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Abstract—This manuscript presents a methodological proposal 

for computing heart rate variability (HRV), specifically designed for 
analysing physiological signals in surgical patients. The method 
involves ECG signal processing, tachogram computation, and HRV 
feature analysis. Results show strong correlation (0.99) and low 
mean absolute error (0.0069 mV) between pre-processed ECG 
signals and reference. Artifacts notably affect certain HRV features, 
but the proposed method achieves high precision, recall, and 
AUROC curve (0.96) in distinguishing normal from artifact-laden 
tachograms. Overall, the proposed methodology offers a 
comprehensive and efficient processing approach for obtaining high-
quality tachograms from ECG signals. 

Index Terms—anaesthesia, digital signal processing, 
electrocardiographic signals, heart rate variability, surgery, 
tachogram. 

I. INTRODUCTION
Heart rate variability (HRV) assessment, crucial for analysing 

the autonomic nervous system's intricacies, provides insights into 
cardiovascular health [1]. Electrocardiographic (ECG) signals are 
commonly utilized for HRV computation [1]. Notably, HRV 
analysis is vital in surgical settings, predicting mortality and 
morbidity post non-lethal cardiac ischemia [2]. A systematic 
review explored HRV's predictive role in intra and postoperative 
complications [2]. For example, the low-to-high-frequency ratio 
predicts intraoperative hypotension during spinal anaesthesia, 
while total power of low frequency predicts hypotension under 
general anaesthesia [3]. HRV holds promise in surgical contexts 
for outcome prediction and understanding surgeon stress. 
Nonetheless, further high-quality comparative studies are 
required to comprehensively grasp its potential and standardize 
its application [4]. 

HRV analysis necessitates multiple processing techniques, 
with high-quality ECG segment selection being crucial due to 
noise sensitivity [5]. Various approaches, including Machine 
Learning (ML) model training [6], [7], [8] have been proposed to 
select segment quality, thereby increasing the complexity in the 
solution of this issue. Previous studies emphasize the importance 
of accurate RR interval acquisition and processing for HRV 
analysis [9]. Proper R-peak detection, from ECG signal filtering 
to QRS complex acquisition, is essential. Despite some studies 

using the Pan-Tompkins method for R-peak detection [10], 
others apply multiple filters to improve data quality and 
obtain precise RR intervals [11]. However, many studies lack 
detailed data preprocessing methodologies [12]. No single 
algorithm is optimal for R-peak detection under various 
conditions or artifacts. Additionally, HRV artifacts post-
tachogram (TCG) obtaining, such as extra beats, missed 
beats, ectopic beats, and outliers [11] [13], are often 
overlooked [14]. 

Based on existing literature and identified gaps, this 
manuscript shows a methodological approach proposed to 
consolidate previously developed procedures into a series of 
steps for HRV analysis. Specifically designed for analysing 
physiological signals in surgical patients, this method begins 
with ECG signal processing, advances to TCG computation, 
and concludes with HRV feature analysis. 

II. METHODS
For this study, ECG recordings from the VitalDB 

database [15] were sampled at 500 Hz, involving 30 
colorectal surgery patients (16 females, 14 males) aged 20 to 
90 years with normal cardiac and pulmonary function and 
ASA-score=1 (American Society of Anaesthesiologists). 
Patients with diabetes and hypertension were excluded. The 
proposed methodology is outlined as follows: 

1. Selection of good-quality segments: The algorithm
described in [16] was utilized for selecting high-quality ECG 
segments. Analysis was performed in 60-second windows, 
computing features such as maximum and minimum values 
and the number of zero-crossings in nonoverlapping five-
second windows. Thresholds were applied to assess segment 
quality, resulting in 510 segments included as analytical 
sources for this study. 

2. ECG Filtering: A Notch filter was applied to eliminate
undesirable frequencies associated with electrical network 
noise (60 Hz, according to VitalDB). The Butterworth filter, 
configured as a fourth-order filter with a cut-off frequency of 
0.8 Hz, effectively removed low frequencies associated with 
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respiration, movement, or impedance mismatch between 
electrode and skin [17]. Additionally, high-frequency noise was 
smoothed using Wavelet transform with the biorthogonal 3.5 
mother wavelet and two levels of decomposition [18]. 

3. R-wave segmentation: To highlight the QRS complex, a
third-order Butterworth bandpass filter ranging from 5 to 20 Hz 
was applied [10]. Various algorithms for R-peak estimation, 
including Christov, WQRS, Engzee, SWT, Hamilton, Pan 
Tompkins, and Two-average detectors, were evaluated using the 
Detectors library in Python [19]. The selection criterion was 
based on the average signal amplitudes at detected R-peak 
positions, with the algorithm yielding the highest average value 
chosen. Despite its computational intensity, precise R-peak 
detection is vital for accurate HRV analysis [20]. Given that R-
peak detection may be slightly offset or different ECG waveforms 
may be detected as R-waves, the peak-corrector function from the 
wfdb library for Python was employed [21]. This function 
smooths the signal with a moving average filter and adjusts 
detected peaks to coincide with local maxima of the smoothed 
signal. 

4. Calculation of TCG: TCG was calculated with the time
difference between the corresponding identified R-peaks, for each 
ECG segment. Each time difference between two adjacent R-
peaks is presented as one value in the TCG. Typically, when 
obtaining the TCG, four common types of artifacts are identified: 
extra beats, missed beats, ectopic beats, and outliers. These 
artifacts, manifested as peaks of higher amplitude, should be 
removed to avoid affecting subsequent analyses [22]. Artifact 
detection was based on the median of the TCG (M-TCG).  

Extra beats are identified when both their corresponding data 
and one of their adjacent data in the TCG are below M-TCG, and 
the sum of these values is close to M-TCG. To correct the 
presence of an extra beat, one of the two data points was removed, 
and the other was replaced by their sum. 

Missed beats are distinguished because their corresponding 
value is approximately double M-TCG. For detection, time lapses 
greater than 1.5 times M-TCG were considered. Then, for 
correction, following [22], data detected as missed beats were 
replaced by two values corresponding to half of each.  

The correction of ectopic beats and outliers was based on [22]. 
In the subsequent explanation, the term "outlier" may encompass 
both ectopic beats and outliers. Differences between successive 
values of the TCG were computed to create the drr series. 
Subsequently, a threshold (U1) was calculated by multiplying the 
interquartile range of the drr series by a constant factor of 5.2. 
Then, the values of the drr series were divided by U1, and 
absolute values were taken; values greater than one were 
associated with outliers. Since the TCG does not follow a normal 
distribution, some outliers may go undetected, prompting a 
second evaluation. In this step, the M-TCG was subtracted from 
the TCG, generating the mrr series, where each value was 
multiplied by two, if and only if, it was less than zero. The 
interquartile range of the mrr series was then determined and 

multiplied by 5.2 to obtain a threshold (U2). The values of 
mrr were divided by U2, and absolute values were taken; 
values greater than one were associated with outliers. This 
entire process should be executed using sets of consecutive 
peaks; 45 non-overlapping peaks are recommended for 
optimal results [22].  

Outliers were replaced by interpolation using a decision 
tree regression model. The model was trained on the dataset, 
excluding outlier values. Once trained, the model was used to 
predict missing values in the TCG, substituting outlier values. 

5 Evaluation: To evaluate the methodology, several 
metrics were applied to the ECG signals, TCG calculation, 
and HRV analysis. Mean absolute error (MAE) and Pearson 
correlation coefficient were used to assess ECG signals. 
These metrics were applied to three signal types: a reference 
signal, the reference signal contaminated with randomly 
generated noise of varying frequencies, and the processed 
contaminated signal using the proposed methodology. 

500 TCG segments were examined, some randomly 
tainted with a single outlier (ectopic beat, missed beat, or 
extra beat), chosen at random. Post TCG correction, outlier-
detected segments were labelled "1", while those without 
were "0". Using these labels, a confusion matrix gauged 
effectiveness to detect atypical beats, estimating sensitivity, 
accuracy, precision, F1-score, specificity, Cohen kappa 
score, and AUC-ROC. 

For HRV assessment, 44 features in the time, frequency, 
nonlinear, and geometric domains were extracted from 
reference TCGs, contaminated with three different artifacts 
(extra, missed, ectopic), and corrected with the proposed 
methodology. This analysis aimed to assess the impact of 
TCG artifacts on the HRV features. Features were extracted 
using hrv-analysis [23] and NeuroKit [24] libraries. The ten 
most and least relevant features were then selected by the 
Mutual Information (MI) method from the Sklearn library 
[25]. 

III. RESULTS AND ANALYSIS
The assessment of ECG processing revealed a correlation 

coefficient of 0.99 and a MAE of 0.0069 mV for the 
processed signal compared to the reference signal. For the 
contaminated signal, metrics indicated a correlation 
coefficient of 0.87 and a MAE of 0.0500 mV. Analysis of the 
confusion matrix for distinguishing normal and atypical beats 
yielded a Cohen's kappa score of 0.91, precision, and F1-
score of 0.95, and accuracy, recall, and AUC-ROC curve of 
0.96. In [26], a deep convolutional autoencoder was 
implemented to eliminate various types of noise, thus 
improving the overall quality of the ECG signal. Processed 
signals showed an MAE of 0.0055 mV and a correlation 
coefficient of 0.85 compared to the reference signals, while 
contaminated signals displayed an MAE of 0.0130 mV and a 
correlation coefficient of 0.65 when compared to the same 
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reference. These findings reinforce the effectiveness of the 
proposed methodology in processing ECG segments. In [27], the 
relationship between ECG noise and heartbeat detection was 
studied for clean ECG signals and simulated signals with different 
noises. The results showed a recall exceeding 0.98 in R-peak 
detection for clean signals and with noisy signals exhibited a 
minimum recall of 0.65. The evaluation of the proposed 
methodology in TCG processing suggests this methodology can 
accurately identify atypical beats (ectopic, extra, and missing) and 
effectively distinguish an atypical beat from a normal one, crucial 
for TCG correction. In contrast to previous approaches utilizing 
ML classification models for selecting high-quality ECG 
segments [6], [7], [8], the proposed methodology employs a 
statistical signal analysis algorithm with low computational cost. 

Signals contaminated with artifacts degrade the signal 
morphology. In [26], the impact of ECG noise on heartbeat 
detection was investigated, showing a recall of 0.98 for clean 
signals compared to a minimum recall of 0.65 for noisy signals. 
This underscores the importance of ECG signal processing for 
accurate R-peak detection, crucial for generating high-quality 
TCGs. Evaluation of the proposed methodology yielded a Cohen 
kappa score of 0.91; precision, specificity and F1-score of 0.95; 
and recall, accuracy and AUC-ROC performance of 0.96, 
indicating its ability to identify atypical beats effectively, 
essential for TCG correction. Unlike previous studies utilizing 
specific algorithms like Hamilton or Pan Tompkins for R-peak 
detection [11], [13], the proposed methodology concurrently 
evaluates various algorithms to identify the most effective one. 
Additionally, in TCG generation, a limitation observed in some 
studies [11], [13] is addressed by identifying artifacts such as 
extra beats, missed beats, ectopic beats, and outliers, with the aim 
of TCG processing. 

Remarkable changes were observed in seven time-domain and 
three nonlinear features extracted from the TCG compared to 
those from the reference TCG (Table I). Conversely, two 
frequency-domain, three nonlinear, four time-domain, and one 
geometric feature showed less relevance. 

TABLE I 
SET OF THE TOP FIVE MOST RELEVANT TCG-FEATURES 

Feature_MI Missed beats Extra beats Ectopic beats Reference  
CVSD_1.11 0.18 ± 0.03 0.16 ± 0.11 0.06 ± 0.01 0.02 ± 0.03 
SD1_1.07 28.32 ± 4.46 24.0 ± 13.34 9.46 ± 1.94 3.48 ± 5.39 
SVD-entropy 
_1.06 

0.42 ± 0.04 0.38 ± 0.13 0.19 ± 0.03 0.08 ± 0.09 

std of  
HR_0.98 

4.97  
± 1.51 

28.46  
± 15.83 

3.36  
± 1.89 

2.17  
± 2.13 

Range of 
NNI_0.91 

949.34  
± 221.69 

665.05  
± 137.42 

377.55  
± 90.08 

112.64  
± 116.57 

SET OF THE FIVE LEAST RELEVANT TCG-FEATURES 
Triangular 
index_0.04 

4.85 ± 3.13 7.61 ± 6.15 5.08 ± 2.21 4.86 ± 3.11 

Rényi 
entropy_0.07 

3.59 ± 0.26 3.86 ± 0.41 3.67 ± 0.23 3.59 ± 0.26 

Shannon 
entropy_0.07 

5.18 ± 0.37 5.57 ± 0.58 5.29 ± 0.33 5.18 ± 0.38 

Median of 
NNI_0.11 

888.65  
± 189.64 

797.81  
± 208.8 

945.2  
± 210.86 

882.27  
± 190.27 

In [14], the authors analysed the influence of ectopic beats 
on HRV features such as SDNN, LF/HF ratio, Sample 
entropy (SampEn), and SampEn based on threshold. 
However, other types of artifacts and potentially relevant 
HRV features were not explored. In the evaluation of HRV 
features in this study, variations were observed when 
comparing contaminated TCGs with respect to the reference 
ones and those processed using the proposed methodology. 
Notable changes were observed in features such as NNI range 
and RMSSD. This is reflected in the feature ranking provided 
by MI analysis, highlighting these features as the most 
representative for discriminating between reference TCGs 
and those contaminated with different types of artifacts. 
Features minimally affected by noise were median of NNI, 
mean of NNI, and Shannon entropy. MI analysis similarly 
indicated that these features are less representative for 
discriminating between reference TCGs and those 
contaminated with different types of artifacts. This analysis 
underscores the importance of processing TCGs for 
conducting HRV analysis affected by various types of 
artifacts. 

IV. CONCLUSION

The proposed methodology offers a comprehensive and 
efficient processing option, capable of obtaining high-quality 
TCGs from ECG signals, which holds promise for future 
research in various health fields. Features utilized in HRV 
analysis were considered to evaluate TCG correction, 
revealing significant dispersion from the mean in various 
features like Coefficient of variation of successive 
differences (CVSD) and SD1; this is an indicative of 
substantial variability within the dataset, common in medical 
contexts due to factors such as individual differences, 
outliers, or the complexity of physiological processes. For 
future studies, this methodology will be employed to assess 
how heart rate responds to different environments, drugs, and 
body positions, aiming to deepen our understanding of heart 
physiology through HRV analysis. 
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