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Crystal melting influenced by particle cooperativity of the liquid
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Recently, a universal relation between the thermal expansion coefficient of glasses αg, their glass-transition
temperature Tg, and the so-called fragility index m of the corresponding supercooled liquid state was found
to be valid for more than 200 glass formers, namely αg/m ∝ 1/Tg [Lunkenheimer et al., Nat. Phys. 19, 694
(2023)]. Here we show that this could also have far-reaching consequences for our understanding of crystal
melting. Namely, when considering the empirically founded 2/3 rule, stating that the ratio of Tg and the melting
temperature Tm is about 2/3 for almost all materials, for crystals a similar relation, αc/m ∝ 1/Tm, should apply.
Indeed, we find that the available experimental data are quite consistent with such a relation. This implies that the
melting of a crystal into an ordinary (nonsupercooled) liquid is influenced by the fragility, a property quantifying
the non-Arrhenius dynamics in the supercooled-liquid state of the material. We argue that this can be explained
by a significant enhancement of the “ideal” (noncooperative) melting temperature arising from the cooperativity
of the particle motion in the liquid state above Tm. Therefore, a reassessment of the currently widely accepted
microscopic understanding of crystal melting, still founded on the general ideas that lead to the time-honored
Lindemann melting criterion, may be necessary.

DOI: 10.1103/PhysRevB.110.134110

I. INTRODUCTION

The Lindemann criterion for the melting of a crystal into a
liquid [1,2] is a well-established concept in condensed matter
physics [3]. It essentially states that crystalline materials melt
when the particle displacements caused by thermal vibrations
exceed a certain percentage (roughly 10–20% [4–6]) of their
average lattice-site spacing. While the original idea goes back
to the kinetic theory of solids by Sutherland [7], one should be
aware that a clear-cut theoretical derivation of the Lindemann
criterion is still missing, and it should be regarded as semiem-
pirical. As explained, e.g., in Ref. [8], based on the reasoning
behind the Lindemann criterion, a correlation of the melting
temperature Tm with the thermal expansion coefficient αc of
the crystal can be expected, namely [5,9]

αc ∝ 1/Tm. (1)

As discussed in Ref. [8], if U0 is the depth of the
pair-potential well, whose asymmetry gives rise to thermal
expansion, the inverse proportionality of Eq. (1) is based on
the reasonable assumptions that Tm ∝ U0 (with U0 the depth of
the well) [10–12] and 1/αc ∝ U0 [13]. Within distinct classes
of crystalline materials, the approximate validity of Eq. (1)
was indeed confirmed experimentally [5,14,15].

Aside of crystallization, a qualitatively different path to-
wards solidification, in principle available to almost any liquid
[16], is its supercooling and final kinetic arrest into a glass,
a solid state lacking the periodicity of a crystalline lattice
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[17–20]. Supercooling is achieved by cooling a liquid suffi-
ciently fast to avoid crystallization at Tm, the most common
way to produce a glass. (Other procedures are also possible,
e.g., strain-driven glass transitions [21].) Below the glass-
transition temperature Tg, then the particle dynamics becomes
so slow (and the viscosity so high) that the resulting glass
can be considered as solid for all practical purposes. Tg is
usually defined as the temperature where the viscosity η ex-
ceeds 1012 Pa s or where the relaxation time τ , characterizing
particle mobility, exceeds 100 s (according to the Maxwell
relation, both quantities are approximately proportional to
each other). Numerous competing theories were proposed
to explain this so-called glass transition, whose microscopic
nature thus still can be considered as controversial. At first
glance, it reminds of a second-order phase transition, because
quantities like the specific heat and thermal expansion exhibit
jumplike (whatsoever, rather smeared out) behavior when
crossing Tg. However, the fact that this liquid-glass crossover
depends on the cooling rate rules out that Tg simply marks
a canonical phase transition. Instead, it is clear that the ma-
terial falls out of thermodynamic equilibrium when cooling
below Tg. This is due to the continuous slowing down of
the dynamics of the particles, preventing their proper rear-
rangement into equilibrium positions before the temperature
has further fallen [18,19]. Consequently, scenarios were pro-
posed where the glass transition is seen as a purely dynamic
phenomenon, without invoking any phase transition [22–25].
However, there are also various models that instead assume
an underlying “ideal” phase transition at a temperature below
[26–29] or above Tg [30,31]. This helps to explain the typ-
ical noncanonical properties of the supercooled-liquid state,
the most prominent one being the non-Arrhenius temperature
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dependence of η and τ . Unfortunately, due to the inevitable
falling out of equilibrium upon cooling below Tg, this
suggested ideal glass transition cannot be experimentally ac-
cessed for any reasonable cooling rate. However, based on
theoretical advances [32,33], especially recent experiments
measuring higher-order susceptibilities seem to support such
a “hidden” phase transition [34–36].

In a recent work by the present authors and collaborators
[8], the question was raised whether a Lindemann-like crite-
rion may also govern the solid-liquid transition of glasses at
Tg. Such a notion was earlier considered, e.g., in Refs. [5,37–
42]. To help clarify this question, for more than 200 glass-
forming materials, the corresponding relation to Eq. (1),

αg ∝ 1/Tg, (2)

was checked (with αg the expansion coefficient in the glass
state). They all belonged to very different material classes:
molecular liquids, polymers, ionic systems like ionic liquids
and melts, metals, and network glass formers, the latter in-
cluding silicate glasses as used in everyday life for windows,
bottles, etc. A clear failure of this proportionality was found.
However, interestingly it was noted that a scaling of αg with
the so-called fragility index m can restore this proportionality,
namely the relation

αg/m ∝ 1/Tg (3)

was found to be valid [8]. The fragility index was intro-
duced in Refs. [43–45] to quantify the degree of deviation
of η(T) or τ (T) of glass-forming liquids from simple ther-
mally activated temperature dependence. The latter should
lead to an Arrhenius law, η or τ ∝ exp[E/(kBT )] (where E
is the energy barrier). However, instead a stronger temper-
ature dependence (sometimes termed “super-Arrhenius”) is
commonly found in glass formers. It can be often reasonably
parametrized [17–20,46–48] by the empirical Vogel-Fulcher-
Tammann (VFT) formula,

τ = τ0 exp

(
DTVF

T − TVF

)
(4)

(or the corresponding equation for η) [49–52]. Here 1/(2πτ0)
is an attempt frequency, typically of the order of a phonon
frequency. The divergence temperature TVF may be regarded
as an estimate of the mentioned underlying phase-transition
temperature, but one should be aware that also alternative
formulas can describe the experimental data, not involving
any divergence temperature (see, e.g., Refs. [46,48]). This
includes τ (T) as predicted by the generalized entropy theory
of glass formation [53]. Here we merely employ Eq. (4) as an
empirical, often-used formula to approximately parametrize
τ (T) or η(T) in the whole temperature range above Tg. The
conclusions of the present work do not rely on the assump-
tion of a relaxation-time or viscosity divergence. The strength
parameter D in Eq. (4) [52] determines the deviations from Ar-
rhenius temperature dependence, just as the more commonly
used fragility index m, mentioned above.

The solid lines in Fig. 1 show typical VFT curves calcu-
lated from Eq. (4) in an Angell plot [54], log10(τ ) or log10(η)
vs Tg/T (left and right ordinates, respectively). Within this
representation, the fragility index m is defined by the slope
at Tg [43–45]. The steeper this slope (dotted lines in Fig. 1,

FIG. 1. Angell plot of the temperature-dependent relaxation time
(left ordinate) and viscosity (right ordinate). The solid lines calcu-
lated using the VFT formula, Eq. (4), schematically illustrate the
different behavior in dependence of the fragility for values of m
between 16 and 170. The slope at Tg, exemplarily indicated by the
dotted lines for m = 30 and 170, defines the fragility index m [43,44].
The open symbols show three experimental examples (τ of glycerol
[46], τ of sorbitol [47], and η of SiO2 [52]) with different m values as
indicated in the right figure legend [45]. The stars show the respective
experimental melting temperatures [15,65,70]. The vertical dashed
and dash-dotted lines indicate Tg and Tm ≈ 3/2 Tg, respectively.

exemplarily shown for two m values), the more η(T) or τ (T)
deviate from the Arrhenius law, which appears as a straight
line in this type of plot. Glass formers where these deviations
are well pronounced are termed “fragile” and those where they
are weak are denoted “strong” [52]. Overall, the fragility is
an important quantity in glass physics and many properties
of glass formers were found to correlate with m (see, e.g.,
[17,45,55,56]). Assuming τ0 ≈ 10−14 s and τ (Tg) ≈ 100 s
[57], pure Arrhenius behavior corresponds to m ≈ 16 [58].
Under the same assumptions, the fragility index can also be
calculated from the VFT parameter D, via m ≈ 16 + 590/D
[45]. As typical examples, the open symbols in Fig. 1 repre-
sent experimental data for three glass formers with different
fragilities. In the network glass former SiO2 (m = 20 [45]),
η(T) [52] nearly follows Arrhenius behavior—it is a strong
system. For the two molecular supercooled liquids glycerol
and sorbitol, τ (T) is shown [46,47]. Sorbitol (m = 93 [45])
can be classified as fragile, while τ (T) of glycerol (m = 53
[45]) reveals intermediate characteristics [52].

An often-assumed explanation of the universal super-
Arrhenius behavior of glass formers is increasing cooper-
ativity of the particle motion when the glass transition is
approached upon cooling [18,19,27,28]. This leads to an in-
creasing length scale of cooperatively rearranging regions
(CRRs), originally proposed in the Adam-Gibbs theory of the
glass transition [27]. Such a scenario was recently corrobo-
rated by measurements of nonlinear susceptibilities, detecting
the growth of CRR sizes upon cooling in various glass
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formers, which is most pronounced in fragile ones [34–36,59].
Within this framework, the empirically found relation, Eq. (3),
was proposed to arise from an enhancement of the glass-
transition temperature for fragile systems, compared to a value
that would be detected in the absence of cooperativity [8].
This was based on the reasonable assumption that for these
glasses more energy is needed to break up their extended
CRRs. In Ref. [8] it was suggested that then an additional
factor m should be introduced into the relation Tg ∝ U0,
leading to Tg ∝ m U0, thus enhancing Tg by a cooperativity-
dependent factor. [More precisely, the enhancement factor can
be assumed to be m/16, implying no cooperativity-induced
increase for strong glasses, but the 1/16 factor can be regarded
as part of the proportionality factor in Eq. (3).] Together
with 1/αc ∝ U0 [13], this rationalizes the empirically found
validity of Eq. (3) [8]. Interestingly, molecular dynamics sim-
ulations of polymer melts using a “bead-spring” model have
revealed a decrease of the fragility and an increase of Tg with
increasing strength of the attractive bead interactions [60–62].
This is consistent with the relation Tg ∝ m U0 considered in
Ref. [8]. Finally, we want to note that the generalized entropy
theory of glass formation [63] predicts an increase of fragility
with the product of αg and Tg, in accord with Eq. (3). This
theory also considers the cooperative nature of the glass tran-
sition as discussed above and may provide a theoretical basis
for the validity of Eq. (3).

II. 2/3 RULE

One should note that the thermal expansion in the glass and
crystal state is dominated by the same process, namely local
vibrations within the anharmonic interparticle potential. The
latter is essentially the same for both states, reflecting their
similar short-range order, and thus αg and αc should be nearly
identical [18,20,64]. However, a severe problem arises from
the above considerations: As already remarked in Ref. [8],
the assumption of the validity of both Eqs. (1) and (3) leads
to a clear contradiction to the often-assumed, quite universal
relation [15,19,37,64–69]

Tg = 2/3Tm, (5)

known in glass physics as the “2/3 rule.” The validity of
Eq. (3) is well established by the very broad data set in
Ref. [8]. Therefore, either Eq. (1) or Eq. (5) should be invalid.
In the following, we first check the latter.

The vertical dash-dotted line in Fig. 1 indicates Tm as ex-
pected according to Eq. (5). The actual melting temperatures
of the three included glass formers (stars [15,65,70]) lie within
the vicinity of this line, which points to the approximate
validity of Eq. (5). For a more thorough check, in Fig. 2 we
present Tg vs Tm for more than 100 glass formers, mainly
concentrating on those already analyzed in Ref. [8] and on
such materials where thermal-expansion data are available for
the crystalline state to be used in the analysis below. A list
of the used data is provided in Table SI in the Supplemental
Material [71] (including Refs. [8,15,65,66,70,72–123]). The
main frame of Fig. 2 shows these data in double-logarithmic
representation. The line represents a linear fit with slope 1,
leading to a good description of the experimental data, which
points to direct proportionality of the two temperatures. The

FIG. 2. Double-logarithmic plot of Tg vs Tm for more than 80
glass formers belonging to different material classes as indicated in
the legend (see Table SI [71] for a list of all data points and sources).
The line is a fit with Tg ∝ Tm (corresponding to a straight line with
slope one in this representation), leading to a proportionality factor
of 0.65. The inset shows the same data in linear representation.

obtained proportionality factor of 0.65 is reasonably close
to the often-assumed value of 2/3 in Eq. (5) (for Tg values
below ∼60 K, not considered here, quantum effects can lead
to deviations [123]). The inset of Fig. 2 shows the same data
in linear representation, directly visualizing the linear rela-
tion between Tg and Tm with zero intercept and slope ∼2/3.
Overall, in accord with earlier findings [65,66,68], Eq. (5)
can be considered as approximately valid, although, to our
knowledge, it has lacked a clear-cut theoretical explanation
up to now.

While the average of the experimentally found Tg/Tm val-
ues is close to 2/3 [65,66,68], the actual experimental values
can vary between about 0.5 and 0.8, as shown, e.g., for poly-
mers in Ref. [124]. If both Eqs. (1) and (3) would be valid, one
would arrive at Tg/Tm ∝ m. However, depending on the mate-
rial, m can vary between about 20 and 170 [68], a factor of 8.5.
Thus, for different materials Tg/Tm should vary by this factor,
too. In contrast, as mentioned above, the experimental values
for Tg/Tm roughly vary between 0.5 and 0.8 [65,123–125],
i.e., by a significantly smaller factor of about 1.6. Moreover,
there is no indication for a systematic variation of Tg/Tm with
m. Therefore, the conclusion in the beginning of this chapter,
that the simultaneous validity of Eqs. (1) and (3) is excluded,
remains correct: In light of Eq. (5), they cannot both be valid,
even when considering the observed scatter in the 2/3 value.

III. INFLUENCE OF FRAGILITY ON CRYSTAL MELTING

As Eq. (3) [8] and Eq. (5) (Fig. 2) are experimentally
well founded, the above-discussed inconsistency of Eqs. (1),
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FIG. 3. Volume thermal-expansion coefficients αg in the glass
phase (a) [8] and αc in the crystalline phase (b) (see Table SIII
[71] for a list of all data points and sources), plotted double-
logarithmically vs Tg or Tm, respectively. The data cover a large
variety of materials from different material classes as indicated in the
legend. The open symbols represent the bare expansion coefficients
while the closed symbols show α divided by m. The dashed lines
are power-law fits, of the bare α data (open symbols), leading to
exponents of about −2.2 for αg and −1.5 for αc. The solid lines are
fits of the α/m data with slope −1, corresponding to Eqs. (3) and (6).
To facilitate a comparison of the αg and αc data, the ordinates and
abscissae of both frames cover identical ranges.

(3), and (5) can only be resolved when rejecting Eq. (1). As
mentioned above, its validity was checked within different
materials classes [5,14,15], but not across a similarly broad
collection of materials as done for Eq. (2) (found to be invalid)
and Eq. (3) (valid) in Ref. [8]. The simplest solution would be
to apply a similar fragility scaling to Eq. (1) as it was done
for the glass case, leading to the modification of Eq. (2) into
Eq. (3). To illustrate the latter, Fig. 3(a) shows the effect of
fragility scaling on the Tg-dependent expansivity of glasses
as treated in detail in Ref. [8] [compared to Fig. 1(e) of that
work, some additional data points are included in Fig. 3(a),
especially for metallic glasses; see Table SII of the Supple-
mental Material [71]]. The bare αg (open symbols) decreases
significantly stronger with Tg than expected from Eq. (2) and

can be roughly fitted by αg ∝ 1/T −2.2
g (dashed line) [126].

However, plotting instead αg/m (closed symbols) leads to
clear 1/Tg dependence, i.e., Eq. (3) is well fulfilled (the only
exception is SiO2 which has the smallest αg and highest Tg and
reveals an anomalous density temperature dependence [127]).

As mentioned in Sec. I, the introduction of m into Eq. (3)
was motivated by an assumed enhancement of Tg due to the
particle cooperativity, which is most pronounced in fragile
glass formers and should raise the energy needed to liquify
a glass [8]. Could such a scenario indeed also apply to crystal
melting? It would lead to

αc/m ∝ 1/Tm, (6)

which, in contrast to Eq. (1), is compatible with Eqs. (3)
and (5) when considering that αg ≈ αc. To check the possible
validity of Eq. (6), thermal-expansion data of such crystalline
materials are needed, for which also dynamic data in their
supercooled-liquid state are available, allowing for the deter-
mination of the fragility [e.g., from Angell plots or from VFT
fits of τ (T) or η(T)]. Unfortunately, this requirement restricts
the number of available data points that can be found in the
literature. The open symbols in Fig. 3(b) show αc(Tm) data
(Table SIII [71]) for 25 such systems belonging to different
material classes as indicated in the legend in Fig. 3(a). They
reveal a clear trend to stronger temperature dependence than
suggested by Eq. (1), which was derived from the Lindemann
criterion. As shown by the dashed line, a free power-law
fit leads to αc ∝ 1/T −1.5

m instead of 1/Tm. In contrast, when
plotting αc/m [closed symbols in Fig. 3(b)], in accord with
Eq. (6), this too strong temperature dependence becomes re-
duced, and the data points can be reasonably described by
a 1/Tm behavior (solid line). An alternative fit of these data
with αc/m ∝ 1/T −s

m with free exponent s (not shown) leads to
s = 0.95, i.e., with negligible deviation from s = 1 presumed
in Eq. (6). We conclude that the thermal-expansion data of
the crystal state shown in Fig. 3(b) are well compatible with
Eq. (6).

IV. DISCUSSION

At this point, a note of caution seems advisable. Like the
αg data analyzed in Ref. [8] [cf. Fig. 3(a)], the scatter of
the data in Fig. 3(b) is considerable. However, in that work
significantly more data points than in the present study were
available, which largely compensated the uncertainties of the
individual points and enhanced the significance of the found
correlations. We refer the reader to the supplemental informa-
tion of Ref. [8], where various sources of error were discussed
in detail (e.g., the use of different experimental techniques,
evaluation methods, etc.), which also applies for the present
data. For these reasons, the results of Fig. 3(b), although based
on data for 25 different glass formers, only can be regarded as
a clear hint at the validity of Eq. (6) but not a definite proof.
For such a proof, more experimental work on materials in both
their crystalline and supercooled state is necessary. This is
highly desirable because the possible validity of Eq. (6) has
interesting consequences for such a fundamental process as
crystal melting. Namely, this relation implies that a property
known to govern the supercooled-liquid state, the fragility,
plays a major role in the melting of the crystalline state.
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To explain Eq. (6), in analogy to the reasoning for the
glass transition mentioned in Sec. I [8], Tm ∝ m U0 should
be valid instead of Tm ∝ U0. Consequently, the melting tem-
perature of fragile systems becomes enhanced (most likely
by a factor m/16; see remark in Sec. I) due to the coop-
erativity of the liquid, and, without cooperativity, Tm would
be significantly lower. This is surprising because the fragility
m is a quantity that by definition [45] is determined deep in
the supercooled state, close to Tg (cf. dotted lines in Fig. 1).
Is it reasonable that the crystal somehow “knows” the de-
gree of cooperativity of the material’s supercooled-liquid state
close to Tg? And is it possible that its melting is influenced
by this property, although above Tm ≈ 3/2 Tg the material
transfers into a normal liquid, which is not supercooled at
all? For the glass, a corresponding scenario is rather plau-
sible, because the glass transition occurs at Tg, where m is
determined, and the structure of the glass is essentially the
same as that of the supercooled liquid just above Tg. In the
crystal, however, the structures of solid and liquid are dif-
ferent, although the short-range order in both phases usually
is similar.

These concerns can be at least partly relieved when con-
sidering Fig. 1. Indeed, m is determined at Tg (dotted lines),
but by no means is the fragility of a glass former a quantity
that solely affects a liquid in its supercooled state. The curves
drawn for different fragilities in Fig. 1 significantly deviate
from each other, not only in the supercooled but also in the
normal liquid state, even at lowest viscosities or smallest
relaxation times approached for T → � [128]. This is also
reflected by an alternative quantification of fragility, proposed
by Richert and Angell [129], based on the value of Tg/T at
τ (10−6 s), which encompasses the liquid region for strong
systems (cf. Fig. 1). Finally, according to Refs. [25] and
[48], the fragility index seems to be connected to the softness
parameter of the repulsive part of the pair potential, which is
relevant for all phases, no matter whether crystal, liquid, or
supercooled liquid [130].

For these reasons, fragility should be regarded as a prop-
erty of every liquid, whether supercooled or not, and it can
be expected to strongly influence its properties, also at high
temperatures. This property is widely unknown outside glass
physics because the degree of non-Arrhenius behavior of τ (T)
or η(T) can be best detected in liquids that can be easily
supercooled. If instead the liquid crystallizes, the accessible
region for the determination of the fragility is restricted to
temperatures between Tm and the boiling (or decomposition)
temperature. Then precise temperature-dependent measure-
ments of relatively small relaxation times or low viscosities
are required to derive the fragility (cf. Fig. 1) which often is
experimentally challenging.

V. SUMMARY AND CONCLUSIONS

In summary, we have shown that the thermal expansion
coefficient of crystals depends in a similar way on the melting
temperature as previously found for the glass-temperature de-
pendence of the thermal expansion of glasses and supercooled
liquids [8]. In particular, αc(Tm) is not simply proportional to
1/Tm as expected when adapting the basic concepts of crystal
melting that lead to the time-honored Lindemann criterion.

Instead, αc divided by the fragility index m is quite consistent
with such a proportionality [Eq. (6)]. At first glance, this is
surprising, because the fragility was originally introduced to
classify supercooled liquids. However, as discussed in the
previous section, fragility in fact affects the properties of
liquids even above their melting point. As clearly revealed
in Fig. 1, the viscosities of the liquids of strong and fragile
glasses differ by many decades at the melting temperature.
That is, crystals melting into a fragile liquid immediately at-
tain a low-viscous state, while those transforming into a strong
liquid exhibit much higher viscosity, probably corresponding
to strongly different binding forces. In addition, for fragile
liquids, already at Tm the cooperativity of particle motion has
considerably risen in relation to the single-particle motion,
assumed to dominate at highest temperatures. This can be
concluded from the fact that in all but the strongest liquids,
close to Tm the slope in Fig. 1 is already significantly larger
than the slope for 1/T → 0. Within the nowadays quite widely
accepted rationalization of non-Arrhenius behavior in terms
of cooperativity, this high-temperature slope essentially re-
flects the energy barrier due to noncooperative single-particle
motion, because there the thermal energy far exceeds the
interparticle interaction energies responsible for cooperativity.
In contrast, the increasing slope and, thus, larger energy bar-
riers at lower temperatures is caused by cooperativity, whose
length scale continuously rises with decreasing temperature
[18,19,27,28,36,131].

As a tentative scenario to qualitatively understand the ap-
proximate validity of Eq. (6), it then seems reasonable that
for fragile systems the melting of a crystal not only requires
the overcoming of the interparticle binding strength (directly
related to the pair-potential depth U0), which would lead to
Eq. (1). Instead, additional thermal energy must be invested
for melting because the resulting liquid is cooperative. Co-
operativity leads to a reduction of configurations available to
particle rearrangement, resulting in smaller entropy. In accord
with the reasoning of the Adam-Gibbs theory [27], which
ascribes the mentioned energy-barrier increase upon cooling
to a cooperativity-induced reduction of entropy, the Gibbs free
energy in fragile liquids is enhanced. Therefore, considerably
more energy must be invested in order to liquify a crystal
into a fragile liquid state, leading to larger Tm than without
cooperativity. In other words, the melting point is determined
by the crossing of the temperature-dependent free energies of
the crystal and liquid states [69], and cooperativity increases
this energy for the liquid state via entropy reduction. This
causes the melting point to rise.

To quantitatively understand Eq. (6), one needs to explain
why cooperativity should enhance Tm by just a factor m/16,
an ad hoc assumption made in Sec. IV (in analogy to Ref. [8])
to rationalize this equation. We want to clearly state that, to
our knowledge, currently there is no theoretical foundation for
such a proportionality. Experimentally, its validity is justified
by the restoration of the 1/Tm dependence of αc when scaling
it by m [Fig. 3(b)], in accord with Eq. (6). However, in view of
the data scatter, currently we can only state that the available
experimental data are quite consistent with this relation, which
implies an enhancement of Tm proportional to m. Overall, it is
clear that more theoretical and experimental work is desirable
to finally clarify these issues. The purpose of the present work
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is to trigger such further investigations, which appear highly
rewarding: A final confirmation would lead to a fundamentally
different picture of crystal melting: for all materials it seems

to be strongly influenced by cooperativity, a quantity usually
considered to be only relevant for glass-forming liquids and
the glass transition.
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