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Abstract—Goal: Recently, large datasets of biosignals
acquired during surgery became available. As they offer
multiple physiological signals measured in parallel, multi-
modal analysis – which involves their joint analysis – can
be conducted and could provide deeper insights than uni-
modal analysis based on a single signal. However, it is
unclear what percentage of intraoperatively acquired data
is suitable for multimodal analysis. Due to the large amount
of data, manual inspection and labelling into suitable and
unsuitable segments are not feasible. Nevertheless, multi-
modal analysis is performed successfully in sleep studies
since many years as their signals have proven suitable.
Hence, this study evaluates the suitability to perform mul-
timodal analysis on a surgery dataset (VitalDB) using a
multi-center sleep dataset (SIESTA) as reference. Methods:
We applied widely known algorithms entitled “signal qual-
ity indicators” to the common biosignals in both datasets,
namely electrocardiography, electroencephalography, and
respiratory signals split in segments of 10 s duration. As
there are no multimodal methods available, we used only
unimodal signal quality indicators. In case, all three signals
were determined as being adequate by the indicators, we
assumed that the whole signal segment was suitable for
multimodal analysis. Results: 82% of SIESTA and 72% of
VitalDB are suitable for multimodal analysis. Unsuitable
signal segments exhibit constant or physiologically unrea-
sonable values. Histogram examination indicated similar
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signal quality distributions between the datasets, albeit
with potential statistical biases due to different measure-
ment setups. Conclusions: The majority of data within Vi-
talDB is suitable for multimodal analysis.

Index Terms—Signal quality, physiological signals, Vi-
talDB dataset, SIESTA dataset, multimodal analysis.

Impact Statement—Most of data acquired during surgery
show potential for multimodal analysis, opening this field
of medicine for data-driven analyses.

I. INTRODUCTION

B IOSIGNALS such as electrocardiography (ECG) or elec-
troencephalography (EEG) reflect physiological functions

and are used for deriving clinically relevant parameters in vari-
ous settings. Several decades ago, biosignal monitoring shifted
from measuring single signals to monitoring multiple signals in
parallel. In case these signals stem from different measurement
modalities, these measurements are entitled as being “multi-
modal”. Multimodal biosignal analysis finds wide-ranging ap-
plications such as cuff-less blood pressure estimation [1], [2],
cardiorespiratory coupling analysis [3], stress monitoring [4],
sleep assessment [5], [6], network analysis of organ interac-
tion [7], and monitoring in intensive care units [8].

The publication of the MIT-BIH Arrhythmia Database in the
1980 s pioneered biosignal processing research [9]. Until then,
the assessment of algorithms was not reproducible as evaluation
was performed on proprietary data by medical device vendors.
Other datasets of unimodal biosignals, such as the European
ST-T Database [10], and eventually multimodal measurements,
such as the SIESTA dataset [11], followed. Today, the Phys-
ioBank offered by PhysioNet is an extensive dataset of biosig-
nals from healthy subjects as well as patients suffering from
diverse diseases [12]. Recently, multiple large-scale datasets
offering multimodal biosignals were made publicly available,
e.g. including surgery patients [13], hospital patients [14], and
patients undergoing sleep studies [15]. The data has been used
for different tasks, e.g. blood pressure estimation [16], prediction
of massive blood transfusion [17], and decision support in sepsis
treatment [18]. However, despite the fact these fields are different
in principle, they face the common issue related to the so-called
“quality” or “suitability” of the data. Both concepts describe the
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relationship between the underlying physiological signal and
unwanted noise components. In the remainder of this work, we
use both concepts synonymously; a signal of high quality (low
noise) is suitable for analysis and a signal of low quality (high
noise) is unsuitable for analysis.

In contrast to early datasets that were carefully labelled and
visually inspected [9], [10], [11], in current datasets, manual
labelling of the data in suitable and unsuitable segments is often
difficult or even impossible to conduct due to the sheer amount
of data. This trend is further driven by the escalating demand for
data by deep learning techniques. This underscores the critical
significance of conducting suitability studies in these large-scale
datasets. Outside the research field of biosignal processing, the
signal-to-noise ratio (SNR) is often used to quantify signal qual-
ity. However, this approach requires a clear definition of what
parts of a signal are associated with the physiological function
of interest and what are associated with noise. This concept
cannot be mapped directly to biosignals as the characteristics
of signal and noise are often similar, i.e. they fall within the
same frequency ranges. For example in ECG, motion artifacts
can distort the ST segment, power-line inference can distort the
P-wave, and the frequency of electromyography (EMG) noise
considerably overlaps with the main ECG signal [19].

Therefore, in biosignal analysis, signal quality indicators
(SQIs) have been proposed to indicate the quality of a sig-
nal; e.g. based on frequency content in different bands and
out-of-range events [20], kurtosis and the proportion of the
spectral distribution [21], morphological, statistical and spectral
characteristics [22], relative power in the QRS complex, skew-
ness, percentage of the signal with a flat line appearance [23],
constant-values and QRS detection [24]. In the majority of cases,
the proposed metrics are specific to a single class of biosignal,
e.g. for pulse oximetry [25], EMG [26], or ECG [27]. In addition,
a wide variety of SQIs were introduced for data acquired with
wearable devices and targeting motion artifacts as they are likely
to contain them [22], [25], [27].

In surgical practice, signal quality is highly relevant as noise
produces serious issues, such as increased false alarm rates
causing decreased quality of care due to alarm fatigue [22].
Typical sources of noise are power-line interference, motion
artifacts due to surgical preparation and patient movement,
improper sensor contact, and leaks in ventilator units. An in-
depth review can be found in [28]. Recently, large datasets
of biosignals acquired intraoperatively became available, that
might offer novel insights into physiological processes [13],
[29], [30] with VitalDB being the largest and most diverse
collection of biosignals available at the moment [13]. However, it
is unclear what percentage of this data is suitable for multimodal
analysis as multiple thousands of surgeries cannot be manually
labelled.

Hence, in this work, we apply existing SQIs to quantify the
suitability of VitalDB [13] for multimodal analysis. As there are
no multimodal SQIs available, we use unimodal signal quality
indicators only. In case, all signals within a time segment are
determined as being of high quality by their respective SQIs, we
assume that the whole segment is suitable for multimodal anal-
ysis. In the same way, SIESTA is analyzed; this was acquired in

TABLE I
PHYSIOLOGICAL SIGNALS OF VITALDB AND SIESTA DATASETS

sleep laboratories [31] as a normative polysomnography dataset
and has been the subject of multiple multimodal analyses [7],
[32] before, demonstrating its suitability. Therefore, we take
SIESTA as a reference and are interested in what level of
suitability VitalDB reaches.

The datasets are similar with respect to subject conditions as
they are i) not awake the majority of the time, ii) lying down,
and iii) not performing large movements. Due to the different
environments, the datasets contain similar but also different
modalities. We apply the SQIs to the common biosignals avail-
able in both datasets, i.e. ECG and EEG, while respiration signals
(Resp) are measured using different modalities.

II. MATERIALS AND METHODS

VitalDB is a free and comprehensive dataset that contains in-
traoperative biosignals and clinical information on 6388 surgical
patients [13]. This dataset includes waveform signals, numeric
values, and surgery-related clinical information. Data was col-
lected in the years 2016-2017 within the Seoul National Uni-
versity Hospital from patients undergoing routine or emergency
surgery for surgery other than cardiac (urologic, gynecologic,
thoracic, and general). The corresponding article states that it
contains noise from the following categories: data loss due to
sensor detachment, abnormal values, noise during electrocautery
and power-line inference [13]. The authors of this work are
not aware of any systematic external signal quality analysis of
VitalDB. It is freely available under a CC BY-NC-SA 4.0 license.

The SIESTA dataset includes polysomnography recordings of
197 healthy individuals and 97 individuals with high-prevalence
sleep disorders, e.g. sleep apnea, that were recorded in eight
European sleep centers [31]. In most cases, two consecutive
nights were recorded, resulting in a total of 669 polysomnog-
raphy records. Sampling rates vary between the different sleep
centers due to different equipment being used [11]. An unimodal
analysis of signal quality has been conducted for the SIESTA
study [11] based on histogram and entropy analysis, revealing
issues such as clipping of signal amplitudes, drifts, zero or
out-of-range values.

A. Collected Datasets

Both datasets consist of different methods for biosignal ac-
quisition, depicted in Table I. We included the common signals,
namely ECG and EEG signals. While there is only a single-lead
ECG in SIESTA available, two leads are available in VitalDB.
After inspecting the data, we chose lead II as the other lead
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was often not in use. Regarding EEG, in VitalDB a bifrontal
montage of a device for depth of anesthesia monitoring is used.
In order to make that as comparable as possible, we selected
Fp1-M2 and C3-M2 EEG channels for SIESTA. To account
for respiration, oro-nasal airflow signals from SIESTA and the
capnography signals from VitalDB were included. The latter
is a non-invasive technique used to monitor the level of carbon
dioxide in exhaled breath and to measure the patient’s respiratory
status [33], [34]. The technique involves the use of sensors
detecting concentration of CO2 in the airway [33], [34]. In
contrast, airflow sensing is another technique used to monitor
respiratory status which involves the use of sensors that detect
the flow of air in and out of the lungs. There are several types of
airflow sensors [35] and within SIESTA airflow is measured with
a sensor at the nose. The inclusion of both measurements stems
from the potential to present a robust method for evaluating two
distinct signals associated with the same physiological process
— respiration, in this instance.

1) Data Acquisition: VitalDB signals were downloaded us-
ing the provided Python library available via the Python Package
Index (PyPI) [36]. The SIESTA data is available in European
Data Format (.edf) files which were read using the edfrd li-
brary [37] which is also available via PyPi.

2) Exclusion and Inclusion Criteria: The whole datasets
were included in both cases, SIESTA and VitalDB. For the
SIESTA dataset, all 391 subjects were included (669 records,
9388.01 hours of recordings), while for VitalDB, all 6388 sub-
jects were included (40247.48 hours of recordings). To avoid
adding a bias to the data, we did not adjust the size of datasets
by balancing their number of records or patients and instead give
all results in percentage values.

3) Data Preprocessing: Signals in VitalDB have different
sampling rates with respect to the type of signal. ECG, EEG, and
capnography signals were recorded with a sampling rate of 500,
128, and 62.5Hz, respectively. In contrast, SIESTA has different
sampling rates not only across the different types of signals but
also within the same type of signals. ECG signals are available
with sampling rates of 400, 256, 200, and 100 Hz while EEG
signals have 256, 200, and 100 Hz as sampling rates; airflow
data was acquired using 256, 200, 100, 25, 20, and 16 Hz as
sampling rates.

We did not apply any resampling to the signals as this would
bias the results of some SQIs. In addition, we did not apply any
preprocessing in terms of signal filtering, baseline removal, etc.
The rationale here was to provide a bottom base-line with respect
to signal quality. Of course, researchers can use signal filtering
when working with VitalDB due to the overlap of signal and
noise components, nonetheless this often degrades the signal
as well [38] and may even distort diagnostic information [39].
Hence, the only preprocessing step was to split each record into
segments of ten seconds with an overlap of five seconds.

B. Signal Quality Indicators

Some methodologies employed in our previous applications
were adapted for the analysis presented in the current study [40].
We employed two types of generally applicable SQIs: rule-based

and statistical indicators. The first checks signals for complete-
ness, constant data not containing any informative value, and
if signal amplitudes are in the expected physical range. These
rules cover the types of noise that were analyzed in earlier work
on the SIESTA study [11]. The second type of SQIs includes the
computation of statistical measures such as skewness, kurtosis,
entropy, zero-crossing rate, and the standard deviation (std) of
variations in signal envelopes, both higher and lower. Addition-
ally, we used a third type of SQI from literature based on direct
physiological assumptions which exist for ECG signals only.

1) Rule-Based SQIs: Each rule-based SQI results in a
boolean output for each ten-second segment of each signal,
reflecting whether the quality is high, or not.

Constant data: Biosignals are almost always changing due
to the dynamic nature of physiological processes within the
human body and hence are rarely constant for long durations.
If a sustained period of constant value is observed, it is almost
always the result of sensor contact loss or clipping artifacts.
Thereby, it was analyzed if a segment exhibited constant values
over periods of 500 ms or longer. More precisely, a segment is
considered to have constant data, if the condition

xi = xi+1 = · · · = xi+wlength−1 (1)

holds for any sample index i = 0, 1, . . . , N − wlength, where N
represents the number of samples in a signal x, and wlength refers
to the number of samples in time period of 500 ms. This approach
was applied similarly as described in [41].

Out-of-range data: Out-of-range values might occur mainly
due to measurement hardware-related issues or problems during
data conversion. In each segment, their respective maximum
and minimum values were compared to values categorized as
normal in clinical environments which act as thresholds for
this score. The considered upper and lower thresholds were
retrieved from literature and defined as intervals: [−110, 110]μV
for EEG signals [42], [−3.5, 3.5]mV for ECG signals [43], and
[0, 50]mmHg for the capnography signal [44]. As the respiration
signal in SIESTA was dimensionless, establishing an acceptable
range was not possible.

2) Statistical SQIs: Each statistical SQI results in a numer-
ical output for each segment of each signal.

Standard deviation of the upper and lower envelope: Analysis
of signal envelopes allows for detecting noisy peaks in a signal
and has already been used for assessing the quality of pulse
oximetry signals [45]. At first, signal amplitudes were scaled
to [−1, 1] to normalize across the different types of signals.
Subsequently, the ten-second segments were split into smaller
segments (ECG, EEG: two seconds, Resp: five seconds), max-
imum and minimum values were extracted, and their std was
computed.

σ(x) =

√∑N
i=1(xi − x̄)2

N − 1
(2)

Skewness: The skewness of a signal is associated with how
much the distribution of amplitudes deviates from a normal
distribution and is thereby a measure of asymmetry. Skewness
was used as a metric of quality in different types of signals such



IDROBO-ÁVILA et al.: QUANTIFYING THE SUITABILITY OF BIOSIGNALS ACQUIRED DURING SURGERY FOR MULTIMODAL ANALYSIS 253

as pulse oximetry [46], ECG [47], and EEG [48]. Skewness is
defined by

Skewness(x) =
1

N

N∑
i=1

[
(xi − x̄)

σ

]3
(3)

where x̄ represents the mean value of the signal, σ represents
the std, and xi is the amplitude of the i-th sample.

Kurtosis: Kurtosis is an indicator of whether a given signal
contains extreme values or not. It identifies how much the tails
of the signal’s distribution differ from the tails of a normal
distribution. In the same manner as skewness, kurtosis has been
implemented as an element for assessing the quality of signals
such as pulse oximetry [49], ECG [47], and EEG [48]. Kurtosis
is defined by

Kurtosis(x) =
1

N

N∑
i=1

[
(xi − x̄)

σ

]4
(4)

Entropy: Entropy is a measure of unpredictability or ran-
domness since it quantifies how much the probability density
function of a signal varies from a uniform distribution [48]. It
has been used successfully for measuring signal quality of pulse
oximetry [49], ECG [50], and EEG [48] signals. Here we used
the spectral entropy of the form

Entropy(x) = − 1

log2 M

M∑
i=1

p(x)i log2 (p(x)i) (5)

where M is the number of frequency bins, and p is the nor-
malized power spectral density of signal x. The scaling factor
log2 M refers to the maximal spectral entropy of white noise.
In this sense, segments with a high entropy are expected to
mostly consist of noise and segments with a very low entropy
are probably missing physiological waveforms.

Zero-crossing rate: A zero-crossing occurs in a signal when
a signal changes from positive to negative sign or vice versa.
Thereby, the zero-crossing rate was included as a simple method
for detecting the presence of noise in the signals as high zero-
crossing rates are associated with the presence of noise, e.g. high-
frequency sawtooth signals. This approach was already used in
other works for ECG [27], photoplethysmographic (PPG) [25],
and EEG signals [51]. The zero-crossing rate is defined by

Zero − crossing rate(x) =
1

(N − 1)

N∑
i=1

I (xixi−1 < 0) ,

where I = 1 if xixi−1 < 0, otherwise I = 0.

(6)

This approach assumes that biological signal content is com-
monly in a limited low band of frequencies (i.e. 0 to 30 Hz for
EEG [52], and 0.05 to 100 Hz for ECG [53], with dominant
components in the range < 30 Hz [54]), while noise commonly
is present in the whole band of frequencies, exhibiting elevated
levels of both frequency and energy [53].

3) Physiological SQIs: The SQIs introduced so far are
based on quantitative properties of a certain signal but not
on physiological meanings. Only a few approaches specific to

ECGs have been developed to address this limitation. There-
fore, we extend our ECG signal quality analysis with a set of
physiologically relevant conditions. According to the survey
by Satija et al. [27], a broad spectrum of physiological SQIs
exists, which integrates fiducial features with heuristic rules.
These methods extract a variety of morphological and interval
features, such as the duration and amplitude of the P- and T-wave,
QRS complex, PR and ST-segments, which are then combined
with heuristic rules using predefined physiologically relevant
decision thresholds. In our study, we selected heuristic rules that
operate based on the location of the R-peak, considering it to be
one of the most robust features that can be automatically detected
among those mentioned previously as we have no insights into
ECG signal quality. We applied the three conditions introduced
by Orphanidou et al. [55], specifically designed for scenarios
with many motion artifacts as these are also frequently observed
in surgery data [28].

Condition 1 – Feasibility of the estimated heart rate (HR) - It
must be in a physiologically probable range that is between 40
and 180 beats per minute for the adult population.

Condition 2 – Maximal distance between two QRS com-
plexes: the longest time interval between two consecutive R-
peaks cannot exceed 3 s, thus no more than one beat can be
missed.

Condition 3 – Relative change of the HR: The ratio of the
maximum to the minimum beat-to-beat interval cannot exceed
2.2. This rule ensures that the HR cannot change by more than
10%, provided that no more than a single beat has been missed.

In the present analysis, we applied conditions 1–3 to each ten-
second segment of the ECG recordings [56]. First, we applied
three different QRS detectors, namely ProMAC developed by
NeuroKit2 [57], the algorithm proposed by [58], and the QRS
detector from the ECG-kit Matlab toolbox [59]. Second, each
condition was checked based on the detected QRS complexes.
A single condition was evaluated three times, i.e. once for every
QRS detector. For each rule, the final decision was made based
on majority voting. If any of the feasibility conditions were
violated, the corresponding signal segment was considered of
bad quality.

C. Signal Analysis Methodology

We aimed to determine the suitability of the datasets for uni-
modal and multimodal analysis, and to identify the similarities
and differences between the suitability of the two datasets. Mul-
tiple aspects of analysis were performed based on the statistical
behaviour of the SQIs.

1) Unimodal and Multimodal Analysis: Here we investi-
gated the mean statistical behaviour of the SQIs, and determined
the amount of suitable for analysis considering single biosignals
(unimodal analysis), and considering multiple synchronous sig-
nals (multimodal analysis). On one hand, for unimodal analysis,
only one signal at once is considered for assessing its suitability.
For this analysis, all indicators were included, i.e. rule-based,
statistical, and physiological SQIs; the physiological SQIs were
applied exclusively to ECG signals. On the other hand, for
multimodal analysis, two or more signals at once are included to
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evaluate their suitability. In this approach, only rule-based SQIs
were employed for the analysis. These methods were selected
to allow a more direct evaluation including different amounts
of signals. In this way, multimodal analysis was carried out
considering all of the possible combinations for analysis among
two, three, and four signals in each dataset.

2) Histogram Analysis: Besides the unimodal and multi-
modal suitability analysis, we conducted a cross-dataset consis-
tency evaluation. We investigated the similarities and differences
between the two datasets according to a histogram-based analy-
sis and comparison of the SQIs. Both qualitative and quantitative
analyses were performed, i.e. we visually evaluated the distri-
butional properties of the histograms, and then we estimated the
effects between the histograms of the two datasets. We noted
that statistical hypothesis testing is also a common approach
to comparing two populations, but it is impractical here due to
the large sample size. The standard statistical tests (like t-tests,
F-tests, Kolmogorov–Smirnov test, etc.) may detect even small
differences as significant in large samples, referred as the p-value
problem [60]. Due to this, we focused on the practical differences
instead of statistical significance, and we estimated the effect
sizes, i.e. we measured the strength of the relationship between
the histogram pairs by quantifying the correlation coefficients.

In general, the selected physiological signals are expected
to have similar characteristics for both datasets, so we also
anticipated similarities between the SQIs as well. However, the
datasets have certain differences in terms of technical setup
(e.g. devices, sensors, settings, and calibrations) and medical
conditions of patients, which may cause bias or other statistical
differences between the SQIs. In particular, we expected entropy
differences between the two datasets, due that unlike the other
statistical SQIs, the entropy depends on the sampling rate of the
signal. Considering the sampling rate differences between the
datasets, it is reasonable to match the histograms before further
comparison. For matched histogram analysis, the means and
the variances of the entropy SQIs from the SIESTA dataset are
matched to those from VitalDB.

III. RESULTS

Results are presented in this section according to the type of
analysis: unimodal, multimodal, and histogram analysis.

A. Unimodal Analysis

1) Rule-Based SQIs: Table II displays the results of the
rule-based SQIs being applied to single biosignals of both
datasets; values are presented as the mean of percentage val-
ues. It can be noted that regarding constant signal amplitudes,
SIESTA involves a mean of 0.30% compared to 8.37% in Vi-
talDB. In addition, 14.25% of SIESTA signal amplitudes are
out of the predefined range, in contrast to 15.63% of VitalDB.
VitalDB shows a high number of constant data, however, both
datasets present a similar proportion of out-of-range data.

2) Statistical SQIs: The mean computed by the statistical
SQIs introduced in Section II-B were computed for VitalDB and
SIESTA datasets and shown in Table III. This analysis shows
a difference between the outcomes from both datasets in the

TABLE II
RESULTS FOR RULE-BASED SQIS: PERCENTAGE OF CONSTANT VALUES,

AND OUT-OF-RANGE DATA FOR BOTH DATASETS

TABLE III
RESULTS FOR STATISTICAL SQIS: FOR EACH RECORD, THE ARITHMETIC

MEAN OVER ALL SEGMENTS IS COMPUTED

TABLE IV
RESULTS FOR PHYSIOLOGICAL SQIS: PERCENTAGE OF GOOD AND BAD

QUALITY SEGMENTS FOR BOTH DATASETS

features of skewness and kurtosis. However, the zero-crossing
rate provides a similar behaviour across all signals for both
datasets. In the same manner, the upper and the lower envelopes
present similar values for EEG1, EEG2, and ECG in VitalDB as
well as SIESTA.

3) Physiological SQIs: The physiological SQIs were evalu-
ated for ECG signals in both datasets, and the data segments were
labelled as good or bad quality. Table IV presents the statistics of
the physiological indices. This analysis shows that the general
signal quality of the two datasets is in a similar range, although
the SIESTA dataset has a higher percentage of good-quality data.
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TABLE V
PERCENTAGE OF DATA WITH NO CONSTANT VALUES AND AMPLITUDES

WITHIN NORMAL RANGES*

TABLE VI
PERCENTAGE OF DATA WITH NO CONSTANT VALUES AND AMPLITUDES

WITHIN NORMAL RANGES*

B. Multimodal Analysis

Table V displays the results of multimodal analysis consider-
ing the combinations of two biosignals in a given segment. We
assumed a combination as suitable for analysis if both signals
satisfy the rule-based SQIs, i.e. they do not show constant, or
out-of-range data in the segment. For VitalDB the percentage of
data which might be used for multimodal analysis is 72% and
for SIESTA 82%. The percentage of suitable data that involves
respiratory signals is higher in SIESTA, and the percentage
which does not include them is similar in both datasets.

Table VI shows results for combinations of three and all
four signals which might be used for multimodal analysis. It
can be noted that the amount of data which might be used
for multimodal analysis with three signals is larger than 60%.
For VitalDB the percentage is 61% and for SIESTA 76%. The
percentage of the data that involves respiratory signals is higher
in SIESTA, and the percentage which does not include them is
similar in both datasets. It is possible to observe that the amount
of data which might be used for multimodal analysis with four
signals is bigger than 55%; namely 55% for VitalDB and 73%
for SIESTA.

C. Histogram Analysis

We performed a histogram-based analysis of the statistical
SQIs. Fig. 1 represents the back-to-back histograms of SQIs,
i.e. the vertical combinations of the histogram pairs from the
two datasets. The histograms were computed for the whole
datasets, i.e. the histograms were the aggregates of all segments.

TABLE VII
CORRELATION COEFFICIENTS OF THE SQI HISTOGRAM PAIRS

Note that kurtosis and skewness are not bounded metrics, while
the other SQIs were normalized to interval [0, 1]. Here we
chose the display ranges [0, 20] for EEG kurtosis, [0, 50] for
ECG kurtosis, [0, 10] for respiratory kurtosis, [−4, 4] for EEG
skewness, [−8, 8] to ECG skewness, and [−4, 4] for respiratory
skewness, in order to provide better visual interpretability. With
few exceptions, to be discussed later, the histogram pairs had
similar behaviour in terms of shape and symmetry. However,
as it is already depicted in Table III, there were differences
between statistical descriptors, like mean and variance, that
may cause bias between these histogram pairs (see e.g. EEG 2
and ECG entropy on Fig. 1). In general, we can conclude that
the SQIs of these signals usually followed similar statistical
distributions for both datasets, the differences come from the
technical differences of the two datasets.

The quantified correlation coefficients of the histogram pairs
are presented in Table VII. Here, we investigated the quantitative
effect sizes between the histogram pairs by estimating the cor-
relation between the histogram curves. Correlation coefficients
were evaluated on histograms quantized with 1000 bins. The
usually high correlation numbers (close to 1) also indicate
considerable similarity between the datasets.

Let us now focus on the exceptional cases, where the his-
togram pairs have visual dissimilarities, and/or there is only a
low level of correlation between them. The most notable cases
are the SQIs of the Resp signals and the entropy indices of the
signals. We note that the respiratory signals were derived from
different modalities (capnography vs. airflow, see Section II-A).
The differences between the device sensors and the monitoring
techniques might explain the dissimilarities of the SQIs. Regard-
ing the entropy histograms, similar shapes but different means
and variances may be observed. Considering that entropy might
depend on the sampling rate, we matched the histogram before
further comparison, as of Section II-C. Fig. 2 demonstrates
the matched histogram pairs. The correlation coefficients then
became 0.88, 0.84, 0.82, and 0.39 for EEG 1, EEG 2, ECG, and
Resp, respectively, which indicates correspondence between the
entropies of the EEG and ECG signals.

Another remarkable difference between the datasets is that
there are more SQI outliers in VitalDB than in SIESTA (see e.g.
the secondary and ternary peaks of the entropy histograms in
Fig. 1). We investigated this behaviour further, and we found a
connection between the entropy outliers of the ECG signal and
the physiological SQIs with the entropy outliers almost always
indicating low signal quality.

Fig. 3 shows the ECG entropy histograms computed for good
and bad quality segments, based on the physiological SQIs. We
can observe that both the lower and upper outliers correspond
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Fig. 1. Back-to-back histograms of the SQIs, normalized with the sample sizes. Horizontal and vertical axes represent SQI values and normalized
frequencies, respectively.
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Fig. 2. Matched back-to-back histograms of the entropy indices for all signals. Horizontal and vertical axes represent SQI values and normalized
frequencies, respectively.

Fig. 3. ECG entropy histograms corresponding to the physiological SQIs. The red vertical lines are the automatically computed outlier thresholds.
Horizontal and vertical axes represent SQI values and normalized frequencies, respectively.

to bad-quality signals. We also estimated automatic thresholds
to detect the outliers of the entropy histogram by finding the
minimum points between the three peaks (see Fig. 3, right panel),
and we evaluated the performance of these thresholds against the
physiological SQIs. Although this approach detects only 34.70%
of the bad-quality segments, the precision is 99.43%, i.e. almost
every entropy outlier segment is of bad quality.

IV. DISCUSSION

In this section, results are discussed in the same order as the
previous section: unimodal analysis, multimodal analysis, and
histogram analysis. Subsequently, limitations, scope and future
work are stated.

A. Unimodal Analysis

From the unimodal point of view, even though SIESTA
presents 0.30% of constant values, only 86% of its data fit
the predefined range values (14% is out-of-range). In contrast,
VitalDB has more constant data (8%), but its values fit similarly
to the predefined amplitude (16% is out-of-range) (Table II).

The statistical SQIs analysis (Table III) showed on one hand
that skewness and kurtosis are different between VitalDB and
SIESTA datasets. This behaviour might be produced because of
the differences in the recording devices and the environment of
acquisition. On the other hand, entropy, zero-crossing rate, and
the upper envelope and lower envelope SQIs represent robust
markers for signal suitability in VitalDB and SIESTA. These

markers show a major capability of generalization since their
application does not depend on the source of data. Entropy is
not affected by the amplitude of data which we could observe in
the respiratory signals of both datasets.

In several cases, such as in the zero-crossings of ECG and
respiratory (Resp) data, it has been observed that the data points
are widely dispersed from the mean value, with the standard
deviation often equal to or greater than the mean (Table III). This
pattern represents a significant level of variability and dispersion
within the data. It is common in medical contexts to encounter
datasets that do not conform to the normal distribution. This
variability can stem from a variety of factors, including in-
dividual differences among patients, the presence of outliers,
or the intricate nature of the physiological processes being
measured.

B. Multimodal Analysis

There are several potential applications for performing multi-
modal analyses on biosignals extracted from both datasets. For
example, the concept of cardiorespiratory coupling analyses the
coupling between the cardiac and the respiratory systems [61].
The field of network physiology [62] aims for quantifying the
coordination and interaction between multiple organ systems,
and methods such as time delay stability [7] have already been
applied successfully to subgroups of the SIESTA dataset [32].
Our multimodal analysis shows that both datasets have a suit-
ability for multimodal analysis of 72% (VitalDB) and 82%
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(SIESTA) (Table V) which indicates that the suitability of the
surgery dataset is reduced but still the majority is feasible.

It is important to remark that respiratory signals in SIESTA
dataset are dimensionless, thus they were not discriminated by
the indicator out-of-range data. This might be an explanation for
the higher values in multimodal analysis that include these types
of signals in SIESTA compared to VitalDB. This is also observed
in multimodal analysis for three and four signals (Table VI).
The other combinations of two signals, which do not include
respiratory signals, present in VitalDB a bigger percentage of
data which might be used for multimodal analysis.

The evaluation of the potential for multimodal analysis also
reveals a difference between the amount of data in both datasets
which might be used. 61% and 76% are associated with VitalDB
and SIESTA datasets, respectively for multimodal analysis with
three signals, and 55% and 73% for multimodal analysis with
four signals (Table VI). In the same way as in multimodal
analysis with two signals, the combinations that do not include
respiratory signals exhibit in VitalDB a similar percentage of
data which might be used for multimodal analysis with three
signals.

C. Histogram Analysis

In order to generalize signal processing methods between
datasets, similar or adjustable signal quality is desired. The
investigated SQIs were evaluated for cross-dataset consistency
using a histogram-based statistical analysis. The analysis re-
vealed dissimilarities between the respiratory signals of the
two datasets, and concluded similarity for the EEG and ECG
signals, with the note that datasets are biased in terms of mean
and variance. This bias can probably be explained by technical
differences between the datasets. In summary, we can conclude
that the datasets share similar signal quality distributions, but
the aforementioned bias should be taken into account during the
development of signal processing methods.

The histogram analysis also highlighted the importance of
standardization to ensure the internal consistency of the data.
This is a natural demand of gradient- and distance-based learning
algorithms, since it affects their generalization property [63].
Section III-C showed that some dissimilarities between the
datasets due to different measurement setups can be reduced.

An additional revelation is the comparably high number of
SQI outliers in VitalDB and their connection to the physiological
signal quality. It was already known that the statistical SQIs
are capable of differentiating empirical signal quality [25] and
that the physiological SQIs also give a reliable depiction of the
empirical quality [55]. In this work, we noticed an additional
correspondence between entropy outliers and bad physiological
quality in ECG signals.

D. Limitations

We assessed one dataset per clinical environment and assumed
that they were representative of the respective environment. As
SIESTA was acquired in eight different study centres [31], the
results should generalize to a large extent, however, VitalDB

was only acquired in a single centre [13] which limits the
generalizability of results.

Due to the novelty of VitalDB, we are not able to compare our
results to other studies concerning signal suitability. Although
there are some works processing this dataset [64], they are
i) focussing other biosignals such as photoplethysmography, ii)
only processing a subset of VitalDB, and iii) applying prepro-
cessing. Hence, we cannot compare our results to them. Our
findings concerning SIESTA align with prior research [11] that
analyzed signals individually. This earlier study also addressed
issues such as clipping of signal amplitudes, zero values, and
out-of-range values, which we detected in our analysis.

Another limitation of our work is that sleep and anaesthe-
sia are two different physiological states. In the realm of the
latter, the heightened depression of the central nervous sys-
tem might introduce notable physiological distinctions when
compared to natural sleep. One such disparity manifests in
the variance of breathing patterns observed between these two
states. This particular dissimilarity might account for certain
inconsistencies observed in the analysis, such as discrepancies
in respiratory signals during histogram and correlation analysis.
These disparities could potentially stem from the collection
of data under disparate circumstances. However, paradoxically,
this divergence underscores the adaptability and efficacy of the
current methodology. It demonstrates the method’s ability to be
successfully applied even when dealing with data acquired under
diverse environmental and physiological conditions.

While the present approach focuses on ECG, EEG, and
respiratory signals, the underlying principles of the proposed
approach are designed to be versatile and adaptable to a broad
spectrum of biosignals. The methodology relies on fundamental
signal processing that is applicable across different physiologi-
cal data types. However, empirical validation on a wider range
of biosignals such as transcutaneous CO2, SpO2, (non)invasive
blood pressure, intracranial pressure, and galvanic skin re-
sponses, is required.

Furthermore, we combined several unimodal SQIs for de-
ciding if a certain segment is suitable for multimodal analysis.
It would be more advantageous to use SQIs that are adopted
for multimodal signals but the authors are not aware that these
exist. In addition, physiological SQIs were applied exclusively
to ECGs as they do not exist for EEG or respiration signals.
Hence, a potential avenue for future work would be to develop
multimodal SQIs for a more accurate analysis of suitability.
However, due to the generalizability of the used methods, the
proposed analysis and its results can probably be generalized
to any biosignal dataset other than the considered VitalDB
and SIESTA datasets with only the physiological SQIs being
restricted to ECG signals.

E. Scope and Future Work

The results of our study are important from two main per-
spectives. On one hand, it provides valuable information to data
scientists and machine learning experts on how much data of
VitalDB is suitable for multimodal analysis. In addition, the
proposed methodology offers a straightforward approach to
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detecting unsuitable signal segments that can be excluded for
further analysis. For instance, this is an important step in neural
networks as they are susceptible to noisy labels, outliers, and
corrupted data during training, which can compromise general-
ization and robustness [65]. On the other hand, our histogram
analysis revealed a correspondence between quantitative statis-
tical SQIs (i.e. entropy outliers) and qualitative physiological
SQIs, which warrants further research in this direction. Addi-
tionally, we will implement data-driven feature ranking of the
SQIs in future work, which will allow us to understand how each
feature contributes to the description of signal suitability.

V. CONCLUSION

We analyzed the suitability of VitalDB, a dataset consisting
of biosignals recorded during surgery for multimodal signal
analysis. The results indicate that its suitability is 10% reduced
in comparison to SIESTA, a sleep dataset. Sleep datasets have
already been used successfully for different multimodal anal-
ysis [3], [5], [6], [7], which underlines the potential of using
VitalDB for similar analyses. Most of the SQIs utilized in this
study are not signal- or measurement-specific and therefore
the proposed methodology could be applied to any biosignal
dataset by other researchers to compare its suitability, using the
values reported in this paper for sleep and surgery datasets as a
reference.
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