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1. Introduction

1.1 Background and Motivation 

In recent years, the application of artificial intelligence (AI) 
and machine learning (ML) has developed rapidly in various 
fields. Particularly noteworthy are these developments in the 
area of modeling and simulation of physical processes. 
Surrogate models, also referred to as meta-models, have the 
potential to capture complex relationships between input and 
output parameters while significantly reducing computation 
time compared to traditional simulation methods. Thus, there 
would also be the possibility to use such methods for evaluation 
and recommendation in production environments, which were 
not previously possible due to their complexity or calculation 
time. 

1.2 Objective and Research Questions 

However, the quality of these models depends on the 
amount and quality of available training data. The generation 
of training data for surrogate models, which are obtained using 
physical models of the process steps, is costly and 
computationally intensive. Therefore, it is advantageous to 
know the required amount of training data in advance. For the 
reasons mentioned above, in this work, we have simulated a flat 
glass production process. We used the simulation to replicate 
the behavior of the process and to make predictions about the 
temperature profile during the manufacturing process in the 
product. Our intention was to reproduce this in a surrogate 
model, which is much faster in making a prediction and with a 
relatively short response time. This provides the opportunity to 
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create a control system for complex production processes. For 
this purpose, we used the simulation to generate training data 
sets, and in the next step, we used a small number of training 
data sets to identify a suitable model architecture. Ultimately, 
we chose a feedforward model due to various advantages. 
Subsequently, we trained the selected model with different 
amounts of training data to establish a relationship between the 
amount of training data and model quality. We used the Mean 
Absolute Error (MAE) and the Root Mean Squared Error 
(RMSE) as quality criteria for the model. In this study, we aim 
to answer the following research questions: 1) How does the 
amount of training data influence the quality of surrogate 
models in physical simulations? 2) What is the optimal amount 
of training data required for a high-quality surrogate model? 

2. Fundamentals and State of the Art

2.1. Artificial Intelligence and Machine Learning in 
Surrogate Modeling and Physical Simulations 

AI and ML techniques have been increasingly applied to 
surrogate modeling and physical simulations, resulting in 
infinstance, the development of physics-informed neural 
networks (PINNs) demonstrates the potential of ML to solve 
forward and inverse problems involving nonlinear partial 
differential equations more efficiently [9]. Furthermore, data-
driven approaches have been successfully applied to turbulence 
modeling, allowing for a better understanding of complex fluid 
dynamics [10]. 

2.2. Advances in Surrogate Modeling Techniques 

Numerous surrogate modeling techniques have been 
proposed to represent complex processes and systems, 
including Gaussian process regression, support vector 
machines, and deep learning methods [11]. These techniques 
have been effectively applied to various domains, such as 
aerospace engineering, materials science, and renewable 
energy [12]. The growing body of research on surrogate 
modeling techniques highlights the potential of AI and ML to 
improve the understanding, optimization, and control of 
complex processes. 

2.3. Developments in Physical Simulations 

AI and ML have been increasingly used to advance physical 
simulations and process optimization in fields such as materials 
science and manufacturing [13]. For example, researchers have 
applied ML to optimize additive manufacturing processes, 
leading to improved product quality and reduced production 
costs [14]. Additionally, surrogate models have been employed 
to predict computational fluid dynamics simulations more 
efficiently, enabling more accurate predictions of complex 
fluid flow phenomena [15]. 

The integration of AI and ML techniques into surrogate 
modeling and physical simulations has the potential to drive 
further innovation and discovery in various fields. 

2.4. Training Data and Model Quality 

The quality of surrogate models is highly dependent on the 
amount and quality of the training data used during the model 
development process [16]. A sufficient quantity of high-quality 
data is crucial for ensuring accurate and reliable predictions. 
However, generating training data for surrogate models, 
especially for physical simulations, can be computationally 
expensive and time-consuming [17]. As a result, it is essential 
to identify the optimal amount of training data necessary for 
achieving satisfactory model quality without incurring 
excessive computational costs. Various studies have 
investigated the relationship between training data volume and 
model quality. For example, some researchers have examined 
the effects of using different training data sizes on model 
performance in the context of fluid dynamics simulations [18]. 
Additionally, others have explored the impact of data quality 
on the accuracy of surrogate models in the context of 
manufacturing processes [19]. These studies demonstrate the 
importance of understanding the relationship between training 
data and model quality in order to optimize the development of 
surrogate models for physical simulations. 

3. Methodology

3.1. Simulation of the Production Process 

The subsequent analysis of training data for substituting 
numerical methods with AI-based surrogate models is based on 
a finite difference analysis of a temperature distribution. 
Therefore, a more detailed description of the underlying 
physical model and the boundary conditions is provided. The 
numerical solution is utilized to generate training data and train 
the surrogate model. Different AI methods (CNNs, AE, VAE) 
were employed and evaluated for the surrogate model. In the 
initial test, the autoencoder [17] showed the most promising 
results in terms of average error and maximum error. Based on 
this autoencoder, we developed a feedforward model which 
showed slightly better results than the autoencoder in further 
tests, and we ultimately decided to use this architecture. A 
detailed description of the used architecture, input and output 
data, and the training process is provided in section 3.3. In the 
considered scenario, in the glass production, the target is to 
determine the temperature distribution in the product. 
Therefore, the underlying PDE in the domain Ω (1) is described 
through the heat diffusion equation [18].  
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The production scenario represents a continuous process, 
therefore a transient 2D formulation is used. As for any 
formulation of a PDE, initial and boundary conditions are 
necessary to solve the problem. The domain is surrounded by a 
fluid and adiabatic walls. Hence, on the boundary ∂Ω (2) of the 
domain, convection and radiation are the two existing heat 
transfer phenomena and represent Neumann boundary 
conditions 

(2)

Both mechanism are existent on the whole boundary and 
therefore applied on every edge. At t=0 a homogenous 
Temperature in the domain is assumed so a initial Temperature 
is applied. (3) 

 (3)

The heat diffusion equation represents an elliptical PDE and 
therefore, the numerical solution is calculated with finite 
differences. For this we discretized Ω with constant values 
Δx,Δy. To obtain the numerical solution we use a forward Euler 
method as an explicit time integration scheme. Explicit shemes 
tend to diverge if the time step is too large. Hence, we use the 
criteria given in [19] for the time stepping criteria. (4) 

 (4)

In (5) the parameter α describes the diffusion coefficient 

 (5)

The calculation is performed in a Python 3.11 environment and 
written in a vectorized form to accelerate the runtime of the 
numerical solution. 

3.2. Training Data Generation 

To generate training data for the model, input parameters for 
the simulation must first be created. To do this, the minimum 
and maximum value ranges of the parameters that may occur 
in this production process were determined. The relevant 
parameters include temperatures, material coefficients, and 
additional variables such as the product's velocities in the 
cooling channel. In order to obtain a well-generalized model 
that covers the various value ranges, the input parameters were 
randomly generated within the determined value ranges. This 
ensured that only setting values actually occurring in this 
production process were used, making the study meaningful 
and relevant to real-world applications. With these randomly 

generated input parameters, simulations were then carried out. 
The results of these simulations, particularly the temperature 
distribution in the product, were used as training data for the 
artificial intelligence-based surrogate model. By using a variety 
of different input parameters and the resulting varying 
temperature distributions, the model can be applied and 
evaluated on a wide range of real production conditions. This 
allows assessing the performance of the surrogate model in 
terms of accuracy and robustness, ensuring it is suitable for the 
given application. 

3.3. Surrogate Model Design 

The surrogate model was developed using PyTorch as the 
primary framework and is based on a structure partially related 
to an autoencoder. However, it is ultimately a standalone 
model. The fully connected neural network, also known as a 
feedforward network, was designed to model temperature 
prediction in thermo-mechanical production processes. This 
surrogate model serves to reduce the computational effort and 
increase prediction speed for computationally expensive and 
resource-intensive physical simulations. The model's 
architecture consists of five linear layers followed by two 
transposed convolutional layers. The linear layers 
progressively increase the size of the input data, while the 
transposed convolutional layers transform the linear output into 
a spatial temperature distribution. Scaled Exponential Linear 
Unit (SELU) activation functions are applied after each linear 
layer. The input for the model includes features relevant to the 
thermo-mechanical process, such as temperature and time. The 
model learns from these features and the associated training 
data to predict the temperature distribution. The output of the 
final transposed convolutional layer represents the predicted 
temperature distribution. We chose a feedforward model with 
convolutional layers for the surrogate model, as it 
outperformed other model types, such as Convolutional Neural 
Networks (CNNs), Autoencoders (AE), and Variational 
Autoencoders (VAE), in our tests. The rationale for this choice 
is based on several factors: i. Simplicity and efficiency: 
Feedforward models have a simpler structure and require less 
computational power compared to CNNs, AEs, and VAEs. In 
this specific use case, a simpler model is sufficient to produce 
meaningful results when analyzing the relationship between the 
training data volume and model quality. ii. Scalability: 
Feedforward models are easily scalable and can be adapted to 
various data volumes and complexity levels. This allows for 
better exploration of the relationship between training data 
volume and model quality, as the model can flexibly respond 
to different data sizes. iii. Relevance for physical simulations: 
In physical simulations, the underlying processes are often 
time-invariant and linear or nearly linear. Feedforward models 
are well-suited to represent such relationships, as they can 
capture linear and non-linear relationships without unnecessary 
model complexity. Overall, we decided on the feedforward 
model mainly due to the best performance. However, 
simplicity, efficiency, scalability, and relevance for physical 
simulations also played a crucial role in our decision. 
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3.4. Model Training Approach 

Before training the surrogate model, we performed a brief 
hyperparameter tuning to determine the optimal values for 
several parameters: batch size, learning rate, maximum epochs, 
and train-test split rate. These values were then fixed for 
subsequent analyses to ensure consistent results during the 
evaluation process. Following the hyperparameter tuning, we 
trained the model with varying amounts of training data to 
investigate its performance under different data set sizes. We 
started with 50 training samples and gradually increased the 
number in increments of 50, stopping at 1,000 samples. This 
approach allowed us to explore the impact of the training data 
size on the model's prediction accuracy and generalization 
capabilities. To ensure the robustness of our findings, we 
repeated the training process multiple times with different 
training data quantities. This helped in understanding how the 
model's performance would vary with the size of the training 
data and provided valuable insights into the optimal training 
data size for the given application. 

4. Evaluation and Results

4.1. Model Quality Metrics 

In this chapter, we discuss the evaluation results and 
performance indicators obtained for the trained models. We 
determined both the Mean Absolute Error (MAE) and the Root 
Mean Squared Error (RMSE) as performance metrics for all 
trained models at different step sizes and training runs. Two 
plots were created to visualize the quality of the machine 
learning model: Fig 1. (a) shows the adjusted MAE, and Fig 1. 
(b) displays the adjusted RSMAE as a function of the training 
data. We used MAE and RMSE metrics for the following 
reasons: They allow us to evaluate the quality of the model by 
calculating the deviations between the predicted and actual 
values. The lower the MAE and RMSE, the better the model's 
ability to generalize the data and make accurate predictions. In 
our study, we chose the train-test-split method as the validation 
technique, as it is best suited for our use case. We opted for this 
method for the following reasons: In our study, we use a limited 
dataset of 1,000 training examples. However, cross-validation 
and bootstrapping require the dataset to be split multiple times, 
leading to a further reduction in data volume. This may result 
in the model not being adequately trained, potentially leading 
to poorer model quality. The train-test-split method divides the 
dataset only once into a training and testing dataset, making the 
entire data volume available for model training. This allows the 
model to be better trained, potentially leading to improved 
model quality. The train-test-split method is widely used in 
practice and well-understood. It is also easier to implement and 
comprehend than cross-validation or bootstrapping. Overall, 
the train-test-split method is a suitable technique for our use 
case, as it provides an adequate amount of training data and is 
easy to implement, leading to an effective investigation of the 
relationship between training data volume and model quality.  

Fig. 1. (a) Adjusted MAE-data; (b) Adjusted RSMAE-data. 

4.2. Influence of Training Data Quantity on Model Quality 

The quality and accuracy of AI models depend heavily on 
the amount and quality of the training data used to train the 
models. In many AI applications, there are large amounts of 
training data available in accessible databases and can be easily 
extended. However, generating training data for surrogate 
models of physics simulations is computationally demanding 
and requires a significant amount of time and resources. To 
determine the necessary amount of training data required to 
build a good AI model for a thermomechanical production 
process, a study was conducted with different sizes of 
artificially generated training data. The study involved testing 
the performance of a surrogate model using different amounts 
of training data, ranging from 50 to 1000. The results of the 
study showed that the mean absolute error (MAE) decreased as 
the amount of training data increased up to a certain point, after 
which it started to increase again. The lowest MAE value of 
26.14 was achieved with 950 training data points. However, the 
root mean squared absolute error (RSMAE) showed a different 
trend. It continued to decrease as the amount of training data 
increased, suggesting that the model's predictive power 
improved with an increase in training data. In summary, the 
study confirms that the amount of training data significantly 
influences the quality and accuracy of AI models. It also shows 
that there is a threshold for the amount of training data needed 
to achieve good model performance. While increasing the 
amount of training data can improve the model's predictive 
power, there is a point at which the returns diminish. Therefore, 
careful consideration should be given to the amount and quality 
of the training data used in building AI models for complex 
systems, such as physics simulations, to ensure optimal model 
performance. 
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5. Conclusion and Future Work

The application of artificial intelligence (AI) and machine 
learning (ML) has rapidly advanced in various fields in recent 
years. Particularly notable are the developments in the 
modeling and simulation of physical processes. Surrogate 
models, also known as metamodels, have the potential to 
capture complex relationships between input and output 
parameters and significantly reduce computation time 
compared to traditional simulations. This also provides the 
possibility to use such methods for evaluation and 
recommendation in production environments that were 
previously not possible due to their complexity or computation 
time. However, the quality of these models depends on the 
quantity and quality of available training data. Generating 
training data for surrogate models based on physical process 
models is expensive and computationally intensive. Therefore, 
it is advantageous to know the necessary amount of training 
data beforehand. In this work, a flat glass production process 
was simulated to gain an understanding of the process and 
make predictions about the temperature profile during the 
production process in the product. The goal was to replicate this 
in a surrogate model that can make predictions much faster and 
work with a relatively short response time. This offers the 
possibility to create a control system for complex production 
processes. For this purpose, training data sets were generated, 
and in a next step, a suitable model architecture was identified. 
Finally, the selected model was trained with different amounts 
of training data to establish a relationship between the amount 
of training data and the model quality. A detailed presentation 
of the methods and techniques used was presented in Sections 
2 and 3. In Section 4, the results of the study were presented, 
with a particular focus on analyzing the effects of the amount 
of training data on the model quality. The results showed that 
the mean absolute error (MAE) decreased as the amount of 
training data increased up to a certain point, but then began to 
increase again. The lowest MAE value of 26.14 was achieved 
with 950 training data points. However, the Root Mean 
Squared Absolute Error (RSMAE) showed a different trend. It 
continued to decrease as the amount of training data increased, 
indicating that the predictive power of the model improved 
with an increasing number of training data. Overall, the study 
showed that the quantity and quality of training data have a 
significant impact on the quality and accuracy of AI models. It 
was also shown that there is a threshold for the required amount 
of training data to achieve good model performance. While 
increasing the amount of training data can improve the 
predictive power of the model, there is a point of diminishing 
returns. Therefore, when creating AI models for complex 
systems such as physical simulations, careful consideration 
should be given to the quantity and quality of training data to 
ensure optimal model performance. Future research could 
focus on investigating other AI methods for creating surrogate 
models, such as decision trees or random forests. Another 
possibility is to extend the study to other thermomechanical 
production processes to test the generalizability of the results. 
It would also be interesting to further investigate the 
relationship between the quality of training data and model 
performance to determine how improving the quality of 

training data affects model performance. Finally, the 
integration of online learning methods into surrogate models 
for more efficient optimization of production processes could 
be explore 
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