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Abstract: In previous work, we have introduced a new manufacturing process, which combines
deep drawing with thermoplastic resin transfer molding. The fabric is infiltrated with a reactive
resin during forming, which polymerizes to a tough poly (methyl methacrylate) matrix after
completion of the forming process. In this contribution, miniaturized tensile specimen are tested.
The tensile properties are location dependent due to the forming process. It is found, that FMLs
Young’s modulus and yield strength depends on the Young’s modulus and yield strength of the
metal. The ultimate tensile strength of the FML depends on the GFRP layer and its fiber
orientation, as well as fiber volume content. Specimens with a + 45° fiber orientation show higher
failure strains compared to specimens with 0° and 90° fiber orientation.
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1. Introduction

The climate change is the greatest challenge of our time. Sustainability has thus become a
central issue in society, as well as in the design process of new products. Lightweight design is
no longer considered exclusively under technical, but also under ecological boundary conditions.
One example is the automotive industry, which has to reduce the CO; emissions of its vehicle
fleet through legal framework conditions [1]. The automobile's energy consumption occurs 87 %
of live time cycle during use and is thus proportional to the vehicle mass [2]. The result is the
electrification of the powertrain and the use of new lightweight materials and strategies. In
addition to steel and aluminum sheets [3], fiber-reinforced composites (FRP) are increasingly
being used in car body design [4]. Joining or combining materials of different material classes
has therefore become an essential part of the development process. Fiber-metal-laminates
(FML) are a special form of multi-material design and combine the advantageous properties of
metals and FRPs in a single layered material. FMLs exhibit excellent resistance to crack
propagation, impact, and flammability [5].

In the 1980s, FMLs were developed and commercialized for the civil aviation industry [6,7]. The
classical autoclave manufacturing process is time consuming, expensive, and the achievable
geometric complexity of the components is low [8,9]. For mass production of FML components,
the material and process costs have to be reduced and the producible complexity of the
components has to be increased. A possible process could be the combination of deep drawing
and thermoplastic resin transfer molding (T-RTM), as shown in Figure 1. In this one-step process,
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an in-situ polymerizing matrix is injected during deep drawing. The metal sheets and the fabric
layers are formed simultaneously, while the matrix infiltrates the fabrics. The matrix polymerizes
after the deep drawing process, embedding the fibers and bonding the FRP to the metal sheets
[10-16], shown in Figure 1. The mechanical properties of the FML are strongly influenced by the
manufacturing process of the generic part geometry. Therefore, the mechanical properties have
to be determined dependent on the generic part geometry, otherwise the structure-property
relationships cannot be measured. For this purpose, tensile specimens from four regions of the
generic part are extracted, shown in Figure 1. The regions differ in terms of their forming history,
more precisely the degree of metal forming, fiber draping and infiltration.

steel —
steel —9

matrix flow

die.” SrERERT O "RaeEss
Iblank holder = - ]
S 1
punch i = |
tool stroke: 0, O mm tool stroke: 5-10 mm tool stroke: 45,0 mm

stackin deep-drawing & infiltration & final EML part
g injection polymerization P

Figure 1. Process flow of combined deep drawing and resin transfer molding

2. Material

The FML layup is a sandwich construction with metal sheets as face sheets and thermoplastic
reinforced twill weave fabrics as intermediate layer. The DC04 metal sheet thickness is 1 mm
and six plies of 280 g/m? E-glass twill weave fabric 2/2 (Interglas 92125 FK800) are used. As resin
system, a 1:1 mixture of acrylates Elium 130 and Elium 190 from Arkema S.A. with 2.5 %
dibenzoyl peroxide (United Initiators, BP-50-FT) is used. The rolling direction of the metal sheet
defines the 0° orientation, which is equal to the weft direction of the dry fabrics. In weft direction
(0°), the fabric weight is 143 g/m? and 133 g/m? in warp direction (90°). The metal sheets were
pretreated to increase the adhesion to the thermoplastic matrix according to [17] with manual
grinding and a silane adhesion promoter (Evonik, Glymo). In addition, generic parts are produced
with aluminum sheets of 1 mm AA5182-H111 and six plies of 280 g/m? E-glass twill weave fabric.
The aluminum sheets are pretreated with release agent to be able to remove them after the
manufacturing process to obtain GFRP parts without metal sheets. The draping influence of the
fibers on the tensile properties of the FML is investigated using the GFRP parts.

The generic part geometry is divided into four general regions with different forming histories
according to Figure 1. The samples are extracted by waterjet cutting from four different FML
parts and two GFRP parts with equivalent process settings. The average fiber volume content of
all parts is 70 % = 3% and is measured by thermal gravimetric analysis by the Fraunhofer
Institute for Chemical Technology.

3. Experimental set-up

The tensile tests are performed on a Zwick/Roell ZMART.PRO 200 kN universal testing machine.
The specimens are chosen according to DIN EN ISO 527-4:2022-03 [18] and ASTM
D3039/D3039M-17 [19] with dimensions of 60 mm x 10 mm x 3 mm (LxBxt). For clamping 20
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mm are required on each side, resulting in a free measuring length of 20 mm. Wooden spacers
with a are placed between the clamping jaws due to the short clamping length. This prevents
the clamping jaws from tilting. Strain is measured by using two-dimensional digital image
correlation (GOM GmbH, Aramis 4M) with a recording frequency of 2 Hz for the FML specimens
and 5 Hz for the GFRP specimens. An airbrush pistol with body paint is used for the speckled
stochastic pattern to obtain a fine pattern for high resolution for high strains. The FML
specimens are clamped rotated by 90° to measure the strain in stacking direction &,, shown in
Figure 2. The GFRP specimens are not rotated and the transverse strain & is recorded. The
transverse velocity is v = 2 mm/min and corresponds to a strain rate of £ =0.0016 1/s. A
prestress of 2 MPa is applied via hydraulic jaws with a hydraulic pressure of 20 bar. Stresses and
strains are calculated homogenized over the entire cross-section of the specimens. The Young’s
modulus is determined for strains between &, =0.01 % and 0.07 % according to ASTM E1111
[20] by using linear regression with the method of least squares. The 0.05 % vyield strength is
determined as Ry o5 for a plastic strain of & = 0.05 %. The tensile strength Ry, is calculated

from the maximum measured force F.

a) hydraulic clamping device b) DCO4 GFRP DCO4

specimen clamping jaw

spacer

Figure 2. a) Experimental set up for tensile test with b) measured strain field of 2D-DIC system
on a FML specimen

4, Results

Figure 3 summarizes the results in the form of box-plots. The tensile properties
(E, Rp0.05 R, eb) show a strong dependence on region and orientation for the FML, as well as
for the GFRP specimens. In general, the 0° orientation exhibits higher tensile properties than the
90° orientation within the respective region, with the exception of the FML specimens from
region IV. The qualitative difference between 0° and 90° orientation is noticeable for all
mentioned properties and is especially pronounced for ultimate tensile strength, except for FML
specimen from region IV. The 45° orientation shows higher Young’s modulus, yield strength and
ultimate tensile strength compared to the 135° orientation for FML and GFRP specimens. The
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highest failure strain is reached by the 135° orientation with e, ® 6 % for GFRP and e, = 10 %
for FML specimens compared to e, = 2 % for FML and GFRP specimens in 0° and 90° orientation.
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Figure 3. Box-plots of region dependent mechanical properties of GFRP and FML specimens
a) Young’s modulus, b) yield strength, c) ultimate tensile strength and d) failure strain

The stress-strain curves of the GFRP specimens in Figure 4 are linear elastic in 0° and 90°
orientation, while in 45° and 135° orientation they are strongly nonlinear. The GFRP specimens
in Figure 4 c) oriented in 135° show nearly ideal plastic flow behavior and differs from the stress-
strain curve of 45° oriented specimens. All stress-strain curves of the FML specimens in 0° and
90° orientation show a bi-linear behavior, with a pronounced yield point. In 45° and 135°
orientation, the stress-strain curves are strongly nonlinear and qualitatively similar to those from
the GFRP specimens. In Figure 4 b) for region Il, the stress-strain curves of GFRP and FML
specimens oriented in 90° show significantly lower ultimate tensile strength. The ultimate
tensile strength of GFRP and FML correlates directly. The same observation applies to the stress-
strain behavior for GFRP and FML specimens in Figure 4 c) with 45° and 135° orientation and
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less pronounced in Figure 4 a) with 0° and 90° orientation. As already mentioned for the box-
plots, region IV in Figure 4 d) is an exception and shows no correlation between stress-strain
behavior of GFRP and FML.
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Figure 4. Representative stress-strain curves of GFRP and FML specimens from
a) region | in 0° and 90° orientation, b) region Il in 0° and 90° orientation, c) region Ill in 45° and
135° orientation and d) region IV in 0° and 90° orientation

5. Discussion

In region Il and in region IV the fibers are drawn-in towards the center of the generic part. The
fibers in 90° orientation in region Il are draped transverse to loading direction. This results in a
high fiber curvature and thus in low tensile properties. The same applies for the specimens in
region IV in 0° orientation. Due to the shorter length of the geometry in region Il compared to
region IV, the fibers curvature is higher in region Il, as shown in Figure 5.
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Figure 5. Fiber draping of representative generic GFRP part with removed metal sheets

The observed results can be explained by an analogous model consisting of two parallel springs
representing the two metal layers and the GFRP layer [13]. The load distribution between the
two layers, respectively the two springs, depends on the spring stiffness

EA c Eqt
EA_, o _ Et
L Cy Eztz

(1)

Cc =

with the Young’s modulus E, the cross-section A = bt and the length L, width b of the specimen
and thickness t of the respective layer. The pronounced yield point of the FML stress-strain
curves in Figure 4 is the load transition point between metal layers and GFRP layer. The stiffer
DC04 metal sheets carry the main load up to the yield strength and then transfer the load to the
GFRP layer. The GFRP layers ultimate tensile strength determines the ultimate tensile strength
of the FML specimen, which depends on the fiber orientation of the GFRP layer due to fiber
draping during forming. The more fibers are oriented in tensile direction, the higher is the
ultimate tensile strength. The yield strength of the FML specimens depends on the degree of
metal forming. For example, the influence of the GFRP yield strength on the FML yield strength
is not be seen in Figure 3 b) for region | with 90° orientation and region Il with 45° orientation,
while the influence of the GFRP ultimate tensile strength correlates directly with the FMLs
ultimate tensile strength in Figure 3 c¢) and failure strain in Figure 3 d). In region Ill with 45°
orientation, the fibers are draped in loading direction, while in 135° orientation, the fibers are
draped in transverse direction and the specimens have the largest proportion of fibers in
transverse direction, which is why they have the lowest mechanical properties. The orientation
and curvature of the fibers to the direction of loading significantly affects the ultimate tensile
strength, as can be seen in Figure 4 b) and c). The specimens with higher fiber curvature in
Figure 5, region 11 90° and region Il 135°, have lower tensile properties. This can also be seen in
Figure 4 d) for the region IV with 0° and 90° orientation, with the 0° specimens exhibiting higher
fiber curvatures due to draping and thus show lower tensile properties compared to the 90°
orientation.
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6. Conclusion

Results of tensile tests on GFRP and FML specimens of generic parts manufactured by combined
deep-drawing with in-situ polymerization are presented. The study demonstrated that the
mechanical properties in terms of Young’s modulus, yield strength, ultimate tensile strength and
failure strain are location dependent due to the forming process. The tested GFRP specimens
show the influence of fiber draping due to forming on the tensile properties. The FMLs ultimate
tensile strength and failure strain are dominated by the GFRP, while the results show no
influence of the GFRPs Young’s modulus and yield strength on the respective properties of the
FML.
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