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We present a method to obtain microstructural
information from macroscopic boundary
measurements exploiting scattering governed by the
wave equation in a bounded linearly elastic domain
in the long-wavelength regime. Applying a force to
the outer boundary of the body on the macroscopic
scale while measuring the resulting boundary
displacement, we solve the inverse problem of
identifying the geometry of the microstructure in
the context of periodic homogenization minimizing
a tracking-type objective functional as long as the
geometry of the microstructure is parameterized
by a finite set of parameters. Shape calculus
is used to characterize the Gâteaux derivative
of the objective function facilitating the use of
gradient-based algorithms, and we present numerical
experiments for a generic non-destructive testing
problem for ellipsoidal microstructures showcasing
the functioning of the identification method.

1. Introduction
For the durability assessment or quality inspection
of structures that owe their properties to microscopic
features (porosity patterns, fibre reinforcements, etc.), it
is of vital importance to be able to detect damage on
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the microscopic scale. As microscopic defects can rarely be measured directly, they have
to be identified based on the macroscopic behaviour that they induce, e.g. altered load-bear-
ing capabilities or a changed dynamical response to mechanical excitations. Mathematically,
this task gives rise to so-called inverse homogenization problems, i.e. optimization prob-
lems governed by multiscale partial differential equations which aim to minimize an objec-
tive function depending on macroscopic quantities with respect to a parameter distribution
modelling the structure on the microscale.

For a given microstructure, upscaling of the linearly elastic wave equation in three dimen-
sions is a classical result in the context of periodic homogenization assuming scale separation
and long wavelengths. The resulting upscaled system is of the same type, where the homogen-
ized (effective) elasticity tensor depends on the macroscopic variable and it is computed from
solutions of auxiliary problems stated in the periodicity cell. The homogenized (effective) mass
density is obtained by direct averaging.

In order to address the associated inverse problem and deduce from measurements on the
boundary the interior geometry of the periodicity cell, we combine the methods of periodic
homogenization and parameter identification in this article. Therefore, if measured data of
the time-evolution of the deformation of the exterior boundary of a two-scale composite of
two solids under given (boundary and/or volume) forcing is available, the results allow us to
compute parameters characterizing the microscopic structure under the long-wave assumption,
i.e. in the regime where the involved wavelengths are much larger than the characteristic length
of the microstructure. Such results are of particular practical relevance if the microstructure is
associated with damage (microscopic holes/domains of weak material of a certain size) and our
results allow us to compute the extent of the damage (size of the holes/weak domains) from
macroscopic boundary measurements.

More concretely, we derive the results on the inverse problem under the assumption that the
periodicity cell consists of two perfectly bonded solids, where one part is completely contained
in the cell and its geometry is described by a finite vector of real parameters τ. The aim of this
paper is then to investigate the minimization problem

argminτ ∈ K J (τ) := argminτ ∈ K 1
2‖u[τ] − um‖S × [L2(∂Ω)]3

2 ,

where the parameter vector τ ∈ K, K ⊂ ℝN compact, parameterizes the geometry of the
microstructure, u[τ]: S × Ω ℝ3 is the displacement field for given τ and um is the measured
displacement. Besides proving the well-posedness of the inverse problem, we characterize the
Gâteaux derivative of the objective function making use of shape calculus, which facilitates the
use of gradient-based algorithms for finding the optimal τ numerically.

The associated stationary (elliptic) problem has recently been solved in [1] and we make use
of the results presented therein for the elliptic part of our time-dependent problem. Besides, the
focus in [1] was on an ellipsoidal microstructure, which we extend to general microstructures
parameterized by a finite vector throughout this work. In general, the stationary problem has
received considerably more attention than the wave-scattering analogue, which is the focus of
this article. Most closely related are the works [2] (optimizing textile-materials via homogeniza-
tion and beam approximation), [3] (homogenization in connection with shape optimization for
linearized elasticity in two dimensions) as well as [4] (linear elasticity equation together with
some thermal stress tensor). The latter work is also in the setting of inverse homogenization
but the method of Céa in connection with a smoothed interface is used instead of a sharp
interface as we consider here. It is also worth mentioning [5] who investigate the damage
evolution in linear elasticity via shape optimization, whereby they need to compute the shape
derivative. They handle the difficulty that the interface moves instead of the outer boundary
and the full strain and stress tensors are not continuous across the interface, but this work is not
set in a multiscale context. Very recently, related results based on homogenization and shape
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optimization were derived by [6] in the context of linear elasticity and by [7] in the context of
the Maxwell equations.

The literature on the mathematics of the associated inverse vector-valued wave problem
in the long-wavelength limit as it is relevant in the context of bounded volumes of elastic
multiscale solids seems very scarce [8]. Nevertheless, there are a number of related works in
the context of the time-harmonic scalar wave equation. For example, [9] compute topological
sensitivities of the effective parameters due to topological perturbations of a microscopic unit
cell based on a two-scale expansion while, in a single-scale context, [10] present a method
for elastic-wave identification of discrete heterogeneities based on shape and material sensitiv-
ities, i.e. the material parameters are unknown as well, via an adjoint field approach and
direct differentiation of the boundary integral equation. Also related, [11] and [12] consider
the homogenization of a transmission problem arising in the scattering theory for bounded
inhomogeneities with periodic coefficients modelled by the anisotropic Helmholtz equation
and also discuss boundary correctors. As the inverse problem considered in this paper focuses
on bounded volumes of elastic multiscale solids, it is closely related to engineering problems
in non-destructive testing, cf. e.g. [13,14]. Also note that the different regime, in which the
wavelength is of comparable size to the microstructure, is highly relevant in optics (imaging).
Some more general results in shape optimization by homogenization method can be found in
the books of e.g. Allaire [15] and Delfour & Zolesio [16] and in the theory of inverse problems of
e.g. Isakov [17] and Kirsch [18].

The article is organized as follows: In §2, we introduce the forward two-scale problem,
discuss its homogenization limit and briefly summarize the existence and uniqueness of the
solutions. In §3, we formulate the inverse problem and show the existence of at least one
solution of the inverse problem (§3a). After computation of the Gâteaux derivative of the
homogenized tensor, we derive the Gâteaux derivative of the objective functional of the inverse
problem (§3b). For example microstructures consisting of ellipsoids, some numerical experi-
ments showcase the functioning of the method in §4. Conclusions are drawn in §5.

2. The homogenized direct problem
Let S = (0,T) with 0 < T < ∞, Ω ⊂ ℝ3 be an open bounded connected Lipschitz-domain, ΓD ⊂ ∂Ω
closed with |ΓD| > 0, ΓN = ∂Ω ∖ ΓD and Y = (0, l1) × (0, l2) × (0, l3) ⊂ ℝ3 with l1, l2, l3 > 0. We define
the Banach spaces

HΓD1 (Ω) := u ∈ [H1(Ω)]3 | u = 0 on ΓD and L%2(Ω) := [L2(Ω)]3

equipped with norms ‖u‖HΓD1 (Ω) = ‖e(u)‖[L2(Ω)]3 × 3 and ‖u‖L%2(Ω) = ⟨u,u⟩%,
where e(u) = 1

2 (∇u + (∇u)T) and ⟨ ⋅ , ⋅ ⟩% is the weighted scalar product ⟨u, v⟩% =
Ω
%(x)u(x)v(x)dx for

pairs of functions in the space L%2(Ω) × L%2(Ω) with 0 < % ∈ L∞(Ω). Using Korn’s inequality for
functions with zero value on part of the boundary [19, Korollar 25.6], ‖⋅‖HΓD1 (Ω) defines a norm on
the separable Hilbert space HΓD1 (Ω). Moreover, we can introduce the associated Gelfand triple

HΓD1 (Ω) ⊂ L%2(Ω) = L%2(Ω) ∗ ⊂ (HΓD1 (Ω))∗ .

In what follows, we consider bounded sequences {(Aε,%ε)} of (elasticity) tensors Aε of fourth
order in M(α, β, Ω) (see definition 2.1) and (mass density) functions %ε in L∞(Ω), which satisfy
0 < %0 < %ε(x) < %1 for some %0,%1 ∈ ℝ and for a.e. x ∈ Ω.

Definition 2.1. Let α, β ∈ ℝ with 0 < α < β and let O be an open set in ℝ3. We denote by M(α, β,O)
the set of all tensors B = (bijkℎ)1 ≤ i, j, k,ℎ ≤ 3 such that
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(i) bijkℎ ∈ L∞(O) for all i, j, k,ℎ ∈ {1, 2, 3},
(ii) bijkℎ = bjikℎ = bkℎij for all i, j, k,ℎ ∈ {1, 2, 3},

(iii) α|m|2 ≤ Bmm for all symmetric matrices m,
(iv) |B(x)m| ≤ β|m| for all matrices m,

a.e. in O, where

Bm := Bm ij 1 ≤ i, j ≤ 3 = ∑k,ℎ = 1
3 Bijkℎmkℎ ij 1 ≤ i, j ≤ 3,Bmm~ := ∑i, j, k,ℎ = 1

3 bijkℎmijm~kℎ,|m| := ∑i, j = 1
3 mij2 1

2 ,

for quadratic matrices m = mij 1 ≤ i, j ≤ 3 and m~ = m~ ij 1 ≤ i, j ≤ 3.
We define for every ε the (vector-valued) three-dimensional wave-propagation problem

(2.1)

∂t(%ε∂tuε) −∇ ⋅ (Aεe(uε)) = f  in S × Ω,uε = 0  on S × ΓD,Aεe(uε)ν = g  on S × ΓN,uε(0,x) = u0(x) a . e . in Ω,
∂tuε(0,x) = u1(x) a . e . in Ω,

where ν is the outward-pointing normal to ΓN and f is a given force density (per volume). It can
be rewritten as %ε f

%ε  with f
%ε  force per mass, which is well-defined since 0 < %0 < %ε. Thus, we can

prove the existence and uniqueness of the weak solution.

Theorem 2.1. Let (Aε,%ε) be defined as above, u0 ∈ HΓD1 (Ω), u1 ∈ [L2(Ω)]3, f ∈ [L2(S × Ω)]3 andg ∈ H1(S; [L2(ΓN)]3). Then, there exists a unique weak solution uε ∈ L2(S;HΓD1 (Ω)) of (2.1) withuε ∈ L∞(S;HΓD1 (Ω)), ∂tuε ∈ L∞(S; [L2(Ω)]3) and ∂t(%ε∂tuε) ∈ L2(S; (HΓD1 (Ω))∗) in the sense of distribu-
tions, as well as uε ∈ C0(S‾; [L2(Ω)]3), i.e. for all v ∈ L2(S;HΓD1 (Ω)) with ∂tv ∈ L2(S; L%ε2 (Ω)) and v(T) = 0
there holds

(2.2)

−
0

T
Ω
%ε∂tuε ⋅ ∂tvdxdt +

0

T
Ω
Aεe(uε)e(v) dxdt

=
0

T
Ω
f ⋅ vdxdt +

0

T
ΓN
g ⋅ vdσ(x)dt +

Ω
%εu1 ⋅ v(0) dx

and uε(0) = u0. Furthermore,

(2.3)

‖uε‖L∞(S;HΓD1 (Ω))
2 + ‖∂tuε‖L∞(S; [L2(Ω)]3)

2

≤ C ‖u1‖[L2(Ω)]3
2 + ‖u0‖HΓD1 (Ω)

2 + ‖f‖L2(S; [L2(Ω)]3)
2 + ‖g‖H1(S; [L2(ΓN)]3)

2

for some constant C independent of ε.
Proof. The existence and uniqueness result is standard. For example, it can be proven

similarly as [19, Theorem 12.4] by using the Galerkin method. As part of such an existence
proof, it is necessary to show a priori estimates similar to (2.3) independent of the Galerkin-
approximation parameter. Some care has to be taken in order to derive the ε-independent
estimates (2.3), which are necessary for the homogenization process below. From the standard
results, we obtain the estimate

(2.4)

‖u‖L∞(S;HΓD
1 (Ω))

2 + ‖∂tu‖L∞(S; L%ε2 (Ω))
2

≤ C ‖u1‖L%ε2 (Ω)
2 + ‖u0‖HΓD

1 (Ω)
2 + ‖ 1

%εf‖L2(S; L%ε2 (Ω))
2 + ‖g‖H1(S; [L2(ΓN)]3)

2 .

4
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Using the assumption on %ε, we have

%0‖u‖[L2(Ω)]3 ≤ ‖u‖L%ε2 (Ω) ≤ %1‖u‖[L2(Ω)]3,

which we can apply on (2.4) to get (2.3). ∎
Under the assumptions of theorem 2.1 and since L∞(S;HΓD

1 (Ω)) ⊂ L2(S;HΓD
1 (Ω)) andL∞(S; [L2(Ω)]3) ⊂ [L2(S × Ω)]3, we get the weak convergences

(2.5)uε ⇀ u in L2(S;HΓD
1 (Ω)) and ∂tuε ⇀ ∂tu in [L2(S × Ω)]3 .

We split the domain Ω in two disjoint sets depending on ε > 0, namely
Ωε := interior ξ ∈ Λεε(Y + ξ) , where Λε := {ξ ∈ ℝ3 : ε(Y + ξ) ⊂ Ω}, and Πε := Ω\Ωε to introduce the
partial periodic unfolding operator T Yε  from [20, chapter 1.5].

Definition 2.2. For a Lebesgue-measurable function ϕ on S × Ω, the partial periodic unfolding
operator T Yε : Lp(S × Ω) Lp(S × Ω × Y ), p ∈ [1, ∞), is defined as

T Yε (ϕ)(t,x, y) =
ϕ(t, ε xε + εy)  for a.e. (t,x, y) ∈ S × Ωε × Y ,

0  for a.e. (t,x, y) ∈ S × Πε × Y .

For functions independent of time, we can use the standard periodic unfolding operator T ε
defined in [20, chapter 1.1].

Definition 2.3. For a Lebesgue-measurable function ϕ on Ω, the periodic unfolding operator
T ε : Lp(Ω) Lp(Ω × Y ), p ∈ [1, ∞), is defined as

T ε(ϕ)(x, y) =
ϕ(ε xε + εy)  for a.e. (x, y) ∈ Ωε × Y ,

0  for a.e. (x, y) ∈ Πε × Y .

We define Hper, 0
1 (Y ) as the space of Y -periodic H1-functions with zero mean value over Y . The

following compactness results apply.

Theorem 2.2. Let {uε} be a sequence with uε ∈ L∞(S;HΓD
1 (Ω)), ∂tuε ∈ L∞(S; [L2(Ω)]3), uε(0) = u0 and

‖uε‖L2(S;HΓD
1 (Ω))

2 + ‖∂tuε‖ L2(S × Ω)
3

2 ≤ C
for a constant C independent of ε. Then, there exist a subsequence (again denoted by ε),u ∈ L2(S;HΓD

1 (Ω)) ∩ H1(S; [L2(Ω)]3) with u(0) = u0 and u ∈ L2(S × Ω; [Hper, 0
1 (Y )]3) such that

(2.6)T Yε (uε) ⇀ u weakly in [L2(S × Ω × Y )]3,

(2.7)T Yε (∂tuε) ⇀ ∂tu weakly in [L2(S × Ω × Y )]3,

(2.8)T Yε (∇xuε) ⇀ ∇u + ∇yuweakly in [L2(S × Ω × Y )]3 × 3 .

Proof. Using standard estimates of the norm of the partial periodic unfolding operator (cf. [20,
proposition 1.50]) and the uniform boundedness of uε, we obtain (2.6) and (2.7). The conditionu(0) = u0 follows directly from uε(0) = u0 for all ε > 0. Application of [20, proposition 1.50] shows
(2.8). ∎

For future reference, we define the mean value of an integrable function u: S × Ω × Y ℝ
over the reference cell as

(2.9)MY(u) := 1|Y | Yu(t,x, y) dx .

5
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Since, by [20, proposition 1.50], uε ⇀MY(u) = u weakly in [L2(S × Ω)]3 in theorem 2.2, the limit
function u coincides with u from (2.5). In the next step, we want to pass to the limit ε 0 in
(2.2).

Theorem 2.3. Let {(Aε,%ε)} be defined as above, f ∈ [L2(S × Ω)]3, g ∈ H1(S; [L2(ΓN)]3),u0 ∈ HΓD
1 (Ω), u1 ∈ [L2(Ω)]3 and {uε} the associated sequence of weak solutions of (2.2). Then, the weak

convergences (2.5), (2.6), (2.7) and (2.8) hold. Suppose that

Bε := T ε(Aε) → B and T ε(%ε) → %

a.e. in Ω × Y . Then, B ∈ M(α, β, Ω × Y ), 0 < %0 ≤ %(x) ≤ %1 for a.e. x ∈ Ω and the pair

(u,u) ∈ L2(S;HΓD
1 (Ω)) × L2(S × Ω; [Hper, 0

1 (Y )]3)

with ∂tu ∈ [L2(S × Ω)]3 and u(0) = u0 is the weak solution of

(2.10)

−
0

T
Ω

1|Y | Y%(x, y)dy ∂tu(t,x) ⋅ ∂tv(t,x) dxdt
+ 1|Y | 0

T
Ω × YB(x, y)(e(u)(t,x) + ey(u)(t,x, y))(e(v)(t,x) + ey(v)(t,x, y)) dxdydt

=
0

T
Ω
f(t,x) ⋅ v(t,x) dxdt +

0

T
ΓN
g ⋅ v(t,x) dσ(x)dt

+
Ω

1|Y | Y%(x, y) dy u1(x) ⋅ v(0,x) dx
for all v ∈ L2(S;HΓD

1 (Ω)) with ∂tv ∈ [L2(S × Ω)]3, v(T) = 0 and v ∈ L2(S × Ω; [Hper, 0
1 (Y )]3).

Proof. The convergences (2.5)–(2.8) follow directly from (2.3) and theorem 2.2. The assump-
tion on Bε implies that B ∈ M(α, β, Ω × Y ). Since 0 < %0 < %ε(x) < %1 for a.e. x ∈ Ω clearly
0 < %0 ≤ %(x, y) ≤ %1 for a.e. (x, y) ∈ Ω × Y . We rewrite the weak formulation (2.2) using the
(partial) periodic unfolding operator

(2.11)

− 1|Y | 0

T
Ω × YT ε(%ε)T Yε (∂tuε) ⋅ T Yε (∂tv) dxdydt

+ 1|Y | 0

T
Ω × YT ε(Aε)T Yε (e(uε))T Yε (e(v)) dxdydt + I1

= 1|Y | 0

T
Ω × YT Yε (f) ⋅ T Yε (v) dxdydt +

0

T
ΓN
g ⋅ vdσ(x)dt

+ 1|Y | Ω × YT ε(%ε)T ε(u1) ⋅ T ε(v(0)) dxdy + I2,

where

I1 = −
0

T
Πε%ε∂tuε ⋅ ∂tvdxdt +

0

T
ΠεAεe(uε)e(v) dxdt,

I2 =
0

T
Πεf ⋅ vdxdt +

Πε%εu1 ⋅ v(0) dx .

In the first step, we choose the test function as v(t,x) = φ(t)w(x) with φ ∈ Cc
1([0,T)) andw ∈ DΓD(Ω) = {ϕ ∈ [C∞(Ω)]3:v is equal to 0 in a neighbourhood of ΓD} and pass to the limit,

whereby we utilize that the terms I1 and I2 vanish because of Hölder’s inequality and the
fact that

Πε |v |2 dx,  
Πε |∂tv|2 dx,  

Πε | e(v) |2 dx,  
Πε |v(0) |2 dx → 0.

6
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In the second step, we choose v(t,x) = εφ(t)wε(x) with wε(x) = w(x, xε ), wherew(x, y) = (ψi(x)ηi(y))1 ≤ i ≤ 3

and φ ∈ Cc
∞(S), ψ ∈ D(Ω) and η ∈ [Hper, 0

1 (Y )]3, and pass to limit. Adding both limit equations
and using the fact that Cc

1([0,T)) ⊗DΓD(Ω) is dense in L2(S;HΓD
1 (Ω)) (cf. theorem 3.1 from [21])

and Cc
∞(S) ⊗ (D(Ω) ⊗Hper, 0

1 (Y ))3 dense in L2(S × Ω; [Hper, 0
1 (Y )]3), we obtain (2.10).

We can reformulate the homogenized problem (2.10) as a macroscopic problem with some
homogenized elasticity tensor defined via auxiliary cell problems by splitting the problem.

Theorem 2.4. The solution u of the homogenized problem (2.10) is also the solution to the following
problem: Find u ∈ L2(S;HΓD

1 (Ω)) with ∂tu ∈ [L2(S × Ω)]3 and u(0) = u0 such that

(2.12)

−
0

T
Ω
MY(%(x, ⋅ ))∂tu(t,x) ⋅ ∂tv(t,x) dxdt +

0

T
Ω
Ahom(x)e(u)(t,x)e(v)(t,x) dxdt

=
0

T
Ω
f(t,x) ⋅ v(t,x) dxdt +

0

T
ΓN
g ⋅ v(t,x) dσ(x)dt +

Ω
MY(%(x, ⋅ ))u1(x) ⋅ v(0,x) dx

for all v ∈ L2(S;HΓD
1 (Ω)) with ∂tv ∈ [L2(S × Ω)]3 and v(T) = 0, where Ahom = (aijklhom)1 ≤ i, j, k, l ≤ 3 with

aijklhom(x) = 1|Y | YB(x, y)eij(ekl − ey(wkl)(x, y))dy
for a.e. x ∈ Ω, where the ekl constitute the canonical basis of symmetric matrices andwkl ∈ [L∞(Ω,Hper, 0

1 (Y ))]3, k, l ∈ {1,2,3}, is the unique solution of the cell problem

(2.13)YB(x, y) ey(wkl)( ⋅ , y) − ekl ey(v)(y)dy = 0

for all v ∈ [Hper, 0
1 (Y )]3.

Proof. This result follows by standard arguments. It can be shown as in the proof of [20,
proposition 3.7] for the diffusion problem.

We know from [1, theorem 4] that Ahom ∈ M(α, β2/2, Ω) if B is Y -periodic in the second
argument. Using this, we can prove the uniqueness of the solution to the homogenized
problem.

Theorem 2.5. Let B be Y -periodic in the second argument. Then, there exists a unique solutionu ∈ L2(S;HΓD
1 (Ω)) with ∂tu ∈ [L2(S × Ω)]3 and u(0) = u0 of problem (2.12).

Proof. We assume that there exist two weak solutions ua and ub. Owing to the linearity, there
holds u(0) = 0 for u = ua − ub and

−
0

T
Ω
MY(%(x, ⋅ ))∂tu(t,x) ⋅ ∂tv(t,x) dxdt +

0

T
Ω
Ahom(x)e(u)(t,x)e(v)(t,x) dxdt = 0

for all v ∈ L2(S;HΓD
1 (Ω)) with ∂tv ∈ [L2(S × Ω)]3 and v(T) = 0. Let 0 ≤ s ≤ T, χs the characteristic

function of the interval [0, s] and

v(t,x) =
0

tχs(τ)u(τ,x) dτ −
0

Tχs(τ)u(τ,x) dτ .

Then, v is an admissible test function, v(t, ⋅ ) = v(T, ⋅ ) = 0 for s ≤ t ≤ T, v is absolutely continuous
in [0,T] and ∂tv(t,x) = χs(t)u(t,x) a.e. in S × Ω. Using the definition of v as well as the symmetry
and coercivity of Ahom, we obtain
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0 =
0

s
Ω
MY(%(x, ⋅ ))∂tu(t,x) ⋅ u(t,x) dxdt + 1

2 Ω
Ahom(x)e(v)(0,x)e(v)(0,x) dx

≥ 1
2%0‖u(s, ⋅ )‖[L2(Ω)]3

2 + α
2 ‖v(0, ⋅ )‖HΓD

1 (Ω)
2

for a.e. s ∈ S. Thus, u = 0, i.e. ua = ub a.e. ∎
For future reference, we note that the strong formulation of (2.12) is given by

∂t MY(%)∂tu −∇ ⋅ (Ahome(u)) = f  in S × Ω,u = 0  on S × ΓD,

(Ahome(u)) ⋅ ν = g  on S × ΓN,u(0,x) = u0(x) a . e . in Ω,
∂tu(0,x) = u1(x) a . e . in Ω .

3. Inverse problem
Having solved the multiscale forward problem and characterized its solution in terms of the
homogenized problem given in theorem 2.4, we now turn to the inverse problem of identify-
ing the unknown geometry of the microstructure for a material made up of two constituent
materials mixed on the fine scale from macroscopic measurements.

More concretely, for the inverse problem, we assume that the reference cellY = (0, l1) × (0, l2) × (0, l3) ⊂ ℝ3 with l1, l2, l3 > 0 can be separated into two parts, where one is a
Lipschitz domain Y0 with |Y0| > 0 completely contained in Y , whose domain can be described by
a (finite) vector of real parameters τ ∈ K with K ⊂ ℝN compact, and Y1 := Y ∖ Y0. To emphasize
that the structure in the cuboid Y  depends on τ, we write Y [τ], Y0[τ] and Y1[τ] instead ofY ,Y0,Y1 in what follows. We consider an elasticity tensor Aε[τ] of the form

Aε[τ](x) = A0(x)χY0[τ]
xε + A1(x)χY1[τ]

xε
with χY0[τ] (respectively, χY1[τ]) the characteristic function of the Y -periodically extended domainY0[τ] (respectively, Y1[τ]) and some fourth-order tensors A0, A1 ∈ M(α, β, Ω) such that

T ε(Aε[τ])(x, y) A0(x)χY0[τ](y) + A1(x)χY1[τ](y) =: B[τ](x, y)

for a.e. (x, y) ∈ Ω × Y . Since B[τ] is Y -periodic, Ahom = (aijklhom)1 ≤ i, j, k, l ≤ 3 ∈ M(α, β2α , Ω) with

aijklhom[τ](x) = 1|Y | Y0[τ]
A0(x)eij(ekl − ey(wkl)(x, y)) dy

+ 1|Y | Y1[τ]
A1(x)eij(ekl − ey(wkl)(x, y)) dy .

Furthermore, we assume that %ε[τ] is of the form

%ε[τ](x) = %0(x)χY0[τ]
xε + %1(x)χY1[τ]

xε
for some 0 < %0,%1 ∈ L∞(Ω) such that

T ε(%ε[τ])(x, y) %0(x)χY0[τ](y) + %1(x)χY1[τ](y) =: %[τ](x, y)

for a.e. (x, y) ∈ Ω × Y .
In the previous section, we are able to compute easily the displacement field u[τ] of the

homogenized problem if the body and its microstructure (defined by Ω and Aε, respectively, B)
as well as the force densities f, g and the initial values u0 and u1 are given. From now on, we
only know some measured displacement field data um on the exterior boundary under applied
volume and boundary forces f and g over some time interval S. With this information, we

8
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want to derive the structure of the reference cell Y . We define the input–output operator, which
maps the body and boundary forces and the initial values to the solution of the homogenized
problem (2.12).

Definition 3.1. (Input–output operator). Let

ℒτ : [L2(S × Ω)]3 × H1(S; [L2(ΓN)]3) × HΓD
1 (Ω) × [L2(Ω)]3 [L2(S × ∂Ω)]3

with

(f, g,u0,u1) ↦ u[τ] |∂Ω ,

where u[τ] ∈ L2(S;HΓD
1 (Ω)) ∩ H1(S; [L2(Ω)]3) is the solution of the homogenized problem (2.12) for givenτ.

Being a solution operator, this operator satisfies some useful properties.

Theorem 3.1. The operator ℒτ is linear and continuous. Furthermore, u[τ] satisfies

‖u[τ]‖[L2(S × ∂Ω)]3
2 ≤ C ‖u1‖[L2(Ω)]3

2 + ‖u0‖HΓD
1 (Ω)

2 + ‖f‖L2(S; [L2(Ω)]3)
2 + ‖g‖H1(S; [L2(ΓN)]3)

2

for some constant C independent of the structure of the reference cell Y .

Proof. Since Ahom ∈ M(α, β2α , Ω), the estimate of ‖u[τ]‖[L2(S × ∂Ω)]3
2  follows directly by theorem

2.1, the continuity of the trace operator and L∞ ⊂ L2 for some constant C depending only on α, β
but not on the structure of the periodicity cell Y . ∎

Using the input–output operator, we can formulate the inverse problem as follows.

Definition 3.2. (Inverse problem). Find τ ∈ K such that for given measured dataum ∈ [L2(S × ∂Ω)]3, when forces (f, g) are applied and initial conditions u0,u1 are given, τ is the solution
to the minimization problem

(3.1)argminτ ∈ K J (τ) = argminτ ∈ K 1
2‖Lτ(f, g,u0,u1) − um‖[L2(S × ∂Ω)]3

2 .

(a) Existence result
First, we show that there exists at least one solution of the inverse problem (3.1).

Theorem 3.2. The inverse problem (3.1) has at least one optimal solution τ* ∈ K.

Proof. Let {τn} be a minimizing sequence in K such that

limn → ∞
J (τn) = inf {J (τ):τ ∈ K} ≥ 0.

Since K is a compact set in ℝN, there exists a subsequence (again denoted by {τn}) and someτ* ∈ K such that τn τ* as n ∞. We denote {u[τn]} as the associated sequence of weak
solutions of the homogenized problem (2.12). We receive by theorem 2.1 and the fact thatL∞ ⊂ L2 the uniform boundedness of {u[τn]} in L2(S;HΓD

1 (Ω)) ∩ H1(S; [L2(Ω)]3). Thus, there exists a
subsequence of {τn} (again denoted by {τn}) such that

(3.2)u[τn] ⇀ u~ weakly in L2(S;HΓD
1 (Ω)) ∩ H1(S; [L2(Ω)]3) .

In the next step, we prove that u~ = u[τ*]. For every τn, the function u[τn] is the solution ofa(u[τn], v; τn) = F(v; τn)
for all v ∈ L2(S;HΓD

1 (Ω)) ∩ H1(S; [L2(Ω)]3) with v(T) = 0, where

9
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a : L2(S;HΓD
1 (Ω)) ∩ H1(S; [L2(Ω)]3) × L2(S;HΓD

1 (Ω)) ∩ H1(S; [L2(Ω)]3) ℝ
is the bilinear form of the left-hand side of (2.12), i.e.

a(w, v; τ) = −
0

T
Ω
MY(%[τ](x, ⋅ ))∂tw(t,x) ⋅ ∂tv(t,x) dxdt

+
0

T
Ω
Ahom[τ](x)e(w)(t,x)e(v)(t,x) dxdt,

and

F : L2(S;HΓD
1 (Ω)) ∩ H1(S; [L2(Ω)]3) ℝ

is the linear functional of the right-hand side, i.e.

F(v; τ) =
0

T
Ω
f(t,x) ⋅ v(t,x) dxdt +

0

T
ΓN
g ⋅ v(t,x) dσ(x)dt

+
Ω
MY(%[τ](x, ⋅ ))u1(x) ⋅ v(0,x) dx .

The index τ  emphasizes the dependence of the bilinear form and the linear form on the
parameter τ  through Ahom[τ] and %[τ]. For readability, we omit the arguments (t,x) of the
functions.

In the first substep, we show that

(3.3)|a(u[τn], v; τn) − a(u~, v; τ*)| → 0

for n ∞. We rewrite the difference and use Hölder’s inequality to obtain

|a(u[τn], v; τn) − a(u~, v; τ∗)|
≤ ‖MY(%[τn] − %[τ∗])‖L∞(Ω)‖∂tu[τn]‖[L2(S × Ω)]3‖∂tv‖[L2(S × Ω)]3

+ ‖MY(%[τ∗])‖L∞(Ω)
0

T
Ω
∂t(u[τn] − u~) ⋅ ∂tvdxdt

+ ‖(Ahom[τn] − Ahom[τ∗])e(u~)‖[L2(S × Ω)]3 × 3‖e(v)‖[L2(S × Ω)]3 × 3

+
0

T
Ω
∑k, l = 1

3 aijklhom[τn]ekl(v) i, j = 1, 2, 3
: (e(u[τn] − u~)) dxdt .

For the first summand on the right-hand side, using 0 < %0,%1 ∈ L∞(Ω), we receive for a.e. x ∈ Ω

(3.4)

MY(%[τn](x) − %[τ∗](x))

≤ C|Y| |Y0[τn]∖Y0[τ∗] ∪ Y0[τ∗]∖Y0[τn] | + |Y1[τn]∖Y1[τ∗] ∪ Y1[τ∗]∖Y1[τn]| → 0.

Since the right-hand side of this inequality is independent of x, we even get the convergence inL∞(Ω). The convergence of the second and the fourth summand is clear. For the third summand,
we receive

‖(Ahom[τn] − Ahom[τ*])e(u~)‖[L2(S × Ω)]3 × 3 0

proceeding precisely as in the proof of [1, theorem 6]. Using the pointwise convergence ofAhom[τn] to Ahom[τ*] proven in [1, theorem 7] and the weak convergence (3.2), this shows (3.3).
In the second substep, we prove

(3.5)|F(v, τn) − F(v, τ*)| 0

for n ∞. Because

|F(v; τn) − F(v; τ∗) | ≤ C‖MY(%[τn] − %[τ∗])‖L∞(Ω),

10
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(3.5) follows directly from (3.4). So we can conclude from the first and second substeps that

(3.6)a(u~, v; τ*) = limn ∞
a(u[τn], v; τn) = limn ∞

F(v; τn) = F(v; τ*).

Since u[τn],u~ ∈ L2(S;HΓD
1 ) ∩ H1(S; [L2(Ω)]3) we can apply [19, Theorem 10.9] to obtainun,u~ ∈ C0(S‾; [L2(Ω)]3). Thus, by using [19, Proposition 10.8]u[τn](t) = γt(u[τn]), u~(t) = γt(u~) for all t ∈ S̄,

where the trace operator γt for Bochner spaces is defined in [19, Theorem 10.7]. The definition of
the trace operator and the weak convergence of the solutions in H1(S; [L2(Ω)]3) yield

u0(x) = u[τn](0,x) = γ0(u[τn]) = −
0

Tu[τn](t)∂tϕ(t)dt −
0

T
∂tu[τn](t)ϕ(t)dt

−
0

Tu~(t)∂tϕ(t)dt −
0

T
∂tu~(t)ϕ(t)dt = γ0(u~) = u~(0,x)

for all ϕ ∈ Cc
∞([0,T)) with ϕ(0) = 1, which shows thatu~(0,x) = u0(x).

If we summarize all results so far, we obtain that u~ = u[τ*] due to the uniqueness of the solutionu[τ*] of (2.12). Since the functional F : [L2(S × ∂Ω)]3 ℝ, v ‖v − um‖L2(S × ∂Ω)
2  is continuous and

convex, we obtain by [19, Theorem 13.8] that F  is weakly lower semi-continuous. Thus, we
conclude that

J (τ∗) ≤ lim infn → ∞
J (τn) = limn → ∞

J (τn) = inf {J (τ):τ ∈ Iη} ≤ J (τ∗),
showing that τ* is a solution of the inverse problem (3.1). ∎
(b) Gâteaux derivative of J
In order to facilitate gradient-based descent methods, we compute the Gâteaux derivative of the
functional of the inverse problem (3.1) in this subsection, namely of

J (τ) = 1
2 S ∂Ω

|Lτ(f, g) − um |2 dσ(x)dt .

Let u[τ] and u[τ + ετ] be the weak solutions of (2.12) for given τ and τ + ετ , respectively. Taking
the difference of both equations, multiplying by 1ε  and passing to the limit yields

(3.7)

−
0

T
Ω
δMY(%[τ], τ)(x)∂tu[τ] ⋅ ∂tvdxdt −

0

T
Ω
MY(%[τ](x, ⋅ ))∂t(δu(τ, τ)) ⋅ ∂tvdxdt

+
0

T
Ω
δAhom(τ, τ)e(u[τ])e(v) dxdt +

0

T
Ω
Ahom[τ]e(δu(τ, τ))e(v) dxdt

=
Ω
δMY(%[τ], τ)(x)u1(x) ⋅ v(0,x) dx .

To compute δu(τ, τ), we require formulas for the Gâteaux derivatives of MY(%[τ], τ) andAhom(τ, τ). In both cases, we apply the concept of shape derivatives. The following definitions
and theorems and further information can be found in [4].

Definition 3.3. Let Ω0 be a reference domain, Ω = {x + θ(x) : x ∈ Ω0} =: (Id + θ)(Ω0) for some vector
field θ : ℝ3 ℝ3. A functional F : Ω ℝ is said to be shape differentiable at Ω0 if the applicationθ F ((Id + θ)(Ω0)) is Fréchet differentiable at 0 in the Banach space [W1, ∞(ℝ3)]3. Then, the following
asymptotic expansion holds in the vicinity of 0:

11
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F ((Id + θ)(Ω)) = F (Ω) + F ′(Ω)(θ) + o(θ) with limθ 0

|o(θ)|‖θ‖ = 0,

where F ′(Ω) is a continuous linear form on [W1, ∞(ℝ3)]3.
We can also define directional derivatives as in the standard differentiation of functions.

Definition 3.4. The directional derivative of a functional F : Ω ℝ at Ω in the directionθ ∈ [W1, ∞(ℝ3)]3 (if it exists) is defined by

F ′(Ω)(θ) = limδ 0

F ((Id + δθ)Ω) − F (Ω)δ .

The following two theorems give the shape derivative for functionals, where the integrand does
not depend on the domain.

Theorem 3.3. Let Ω0 ⊂ ℝ3 a smooth bounded open set. If f ∈ W1,1(ℝ3) and F : ℂ(Ω0) ℝ
is defined by F (Ω) = ∫Ωf(x) dx, where ℂ(Ω0) := {Ω = (Id + θ)(Ω0) with θ ∈ [W1, ∞(ℝ3)]3}, then F  is
differentiable at Ω0 and

F ′(Ω0)(θ) =
Ω0

div(θ(x)f(x)) dx =
∂Ω0

θ(x) ⋅ n(x)f(x) dσ(x)

for all θ ∈ [W1, ∞(ℝ3)]3.
The theorem still holds if Ω0 is regular enough to apply the transformation formula and

Gauß’s theorem.

Theorem 3.4. Let Ω0 ⊂ ℝ3 be a smooth bounded open set. If f ∈ W2,1(ℝ3) and F : ℂ(Ω0) ℝ is
defined by F (Ω) = ∫∂Ωf(x) dσ(x), where ℂ(Ω0) := {Ω = (Id + θ)(Ω0) with θ ∈ [W1, ∞(ℝ3)]3}, then F  is
differentiable at Ω0 and for all θ ∈ [W1, ∞(ℝ3)]3

F ′(Ω0)(θ) = ∫∂Ω0∇f ⋅ θ + f(div θ − ∇θn ⋅ n) dσ(x) = ∫∂Ω0
∂f
∂n + Hf θ ⋅ ndσ(x),

where H = divn is the mean curvature of ∂Ω0.
We present the main ideas for deriving the Gâteaux derivative of Ahom, more details can be

found in [1]. We use the Lagrangian method of Céa following the idea of Allaire et al. outlined
in [5]. In a first step, we consider the tensor Ahom as a function of the domain Y0, i.e.

Jijklx (Y0) := 1|Y | YB[Y0](x, y)eij(ekl − e(wkl)(x, y)) dy
for every x ∈ Ω with B[Y0](x, y) := A0(x)χY0(y) + A1(x)(1 − χY0(y)) and wkl ∈ [L∞(Ω,Hper

1 (Y ))]3 the
weak solution of

(3.8)

−divy(B[Y0](x, ⋅ )(ey(wkl) − ekl)) = 0 inY ,
MY(wkl) = 0.

Since wkl also depend on the domain Y0 we cannot apply the standard shape-derivative results
directly. So, we rewrite the cell problem as a transmission problem to define a Lagrangian
function Lijklx  which coincides with Jijklx  in some points. The main advantage is that we can
apply the standard shape-derivative results for the shape derivative of Lijklx . For readability, we
omit the index y in the divergence divy( ⋅ ) and the symmetric gradient ey( ⋅ ).

So, for a.e. x ∈ Ω, find

(wklx, 0,wklx, 1) ∈ V := {(u0,u1) ∈ [H1(Y0)]3 × [H1(Y1)]3:u1 is Y-periodic, MY(u1χY1 + u0χY0) = 0}

such that

12
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(3.9)

−div(Axα(e(wklx,α) − ekl)) = 0 in Yα,wklx, 1 = wklx, 0 on ΣY ,Ax1(e(wklx, 1) − ekl))n1 + Ax0(e(wklx, 0) − ekl))n0 = 0 on ΣY ,

for α ∈ {0,1}, where Ax0 := A0(x), Ax1 := A1(x) and n = n0 = −n1 is the outward unit normal vector
of the interface ΣY = ∂Y0 with direction from Y0 to Y1. Clearly, the transmission problem is
equivalent to (3.8).

We also define the adjoint transmission problem: Find (p0,p1) ∈ V  such that

(3.10)

−div(Axα(e(pα) + eij)) = 0 in Yα,p1 = p0 on ΣY ,Ax1(e(p1) + eij))n1 + Ax0(e(p0) + eij))n0 = 0 on ΣY
for α ∈ {0,1}, which is equivalent to

(3.11)

−div(B[Y0](x, ⋅ )(e(p) + eij)) = 0 inY ,
MY(p) = 0.

Obviously, the function −wijx := −wij(x, ⋅ ) with wij the solution of (3.8) for k = i, l = j is a solution
of (3.11).

Introducing the Lagrangian function

Lijklx (v0, v1, q0, q1,Y0) := 1|Y | − Y0
Ax0(e(q0) + eij)(e(v0) − ekl) dy

− Y1
Ax1(e(q1) + eij)(e(v1) − ekl) dy

− 1
2 ΣY (Ax1(e(v1) − ekl) + Ax0(e(v0) − ekl))n ⋅ (q1 − q0) dσ(y)

− 1
2 ΣY (Ax1(e(q1) + eij) + Ax0(e(q0) + eij))n ⋅ (v1 − v0) dσ(y)

for v0, v1, q0, q1 ∈ [Hper, 0
1 (Y )]3, where q1, q0 play the role of Lagrange multipliers, we obtain some

conditions for optimal points.

Theorem 3.5. The solutions (u0,u1) of the transmission problem (3.9) and (p0,p1) of the adjoint
transmission problem (3.11) satisfy the optimality conditions

(3.12)0 = ∂Lijklx
∂q1 (u0,u1, q0, q1,Y0)(ϕ) = ∂Lijklx

∂q0 (u0,u1, q0, q1,Y0)(ϕ)

for all q0, q1, ϕ ∈ [Hper, 0
1 (Y )]3 and

(3.13)0 = ∂Lijklx
∂v1 (v0, v1,p0,p1,Y0)(ϕ) = ∂Lijklx

∂v0 (v0, v1,p0,p1,Y0)(ϕ)

for all v0, v1, ϕ ∈ [Hper, 0
1 (Y )]3. Therefore, the solutions wklx := wkl(x, ⋅ ) fulfil the condition (3.12)

for (u0,u1) = (wklx ,wklx ) and the solutions wijx := wij(x, ⋅ ) of (3.8) the condition (3.13) for
(p0,p1) = (−wijx , −wijx).

Proof. Let q0, q1, ϕ ∈ [Hper, 0
1 (Y )]3. We compute the directional derivatives by using integration

by parts
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∂Lijklx
∂qα (v0, v1, q0, q1,Y0)(ϕ) = 1|Y | Yαdiv(Axα(e(vα) − ekl))ϕ dy

+ 1
2 ΣY (Ax1(e(v1) − ekl) − Ax0(e(v0) − ekl))n ⋅ ϕ dσ(y)

− 1
2 ΣYAxαe(ϕ)n ⋅ (v1 − v0) dσ(y)

for α ∈ {0,1}. So (3.12) and, due to the equivalence of the problems (3.8) and (3.9), the statement
of the theorem for (u0,u1) = (wklx ,wklx ) follow directly. The proof for (p0,p1) resp. (−wijx , −wijx)
follows analogously. ∎

Although the weak solution wkl of the cell problem (3.8) is not shape differentiable, the
restricted functions wklx, 0 and wklx, 1 are shape differentiable.

Theorem 3.6. The solution wklx,α, α ∈ {0,1}, of (3.9) is shape differentiable for a.e. x ∈ Ω andθ ∈ [W0
1, ∞(Y )]3.

Proof. The lemma can be shown as in the proof of [22, theorem 5.3.2] by the implicit function
theorem. ∎

We are now able to prove that Lijklx  coincides with Jijklx (Y0) in the optimal point
(wklx, 0,wklx, 1, −wijx, 0, −wijx, 1,Y0), whereby we write wklx,α, α ∈ {0,1}, instead of wklx  to emphasize which
problem wklx  solves and that only the values in Yα are relevant for the calculation of Lijklx .

Theorem 3.7. The shape derivative of the objective function Jijklx (Y0) exists and is given by

(Jijklx )′(Y0)(θ) = ∂Lijklx
∂Y0

(wklx, 0,wklx, 1, −wijx, 0, −wijx, 1,Y0)(θ)

for all θ ∈ [W0
1, ∞(Y )]3.

Proof. Using the solution properties of wklx, 1 and wklx, 0, there holds for all q0, q1 ∈ [Hper, 0
1 (Y )]3

Lijklx (wklx, 0,wklx, 1, q0, q1,Y0)

= Jijklx (Y0) + 1|Y | − Y0
Ax0(e(wklx, 0) − ekl)e(q0) dy − Y1

Ax1(e(wklx, 1) − ekl)e(q1) dy
+

ΣY (Ax1(e(wklx, 1) − ekl)n1 ⋅ q1 + Ax0(e(wklx, 0) − ekl))n0 ⋅ q0 dσ(y) = Jijklx (Y0) .

We differentiate this identity with respect to shape,

(Jijklx )′(Y0)(θ) = ∂Lijklx
∂Y0

(wklx, 0,wklx, 1, q0, q1,Y0)(θ) + ∑α = 0

1 ∂Lijklx
∂vα (wklx, 0,wklx, 1, q0, q1,Y0)

∂wklx,α
∂Y0

(θ) .

Choosing q0 = −wijx, 0 and q1 = −wijx, 1, the last two terms disappear by theorem 3.5. ∎
We are now able to apply the standard shape-derivative results to compute the shape

derivative of the Lagrangian Lijklx  since v0, v1, q0, q0 do not depend on the structure of Y0.

Theorem 3.8. The shape derivative of Lijklx  is of the form
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(3.14)

∂Lijklx
∂Y0

(wklx, 0,wklx, 1, − wijx, 0, − wijx, 1,Y0)(θ
= 1|Y | ΣYAx0(e(wklx, 0) − ekl)(e(wijx, 0) − eij)θ ⋅ ndσ(y)

−
ΣYAx1(e(wklx, 1) − ekl)(e(wijx, 1) − eij)θ ⋅ ndσ(y)

+
ΣYAx(e(wklx ) − ekl)n ⋅ ∂(wijx, 1 − wijx, 0)

∂n θ ⋅ ndσ(y)

+
ΣYAx(e(wijx) − eij)n ⋅ ∂(wklx, 1 − wklx, 0)

∂n θ ⋅ ndσ(y) ,

where we denote by Ax(e(wklx ) − ekl)n and Ax(e(wijx) − eij)n the continuous quantities through the
interface.

Proof. We apply theorems 3.3 and 3.4 to Lijklx  and use the fact that the terms involving H
vanish on ΣY , since wklx, 1 = wklx, 0 and wijx, 1 = wijx, 0 on ΣY , and Ax1(e(wklx, 1) − ekl)n = Ax0(e(wklx, 0) − ekl)n on
ΣY . ∎

Remark 3.1. Formula (3.14) holds for general elasticity tensors Ax0 and Ax1. It can be simplified for
materials defined by less material parameters. For example, if we assume isotropic materials the shape
derivative ∂Lijklx /∂Y0 can be rewritten in a simpler computational formula involving the materials’ Lamé
parameters λx and μx, that is

(3.15)

∂Lijklx
∂Y0

(wklx, 0,wklx, 1, − wijx, 0, − wijx, 1,Y0)(θ)

=
ΣY − [2μx](e(wklx ) − ekl)tt(e(wijx) − eij)tt
−

2μxλx
2μx + λx tr(e(wklx ) − ekl)tttr(e(wijx) − eij)tt

+ 1μx (Ax(e(wklx ) − ekl))tn(Ax(e(wijx) − eij))tn
+ 1

2μx + λx (Ax(e(wklx ) − ekl))nn(Ax(e(wijx) − eij))nn
− λx

2μx + λx (Ax(e(wklx ) − ekl))nntr(e(wijx) − eij)tt
− λx

2μx + λx (Ax(e(wijx) − eij))nntr(e(wklx ) − ekl)tt θ ⋅ ndσ(y)

for all θ ∈ [W0
1, ∞(Y )]3 (see [1, theorem 9]).

In order to be able to compute the shape derivative explicitly, we now assume that there exist
Θα ∈ [W0

1, ∞(Y )]3, α ∈ {1, …,N}, which satisfy

(3.16)(Id + δτ1Θ1 + … + δτNΘN)(Y [τ]) = Y [τ1 + δτ1, …, τN + δτN],

i.e. the structural assumption is maintained. So in this case, by theorem 3.7,

∂aijklhom

∂τα [τ](x) = (Jijklx )′(Θα) = ∂Lijklx
∂Y0

(Θα).
Using this result, the Gâteaux derivative δAhom(τ, τ) = (δaijklhom(τ, τ))1 ≤ i, j, k, l ≤ 3,

δaijklhom(τ, τ)(x) = ∑α = 1

N ∂aijklhom

∂τα [τ](x)τα ∈ L∞(Ω),

can be computed by (3.14) or, in the case of isotropic materials, by (3.15).
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Remark 3.2. In the case that Y0[τ] is an open ellipsoid withτ = (τ1, τ2, τ3) ∈ [κ, l1 − κ] × [κ, l2 − κ] × [κ, l3 − κ] =: Iκ for some small κ, where τ1, τ2, and τ3 are the
lengths of the axes, and Y0[τ] is centred in the middle of the cuboid Y  with axes in direction of the
standard unit vectors, explicit formulas for Θα ∈ [W0

1, ∞(Y )]3, α ∈ {1,2,3}, are given in [1, (24)–(26)],
which satisfy (3.16).

It remains to compute the Gâteaux derivative of MY(%[τ]). We define

F (Y ) = Y0
%0(x) dy + Y1

%1(x) dy =: F 1(Y0) + F 1(Y1)

for a.e. x ∈ Ω and compute the directional derivative

F ′(Y )(θ) = limδ → 0

F ((Id + δθ)(Y )) − F (Y )δ
= limδ → 0

F 1((Id + δθ)(Y0)) + F 2((Id + δθ)(Y1)) − F 1(Y0) − F 2(Y1)δ
=F 1′ (Y0)(θ) + F 2′ (Y1)(θ)

for all θ ∈ [W1, ∞(ℝ3)]3. Owing to theorem 3.3, the last two terms exist and can be rewritten as

F ′(Y )(θ) =
∂Y0
%0(x)θ ⋅ ndσ(y) +

∂Y%1θ ⋅ ndσ(y) +
∂Y0
%1(x)θ ⋅ (−n) dσ(y).

Since 1|Y |F (Y [τ]) = MY(%[τ]) and the integrals 
∂Y%1(x)Θα ⋅ ndσ(y) vanish due to the definition of Θα

for α ∈ {1, …,N}, we obtain

δMY(%[τ], τ)(x) =∑α = 1

N 1|Y |F ′(Y [τ])(Θα)τα
= 1|Y | ∂Y0[τ]

(%0(x) − %1(x))(τ1Θ1 + … + τNΘN) ⋅ ndσ(y) .

Finally having formulas for the Gâteaux derivatives of MY(%[τ], τ) and Ahom(τ, τ) at hand,
we can return to (3.7) to compute δu(τ, τ). In the case that ρ0 and ρ1 are independent
of x, we get that ∂t(δMY(%[τ], τ)∂tu[τ]) ∈ L2(S, (HΓD

1 (Ω))∗). So we can apply [23, Satz 1.1] to
get the existence and uniqueness of the solution δu(τ, τ) ∈ L2(S;HΓD

1 (Ω)) ∩ H1(S; [L2(Ω)]3) of
(3.7) with initial condition δu(τ, τ)(0,x) = 0. More general ρ0 and ρ1 are possible as long
as ∂t(δMY(%[τ], τ)∂tu[τ]) ∈ L2(S, (HΓD

1 (Ω))∗). We rewrite the problem: find functions ∂u/∂τα,α ∈ {1, …,N}, such that

(3.17)

−
0

T
Ω
MY(%[τ](x, ⋅ ))∂t ∂u∂τα ⋅ ∂tvdxdt +

0

T
Ω
Ahom[τ]e ∂u∂τα e(v) dxdt

=
Ω

∂MY
∂τα (%[τ])(x)u1(x) ⋅ v(0,x) dx +

0

T
Ω

∂MY
∂τα (%[τ])(x)∂tu[τ] ⋅ ∂tvdxdt

−
0

T
Ω

∂Ahom

∂τα [τ]e(u[τ])e(v) dxdt,
where

∂MY
∂τα (%[τ])(x) = 1|Y | ∂Y0[τ]

(%0(x) − %1(x))Θα(y) ⋅ ndσ(y) .

Then, due to uniqueness

(3.18)∇u[τ] ⋅ τ = α = 1

N ∂u
∂τατα = δu(τ, τ).
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Using (3.18), we can finally compute the Gâteaux derivative of the objective functional as

(3.19)

δJ (τ, τ) = limε → 0

1
2ε S ∂Ω

|u[τ + ετ~] − um |2 − |u[τ] − um |2 dσ(x)dt
= S ∂Ω

(u[τ] − um)δu(τ, τ) dσ(x)dt
= S ∂Ω

(u[τ] − um)∇u[τ]dσ(x)dt ⋅ τ =: ∇J (τ) ⋅ τ ,

where the components of ∇u[τ] are the solution of (3.17) for α = 1, …,N.

4. Simulation results
The formulas derived in §3b allow us to run numerical simulations showcasing the functioning
of the method. As a concrete example, we consider a generic non-destructive testing problem
for a beam occupying the volume [0,60] × [0,30] × [0,30] [mm3] (as depicted in figure 1) made
up of concrete (%1 = 2300 [kg/m3], λ1 = 5.55 [GPa], μ1 = 8.33 [GPa]) and polyvinyl chloride (PVC)
(%0 = 1400 [kg/m3], λ0 = 1.15 [GPa], μ0 = 0.36 [GPa]), where the ellipsoidal PVC inclusions are
arranged periodically on the microscale.

Owing to the different scales, we non-dimensionalize the cell problem, i.e. we consider the
(non-dimensional) reference cell of sidelengths 2 × 1 × 1 with the PVC ellipsoid centred in the
middle of the cuboid with axis lengths (τ1, τ2, τ3) ∈ K = [0.12,1.88] × [0.12,0.88]2 and the rest of the
cell filled up with concrete (see figure 2).

For the non-destructive test, we assume that the beam is fixed on one of the small lateral
faces of the cuboid (fleft in figure 1). Furthermore, we assume no volume force but we apply
a normal boundary load for seven seconds given by b ⋅ exp( − 1/2 (t − 2)/0.2 2), b ∈ ℝ3 andt ∈ [0,7] [s]( = S), applied on two faces of the cuboid, such that b = (0,0, −20) at the upper face
(fup in figure 1) and b = (0, −10,0) on the back lateral face (fback in figure 1) and b = (0,0,0) on all
other faces. Already knowing that the PVC inclusions are of ellipsoidal structure, we want to
solve the inverse problem to obtain their exact dimension, i.e. the (vector-valued) parameter τ.

(a) Specification of the different numerical experiments
In what follows, we consider five different numerical experiments. In the first one, the
parameter-identification problem is of the form

(4.1)argminτ ∈ K J 1(τ) := argminτ ∈ K 1
2 |∂Ω|2 S ∂Ω

|u[τ] − um |2 dσ(x)dt,
where um is the deformation of the beam computed for the target value τtarget = (1.5, 0.6, 0.4)
and u[τ] is the deformation for given τ. The scaling with the constant 1|∂Ω|2  has no impact on the
derived formula (3.19) apart from a scaling factor. The second numerical experiment is as the
first one except that only measured data on part of the boundary of the sample Ω is available,
i.e. the parameter-identification problem is of the form

(4.2)argminτ ∈ K J 2(τ) := argminτ ∈ K 1
2 |fup ∪ fback|2 S fup ∪ fback

|u[τ] − um |2 dσ(x)dt .

The analysis for this slightly modified target functional follows analogously as for the target
functional with full boundary displacement information. The third and fourth cases are as
the second one, except that noisy boundary data are used, i.e. um is replaced by u~m given
by the (exact) measured data plus noise, u~m = (1 + r)um with a Gaussian random function r
of mean value zero and standard deviation 0.03 (third experiment), respectively, 0.09 (fourth
experiment). To test the inverse method for the case of inexactly known material parameters
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as well, the fifth experiment is as the first one again but with noisy data of the Lamé param-
eters (representing material variations) and measured data, i.e. um is replaced by u~~m withu~~m = (1 + r)um with a Gaussian random function r of mean value zero and standard deviation
0.03, where um is the deformation of the beam computed for the target value τ~target = (1 + r)τtarget

with a Gaussian random function r of mean value zero and standard deviation 0.03.
The method devised in §3 is implemented in MATLAB® (version R2020a) and COMSOL

LiveLinkTM for MATLAB®. The main computation is done with the finite element simulation
software COMSOL Multiphysics® [24], i.e. we solve for every τ numerically the cell problem
(2.13), the homogenized problem (2.12) and the problem for the Gâteaux derivative of u (3.17),
whereby quadratic Lagrange finite elements are used. With the solution of these problems, we
are able to determine the target functional (4.1) (or (4.2)) and its Gâteaux derivative (3.19). These
values are needed to apply the gradient method fmincon in MATLAB®, which solves the
minimization problem (4.1) (or (4.2)).

We start with a value in the lower left corner of K as an initial guess, i.e. τ = (0.12, 0.12, 0.12).
In all five numerical experiments, we plot in one figure panel the values of τ1, τ2 and τ3 in every
iteration step and the target value τtarget = (τ1

target, τ2
target, τ3

target) = (1.5, 0.6, 0.4) as horizontal lines
and in the other panel the values of the respective target functional J i, i = 1,2, in each iteration
step. The final iteration step always corresponds to the algorithm having terminated because
the relative changes in all elements of τ is less than the prescribed step tolerance of 10−6 (the
default value of fmincon).

(b) Discussion of the results
In the first numerical experiment as described above, the algorithm terminates after 49 steps.
We obtain as an optimal solution τ = (1.492, 0.602, 0.401) (see figure 3). This first example with
(numerically) exact data confirms the functioning of the method and implementation.

In the second simulation, where the measured data is known only on a part of the boundary,
the algorithm terminates after 37 steps. We obtain as an optimal solution τ = (1.493, 0.602, 0.402)

ffront

fback

fdown

f rig
ht

f lef
t

fup

30mm

30mm

60mm

Figure 1. Macroscopic beam with faces labelled ffront, fback, fup, fdown, fleft and fright.

Figure 2. Slice of the reference cell Y , i.e. [0,2] × [0,1] × {0.5}.
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(see figure 4). Therefore, in this case with reduced information (but numerically exact data), we
obtain virtually the same results within fewer iterations. This seems to be related to the fact that
the algorithm starts out a bit more gradual which avoids the stronger overshooting of the values
of τ2 and τ3 in iteration three compared with the first experiment.

In the third simulation, where 3% noise is added to the measured data, the algorithm
terminates after 35 steps. We obtain as an optimal solution τ = (1.456, 0.612, 0.409) (see figure
5). While a small error between the elements of the computed solution τ and the target values
remains, this is not surprising as only noisy data, as is typically available in practice, was
available to the inverse method. As the error is only small, this confirms the usefulness of the
method in practice. To push the method further, 9% noise is added to the measured data for the
fourth simulation, where the algorithm terminates similarly fast after 36 steps. We obtain as an
optimal solution τ = (1.582, 0.583, 0.392) (see figure 6), which is still not too far off considering
the stronger noise in the data available to the inverse method.

In the fifth simulation, where 3% noise is added to the Lamé parameters (inexactly known
material parameters) and measured data (measurement imperfection), the algorithm terminates
after 48 steps, similar to the first simulation (in which also the whole boundary was used).
We obtain as an optimal solution τ = (1.764, 0.549, 0.367) (see figure 7), which still recovers
the general aspect ratio of the ellipsoids in particular, but a larger error remains than in the
previous cases with exact material parameters.

iteration step
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0.8

1

1.2
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1.6

(a) (b)
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target
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τ2
target

τ3
target

0 10 20 30 40 50

iteration step

10–5

10–4

10–3

10–2

10–1

100

0 10 20 30 40 50

Figure 3. (a) Values of τ = (τ1, τ2, τ3) in each iteration step as well as target values (horizontal lines) in the first numerical
experiment. (b) Corresponding values of the target functional in each iteration step plotted on a semi-logarithmic scale.
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Figure 4. (a) Values of τ = (τ1, τ2, τ3) in each iteration step as well as target values (horizontal lines) in the second
numerical experiment. (b) Corresponding values of the target functional in each iteration step plotted on a semi-logarithmic
scale.
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Figure 5. (a) Values of τ = (τ1, τ2, τ3) in each iteration step as well as target values (horizontal lines) in the third numerical
experiment, which includes 3% noise added to the measured data. (b) Corresponding values of the target functional in each
iteration step plotted on a semi-logarithmic scale.
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Figure 6. (a) Values of τ = (τ1, τ2, τ3) in each iteration step as well as target values (horizontal lines) in the fourth
numerical experiment, which includes 9% noise added to the measured data. (b) Corresponding values of the target
functional in each iteration step plotted on a semi-logarithmic scale.
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Figure 7. (a) Values of τ = (τ1, τ2, τ3) in each iteration step as well as target values (horizontal lines) in the fifth numerical
experiment, which includes 3% noise added to the measured data as well as the material parameters. (b) Values of the target
functional in each iteration step plotted on a semi-logarithmic scale.
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Summing up, the results of the simulations show that we achieve a good approximation of
the target value τtarget at the end of the iteration in the case of full information and exact
measured data but also in the cases of only partial information or even noisy data. Reasonable
results are still obtained if only noisy data based on noisy material parameters are available, all
of which demonstrate the functioning of the method. As we considered only five test cases, a
proper stability and sensitivity analysis, which is beyond the scope of this work, would be
required to quantify this properly.

5. Conclusion
We considered the homogenized problem of the wave equation in a bounded domain in
the context of linear elasticity in the long-wavelength regime, in which the microstructure
is accounted for by the effective elasticity tensor, the elements of which are based on solu-
tions of elliptic cell problems in the representative cell, as well as an effective mass obtained
by direct averaging. We proved that there exists at least one solution of the corresponding
inverse problem identifying geometrical information of the parametrized microstructure from
macroscopic boundary measurements. With the formula (3.19) for the Gâteaux derivative
of J , wherefore we have to compute the shape derivative of the homogenized tensor and
solve several weak wave problems, we were able to apply standard numerical gradient-based
algorithms to obtain a solution to the minimization problem when measured data are given.
Numerical experiments for an ellipsoidal microstructure illustrated that the length of the axes
of the ellipsoids could be recovered from boundary measurements, even in the cases where
measured data are only available on some faces of the sample and that the measured data are
polluted by noise. The framework we developed appears to be generalizable to more advanced
microscopic models, e.g. linear elasticity with slip-displacement conditions [25], and it would be
of particular interest to extend it to microstructures dependent on the macroscopic variable, e.g.
to be able to detect locally different production errors in quality inspection, i.e. to consider τ as a
function of x, which makes the optimization problem infinite-dimensional.
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