ) −𝑓𝑓𝑓𝑘𝑅

)
+𝑀−1𝑡𝑡𝑡𝐿

(
𝑓 num(𝑢𝑢𝑢𝑘−1𝑅 ,𝑢𝑢𝑢𝑘𝐿) −𝑓𝑓𝑓

𝑘
𝐿

)
, (3.7)

where we have abbreviated the left/right interface value as 𝑢𝑢𝑢𝐿∕𝑅 = 𝑡𝑡𝑡𝑇
𝐿∕𝑅𝑢𝑢𝑢.

There are many classical numerical fluxes that we can use for 𝑓 num . Next, we use the flux vector splitting to design the numerical 
fluxes. We demonstrate this procedure first for the right interface. Using the same splitting for the numerical flux and the physical 
flux yields

𝑓 num(𝑢𝑢𝑢𝑘𝑅,𝑢𝑢𝑢
𝑘+1
𝐿 ) −𝑓𝑓𝑓𝑘𝑅 =

(
𝑓+(𝑢𝑢𝑢𝑘𝑅) + 𝑓

−(𝑢𝑢𝑢𝑘+1𝐿 )
)
−
(
𝑓+(𝑢𝑢𝑢𝑘𝑅) + 𝑓

−(𝑢𝑢𝑢𝑘𝑅)
)

= 𝑓−(𝑢𝑢𝑢𝑘+1𝐿 ) − 𝑓−(𝑢𝑢𝑢𝑘𝑅).
(3.8)

Similarly, we get

𝑓 num(𝑢𝑢𝑢𝑘−1𝑅 ,𝑢𝑢𝑢𝑘𝐿) −𝑓𝑓𝑓
𝑘
𝐿 =

(
𝑓+(𝑢𝑢𝑢𝑘−1𝑅 ) + 𝑓−(𝑢𝑢𝑢𝑘𝐿)

)
−
(
𝑓+(𝑢𝑢𝑢𝑘𝐿) + 𝑓

−(𝑢𝑢𝑢𝑘𝐿)
)

= 𝑓+(𝑢𝑢𝑢𝑘−1𝑅 ) − 𝑓+(𝑢𝑢𝑢𝑘𝐿),
(3.9)
7

for the left interface. Thus, the SAT becomes
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SATSATSAT𝑘 = −𝑀−1𝑡𝑡𝑡𝑅

(
𝑓−(𝑢𝑢𝑢𝑘+1𝐿 ) − 𝑓−(𝑢𝑢𝑢𝑘𝑅)

)
+𝑀−1𝑡𝑡𝑡𝐿

(
𝑓+(𝑢𝑢𝑢𝑘−1𝑅 ) − 𝑓+(𝑢𝑢𝑢𝑘𝐿)

)
. (3.10)

To sum up, we arrive at the upwind SBP discretization

𝜕𝑡𝑢𝑢𝑢+𝐷+𝑓
−𝑓−𝑓− +𝐷−𝑓

+𝑓+𝑓+ =SATSATSAT𝑘, (3.11)

where the simultaneous approximation term can be expressed using (general) numerical fluxes as

SATSATSAT𝑘 = −𝑀−1𝑡𝑡𝑡𝑅

(
𝑓 num(𝑢𝑢𝑢𝑘𝑅,𝑢𝑢𝑢

𝑘+1
𝐿 ) −𝑓𝑓𝑓𝑘𝑅

)
+𝑀−1𝑡𝑡𝑡𝐿

(
𝑓 num(𝑢𝑢𝑢𝑘−1𝑅 ,𝑢𝑢𝑢𝑘𝐿) −𝑓𝑓𝑓

𝑘
𝐿

)
(3.12)

or specifically using the upwind fluxes as

SATSATSAT𝑘 = −𝑀−1𝑡𝑡𝑡𝑅

(
𝑓−(𝑢𝑢𝑢𝑘+1𝐿 ) − 𝑓−(𝑢𝑢𝑢𝑘𝑅)

)
+𝑀−1𝑡𝑡𝑡𝐿

(
𝑓+(𝑢𝑢𝑢𝑘−1𝑅 ) − 𝑓+(𝑢𝑢𝑢𝑘𝐿)

)
. (3.13)

Finally, we can integrate the semidiscretization in time using any suitable time integration scheme, e.g., Runge-Kutta methods.

Remark 3.2. If the corresponding upwind flux is used at interfaces as in (3.13), the final discretization of the hyperbolic conservation 
law (2.1) is actually agnostic to the flux and does not require the solution to a Riemann problem. All the physics is contained in the 
particular flux splitting one considers. ⊲

3.2. Global upwind SBP formulation

There is another formulation of the method above that is useful as an interpretation. Instead of first introducing an upwind SBP 
discretization on each element and coupling terms in a second step, we can directly couple the element-local upwind operators to 
obtain a global upwind operator as described in [41]. Here, we just concentrate on a coupling as in DG methods.

Theorem 3.3 (Theorem 2.2 of [41]). Consider two upwind SBP operators 𝐷±,𝑙∕𝑟 on the grids 𝑥𝑥𝑥𝑙∕𝑟 with 𝑥𝑥𝑥𝑁𝑙,𝑙 = 𝑥𝑥𝑥1,𝑟. Then,

𝐷+ =

(
𝐷+,𝑙 −𝑀−1

𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡
𝑇
𝑅,𝑙 𝑀−1

𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡
𝑇
𝐿,𝑟

0 𝐷+,𝑟

)
, 𝐷− =

(
𝐷−,𝑙 0

−𝑀−1
𝑟 𝑡𝑡𝑡𝐿,𝑟𝑡𝑡𝑡

𝑇
𝑅,𝑙 𝐷−,𝑟 +𝑀−1

𝑟 𝑡𝑡𝑡𝐿,𝑟𝑡𝑡𝑡
𝑇
𝐿,𝑟

)
,

𝑀 =

(
𝑀𝑙 0
0 𝑀𝑟

)
,

(3.14)

yield upwind SBP operators on the joint grid 𝑥𝑥𝑥= (𝑥𝑥𝑥1,𝑙 , … , 𝑥𝑥𝑥𝑁𝑙,𝑙, 𝑥𝑥𝑥1,𝑟, … , 𝑥𝑥𝑥𝑁𝑟,𝑟)
𝑇 with 𝑁 =𝑁𝑙 +𝑁𝑟 nodes. These global operators have the 

same order of accuracy as the less accurate one of the given local operators.

The global upwind SBP operators described in Theorem 3.3 are obtained by taking upwind numerical fluxes in a DG-type dis-
cretization. Indeed, consider the discretization of two elements and their shared interface written using the coupled upwind operators 
of Theorem 3.3. We have

𝜕𝑡

(
𝑢𝑢𝑢𝑙
𝑢𝑢𝑢𝑟

)
+𝐷+

(
𝑓𝑓𝑓−𝑙
𝑓𝑓𝑓−𝑟

)
+𝐷−

(
𝑓𝑓𝑓+𝑙
𝑓𝑓𝑓+𝑟

)
=BTsBTsBTs, (3.15)

where BTsBTsBTs collects the surface terms of their non-shared interfaces. For the left element, we get

𝜕𝑡𝑢𝑢𝑢𝑙 + (𝐷+,𝑙 −𝑀−1
𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡

𝑇
𝑅,𝑙)𝑓𝑓𝑓

−
𝑙 +𝑀

−1
𝑙 𝑡𝑡𝑡𝑅,𝑙𝑡𝑡𝑡

𝑇
𝐿,𝑟𝑓𝑓𝑓

−
𝑟 +𝐷−,𝑙𝑓𝑓𝑓

+
𝑙 =BTsBTsBTs𝑙. (3.16)

Replacing the index 𝑙 by the element number 𝑘 leads to

𝜕𝑡𝑢𝑢𝑢
𝑘 +𝐷+𝑓

−𝑓−𝑓− +𝐷−𝑓
+𝑓+𝑓+ = −𝑀−1𝑡𝑡𝑡𝑅

(
𝑓−(𝑢𝑢𝑢𝑘+1𝐿 ) − 𝑓−(𝑢𝑢𝑢𝑘𝑅)

)
+BTsBTsBTs𝑘. (3.17)

Thus, the interface term is identical to the SAT (3.13) using the upwind numerical flux coming from the flux vector splitting.
In particular, the discontinuous Galerkin spectral element method (DGSEM) with upwind flux for the linear advection equation 

yields an upwind SBP operator. Indeed, the local operators used on each element with Gauss-Lobatto-Legendre nodes are classical 
SBP operators [24] and the upwind (Godunov) flux yields exactly the interface coupling described in Theorem 3.3.

Example 3.4. Consider the DGSEM with polynomials of degree 𝑝 = 2 and two elements in the domain [0, 2]. The corresponding nodes 
are

𝑥𝑥𝑥𝑙 = (0,1∕2,1)𝑇 , 𝑥𝑥𝑥𝑟 = (1,3∕2,2)𝑇 . (3.18)
8

The polynomial derivative matrix 𝐷 and the mass matrix 𝑀 on each element with length unity are given by
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𝐷 =
⎛⎜⎜⎝
−3 4 −1
−1 0 1
1 −4 3

⎞⎟⎟⎠ , 𝑀 =
⎛⎜⎜⎝
1∕6

2∕3
1∕6

⎞⎟⎟⎠ . (3.19)

These matrices satisfy 𝑀𝐷 +𝐷𝑇𝑀 = diag(−1, 0, 1), i.e., the SBP property (2.16). The construction in Theorem 3.3 yields the global 
operators

𝐷+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−3 4 −1
−1 0 1
1 −4 −3 6

−3 4 −1
−1 0 1
1 −4 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐷− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−3 4 −1
−1 0 1
1 −4 3

−6 3 4 −1
−1 0 1
1 −4 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.20)

and 𝑀 = diag(1∕6, 2∕3, 1∕6, 1∕6, 2∕3, 1∕6). These operators satisfy

𝑀𝐷+ +𝐷𝑇−𝑀 = diag(−1,0,0,0,0,1), 𝑀(𝐷+ −𝐷−) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.21)

The eigenvalues of the symmetric matrix 𝑀(𝐷+ −𝐷−) are zero (with multiplicity five) and −2 (with multiplicity one). Thus, it is 
symmetric and negative semidefinite. Hence, the defining property (2.18) of upwind SBP operators is satisfied. ⊲

Remark 3.5. This also holds on periodic domains. Indeed, coupling upwind SBP operators as in Theorem 3.3 on all interfaces results 
in periodic upwind SBP operators. ⊲

3.3. Classical flux vector splitting using upwind SBP operators

There are no first-order accurate upwind SBP operators in [36]. However, we can construct such finite difference operators as

𝐷− = 1
Δ𝑥

⎛⎜⎜⎜⎜⎜⎝

0 0
−1 1

⋱ ⋱
−1 1

−2 2

⎞⎟⎟⎟⎟⎟⎠
, 𝐷+ = 1

Δ𝑥

⎛⎜⎜⎜⎜⎜⎝

−2 2
−1 1

⋱ ⋱
−1 1
0 0

⎞⎟⎟⎟⎟⎟⎠
,

𝑀 =Δ𝑥diag(1∕2,1,… ,1,1∕2).

(3.22)

Indeed,

𝑀𝐷+ +𝐷𝑇−𝑀 = diag(−1,0,… ,0,1) (3.23)

and

𝑀(𝐷+ −𝐷−) =

⎛⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −1

⎞⎟⎟⎟⎟⎟⎠
(3.24)

is negative semidefinite. In fact, (3.24) is the classical finite difference discretization of the Laplacian with homogeneous Neumann 
boundary conditions. Note that the order of accuracy of 𝐷± at one of the boundaries is reduced to zero, in accordance with the 
general order reduction of SBP operators.

An upwind SBP semidiscretization of a conservation law 𝜕𝑡𝑢 + 𝜕𝑥𝑓 (𝑢) = 0 is the scheme

𝜕𝑡𝑢𝑢𝑢+𝐷+𝑓𝑓𝑓
− +𝐷−𝑓𝑓𝑓

+ =SATsSATsSATs, (3.25)

where SATsSATsSATs are boundary terms used to impose the boundary conditions. Applying the upwind SBP operators shown above in such 
9

a discretization results in the classical first-order flux vector splitting
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𝜕𝑡𝑢𝑖 = − 1
Δ𝑥

(
𝑓 ∗
𝑖+ 1

2
− 𝑓 ∗

𝑖− 1
2

)
= − 1

Δ𝑥

(
(𝑓+𝑖 + 𝑓−𝑖+1) − (𝑓+

𝑖−1 + 𝑓
−
𝑖 )

)
= − 1

Δ𝑥

(
(𝑓+𝑖 − 𝑓+

𝑖−1) + (𝑓−𝑖+1 − 𝑓
−
𝑖 )

) (3.26)

in the interior. Thus, high-order upwind SBP methods can be seen as extensions of the classical first-order flux vector splitting methods.

3.4. Formulation in two-dimensional curvilinear coordinates

The generic conservation law in two dimensions takes the form

𝜕𝑡𝑢(𝑡, 𝑥, 𝑦) + 𝜕𝑥𝑓1
(
𝑢(𝑡, 𝑥, 𝑦)

)
+ 𝜕𝑦𝑓2

(
𝑢(𝑡, 𝑥, 𝑦)

)
= 0, 𝑡 ∈ (0, 𝑇 ), (𝑥, 𝑦) ∈ Ω ⊂ℝ2, (3.27)

with conserved variable 𝑢 and fluxes 𝑓1, 𝑓2 in each coordinate direction, equipped with appropriate initial and boundary conditions. 
We first subdivide the problem domain Ω into 𝐾 non-overlapping quadrilateral elements 𝐸𝑘, 𝑘 = 1, … , 𝐾 . In the following, we 
consider the conservation law (3.27) on an individual element and suppress the index 𝑘.

Next, we create a transformation on each element 𝐸𝑘 between the computational coordinates (𝜉, 𝜂) ∈ 𝐸0 where 𝐸0 = [−1, 1]2 is 
the reference element and the physical coordinates (𝑥, 𝑦) as

𝑥 =𝑋(𝜉, 𝜂), 𝑦 = 𝑌 (𝜉, 𝜂). (3.28)

Typically, this mapping is a linear blending transfinite map between the opposing sides of an element [53,54]. When the element sides 
are straight, the mapping (3.28) is linear in each coordinate direction. However, if the sides are curved and high-order polynomials 
are used to approximate the element boundaries, then the mapping (3.28) is a polynomial in each direction. In that case, we represent 
the mapping as a polynomial of degree 𝑁geo in each coordinate direction.

Under this transformation, the conservation law in physical coordinates remains a conservation law in reference coordinates, see, 
e.g., [38,54]

𝐽𝜕𝑡𝑢(𝑡, 𝜉, 𝜂) + 𝜕𝜉𝑓1
(
𝑢(𝑡, 𝜉, 𝜂)

)
+ 𝜕𝜂𝑓2

(
𝑢(𝑡, 𝜉, 𝜂)

)
= 0, (3.29)

where the contravariant fluxes 𝑓 and Jacobian 𝐽 for the two dimensional transformation are

𝑓1 = 𝑌𝜂𝑓1 −𝑋𝜂𝑓2, 𝑓2 = −𝑌𝜉𝑓1 +𝑋𝜉𝑓2, 𝐽 = 𝑌𝜂𝑋𝜉 − 𝑌𝜉𝑋𝜂. (3.30)

For convenience we introduce a compact notation for the flux in the contravariant (or normal) direction. The normal direction (but 
not normalized) vectors in reference space are written as

�̂�1 = (𝑌𝜂,−𝑋𝜂)𝑇 and �̂�2 = (−𝑌𝜉,𝑋𝜉)𝑇 , (3.31)

where 𝑋𝜉, 𝑋𝜂, 𝑌𝜉, 𝑌𝜂 are the metric terms. So, for example, the first contravariant flux is given by 𝑓1 = 𝑓1�̂�11 + 𝑓2�̂�
1
2. Additionally, the 

metric terms satisfy two metric identities

𝜕𝜉𝑌𝜂 − 𝜕𝜂𝑌𝜉 = 0 and − 𝜕𝜉𝑋𝜂 + 𝜕𝜂𝑋𝜉 = 0 (3.32)

that are crucial to guarantee free-stream preservation (FSP) [54–56]. That is, given a flux that is constant in space, its divergence 
vanishes and the (constant) solution of (3.27) does not change in time. We will revisit the recovery of FSP on the discrete level later 
in this section.

From the mapped conservation law (3.29) the next step is to perform a flux vector splitting. However, it is important to note 
that one cannot simply multiply the Cartesian flux vector splittings with the metric terms to create their curvilinear counterparts. 
This would lead to inconsistencies with respect to the directionality of the waves in the considered splitting. Instead, one follows 
a procedure of rotation into a generalized coordinate’s normal direction, performing the flux vector splitting, and back-rotating the 
result, see [57,58] for complete details. This process guarantees that the flux vector splittings satisfy the following relationship in 
each contravariant direction

𝑓𝑖(𝑢) = 𝑓1(𝑢)�̂�𝑖1 + 𝑓2(𝑢)�̂�
𝑖
2 = 𝑓

+(𝑢; �̂�𝑖) + 𝑓−(𝑢; �̂�𝑖) = 𝑓+𝑖 (𝑢) + 𝑓
−
𝑖 (𝑢), 𝑖 = 1,2. (3.33)

We introduce the notation 𝑓±(𝑢; �̂�𝑖) to highlight that the normal direction components can no longer be factored out of the flux vector 
splitting and different flux components may depend on the normal direction in different ways. To clarify the form of the flux vector 
splittings in generalized coordinate directions we highlight three examples for the compressible Euler equations.

Example 3.6. The local Lax-Friedrichs splitting in the contravariant directions uses a local estimate for the largest value of 𝜆 for the 
10

possible wave speeds and has the form
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𝑓±𝑖 = 𝑓±(𝑢; �̂�𝑖) = 1
2
(
𝑓𝑖(𝑢) ± 𝜆𝑢

)
, 𝑖 = 1,2, (3.34)

where 𝑢 = (𝜚, 𝜚𝑣1, 𝜚𝑣2, 𝜚𝑒)𝑇 and 𝜆 =
√
𝑣21 + 𝑣

2
2 +𝑎. As discussed above, (3.34) has a linear dependency on the mapping terms; however 

they cannot be factored out to separate the Cartesian splitting from the normal directions as was the case for the complete physical 
flux (3.30). ⊲

Example 3.7. We describe an improved variant of the Steger-Warming splitting (Example 2.2) for generalized coordinates due to 
Drikakis and Tsangaris [59]. We, again, use the standard notation for the positive/negative part of an eigenvalue 𝜆𝑖 with

𝜆±𝑖 =
𝜆𝑖 + |𝜆𝑖|

2
. (3.35)

The wave speeds in the normal direction �̂�𝑖 used by this splitting are

�̃�1 = 𝑣1�̂�𝑖1 + 𝑣2�̂�
𝑖
2 − 𝑎, �̃�2 = 𝑣1�̂�𝑖1 + 𝑣2�̂�

𝑖
2 + 𝑎, (3.36)

with the sound speed 𝑎 =
√
𝛾𝑝∕𝜚. The flux vector splitting of Drikakis and Tsangaris is given by

𝑓±𝑖 = 𝑓±(𝑢; �̂�𝑖) = 𝜚
2

⎛⎜⎜⎜⎜⎜⎜⎝

�̃�±1 + �̃�±2
(�̃�±1 + �̃�±2 )𝑣1 +

𝑎�̂�𝑖1
𝛾
(�̃�±2 − �̃�±1 )

(�̃�±1 + �̃�±2 )𝑣2 +
𝑎�̂�𝑖2
𝛾
(�̃�±2 − �̃�±1 )

(�̃�±1 + �̃�±2 )𝐻

⎞⎟⎟⎟⎟⎟⎟⎠
, (3.37)

where 𝐻 = (𝜚𝑒 + 𝑝)∕𝜚 = 𝑣2∕2 + 𝑎2∕(𝛾 − 1) is again the enthalpy. ⊲

Example 3.8. As a last example, we describe the van Leer-Hänel splitting [45–47] rotated into a contravariant normal direction [57]. 
We introduce the signed Mach number in the normal direction

�̃� =
𝑣1�̂�

𝑖
1 + 𝑣2�̂�

𝑖
2

𝑎
, 𝑖 = 1,2, (3.38)

and the pressure splitting

𝑝± = 1 ± 𝛾�̃�
2

𝑝. (3.39)

The flux splittings are then given by

𝑓±𝑖 = 𝑓±(𝑢; �̂�𝑖) = ±𝜚𝑎(�̃� ± 1)2

4

⎛⎜⎜⎜⎜⎝
1
𝑣1
𝑣2
𝐻

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
0
�̂�𝑖1𝑝

±

�̂�𝑖2𝑝
±

0

⎞⎟⎟⎟⎟⎠
, (3.40)

where 𝐻 is the enthalpy. ⊲

Remark 3.9. Notice, as the flux vector splittings become more sophisticated their dependency on the normal direction (and in turn 
the metric terms) increase in complexity as well. That is, the local Lax-Friedrichs splitting (3.34) is linear in the metric terms, the 
Drikakis-Tsangaris splitting (3.37) is linear in the advective components and quadratic in the metric terms for the pressure splitting, 
and the van Leer-Hänel splitting (3.40) is quadratic in the metric terms in all components. ⊲

With appropriate flux vector splittings that satisfy (3.33) in hand, we split the contravariant fluxes in mapped conservation law 
on each element (3.29) to have

𝐽𝜕𝑡𝑢+ 𝜕𝜉𝑓+1 + 𝜕𝜉𝑓−1 + 𝜕𝜂𝑓+2 + 𝜕𝜂𝑓−2 = 0. (3.41)

Just as in Section 3.1, we discretize the mapped conservation law in space with upwind SBP operators and couple the element to 
its neighbor elements with appropriate SATsSATsSATs. These SATsSATsSATs have the same form as given in (3.12) along each of the four element 
interfaces. As before, if the same splitting in the normal direction is used for the numerical flux as the physical flux, then we recover 
analogous statements to (3.8) and (3.9). We then have a generic statement of a SATSATSAT in the normal direction on an interface in element 
𝑘

S̃ATSATSAT
𝑘
= −𝑀−1𝑡𝑡𝑡𝑅

(
𝑓 num(𝑢𝑢𝑢𝑘𝑅,𝑢𝑢𝑢

𝑘+1
𝐿 ; �̂�𝑖) − �̃�𝑓𝑓𝑘𝑅

)
+𝑀−1𝑡𝑡𝑡𝐿

(
𝑓 num(𝑢𝑢𝑢𝑘−1𝑅 ,𝑢𝑢𝑢𝑘𝐿; �̂�

𝑖) − �̃�𝑓𝑓𝑘𝐿
)
. (3.42)
11

The resulting upwind SBP discretization on element 𝑘 takes the form



Journal of Computational Physics 520 (2025) 113471H. Ranocha, A.R. Winters, M. Schlottke-Lakemper et al.

𝐽𝐽𝐽𝜕𝑡𝑢𝑢𝑢+𝐷−𝑓𝑓𝑓
+
1 +𝐷+𝑓𝑓𝑓

−
1 +𝑓𝑓𝑓+2𝐷

𝑇
− +𝑓𝑓𝑓−2𝐷

𝑇
+ = S̃ATsSATsSATs

𝑘
. (3.43)

Compared to the one-dimensional case described in Section 3.1, we use a tensor product structure for the mapped conservation law 
(3.29) on each quadrilateral element. Thus, we can think of the discrete solution 𝑢𝑢𝑢 as a two-dimensional array of size 𝑁𝜉 ×𝑁𝜂 , where 
𝑁𝜉 and 𝑁𝜂 are the number of grid points in the 𝜉 and 𝜂 directions, respectively. At each grid point with index (𝑖, 𝑗), 𝑢𝑢𝑢𝑖,𝑗 is the vector of 
conserved variables at this point. With this data layout, multiplying the mapped fluxes 𝑓𝑓𝑓±

1 from the left by the upwind SBP operator 
𝐷∓ approximates the derivative in the 𝜉-direction. Similarly, multiplying the mapped fluxes 𝑓𝑓𝑓±2 from the right by the upwind SBP 
operator 𝐷𝑇∓ approximates the derivative in the 𝜂-direction. Due to the tensor product structure for the mapped conservation law 
(3.29), the S̃ATSATSAT (3.42) in the normal directions are computed in a similar way as in the one-dimensional case.

The final component to fully describe the upwind SBP method on curvilinear domains (3.43) is to discuss how the metric terms are 
approximated. By design, from [36], the upwind SBP operators 𝐷±, as well as the central SBP operator (𝐷+ +𝐷−)∕2 they generate, 
have 𝑝th order accurate interior stencils and 𝑝∕2 order accurate boundary stencils. This boundary closure means that any of the 
three available differencing operators can differentiate polynomials up to degree 𝑝∕2 exactly. For instance, one available upwind 
SBP operator is the fourth-order interior, second-order boundary closure, denoted 4-2, operator where 𝐷± or 𝐷 = (𝐷+ +𝐷−)∕2 can 
differentiate up to quadratic polynomials exactly.

Because all available upwind SBP operators of a given order have the same boundary closure accuracy, we use the central operator 
𝐷 = (𝐷+ +𝐷−)∕2 to compute the metric terms by directly differentiating the mapping 𝑋(𝜉, 𝜂) from (3.28), i.e.,

𝑋𝜉 ≈𝐷𝑋𝑋𝑋 =𝑋𝜉𝑋𝜉𝑋𝜉, 𝑋𝜂 ≈𝑋𝑋𝑋𝐷𝑇 =𝑋𝜂𝑋𝜂𝑋𝜂, 𝑌𝜉 ≈𝐷𝑌𝑌𝑌 = 𝑌𝜉𝑌𝜉𝑌𝜉 , 𝑌𝜂 ≈ 𝑌𝑌𝑌 𝐷𝑇 = 𝑌𝜂𝑌𝜂𝑌𝜂. (3.44)

We note, depending on the strategy used to compute the discrete metric terms, one may or may not recover a discrete equivalent of 
the metric identities (3.32). That is, it is possible to lose discrete FSP [54–56]. Applying the approximation strategy from (3.44), we 
examine the discrete version of the metric identities (3.32) to find

𝐷𝑌𝜂𝑌𝜂𝑌𝜂 −𝑌𝜉𝑌𝜉𝑌𝜉𝐷𝑇 =𝐷𝑌𝑌𝑌𝐷𝑇 −𝐷𝑌𝑌𝑌𝐷𝑇 =000 and −𝐷𝑋𝜂𝑋𝜂𝑋𝜂 +𝑋𝜉𝑋𝜉𝑋𝜉𝐷𝑇 = −𝐷𝑋𝑋𝑋𝐷𝑇 +𝐷𝑋𝑋𝑋𝐷𝑇 =000. (3.45)

Thus, the metric identities hold discretely as has been shown previously for finite difference methods in two-dimensional curvilinear 
coordinates, e.g., [55,56,60]. Moreover, the result (3.45) actually holds independently of the boundary closure accuracy or the 
polynomial degree 𝑁geo of the mapping (3.28). The result that a central SBP finite difference method is free-stream preserving, via 
the discrete metric identities (3.45), is directly related to the fact that the contravariant fluxes (3.30) have a linear dependency on 
the metric terms. However, as discussed in Remark 3.9, this is not always the case for a splitting in curvilinear coordinates.

For more sophisticated splittings, like that of van Leer-Hänel in Example 3.8, the issue of FSP becomes more subtle. There is a 
delicate interplay between the dependency a given splitting has with respect to the metric terms, the boundary closure order of the 
upwind SBP operator, and the polynomial degree 𝑁geo of the mapping. We collect the implications of this interplay into the following 
theorem.

Theorem 3.10 (FSP for the curvilinear upwind SBP method). Consider a flux vector splitting that has a maximum dependency on the metric 
terms of degree 𝑚, a set of upwind SBP operators with 𝑝th order interior stencils, and mappings 𝑋(𝜉, 𝜂) and 𝑌 (𝜉, 𝜂) with polynomial degree 
of 𝑁geo in each coordinate direction. The curvilinear upwind SBP method (3.43) is free-stream preserving when either

1. 𝑚 = 1, i.e., there is a linear dependence on the metric terms, or

2. 𝑚 > 1 and the polynomial degree of the mapping satisfies

𝑁geo ≤ 𝑝

2𝑚
. (3.46)

That is, the boundary closure can exactly differentiate polynomials up to degree 𝑚𝑁geo ≤ 𝑝∕2.

Proof. Assume we have a constant solution 𝑢∞ for the conservation law (3.27). The physical variable terms in the flux vector are 
then also constants.

Part 1(𝑚 = 1): By construction, the metric terms in the approximation satisfy the discrete metric identities (3.45). Therefore, 
the flux splitting terms with a linear dependence on the metric terms vanish from the same reasoning that the standard, non-split 
curvilinear flux formulation vanishes.

Part 2(𝑚> 1): To guarantee that the curvilinear divergence of the upwind SBP scheme (3.43) vanishes, it is sufficient if the 
following terms individually vanish

𝐷−𝑌𝜂𝑌𝜂𝑌𝜂
𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉𝑚𝐷𝑇− , 𝐷+𝑌𝜂𝑌𝜂𝑌𝜂

𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉𝑚𝐷𝑇+ , −𝐷−𝑋𝜂𝑋𝜂𝑋𝜂
𝑚 +𝑋𝜉𝑋𝜉𝑋𝜉𝑚𝐷𝑇− , −𝐷+𝑋𝜂𝑋𝜂𝑋𝜂

𝑚 +𝑋𝜉𝑋𝜉𝑋𝜉𝑚𝐷𝑇+ . (3.47)

The four terms above are similar to the discrete metric identities, but the metric terms are now polynomials of higher degree. To 
clarify their appearance, consider the van Leer-Hänel splitting (3.40) of Example 3.8. The signed Mach number �̃� from (3.38) depends 
linearly on the rotated normal direction �̂�, i.e., linearly on the metric terms. Thus, the split pressure 𝑝± from (3.39) depends linearly 
on the metric terms as well. Hence, the van-Leer-Hänel splitting (3.40) has a quadratic dependency on the metric terms because the 
12

advective components are scaled with (�̃� ±1)2 and the pressure components have the form �̂�𝑝±. As such, for a constant solution 𝑢∞, 
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the fluxes for the van-Leer-Hänel splitting are constant physical variables multiplied with expressions that depend quadratically on 
the (non-constant) metric terms, i.e., 𝑚 = 2.

Consider the first term in (3.47), i.e., 𝐷−𝑌𝜂𝑌𝜂𝑌𝜂
𝑚 − 𝑌𝜉𝑌𝜉𝑌𝜉𝑚𝐷𝑇− . From the constraint on the polynomial degree of the mapping (3.46) we 

know that the boundary closure order of the upwind SBP operators can exactly differentiate polynomials up to degree 𝑚𝑁geo ≤ 𝑝∕2. 
The discrete metric term 𝑌𝜂𝑌𝜂𝑌𝜂 = 𝑌𝑌𝑌 𝐷𝑇 is a polynomial of degree 𝑁geo in the 𝜉-direction and degree 𝑁geo − 1 in the 𝜂-direction and the 
discrete metric term 𝑌𝜉𝑌𝜉𝑌𝜉 =𝐷𝑌𝑌𝑌 is a polynomial of degree 𝑁geo − 1 in the 𝜉-direction and degree 𝑁geo in the 𝜂-direction. Taking these 
metric terms to the power 𝑚 means that 𝑌𝜂𝑌𝜂𝑌𝜂𝑚 is a polynomial of degree 𝑚𝑁geo in the 𝜉-direction and degree 𝑚(𝑁geo − 1) in the 𝜂-
direction and 𝑌𝜉𝑌𝜉𝑌𝜉𝑚 is a polynomial of degree 𝑚(𝑁geo −1) in the 𝜉-direction and degree 𝑚𝑁geo in the 𝜂-direction. By design, the upwind 
SBP derivative operators 𝐷± and 𝐷 = (𝐷+ +𝐷−)∕2 all have the same boundary order closure and can differentiate polynomials up to 
degree 𝑝∕2 exactly. Therefore, under the constraint (3.46) the 𝐷− operator can exactly differentiate the term 𝑌𝜂𝑌𝜂𝑌𝜂𝑚 in the 𝜉- direction 
as it is a polynomial of degree 𝑚𝑁geo. Similarly, the 𝐷− operator can exactly differentiate the term 𝑌𝜉𝑌𝜉𝑌𝜉𝑚 in the 𝜂- direction as it is also 
a polynomial of degree 𝑚𝑁geo. Thus,

𝐷−𝑌𝜂𝑌𝜂𝑌𝜂
𝑚 −𝑌𝜉𝑌𝜉𝑌𝜉𝑚𝐷𝑇− = 000, (3.48)

due to the exactness of polynomial differentiation of the boundary closure. The remaining three terms from (3.47) individually vanish 
from a similar argument. Therefore, the curvilinear upwind SBP method is FSP. □

The result of Theorem 3.10 is two-fold. If the dependency of the curvilinear flux vector splitting on the metric terms remains 
linear, i.e. 𝑚 = 1, then the curvilinear upwind SBP method (3.43) retains discrete FSP regardless of the boundary closure order 
and polynomial degree of the mapping 𝑁geo. This is the case for the local Lax-Friedrichs splitting in Example 3.6 and, as shown 
in Section 5.5, this splitting retains discrete FSP for all considered upwind SBP operators and meshes. These results agree with the 
previous work of Rydin et al. [38], where the global Lax-Friedrichs splitting was used and there were no reported spurious wave 
artifacts due to curved elements. However, if the curvilinear flux vector splitting has a higher degree polynomial dependence on the 
metric terms it places a cap on the polynomial degree of curvilinear elements. This is the case for the Drikakis-Tsangaris and van 
Leer-Hänel splittings of the compressible Euler equations given in Examples 3.7 and 3.8, respectively. For both curvilinear splittings, 
the maximum dependency on the metric terms is quadratic, so 𝑚 = 2. Thus, upwind SBP operators with a boundary closure order of 
two are restricted to unstructured bi-linear element meshes and operators with a boundary closure order of four are restricted to at 
most 𝑁geo = 2 or quadratic polynomial boundaries. If curvilinear meshes are constructed with boundaries beyond these values for 
𝑁geo, then the method is not FSP. We numerically examine the FSP properties of the high-order, curvilinear upwind SBP method 
(3.43) with different splittings, boundary closures, and mesh polynomial degrees in Section 5.5.

Remark 3.11. As a word of caution, one must take care when adapting a flux vector splitting into the curvilinear high-order upwind 
SBP context. For instance, the pressure for the van Leer-Hänel splitting (3.39) considered herein is linear with respect to the signed 
Mach number in the normal direction. This means that the pressure term is quadratic in the metric terms as the pressure splitting is 
multiplied with the components of the normal direction vector �̂�𝑖 . Other pressure splittings are proposed by Liou and Steffen [47], 
e.g.,

𝑝± = 1
4
(�̃� ± 1)2(2 ∓ �̃�)𝑝, (3.49)

which is cubic in the signed Mach number and, in turn, cubic with respect to the metric terms. This means that overall, the van 
Leer-Hänel splitting with the above pressure splitting has 𝑚 = 4, as the pressure components are further multiplied with �̂�. Thus, 
bi-linear element meshes with 𝑁geo = 1 require at least fourth order boundary closures to guarantee FSP of the upwind SBP method. 
⊲

Remark 3.12. The constraint on the boundary polynomial degree (3.46) is similar to the constraint found by Kopriva [54, Theorem 
4] for three-dimensional cross-product discrete metric terms. ⊲

Remark 3.13. The conditions given in Theorem 3.10 are sufficient to guarantee discrete FSP. They may not be necessary in all 
cases. However, the numerical results in Section 5.5 suggest that the result is sharp for the considered flux vector splittings, nodal 
polynomial approximation of curved boundaries, and tensor product extension to curvilinear coordinates. ⊲

4. Analysis of local linear/energy stability

From the review and discussion of upwind SBP methods for nonlinear conservation laws, we now turn to one goal of this article: 
the analysis of local linear/energy stability properties. We follow [10] and consider local linear/energy stability for Burgers’ equation

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥
𝑢(𝑡, 𝑥)2

2
= 0 (4.1)

with periodic boundary conditions. Thus, we linearize the equation around a baseflow �̃�, write 𝑢 = �̃�+ 𝑣, and get
13

𝜕𝑡𝑣+ 𝜕𝑥(�̃�𝑣) = 0. (4.2)
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This is a linear advection equation for the perturbation 𝑣 with variable coefficient ̃𝑢. For a positive baseflow ̃𝑢 > 0, the spatial operator 
has an imaginary spectrum since it is skew-symmetric with respect to the weighted 𝐿2 inner product (𝑣, 𝑤) ↦ ∫ �̃�𝑣𝑤 [10,61].

However, Gassner et al. [10] observed that high-order semidiscretizations conserving/dissipating the 𝐿2 entropy ∫ 𝑢2 lead to a 
linearized operator having some eigenvalues with a significantly positive real part for a non-constant baseflow ̃𝑢. They discussed this 
in the context of local linear/energy stability and issues of discretizations for under-resolved flows, see also [62].

From the results and discussion in [10], it appears to be desirable that a semidiscretization mimics the property of a linearization 
having eigenvalues with non-positive real part for all positive baseflows �̃�. Before studying the upwind SBP method specifically for 
Burgers’ equation, we concentrate on constant baseflows in a general setting.

Consider a scalar conservation law 𝜕𝑡𝑢 + 𝜕𝑥𝑓 (𝑢) = 0 with periodic boundary conditions. We first consider entropy-conservative 
flux differencing schemes of the form

𝜕𝑡𝑢𝑢𝑢𝑖 +
∑
𝑗

2𝐷𝑖𝑗𝑓 vol(𝑢𝑢𝑢𝑖,𝑢𝑢𝑢𝑗 ) = 0, (4.3)

where 𝐷 is a periodic SBP operator and 𝑓 vol is an entropy-conservative numerical flux in the sense of Tadmor [1,2], i.e., it satisfies

∀𝑢𝑙, 𝑢𝑟 ∶
(
𝑤(𝑢𝑟) −𝑤(𝑢𝑙)

)
⋅ 𝑓 vol(𝑢𝑙, 𝑢𝑟) = 𝜓(𝑢𝑟) −𝜓(𝑢𝑙), (4.4)

where 𝑤(𝑢) =𝑈 ′(𝑢) are the entropy variables and 𝜓 is the flux potential associated to a convex entropy 𝑈 . These methods have been 
introduced in [3,4]; see also [63,64].

Theorem 4.1. Entropy-conservative semidiscretizations using flux differencing in periodic domains are linearly/energy stable around constant 
states; in particular, their Jacobian has a purely imaginary spectrum.

Proof. Here, we use the notation of [65, Theorem 2.1], i.e., 𝑄 =𝑀𝐷 and 𝐹𝑖𝑗 = 𝑓 vol(𝑢𝑢𝑢𝑖, 𝑢𝑢𝑢𝑗 ). The Jacobian (multiplied by the negative 
mass matrix) is

𝐽 = 2(𝑄◦𝐹𝑦) − diag(1𝑇 (2𝑄◦𝐹𝑦)), (4.5)

where 𝑄 is skew-symmetric (due to the periodic boundary conditions) and ◦ denotes the Hadamard (pointwise) product of two 
matrices. The matrix 𝐹𝑦 is given by the entries 𝜕2𝑓 vol(𝑢𝑢𝑢𝑖, 𝑢𝑢𝑢𝑗 ), i.e., the derivatives of the numerical flux 𝑓 vol with respect to the second 
argument evaluated at the states 𝑢𝑢𝑢𝑖, 𝑢𝑢𝑢𝑗 . Since the derivative 𝐹𝑦 is evaluated at a constant state �̃�, all of its components are the same. 
In particular, ∀𝑖, 𝑗 ∶ (𝐹𝑦)𝑖𝑗 =

1
2𝑓

′(𝑢) [66, Lemma 3.1]. Thus,

𝐽 = 2(𝑄◦𝐹𝑦) − diag(1𝑇 (2𝑄◦𝐹𝑦)) = 𝑓 ′(𝑢)
(
𝑄− diag(1𝑇 𝑄)

)
= 𝑓 ′(𝑢)𝑄, (4.6)

where we used the SBP property. Hence, 𝐽 is skew-symmetric and has a purely imaginary spectrum. □

Next, we consider a central SBP discretization of the form

𝜕𝑡𝑢𝑢𝑢+𝐷𝑓𝑓𝑓 =000, (4.7)

where 𝐷 is a periodic SBP operator. As observed numerically in [10], this leads to a purely imaginary spectrum of the linearization.

Theorem 4.2. Central nodal diagonal-norm SBP semidiscretizations of conservation laws in periodic domains are linearly stable around 
states with positive speed 𝑓 ′(�̃�) > 0; in particular, the Jacobian has a purely imaginary spectrum.

Proof. The Jacobian (multiplied by the negative mass matrix) is

𝐽 =𝑄diag(𝑓𝑓𝑓 ′). (4.8)

Thus, it is skew-symmetric w.r.t. the inner product weighted by 𝑓𝑓𝑓 ′ > 0. □

Next, we consider fully upwind SBP methods.

Theorem 4.3. Consider a possibly spatially varying baseflow �̃� with positive speed 𝑓 ′(�̃�) > 0 everywhere. Upwind nodal diagonal-norm SBP 
semidiscretizations of the form 𝜕𝑡𝑢𝑢𝑢 +𝐷−𝑓𝑓𝑓 = 000 in periodic domains are linearly stable; in particular, the Jacobian has a spectrum in the left 
half of the complex plane.

Proof. The Jacobian of the semidiscretization −𝐷−𝑓𝑓𝑓 is

𝐽 = −𝐷− diag(𝑓𝑓𝑓 ′). (4.9)
14

The spectrum of this operator must be in the left half of the complex plane, since for each (possibly complex-valued) vector 𝑣𝑣𝑣
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2Re⟨𝑣𝑣𝑣, 𝐽𝑣𝑣𝑣⟩diag(𝑓𝑓𝑓 ′)𝑀 = ⟨𝑣𝑣𝑣, 𝐽𝑣𝑣𝑣⟩diag(𝑓𝑓𝑓 ′)𝑀 + ⟨𝐽𝑣𝑣𝑣,𝑣𝑣𝑣⟩diag(𝑓𝑓𝑓 ′)𝑀
= −𝑣𝑣𝑣∗ diag(𝑓𝑓𝑓 ′)𝑀𝐷− diag(𝑓𝑓𝑓 ′)𝑣𝑣𝑣−𝑣𝑣𝑣∗ diag(𝑓𝑓𝑓 ′)𝐷𝑇−𝑀 diag(𝑓𝑓𝑓 ′)𝑣𝑣𝑣

= 𝑣𝑣𝑣∗ diag(𝑓𝑓𝑓 ′)(−𝐷𝑇−𝑀 −𝑀𝐷−)diag(𝑓𝑓𝑓 ′)𝑣𝑣𝑣

= 𝑣𝑣𝑣∗ diag(𝑓𝑓𝑓 ′)(𝑀𝐷+ −𝑀𝐷−)diag(𝑓𝑓𝑓 ′)𝑣𝑣𝑣 ≤ 0,

(4.10)

where we used the SBP property and negative semidefiniteness for periodic upwind operators (2.30) in the last two steps. □

Remark 4.4. The assumption of a positive speed 𝑓 ′(�̃�) > 0 is equivalent to a positive baseflow ̃𝑢 for Burgers’ equation. While this is a 
strong assumption, it is exactly the situation investigated in [10] where local linear/energy stability fails for entropy-stable methods. 
⊲

We get similar results for splittings such as the Lax-Friedrichs splitting, at least for Burgers’ equation.

Theorem 4.5. Upwind nodal diagonal-norm SBP semidiscretizations of Burgers’ equation with local Lax-Friedrichs flux splitting in periodic 
domains are linearly stable around positive states. In particular, the Jacobian has a spectrum in the left half of the complex plane.

Proof. The flux splitting is

𝑢2

2
= 1

2

(
𝑢2

2
+ |𝑢|𝑢)+ 1

2

(
𝑢2

2
− |𝑢|𝑢) . (4.11)

For positive 𝑢𝑢𝑢, the semidiscretization is

𝜕𝑡𝑢𝑢𝑢 = −3
4
𝐷−𝑢𝑢𝑢

2 + 1
4
𝐷+𝑢𝑢𝑢

2. (4.12)

The Jacobian of the right-hand side is

𝐽 = −3
4
𝐷− diag((𝑢𝑢𝑢2)′) +

1
4
𝐷+ diag((𝑢𝑢𝑢2)′). (4.13)

As in Theorem 4.3, we can show that this Jacobian has a spectrum in the left half of the complex plane, since for all (complex) grid 
vectors 𝑣𝑣𝑣

2Re⟨𝑣𝑣𝑣, 𝐽𝑣𝑣𝑣⟩diag((𝑢𝑢𝑢2)′)𝑀 = −3
2
𝑣𝑣𝑣∗ diag((𝑢𝑢𝑢2)′)𝑀𝐷− diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣+

1
2
𝑣𝑣𝑣∗ diag((𝑢𝑢𝑢2)′)𝑀𝐷+ diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

− 3
2
𝑣𝑣𝑣∗ diag((𝑢𝑢𝑢2)′)𝐷𝑇−𝑀 diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣+ 1

2
𝑣𝑣𝑣∗ diag((𝑢𝑢𝑢2)′)𝐷𝑇+𝑀 diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

= 3
2
𝑣𝑣𝑣∗ diag((𝑢𝑢𝑢2)′)

(
−𝑀𝐷− −𝐷𝑇−𝑀

)
diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

+ 1
2
𝑣𝑣𝑣∗ diag((𝑢𝑢𝑢2)′)

(
𝑀𝐷+ +𝐷𝑇+𝑀

)
diag((𝑢𝑢𝑢2)′)𝑣𝑣𝑣

(4.14)

Both matrices in brackets are negative semidefinite, since the upwind SBP properties guarantee that

−𝑀𝐷− −𝐷𝑇−𝑀 =𝑀𝐷+ −𝑀𝐷− =𝑀𝐷+ +𝐷𝑇+𝑀 (4.15)

is negative semidefinite. □

Remark 4.6. The proof of Theorem 4.5 holds for scalar conservation laws with homogeneous flux 𝑓 (𝑠𝑢) = 𝑠𝛼𝑓 (𝑢). In this case, the 
flux splitting with positive speeds is

𝑓+ = 1
2
(
𝑓 + 𝑓𝑢𝑢

)
= 1 + 𝛼

2
𝑓, 𝑓− = 1

2
(
𝑓 − 𝑓𝑢𝑢

)
= 1 − 𝛼

2
𝑓, (4.16)

due to Eulers’ theorem. ⊲

4.1. A special choice of entropy

We relate standard central schemes 𝜕𝑡𝑢𝑢𝑢 + 𝐷𝑓𝑓𝑓 = 000 to entropy-conservative schemes with a special choice of entropy function. 
Consider a scalar conservation law 𝜕𝑡𝑢 + 𝜕𝑥𝑓 (𝑢) = 0 with positive wave speeds 𝑓 ′(𝑢) > 0. In this case, the primitive 𝑈 (𝑢) = ∫ 𝑢 𝑓 (𝑦) d𝑦
of the flux is a convex entropy with entropy flux 𝐹 = 𝑓 2∕2, cf. [67]. The associated entropy variable 𝑤 = 𝑈 ′ = 𝑓 is the flux itself and 
a smooth solution yields

𝜕𝑡𝑈 + 𝜕𝑥𝐹 = 𝜕𝑡𝑈 + 𝜕𝑥
𝑓 2

2
= 𝑓 ⋅ (𝜕𝑡𝑢+ 𝜕𝑥𝑓 ) = 0. (4.17)
15

Thus, the entropy-conservative numerical flux of Tadmor is given by the central flux since
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(𝑓𝑟 − 𝑓𝑙)
𝑓𝑟 + 𝑓𝑙

2
=
𝑓 2𝑟
2

−
𝑓 2𝑙
2
, (4.18)

where we have used the entropy flux potential

𝜓 =𝑤 ⋅ 𝑓 − 𝐹 = 𝑓 2 − 𝑓
2

2
= 𝑓

2

2
. (4.19)

Finally, flux differencing methods using the central numerical flux are equivalent to the central discretization 𝜕𝑡𝑢𝑢𝑢 +𝐷𝑓𝑓𝑓 = 000. Thus, 
nonlinear entropy stability and local linear/energy stability can be combined in this very special situation.

Remark 4.7. The dissipation introduced by upwind SBP operators is compatible with the structure of the local linear/energy stability 
estimate. In particular, the dissipation introduced compared to a central scheme dissipates the entropy 𝑈 (𝑢) = ∫ 𝑢 𝑓 (𝑦) d𝑦, since

𝑓𝑓𝑓𝑇𝑀(−𝐷−𝑓𝑓𝑓 ) = −𝑓𝑓𝑓𝑇𝑀
𝐷+ +𝐷−

2
𝑓𝑓𝑓 +𝑓𝑓𝑓𝑇𝑀

𝐷+ −𝐷−
2

𝑓𝑓𝑓 ≤ −𝑓𝑓𝑓𝑇𝑀
𝐷+ +𝐷−

2
𝑓𝑓𝑓. (4.20)

The central scheme with operator (𝐷+ +𝐷−)∕2 conserves this entropy, so the total upwind scheme is entropy-dissipative. ⊲

4.2. Discussion

Following [10], three desirable properties of numerical methods are i) nonlinear entropy stability, ii) local linear/energy stability, 
and iii) high-order accuracy. There have been substantial discussions in the high-order community about these properties. Clearly, 
central-type schemes can be high-order accurate and just satisfy local linear/energy stability without any dissipation. We have shown 
that upwind SBP methods can have the same properties while coming with some built-in dissipation. However, it is unclear whether 
they have some nonlinear/entropy stability properties besides the special, academic choice of entropy in the previous subsection. 
Clearly, first-order methods such as Godunov’s method can have both nonlinear entropy and local linear/energy stability properties. 
It is an open question whether higher-order methods can have both of these stability properties as well.

5. Numerical experiments

We use the Julia programming language [68] for the numerical experiments. Time integration is performed using Runge-Kutta 
methods implemented in OrdinaryDiffEq.jl [69] (specific choices of the Runge-Kutta methods are stated below). The spatial discretiza-
tions are available in Trixi.jl [70,71]. All numerical experiments presented in this section use diagonal-norm upwind SBP operators 
of [36] available from SummationByPartsOperators.jl [72] (unless stated otherwise). Some of the unstructured curvilinear quadrilat-
eral meshes were constructed with HOHQMesh.jl.1 We use Plots.jl [73] and ParaView [74] to visualize the results. All source code 
required to reproduce the numerical experiments is available online in our reproducibility repository [75].

5.1. Convergence experiments with linear advection

First, we consider the linear advection equation

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥𝑢(𝑡, 𝑥) = 0, 𝑡 ∈ (0,5), 𝑥 ∈ (−1,1),

𝑢(0, 𝑥) = sin(𝜋𝑥), 𝑥 ∈ [−1,1],
(5.1)

with periodic boundary conditions. We use the classical Lax-Friedrichs flux vector splitting with 𝜆 = 1, i.e.,

𝑓−(𝑢) = 0, 𝑓+(𝑢) = 𝑢. (5.2)

We use the fourth-order accurate Runge-Kutta method of [76] with error-based step size control and a sufficiently small tolerance 
to integrate the semidiscretizations in time. We measure the discrete 𝐿2 error using the quadrature rule induced by the mass matrix 
𝑀 . Results of these convergence experiments, including the experimental order of convergence (EOC), are shown in Tables 1–4.

When used in DG refinement mode, i.e., increasing the number of elements while keeping the number of nodes per element 
constant, the methods with an interior order of accuracy 𝑝 converge with an EOC of ⌊𝑝∕2 + 1⌋. When used in FD refinement mode, 
i.e., increasing the number of nodes per element while keeping the number of elements constant, the methods with an interior order 
of accuracy 𝑝 converge with an EOC of roughly max(𝑝, ⌊𝑝∕2 + 1⌋ + 1∕2).

5.2. Convergence experiments with the compressible Euler equations

Next, we investigate the experimental order of convergence for the upwind SBP framework with different flux vector splittings 
in one and two space dimensions. The one-dimensional results are presented in Section 5.2.1 and the two-dimensional results on 
unstructured curvilinear meshes are given in Section 5.2.2.
16

1 https://github .com /trixi -framework /HOHQMesh .jl.

https://github.com/trixi-framework/HOHQMesh.jl
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Table 1
Convergence results using upwind SBP discretizations of the linear advection equation 
with Lax-Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of 
accuracy 2.

𝐾 𝑁 𝐿2 error EOC

1 20 3.46 × 10−1
2 20 9.24 × 10−2 1.91
4 20 2.33 × 10−2 1.99
8 20 5.83 × 10−3 2.00
16 20 1.46 × 10−3 2.00
32 20 3.64 × 10−4 2.00
64 20 9.11 × 10−5 2.00
128 20 2.28 × 10−5 2.00

𝐾 𝑁 𝐿2 error EOC

4 10 9.32 × 10−2
4 20 2.33 × 10−2 2.00
4 40 5.77 × 10−3 2.01
4 80 1.44 × 10−3 2.01
4 160 3.58 × 10−4 2.00
4 320 8.94 × 10−5 2.00
4 640 2.23 × 10−5 2.00
4 1280 5.58 × 10−6 2.00

Table 2
Convergence results using upwind SBP discretizations of the linear advection equation 
with Lax-Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of 
accuracy 3.

𝐾 𝑁 𝐿2 error EOC

1 20 3.40 × 10−2
2 20 4.93 × 10−3 2.78
4 20 8.73 × 10−4 2.50
8 20 1.87 × 10−4 2.22
16 20 4.47 × 10−5 2.07
32 20 1.11 × 10−5 2.01
64 20 2.76 × 10−6 2.00
128 20 6.90 × 10−7 2.00

𝐾 𝑁 𝐿2 error EOC

4 10 7.98 × 10−3
4 20 8.73 × 10−4 3.19
4 40 1.05 × 10−4 3.06
4 80 1.34 × 10−5 2.96
4 160 1.83 × 10−6 2.87
4 320 2.68 × 10−7 2.77
4 640 4.20 × 10−8 2.68
4 1280 6.91 × 10−9 2.60

Table 3
Convergence results using upwind SBP discretizations of the linear advection equation 
with Lax-Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of 
accuracy 4.

𝐾 𝑁 𝐿2 error EOC

1 20 5.03 × 10−3
2 20 3.96 × 10−4 3.67
4 20 3.19 × 10−5 3.63
8 20 3.66 × 10−6 3.12
16 20 4.51 × 10−7 3.02
32 20 5.57 × 10−8 3.02
64 20 6.96 × 10−9 3.00
128 20 8.73 × 10−10 3.00

𝐾 𝑁 𝐿2 error EOC

4 10 3.86 × 10−4
4 20 3.19 × 10−5 3.60
4 40 2.57 × 10−6 3.63
4 80 2.10 × 10−7 3.61
4 160 1.77 × 10−8 3.57
4 320 1.51 × 10−9 3.55
4 640 1.30 × 10−10 3.54
4 1280 1.17 × 10−11 3.48

Table 4
Convergence results using upwind SBP discretizations of the linear advection equation 
with Lax-Friedrichs splitting, 𝐾 elements, 𝑁 nodes per element, and an interior order of 
accuracy 5.

𝐾 𝑁 𝐿2 error EOC

1 20 3.49 × 10−3
2 20 3.77 × 10−4 3.21
4 20 3.31 × 10−5 3.51
8 20 4.09 × 10−6 3.01
16 20 5.13 × 10−7 3.00
32 20 6.43 × 10−8 3.00
64 20 8.02 × 10−9 3.00
128 20 1.01 × 10−9 2.99

𝐾 𝑁 𝐿2 error EOC

4 10 5.17 × 10−4
4 20 3.31 × 10−5 3.97
4 40 2.64 × 10−6 3.65
4 80 2.23 × 10−7 3.56
4 160 1.93 × 10−8 3.53
4 320 1.69 × 10−9 3.51
4 640 1.51 × 10−10 3.48
4 1280 1.34 × 10−11 3.49

5.2.1. One spatial dimension

Consider the 1D compressible Euler equations

𝜕𝑡

⎛⎜⎜⎝
𝜚
𝜚𝑣
𝜚𝑒

⎞⎟⎟⎠+ 𝜕𝑥
⎛⎜⎜⎝

𝜚𝑣
𝜚𝑣2 + 𝑝
(𝜚𝑒+ 𝑝)𝑣

⎞⎟⎟⎠ = 0 (5.3)
17

of an ideal gas with density 𝜚, velocity 𝑣, total energy density 𝜚𝑒, and pressure
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Table 5
Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and an interior 
order of accuracy 2.

(a) van Leer-Hänel spl. [45–47].

𝐾 𝑁 𝐿2 error EOC

1 20 1.01 × 10−2
2 20 2.94 × 10−3 1.78
4 20 7.55 × 10−4 1.96
8 20 1.91 × 10−4 1.98
16 20 4.79 × 10−5 2.00
32 20 1.19 × 10−5 2.01
64 20 2.98 × 10−6 2.00
128 20 7.45 × 10−7 2.00

(b) Steger-Warming splitting [44]. 

𝐾 𝑁 𝐿2 error EOC

1 20 1.02 × 10−2
2 20 2.95 × 10−3 1.79
4 20 7.59 × 10−4 1.96
8 20 1.92 × 10−4 1.99
16 20 4.79 × 10−5 2.00
32 20 1.19 × 10−5 2.01
64 20 2.98 × 10−6 2.00
128 20 7.46 × 10−7 2.00

(c) Steger-Warming splitting [44]. 

𝐾 𝑁 𝐿2 error EOC

4 10 2.97 × 10−3
4 20 7.59 × 10−4 1.97
4 40 1.89 × 10−4 2.01
4 80 4.69 × 10−5 2.01
4 160 1.17 × 10−5 2.01
4 320 2.92 × 10−6 2.00
4 640 7.29 × 10−7 2.00
4 1280 1.82 × 10−7 2.00

Table 6
Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and an interior 
order of accuracy 3.

(a) van Leer-Hänel spl. [45–47]. 

𝐾 𝑁 𝐿2 error EOC

1 20 1.14 × 10−3
2 20 1.75 × 10−4 2.70
4 20 4.41 × 10−5 1.99
8 20 1.21 × 10−5 1.86
16 20 3.16 × 10−6 1.94
32 20 5.96 × 10−7 2.41
64 20 1.43 × 10−7 2.06
128 20 3.43 × 10−8 2.06

(b) Steger-Warming splitting [44]. 

𝐾 𝑁 𝐿2 error EOC

1 20 1.18 × 10−3
2 20 1.83 × 10−4 2.69
4 20 4.51 × 10−5 2.02
8 20 1.21 × 10−5 1.90
16 20 3.05 × 10−6 1.98
32 20 5.59 × 10−7 2.45
64 20 1.35 × 10−7 2.05
128 20 3.22 × 10−8 2.07

(c) Steger-Warming splitting [44]. 

𝐾 𝑁 𝐿2 error EOC

4 10 2.97 × 10−4
4 20 4.51 × 10−5 2.72
4 40 7.56 × 10−6 2.58
4 80 1.16 × 10−6 2.70
4 160 1.78 × 10−7 2.70
4 320 2.81 × 10−8 2.66
4 640 4.59 × 10−9 2.62
4 1280 7.69 × 10−10 2.58

Table 7
Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and an interior 
order of accuracy 4.

(a) van Leer-Hänel spl. [45–47].

𝐾 𝑁 𝐿2 error EOC

1 20 3.01 × 10−4
2 20 3.51 × 10−5 3.10
4 20 4.14 × 10−6 3.08
8 20 5.84 × 10−7 2.83
16 20 6.60 × 10−8 3.14
32 20 6.68 × 10−9 3.31
64 20 8.24 × 10−10 3.02
128 20 9.63 × 10−11 3.10

(b) Steger-Warming splitting [44].

𝐾 𝑁 𝐿2 error EOC

1 20 2.30 × 10−4
2 20 2.71 × 10−5 3.09
4 20 4.21 × 10−6 2.69
8 20 5.88 × 10−7 2.84
16 20 6.50 × 10−8 3.18
32 20 6.53 × 10−9 3.32
64 20 7.94 × 10−10 3.04
128 20 9.17 × 10−11 3.11

(c) Steger-Warming splitting [44].

𝐾 𝑁 𝐿2 error EOC

4 10 3.72 × 10−5
4 20 4.21 × 10−6 3.14
4 40 3.66 × 10−7 3.52
4 80 2.66 × 10−8 3.78
4 160 1.95 × 10−9 3.77
4 320 1.60 × 10−10 3.61
4 640 1.37 × 10−11 3.54
4 1280 2.05 × 10−12 2.74

𝑝 = (𝛾 − 1)
(
𝜚𝑒− 1

2
𝜚𝑣2

)
, (5.4)

where the ratio of specific heats is chosen as 𝛾 = 1.4. We add a source term to create the manufactured solution

𝜚(𝑡, 𝑥) = ℎ(𝑡, 𝑥), 𝑣(𝑡, 𝑥) = 1, 𝜚𝑒(𝑡, 𝑥) = ℎ(𝑡, 𝑥)2, (5.5)

with

ℎ(𝑡, 𝑥) = 2 + 0.1 sin
(
𝜋(𝑥− 𝑡)

)
(5.6)

for 𝑡 ∈ [0, 2] and 𝑥 ∈ [0, 2]. We use the flux vector splittings introduced in Examples 2.2 and 2.3.
The convergence results for the compressible Euler equations shown in Tables 5–8 confirm that the behavior of the experimental 

order of convergence observed earlier for the linear advection equation remains the same for a nonlinear hyperbolic system.

5.2.2. Two spatial dimensions

Next, consider the 2D compressible Euler equations

𝜕𝑡

⎛⎜⎜⎜
𝜚
𝜚𝑣1
𝜚𝑣2

⎞⎟⎟⎟+ 𝜕𝑥
⎛⎜⎜⎜

𝜚𝑣1
𝜚𝑣21 + 𝑝
𝜚𝑣1𝑣2

⎞⎟⎟⎟+ 𝜕𝑦
⎛⎜⎜⎜

𝜚𝑣2
𝜚𝑣1𝑣2
𝜚𝑣22 + 𝑝

⎞⎟⎟⎟ = 0 (5.7)
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⎜⎝ 𝜚𝑒 ⎟⎠ ⎜⎝ (𝜚𝑒+ 𝑝)𝑣1 ⎟⎠ ⎜⎝ (𝜚𝑒+ 𝑝)𝑣2 ⎟⎠
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Table 8
Convergence results using upwind SBP discretizations of the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and an interior 
order of accuracy 5.

(a) van Leer-Hänel spl. [45–47]. 

𝐾 𝑁 𝐿2 error EOC

1 20 2.05 × 10−4
2 20 3.29 × 10−5 2.64
4 20 3.74 × 10−6 3.14
8 20 5.15 × 10−7 2.86
16 20 5.99 × 10−8 3.10
32 20 6.97 × 10−9 3.10
64 20 8.67 × 10−10 3.01
128 20 1.05 × 10−10 3.04

(b) Steger-Warming splitting [44].

𝐾 𝑁 𝐿2 error EOC

1 20 1.17 × 10−4
2 20 2.44 × 10−5 2.26
4 20 4.13 × 10−6 2.56
8 20 5.20 × 10−7 2.99
16 20 5.85 × 10−8 3.15
32 20 6.78 × 10−9 3.11
64 20 8.38 × 10−10 3.02
128 20 1.02 × 10−10 3.04

(c) Steger-Warming splitting [44].

𝐾 𝑁 𝐿2 error EOC

4 10 4.20 × 10−5
4 20 4.13 × 10−6 3.35
4 40 3.28 × 10−7 3.66
4 80 2.53 × 10−8 3.69
4 160 2.05 × 10−9 3.63
4 320 1.75 × 10−10 3.55
4 640 1.52 × 10−11 3.52
4 1280 1.63 × 10−12 3.23

Fig. 1. Non-overlapping quadrilateral meshes used for the convergence testing on unstructured meshes. The local coordinate axes on each element denoted with 𝜉
and 𝜂 demonstrate that several elements have flipped local coordinate systems with respect to their neighbor elements.

of an ideal gas with density 𝜚, velociteis 𝑣1, 𝑣2, total energy density 𝜚𝑒, and pressure

𝑝 = (𝛾 − 1)
(
𝜚𝑒− 1

2
𝜚(𝑣21 + 𝑣

2
2)
)
, (5.8)

where the ratio of specific heats is chosen as 𝛾 = 1.4. We add a source term to create the manufactured solution

𝜚(𝑡, 𝑥) = ℎ(𝑡, 𝑥), 𝑣1(𝑡, 𝑥) = 𝑣2(𝑡, 𝑥) = 1, 𝜚𝑒(𝑡, 𝑥) = ℎ(𝑡, 𝑥)2, (5.9)

with

ℎ(𝑡, 𝑥) = 2 + 0.1 sin
(√

2𝜋(𝑥− 𝑡)
)

(5.10)

for 𝑡 ∈ [0, 2], 𝑥 ∈ [0, 
√
2]2, and periodic boundary conditions. The full expressions of the source terms and all code required to 

reproduce these experiments is available in our reproducibility repository [75].

We subdivide the domain [0, 
√
2]2 with 16 non-overlapping quadrilateral elements. For these convergence tests we consider two 

unstructured meshes, one with only bi-linear elements and the other containing internal element boundaries approximated with 
quadratic polynomials. Moreover, we design these meshes such that several neighboring elements have flipped local coordinate 
systems, as is possible in unstructured mesh computations. Even so, the domain discretized with either mesh remains periodic as 
required by the manufactured solution setup. The two meshes used for the convergence testing are given in Fig. 1.

We use the manufactured solution described above to compute the experimental order of convergence for the Lax-Friedrichs, 
Drikakis-Tsangaris, and van Leer-Hänel splittings on both meshes given in Fig. 1. In particular, we use the bi-linear unstructured 
mesh from Fig. 1(a) to test convergence of the 4-2 and 6-3 upwind SBP operators and the quadratic unstructured mesh shown in 
19

Fig. 1(b) to test the convergence of the 8-4 upwind SBP operator.
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Table 9
Convergence results using curvilinear upwind SBP discretizations for the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and 
an interior order of accuracy 4 on the unstructured bi-linear mesh shown in Fig. 1(a).

(a) local Lax-Friedrichs spl. Ex. 3.6. 

𝐾 𝑁 𝐿2 error EOC

16 17 1.92 × 10−4
16 34 1.60 × 10−5 3.58
16 68 1.46 × 10−6 3.45
16 136 1.53 × 10−7 3.26
16 272 1.66 × 10−8 3.20

(b) Drikakis-Tsangaris splitting [59].

𝐾 𝑁 𝐿2 error EOC

16 17 1.35 × 10−4
16 34 1.18 × 10−5 3.52
16 68 1.14 × 10−6 3.36
16 136 1.18 × 10−7 3.27
16 272 1.30 × 10−8 3.18

(c) van Leer-Hänel splitting [57].

𝐾 𝑁 𝐿2 error EOC

16 17 9.21 × 10−5
16 34 8.07 × 10−6 3.51
16 68 8.15 × 10−7 3.31
16 136 8.19 × 10−8 3.31
16 272 8.83 × 10−9 3.21

Table 10
Convergence results using curvilinear upwind SBP discretizations for the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and 
an interior order of accuracy 6 on the unstructured bi-linear mesh shown in Fig. 1(a).

(a) local Lax-Friedrichs spl. Ex. 3.6.

𝐾 𝑁 𝐿2 error EOC

16 17 1.95 × 10−5
16 34 9.26 × 10−7 4.40
16 68 4.71 × 10−8 4.30
16 136 2.46 × 10−9 4.26
16 272 1.32 × 10−10 4.22

(b) Drikakis-Tsangaris splitting [59].

𝐾 𝑁 𝐿2 error EOC

16 17 2.15 × 10−5
16 34 1.04 × 10−6 4.37
16 68 5.75 × 10−8 4.17
16 136 3.06 × 10−9 4.23
16 272 1.65 × 10−10 4.21

(c) van Leer-Hänel splitting [57].

𝐾 𝑁 𝐿2 error EOC

16 17 2.33 × 10−5
16 34 1.15 × 10−6 4.34
16 68 6.74 × 10−8 4.09
16 136 3.70 × 10−9 4.19
16 272 2.06 × 10−10 4.17

Table 11
Convergence results using curvilinear upwind SBP discretizations for the compressible Euler equations with 𝐾 elements, 𝑁 nodes per element, and 
an interior order of accuracy 8 on the unstructured quadratic curvilinear mesh shown in Fig. 1(b).

(a) local Lax-Friedrichs spl. Ex. 3.6.

𝐾 𝑁 𝐿2 error EOC

16 17 1.71 × 10−5
16 34 4.16 × 10−7 5.36
16 68 1.17 × 10−8 5.15
16 136 3.64 × 10−10 5.01
16 272 1.15 × 10−11 4.99

(b) Drikakis-Tsangaris splitting [59].

𝐾 𝑁 𝐿2 error EOC

16 17 1.71 × 10−5
16 34 4.40 × 10−7 5.28
16 68 1.32 × 10−8 5.06
16 136 4.33 × 10−10 4.93
16 272 1.33 × 10−11 5.02

(c) van Leer-Hänel splitting [57].

𝐾 𝑁 𝐿2 error EOC

16 17 1.66 × 10−5
16 34 4.51 × 10−7 5.20
16 68 1.42 × 10−8 4.99
16 136 4.84 × 10−10 4.88
16 272 1.52 × 10−11 4.99

The convergence results for the compressible Euler equations shown in Tables 9–11 confirm the behavior of the experimental 
order of convergence observed for the earlier one-dimensional convergence tests.

5.3. Spectral analysis

We consider the same linear advection setup with periodic boundary conditions as in Section 5.1 and compute the spectra of the 
semidiscretizations. The results visualized in Fig. 2 demonstrate the linear stability of the upwind discretizations, since the spectra 
are contained in the left half of the complex plane and the maximum real part is zero up to machine precision. Furthermore, they 
indicate that the stiffness of the methods (as measured by the largest eigenvalue by magnitude) increases when reducing the number 
of elements and increasing the number of nodes per element such that the total number of degrees of freedom (DOFs) is constant.

In general, the spectra are comparable to the spectra obtained by the classical nodal DGSEM method on Gauss-Lobatto-Legendre 
nodes. The spectra shown in Fig. 2 suggest that the upwind SBP methods with an interior order of accuracy 4 are stiffer than DGSEM 
with a polynomial degree of 2; the situation is reversed for upwind SBP methods with an interior of accuracy 6 and DGSEM with a 
polynomial degree of 3.

5.4. Local linear/energy stability

Next, we verify the local linear/energy stability properties discussed in Section 4 numerically. For this, we discretize Burgers’ 
equation in the domain (−1, 1) with periodic boundary conditions using upwind SBP methods with a fully upwind discretization 
using only 𝐷−. To stress the methods, we consider a completely under-resolved case by computing the Jacobian at a random non-
negative state using automatic/algorithmic differentiation via ForwardDiff.jl [77].

The results are shown in Table 12. Clearly, the maximal positive real part of the spectrum is around machine precision for 64 bit 
20

floating point numbers in all cases.
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Fig. 2. Spectra of semidiscretizations of the 1D linear scalar advection equation with periodic boundary conditions. The maximum real part of all eigenvalues is around 
machine precision. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 12
Maximal real part of the spectrum of upwind SBP discretizations of Burgers’ equation with different interior order of accuracy 𝑝, 𝐾 elements, 𝑁
nodes per element, and a purely upwind discretization using only 𝐷− .

𝑝 𝐾 𝑁 maxRe𝜎

2 1 13 2.93 × 10−16
2 1 14 −5.58 × 10−16
2 2 13 2.62 × 10−15
2 2 14 1.89 × 10−15
3 1 13 3.08 × 10−17
3 1 14 4.76 × 10−16
3 2 13 5.51 × 10−16
3 2 14 −2.78 × 10−16

𝑝 𝐾 𝑁 maxRe𝜎

4 1 13 −4.67 × 10−16
4 1 14 2.29 × 10−16
4 2 13 −6.84 × 10−17
4 2 14 3.39 × 10−16
5 1 13 −1.67 × 10−16
5 1 14 1.77 × 10−17
5 2 13 2.11 × 10−16
5 2 14 4.03 × 10−16

𝑝 𝐾 𝑁 maxRe𝜎

6 1 13 −2.08 × 10−16
6 1 14 −2.67 × 10−16
6 2 13 −2.40 × 10−16
6 2 14 −3.08 × 10−16
7 1 13 1.65 × 10−16
7 1 14 2.72 × 10−16
7 2 13 4.33 × 10−16
7 2 14 1.23 × 10−16

5.5. Free-stream preservation on unstructured meshes

In this section, we present numerical evidence for the proof of free-stream preservation for the upwind SBP framework presented in 
Theorem 3.10. This theorem found that more complicated splittings, like the Drikakis-Tsangaris, for the upwind method in curvilinear 
coordinates are only guaranteed to be FSP under a particular interplay between the boundary (or interface) polynomial degree of an 
unstructured curvilinear mesh, the particular flux vector splitting, and the boundary closure order of the upwind SBP operator. The 
analysis in Section 3.4 also demonstrated that FSP is easily obtained provided the splitting technique remains linear as a function of 
the metrics terms, as was the case for the local Lax-Friedrichs splitting.

We reiterate that on a Cartesian box mesh, where all metric terms are constants proportional to fixed values of Δ𝑥 or Δ𝑦, there 
is no issue with FSP. It is only when we move the approximation into generalized curvilinear coordinates that one must take care of 
the mapping, the metric terms, and their approximation strategy. The importance, and subtleties, of the discrete approximation of 
the metric terms has been known for decades across different computational fluid dynamics communities, e.g., [54–56].

Setting up an FSP test is straightforward and, at a glance, fairly innocuous. A constant solution should remain constant (up to 
machine precision) for all time as indicated by the governing equations (3.27) with appropriate boundary conditions. For the test 
herein we consider the compressible Euler equations in two space dimensions (5.7). Given the free-stream solution state of the 
conservative variables

𝑢∞ =

⎛⎜⎜⎜⎜⎝
𝜚∞

(𝜚𝑣1)∞
(𝜚𝑣2)∞
(𝜚𝑒)∞

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1.0
0.1
−0.2
10.0

⎞⎟⎟⎟⎟⎠
, (5.11)

the fluxes are all constant and their divergence vanishes on the continuous level. However, in the discrete setting this is (potentially) 
21

not always the case.
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Fig. 3. Non-overlapping quadrilateral meshes used for the free-stream preservation testing.

Table 13
Free-stream preservation error at final time 10 for the local Lax-Friedrichs splitting on two mesh types with 17 nodes in each spatial direction. As 
expected from the results in Section 3.4, the local Lax-Friedrichs splitting is FSP across all configurations.

interior order 2 3 4 5 6 7 8 9

bi-linear mesh 7.55 × 10−14 1.16 × 10−13 6.28 × 10−14 6.99 × 10−15 1.52 × 10−13 1.16 × 10−13 4.35 × 10−14 3.89 × 10−14
quadratic mesh 2.38 × 10−14 4.72 × 10−14 8.41 × 10−14 5.48 × 10−14 1.22 × 10−13 1.47 × 10−14 3.83 × 10−14 4.18 × 10−14

Table 14
Free-stream preservation error at final time 10 for the Drikakis-Tsangaris splitting on two mesh types with 17 nodes in each spatial direction. As 
shown from the result of Theorem 3.10, this splitting is FSP provided the boundary closure is accurate enough to exactly differentiate polynomials of 
degree 2𝑁geo .

interior order 2 3 4 5 6 7 8 9

bi-linear mesh 2.04 × 10−6 9.13 × 10−7 3.34 × 10−14 1.77 × 10−14 3.34 × 10−14 1.24 × 10−14 8.20 × 10−14 2.05 × 10−14
quadratic mesh 2.08 × 10−6 9.32 × 10−7 5.74 × 10−9 2.75 × 10−9 7.09 × 10−11 3.33 × 10−11 2.18 × 10−14 1.55 × 10−14

Table 15
Free-stream preservation error at final time 10 for the van Leer-Hänel splitting on two mesh types with 17 nodes in each spatial direction. As shown 
from the result of Theorem 3.10, this splitting is FSP provided the boundary closure is accurate enough to exactly differentiate polynomials of degree 
2𝑁geo .

interior order 2 3 4 5 6 7 8 9

bi-linear mesh 3.32 × 10−6 1.46 × 10−6 4.78 × 10−14 5.26 × 10−15 3.36 × 10−14 1.02 × 10−14 2.66 × 10−14 1.95 × 10−14
quadratic mesh 3.40 × 10−6 1.49 × 10−6 8.78 × 10−9 4.20 × 10−9 1.06 × 10−10 4.98 × 10−11 1.62 × 10−14 5.43 × 10−14

For the tests in this section we consider a domain with a circular outer boundary and an interior boundary composed of two 
straight lines and a semicircle. This domain is then divided into 204 non-overlapping quadrilateral elements. We create two versions 
of the mesh presented in Fig. 3: one composed only of bi-linear elements and the other with bi-linear elements in the interior and 
boundaries approximated with quadratic polynomials.

Whether or not a particular upwind SBP operator is FSP depends upon the splitting, the boundary closure accuracy, and the 
polynomial degree of the curvilinear boundary approximations in the mesh. We use the two meshes shown in Fig. 3 to examine the 
theoretical finding of Theorem 3.10 for different combinations of the upwind SBP operator, the flux vector splitting in generalized 
coordinates, and the polynomial degree of the mesh. For the FSP testing we fix the spatial resolution to be 17 nodes in each spatial 
direction and integrate the constant solution initial condition (5.11) up to a final time of 10. We present results of the FSP test in 
Tables 13–15 where we vary the curvilinear splitting and consider the upwind SBP operators provided by Mattsson [36] from interior 
order 2 up to interior order 9.

As anticipated from the discussion in Section 3.4 the local Lax-Friedrichs splitting maintains FSP for both meshes and all operator 
22

orders. The results also support the conclusion of Theorem 3.10 for the more complicated Drikakis-Tsangaris and van Leer-Hänel 
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Fig. 4. Discrete 𝐿2 of the density for long-time simulations of the isentropic vortex for the 2D compressible Euler equations.

splittings. Both of these splittings have a maximum quadratic dependence on the metric terms. We see that the operators with interior 
accuracy 2 and 3 (and boundary closure accuracy 1) are not FSP for either the Drikakis-Tsangaris nor van Lerr-Hänel splittings due 
to the lack of accuracy in the boundary closures. The numerical results show that FSP is maintained on the bi-linear test mesh for all 
operator orders above interior order 4 whereas FSP is only maintained on the quadratic test mesh for the 8-4 and 9-4 operators. All 
upwind SBP operator with interior order less than eight lack the required boundary closure accuracy to guarantee FSP on a quadratic 
mesh.

5.6. Isentropic vortex

We consider the classical isentropic vortex test case of [78] with initial conditions

𝑇 = 𝑇0 −
(𝛾 − 1)𝜀2

8𝛾𝜋2
exp

(
1 − 𝑟2

)
, 𝜚 = 𝜚0(𝑇 ∕𝑇0)1∕(𝛾−1),

𝑣 = 𝑣0 +
𝜀
2𝜋

exp
(
(1 − 𝑟2)∕2

)
(−𝑥2, 𝑥1)𝑇 ,

(5.12)

where 𝜀 = 10 is the vortex strength, 𝑟 is the distance from the origin, 𝑇 = 𝑝∕𝜚 the temperature, 𝜚0 = 1 the background density, 
𝑣0 = (1, 1)𝑇 the background velocity, 𝑝0 = 10 the background pressure, 𝛾 = 1.4, and 𝑇0 = 𝑝0∕𝜚0 the background temperature. The 
domain [−5, 5]2 is equipped with periodic boundary conditions.

Following [9], we use this setup to demonstrate the long-time stability of the methods. We use the same time integration method 
and approach to compute the discrete 𝐿2 error of the density as in Section 5.2. As shown in Fig. 4, the upwind methods remain stable 
and are able to run the simulations successfully for long times.

To demonstrate the robustness of the upwind methods on curvilinear meshes we, again, consider the isentropic vortex (5.12) with 
𝜀 = 5 and 𝑝0 = 25. We take Ω = [−10, 10]2 and subdivide the domain with eight elements in each spatial direction for a total of 64 
elements. The Cartesian domain of Ω = [−10, 10]2 is then heavily warped with a strategy adapted from [79,80] where

𝑦 = 𝜂 +
𝐿𝑦
8

cos

(
3𝜋
2

(
2𝜉 −𝐿𝑥
𝐿𝑥

))
cos

⎛⎜⎜⎝𝜋2
(
2𝜂 −𝐿𝑦
𝐿𝑦

)⎞⎟⎟⎠ ,
𝑥 = 𝜉 +

𝐿𝑥
8

cos

(
𝜋
2

(
2𝜉 −𝐿𝑥
𝐿𝑥

))
cos

⎛⎜⎜⎝2𝜋
(
2𝑦−𝐿𝑦
𝐿𝑦

)⎞⎟⎟⎠ ,
(5.13)

with 𝐿𝑥 =𝐿𝑦 = 10. All domain boundaries remain periodic under this mapping. The resulting mesh, given as the overlay of curvilinear 
quadrilaterals in Fig. 5, is extremely distorted with many elements that approach degeneracy. That is, several elements in the mesh are 
close to having an internal angle near 180 degrees that renders the transfinite interpolation procedure to create the element mapping 
ill-conditioned. This extreme warping to a “poor” quality mesh was purposely done to demonstrate that the upwind methods remain 
robust for the isentropic vortex test case even in this extreme problem setup.

We approximate the internal curved boundaries with quadratic polynomials. On each element we take 17 nodes in each spatial 
direction and use the upwind SBP operator that is 8th order in the interior with 4th order boundary closures. We present in Fig. 5 the 
results at different times between 𝑡 = 0 and 𝑡 = 20 using the curvilinear van Leer-Hänel splitting from Example 3.8. Although there 
are some grid artifacts as the vortex passes through extremely distorted elements, the method maintains the shape of the vortex well. 
23

In Fig. 6 we show the 𝐿2 density error for a long time simulation for the curvilinear local Lax-Friedrichs, Drikakis-Tsangaris, and van 
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Fig. 5. Isentropic vortex evolution up to final time 𝑡 = 20 on a heavily distorted quadrilateral mesh of 64 elements. All curvilinear interior boundaries of the warping 
(5.13) are approximated with quadratic polynomials. This result used the curvilinear van Leer-Hänel splitting, Example 3.8, with 17 nodes in each spatial direction 
and the 8th order interior, 4th order boundary accurate upwind SBP operators.

Fig. 6. Discrete 𝐿2 of the density for long-time simulation of three curvilinear splittings applied to the isentropic vortex for the 2D compressible Euler equations. Each 
run used the same heavily distorted quadrilateral mesh.

Leer-Hänel splittings. All three splittings of this heavily distorted curvilinear mesh remain stable. Because the test case configuration 
is well-resolved, any differences in density errors between the three splitting techniques are unnoticeable in the eyeball norm.

5.7. Kelvin-Helmholtz instability

Next, we move beyond well-resolved test configurations and use a Kelvin-Helmholtz instability setup for the 2D compressible 
Euler equations of an ideal fluid to further test the robustness of the methods and their different splittings in various under-resolved 
24

regimes in detail. Specifically, we use the same setup as in [7], i.e., the initial condition
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Table 16
Final times of numerical simulations of the Kelvin-Helmholtz instability with 𝐾 elements using 16 nodes per coordinate direction 
for the upwind SBP methods. Final times less than 15 indicate that the simulation crashed.

(a) Upwind SBP, van Leer-Hänel splitting [45–47].

𝐾 interior order of accuracy
2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 15.0 15.0
4 15.0 15.0 15.0 15.0 15.0 15.0
16 15.0 15.0 15.0 15.0 4.72 3.97
64 15.0 15.0 4.53 3.86 4.17 3.36
256 15.0 15.0 5.80 3.70 3.66 3.68

(b) Upwind SBP, Steger-Warming splitting [44].

𝐾 interior order of accuracy
2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 15.0 15.0
4 15.0 15.0 15.0 15.0 15.0 15.0
16 15.0 15.0 15.0 15.0 4.87 3.88
64 15.0 15.0 4.55 3.85 4.13 4.07
256 15.0 15.0 5.80 3.69 3.66 3.67

(c) Flux differencing DGSEM, flux of Ranocha [62,66,83].

𝐾 polynomial degree
2 3 4 5 6 7

16 15.0 4.46 2.47 3.01 2.80 3.59
64 4.68 1.53 4.04 3.70 4.10 3.56
256 4.81 3.77 4.44 3.74 3.37 3.64
1024 4.12 3.66 4.27 3.54 3.66 3.56

(d) Flux differencing DGSEM, flux of Shima et al. [84].

𝐾 polynomial degree
2 3 4 5 6 7

16 15.0 2.73 1.81 2.42 1.86 2.27
64 2.92 1.38 3.05 3.07 1.82 2.02
256 3.25 2.82 3.29 2.82 2.84 2.96
1024 3.03 2.88 3.36 2.91 3.08 3.25

Table 17
Final times of numerical simulations of the Kelvin-Helmholtz instability with 𝐾 elements using 256∕

√
𝐾 nodes per coordinate 

direction so that the total number of DOFs stays fixed at 65 536. Final times less than 15 indicate that the simulation crashed.

(a) Upwind SBP, van Leer-Hänel splitting [45–47].

𝐾 interior order of accuracy
2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 5.83 4.73
4 15.0 15.0 6.35 15.0 5.83 4.72
16 15.0 15.0 15.0 15.0 5.18 4.00
64 15.0 15.0 15.0 5.80 4.37 3.99
256 15.0 15.0 5.80 3.70 3.66 3.68

(b) Upwind SBP, Steger-Warming splitting [44].

𝐾 interior order of accuracy
2 3 4 5 6 7

1 15.0 15.0 15.0 15.0 5.86 4.80
4 15.0 15.0 15.0 15.0 15.0 4.79
16 15.0 15.0 15.0 15.0 5.43 4.03
64 15.0 15.0 15.0 5.68 4.36 4.02
256 15.0 15.0 5.80 3.69 3.66 3.67

𝜚 = 1
2
+ 3

4
𝐵(𝑥, 𝑦), 𝑝 = 1, 𝑣1 =

1
2

(
𝐵(𝑥, 𝑦) − 1

)
, 𝑣2 =

1
10

sin(2𝜋𝑥), (5.14)

where 𝐵(𝑥, 𝑦) is the smoothed approximation

𝐵(𝑥, 𝑦) = tanh(15𝑦+ 7.5) − tanh(15𝑦− 7.5) (5.15)

to a discontinuous step function. The domain is [−1, 1]2 with time interval [0, 15]. We integrate the semidiscretizations in time with 
the third-order, four-stage SSP method of [81] with embedded method of [82] and error-based step size controller developed in [76]
with absolute and relative tolerances chosen as 10−6 .

We use two types of semidiscretizations: i) the upwind SBP methods described in this article and ii) flux differencing DGSEM with 
different volume fluxes and a local Lax-Friedrichs (Rusanov) surface flux. We refer to [64] for a description of this DGSEM variant 
and its efficient implementation and to [85] for convergence results.

The final times of the simulations are summarized in Table 16. First, it is interesting to observe that all upwind SBP methods 
with few numbers of elements 𝐾 ∈ {1, 4} completed the simulation successfully. The same is true for low interior orders of accuracy 
∈ {2, 3}. However, setups with more elements and higher orders of accuracy became unstable and crashed before 𝑡 = 5.

The same general trend can be observed for flux differencing DGSEM, where nearly all setups became unstable and crashed. 
It is particularly interesting that the simulations with only a few elements remained stable, even if their total number of DOFs is 
comparable to DGSEM setups. For example, the upwind SBP methods with 𝐾 = 4 elements and 16 nodes per coordinate direction 
have 𝐾 ⋅ 162 = 1024 DOFs, the same amount as the DGSEM with 𝐾 = 64 elements and a polynomial degree 𝑝 = 3.

To further investigate this behavior, we ran additional simulations with upwind SBP operators. Here, we choose the number of 
nodes such that the total number of DOFs remains constant. The resulting final simulation times are shown in Table 17. As in the case 
of a constant number of nodes per element investigated before, increasing the number of elements makes the upwind FD methods 
less robust. The only exceptions are again the low-order methods with an interior order of accuracy two and three (both resulting in 
an experimental order of convergence of two under mesh refinement by increasing the number of elements).

Fig. 7 shows the numerical solutions corresponding to the constant DOF setup of Table 17 at the time the simulations crashed. 
As usual, we plot the density of the numerical solutions to allow a comparison with other publications. The white spots mark the 
points where the pressure is negative (for the upwind SBP methods) or where the density is negative (for the DGSEM). Clearly, the 
problematic nodes are always located at interfaces between elements. This appears to be correlated with the earlier crash times of 
25

simulations with more elements and fewer nodes per element. Note that the periodic boundary conditions are enforced weakly. Thus, 
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Fig. 7. Visualization of numerical solutions when the simulations of the Kelvin-Helmholtz instability crashed. All simulations use the same number of DOFs — with 
varying numbers of elements/nodes for the upwind SBP methods with an interior order of accuracy 6 using the van Leer-Hänel splitting [45–47]. For comparison, 
results obtained by entropy-stable flux differencing DGSEM are also shown. The white spots mark points where the pressure (upwind SBP) or the density (DGSEM) is 

negative.
26
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Table 18
Final times of numerical simulations of the Kelvin-Helmholtz instability with a single element using purely periodic upwind 
methods, i.e., only the interior stencils of the corresponding upwind SBP operators. Final times less than 15 indicate that the 
simulation crashed.

(a) Van Leer-Hänel splitting [45–47].

#nodes interior order of accuracy
2 3 4 5 6 7

256 15.0 15.0 15.0 15.0 15.0 15.0
1024 15.0 15.0 15.0 15.0 15.0 15.0
4096 15.0 15.0 15.0 15.0 15.0 15.0
16384 15.0 15.0 15.0 15.0 15.0 15.0
65536 15.0 15.0 15.0 15.0 15.0 4.77

(b) Steger-Warming splitting [44].

#nodes interior order of accuracy
2 3 4 5 6 7

256 15.0 15.0 15.0 15.0 15.0 15.0
1024 15.0 15.0 15.0 15.0 15.0 15.0
4096 15.0 15.0 15.0 15.0 15.0 15.0
16384 15.0 15.0 15.0 15.0 15.0 15.0
65536 15.0 15.0 15.0 15.0 15.0 15.0

Table 19
Final times of numerical simulations of the inviscid Taylor-Green vortex with Ma = 0.1, 𝐾 elements, and upwind SBP methods 
using the Steger-Warming splitting [44]. Final times less than 20 indicate that the simulation crashed.

(a) Constant number of nodes per direction (= 16).

𝐾 interior order of accuracy
2 3 4 5 6 7

1 20.0 20.0 20.0 20.0 20.0 20.0
8 20.0 20.0 20.0 20.0 20.0 13.5
64 20.0 20.0 20.0 20.0 20.0 6.12

(b) Constant number of DOFs (= 262 144).

𝐾 interior order of accuracy
2 3 4 5 6 7

1 20.0 20.0 20.0 20.0 20.0 6.1
4 20.0 20.0 20.0 20.0 20.0 15.0
16 20.0 20.0 20.0 20.0 20.0 6.12

Table 20
Final times of numerical simulations of the inviscid Taylor-
Green vortex with Ma = 0.4, 𝐾 elements, and upwind SBP 
methods using the Steger-Warming splitting [44] with a 
constant number of nodes per direction (= 16). Final times 
less than 20 indicate that the simulation crashed.

𝐾 interior order of accuracy
2 3 4 5 6 7

1 20.0 20.0 20.0 20.0 5.79 5.31
8 20.0 20.0 20.0 4.79 4.00 3.89
64 20.0 20.0 8.40 5.70 4.42 4.18

even the setup with a single element has internal interfaces — and the negative pressure occurs exactly at one of these boundary 
points (top left quadrant).

To investigate this claim, we considered purely periodic upwind methods using only the interior coefficients of the upwind SBP 
operators. As shown in Table 18, this version is much more robust. Indeed, all of the simulations ran successfully except the van 
Leer-Hänel splitting with an interior order of accuracy 7 and 2562 = 65 536 nodes in total.

5.8. Inviscid Taylor-Green vortex

Next, we consider the classical inviscid Taylor-Green vortex for the 3D compressible Euler equations of an ideal gas following [5]. 
Specifically, we consider the initial conditions

𝜚 = 1, 𝑣1 = sin(𝑥1) cos(𝑥2) cos(𝑥3), 𝑣2 = −cos(𝑥1) sin(𝑥2) cos(𝑥3), 𝑣3 = 0,

𝑝 = 𝜚0

Ma2𝛾
+ 𝜚0

cos(2𝑥1) cos(2𝑥3) + 2cos(2𝑥2) + 2cos(2𝑥1) + cos(2𝑥2) cos(2𝑥3)
16

,
(5.16)

where Ma = 0.1 is the Mach number. We consider the domain [−𝜋, 𝜋]3 with periodic boundary conditions and a time interval [0, 20]. 
We integrate the semidiscretizations in time with the third-order, four-stage SSP method of [81] with embedded method of [82] and 
error-based step size controller developed in [76] with absolute and relative tolerance chosen as 10−6 .

The final times of simulations using upwind SBP operators are shown in Table 19. For 16 nodes per coordinate direction, only the 
method with an interior order of accuracy 7 crashed — all lower-order methods completed the full simulation.

Next, we repeat the numerical robustness experiments with an increased Mach number Ma = 0.4. The results are shown in Table 20. 
The increased Mach number introduces more compressibility effects, testing the robustness of the numerical methods in another 
regime. For the upwind SBP methods considered here, this leads to a reduced numerical robustness. Indeed, only the upwind SBP 
methods with an interior order of accuracy two and three complete all simulations. The higher-order methods crash for increased 
27

resolution. These results are comparable to the robustness results we observed for the Kelvin-Helmholtz instability in Section 5.7.
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Table 21
Final times of numerical simulations of the inviscid Taylor-Green vortex with a single element and periodic upwind SBP methods 
using the Steger-Warming splitting [44]. Final times less than 20 indicate that the simulation crashed.

(a) Mach number Ma = 0.1.

#nodes interior order of accuracy
2 3 4 5 6 7

4096 20.0 20.0 20.0 20.0 20.0 20.0
32768 20.0 20.0 20.0 20.0 20.0 20.0
262144 20.0 20.0 20.0 20.0 20.0 20.0

(b) Mach number Ma = 0.4.

#nodes interior order of accuracy
2 3 4 5 6 7

4096 20.0 20.0 20.0 20.0 20.0 20.0
32768 20.0 20.0 20.0 20.0 20.0 20.0
262144 20.0 20.0 20.0 20.0 20.0 20.0

Fig. 8. Discrete kinetic energy and its dissipation rate for the inviscid Taylor-Green vortex. We compare the results of flux differencing DGSEM with upwind SBP 
methods. The DGSEM scheme uses 16 elements per coordinate direction, the entropy-conservative flux of Ranocha [62,66,83] in the volume, and the local Lax-
Friedrichs (Rusanov) flux at interfaces. The upwind SBP method uses 4 elements and 16 nodes per coordinate direction, the Steger-Warming splitting [44], and the 
operators of Mattsson [36] with an interior order of accuracy 6. Thus, both simulations use 262 144 DOFs.

Table 21 shows results obtained by fully periodic upwind SBP methods using only the interior coefficients of the upwind SBP 
operators. As for the Kelvin-Helmholtz instability considered before, this version is much more robust — all of the simulations run 
successfully to the final time.

Next, we follow the approach of [5] to compute the kinetic energy dissipation rate for the Mach number Ma = 0.1. Specifically, 
we compute the discrete version of the total kinetic energy

𝐸kin(𝑡) = ∫
1
2
𝜚(𝑡, 𝑥)𝑣(𝑡, 𝑥)2 d𝑥 (5.17)

using the quadrature rule associated with the SBP mass matrix 𝑀 every 10 accepted time steps. Then, we use central finite differences 
to compute the discrete kinetic energy dissipation rate −Δ𝐸kin∕Δ𝑡 approximating − d𝐸kin∕ d𝑡. The results are visualized in Fig. 8. The 
qualitative behavior of the kinetic energy and its dissipation rate is the same for the flux differencing DGSEM method and the upwind 
SBP method. The upwind SBP method tends to begin dissipating the kinetic energy earlier than the DGSEM and shows a dissipation 
rate that is a bit more oscillatory. The results of the upwind SBP method do not change if we use half the number of elements but 
double the number of nodes per element (not shown in the plots). The results of the flux differencing DGSEM simulation match the 
results of [5] for the same polynomial degree and resolution (up to the smaller final time 𝑇 = 14 used there).

We also measured the execution time of the upwind SBP method and the flux differencing DGSEM used in this example on a 
MacBook with an Apple M2 CPU. The total time spent in the ODE right-hand side computation to simulate the Taylor-Green vortex in 
the time interval [0, 1] on a single thread without any parallelism is roughly 12.34(1) s for the flux differencing DGSEM and 13.73(11) 
s for the upwind SBP method (results of five runs, average and standard deviation, same setup as used in Section 5.8). Please note that 
this compares a highly tuned implementation of the DGSEM using SIMD instructions as described in [64] with a first implementation 
of the upwind SBP methods in a research code. Thus, we conclude that both methods are of comparable efficiency.

6. Summary and conclusions

We have discussed high-order upwind SBP methods for nonlinear conservation laws. Introduced by Mattsson in [36], these methods 
combine central-type classical SBP operators with artificial dissipation and need a flux vector splitting for nonlinear conservation laws. 
Lax-Friedrichs type splittings have been predominantly considered in the literature [34–37,39]. To combine upwind SBP operators 
with multiple other flux vector splittings, we have described a general way to design SATs as in discontinuous Galerkin methods using 
numerical fluxes resulting from the chosen splitting in Section 3. Further, we discussed how to extend splittings other than those of 
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Lax-Friedrichs type into the high-order upwind SBP framework of Mattsson on unstructured curvilinear meshes. Through this analysis 
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we found an interplay between the dependency of said splittings, like the van Leer-Hänel, on the metric terms and the boundary closure 
accuracy of the upwind SBP operator. Only under specific conditions on the mapping, the metric terms, and the boundary closure 
could the resulting method retain the important free-stream preservation property in generalized coordinates. We have proven the 
local linear/energy stability of upwind SBP methods for Burgers’ equation in Section 4. This kind of stability property is not the 
classical stability property of a numerical method applied to a linearized problem, but a property of the linearization thereof applied 
to a nonlinear problem. Since linearization and application of a high-order method for conservation laws do not commute in general, 
it is nontrivial to satisfy stability properties such as entropy stability for the nonlinear problem and local linear/energy stability at 
the same time. In particular, we are not aware of any numerical method that has all three desirable properties i) nonlinear entropy 
stability, ii) local linear/energy stability, and iii) high-order accuracy. Methods based on classical SBP operators can be designed to 
be high-order accurate and entropy-stable but lack local linear/energy stability [10]. We have complemented these results by proving 
that high-order upwind SBP methods satisfy local linear/energy stability. We have also discussed the relation to a very special case 
of entropy stability. While this case is only an academic example, we hope that it may lead the community in a way to solve the 
entropy/linear stability issue.

We have applied upwind SBP methods with several flux vector splittings in Section 5. The robustness and computational efficiency 
of the upwind SBP methods for nonlinear conservation laws are roughly comparable to highly tuned flux differencing discontinuous 
Galerkin spectral element methods, as demonstrated for several examples of compressible fluid flows and under-resolved simulations. 
The numerical tests demonstrated that the upwind SBP methods remained high-order accurate on unstructured curvilinear domains 
and free-stream preservation was retained provided any curved boundaries were approximated with an appropriate polynomial order 
dictated by the boundary closure accuracy of a given SBP operator. These validation tests were performed on well-resolved simulation 
setups. For under-resolved simulations, we have shown that results for a classical inviscid Taylor-Green vortex are promising, but 
more challenging tests such as a Kelvin-Helmholtz instability show that upwind SBP methods do not fix all high-order robustness 
issues for shock-free flows. In particular, some robustness (positivity) issues manifest mainly at interfaces and corners. Thus, upwind 
SBP methods are roughly comparable to other modern stabilizations for high-order schemes.
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